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Abstract The modeling, identification and analysis of a flexible beam
is presented. The lumped parameter method is used to model a flexible
beam. The use of camera measurements to identify lumped paramet-
ers, namely spring stiffness and damping coefficient, is described. The
measurements of the tip oscillations using a high-speed camera and high-
precision laser tracker are compared. The static and dynamic behavior
of the flexible beam model is compared to the experimental results to
show the validity of the model.

B.1 Introduction

Development of flexible manipulators is of on-going interest for researchers world-
wide. The use of light flexible manipulators has many advantages over conventional
industrial robots such as low cost, reduced energy consumption, high payload-to-
robot-weight ratio, high operational speed, better transportability, safe operation due
to reduced inertia and so on [1]. However, link flexibility causes unwanted oscillations
and problems in the precise position control of the end-effector which may even
lead to an unstable system. For achieving minimum oscillations and good position
accuracy, the industrial robots are designed with highly stiff materials (like heavy
steel with bulky design) which consequently require expensive high-power drives.

The vibration of end-effector at high speed and high load is still present due to
industrial robot elasticity. In this context, lightweight flexible manipulators are better
alternatives if the control architecture is designed to reduce the vibration of the
end-effector to an acceptable range. The non-linear dynamics of the system with an
infinite number of degrees of freedom make the control of flexible manipulator more
complicated than the rigid robots. In order to develop efficient control algorithm for
the flexible manipulator, it is necessary to construct a mathematical model of the
system incorporating flexibility of the links. Due to impracticability to model the
flexible link with infinite degree of freedom for dynamic analysis and simulations, it
is necessary to describe the system with finite degree of freedom and still being able
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to represent all the dynamically relevant flexibility effects. A dynamically accurate
and computationally affordable simulation model is required to represent the actual
system behavior to design suitable control algorithm.

The goal of flexible beam modeling is to achieve an accurate model of a flexible
manipulator system formed by the combination of multiple flexible links connected
together by revolute joints represented by a spring and damper system. This paper
represents a part of the work done for modeling a long reach 3R planar manipulator
constructed using flexible links.

Different models of flexible bodies are available in the literature depending upon
the assumptions and required complexity. Accuracy of the models depends on
the assumptions made to simplify the complexity of the flexible link manipulator
system. There are three main approaches that are used traditionally in the literature:
lumped parameter method, assumed mode method and finite element method [2].
In assumed mode method, it is difficult to calculate modes of the link with varying
cross-sections [3]. Finite element method is computationally very expensive. Recently,
researchers have used lumped parameter method to model flexible arms of multi-link
manipulators [4], boom of a mobile concrete pump [5], and other flexible mechanical
structures [6].

Lumped parameter method is explored further in this paper because it is a good
compromise between the complexity of continuous non-linear dynamical system
and the simplicity of neglecting the elasticity with a rigid body model [7]. The
computational cost and the accuracy of lumped parameter method can be controlled
by changing the number of lumped elements.

Different modeling techniques, control approaches and sensor systems for flexible
manipulator are explored in literature [1, 2]. However, there is very limited work
done in the experimental identification of model parameters of flexible manipulator.
This paper describes a simple approach of identification of lumped parameters of a
flexible link using a camera sensor.

In this paper, the lumped parameter method is used to model a flexible beam.
High-speed RGB-camera is used to measure the tip oscillations and the high-precision
laser tracker to validate the results. The parameters of the flexible beam are identified
using camera measurements. The results obtained from the simulation model are
compared to the experimental data.

The paper is organized into five sections as follows. The modeling of flexible
cantilever beam is described in section B.2. The simulation model is verified with
experiments in section B.3. The results obtained from the simulation model are
compared to the experimental values in section B.4. Conclusions and discussions
follow in section B.5.
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B.2 Modeling

The flexible beam is modeled as a set of mass, rotational spring and damper system [2,
7, 8]. The reasons behind using this method for modeling flexibility are simplicity
of the method and possibility of extending the model for varying cross-section of
the links. Lumped parameter models of a flexible beam with one and two flexible
elements are shown in Fig. B.1 and Fig. B.2 respectively. In Fig. B.1, the center of
mass is located at the origin of coordinate frame S1, and k, c, F , M , δv, δθ represent
stiffness, damping coefficient, end load, moment, vertical deflection and angular
deflection respectively. In Fig. B.2, two flexible elements are connected in such a
way that the spring and damper are in series between two segments. The modeling
parameters k and c depend on the dimension and material used in the beam and
can be identified/approximated via experiments. The bending of the flexible beam is
modeled about one axis, i.e. rotational degree of freedom about the Z-axis.

Considering L, F , E, I as the length of the beam, load attached to the end of the
beam,Young’s modulus, and area moment of inertia, the vertical tip deflection (δuvA)

Figure B.1: Lumped parameter model of an end-loaded cantilever flexible beam with
one flexible element

Figure B.2: Lumped parameter model of a flexible beam with two flexible elements
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and the angular deflection (δuθA) of the beam under a uniform load (q = aρg) is given
by (B.1) and (B.2) respectively, where a, ρ, and g are cross-section area, density, and
gravity respectively and indices A and u represent analytical solution and uniform
load condition respectively [9]. The vertical tip deflection (δevA) of the beam due to
end load (F ) shown in Fig. B.1 is given by (B.3), where index e represents end load
condition. The angular tip deflection (δeθA) of the cantilever beam due to end load
is given by (B.4). The total vertical tip deflection (δvA) and angular tip deflection
(δθA) of the beam are given by a sum of deflection under uniform load and deflection
due to end load as given by (B.5).

δuvA =
qL4

8EI
(B.1)

δuθA =
qL3

6EI
(B.2)

δevA =
FL3

3EI
(B.3)

δeθA =
FL2

2EI
(B.4)

δθA = δuθA + δeθA; δvA = δuvA + δevA (B.5)

The equivalent stiffness of the beam under end-loaded condition is given by (B.6).
The equivalent stiffness of the beam is used in the lumped parameter model. Both
angular and vertical deflections of the beam in lumped parameter model can be
approximated using (B.7) and (B.8) respectively, where index L represents lumped
parameter approximation.

kA =
FL

δeθA
=

2EI

L
(B.6)

δeθL =
FL

kA
=
FL2

2EI
(B.7)

δevL = LδeθL =
FL3

2EI
(B.8)

The angular deflection obtained analytically in (B.4) and using the lumped
parameter model in (B.7) are equal. However, the vertical deflection obtained
analytically in (B.3) and using the lumped parameter model in (B.8) are not equal.

To improve the approximation in lumped parameter model, the total length of
the beam is divided into ns smaller segments, each segment has a length Ls = L/ns,
and the lumped segments are connected together to form the model of the beam.
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The stiffness of a single beam segment is given by (B.9). The equivalent stiffness k′

of two springs, each of stiffness k, connected in series between two beam segments
is given by (B.10). Similarly, the equivalent damping coefficient c′ of two dampers
c connected in series between two beam segments is given by (B.11) and shown in
Fig. B.2.

k =
2EI

Ls
(B.9)

k′ =
k2

2k
(B.10)

c′ =
c2

2c
(B.11)

Considering uniform beam cross-section, the total equivalent stiffness (ktE) of the
beam can be approximated experimentally, where index E represents experimentally
identified value. Using known tip load (FE), the deflection (δvE) can be measured
to calculate the equivalent stiffness by using (B.12). Thus obtained total equivalent
stiffness of the beam is multiplied by the number of beam segments to obtain
individual segment stiffness kE as given in (B.13).

ktE =
FEL

δeθE
=

2FEL
2

3δevE
(B.12)

kE = nsktE (B.13)

Equations of motion

The model of a flexible beam in Fig. B.3 consists of ns rigid elements with mass mi

connected together by rotational joints Pi, rotational spring stiffness ki and damper
with damping coefficient ci, where i = 1, 2, . . . , ns. The first segment spring stiffness
is k1 = k and damping coefficient is c1 = c. All other segment stiffnesses and dampers
are ki = k′ and ci = c′ respectively. The rotation of each element is described by
angle ϕi. A Newtonian frame OI is located at the first rotational joint P1 of the
cantilever beam. Body fixed frame Si of each element is located at the center of
gravity.

Equations of motion are derived using Newton-Euler formulation. Considering
JTi as Jacobian matrix for translational motion, JRi as Jacobian matrix for rotational
motion, pi as linear momentum, li as angular momentum, Fi as applied forces, Mi

as applied moments for body i, the principles of linear and angular momentum are
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applied to get (B.14).

ns∑
i=1

[JTT i(ṗi − Fi) + JTRi(l̇i −Mi)] = 0 (B.14)

Considering rsi as the position vector from Newtonian frame OI to body fixed
frame Si, rpi as the position vector from Newtonian frame OI to joint Pi, Ri as the
rotation matrix representing rotation of frame Si with respect to frame OI about the
Z axis, Ii as the inertia tensor, vsi as the linear velocity, ωi as the angular velocity,
and calculating the translational parts in frame OI and rotational parts in body
reference frame Si, (B.14) can be written to (B.16) using (B.15) where the cross
product ω × r is replaced by matrix operation ω̃r. The mass of tip load is added to
mns for the last segment.

ṗi = mir̈si ; l̇i = Iiω̇i + ω̃iIiωi (B.15)

ns∑
i=1

JTT i[mir̈si − Fi] + JTRi[Iiω̇i + ω̃iIiωi −Mi] = 0 (B.16)

Kinematics of the bodies in generalized coordinates q = (ϕ1, ϕ2, · · · , ϕns)
T is given

by (B.17).

Ri =

cosϕi −sinϕi 0

sinϕi cosϕi 0

0 0 1


rpi = rpi−1

+Ri−1[Ls; 0; 0], rp1 = [0; 0; 0]

rsi = rpi +Ri[Ls/2; 0; 0]

JT i =
∂rsi
∂q

vsi = JT iq̇

ωi = [0; 0; ϕ̇i]

JRi =
∂ωi
∂q̇

r̈si = JT iq̈ +
∂vsi
∂q

q̇

ω̇i = JRiq̈ +
∂ωi
∂q

q̇



(B.17)

Using the kinematic equations, (B.16) can be rearranged to (B.18). The applied
forces are given by the weight of the beam segments and the applied moments by
the rotational springs and dampers. In addition, the applied force and moment by
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the end-load is considered for the last segment of the beam.

ns∑
i=1

{
−JTT i[mi

∂vi
∂q

q̇ − Fi]− JTRi[Ii
∂ωi
∂q

q̇ + ω̃iIiωi −Mi]

}
−

−
ns∑
i=1

{
miJ

T
T iJT i + JTRiIiJRi

}
q̈ = 0 (B.18)

Figure B.3: Model of a flexible beam with ns dofs

B.3 Simulations and Experiments

A hollow rectangular aluminium beam of length L = 2.32 m, width W = 0.04 m,
height H = 0.04 m, thickness T = 2 × 10−3 m, density ρ = 2700 kg/m3, Young’s
modulus E = 69× 109 Pa is used in the simulation and experimental studies. The
area moment of inertia I of the hollow rectangular beam is calculated using (B.19).

I =
1

12
WH3 − 1

12
(W − 2T )(H − 2T )3 (B.19)

A load of ml = 4.5 kg is applied at the tip of the beam and the corresponding
deflection at the tip is recorded in the simulation and compared to the experimental
data. The analytical vertical tip deflection obtained from (B.3) is δevA = 0.0363 m.

99



Modeling and Control of Flexible Link Manipulators

B.3.1 Simulation of analytical lumped parameter model

The stiffness of each flexible element/segment of the beam is calculated using (B.9)
and (B.10). The deflection of the tip of the beam due to uniform load (δuvL), end-load
(δevL) and total deflection (δvL) for different values of ns is shown in table B.1 (using
MATLAB ode23 for time integration with fixed step size of 0.01 s).

Dynamic response

To show the dynamic response of the tip of the beam, tip load of 4.5 kg is dropped
after ensuring that the tip is stationary before dropping. To reduce the frequency
of vibration a body (md = 2.5 kg) is mounted at the tip. Moreover, the weight of
the camera mounted at the tip is also considered in the simulation. The damping
coefficient c = βk is used in the simulation, where β = 2.2× 10−4 is the tuning factor.
To simulate the oscillation produced only due to the drop, the initial tuning factor is
increased 5 times to ensure quick damping (before dropping). The position of the tip
of the beam is shown in Fig. B.4. The frequency of vibration of the model (ns = 10)
is f = 3.42 Hz.

B.3.2 Experimental identification of stiffness and damping

ratio

A 7 × 9 checkerboard is mounted on the wall in such a way that it is completely
visible from the camera when the beam is oscillating. The camera is calibrated
intrinsically before mounting on the beam. The position of the checkerboard with

Table B.1: Tip deflection taking different number of flexible elements using analytic-
ally obtained lumped parameters

ns δuvL(m) (ml = 0kg) δvL(m) (ml = 4.5kg) δevL = δvL - δuvL(m)
1 0.0115 0.0387 0.0272
2 0.0072 0.0480 0.0408
3 0.0064 0.0447 0.0383
4 0.0060 0.0435 0.0375
5 0.0060 0.0430 0.0370
6 0.0059 0.0427 0.0368
7 0.0059 0.0425 0.0366
8 0.0059 0.0424 0.0365
9 0.0058 0.0424 0.0366
10 0.0058 0.0423 0.0365
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Figure B.4: Tip oscillations using analytical parameters

respect to a camera is determined using OpenCV.

In Fig. B.5, an experimental setup consisting of flexible beam (2) mounted on
the wall (1) is shown. A spherically mounted retroreflector (3) is mounted at the tip
of the beam to track the position of the tip using Leica AT960 laser tracker. Basler
ace (acA2040-180kc) color camera (4) is mounted at the tip of the wall mounted
cantilever beam and is connected to the computer via a connector (7). Object (6)
to be dropped is hanging in the rope (8) at the tip of the beam. Additional object
(5) is mounted at the tip to reduce the frequency of oscillation. The initial tip
position of the beam is recorded before applying any load at the tip. Then a load of
ml = 4.5 kg is applied to the tip of the beam and the corresponding deflection of the
tip is recorded. The difference gives the deflection (δevE) caused due to the load at
the tip. Using (B.12), the total equivalent stiffness ktE of the beam is determined.
From (B.10) and (B.13), the stiffnesses (k1E and k2E) of each flexible element of the
beam are approximated for ns segments. Experimentally approximated parameters
are δevE = 0.0403 m and ktE = 3.8991× 103 Nm/rad.
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Figure B.5: Experimental setup (1. Wall mount, 2. Flexible beam, 3. Leica
spherically mounted retroreflector ball probe, 4. Camera, 5. Tip load, 6. Tip load to
be dropped, 7. Camera connector,8. Rope)

Dynamic response

The position of the tip of the beam recorded experimentally using camera is shown in
Fig. B.6. The frequency of vibration (eigen frequency) of the beam is fE = 3.24 Hz.
The damping ratio ζ is approximated by calculating logarithmic decrement δ using
(B.20) and (B.21) where A1 and An are two successive amplitudes n periods apart [10].

δ =
1

n
ln
A1

An
(B.20)

ζ =
1√

1 + (2π/δ)2
(B.21)

The damping coefficient cte is approximated using (B.22) where ωd = 2πfE is the
frequency of vibration.

ctE = 2ζωd (B.22)

For simulation purposes, the damping coefficient cE for each flexible element of the
flexible beam is approximated using (B.23) where β is the tuning parameter to match
simulation model with the experiment. Experimentally approximated parameters
are ctE = 0.08 Nms/rad, β = 12.

cE = βnsctE (B.23)
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Figure B.6: Tip oscillations recorded using camera

B.3.3 Simulation of experimentally identified lumped para-

meter model

The stiffness of each flexible elements/segments of the beam approximated experi-
mentally is used in the lumped model of the beam and the corresponding deflection
of the tip due to uniform load (δuvL), end-load (δevL) and total deflection (δvL) for
different values of ns is shown in table B.2 (using MATLAB ode23 for time integration
with fixed step size of 0.01 s).

Dynamic response

The position of the tip of the beam using experimentally identified parameters in
the model(ns = 10) is shown in Fig. B.7. To ensure quick damping in the beginning
(before dropping), the tuning parameter β is increased by 5 times. The frequency of
vibration of the beam is fEm = 3.24 Hz.
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Table B.2: Tip deflection taking different number of flexible elements using experi-
mentally identified lumped parameters

ns δuvL(m) (ml = 0kg) δvL(m) (ml = 4.5kg) δevL = δvL - δuvL(m)
1 0.0129 0.0434 0.0305
2 0.0081 0.0537 0.0456
3 0.0072 0.0500 0.0428
4 0.0068 0.0487 0.0419
5 0.0067 0.0481 0.0414
6 0.0066 0.0478 0.0412
7 0.0066 0.0477 0411
8 0.0065 0.0475 0.0410
9 0.0065 0.0475 0.0410
10 0.0065 0.0474 0.0409
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Figure B.7: Tip oscillations using experimentally identified parameters
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B.4 Results

The position of the tip of the beam recorded by a camera and laser tracker is shown
in Fig. B.8. The possibility of using camera for detecting the oscillations in a flexible
structure seems promising. The static deflection due to 6.5 kg load at the end
obtained from the experiments using a camera and static deflection approximated
from the model (ns = 10) are 0.0583 m and 0.0590 m respectively. Analytically
computed static deflection due to 6.5 kg end load from (B.3) is 0.0524 m which is
less accurate than the one approximated from the simulation model. It can be seen
that the simulation model, where experimentally identified parameters are used, is
accurate enough to approximate the static deflection of the real system.
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Figure B.8: Tip oscillations using camera and laser tracker

To show the validity of the model, damping load md = 4.5 kg is mounted at the
end including the mass of the camera and the end load ofml = 4.5 kg is dropped. The
corresponding oscillations of the tip recorded by a camera are shown in Fig. B.9. The
frequency of the beam vibration obtained from the experimental data collected by a
camera is fEv = 2.42 Hz. The oscillations of the tip obtained from the simulation
model (ns = 10) are shown in Fig. B.10. The frequency of vibration of the beam
obtained from the simulation model is fmv = 2.51 Hz. The error in frequency
of oscillation in the model is approximately 5 %.The tuning parameter β used in
simulations is 12.
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Figure B.9: Tip oscillations recorded using camera for validation
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Figure B.10: Tip oscillations using experimentally identified parameters for validation
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B.5 Conclusions and Discussions

The accuracy of the static deflection and computational cost increase with the increase
in the number of flexible segments. A simulation model of flexible cantilever beam
is developed using lumped parameter method. The static and dynamic behavior
of the model are compared with the experimental results. The use of camera to
identify the lumped parameters of a flexible structure experimentally is presented.
The proposed method can be used to model a beam of composite/custom material
whose modulus of elasticity is unknown. Although the experimental identification
of the lumped parameters gives better approximation of the actual system, the
analytically determined parameters could be used with reduced accuracy whenever
the experiments are not feasible.

In the next step of the project, the work will be extended to the modeling of
flexible beam with varying cross-section and to the development of simulation model
for multi-link flexible manipulator. Furthermore, development of a procedure to tune
β and ways of reducing error in the oscillation frequency will be explored.
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