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Abstract This paper deals with the online control of a redundant flex-
ible link manipulator to achieve minimum oscillations using the redund-
ancy resolution technique. Different redundancy resolution techniques
proposed and used for rigid link manipulators are tested for their use in
the case of flexible link manipulators. The simulation model of a planar
three-link flexible manipulator is used in this study. The redundancy res-
olution using kinetic energy minimization techniques is compared with
the local joint acceleration minimization method to show the advantage
of achieving minimum vibrations.

E.1 Introduction

In most robotic applications the tasks are specified in the Cartesian space. However,
the robot commands are executed in the joint space. Therefore, it is necessary to
solve the inverse kinematics problem to find the corresponding joint positions for
achieving the desired end-effector position and orientation. A redundant manipulator
has more degrees of freedom (DoFs) than required to achieve the desired end-
effector position and orientation. The redundant DoFs can be exploited to achieve
different criteria for improving the performance of the redundant manipulator without
affecting the primary goal of reaching task space configurations (i.e., end-effector
position and orientation). Different redundancy resolution methods are available
in the literature for rigid link manipulators. Manipulator redundancy has been
exploited in the literature to achieve different criteria like joint limits avoidance [1, 2],
minimization of kinetic energy [3], obstacles avoidance [4], singularity avoidance [5, 6],
and minimization of joint torques [7]. However, their application in redundant flexible
link manipulators (FLMs) has not been explored. This work’s aim is to explore
different redundancy resolution methods and utilize them to control redundant FLMs
for achieving minimum vibrations.

Different optimal planning methods have been studied in the literature for the
rest-to-rest motion of the FLM to achieve minimum end-effector vibration when
approaching a desired final position in the desired traveling time [8, 9]. Particle





     

swarm optimization algorithms and genetic algorithms have been applied to traject-
ory planning of flexible redundant manipulators to minimize vibration in [10] and
[11] respectively. Although these optimization methods are offline, they require a
dynamic model of the FLM which is computationally expensive. Therefore, it is
time-consuming and impractical to run the optimization procedure whenever there is
a change in the initial position, goal position, or traveling time. The configurations
of the FLMs affect the end-effector vibration as highlighted in [12] and [13]. However,
there has been little reported work on online control of the FLMs exploiting the
redundant configuration of the manipulators for reducing vibrations.

The redundancy resolution methods based on minimum kinetic energy are used
in this work for the online control of the FLMs for achieving minimum vibration and
compared to the minimum norm joint acceleration solution.

The paper is organized into six sections as follows. Section E.2 describes the
kinematics of manipulators. The dynamic model of the planar FLM is presented in
section E.3. Different redundancy resolution methods are presented in section E.4.
The results obtained from three different redundancy resolution methods when
applied to control FLMs are presented in section E.5. Conclusions and discussions
follow in section E.6.

E.2 Rigid Body Kinematics

The forward kinematics of a manipulator describing the pose of the end-effector as a
function of the joint angles is given by (E.1), where x ∈ Rm is the vector representing
the pose of the end-effector, and qr ∈ Rn is the vector of joint positions.

x = f(qr) (E.1)

For the planar three-link manipulator, n = 3 represents three joints and m = 2

represents the 2D position of the end-effector. Differentiating (E.1) with respect
to time, the relation between joint velocity and end-effector velocity is obtained as
shown in (E.2), which is called differential kinematics of the manipulator, where
J(qr) ∈ Rm×n is the m× n Jacobian matrix.

ẋ = J(qr)q̇r (E.2)

Similarly, the relation between the joint acceleration and end-effector acceleration
is obtained by differentiating (E.2) with respect to time as shown in (E.3).

ẍ = J(qr)q̈r + J̇(qr, q̇r)q̇r (E.3)





        

Hereafter, J and J̇ are used instead of J(qr) and J̇(qr, q̇r) respectively.

E.3 Manipulator Dynamics

The dynamic model of the planar multi-link flexible manipulator derived using the as-

sumed modes method is given by (E.4), where q =
[
qr qf

]T
, qr =

[
qr1 qr2 · · · qrn

]T
,

qf =
[
qf11 qf12 · · · qf1nf

· · · qfn1 qfn2 · · · qfnnf

]T
, qri represents the ith joint

position, qfij represents the time-varying variable related to the spatial assumed
mode shape of link i and mode of vibration j, nf represents the total number of
assumed modes of vibration, M(q) is the inertia matrix, c(q, q̇) is the vector of
Coriolis and centripetal effects, g(q) is the gravity term, and K is the rigidity modal
matrix [13].

M(q)q̈ + c(q, q̇) + g(q) +Kq = τ (E.4)

Joint viscous friction and link structural damping can be included by adding a
damping matrix D as

M (q)q̈ + c(q, q̇) + g(q) +Kq +Dq̇ = τ . (E.5)

The dynamic equation can be written in another form separating rigid and flexible
parts as in (E.6)–(E.8).[

Mrr Mrf

MT
rf Mff

][
q̈r

q̈f

]
+

[
cr

cf

]
+

[
gr

gf

]
+

[
0 0

0 Kff

][
qr

qf

]

+

[
Drr 0

0 Dff

][
q̇r

q̇f

]
=

[
τr

0

] (E.6)

Mrrq̈r +Mrf q̈f + cr + gr +Drrq̇r = τr (E.7)

MT
rf q̈r +Mff q̈f + cf + gf +Kffqf +Dff q̇f = 0 (E.8)

E.4 Redundancy Resolution

A redundant manipulator has more DoFs than required to achieve the desired end-
effector position and orientation. That is, the number of DoFs n of a redundant
manipulator is greater than the number of controlled end-effector DoFs m. There is
an infinite number of robot configurations possible to achieve any given pose of the
end-effector.

For redundant manipulators i.e., n > m, the general solutions for (E.2) and (E.3)





     

are given by (E.9) and (E.10) respectively, where J+ represents the pseudoinverse of
J , (I − J+J) is a projector of arbitrary vectors z1 ∈ Rn and z2 ∈ Rn onto the null
space of J .

q̇r = J+ẋ+ (I − J+J)z1 (E.9)

q̈r = J+(ẍ− J̇ q̇r) + (I − J+J)z2 (E.10)

By considering z1 = 0 and z2 = 0 in (E.9) and (E.10), the pseudoinverse solutions
(exact solution) at the velocity and acceleration levels are obtained, which result in
the minimum norm joint velocity and minimum norm joint acceleration solutions
respectively.

The joint velocity and acceleration solutions given by (E.9) and (E.10) are the
solutions of the constrained linear-quadratic optimization problems given by (E.11)
and (E.12) respectively.

minimize
q̇r

H(q̇r) =
1

2
(q̇r − z1)T (q̇r − z1)

subject to Jq̇r − ẋ = 0

(E.11)

minimize
q̈r

H(q̈r) =
1

2
(q̈r − z2)T (q̈r − z2)

subject to Jq̈r + J̇ q̇r − ẍ = 0

(E.12)

The tasks defined by z1 and z2 have no effect on the end-effector motion. There-
fore, by choosing suitable vectors z1 and z2, the redundant DoFs could be exploited
to optimize certain performance measures (secondary task) without altering the task
space configurations (primary goal). Other methods to achieve desired performance
characteristics include task augmentation [14] and weighted pseudoinverse technique
[3, 7, 15–18].

The general redundancy resolution at velocity and acceleration levels for finding
the local optimal motions can be formulated as the constrained linear-quadratic
optimization problems given by (E.13) and (E.14) respectively, where W ∈ Rn×n is
an arbitrary positive-definite symmetric weight matrix.

minimize
q̇r

H(q̇r) =
1

2
(q̇r − z1)TW (q̇r − z1)

subject to Jq̇r − ẋ = 0

(E.13)

minimize
q̈r

H(q̈r) =
1

2
(q̈r − z2)TW (q̈r − z2)

subject to Jq̈r + J̇ q̇r − ẍ = 0

(E.14)





        

The solutions of (E.13) and (E.14), which can be derived using Lagrange mul-
tipliers, are given by (E.15) and (E.16) respectively, where J+

W is the weighted
pseudoinverse of J given by (E.17).

q̇r = J+
W ẋ+ (I − J+

WJ)z1 (E.15)

q̈r = J+
W (ẍ− J̇ q̇r) + (I − J+

WJ)z2 (E.16)

J+
W = W−1JT (JW−1JT )−1 (E.17)

In (E.17), the J+
W becomes ill-conditioned when J is not full (row) rank or when

the manipulator reaches a singularity. The singularity problem can be solved by using
the Damped-Least-Squares approach which can be formulated as an unconstrained
minimization problem of the forms given by (E.18) (at velocity level) and (E.19) (at
acceleration level), where a scalar damping or singularity robustness factor λ is used
to specify the relative importance of the norms of joint rates/accelerations and the
tracking accuracy.

minimize
q̇r

H(q̇r) =
λ2

2
(q̇r − z1)TW (q̇r − z1)

+ (Jq̇r − ẋ)T (Jq̇r − ẋ)

(E.18)

minimize
q̈r

H(q̈r) =
λ2

2
(q̈r − z2)TW (q̈r − z2)

+ (Jq̈r + J̇ q̇r − ẍ)T (Jq̈r + J̇ q̇r − ẍ)

(E.19)

The solutions of (E.18) and (E.19), which can be derived using Lagrange mul-
tipliers, are given by (E.20) and (E.21) respectively, where J+

W,DLS is the damped
weighted pseudoinverse of J given by (E.22).

q̇r = J+
W,DLSẋ+ (I − J+

W,DLSJ)z1 (E.20)

q̈r = J+
W,DLS(ẍ− J̇ q̇r) + (I − J+

W,DLSJ)z2 (E.21)

J+
W,DLS = W−1JT (JW−1JT + λ2I)−1 (E.22)

It can only be presumed that the sum of squares of joint velocities minimized by the
generalized pseudoinverse ((using (E.9) ) approximately minimizes the kinetic energy.
The inertia-weighted pseudoinverse can be used to realize the true minimization of





     

kinetic energy [3, 7, 19]. The kinetic energy T of the system is given by (E.23).

T =
1

2
q̇TrMrrq̇r (E.23)

The joint acceleration solution of the constrained linear-quadratic optimization
problem given by (E.24) that minimizes the manipulator’s instantaneous kinetic
energy is given by (E.25), where the inertia-weighted pseudoinverse J+

M used to
realize local minimization of kinetic energy is given by (E.26). The inertia-weighted
pseudoinverse J+

M in (E.26) is same as the weighted pseudoinverse in (E.17) with the
weighting matrix W = Mrr.

minimize
q̈r

H(q̈r) =
1

2
q̇TrMrrq̇r

subject to Jq̈r + J̇ q̇r − ẍ = 0

(E.24)

q̈r = J+
M(ẍ− J̇ q̇r) (E.25)

J+
M = M−1

rr J
T (JM−1

rr J
T )−1 (E.26)

Similarly, the sum of squares of joint accelerations minimized by the generalized
pseudoinverse (using (E.10)) is presumed to approximately minimize the joint torques.
Since the manipulators are actually controlled by specifying joint torques to achieve
the desired accelerations, it is desirable to optimize joint torques rather than joint
velocities or accelerations. Torque minimization methods for redundancy resolution
have been thoroughly studied in the literature [3, 6, 7, 16, 18, 20].

In [3], it is shown that the local optimization of the inertia inverse weighted
dynamic torque given by (E.27) corresponds to the global kinetic energy minimization
problem.

minimize
q̈r

H(q̈r) =
1

2
τ Tr M

−1
rr τr

subject to Jq̈r + J̇ q̇r − ẍ = 0

(E.27)

The joint acceleration solution of the constrained linear-quadratic minimization
problem given by (E.27) derived using Lagrange multipliers is given by (E.28).

q̈r = J+
M(ẍ− J̇ q̇r)− (I − J+

MJ)M−1
rr cr (E.28)

In (E.28), the gravity-related terms are neglected in order to only consider
the dynamic effects and to prevent the manipulator configuration from drooping
as it attempts to reduce the gravitational potential energy of the system [3, 18].
Moreover, (E.28) is equivalent to (E.16) with the weighting matrix W = Mrr and





        

z2 = −M−1
rr cr.

The joint acceleration solutions using (E.28) leave the joint velocities in the null-
space untouched causing the joints that do not contribute to the end-effector motion
to move freely. This can make the system unstable. The null space damping method
can be used to ensure stability by appending a damping term to the redundant task
as given by (E.29), where β is a positive scalar [18, 20].

q̈r = J+
M(ẍ− J̇ q̇r)− (I − J+

MJ)(M−1
rr cr + βq̇r) (E.29)

The open-loop solutions of joint variables obtained by numerical integration lead
to solutions drift and then to task space errors. The Closed-Loop Inverse Kinematics
(CLIK) algorithm can be used to overcome the joint drift problem which is based
on the task space error between the desired and the actual end-effector positions or
the task space velocity error [1]. The CLIK algorithm with redundancy resolution
at the acceleration level is shown in Fig. E.1, where Kp and Kv are symmetric
positive definite matrices and their choices guarantee that the task-space position
error (ep = xd − x) and velocity error (ev = ẋd − Jq̇r) uniformly converge to zero.
The joint trajectories generated using the redundancy resolution techniques are used
for the online control of the FLM as shown in Fig. E.1.

xd

ẍd

ẋd

∫∫ ∫

Null Space Damping/
Optimization

Main Task Solution

Differential Kinematics

Forward Kinematics

Jacobian Derivative

q̈ q̇ q

deflections

end-effector position
Flexible Manipulator
Simulation Model

Trajectory
Generator

Kv

Kp

+
−

−

+ +

−

+

+
+

+

x

ẋ

Figure E.1: CLIK algorithm with redundancy resolution at the acceleration level.

E.5 Simulation Results

A planar three-link flexible manipulator with three revolute joints (n = 3) is used
in the simulation for the end-effector position control in the 2D Cartesian space
(m = 2). Each link of the flexible arm is made of a hollow aluminium profile of length
`1 = `2 = `3 = 1.5 m. Each joint consists of a hub, motor, and planetary gearbox.





     

The simulation parameters of the FLM are detailed in [13].
Fig. E.2 shows the equivalent rigid body schematic of a three-link manipulator

with Denavit-Hartenberg (DH) parameters given in Table E.1.
The quintic trajectory generator is used to generate a smooth Cartesian trajectory

to move the end-effector from the initial position (x0 =
[
3 1.5

]T
) to goal position

(xf =
[
2 2

]T
) in 0.5 s. The end-effector position, velocity, and acceleration traject-

ories used in this paper are shown in Fig. E.3. Since the flexible dynamics of the
FLM is simulated for 2 s (to study about the residual oscillations) the trajectories are
shown for the whole simulation time. The method proposed in [12] is used to estimate
the optimal initial configuration of the redundant arm representing weak-vibration
configuration.

The flexible dynamics of the FLM is simulated for 2 s using (E.8), where the
joint trajectories are generated using different redundancy resolution techniques (see
Fig. E.1). MATLAB ode45 is used for time integration of dynamic equation given by
(E.8). The joint trajectories generated using the redundancy resolution techniques
are fed to the simulation model of the FLM to study the effects in the flexible
dynamics of the FLM as shown in Fig. E.1. Following three cases of redundancy
resolution methods are compared for their use in FLMs:

1. Case A: Local minimization of the joint acceleration (LMJA).

q̈r = J+((ẍd +Kp(xd − x) +Kv(ẋd − Jq̇))

− J̇ q̇r) + (I − J+J)(−βq̇r)
(E.30)

Here, Kp and Kv are symmetric positive definite matrices and their choices
guarantee that the task-space position and velocity errors uniformly converge
to zero.

X1

Y1

X2

Y2 Y3 Ye

X3 Xe

O1 O2 O3 Oe

Xw

Yw

ℓ1 ℓ2 ℓ3

Figure E.2: Equivalent rigid body kinematics.





        

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t (s)

1.5

2

2.5

3
P

os
iti

on
 (

m
)

x
y

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t (s)

-4

-3

-2

-1

0

1

2

V
el

oc
ity

 (
m

/s
)

x
y

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t (s)

-25

-20

-15

-10

-5

0

5

10

15

20

25

A
cc

el
er

at
io

n 
(m

/s
2
)

x
y

(c)

Figure E.3: End-effector trajectories (a) position, (b) velocity, and (c) acceleration.

2. Case B: Local minimization of the kinetic energy (LMKE).

q̈r = J+
M((ẍd +Kp(xd − x) +Kv(ẋd − Jq̇))

− J̇ q̇r) + (I − J+J)(−βq̇r)
(E.31)

3. Case C: Local minimization of the inertia inverse weighted dynamic driving
force or global minimization of the kinetic energy (GMKE).

q̈r = J+
M((ẍd +Kp(xd − x) +Kv(ẋd − Jq̇))

− J̇ q̇r)− (I − J+
MJ)(M−1

rr cr + βq̇r)
(E.32)

Table E.1: DH PARAMETERS

Axis TranZ RotZ TranX RotX
1 0.0 qr1 `1 0.0
2 0.0 qr2 `2 0.0
3 0.0 qr3 `3 0.0
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Figure E.4: Joint trajectories when using different redundancy resolution methods
(a) joint 1 position, (b) joint 2 position, and (c) joint 3 position.

All the above cases have been implemented with β = 5, Kp =

[
1 0

0 1

]
, and

Kv =

[
1 0

0 1

]
. The forward Euler method is used with a step size of 1×10−4 s to

integrate the joint accelerations to obtain joint velocities and positions. The joint
position trajectories obtained by integrating joint acceleration solutions given by
(E.30)–(E.32) are shown in Fig. E.4. Although the manipulator starts with the same
initial configuration in all three cases, the final joint configurations are different. The
final joint configuration has an effect on the residual vibration of the end-effector
[12, 13].

The link deflections and end-effector position, shown in Fig. E.5, are estimated
using the assumed modes method as presented in [13]. The simulation model of the
FLM (given by (E.7) and (E.8)) is used only to show the flexible dynamics of the
FLM when applying different redundancy resolution techniques. The online control
method with redundancy resolution used in this paper is not based on the dynamic
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Figure E.5: Link deflections and end-effector y-position when using different redund-
ancy resolution methods (a) Link 1 deflection, (b) Link 2 deflection, (c) Link 3
deflection, and (d) End-effector y-position.

model of the FLM. However, the inertia matrix (Mrr) and the vector of Coriolis and
centripetal effects (cr) equivalent to the rigid model of the FLM are used in case of
kinetic energy minimization approaches of redundancy resolution.

Fig. E.5 shows that the link-tip deflections with respect to its base and the end-
effector vibration when using the kinetic energy minimization methods of redundancy
resolution are lower compared to the minimum joint acceleration method. Moreover,
there is not much difference visible (see Fig. E.5) in the vibration minimization when
using the global kinetic energy minimization method compared to the local kinetic
energy minimization method.

E.6 Conclusion

Different methods to control redundant manipulators using redundancy resolution
techniques are presented. The redundancy resolution by minimizing kinetic energy





     

is compared to the solution obtained from local minimization of joint acceleration
concerning elastic vibration in the FLM. The results proved that the kinetic energy
minimization approaches reduce the elastic vibrations compared to the local joint
acceleration minimization method. Although, the kinetic energy minimization
approaches of redundancy resolution use the inertia matrix (Mrr) and the vector of
Coriolis and centripetal effects (cr) equivalent to the rigid model of the FLM, these
methods can still be used for the online control of the FLM. This is because only the
rigid parts of the inertia matrix M and the vector of Coriolis and centripetal effects
c are used in the online control of the FLM.

In the next step, it is worth testing the redundancy resolution methods, aimed at
reducing elastic vibrations, in the actual experimental setup of the FLM.
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