
development of computer vision
system to detect and identify
flexible structures
Development and implementation of end-to-end model-free 3D seg-
mentation for industrial purposes

PHILIP LEIRFALL

SUPERVISOR
Ilya Tyapin
Muhammad Talha Bilal

University of Agder, 2022
Faculty of Engineering and Science
Department of Engineering and Sciences

Acknowledgements

I would like to thank the supervisors Ilya Tyapin and Muhammed Bilal for their guidance
and support throughout the master thesis. I would also like to thank Karl Berge Rød and
the staff in UiA’s mechatronical lab for helping with equipment.

I would also like to thank co-students, family members and my significant other for support-
ing me through the master thesis.

i

Abstract

With increase of Electrical Vehicles, the production of Lithium-ion batteries will be in large
demand. The Lithium-Ion Battery Recycling (LIBRES) research project aims to recycle the
batteries, to re-use material from batteries at end-of-life cycle. This thesis will solve one of
LIBRES tasks of development of a fully automated system, by detecting flexible structures
with computer vision. The aim of the system is to test different segmentation algorithms,
evaluate and create pose estimation. The system only managed to test one algorithm in
Matlab, with three different algorithms failing to train.

ii

Contents

Acknowledgements i

Abstract ii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Research question . 2
1.2 Project outline . 3

2 Background theory 4
2.1 Robotic Operation System . 4
2.2 Matlab . 5
2.3 Sensors . 6

2.3.1 3D data . 6
2.3.2 Structured light sensors . 7
2.3.3 Camera Configuration . 8
2.3.4 Eye-in-hand system . 12

2.4 Image recognition . 13
2.4.1 Neural Network . 13
2.4.2 Object Detection . 14
2.4.3 NVIDIA/semantic-segmentation . 16

2.5 Pose estimation . 18

3 Method 20
3.1 Hardware . 20

3.1.1 Zivid camera . 20
3.1.2 ABB robot . 20

3.2 ROS Setup . 22
3.3 Object Detection . 24

3.3.1 Image collection and labeling . 24
3.3.2 Training . 27

3.4 Pixel to world coordinates . 34

4 Results & Discussion 36
4.1 Results . 36

4.1.1 Algorithms & neural networks . 36
4.2 Discussion . 39

5 Conclusions 41

iii

Bibliography 42

A Datasheet A 44
A.1 detectron2Training.py . 44
A.2 labelme2coco.py . 46

B Datasheet B 49

C Datasheet C 54
C.1 Train semantic segmentation Network . 54
C.2 Change image size . 58

D Datasheet D 60

iv

List of Figures

2.1 ROS structure [12] . 5
2.2 Geometry of structured light setup [15] . 7
2.3 Zivid One+ industrial 3D camera [16] . 8
2.4 Difference in stops [17] . 8
2.5 The effect gain has on the signal [20] . 9
2.6 The effect gain has on the signal [22] . 10
2.7 Eye in hand [28] . 12
2.8 Simplification of neural network [30] . 13
2.9 Visual of object detection [31] . 14
2.10 Difference between Semantic and Instance Segmentation [32] 15
2.11 Mask R-CNN Framework for Instance Segmentation [32] 16
2.12 NIVIDIA Network Architecture [33] . 16
2.13 NIVIDIA predictions at 0.5x & 2.0x scale [33] 17
2.14 Architecture of DEXTR [34] . 17
2.15 Pinhole camera model [35] . 18

3.1 Zivid One + camera [16] . 20
3.2 IRB 4400 Robot [37] . 21
3.3 IRB 4400/60 dimensions and range [37] . 21
3.4 Segmentation VW LIB [5] . 24
3.5 ImageLabeler . 25
3.6 ImageLabeler export . 26
3.7 Detectron2 Training script structure [5] . 27
3.8 Deep Network Designer App . 31
3.9 Upload network to Deep Network Designer App 32
3.10 Import training & validation data to App . 32
3.11 Training options . 33
3.12 Pose estimation pixel to world coordinates script [5] 34

4.1 Detectron2 error code . 36
4.2 DEXTR-PyTorch . 37
4.3 Training of Matlab Network . 37
4.4 Semantic segmentation mask . 38

.

List of Tables

2.1 f-number to Stops . 9

3.1 Class labels . 24
3.2 Class labels . 25
3.3 Semantic segmentation network layer input 31
3.4 Network training options . 31

4.1 Global- and Mean Accuracy, and Mean- and Weighted IoU 37
4.2 Normalized Confusion Matrix (%) . 38
4.3 Class accuracy and IoU . 38

.

Chapter 1

Introduction

In 2019 during March, thousands of Tesla Model 3 were bought in Norway, setting a record
high sale of electric vehicles (EV) [1]. As of 2020, the sale has declined, but the popularity
of EV in Norway still stands strong. 80 percent of all new cars sold in Norway are either
electrical, chargeable hybrids or hybrids as of 2020, with only 20 percent being cars with
combustion engine.

The steady increase of EV is probably due to newer models coming out cheaper and improve-
ment in range and performance. For many an EV is environment friendly and emission-free,
but EV are far from emission-free. The resources for production and the production itself
causes environmental challenges, and focus on recycle as much as possible of EV at its end
of life cycle should not be overlooked.

LIBRES

LIBRES research project focus on the recycling of the lithium ion battery. Partnered up are
Batteriretur, Hydro, Glencore Nikkelverk and Keliber OY [2]. Together they are working
with R&D partners Elkem Technology, IME RWTH Aachen, MIMI Tech, Agder University
and NTNU to develop and commercialize a new lithium battery recycling process that covers
the need for the anticipated volumes of batteries in the future. Key aspect of the project is
to improve the material recovery rate than present day.

Norway has the highest share of EV as proportion of new cars in the world, and by 2025
the aim is that all new cars sold in Norway will be free of emission. In EU, the sale of EV
and plug-in hybrids have increased tremendously. From 2020 to 2021, the sales doubled with
6750 sales, where 29 percent was plug-in hybrid [3]. The increase of EV in Europe will create
a need to recycle end-of-life batteries.

Reason for automation

Currently, the process of dismantling the batteries is done manually in Norway. The work
is done by two authorised electricians with high voltage experience, where dismantling one
battery pack takes about 45 min [4]. This process is time consuming and expensive. With
the ever growing EV market, training staff to meet the demand will be expensive, and not
viable for mass industrial recycling. A possible solution could be to make autonomous robots
do the dismantling. An autonomous dismantling plant acting like a reverse assembly line
would require less specialized workers. It would also reduce the danger of working with
battery-packs, such as voltage, lithium or gas poisoning etc.

1

Challenges

The task of disassembling the battery packs consists of many steps. Removing screws, zip
ties, cables etc. The biggest obstacle is that batteries have different design from model to
model, and new models and technology will make it difficult for the robot to have pre-defined
disassembly process of all battery packs. As well as the possibility of damages or changes in
packs that would make the pack unrecognizable in terms of the machine vision. This would
be a difficult problem to solve, so instead of focusing on the entire packs, a solution is to
shift the focus to the components of the pack. To solve this, the robot will need to learn
to detect different components, such as wires, screws and bolts, and remove them in a safe
manner. If an autonomous robot can do the dismantling, it will reduce the need for skilled
electrician, save money, and reduce the risk of injury.

Important criteria for plant

For LIBRES autonomous dissasembly plant to be a viable solution, the plant needs to be
able to operate with a large scope of different battery packs. This project have set some key
criteria for the dissasembly plant.

• Model-free approach: Because there are too many different packs, the system cannot
depend on having access to 3D models of the battery packs. It would require constant
updating the 3D models as new car models were announced, as well as adjusting to
recognise either damaged or altered battery packs.

• Part segmentation system : With sensors scanning the packs, the system will need
algorithms capable of identifying objects of interest.

• Robotic manipulator : To dismantle the entire battery pack will require a large set
of complex manipulation tasks. A few robots could be versatile enough to complete
these tasks. They would need to have a set of interchangeable tools which would allow
for the different tasks required.

1.1 Research question
This thesis will look into what algorithm is best suited for segmentation of cables. The
project will then focus these tasks:

• Collect data

• Find suitable algorithms & network for segmentation

• Train algorithm and network

• Evaluate algorithms

• Create pose estimation

If the project is a success, it will look into optional task such as:

• Design cable gripper tool

• Implement algorithm and network with MoveIt

• Perform cable removal with ABB robot

2

1.2 Project outline
This report is structured as the following:

Chapter 2 in the report is going over the theoretical parts and background information. The
theoretical on the algorithms and network chosen, 3D sensors, as well as explaining camera
setting for a Zivid camera and a solution for sensor placement.

Chapter 3 contains the methods used for this project, and the hardware used. The physical
work and tests are explained here, as to show the steps done in the project. The project will
only focus on detection of cables, as other projects have already completed detection and
removal of screws and bolts.

Chapter 4 go over and discuss the results of the project, as well as problems during the
project.

The last chapter contains the conclusion of the thesis.

3

Chapter 2

Background theory

This chapter contains the theory that lays the foundation for the work done in this thesis.

2.1 Robotic Operation System
This thesis uses Robotic Operating System (ROS), as it has been used by previous students
working on the LIBRES project [5]. ROS is an open source operating system that allows
for different components to operate together seamlessly [6]. It provides libraries and tools
to build all types of robotic applications. The project server is running on ROS kinetic,
so using ROS to communicate with the manipulator arm is a requirement. Machines are
usually set up of actuators, sensors and code/algorithms to tell it what to do. For all of it
to work together, ROS is build up to allow all these things to communicate with each other.
ROS is build up with nodes that publish or subscribe data to a topic. This way the nodes
do not need to know of each other, only the topics. ROS uses these different building blocks:

1. Nodes. A node in ROS is a process that performs computation [7]. For instance, one
node controls an actuator, while another controls a sensor. For the actuator to know
how much it needs to move, the sensor node sends data to a topic where the actuator
node subscribes.

2. Topics. ROS uses topics to allow nodes to exchange messages. They are named
buses and uses anonymous publish/subscribe semantics [8]. Topics work like a place
of data for nodes to collect and deliver data. Topics can have multiple subscribers and
publisher, where non of the nodes know of each other.

3. Message. When nodes are subscribing and publishing they are using a simple data
structure that ROS communicate with [9]. This is called a message (.msg). The
message files consist of two parts: field and constants. The fields are the data inside
the message, and can be specified from a set of basic types, like integer, floating-point
or boolean. Constant defines useful values that can be used to interpret those fields.
The messages are what is being broadcasted on a topic.

4. Services. Simular to topics, nodes can subscribe and publish data (publish/subscribe
system), while the service uses Request/reply system [10]. A service is provided under
a name and the system sends a request to that name and waits for a reply.

5. Master. At the core of ROS, the ROS Master takes care of the naming and registration
services to the nodes in the system [11]. It helps nodes locate one another, and tracks
publishers and subscribers to topics and services. Figure 2.1 shows how the master
works.

4

Figure 2.1: ROS structure [12]

2.2 Matlab
This project uses Matlab. It is a programming platform used to analyze data, design systems,
develop algorithms, and create models [13]. Matlab can be downloaded with an active license.
Matlab also comes with different toolboxes to fit your project. Everything from simulating
hydraulics to machine learning. The toolboxes are professionally developed, tested and
documented, allowing for easy use and application. For this project the key toolbox are the
Image Processing Toolbox, Computer Vision Toolbox and Deep Learning Toolbox.

Image Processing Toolbox

This toolbox provides algorithms for image processing, visualization and algorithm devel-
opment. It also let the user perform image segmentation, image enhancement and noise
reduction. It supports processing of 2D and 3D images, as well as arbitrarily large images.

Computer Vision Toolbox

The toolbox provides algorithms, functions and apps that allows you to designing and test
computer vision. The toolbox allows for object detection, tracking, feature detection, ex-
tracting and matching. Using deep learning algorithms such as U-Net and Mask R-CNN
allows for semantic and instance segmentation. The toolbox allows for running algorithms
on multicore processors and GPUs to speed up algorithms, as well as it supports C/C++
code generation for integrating with existing code.

Deep Learning Toolbox

Deep learning toolbox allows Matlab to design and implement deep neural network with
algorithms, and provides pretrained models. The toolbox allows the user to build network
architectures, analyse and train network graphically. The networks created can be exchanged
with TensorFlow and PyTorch through the ONNX format.

5

2.3 Sensors
Getting rough data on where the cables are located in the battery pack is done by sensors. It
is then important that reliable sensors are placed so that they are in position to capture the
packs from different angles, as many of the cables are either under each other, or under panels
or cells. To locate all cables, both good choice of sensors and placement is paramount. This
section looks into the different choices for sensors to capture 3D data, as well as solutions
for placement.

2.3.1 3D data

There are several ways to obtain 3D data. The most common point clouds are [14]:

• Light Detection and Ranging (Lidar) - Uses light in form of pulsed laser to measure
ranges.

• Red Green Blue - Depth (RGB-D) - A depth-sensing device in association with red,
green and blue (RGB). The sensors adds depth information per pixel to images.

• Synthetic Aperture Radar (SAR) - Sends out microwave signals to measure range.

SAR is mostly useful for building and landscapes reconstruction and will not be suited for
for much smaller parts. Object tracking is one of RGB-D’s three main application, and given
that it is cheaper than Lidar and can generate the 3D position of each pixel makes it the best
option for this thesis. RGB-D sensor uses three different ways to detect depth: Structured
light, stereo and time of flight.

6

2.3.2 Structured light sensors

This project uses a sensor which uses the structured light.

Figure 2.2: Geometry of structured light setup [15]

As seen in figure 2.2, P is the exit pupil of the projector, while C is the entrance pupil of
of the camera. R is a plane reference, that defines the zero-level height. From the projector
(P) a beam hits point Q on the reference plain. Introducing object O, the line from P to Q
will intercept the surface of object at point Q’. This point is captured on the camera (P) as
a displacement, δ = |Q”Q| [15]. The relation between displacement δ and height h is:

h =
δ

tanα + tan β
(2.1)

7

2.3.3 Camera Configuration

Capture settings
To optimize the data collected, the sensor used have capture settings to allow for differ-
ent environment (light/dark etc.). In this project, a Zivid camera (shown in figure 2.3) is
provided, and will be discussed further in section 3.1.1.

Figure 2.3: Zivid One+ industrial 3D camera [16]

For a Zivid camera the settings are:

Stops

Stops or Exposure stops are used to describe how much light hits the sensor, or the bright-
ness of a image related to a reference level. This being referred to as "0 stops". Going
up to 1 stop will double the brightness, and going down to -1 stop will reduce the bright-
ness by half. Figure 2.4 show the factor and intensity with stops from minus two to plus two.

The Zivid camera has 23 stops available, which allows it to get decent data, even from shiny
objects/surfaces [17].

Figure 2.4: Difference in stops [17]

8

Exposure time

Exposure time is when the camera lets in light to capture an image. To regulate the time,
the camera is equipped with shutters. To get the best exposure time, it is important to
look at the ambient light source. In the EU this is 50 Hz [18]. The best exposure time is
calculated as follows:

texp =
n

2fs
, n = |Z| (2.2)

where n is a positive integer, and f is the light source frequency. As the EU is using 50 Hz,
it is recommended to use multiple of 10 000 µs. It is possible to use higher, such as 20 000
µs, but it requires stops.

Aperture

Aperture, or iris is the opening of the lens. The size of the opening can be described with
an equation

N =
f

D
(2.3)

where f is the focal length and D is the diameter of the entrance pupil [19].
Modern lenses mostly use a standard f-number with a geometric sequence of number that
correspond to the power of the square root of 2.

f√
2n

(2.4)

where n goes from 0 and up. On a zivid camera there is a integrated electro-mechanical
iris that can be quickly adjusted. If using the stop methode, the following f-number values
should be used as shown in table 2.1.

f-numbers f
1.4

f
2

f
2.8

f
4

f
5.6

f
8

f
11

f
16

f
22

f
32

Stops +4 +3 +2 +1 0 -1 -2 -3 -4 -5

Table 2.1: f-number to Stops

The different sizes of aperture with corresponding f-numbers can be seen in figure 2.5

Figure 2.5: The effect gain has on the signal [20]

9

Brightness

The projector brightness controls the amount of light emitted from the projector. The
projector brightness is the most effective way to maximize signal-to-noise ratio (SNR). [21].
Having a high setting on brightness allows for large amplitude of the received data by the
camera, thus minimizing the effect of the noise. The only concern is that the projector does
not over-saturate pixels.

Gain

The gain increase the dynamic range when using a high dynamic range (HDR). It allows for
minimal time penalty, as well as getting point cloud in very dark regions. The drawback is
everything gets amplified, including the noise [22]. This reduces the signal-to-noise ratio, so
it is recommended to keep the gain low to get optimal 3D point cloud reading. In figure 2.6
the effect of gain on the signal is shown. The dynamic range is increased and the camera is
able to distinguish objects in low light areas.

Figure 2.6: The effect gain has on the signal [22]

10

Filters

• Contrast filter corrects and/or removes points effected by contrast distortion. In point
cloud, areas with high specular reflection and in regions with large texture gradients
can cause blur in the image [23]. The filter has two modes to deal with this problem.
Correction and removal. If large correction is above the threshold parameter the points
are removed instead. It works best when aperture value chosen gives the camera a good
focus.

• Gaussian The gaussian filter smoothe the pixel within a small local region, which
allows for suppressing noise and align pixel to a grid [24]. Because the filter preforms
smoothing, it can improve the absolute noise and performance, and be useful for some
matching algorithms. The reduced noise helps making parts more similar as a whole,
which come in handy when using object detection.

• Outlier Depended on neighboring pixels, the pixel becomes a outlier if it is too far
away from its closest neighbor and removed [25]. It is used to remove potential noise
and stray points.

• Reflection The filter removes points impacted by reflections. It is usually seen as a
"ghost planes", where regions of unwanted points are stretching towards or away from
the camera. Since the Zivid camera knows the signals sent out, it can try to make
sense of the data makes sense or not [26]. It then removes pixels effected by either
interreflections, excessive movements in the scene, or alternating alien light sources.

• Noise Filter This filter removes points under a specified limit set by the SNR filter
[27]. The filter limit should not be set too high to remove too much of the data, as a
little noise is better than loss of data.

11

2.3.4 Eye-in-hand system

The eye-in-hand system is what it sounds like, an eye in your hand. It is a range sensor,
usually a camera, mounted at the tip of a manipulator arm. This allows for the camera to
be moved around the workspace. This gives the camera view from different positions, as well
as to get a better picture of where the workspace is according to the manipulator. It also
allows for higher resolution of what the manipulator is looking for, as it can move closer to
what is manipulating. With the eye-in-hand system multiple pictures with higher resolution
can be taken, while also getting a picture of the entire workspace. While several stationary
cameras would be needed to get pictures from multiple angles, an eye-in-hand would require
one single camera.

Many of the battery packs have multiple cables that are overlapping and in different sections
of the battery pack.
One single picture is not enough to get all the cables, and to avoid missing some cables,
several pictures from different positions are needed. Then the eye-in-hand system is effective,
as it can cable ties etc. With an algorithm, the eye-in-hand can be used to look over the
entire battery-pack and log every region. Figure 2.7 shows how two transformation matrices,
HROB

EE and HEE
CAM are used to get the sensor data in reference to the base of the robot. HROB

EE

transform from the robot base to the end-effector (the robot tool point) [28], while the HEE
CAM

is the transformation from the end-effector to the camera.
[28]

Figure 2.7: Eye in hand [28]

12

2.4 Image recognition
Machine learning is essentially getting a machine to think for itself. Like teaching a child
to walk and talk, machine learning focuses on using data and algorithms to either look for
patterns or predict outcomes from gathered data. It can be used to give data to an algorithm
to look for certain objects. Teaching the machine with data can be done in three different
ways [29].

• Supervised machine learning is the most common form of machine learning, where
the algorithm is fed large amount of labeled training data till the model is fitted
appropriately. It then make prediction on data it never have seen before based on
correlation it got from the labeled data.

• Unsupervised machine learning are algorithms that analyse and cluster unlabeled data.
They discover hidden patterns or data grouping without help from humans.

• Semi-supervised learning is the mix between the two. To train it it uses smaller labeled
data set to guide classification, and feature extraction from a larger, unlabeled data
set.

2.4.1 Neural Network

A neural network is a computational learning system that uses a network of functions to
understand and translate data input [30]. Inspired from the way neurons in the human brain
work, the network takes labeled data and process them to be able to recognize the pattern.
To give an example, recognizing a person require certain characteristics to match. Black
hair, tall, moustache and glasses create a model for the person to be recognized. The same
model is created in the neural network, where the network evaluates the data points of the
image towards the model. Based on how close the match is, the person is recognized, or the
person is a stranger who matches only a few of the criteria in the model.

Figure 2.8 shows a simplified version of how input data in a neural network is checked with
the model. Out of the model the output is either a match or not.

Figure 2.8: Simplification of neural network [30]

13

2.4.2 Object Detection

For the machines to detach the cables, it needs to locate and recognize cables. To do this
object detection is used. When the camera capture where the cables are, it can give the
information to the rest of the system, which then plan on the next step to disconnect the
cables from the battery packs.

What is object detection and how does it work?
Humans can determine a cow from other animals by learning how a cow looks like. The
same principle is applied to object detection. It is a computer vision technique that works
to identify and locate objects within an image or video [31]. The main objective is to point
out what is on an image or video. If there are pictures of several dogs in a photo, the object
detection places a box over all the dogs and label the boxes for "dog". As seen in figure 2.9
where two cats, a person and a dog are boxed with correct labels.

Figure 2.9: Visual of object detection [31]

By using machine learning or deep learning, algorithms recognizes patterns or shapes and
can learn to locate and identify objects of interest.

This project looks into four different object detection methods using segmentation.

• Detectron2

• NVIDIA/semantic-segmentation

• DEXTR-PyTorch

• Matlab semantic segmentation

14

Network

Network is used to set class of objects that are present in an image, that is marked by a
square around said objects. The classes is what the machine learning is looking for, whether
it is humans, cars or dogs. This is where the machine learning is coming in, where the
the machine learning is fed shapes with labels. The network chosen in this thesis is Mask
R-CNN, as it is continuity of a bachelor thesis from LIBRES.

Mask R-CNN is a deep convolution neural network and state-of-art in terms of image seg-
mentation and instance segmentation [32]. The network can be used for instant or semantic
segmentation. This thesis focuses on instant segmentation.

Segmentation

Image segmentation is gathering part of an image together that belong to the same object,
or object class as it is called. This means finding each pixel of an object in an image and
outlining it.

This project looks into segmentation, where there are two types; semantic and instance. The
difference between instant and semantic segmentation is that while semantic uses all pixels
within a class as one entity, the instance segmentation splits them into different entities as
shown in figure 2.10.

Figure 2.10: Difference between Semantic and Instance Segmentation [32]

15

Mask R-CNN

The Mask R-CNN was build from Faster R-CNN which uses two stages: Regional Proposal
Network (RPN) and Region of Interest Pooling (RoIPool). In Mask C-RNN, the first stage
is RPN, which is a Neural Network that propose multiple objects that are available within
a particular image. The next stage is predicting the class of the object withing the regions
and box offset. While class and box offset are set, the Mask R-CNN also outputs a binary
mask for each Region of Interest (ROI). The framework for instance segmentation is shown
in figure 2.11.

Figure 2.11: Mask R-CNN Framework for Instance Segmentation [32]

Detectron2

Detectron2 is a segmentation algorithm from Facebook AI Research (FAIR). Detectron2 can
be used with Mask R-CNN, and is implemented in PyTorch.

2.4.3 NVIDIA/semantic-segmentation

To handle difficulty with both high and low inference resolution, NVIDIA uses multi-scale
inference. The network learns to predict a relative weighting between adjacent scales, and
only require to augment the training pipeline [33]. As shown in figure 2.12, the algorithms
works with predicting attention between adjacent scale pairs.

Figure 2.12: NIVIDIA Network Architecture [33]

16

Because of this method, the algorithm can segment smaller objects at the larger scale, and
larger objects at with lower resolution. As seen in figure 2.13, the fence post is better
segmented at the large scale, while the road/divider region is better segmented with the
lower scale.

Figure 2.13: NIVIDIA predictions at 0.5x & 2.0x scale [33]

DEXTR-PyTorch

DEXTR-PyTorch is an object segmentation algorithms that uses CNN with extreme points
in an object to generate precise object segmentation [34]. The extreme points are created on
the far most left, right, top and bottom, and contains a 2D Gaussian centered in them. This
creates a heatmap which is contained inside a bounding box for the object of interest.The
CNN then learns to transform this information into segmentation. Figure 2.14 shows the
architecture of DEXTR, where the image first get extreme points, then processed by CNN to
produce a segmented mask. This process works for instance, semantic, video and interactive
segmentation.

Figure 2.14: Architecture of DEXTR [34]

17

2.5 Pose estimation
For computer vision it is important to figure out the position and orientation of objects in a
picture. For a machine to work with the object on the picture, the object needs to be placed
in a coordinate system shared by the machine. Since the machine is to disconnect the cables,
it needs to know where the cables are in a 3D environment, which is estimated by the pose
estimate. A solution is to use the so-called pinhole camera model as shown in figure 2.15.
3D points are formed into an image plane using a perspective transformation [35].

Figure 2.15: Pinhole camera model [35]

From figure 2.15, equation (2.5) can be calculated.

• s is the scaling factor

• X,Y,Z are the 3D points in the world coordinate space

• u,v are the x and y pixel coordinates

• A is camera matrix

• cx, cy principal point that usually at the image center

• fx, fy The focal lengths expressed in pixel units

sm′ = A[R|t]M′ (2.5)

s

uv
1

 =

fx 0 cx
0 fy cy
0 0 1

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

X
Y
Z
1

 (2.6)

Once estimated, the matrix of intrinsic parameters can be re-used as long as the focal length
is fixed. The [R|t] matrix is called extrinsic parameters, and is used to describe the camera

18

motion around a static scene [36], or the other way around when the camera is still and the
object is in motion. When z ̸= 0, the transformation above equals the following:xy

z

 = R

XY
Z

+ t (2.7)

Solving equation (2.7) for X,Y,Z gives:XY
Z

 =

(
s

uv
1

A−1 − t

)
R−1 (2.8)

The formula is used to determine pose estimation, and transform pixel coordinates to world
coordinates.

19

Chapter 3

Method

3.1 Hardware

For this project, several components and hardware is needed. The Libres project provided
several important parts which is explained in this section.

3.1.1 Zivid camera

Figure 3.1: Zivid One + camera [16]

The camera used for this project is a Zivid One+M. A Zivid One+ camera is seen in figure
3.1. The camera uses structured light, and is capable of capturing 2.3 Megapixels (1920 x
1200). That is 2.3 million point in point cloud per capture. It can give data in 3D (XYZ),
or in color (RGB). The camera is mounted as an eye in hand system at the end of a ABB
robot.

3.1.2 ABB robot

The robot manipulator used in this project is ABB IRB 4400 robot manipulator as shown
in figure 3.2. The manipulator is a 6-axis industrial robot used for flexible robot-based
automation [37]. With a range from medium to heavy handling, capable of loads up to 60
kg, the robot is a good match for this work, as its design allows for fast and smooth motions
withing the working range [37].

20

Figure 3.2: IRB 4400 Robot [37]

The working range of the ABB is shown in figure 3.3.

Figure 3.3: IRB 4400/60 dimensions and range [37]

The IBR 4400 is also equipped with a controller (IRC5), that can be used to control the
robots joints. This is useful when taking images of cables in different positions.

21

3.2 ROS Setup
The ROS melodic was used in this project because it runs on Ubuntu 18.04, while ROS
kinetic runs on Ubuntu 16.04. As of 2021 Ubuntu 16.04 is no longer supported, therefore
Ubuntu 18.04 was used, along with ROS melodic.

After the Ubuntu is set up, ROS is set up by open a terminal and type in:

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release ...
-sc) main" > /etc/apt/sources.list.d/ros-latest.list'

This is set up the repositories, and allows the computer to accept software from pack-
ages.ros.org.

Then to set up the ROS key for the computer:

sudo apt install curl

curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc | ...
sudo apt-key add

Then make sure everything is updated:

sudo apt update

Then, installing ROS with:

sudo apt install ros-melodic-desktop-full

Setting up the environment for ROS is done with:

echo "source /opt/ros/melodic/setup.bash" >> ~/.bashrc

source ~/.bashrc

And installing additional dependencies for packages like python etc:

sudo apt install python-rosdep python-rosinstall ...
python-rosinstall-generator python-wstool build-essential

sudo apt install python-rosdep

sudo rosdep init

rosdep update

Next step is to install the Zivid ROS.
For this a nvidia driver is needed. For the machine a nvidia 460 is used with:

sudo add-apt-repository ppa:graphics-drivers/ppa

sudo apt update

sudo apt install nvidia-driver-460

sudo reboot

Also need to install OpenCL and GPU using:

22

sudo apt install -y clinfo

sudo /usr/bin/clinfo

/usr/bin/clinfo -l

For the installation of Zivid, it can be found on github at https://github.com/zivid/
zivid-ros.

23

https://github.com/zivid/zivid-ros
https://github.com/zivid/zivid-ros

3.3 Object Detection

3.3.1 Image collection and labeling

ROS

To create the training data, labeled images of the cables are needed. Already labeled data
is used from a previous project [5]. The images were collected on an Apple iPhone 7, and
recorded videos of a VW battery pack from different angles. Adobe Premier Pro was used
to split up the videos into different frames.

Using LAbelMe, the images could be annotated so that the Mask R-CNN would know what
to train for. The labeling is to highlight areas of interest, in this case the cables, so that
the model knows what to detect. The car batteries are set up of different cables, and
were therefore classified into different classes using LabelMe’s ploygon tool. The cables are
assigned a mask and a class to each cable of interest. The classes used are showed in table
3.1 and visualized in figure 3.4.

Figure 3.4: Segmentation VW LIB [5]

Class Description (Mask Color)
type1 zip ties (yellow)
type2 BMS connector (blue)
type3 Cable connector (red)
type4 Cable restraint (red)
type5 Orange plastic cables cell side (dark orange)
type6 Pole cover (green)
type7 Cable connector cell side (red)
type8 Orange wire harness (azur blue)
type9 Ground cable (green)
type10 Ground cable connector (purple)
type11 Main wire harness (white)

Table 3.1: Class labels

24

Each labeled data was made in a JSON file for each image. All the JSON files together
with the raw image files are stored in a folder called dataset. Mask R-CNN only accepts
COCO json files, and an additional network (find name) uses PASCAL VOC files, so the
files needed to be converted. To convert to COCO json files, a script called labelme2coco.py
(see appendix A.2) was used to convert the dataset into a COCO json file. To convert
the files to PASCAL, the COCO Json files were used and the website https://roboflow.
com/convert/coco-json-to-pascal-voc-xml was used to convert the files from COCO to
PASCAL.

Matlab

The Matlab semantic segmentation uses different data than COCO and PASCAL, so the
image labeler was used to label the cables. The images was taken on a OnePlus Nord2
phone, then sent to the PC. The images from the phone are 4096x3072 pixels, which caused
a problem when training the data. Because of the large pixel size, the GPU ran out of
memory, so the images needed to be reduced. A script (cite script here) was used to take the
original images and downsize them to 448x448. This size was chosen because the resolution
was still good enough to recognize cables without being too big. The images were then put
into ImageLabeler on Matlab as shown in figure 3.5.

Figure 3.5: ImageLabeler

Class Description (Mask Color)
Cable1 orange cable (magenta)
Cable2 blue connectors (Turquoise)
Cable3 red cable (red)
Cable4 green cable (green)

Table 3.2: Class labels

25

https://roboflow.com/convert/coco-json-to-pascal-voc-xml
https://roboflow.com/convert/coco-json-to-pascal-voc-xml

The labeldata is exported, and could either be sent to Workspace or to a file as shown in
figure 3.6.

Figure 3.6: ImageLabeler export

To save it for later use, the labeldata was exported to a file. This creates a gTruth.mat file
and a PixelLabelData file with label images. The gTruth.mat file contains the LabelDefi-
nitions and LabelData, which tells about the classnames and labelIDs. Both are needed to
train the network. In the matlab script, the image and label directory is set. The train-
ing images are stored with the imageDataStore command. The pixel data is stored with
pixelLabelDatastore command using the gTruth.mat file.

26

3.3.2 Training

Training the model, a set of algorithms are to be used. Detectron2, NVIDIA/semantic-
segmentation, DEXTR-PyTorch and Matlab semantic segmentation is to be used to compare
which one is best suited for detecting the cables.

Detectron2

The Detectron2 is using bounding boxes and mask segmentation.

Figure 3.7: Detectron2 Training script structure [5]

27

The figure shows the structure of the "detectron2Traning.py" script (see appendix A.1). It
consists of different components used to train the Mask R-CNN model from Detectron2 li-
brary. The three main functions are:

def reg():
This function loads the training data in the Detectron2 library using a function called
register_coco_instances. For the function to work, it needs three arguments. The first
is the name of the dictionary where the name data_train assigned for the training data.
The second argument is the path to the COCO annotation json file. This contains the data
about the bounding boxes and mask. The last argument is the path to the folder containing
the training images. The two remaining functions, DatasetCatalog and MetaDataCatalog
are used to help extract the training data and metadata from the data_train dictionary.

def viz():
To confirm the data is loaded correctly this function is used by visualizing the training data.
It consists of three subfunctions: cv2.imread(), visualizer() and plt.show(). cv2.imread()
is an OpenCV function used to load the training data images. visualizer() then loads the
metadatacatalog of the training dataset. Together with cv2.imread() they visualize the data.
plt.show() then displays the loaded training data.

def train():
In this function, the goal is to set the config of the training. This is done by the get_cfg()
class. From this class there are six arguments used to config the training of the model. The
first, merge_from_file(), loads the model (Mask R-CNN) used for the training session.
The second loads the data used for training the model from the def reg() function. The third
argument, NUM_WORKERS takes the training data and sets the amount of subprocess
used to load the data. MODEL.WEIGHTS loads the weights of the model, but only if the
if the training is on the same dataset with the same parameters. Then the fifth argument sets
the learning rate, which is the most important argument in the config. This determines how
quickly the models adapts to the problem, and effect the training loss. The sixth argument,
SOLV ER.MAX_ITER sets the maximum number of training iterations. When the config
is set, the function DefaultTrainer is loaded. The trainer.resumeorload function can then
be configured to either continue from the last iterations or start over. In the end the function
trainer.train() is called and the training can begin.

28

NVIDIA/semantic-segmentation

NVIDIA/semantic-segmentation was another segmentation algorithm to be used. It was
cloned from github using:

git clone --recursive https://github.com/NVIDIA/semantic-segmentation.git

Go get the docker file, the

sudo snap install docker

was used to install, and built with
Inside the semantic-segmentation folder, build the docker using:

docker build -t nvidia-segmentation -f Dockerfile .

This did not work, so "sudo" command was tried:

sudo docker build -t nvidia-segmgentation -f Dockerfile .

This also resulted in errors, so NVIDIA apex was cloned and installed a C++ extensions
with:

git clone https://github.com/NVIDIA/apex

cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" ...

--global-option="--cuda_ext" ./

Due to error with the download of C++ extension, it needed nvidia-cuda-toolkit, which was
installed with the following command:

sudo apt install nvidia-cuda-toolkit

The C++ extensions were installed with:

pip3 install -v --no-cache-dir --global-option="--cpp_ext" ...
--global-option="--cuda_ext" ./

29

DEXTR-PyTorch

The algorithm is cloned from https://github.com/scaelles/DEXTR-PyTorch. Then in-
stalling dependencies to the software using:

conda install pytorch torchvision -c pytorch
conda install matplotlib opencv pillow scikit-learn scikit-image

Pytorch torchvision is a library for computer vision for pytorch, while matplotlib is used for
image processing.
DEXTR-PyTorch also need tensorboard, that helps with monitoring and display data.

pip3 install tensorboard tensorboardx

Addition, because this project uses python3 and not python2, some additional tools are
needed to be installed for the algorithm to work, such as matplotlib and opencv for python3.

pip3 install matplotlib

To install opencv-python, these steps needed to be done as well:

pip3 install scikit-build

pip3 install cmake

pip3 install --upgrade pip

pip3 install opencv-python

So that the script can download the dataset, inside pascal.py download is set to True.
Because of difficulty with GPU memory, the "trainBatch" and "testbatch" were set to low,
as to avoid using too much memory when training.
Then to run the training, run:

sudo python3 train_pascal.py

The training script was build up as follow:

• Set GPU-id

• Setting Parameters Set the parameters like epoch, test and training batch.

• Results and model directories Creates a new directory for every training run.

• Network definition Set the definitions for the network, such as pretraining, inputchan-
nels, weights, etc.

• Training Network

– Logging into Tensorboard

– Use the following optimizer

– Preparation of the data loaders

– Train variables

– Main Training and Testing Loop

30

https://github.com/scaelles/DEXTR-PyTorch

– Save the model

– One testing epoch

• Generate result of the validation image

– Forward of the mini-batch

– Save the result, attention to the index jj

Matlab

Matlab takes the training images from the imageDataStore , with the label data, class
names and label ID from pixelLabelDataStore and combines them into trainingData. The
network is then creates with the following inputs into layer:

numFilters 64
filterSize 3

numClasses 4

Table 3.3: Semantic segmentation network layer input

The training options for the network is set up as following:

InitialLearningRate 1e-3
MaxEpochs 400

MiniBatchSize 14

Table 3.4: Network training options

The network is then trained by running the trainNetwork function, and uploaded to Workspace.
Additional, combined testData is created and stored in Workspace to be used to evaluate
the network during training. From here, the app Deep Network Designer is used. The app
is located as shown in figure 3.8.

Figure 3.8: Deep Network Designer App

From here the network is uploaded from Workspace as shown in figure 3.9

31

Figure 3.9: Upload network to Deep Network Designer App

Then the training data and test data is uploaded as shown in the figure 3.10

Figure 3.10: Import training & validation data to App

The same training options are used as shown in table 3.4 in training the network in the app
as shown in figure 3.11.

32

Figure 3.11: Training options

Then press Train to train the network.

33

3.4 Pixel to world coordinates
The structure of the pose estimation wrapper consist of two separate interconnected scrips
shown in figure 3.12 below.

Figure 3.12: Pose estimation pixel to world coordinates script [5]

The script estimates the world coordinates based on the object detection result message.
The two main task are DetectionMSG.py and PixelToWorld.py.

DetectionMSG.py

The first script of the pose estimation is to convert the detection results to pixel coordinates.
It is responsible for acquiring and extracting the bounding boxes, class names and mask
results of the detection result message. DetectionMSG.py consist of:

• Main():
This function runs and returns the results message. When the main function is called
upon, it calls the DetectionCoordinates class. Then the __init__ function runs and
initialize the Callback() function. The Callback() sends it to the detectionList which
returns to the main function.

• class DetectionCoordinates()

– __init__(): It initialize the class by initializing the ROS subscriber, which is
subscribed to the result message of detectron2ros.py script. The ROS subscriber

34

initit and calls the Callback function. The function passes the result message to
the Callback function.

– Callback(): This function extracts the data from the result message, which is to
be used for the pose estimation. The detectionList then calls for the extracted
data from Callback, and then returns to the main function.

PixelToWorld

This script creates 3D world coordinates based on the list of pixel coordinates returned by the
DetectionMSG.py script. DetectionMSG.py calculates 3D coordinates from the detections
and returns them with the moveitCommander.py script. PixelToWorld then transforms
the coordinates to a 3D world coordinates, and is set up like this:

• Class pixelToPoint()

– __init__(): This function initialize the PointFromPixel class and launches two
ROS subscribers, camera info and depth image. It then initialize the callback_cameraInfo
and Callback_Depth functions. These then initialize the calculate_3d_point
which determines the world coordinates.

– callback_cameraInfo(): Is used to define the Pinhole Camera Model parameters.
– callback_depth(): Fetches depth image from the ROS subscriber, and declare the

depth parameter of the class.
– calculate_3d_Point(): Using the parameters from callback_cameraInfo and

depth from callback_depth, it calculates the 3D coordinates. This is done with
four steps.
1. Look up the supplied pixel coordinates with its corresponding depth image

coordinates.
2. Create 3D ray using pinhole camera model called projectP ixelTo3dRay. This

makes a 3D ray through a given pixel coordinate.
3. Normalize the 3D ray, so that the z component is 1.0.
4. Multiply the 3D ray with the depth pixel coordinates from the first step. This

creates the correct z component value.
– run(): Gives the pixel coordinates used by calculate_3d_Point to calculate the

world coordinates. It is called by the runmain, and returns the calculated 3D
point to go, both outside the class.

• updateList(): Calls the main function of DetectionMSG script to enquire the detection
coordinate list, which values are stored in result_list.

• iterCoordinates(): It returns one class and one set of coordinates each time it is called.

• calculateCoordinates(): It calculate the center position of the bounding boxes and
returns them. It enquire the bounding box and class of detection from iterCoordinates.

• run_main(): Initialize the pixelToPoint class. It calls the calculateCoordinates to
get the pixel coordinates, and calls run from PointFromPixel to return the calculated
world coordinate and class.

• Go(): Create a list of world coordinates of each detection. It calls the run_main as
many times as the length of the result_listl. This ensures that the list of coordinates
matches the detections.

35

Chapter 4

Results & Discussion

4.1 Results

4.1.1 Algorithms & neural networks

Detectron2

When trying to run Detectron2, several problems occurred. Most likely because of trouble
with CUDA the training would not begin.

Figure 4.1: Detectron2 error code

As shown in figure 4.1, the error in the command window was never solved.

NVIDIA-semantic segmentation

NVIDIA-semantic segmentation would not build the algorithm, and was therefore not trained
nor tested.

DEXTR-PyTorch

The DEXTR-PyTorch would start to train, but would run into an error due to CUDA
running out of memory as shown in figure 4.2. Even when both batch size and epochs were
turn down to 1, it would still run out of memory. Solutions to solve this was never found
unfortunately, and because of time limitations, other options were prioritized.

36

Figure 4.2: DEXTR-PyTorch

Matlab semantic segmentation

The semantic segmentation in Matlab showed promising results. The segmentation of the
four cables did well in the training progress. The network used 400 for Max Epochs, and 16
for MiniBatchSize, as anything higher would result in the GPU to run out of memory. The
results in figure 4.3 shows the training progress after 400 iterations.

Figure 4.3: Training of Matlab Network

Global Accuracy Mean Accuracy Mean IoU Weighted IoU Mean BF Score
0.97845 0.75835 0.5755 0.96923 0.9652

Table 4.1: Global- and Mean Accuracy, and Mean- and Weighted IoU

As shown in table 4.2 on how well the network segmented the different classes on the test
images.

37

Predicted class
True class Cable1 Cable2 Cable3 Cable4
Cable1 97.2% 0.2% 2.5% 0.0%
Cable2 0.2% 99.6% 0.0% 0.2%
Cable3 19.5% 0.5% 79.9% 0.1%
Cable4 2.5% 8.7% 0.5% 88.4%

Table 4.2: Normalized Confusion Matrix (%)

The data for the different classes can be seen in table 4.3. Low IoU indicates that the area
segmented for the labels are not overlapping properly, or are segmenting portions that are
not part of the cable.

Accuracy IoU MeanBFScore
Cable1 0.97204 0.94588 0.94629
Cable2 0.9963 0.98905 0.98597
Cable3 0.79935 0.66883 0.72094
Cable4 0.88354 0.838 0.96769

Table 4.3: Class accuracy and IoU

Figure 4.4 show the network segmenting the classes.

(a) Semantic segmentation mask 1 (b) Semantic segmentation mask 2

(c) Semantic segmentation mask 3

Figure 4.4: Semantic segmentation mask

38

4.2 Discussion

Detectron2

Trying to get the Detectron2 to train instance segmentation resulted in errors. The reason
for this might have been because of the driver for CUDA. According to the net information,
CUDA 11.4 were supposed to be supported by Detectron2, but the Detectron2 training was
not running as it should. The driver for CUDA may have been a contributing factor. There
might also be a problem with python not executing at all, according to the errors displayed
in the command window. A solution to use

#!/usr/bin/env python3

in the code was tried, but it did not work. Some minor solutions were looked into, but due to
time limitations and stagnation with Detectron2, the focus was shifted to DEXTR-PyTorch
in hopes to get progress with another algorithm.
This issue was discovered too late into the project when focus was shifted to the training of
DEXTR-PyTorch.

NVIDIA/semantic-segmentation

For unknown reasons, the NVIDIA/semantic-segmentation algorithm would not build. Sev-
eral attempts to find a solution was tried, and several tools were downloaded as shown
below:

pip3 install torch==1.1.0 torchvision==0.3.0 -f ...
https://download.pytorch.org/whl/cu90/torch_stable.html

conda install pytorch torchvision cudatoolkit=9.0 -c pytorch

sudo apt-get install python3.7-dev

pip install mujoco-py==0.5.7

The reason for it not being able to build the algorithm could be because of the wrong version
of python, or lack of needed ROS packages.

DEXTR-PyTorch

When training instance segmentation on cables with DEXTR-PyTorch, it would not com-
plete training. The reason might also be trouble with CUDA version, same as with Detec-
tron2. When the training data was loaded it might have loaded all at once, instead of piece
by piece, and overloading the GPU. As mentioned in Chapter 4, epochs and both training
and test batch size were turned down to reduce the data size, but to no avail.

The problem might have been that the computer was not optimal for the required GPU
memory for training of segmentation algorithms. The PC used to run Ubuntu and ROS was
not the same PC used with Matlab. This is the reason for Matlab not having a problem
with GPU running out of memory, while DEXTR did. A solution could have been to use
the PC used on Matlab, but due to it being a personal stationary PC at home, it was not
used with Ubuntu out of fear of corrupting the already existing OS.

39

Matlab semantic segmentation

The training of the Matlab segmentation Network appeared to be a success, but the project
was unable to get images with the Zivid camera to run with the Matlab semantic segmenta-
tion network. It was able to capture 2D images from the Zivid camera, but when applying
the images into the network with semanticseg function, it crashed because the image type
was not correct.

The results for Matlab could have been explored deeper, but creating more labels was not
prioritized in the project due to time management. More training data with different bat-
tery packs would have made better results as different packs and cables would show if the
network would work over a broader selection of cables.

One problem with the segmenting was the dark areas with black cables. With 448x448
resolution on the images, the dark areas and cables was indistinguishable, and impossible
to label correctly. A solution might have been to use images with higher resolution than
448x448, and with a sensor with a larger gain to get better contrast in dark areas.

Point cloud was also tested. Point cloud images was taken with the Zivid camera. When
uploading it to Lidar Labeler in Matlab it would freeze the computer. From tutorials, it also
seemed impossible to do semantic segmentation with Lidar Labeler, and was not furthered
tested.

Comparison

The project was not able to complete the different algorithms and test them against each
other or test them on a battery pack in real time. However, getting Matlab to run semantic
segmentation with rather high accuracy, and with more training and testing with higher
image resolution, the trained network in Matlab could prove good enough to use for the
battery disassembly.

40

Chapter 5

Conclusions

The conclusion of this thesis is a partial success. The thesis was to find a suitable seg-
mentation algorithm for the battery disassembly plant. As shown in chapter 4, the Matlab
semantic segmentation shows good results. However, because the project was unable to run
the test on Detectron2, NVIDIA/semantic-segmentation, DEXTR-PyTorch, the project can
not conclude if Matlab is the best option of the four.

Further work

The scope of this thesis has been changed over time. This has made room for improvements
and further work. If work on this thesis is to be continued, the following work should be
considered:

• Algorithm & pose estimation
The algorithm should be tested further to obtain good accuracy on all cable types the
battery packs would contain. When the algorithm gives good results, the algorithm
and pose estimation should be combined to get accurate location of the cables.

• Cable gripper
A cable gripper must be capable of detaching and lifting the cables to be able to remove
them. As the batteries still have volts in them, cutting or damaging the cables must
therefor be avoided at all costs. A gripper must be strong enough to detach, but still
gentle enough to avoid damage should be designed to fit on the ABB robot.

41

Bibliography

[1] Antall elbiler ned - men elbilandelen øker. url: https://ofv.no/aktuelt/2020/
antall-elbiler-ned-men-elbilandelen-%C3%B8ker.

[2] LIBRES: BATTERY RECYCLING IN A CIRCULAR ECONOMY. url: http://
mission - innovation . net / our - work / mission - innovation - breakthroughs /
libres-battery-recycling-in-a-circular-economy/.

[3] Global EV Sales for 2021. url: https://www.ev-volumes.com/.

[4] Atle Christiansen. The University of Agder dismantles electric car batteries for reuse.
url: https://www.uia.no/en/news/the-university-of-agder-dismantles-
electric-car-batteries-for-reuse.

[5] SEBASTIAN THORSTAD HANSEN. Development of Computer Vision System to
detect, identify and localize flexible structures used in EV batteries. University of Agder,
2021.

[6] ROS/Introductions. url: http://wiki.ros.org/ROS/Introduction.

[7] Nodes. url: http://wiki.ros.org/Nodes.

[8] Topics. url: http://wiki.ros.org/Topics.

[9] msg. url: http://wiki.ros.org/msg.

[10] Services. url: http://wiki.ros.org/Services.

[11] Master. url: http://wiki.ros.org/Master#:~:text=The%20ROS%20Master%
20provides%20naming,nodes%20to%20locate%20one%20another..

[12] Robot Operating System. url: https://fr.wikipedia.org/wiki/Robot_Operating_
System.

[13] What Is MATLAB? url: https : / / se . mathworks . com / discovery / what - is -
matlab.html.

[14] Yuxing Xie, Jiaojiao Tian, and Xiao Xiang Zhu. “Linking Points With Labels in 3D:
A Review of Point Cloud Semantic Segmentation.” In: IEEE Geoscience and Remote
Sensing Magazine 8.4 (2020), pp. 38–59. doi: 10.1109/MGRS.2019.2937630.

[15] F. Couweleers Ø. Skotheim. Structured light projection for accurate 3D shape determi-
nation. url: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
595.1192&rep=rep1&type=pdf.

[16] Zivid One+ industrial 3D camera. url: https://shop.zivid.com/products/zivid-
one-industrial-3d-camera.

[17] Zivid AS. Introduction to Stop. url: https://support.zivid.com/v2.4/reference-
articles/introduction-to-stops.html.

[18] Zivid AS. Exposure Time. url: https://support.zivid.com/v2.4/reference-
articles/settings/acquisition-settings/exposure-time.html.

42

https://ofv.no/aktuelt/2020/antall-elbiler-ned-men-elbilandelen-%C3%B8ker
https://ofv.no/aktuelt/2020/antall-elbiler-ned-men-elbilandelen-%C3%B8ker
http://mission-innovation.net/our-work/mission-innovation-breakthroughs/libres-battery-recycling-in-a-circular-economy/
http://mission-innovation.net/our-work/mission-innovation-breakthroughs/libres-battery-recycling-in-a-circular-economy/
http://mission-innovation.net/our-work/mission-innovation-breakthroughs/libres-battery-recycling-in-a-circular-economy/
https://www.ev-volumes.com/
https://www.uia.no/en/news/the-university-of-agder-dismantles-electric-car-batteries-for-reuse
https://www.uia.no/en/news/the-university-of-agder-dismantles-electric-car-batteries-for-reuse
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/Nodes
http://wiki.ros.org/Topics
http://wiki.ros.org/msg
http://wiki.ros.org/Services
http://wiki.ros.org/Master#:~:text=The%20ROS%20Master%20provides%20naming,nodes%20to%20locate%20one%20another.
http://wiki.ros.org/Master#:~:text=The%20ROS%20Master%20provides%20naming,nodes%20to%20locate%20one%20another.
https://fr.wikipedia.org/wiki/Robot_Operating_System
https://fr.wikipedia.org/wiki/Robot_Operating_System
https://se.mathworks.com/discovery/what-is-matlab.html
https://se.mathworks.com/discovery/what-is-matlab.html
https://doi.org/10.1109/MGRS.2019.2937630
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.595.1192&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.595.1192&rep=rep1&type=pdf
https://shop.zivid.com/products/zivid-one-industrial-3d-camera
https://shop.zivid.com/products/zivid-one-industrial-3d-camera
https://support.zivid.com/v2.4/reference-articles/introduction-to-stops.html
https://support.zivid.com/v2.4/reference-articles/introduction-to-stops.html
https://support.zivid.com/v2.4/reference-articles/settings/acquisition-settings/exposure-time.html
https://support.zivid.com/v2.4/reference-articles/settings/acquisition-settings/exposure-time.html

[19] Zivid AS. Aperture. url: https://support.zivid.com/v2.4/reference-articles/
settings/acquisition-settings/aperture.html.

[20] Wikipedia. Aperture. url: https://en.wikipedia.org/wiki/Aperture.

[21] Zivid AS. Projector Brightness. url: https://support.zivid.com/v2.4/reference-
articles/settings/acquisition-settings/projector-brightness.html.

[22] Zivid AS. Gain. url: https://support.zivid.com/v2.4/reference-articles/
settings/acquisition-settings/gain.html.

[23] Zivid AS. Contrast Distortion Filter. url: https://support.zivid.com/v2.4/
reference- articles/settings/processing- settings/contrast- distortion-
filter.html.

[24] Zivid AS. Gaussian Smoothing. url: https://support.zivid.com/v2.4/reference-
articles/settings/processing-settings/gaussian-smoothing.html.

[25] Zivid AS. Outlier Filter. url: https://support.zivid.com/v2.4/reference-
articles/settings/processing-settings/outlier-filter.html.

[26] Zivid AS. Reflection Filter. url: https://support.zivid.com/v2.4/reference-
articles/settings/processing-settings/reflection-filter.html.

[27] Zivid AS. Noise Filter. url: https://support.zivid.com/v2.4/reference-
articles/settings/processing-settings/noise-filter.html.

[28] Understanding the importance of 3D hand-eye calibration. url: https://blog.zivid.
com/importance-of-3d-hand-eye-calibration.

[29] IBM Cloud Education. Machine Learning. url: https://www.ibm.com/cloud/
learn/machine-learning.

[30] DeepAI. What is a Neural Network? url: https://deepai.org/machine-learning-
glossary-and-terms/neural-network.

[31] Fitz AI. Object Detection Guide. url: https://www.fritz.ai/object-detection/#:
~:text=Object%20detection%20is%20a%20computer,all%20while%20accurately%
20labeling%20them..

[32] Elisha Odemakinde. Mask R-CNN: A Beginner’s Guide. url: https://viso.ai/
deep-learning/mask-r-cnn/#:~:text=Mask%20R%2DCNN%20is%20a,segmentation%
20mask%20for%20each%20instance..

[33] Andrew Tao, Karan Sapra, and Bryan Catanzaro. “Hierarchical Multi-Scale Attention
for Semantic Segmentation.” In: CoRR abs/2005.10821 (2020). arXiv: 2005.10821.
url: https://arxiv.org/abs/2005.10821.

[34] K.-K. Maninis et al. “Deep Extreme Cut: From Extreme Points to Object Segmenta-
tion.” In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2018, pp. 616–625. doi: 10.1109/CVPR.2018.00071.

[35] Camera Calibration and 3D Reconstruction. url: https://docs.opencv.org/2.4/
modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html.

[36] Sean Haggins. Everything you need to know about point clouds | NavVis. url: https:
//www.navvis.com/blog/everything-you-need-to-know-about-point-clouds-
navvis.

[37] ABB IRB 4000 Robot Series. url: https://www.robots.com/robots/abb-irb-4400.

43

https://support.zivid.com/v2.4/reference-articles/settings/acquisition-settings/aperture.html
https://support.zivid.com/v2.4/reference-articles/settings/acquisition-settings/aperture.html
https://en.wikipedia.org/wiki/Aperture
https://support.zivid.com/v2.4/reference-articles/settings/acquisition-settings/projector-brightness.html
https://support.zivid.com/v2.4/reference-articles/settings/acquisition-settings/projector-brightness.html
https://support.zivid.com/v2.4/reference-articles/settings/acquisition-settings/gain.html
https://support.zivid.com/v2.4/reference-articles/settings/acquisition-settings/gain.html
https://support.zivid.com/v2.4/reference-articles/settings/processing-settings/contrast-distortion-filter.html
https://support.zivid.com/v2.4/reference-articles/settings/processing-settings/contrast-distortion-filter.html
https://support.zivid.com/v2.4/reference-articles/settings/processing-settings/contrast-distortion-filter.html
https://support.zivid.com/v2.4/reference-articles/settings/processing-settings/gaussian-smoothing.html
https://support.zivid.com/v2.4/reference-articles/settings/processing-settings/gaussian-smoothing.html
https://support.zivid.com/v2.4/reference-articles/settings/processing-settings/outlier-filter.html
https://support.zivid.com/v2.4/reference-articles/settings/processing-settings/outlier-filter.html
https://support.zivid.com/v2.4/reference-articles/settings/processing-settings/reflection-filter.html
https://support.zivid.com/v2.4/reference-articles/settings/processing-settings/reflection-filter.html
https://support.zivid.com/v2.4/reference-articles/settings/processing-settings/noise-filter.html
https://support.zivid.com/v2.4/reference-articles/settings/processing-settings/noise-filter.html
https://blog.zivid.com/importance-of-3d-hand-eye-calibration
https://blog.zivid.com/importance-of-3d-hand-eye-calibration
https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/cloud/learn/machine-learning
https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://www.fritz.ai/object-detection/#:~:text=Object%20detection%20is%20a%20computer,all%20while%20accurately%20labeling%20them.
https://www.fritz.ai/object-detection/#:~:text=Object%20detection%20is%20a%20computer,all%20while%20accurately%20labeling%20them.
https://www.fritz.ai/object-detection/#:~:text=Object%20detection%20is%20a%20computer,all%20while%20accurately%20labeling%20them.
https://viso.ai/deep-learning/mask-r-cnn/#:~:text=Mask%20R%2DCNN%20is%20a,segmentation%20mask%20for%20each%20instance.
https://viso.ai/deep-learning/mask-r-cnn/#:~:text=Mask%20R%2DCNN%20is%20a,segmentation%20mask%20for%20each%20instance.
https://viso.ai/deep-learning/mask-r-cnn/#:~:text=Mask%20R%2DCNN%20is%20a,segmentation%20mask%20for%20each%20instance.
https://arxiv.org/abs/2005.10821
https://arxiv.org/abs/2005.10821
https://doi.org/10.1109/CVPR.2018.00071
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://www.navvis.com/blog/everything-you-need-to-know-about-point-clouds-navvis
https://www.navvis.com/blog/everything-you-need-to-know-about-point-clouds-navvis
https://www.navvis.com/blog/everything-you-need-to-know-about-point-clouds-navvis
https://www.robots.com/robots/abb-irb-4400

Appendix A

Datasheet A

A.1 detectron2Training.py

from logging import log
from detectron2.utils.events import TensorboardXWriter
import torch, torchvision
Some basic setup:
Setup detectron2 logger
import detectron2
from detectron2.utils.logger import setup_logger
setup_logger()
import some common libraries
import numpy as np
import os, json, cv2, random
import matplotlib.pyplot as plt
import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.data.datasets import register_coco_instances
from detectron2.engine import DefaultTrainer

def reg():
global data_metadata
register_coco_instances("data_train", {},
"/home/ros/Detectron2/detectron2/cabels/dataset/coco_dat/coco_annotations.json",
"/home/ros/Detectron2/detectron2/cabels/dataset/coco_dat")
register_coco_instances("data_test", {},
"/home/ros/Detectron2/detectron2/cabels/dataset/SynData/json/test.json",
"/home/ros/Detectron2/detectron2/cabels/dataset/SynData/test")
dataset_dicts = DatasetCatalog.get("data_train")
data_metadata = MetadataCatalog.get("data_train")

def viz():
global dataset_dicts
dataset_dicts = DatasetCatalog.get("data_train")
data_metadata = MetadataCatalog.get("data_train")
data_metadata.ignore_label = 1
for d in random.sample(dataset_dicts, 3):
img = cv2.imread(d["file_name"])
v = Visualizer(img[:, :, ::-1], metadata=data_metadata, scale=0.5)
v = v.draw_dataset_dict(d)

44

plt.figure(figsize = (14, 10))
plt.imshow(cv2.cvtColor(v.get_image()[:, :, ::-1], cv2.COLOR_BGR2RGB))
plt.show()

def train():
global cfg

cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file(
"COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.DATASETS.TRAIN = ("data_train",)
cfg.DATASETS.TEST = ()
cfg.DATALOADER.NUM_WORKERS = 2
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("
COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")# Let training ...

initialize from model zoo
cfg.SOLVER.IMS_PER_BATCH = 2
cfg.SOLVER.BASE_LR = 0.00025 # pick a good LR
cfg.SOLVER.MAX_ITER = 6000 # 300 iterations seems good enough for this ...

toy dataset; you will need to train longer for a practical dataset
cfg.SOLVER.STEPS = [] # do not decay learning rate
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 11 # only has one class (ballon). (see ...

https://detectron2.readthedocs.io/tutorials/datasets.html#update-the-config-for-new-datasets)
NOTE: this config means the number of classes, but a few popular ...

unofficial tutorials incorrect uses num_classes+1 here.

os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
trainer = DefaultTrainer(cfg)
trainer.resume_or_load(resume=True)
trainer.train()

def test():
global predictor
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.DATASETS.TEST = ("data_test",)
predictor = DefaultPredictor(cfg)

def ShowRes():
global data_metadata
from detectron2.utils.visualizer import ColorMode
dataset_dicts = DatasetCatalog.get("data_train")
for d in random.sample(dataset_dicts, 5):
im = cv2.imread(d["file_name"])
outputs = predictor(im)
v = Visualizer(im[:, :, ::-1],
metadata=data_metadata,
scale=0.8,
instance_mode=ColorMode.IMAGE_BW # remove the colors of unsegmented pixels
)
v = v.draw_instance_predictions(outputs["instances"].to("cpu"))
plt.figure(figsize = (14, 10))
plt.imshow(cv2.cvtColor(v.get_image()[:, :, ::-1], cv2.COLOR_BGR2RGB))
plt.show()

reg()
viz()
train()
test()
ShowRes()

45

A.2 labelme2coco.py

import os
import argparse
import json

from labelme import utils
import numpy as np
import glob
import PIL.Image

class labelme2coco(object):
def __init__(self, labelme_json=[], save_json_path="./coco.json"):
"""
:param labelme_json: the list of all labelme json file paths
:param save_json_path: the path to save new json
"""
self.labelme_json = labelme_json
self.save_json_path = save_json_path
self.images = []
self.categories = []
self.annotations = []
self.label = []
self.annID = 1
self.height = 0
self.width = 0

self.save_json()

def data_transfer(self):
for num, json_file in enumerate(self.labelme_json):
with open(json_file, "r") as fp:
data = json.load(fp)
self.images.append(self.image(data, num))
for shapes in data["shapes"]:
label = shapes["label"].split("_")
if label not in self.label:
self.label.append(label)
points = shapes["points"]
self.annotations.append(self.annotation(points, label, num))
self.annID += 1

Sort all text labels so they are in the same order across data splits.
self.label.sort()
for label in self.label:
self.categories.append(self.category(label))
for annotation in self.annotations:
annotation["category_id"] = self.getcatid(annotation["category_id"])

def image(self, data, num):
image = {}
img = utils.img_b64_to_arr(data["imageData"])
height, width = img.shape[:2]
img = None
image["height"] = height
image["width"] = width
image["id"] = num
image["file_name"] = data["imagePath"].split("/")[-1]

46

self.height = height
self.width = width

return image

def category(self, label):
category = {}
category["supercategory"] = label[0]
category["id"] = len(self.categories)
category["name"] = label[0]
return category

def annotation(self, points, label, num):
annotation = {}
contour = np.array(points)
x = contour[:, 0]
y = contour[:, 1]
area = 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1)))
annotation["segmentation"] = [list(np.asarray(points).flatten())]
annotation["iscrowd"] = 0
annotation["area"] = area
annotation["image_id"] = num

annotation["bbox"] = list(map(float, self.getbbox(points)))

annotation["category_id"] = label[0] # self.getcatid(label)
annotation["id"] = self.annID
return annotation

def getcatid(self, label):
for category in self.categories:
if label == category["name"]:
return category["id"]
print("label: {} not in categories: {}.".format(label, self.categories))
exit()
return -1

def getbbox(self, points):
polygons = points
mask = self.polygons_to_mask([self.height, self.width], polygons)
return self.mask2box(mask)

def mask2box(self, mask):

index = np.argwhere(mask == 1)
rows = index[:, 0]
clos = index[:, 1]

left_top_r = np.min(rows) # y
left_top_c = np.min(clos) # x

right_bottom_r = np.max(rows)
right_bottom_c = np.max(clos)

return [
left_top_c,
left_top_r,
right_bottom_c - left_top_c,
right_bottom_r - left_top_r,

47

]

def polygons_to_mask(self, img_shape, polygons):
mask = np.zeros(img_shape, dtype=np.uint8)
mask = PIL.Image.fromarray(mask)
xy = list(map(tuple, polygons))
PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
mask = np.array(mask, dtype=bool)
return mask

def data2coco(self):
data_coco = {}
data_coco["images"] = self.images
data_coco["categories"] = self.categories
data_coco["annotations"] = self.annotations
return data_coco

def save_json(self):
print("save coco json")
self.data_transfer()
self.data_coco = self.data2coco()

print(self.save_json_path)
os.makedirs(
os.path.dirname(os.path.abspath(self.save_json_path)), exist_ok=True
)
json.dump(self.data_coco, open(self.save_json_path, "w"), indent=4)

if __name__ == "__main__":
import argparse

parser = argparse.ArgumentParser(
description="labelme annotation to coco data json file."
)
parser.add_argument(
"labelme_images",
help="Directory to labelme images and annotation json files.",
type=str,
)
parser.add_argument(
"--output", help="Output json file path.", default="trainval.json"
)
args = parser.parse_args()
labelme_json = glob.glob(os.path.join(args.labelme_images, "*.json"))
labelme2coco(labelme_json, args.output)

48

Appendix B

Datasheet B

import socket
import timeit
from datetime import datetime
import scipy.misc as sm
from collections import OrderedDict
import glob

PyTorch includes
import torch.optim as optim
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.nn.functional import upsample

Tensorboard include
from tensorboardX import SummaryWriter

Custom includes
from dataloaders.combine_dbs import CombineDBs as combine_dbs
import dataloaders.pascal as pascal
import dataloaders.sbd as sbd
from dataloaders import custom_transforms as tr
import networks.deeplab_resnet as resnet
from layers.loss import class_balanced_cross_entropy_loss
from dataloaders.helpers import *

Set gpu_id to -1 to run in CPU mode, otherwise set the id of the ...
corresponding gpu

gpu_id = 0
device = torch.device("cuda:"+str(gpu_id) if torch.cuda.is_available() ...

else "cpu")
if torch.cuda.is_available():

print('Using GPU: {} '.format(gpu_id))

Setting parameters
use_sbd = False
nEpochs = 10 # Number of epochs for training
resume_epoch = 0 # Default is 0, change if want to resume

p = OrderedDict() # Parameters to include in report
classifier = 'psp' # Head classifier to use
p['trainBatch'] = 1 # Training batch size
testBatch = 1 # Testing batch size
useTest = 1 # See evolution of the test set when training?
nTestInterval = 10 # Run on test set every nTestInterval epochs

49

snapshot = 20 # Store a model every snapshot epochs
relax_crop = 50 # Enlarge the bounding box by relax_crop pixels
nInputChannels = 4 # Number of input channels (RGB + heatmap of extreme ...

points)
zero_pad_crop = True # Insert zero padding when cropping the image
p['nAveGrad'] = 1 # Average the gradient of several iterations
p['lr'] = 1e-8 # Learning rate
p['wd'] = 0.0005 # Weight decay
p['momentum'] = 0.9 # Momentum

Results and model directories (a new directory is generated for every run)
save_dir_root = os.path.join(os.path.dirname(os.path.abspath(__file__)))
exp_name = os.path.dirname(os.path.abspath(__file__)).split('/')[-1]
if resume_epoch == 0:

runs = sorted(glob.glob(os.path.join(save_dir_root, 'run_*')))
run_id = int(runs[-1].split('_')[-1]) + 1 if runs else 0

else:
run_id = 0

save_dir = os.path.join(save_dir_root, 'run_' + str(run_id))
if not os.path.exists(os.path.join(save_dir, 'models')):

os.makedirs(os.path.join(save_dir, 'models'))

Network definition
modelName = 'dextr_pascal'
net = resnet.resnet101(1, pretrained=False, nInputChannels=nInputChannels, ...

classifier=classifier)
if resume_epoch == 0:

print("Initializing from pretrained Deeplab-v2 model")
else:

print("Initializing weights from: {}".format(
os.path.join(save_dir, 'models', modelName + '_epoch-' + ...

str(resume_epoch - 1) + '.pth')))
net.load_state_dict(

torch.load(os.path.join(save_dir, 'models', modelName + '_epoch-' ...
+ str(resume_epoch - 1) + '.pth'),

map_location=lambda storage, loc: storage))
train_params = [{'params': resnet.get_1x_lr_params(net), 'lr': p['lr']},

{'params': resnet.get_10x_lr_params(net), 'lr': p['lr'] * 10}]

net.to(device)

Training the network
if resume_epoch != nEpochs:

Logging into Tensorboard
log_dir = os.path.join(save_dir, 'models', ...

datetime.now().strftime('%b%d_%H-%M-%S') + '_' + socket.gethostname())
writer = SummaryWriter(log_dir=log_dir)

Use the following optimizer
optimizer = optim.SGD(train_params, lr=p['lr'], ...

momentum=p['momentum'], weight_decay=p['wd'])
p['optimizer'] = str(optimizer)

Preparation of the data loaders
composed_transforms_tr = transforms.Compose([

tr.RandomHorizontalFlip(),
tr.ScaleNRotate(rots=(-20, 20), scales=(.75, 1.25)),
tr.CropFromMask(crop_elems=('image', 'gt'), relax=relax_crop, ...

zero_pad=zero_pad_crop),
tr.FixedResize(resolutions={'crop_image': (512, 512), 'crop_gt': ...

(512, 512)}),

50

tr.ExtremePoints(sigma=10, pert=5, elem='crop_gt'),
tr.ToImage(norm_elem='extreme_points'),
tr.ConcatInputs(elems=('crop_image', 'extreme_points')),
tr.ToTensor()])

composed_transforms_ts = transforms.Compose([
tr.CropFromMask(crop_elems=('image', 'gt'), relax=relax_crop, ...

zero_pad=zero_pad_crop),
tr.FixedResize(resolutions={'crop_image': (512, 512), 'crop_gt': ...

(512, 512)}),
tr.ExtremePoints(sigma=10, pert=0, elem='crop_gt'),
tr.ToImage(norm_elem='extreme_points'),
tr.ConcatInputs(elems=('crop_image', 'extreme_points')),
tr.ToTensor()])

voc_train = pascal.VOCSegmentation(split='train', ...
transform=composed_transforms_tr)

voc_val = pascal.VOCSegmentation(split='val', ...
transform=composed_transforms_ts)

if use_sbd:
sbd = sbd.SBDSegmentation(split=['train', 'val'], ...

transform=composed_transforms_tr, retname=True)
db_train = combine_dbs([voc_train, sbd], excluded=[voc_val])

else:
db_train = voc_train

p['dataset_train'] = str(db_train)
p['transformations_train'] = [str(tran) for tran in ...

composed_transforms_tr.transforms]
p['dataset_test'] = str(db_train)
p['transformations_test'] = [str(tran) for tran in ...

composed_transforms_ts.transforms]

trainloader = DataLoader(db_train, batch_size=p['trainBatch'], ...
shuffle=True, num_workers=2)

testloader = DataLoader(voc_val, batch_size=testBatch, shuffle=False, ...
num_workers=2)

generate_param_report(os.path.join(save_dir, exp_name + '.txt'), p)

Train variables
num_img_tr = len(trainloader)
num_img_ts = len(testloader)
running_loss_tr = 0.0
running_loss_ts = 0.0
aveGrad = 0
print("Training Network")
Main Training and Testing Loop
for epoch in range(resume_epoch, nEpochs):

start_time = timeit.default_timer()

net.train()
for ii, sample_batched in enumerate(trainloader):

inputs, gts = sample_batched['concat'], sample_batched['crop_gt']

Forward-Backward of the mini-batch
inputs.requires_grad_()
inputs, gts = inputs.to(device), gts.to(device)

output = net.forward(inputs)

51

output = upsample(output, size=(512, 512), mode='bilinear', ...
align_corners=True)

Compute the losses, side outputs and fuse
loss = class_balanced_cross_entropy_loss(output, gts, ...

size_average=False, batch_average=True)
running_loss_tr += loss.item()

Print stuff
if ii % num_img_tr == num_img_tr - 1:

running_loss_tr = running_loss_tr / num_img_tr
writer.add_scalar('data/total_loss_epoch', ...

running_loss_tr, epoch)
print('[Epoch: %d, numImages: %5d]' % (epoch, ...

ii*p['trainBatch']+inputs.data.shape[0]))
print('Loss: %f' % running_loss_tr)
running_loss_tr = 0
stop_time = timeit.default_timer()
print("Execution time: " + str(stop_time - start_time)+"\n")

Backward the averaged gradient
loss /= p['nAveGrad']
loss.backward()
aveGrad += 1

Update the weights once in p['nAveGrad'] forward passes
if aveGrad % p['nAveGrad'] == 0:

writer.add_scalar('data/total_loss_iter', loss.item(), ii ...
+ num_img_tr * epoch)

optimizer.step()
optimizer.zero_grad()
aveGrad = 0

Save the model
if (epoch % snapshot) == snapshot - 1 and epoch != 0:

torch.save(net.state_dict(), os.path.join(save_dir, 'models', ...
modelName + '_epoch-' + str(epoch) + '.pth'))

One testing epoch
if useTest and epoch % nTestInterval == (nTestInterval - 1):

net.eval()
with torch.no_grad():

for ii, sample_batched in enumerate(testloader):
inputs, gts = sample_batched['concat'], ...

sample_batched['crop_gt']

Forward pass of the mini-batch
inputs, gts = inputs.to(device), gts.to(device)

output = net.forward(inputs)
output = upsample(output, size=(512, 512), ...

mode='bilinear', align_corners=True)

Compute the losses, side outputs and fuse
loss = class_balanced_cross_entropy_loss(output, gts, ...

size_average=False)
running_loss_ts += loss.item()

Print stuff
if ii % num_img_ts == num_img_ts - 1:

running_loss_ts = running_loss_ts / num_img_ts

52

print('[Epoch: %d, numImages: %5d]' % (epoch, ...
ii*testBatch+inputs.data.shape[0]))

writer.add_scalar('data/test_loss_epoch', ...
running_loss_ts, epoch)

print('Loss: %f' % running_loss_ts)
running_loss_ts = 0

writer.close()

Generate result of the validation images
net.eval()
composed_transforms_ts = transforms.Compose([

tr.CropFromMask(crop_elems=('image', 'gt'), relax=relax_crop, ...
zero_pad=zero_pad_crop),

tr.FixedResize(resolutions={'gt': None, 'crop_image': (512, 512), ...
'crop_gt': (512, 512)}),

tr.ExtremePoints(sigma=10, pert=0, elem='crop_gt'),
tr.ToImage(norm_elem='extreme_points'),
tr.ConcatInputs(elems=('crop_image', 'extreme_points')),
tr.ToTensor()])

db_test = pascal.VOCSegmentation(split='val', ...
transform=composed_transforms_ts, retname=True)

testloader = DataLoader(db_test, batch_size=1, shuffle=False, num_workers=1)

save_dir_res = os.path.join(save_dir, 'Results')
if not os.path.exists(save_dir_res):

os.makedirs(save_dir_res)

print('Testing Network')
with torch.no_grad():

Main Testing Loop
for ii, sample_batched in enumerate(testloader):

inputs, gts, metas = sample_batched['concat'], ...
sample_batched['gt'], sample_batched['meta']

Forward of the mini-batch
inputs = inputs.to(device)

outputs = net.forward(inputs)
outputs = upsample(outputs, size=(512, 512), mode='bilinear', ...

align_corners=True)
outputs = outputs.to(torch.device('cpu'))

for jj in range(int(inputs.size()[0])):
pred = np.transpose(outputs.data.numpy()[jj, :, :, :], (1, 2, 0))
pred = 1 / (1 + np.exp(-pred))
pred = np.squeeze(pred)
gt = tens2image(gts[jj, :, :, :])
bbox = get_bbox(gt, pad=relax_crop, zero_pad=zero_pad_crop)
result = crop2fullmask(pred, bbox, gt, zero_pad=zero_pad_crop, ...

relax=relax_crop)

Save the result, attention to the index jj
sm.imsave(os.path.join(save_dir_res, metas['image'][jj] + '-' ...

+ metas['object'][jj] + '.png'), result)

53

Appendix C

Datasheet C

C.1 Train semantic segmentation Network

clear; clc; close all

%% Train A Semantic Segmentation Network

% Load the training data.
imageDir = 'Train_Images';
labelDir = 'Train_Label\PixelLabelData';

% Create an image datastore for the images.
imds = imageDatastore(imageDir);

% Create a pixelLabelDatastore for the ground truth pixel labels
classNames = [

"Cable1"
"cable2"
"cable3"
"cable4"
];

labelIDs = [1 2 3 4 0];

pxds = pixelLabelDatastore(labelDir,classNames,labelIDs)
% pxds = pixelLabelDatastore(gTruth);

augmenter = imageDataAugmenter('RandRotation',[0 90],'RandXReflection',true);

% Visualize training images and ground truth pixel labels.
I = read(imds);
C = read(pxds);

I = imresize(I,5);
L = imresize(uint8(C{1}),5);
imshowpair(I,L,'montage')

% Create a semantic segmentation network. This network uses a simple ...
semantic segmentation network based on a downsampling and upsampling ...

54

design.
numFilters = 64; %64;
filterSize = 3;
numClasses = 4; %2;

layers = [
imageInputLayer([448 448 3])
convolution2dLayer(filterSize,numFilters,'Padding',1)
reluLayer()
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(filterSize,numFilters,'Padding',1)
reluLayer()
transposedConv2dLayer(4,numFilters,'Stride',2,'Cropping',1);
convolution2dLayer(1,numClasses);
softmaxLayer()
pixelClassificationLayer()
];

% Setup training options.
opts = trainingOptions('sgdm', ...

'InitialLearnRate',1e-3, ...
'MaxEpochs',100, ... %100
'MiniBatchSize',14); %64

% Combine the image and pixel label datastore for training.
trainingData = combine(imds,pxds);

% Train the network.
net = trainNetwork(trainingData,layers,opts);
%

% Read and display a test image.
testImage = imread('Bilder\Resized to 448x448\IMG20220519141500.jpg');
testImage = imread('Bilder4\aoK6XrJW_700w_0.jpg');
testImage = imread('NyeBilder\Resized to 448x448\IMG20220528184829.jpg');
subplot(1, 2, 1)
imshow(testImage)

Segment the test image and display the results.
C = semanticseg(testImage,net);
% C = semanticseg(testImage,trainedNetwork_2);

% B = labeloverlay(testImage,C);
B = labeloverlay(testImage,C, 'Colormap', [0.5 0.1 0; 0 0 1; 1 0 0; 0 1 0; ...

0 0 0]);
subplot(1, 2, 2)
imshow(B)

%% Evaluate and Inspect the Results of Semantic Segmentation

% Define the location of the test images.
testImagesDir = 'Test_images';

55

% Create an imageDatastore object holding the test images.
imds = imageDatastore(testImagesDir);

% Define the location of the ground truth labels.
testLabelsDir = 'Test_Label\PixelLabelData';

% Define the class names and their associated label IDs. The label IDs are ...
the pixel values used in the image files to represent each class.

classNames = ["Cable1" "cable2" "cable3" "cable4"];
labelIDs = [1 2 3 4];

% Create a pixelLabelDatastore object holding the ground truth pixel ...
labels for the test images.

pxdsTruth = pixelLabelDatastore(testLabelsDir,classNames,labelIDs);

% trainingData = combine(imds,pxds);
TestData = combine(imds, pxdsTruth);

% Run the network on the test images. Predicted labels are written to disk ...
in a temporary directory and returned as a pixelLabelDatastore object.

pxdsResults = semanticseg(imds,net,"WriteLocation",tempdir);
% pxdsResults = semanticseg(imds,trainedNetwork_1,"WriteLocation",tempdir);

% Evaluate the Quality of the Prediction
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth);

% Inspect Class Metrics
metrics.ClassMetrics

% Display the confusion matrix.
metrics.ConfusionMatrix

% Visualize the normalized confusion matrix as a confusion chart in a ...
figure window.

cm = confusionchart(metrics.ConfusionMatrix.Variables, ...
classNames, Normalization='row-normalized');

cm.Title = 'Normalized Confusion Matrix (%)';

% Visualize the histogram of the per-image intersection over union (IoU).
imageIoU = metrics.ImageMetrics.MeanIoU;
figure
histogram(imageIoU)
title('Image Mean IoU')

% Find the test image with the lowest IoU.
[minIoU, worstImageIndex] = min(imageIoU);
minIoU = minIoU(1);
worstImageIndex = worstImageIndex(1);

56

% Read the test image with the worst IoU, its ground truth labels, and its ...
predicted labels for comparison.

worstTestImage = readimage(imds,worstImageIndex);
worstTrueLabels = readimage(pxdsTruth,worstImageIndex);
worstPredictedLabels = readimage(pxdsResults,worstImageIndex);

% Convert the label images to images that can be displayed in a figure window.
worstTrueLabelImage = im2uint8(worstTrueLabels == classNames(1));
worstPredictedLabelImage = im2uint8(worstPredictedLabels == classNames(1));

% Display the worst test image, the ground truth, and the prediction.
worstMontage = ...

cat(3,worstTestImage,worstTrueLabelImage,worstPredictedLabelImage);
worstMontage = imresize(worstMontage,4,"nearest");
figure
% montage(worstMontage,'Size',[1 3])
montage(worstMontage,'Size',[1 3])
title(['Test Image vs. Truth vs. Prediction. IoU = ' num2str(minIoU)])

% Similarly, find the test image with the highest IoU.
[maxIoU, bestImageIndex] = max(imageIoU);
maxIoU = maxIoU(1);
bestImageIndex = bestImageIndex(1);

% Repeat the previous steps to read, convert, and display the test image ...
with the best IoU with its ground truth and predicted labels.

bestTestImage = readimage(imds,bestImageIndex);
bestTrueLabels = readimage(pxdsTruth,bestImageIndex);
bestPredictedLabels = readimage(pxdsResults,bestImageIndex);

bestTrueLabelImage = im2uint8(bestTrueLabels == classNames(1));
bestPredictedLabelImage = im2uint8(bestPredictedLabels == classNames(1));

bestMontage = cat(3,bestTestImage,bestTrueLabelImage,bestPredictedLabelImage);
bestMontage = imresize(bestMontage,4,"nearest");
figure
montage(bestMontage,'Size',[1 3])
title(['Test Image vs. Truth vs. Prediction. IoU = ' num2str(maxIoU)])

% Define the metrics to compute.
evaluationMetrics = ["accuracy" "iou"];

% Compute these metrics for the triangleImages test data set.
metrics = ...

evaluateSemanticSegmentation(pxdsResults,pxdsTruth,"Metrics",evaluationMetrics);

% Display the chosen metrics for each class.
metrics.ClassMetrics

57

C.2 Change image size

% Resizes images to a size of 224x224, which AlexNet needs, and saves the ...
resized images in a "Resized to 224x224" subfolder of the images folder.

% Image Analyst, March 21, 2020.
clc; % Clear the command window.
fprintf('Beginning to run %s.m.\n', mfilename);
close all; % Close all figures (except those of imtool.)
clear; % Erase all existing variables. Or clearvars if you want.
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
fontSize = 15;
% Specify the folder where the files live.
inputImagesFolder = 'ToBilderTil'; % Change it to whatever you need, if ...

you want/need to.
% Check to make sure that folder actually exists. Warn user if it doesn't.
if ~isfolder(inputImagesFolder)

errorMessage = sprintf('Error: The following folder does not ...
exist:\n\n%s\n\nPlease specify to an existing folder.', ...
inputImagesFolder);

uiwait(warndlg(errorMessage));
% Try to find the highest level folder in that path that DOES exist.
while ~isfolder(inputImagesFolder) && length(inputImagesFolder) > 3

[inputImagesFolder, ~, ~] = fileparts(inputImagesFolder);
end
% Should have a good starting folder now.
inputImagesFolder = uigetdir(inputImagesFolder);
if inputImagesFolder == 0

return;
end

end
% Create output folder
outputImagesFolder = fullfile(inputImagesFolder, '/Resized to 448x448');
if ~isfolder(outputImagesFolder)

mkdir(outputImagesFolder);
end
% Get a list of all files in the folder with the desired file name pattern.
filePattern = fullfile(inputImagesFolder, '*.jpg'); % Change to whatever ...

pattern you need.
theFiles = dir(filePattern)
numFiles = length(theFiles);
hFig = figure;
hFig.WindowState = 'maximized';
for k = 1 : numFiles

% Get the input file name.
baseFileName = theFiles(k).name;
fullFileName = fullfile(inputImagesFolder, baseFileName);
% Get the output file name.
outputFullFileName = fullfile(outputImagesFolder, baseFileName);
fprintf(1, 'Now reading %d of %d "%s"\n', k, numFiles, fullFileName);

% Read in input image with imread().
inputImage = imread(fullFileName);
% Resize it.
outputImage = imresize(inputImage, [448, 448]);

% Display input and output images.
subplot(1, 2, 1);

58

imshow(inputImage); % Display image.
caption = sprintf('Input image (%d of %d):\n"%s", %d by %d', k, ...

numFiles, baseFileName, size(inputImage, 1), size(inputImage, 2));
title(caption, 'FontSize', fontSize, 'Interpreter', 'none');
subplot(1, 2, 2);
imshow(outputImage); % Display image.
caption = sprintf('Output image: "%s", %d by %d', baseFileName, ...

size(outputImage, 1), size(outputImage, 2));
title(caption, 'FontSize', fontSize, 'Interpreter', 'none');
drawnow; % Force display to update immediately.

% Write out the resized output file to the output folder.
imwrite(outputImage, outputFullFileName);

end
fprintf('Done running %s.m.\n', mfilename);
% Open the output folder in File Explorer.
winopen(outputImagesFolder);

59

Appendix D

Datasheet D

60

σ

µ

σ

µ

µ

µ
µ

σ

µ

σ

µ

µ

µ
µ

σ

µ

σ

µ

µ

µ
µ

⎓

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Research question
	Project outline

	Background theory
	Robotic Operation System
	Matlab
	Sensors
	3D data
	Structured light sensors
	Camera Configuration
	Eye-in-hand system

	Image recognition
	Neural Network
	Object Detection
	NVIDIA/semantic-segmentation

	Pose estimation

	Method
	Hardware
	Zivid camera
	ABB robot

	ROS Setup
	Object Detection
	Image collection and labeling
	Training

	Pixel to world coordinates

	Results & Discussion
	Results
	Algorithms & neural networks

	Discussion

	Conclusions
	Bibliography
	Datasheet A
	detectron2Training.py
	labelme2coco.py

	Datasheet B
	Datasheet C
	Train semantic segmentation Network
	Change image size

	Datasheet D

