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Abstract
The M4 forecasting competition challenged the participants to forecast 100,000 time series
with different frequencies: hourly, daily, weekly, monthly, quarterly, and yearly. These series
come mainly from the economic, finance, demographics, and industrial areas. This paper
describes the model used in the competition, which is a combination of statistical methods,
namely auto-regressive integrated moving-average, exponential smoothing (ETS), bagged
ETS, temporal hierarchical forecasting method, Box-Cox transformation, ARMA errors,
Trend and Seasonal components (BATS), and Trigonometric seasonality BATS (TBATS).
Forty-nine submissions were evaluated by the organizers and compared with 12 benchmarks
and standards for comparison forecasting methods. Based on the results, the proposed model
is listed among the 17 submissions that outperform the 12 benchmarks and standards for
comparison forecasting methods, ranked 15th on average and 4th with the weekly time
series. In addition, a further comparison was conducted between the proposed model and
other forecasting methods on forecasting EUR/USD exchange rate and Bitcoin closing price
time series. It is apparent from the results that the proposed model can produce accurate
results compared to many forecasting methods.

Keywords Time series · Forecasting · M4 competition · Frequency · Ensemble model ·
Statistical methods

Mathematics Subject Classification 60G25 · 62M10

1 Introduction

Time series is a type of data that is observed sequentially over time. Examples of time
series include unemployment rates, stock prices, sales demand, birth rates, temperatures, and
website traffic.

Communicated by Clémentine Prieur.

B Waddah Saeed
waddah.waheeb@uia.no

1 Department of Information and Communication Technology, University of Agder, Jon Lilletuns vei 9,
4879 Grimstad, Norway

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-022-01765-x&domain=pdf
http://orcid.org/0000-0002-2280-4427


66 Page 2 of 17 W. Saeed

Time series forecasting is an interesting area for researchers in academia and industry.
Generally speaking, time series forecasting methods are preferred for forecasting compared
to explanatory or mixed models for some reasons (Hyndman and Athanasopoulos 2018)
such as they are reasonably useful in modeling systems that are not understandable, and they
do not need to know or forecast the future values of various predictors when forecasting the
variable of interest, unlike explanatory models. Furthermore, time series forecasting methods
may produce accurate forecasts compared to explanatory o mixed models.

Forecasting competitions have contributed significantly to enlightening our knowledge
of what forecasting methods work (Hyndman 2020). The purpose of the M4 forecasting
competition is to improve forecasting accuracy and As a result, advancing the theory and
practice of forecasting (Makridakis et al. 2020).

The M4 forecasting competition challenged the participants to forecast the future values
for 100,000 time series (Makridakis et al. 2020). The organizer collected diverse time series,
mainly related to economic, finance, demographics, and industrial areas. Different frequen-
cies were considered in the competition, namely hourly, daily, weekly, monthly, quarterly,
and yearly.

According to the organizers, 49 valid submissions were received (Makridakis et al. 2020).
Only 17 of 49 submissions outperform 12 benchmarks and standards for comparison fore-
casting methods using the selected accuracy measure. The majority of these 17 submissions
used combinations of mostly statistical methods (Makridakis et al. 2020).

One of the useful things of competitions is sharing the methods used by the participants,
which can help create benchmark forecasting methods. Therefore, newly proposed time
series forecasting methods can be compared with these benchmark forecasting methods; this
was done for many years with previously published benchmark methods (Hyndman 2020).
Furthermore, it has been argued that publication consideration for any new general time series
forecasting method might be given if it shows very close or better forecasting performance
compared to existing forecasting methods when evaluated using a subset of the M4 data
(Hyndman 2020).

With this in mind, the key contributions in this work can be summarized as follows:

• Describe the proposed model used to forecast the 100,000 time series used in the M4
forecasting competition. This model is ranked 15th on average and 4th with the weekly
time series. This model used a combination of statistical forecasting methods to produce
the forecasts.

• Analyze and discuss the obtained results compared to benchmarks and standards for
comparison forecasting methods selected by the organizers.

• Conduct a further comparison between the proposedmodel and other forecastingmethods
on forecasting EUR/USD exchange rate and Bitcoin closing price time series.

The present paper consists of four main parts. The first part describes the M4 forecasting
competition, including time series data and forecast horizon for each frequency, the bench-
mark and standard forecasting methods used by the organizers, and the accuracy measure
used to evaluate and rank the submissions. The second part details the algorithm behind the
model used by the author in the competition, stating its phases, forecasting method com-
ponents, and the combination strategy. The next part presents, analyses, and discusses the
results. In addition, a comparison between the proposed model and other published results
using other time series data was provided. A summary of the paper and conclusions are given
in the last section.
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Table 1 Number of time series and forecasting horizon per data frequency (Makridakis et al. 2020)

Hourly Daily Weekly Monthly Quarterly Yearly

Number of time series 414 4,227 359 48,000 24,000 23,000

Forecast horizon 48 14 13 18 8 6

Fig. 1 Time series length density curve

2 The background

The 100,000 time series of the dataset contains different frequencies, including hourly, daily,
weekly, monthly, quarterly, and yearly data. The dataset is divided into a training set provided
at the beginning of the competition, and a test set kept with the organizers and released after
days from the submission deadline. Table 1 shows the number of time series and forecasting
horizon per data frequency.

Figure 1 shows time series length density curve for 97,128 time series in the M4 dataset,
which has less than or equal to 1,000 observations. As it can be seen from this figure, around
half of the time series in the dataset (i.e., 50,371 time series) with less than or equal to 97
observations (i.e., the median). Due to the short nature of most time series in the M4 dataset
and time and resource constraints, machine learning methods (e.g., neural networks) were
not considered a component in the proposed model.

The benchmarks and standards for comparison forecasting methods used in the competi-
tion are as follows:

• Statistical benchmarks: Naïve 1, Naïve 2, Naïve S, single exponential smoothing (SES),
Holt, damped, Comb, and Theta.

• Machine learning benchmarks: multi-layer perceptron (MLP) and recurrent neural net-
work (RNN).

• Standards for comparison: auto-regressive integrated moving-average (ARIMA) and
exponential smoothing (ETS).

Naïve 1 is a random walk model that produces forecasts equal to the last observed value
of the series. The difference between Naïve 1 and Naïve 2 (Makridakis et al. 1998) is that
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the data in Naïve 2 are seasonally adjusted by applying a multiplicative decomposition. For
Naïve S, the forecasts are equal to the most recent observation of the same period.

The following three exponentially smoothing methods were used as statistical bench-
marks: SES (Gardner 1985),Holt (Gardner 2006), and damped (Gardner 2006). The produced
forecasts using these methods are weighted averages of past values, with the weights decreas-
ing exponentially as the values come from further in the past (Hyndman and Athanasopoulos
2018). SES method assumes no trend or seasonality in the data. Forecasts using the SES
method take the same value equal to the last estimated level (i.e., smoothed value). For the
Holt method, forecasts equal the last estimated level plus h times the last estimated trend
value (Hyndman and Athanasopoulos 2018). Instead of producing forecasts that are a linear
function of h, the curve is damped (flattens over time) with the Damped method (Hyndman
and Athanasopoulos 2018). Seasonal adjustments are considered as per Naïve 2 with the
three methods. Finally, the Comb method is calculated by taking the average forecasts of
SES, Holt, and Damped methods.

Theta method (Assimakopoulos and Nikolopoulos 2000) was used for the first time in the
M3 competition. According to Assimakopoulos and Nikolopoulos (2000), the main idea of
this method is about modifying the local curvature of the time series with a coefficient called
Theta, and this is done by applying this coefficient to the second difference of the time series.
Two Theta lines are used for the resulting new time series; the first line is extrapolated using
linear regression, while the second one uses the SES method (Makridakis et al. 2020). After
the extrapolation, the final forecasts are combined using equal weights. Seasonal adjustments
are also considered with the Theta method as per Naïve 2.

Two machine learning methods were used as benchmarks: multi-layer perceptron (MLP)
and recurrent neural network (RNN). An MLP is a class of feedforward neural networks in
which the links between the nodes do not form a cycle as with RNNs. An MLP typically has
three layers as follows: an input layer, a hidden layer, and an output layer. Theweights that link
between the nodes in the MLP are trained using a learning technique called backpropagation
algorithm (Rumelhart et al. 1986). In the competition, an MLP was used with 6 hidden
nodes in the hidden layer. Adam (Kingma and Ba 2014) was used as a solver for weight
optimization for MLP. Turning now to the RNN, another class of neural network that is more
suitable for modeling sequence data (e.g., time series). The RNN used in the competition is
a fully-connected RNN in which the output from the previous time step is fed to the next
timestep. The settings usedwith RNN are 6 output space units in the first layer and 1 in the last
layer, and RMSprop as an optimizer (Hinton et al. 2012). Detrending and deseasonalization
processes are applied to facilitate the extrapolation for both methods.

With ARIMA (Box et al. 2015), the forecasts are calculated by linearly combining the
previous values of the variable and the past forecast errors. A variation of auto ARIMA
algorithm (Hyndman and Khandakar 2008) was used in the competition. This algorithm
combines unit root tests, minimization of theAkaike information criterion corrected for small
sample bias (AICc), and maximum likelihood estimation (MLE) to obtain the best ARIMA
model (Hyndman and Athanasopoulos 2018) for the given time series. With ETS (Hyndman
et al. 2002), an automatic exponential smoothing state-space model is generated for the given
time series. The forecasts from ETS are equal to the medians of the forecast distributions
(Hyndman and Athanasopoulos 2018). The organizers included both auto ARIMA and ETS
due to their popularity in forecasting studies (Makridakis et al. 2020).

Regarding the performance measure, the organizers used the average of two accuracy
measures, referred to as the overall weighted average (OWA). The first one is the symmetric
mean absolute percentage error (sMAPE) (Makridakis 1993) and the second one is the mean
absolute scaled error (MASE) (Hyndman and Koehler 2006). The former is given by Eq. (1)
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and the latter by Eq. (2).

sMAPE = 2

h

n+h∑

t=n+1

|Yt − Ŷt |
|Yt | + |Ŷt |

∗ 100(%) (1)

MASE = 1

h

∑n+h
t=n+1 |Yt − Ŷt |

1
n−m

∑n
t=m+1 |Yt − Yt−m | , (2)

where Yt is the observation value at point t , Ŷt the forecast, n the number of in-sample
observations, h the forecasting horizon, and m the period between consecutive observations
for each data frequency, i.e., 12 for monthly, 4 for quarterly, 24 for hourly and 1 for yearly,
weekly and daily data. It is good to note that the organizers used Naïve S instead of Naïve
1 in the MASE because it provides a more reasonable scaling option for seasonal series
(Makridakis et al. 2020). Interested readers about the details of the M4 competition may
refer to (Makridakis et al. 2020).

3 The proposedmodel

Due to time and resource limits, the author investigated a few forecasting methods using
the training set provided by the organizers. These forecasting methods are Temporal HIEr-
archical Forecasting (THIEF) (Athanasopoulos et al. 2017), BATS and TBATS (Livera et al.
2011), Bagged ETS (BaggedETS), auto ARIMA (Hyndman and Khandakar 2008),and ETS
(Hyndman et al. 2002).

The idea behind using THIEF, BATS, TBATS, andBaggedETS is to utilize recent forecast-
ing methods that are found useful to model and forecast time series due to some advantages
found in thesemethods, as described later in this section. ARIMAandETSwere used because
they are commonly used in forecasting studies.

The selection of the forecasting methods for each frequency was made as follows. Each
time series was split into two sets, fitting and validation sets. The number of observations in
the validation set equals the needed forecasts for that series in the competition. The forecasting
methods were fitted then ranked by their performance on the validation set. Based on that, it
was found by the author that the performance of these forecasting methods varies when were
analyzed based on the frequency of the time series. Due to the size of the dataset and time
and resources limits, different combinations of these methods were tried for each frequency.
The best combination in terms of the overall weighted average (OWA) was used to produce
the final forecasts. Combining forecasts is found useful to improve the forecasting accuracy,
especially when we are uncertain about which method is most accurate (Armstrong 2001).
Furthermore, it is found that combined forecasts are sometimesmore accurate than their most
accurate components (Armstrong 2001).

The forecasting methods for each frequency in the proposed model are shown in Fig. 2.
These methods were applied as implemented in the forecast v. 8.3 and thief v. 0.3 for R
programming language (Hyndman et al. 2018; Hyndman and Kourentzes 2018; Team et al.
2018). A brief description of these methods, except for ETS (Hyndman et al. 2002) which
was described in the previous section, are as follows:

– THIEF (Athanasopoulos et al. 2017): THIEFmethod is based on the concept of temporal
hierarchies for modeling and forecasting time series. This method takes a time series then
generates all possible temporal aggregations for that series. For example, a quarterly
time series is aggregated to biannual and annual time series. Next, the forecasts for
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Fig. 2 Forecasting methods for each frequency

each aggregation level are reconciled from these different aggregation levels using the
hierarchical reconciliation algorithm proposed in (Athanasopoulos et al. 2017). Since
each temporal aggregation level contains different features of the time series, the resulting
independent forecasts contain different information, which in turn results in producing
accurate and robust forecasts (Athanasopoulos et al. 2017). THIEFmethod showed more
accurate results over conventional forecasting methods due to the advantages of forecast
combinations and temporal aggregation (Athanasopoulos et al. 2017). In the proposed
model, for hourly data, the forecasts for each aggregation level were produced using
ETS, auto ARIMA, and Naïve S. While ETS was used with monthly and quarterly data.
These choices are based on trial and error.

– BATS and TBATS (Livera et al. 2011): These two forecasting methods are capable of
modeling time series with complex seasonal patterns (Livera et al. 2011). The identifier
BATS in these twomethods is an acronym for the key features incorporated in thesemeth-
ods: Box-Cox transformation, ARMA errors, Trend and Seasonal components, while the
initial T in TBATS connotes the use of the Trigonometric seasonality in the method (Liv-
era et al. 2011). Different combinations are used with these two methods based on the
key features incorporated in these methods. The selection of the best model is made using
the selected information criterion (Livera et al. 2011). One of the differences between
BATS and TBATS is that TBATS can be used to model non-integer seasonal frequencies
because it relies on trigonometric functions (Livera et al. 2011). As it can be seen in
Fig. 2, BATS and/or TBATS were used with each frequency.

– BaggedETS (BaggedETS) (Bergmeir et al. 2016): BaggedETSmethod takes a time series
then creates variations on it. To achieve that, each time series isBox-Cox-transformed, and
then decomposed using STL (Seasonal and Trend decomposition using Loess) Cleve-
land et al. (1990) into trend, seasonal and remainder components. Following that, the
remainder component is shuffled to obtain bootstrapped remainder series (Hyndman and
Athanasopoulos 2018). After that, the trend and season components are combined with
the bootstrapped remainder series, and then reversing the Box-Cox transformation in
order to create variations on the original series (Hyndman and Athanasopoulos 2018).
The final forecasts produced by the BaggedETS method are obtained by averaging the
forecasts from each of the additional time series. According to (Petropoulos et al. 2018),
bagging can deal with data, model, and parameter uncertainties. The baggedETSmethod
was used in the proposed model to model and forecast the daily time series in the M4
competition.
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– Regression with ARIMA errors: This method was inspired by the work presented
in https://robjhyndman.com/hyndsight/forecasting-weekly-data/. Here, Fourier terms
model the seasonal pattern (Hyndman andAthanasopoulos 2018). The short-termdynam-
ics in a time series are handled by an ARMA error (Hyndman andAthanasopoulos 2018).
The number of Fourier terms and the order of the ARIMAmethod in the proposed model
was selected by minimizing the information criterion.

The proposed model consists of two phases, the computing weights phase and the fore-
casting phase. In the computing weights phase, which is shown in the flowchart depicted in
Fig. 3, each time series provided by the organizers (yi ) was split into two sets, fitting set
(ui ) and validation set (ti ). The number of observations in the fitting set equals its original
length provided by the organizers |yi | minus the needed forecasts for that series (hi ), which
are used as a validation set. The selected statistical methods were used to fit the fitting set
based on the frequency. If any of the forecasts (ûi, j ) from these methods are less than 0, new
forecasts are produced after fitting the logarithm of the fitting data. After that, the forecasts
from the statistical methods are combined by columns in a matrix (ûi,comb). Finally, by using
the polynomial potential aggregation rule with different learning rates for each method (ML-
Poly) (Gaillard and Goude 2015), a matrix of weights (Wi ) is created with M rows and x
columns, which represents the number of needed forecasts and the number of fitted methods,
respectively.

As discussed above, in the computing weights phase, ML-Poly is used to compute the
weights which will be used to combine the forecasts in the forecasting phase to produce the
submitted forecasts. ML-Poly, which was introduced by Gaillard et al. (2014), has multiple
learning rates which are added to the polynomially weighted average algorithm described
by Cesa-Bianchi and Lugosi (2003). There are other aggregation rules that can be also
applied to combine the forecasts such as exponentially weighted average forecaster, the fixed
share forecaster, and the ridge regression forecaster (Gaillard and Goude 2015). However,
according to Gaillard and Goude (2015), with ML-Poly it is possible to achieve the same
level of performance as other aggregation rules and it is also much faster than the empirical
tuning described by Devaine et al. (2013) and used for the other rules.

ML-Poly is used as implemented in opera package (Gaillard and Goude 2016) and the
learning rates are calibrated using theoretical values (Gaillard and Goude 2016). The aggre-
gation rule is similar to the gradient descent aggregation rule (i.e., loss.gradient = TRUE),
and the square function is used as a loss function. A mixture object is created based on those
settings. Following that, sequential predictions and updates of the mixture object are made
based on the observations in the validation set (ti ). At this stage, the weights matrix is created
and used in the forecasting phase.

In the forecasting phase,which is shown inFig. 4, the time series provided by the organizers
(yi ) was used to fit the selected forecasting methods. As in the computing weights phase, if
any of the forecasts (ŷi, j ) from these methods are less than 0, new forecasts are produced
after fitting the logarithm of the fitting data. Following that, the forecasts from the statistical
methods are combined by columns in a matrix (ŷi,comb). Finally, element-wise multiplication
between the computedweights (Wi ) and (ŷi,comb)was used to produce the submitted forecasts
(ŷi ).

The pseudo-code for the proposedmodel, which shows how these two phases were used to
produce the submitted forecasts for all time series for any frequency, is shown in Algorithm
1.

It is good to note that the M4 dataset can be found in https://github.com/Mcompetitions/
M4-methods/tree/master/Dataset, while the source code for the model is available in https://
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Fig. 3 Computing weights flowchart for one time series

Algorithm 1 Pseudo code for the proposed model.
Inputs:

- y1, y2, ..., yN : N Time series provided by the organizers for the selected frequency. Each yi is divided
into fitting set (ui ) and validation set (ti ).
Outputs:

- ŷ1, ŷ2, ..., ŷN : Submitted forecasts.

for i = 1 to N do
Computing weights phase:
Follow the flowchart shown in Fig. 3 to compute the weights (Wi )

Forecasting phase:
Follow the flowchart shown in Fig. 4 to compute the submitted forecasts.

end for
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Fig. 4 The forecasting flowchart of the proposed model for one time series

github.com/Mcompetitions/M4-methods/tree/master/243%20-%20Waddah-Waheeb.
The source codes with the settings used for the benchmarks and standards for comparison
forecasting methods mentioned in Sect. 2 are found in https://github.com/Mcompetitions/
M4-methods. In addition, the analysis provided in this paper is available in https://github.
com/Waddah-Saeed/Frequency-based-ensemble-forecasting-model.

4 Results and discussions

4.1 UsingM4 data

The forecasting performance comparison between the proposed model and other forecasting
methods used by the organizers is shown in Table 2. It can be seen from the table that the
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Table 2 Forecasting performance comparison (Makridakis et al. 2020)

Method OWAHourly OWADaily OWAWeekly OWAMonthly OWAQuarterly OWAYearly

Statistical benchmarks

Naïve 1 3.593 1 1 1.096 1.066 1

Naïve 2 1 1 1 1 1 1

Naïve S 0.627 1 1 1.147 1.153 1

SES 0.990 1 0.975 0.951 0.970 1.003

Holt 2.749 0.995 0.966 0.988 0.932 0.947

Damped 1.141 0.997 0.917 0.924 0.893 0.890

Comb 1.556 0.978 0.926 0.920 0.890 0.867

Theta 1.006 0.999 0.971 0.907 0.917 0.872

Standards for comparison

ARIMA 0.577 1.044 0.932 0.903 0.898 0.892

ETS 0.852 0.996 0.931 0.915 0.891 0.903

Machine learning benchmarks

MLP 0.921 3.509 3.608 1.749 1.684 1.288

RNN 1.036 1.930 1.755 1.587 1.508 1.308

Proposed model

Proposed 0.507 0.999 0.779 0.927 0.880 0.880

Best results in boldface

proposed model shows better forecasting accuracy than all the models with hourly, weekly,
and quarterly data. On the other hand, the Comb method performs better than the proposed
model with daily and yearly data. With monthly data, the ARIMA method outperforms the
proposedmodel.However, the overall performanceof the proposedmodelwith all frequencies
is better than all themethods, as shown inTable 3. Since the best performance for the proposed
model in the competition is achieved with weekly data, the improvement percentage to the
compared forecasting methods with weekly data is reported in Table 3. It can be seen from
Table 3 that the performance of machine learning benchmarks are not good. This could be
attributed to the length of the time series as discussed in Sect. 2.

The reasons for the good forecasting performance for the proposedmodel can be attributed
to the characteristics found in the forecasting methods used in the proposed model, which
are combining forecasts and the usage of different forecasting methods for each frequency.
Combining forecasts is found useful to improve the forecasting accuracy, especially when we
are uncertain about which method is most accurate (Armstrong 2001), which was one of the
challenges the author faced during the investigation. Utilizing various forecasting methods
could be one of the reasons due to some advantages found in these methods, such as forecast
combinations and the temporal aggregation found in THEIF method (Athanasopoulos et al.
2017), the ability to model complex seasonal time series as with BATS and TBATS (Livera
et al. 2011), and the ability of BaggedETS in dealingwith different uncertainties (Petropoulos
et al. 2018).

Using the results of the computing weights phase, another analysis was conducted to find
forecasting methods’ contribution percentage to the calculation of the final forecasts. The
percentages were calculated as follows. First, calculate how many times each method has
a weight greater than zero in each produced forecast. Second, dividing the obtained results
from the first step by the number of produced forecasts. The last step is to divide the results
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Table 4 Forecasting methods contribution percentage to the calculation of the final forecasts

Frequency Method Contribution percentage (%)

Hourly THIEF variations 50–69

TBATS 46

Daily BATS 56

ETS 52

Bagged ETS 51

Weekly Regression with ARIMA errors 67

TBATS 64

Monthly THIEF 54

BATS 53

TBATS 53

ETS 50

Quarterly BATS 60

TBATS 59

ETS 58

THIEF 56

Yearly TBATS 67

ETS 64

from the previous step by the number of time series for that frequency thenmultiply it by 100.
These calculated percentages are shown in Table 4. The results revealed that the forecasting
methods contributed differently in the final forecasts, and the majority of the forecasting
methods contribution percentages fall in the range 50–69%.

4.2 Using EUR/USD exchange rate and Bitcoin closing price data

A further comparison was conducted between the proposed model and other forecasting
methods to forecast the daily EUR/USD exchange rate and Bitcoin closing price time series.
For EUR/USD time series, the one-step-ahead forecasting performance of the proposed
model in root mean squared error (RMSE) is compared with results reported in (Waheeb
et al. 2016, 2018; Waheeb and Ghazali 2019, 2020). This time series covers the period from
3 January 2005 to 31 December 2007. The data was divided into the following three sets: the
fitting set consists of 469 data points, 156 data points used in the computing weights phase,
and 156 data points for the out-of-sample set. As for the Bitcoin closing price time series,
the multi-step ahead forecasting performance comparison is done with the work reported in
(Waheeb et al. 2020). The period between November 24, 2018, and October 28, 2019, was
used for the training, where the last 14 data points were used for the computingweights phase.
The out-of-sample data are the next 14 days (i.e., from November 11, 2019, to November
24, 2019). Due to non-stationary in the time series, the first difference was used to make it
stationary.

Instead of using the validation set only to compute the weights, both fitting and validation
sets were used in another experiment. In addition, the mean and median combination of the
point forecasts of the three methods used with the daily frequency were calculated.
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EUR/USD exchange rate. Bitcoin closing price.(a) (b)

Fig. 5 ACF of the residuals from the proposed model

The comparison results are shown in Tables 5 and 6. It is apparent from the two tables that
the proposed model outperforms many forecasting methods. Furthermore, the results from
both tables show that using a validation set to compute the weights results in better forecasts
than using the whole training set (i.e., fitting and validation sets). However, it still shows
close results to the proposed model. The mean combination of the point forecasts, which
uses equal weights, does not help to produce more accurate results. On the contrary, the point
forecasts’ median combination is better than the proposed model with the Bitcoin closing
price time series. The autocorrelation function (ACF) plots of the residuals from the proposed
model are shown in Fig. 5. The ACF plots show the lack of correlation which suggests that
the forecasts are good.

4.3 Limitation

Aside from the improved forecasting accuracy, the time needed for the two phases is a
limitation of the proposed solution. In the first phase, the fitting is done using the fitting
set. Then, in the second phase, the fitting is done using the fitting and validation sets as one
set. However, in some applications, a model that produces more accurate forecasts can be
preferred than a model that can be trained faster.

4.4 Possible changes for better forecasting performance

As a final remark, it is worth commenting that many possible changes could have been made
to improve the performance of the proposed model. First, use the median combination of
the point forecasts. This can help reduce the time needed in the two phases and could help
produce more accurate forecasts (e.g., Table 6). Second, avoid using the entire training data
with long time series because the farthest observations might not be relevant. Third, instead
of producing new forecasts after fitting the logarithm of the fitting data when the obtained
forecasts are less than 0, consider using 0 as forecasts immediately. This can make the model
much simpler and could enhance the forecasting performance.
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5 Conclusions

This paper has described the model used in the M4 forecasting competition. It is a com-
bination of statistical methods, namely auto-regressive integrated moving-average (auto
ARIMA), exponential smoothing (ETS), bagged ETS, temporal hierarchical forecasting
method, Box–Cox transformation, ARMA errors, Trend and Seasonal components (BATS),
and Trigonometric seasonality BATS (TBATS). The model consists of two phases, the com-
puting weights phase and the forecasting phase. The former is to compute the weights used
in the latter stage to produce the forecasts. Based on the obtained results with M4 data,
one can notice that the overall forecasting performance of the proposed model outperforms
the 12 forecasting methods selected by the organizers. Furthermore, the proposed model is
ranked 15th on average and 4th with the weekly time series among 49 submissions to the
competition. A further comparison was conducted between the proposed model and other
forecasting methods on forecasting EUR/USD exchange rate and Bitcoin closing price time
series. It is apparent from the results that the proposed model performs better than many
forecasting methods. Possible reasons for the good performance of the proposed model are
combining forecasts and the usage of different forecasting methods for each frequency.
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