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Abstract

In a world where people are more connected, the barriers between deaf people and hearing
people is more visible than ever. A neural sign language translation system would break
many of these barriers. However, there are still many tasks to be solved before full automatic
sign language translation is possible. Sign Language Translation is a difficult multimodal
machine translation problem with no clear one-to-one mapping to any spoken language.
In this paper I give a review of sign language and its challenges regarding neural machine
translation. I evaluate the state-of-the-art Sign Language Translation approach, and apply
a modified version of the Evolved Transformer to the existing Sign Language Transformer.
I show that the Evolved Transformer encoder produces better results over the Transformer
encoder with lower dimensions.
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Chapter 1

Introduction

Sign language is the use of the body - hands, arms, fingers, head, posture, facial expression
- in order to communicate in a nonverbal manner. According to the World Federation of
the Deaf there are more than 200 sign languages, used by 70 million deaf people around
the world [32]. Sign languages are complex visual languages which are very different from
spoken language. Carrying their own grammatical rules and often different word orderings
than spoken languages, there is no one-to-one mapping from signs to spoken language words
[36].

Sign language translation is the idea of automatically recognising and translating sign lan-
guages into spoken text, or to generate signs from spoken text using neural machine transla-
tion. Neural machine translation has already approached human performance on translation
of natural languages. Google Translate is capable of translating more than 100 languages,
yet none of them are sign languages. A sign language translation system is needed in order
to proceed towards universal translation and its ambition to communicate in all spoken,
written and signed languages.

Deaf people often face challenges when interacting with hearing people. Most hearing people
do not know a sign language. Furthermore, modern communication technologies are mostly
being designed to support only spoken or written languages, which reinforces the existing
communication barriers between deaf and hearing people. A neural sign language translation
system would therefore greatly benefit the society, and break down social barriers between
deaf and hearing people [5].

Many research efforts have been conducted in the field of sign language translation over
the recent years. However, many of them focusing on only recognising hand gestures, or
static signs, whereas the goal is to translate continuous sign language sentences. Due to
the multimodal nature of the task, and due to the complexity of the sign languages and its
distinctions from spoken languages, continuous sign language translation appears to be a
difficult task even with modern machine translation architectures. [36].

In this thesis I will cover some of the challenges in continuous sign language translation,
both technical and ethical. Furthermore, I will look into some work done in the field, going
in depth into the state-of-the-art joint end-to-end sign language recognition and translation
approach by Camgoz et al. [8]. Lastly, I will present my own contribution, where I apply a
modified version of the Evolved Transformer [39] to the Sign Language Transformer model
by Camgoz et al.
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Chapter 2

Background

Sign Language Translation (SLT) is a challenging field for several reasons. In this chapter I
will provide useful historical information about the Deaf culture, I will provide an overview
of sign language and its complexity, and I will target some of the main challenges of creating
sign language translation systems.

2.1 The Deaf Culture

Sign language users make up cultural minority groups with common language and life expe-
rience. In surroundings with only sign language speakers, deaf people have no disabilities.
Deafness is therefore viewed as a cultural identity, rather than a disability. However, in
interaction with non sign language speakers, both groups have disabilities [18].

We distinguish between capitalized "Deaf", referring to the Deaf cultures, and lowercase
"deaf", referring to the audiological status of a person. Sign languages are sacred in the Deaf
cultures. Development of sign language processing systems is therefore a highly sensitive task
which should be developed with care and respect [5].

Historically, the Deaf community have experienced suppression of sign language communi-
cation. In late 1800s, an international congress decided that deaf students should only be
educated using spoken language. Students were therefore trained to lip-read and speak,
with varying level of success. Since then, it has been a passionate cause for the Deaf to
use sign languages in school, work and public life. All this historical baggage can make the
development of sign language software particular sensitive in the Deaf communities [5].

2.2 The Complexity of Sign Languages

Sign languages are naturally evolved languages, distinct from spoken languages, making the
mapping from sign language to spoken language very hard. In order to understand the
complexity of the language it is essential to take a brief look at some of the linguistics of the
language.

Sign languages are composed of phonological features put together under certain rules, just
like spoken languages [5]. A sign word consists of five parameters, which all have to be
performed correctly. These are hand shape, palm orientation, movement, location, and facial
expression. Signs use multiple channels to convey concurrent information. For instance,
space and direction is used to convey relationship between objects [36].

Classes of nouns and verbs are represented by different classifiers. For instance, one hand-
shape is used for vehicles and another one for flat objects. These handshapes can also be
combined with movements to indicate how the objects move. These shapes and movements,
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however, are not reserved only for classifiers, but can appear in other signs. It is therefore
important to catch the context in which a sign is performed [5].

In addition to signs, sign languages use fingerspelling for names and words they do not have
signs for. While there is a more clear one-to-one mapping between fingerspelling letters
and spoken letters, the fingerspelling is subject to coarticulation, meaning its handshape
may vary, depending on the neighbouring letters. Sign language processing software must
therefore be able to detect these variations, and also be able to separate fingerspelling from
other signs [5].

Another important factor of sign language is the facial and body expressions. This involves
movement of eyebrows, mouth, eyes, head and shoulders. For instance, eyebrows can be
used to formulate a sentence as a question, while mouth position can indicate the size of an
object. The body is used actively to depict different actions, such as filleting a fish [5]. Signs
and fingerspelling can be subject to partial occlusion, meaning that parts of a sign might
be hidden by the hand or other fingers. In such cases, facial and body expressions might
add the extra layer of information needed in order to interpret the meaning of the sign. It
is therefore essential to do translation on full body videos, not only hand gestures videos.

Furthermore, sign languages vary a lot based on ethnicity, geographic region, age, gender,
education, hearing status etc. There are not only different sign languages, such as American
Sign Language (ASL) and Norwegian Sign Language (NSL). There are different dialects
within the different languages. For instance, Black ASL is different from ASL [5].

Lastly, sign languages differ from spoken languages in its variety in fluency. Deaf children
are usually born to hearing parents, who do not know sign language. Deaf children, and
their relatives (typically parents and siblings) are therefore not taught sign language until
late childhood. This often results in lower fluency for all parts. Consequently, SLT systems
must model and detect this vast variety, meaning we need datasets that reflect this variety
[5].

2.3 Datasets

One of the biggest challenges in the field of SLT is the lack of good, public sign language
datasets which reflect the variations in the language. Most machine learning techniques work
best with large amount of data. However, most sign language corpora contain fewer than
100,000 signs. In comparison, speech recognition has had great success because it has been
trained on corpora containing millions of words [5].

There are several challenges with existing sign language datasets. First of all, many of the
datasets only contain individual signs. These might be good for sign language dictionaries,
but they will not work well for continuous SLT. To be able to translate a real world sign lan-
guage conversation we need datasets containing continuous sign language sentences, showing
the coarticulation and that the meaning of certain signs might change in different contexts
[5].

Secondly, there is a lack of native signers contributing to the datasets. Many of the signers
are either novices, or professional sign language interpreters. Their language simply do not
reflect the language used by native signers well enough. Their language vary in speed and
fluency. In order to reflect the language of the native speakers, datasets contribution by
native signers are needed [5].

Thirdly, datasets also lack variety. To be able to create generalizable models, the datasets
must reflect the signing population. This means that datasets should include signers of
different gender, skin tone, age, clothing, body size etc. Datasets must also capture different
sign language dialects as well as different sign languages. There should also be variations in

3



camera quality, camera angles and lightning conditions in order to make the software usable
in real life situations [5].

Lastly, the datasets need annotations in order to train AI models with supervised learning.
Annotating sign language datasets is time consuming and error prone, because no standard
annotation system for sign languages exists. This is a major restriction in the field, and
it prevents researchers from combining datasets, which for other machine learning tasks
would greatly increase the power of the model. Existing datasets use different levels of
annotations. Some are annotated with full spoken text translations, while others have gloss-
level annotations (see Chapter 3.1 for an explanation of glosses.), capturing the sign identity
and the same order as in spoken language sentences [5].
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Chapter 3

Related Work

Some of the earliest research on hand and gesture recognition is dated back to 1987, pro-
posed by Zimmerman et al. [44], measuring finger bending, positioning and orientation,
using a glove containing flex sensors. Giant leaps have been made in technology since then,
and with better cameras, faster computers and with the advent of deep learning, current
research is now capable of recognising hand gestures through video or image-input, rather
than sensor/glove-based systems. However, much of the research is only focusing on static
signs, and just hand gestures. Sign language is a continuous language, utilizing the full body,
not only hand gestures. For the purpose of this thesis it is therefore most relevant to look
into work done on continuous sign language recognition/translation.

3.1 Sign Language Recognition and Sign Glosses

The ultimate goal of Sign Language Translation (SLT) is to generate fluent spoken language
translations from sign language videos. However, because there is no easy one-to-one map-
ping between signs and spoken language words, many researchers have instead been focusing
on Sign Language Recognition (SLR). The goal of SLR is to identify sign glosses of a se-
quence of continuous signs, neglecting the grammatical and linguistic structures that differ
from spoken language [7]. It is therefore an easier task than SLT.

Sign glosses are used to associate a word (or words) with a sign, in order to give the sign a
label. The gloss word do not necessarily convey the meaning of the sign, but it is often a good
approximation. Glosses are not very tight bundled to their signs. There might be several
good candidate glosses for the same sign. For instance, the words "important", "worth" and
"value" are all good candidates for the same sign. It is essential to understand that there is
no one-to-one mapping between signs and words. Signs convey meanings, not just words. It
is therefore practical to identify signs by glosses [30].

Figure 3.1: Sign glosses are simply just labels on signs, making it easier to talk, read and write
about sign language [30].
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3.2 Datasets

A few large datasets containing continuous dynamic sign language has been released in
recent years, attracting more researchers into the field. The most interesting one is the
RWTHPHOENIX-Weather-2014 (PHOENIX14) dataset, which is a continuous sign language
recognition dataset conducted by the German public TV-station PHOENIX. The corpus is
a subset of recordings from the daily weather forecast airings, recorded over a three year
period from 2009 to 2011. It has been transcribed only with gloss annotation, making the
dataset suitable for SLR [28].

Camgoz et al. [7] released PHOENIX14T in 2018, which is an extension of PHOENIX14,
containing German spoken language translations as well as the gloss annotation. This is the
first publicly available continuous SLT dataset.

PHOENIX14 and PHOENIX14T has been a major contribution to SLR and SLT, and are
some of the most used datasets in the fields. The recordings are performed in a studio with
a stationary color camera. The interpreters wear dark clothes, and are placed in front of a
grey background with color transition [28].

Figure 3.2: Example frames from PHOENIX14(T). Videos are recorded at 25 frames per second.
The frame size is 210 by 260 pixels. Each frame only captures the interpreter box [28].

3.3 Continuous Sign Language Recognition

Several approaches have been proposed in the last years, using different architectures. With
the advent of deep learning, researchers in SLR have quickly adopted CNNs for manual
and non-manual feature representation, while Recurrent Neural Networks (RNN) have been
adopted for temporal modelling [7].

The development of sequence to sequence (seq2seq) learning approaches was one of the most
important breakthroughs in deep learning. Seq2seq problems introduced a new challenge
regarding annotations. Strong annotations are hard to obtain for sequences. It is simply too
time consuming annotating each frame of a sequence. To deal with this problem, Graves et
al. proposed a new loss function, namely the Connectionist Temporal Classification (CTC)
Loss [20]. The CTC considers all the possible alignments between the source and target
sequences while calculating the error. Chapter 4.2.2 explains CTC in more details.

The CTC has become a dominant loss function for many seq2seq tasks, such as speech
recognition and hand writing recognition. In recent years, CTC has also been used by
computer vision researchers on weakly labeled visual problems like lip reading, hand shape
recognition and CSLR [7].

A common seq2seq task is machine translation, aiming to learn the mapping between two
languages. Because CTC assumes that the source and target sequences share the same
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order, it is not a suitable loss function for machine translation problems. CTC also assumes
that there is no relationship between words in the target sequence. It is therefore not
possible to learn an implicit language model using CTC. This resulted in the development
of the Encoder-Decoder architecture, which led to the emergence of the Neural Machine
Translation (NMT) field [7].

Encoder-Decoder networks use an intermediary latent space to map from one sequence to
another, similar to the intermediate representation in auto-encoders [7]. A latent space is
just a compressed representation of data in space, where similar data are closer together in
space [40]. The first Encoder-Decoder architectures used RNNs to both the encoder and the
decoder. These approaches improved machine translation performance, but introduced an
information bottleneck in the encoding of the source sequences into a fixed sized intermediate
vector. To deal with these issues, various attention based architectures have been proposed,
calculating the alignment between source and target sequences [7].

Camgoz et al. (2018) [7] used an attention based architecture to realize the first end-to-end
SLT models. They used CNNs in combination with attention-based NMT methods. In 2019,
Ko et al. [26] proposed a similar approach, but using human keypoint extractions of face,
hands and body parts as input to the network. They evaluated their method on their newly
introduced dataset containing Korean sign language, namely the KETI sign language dataset
[26].

In the mean time, Vaswani et al. introduced transformer networks, which took NMT to new
heights [41]. Transformers improved the performance of translations over the RNN based
encoder-decoder architectures. Additionally, transformers are faster and easy to parallelize
compared to the old architectures. This has made transformers the go to architecture for
many machine translation tasks [8].

Inspired by the success of transformers, Camgoz et al. (2020) [8] proposed a novel archi-
tecture using multiple co-dependent transformer networks, reporting state-of-the-art SLR
and SLT results. The transformers are simultaneously trained to jointly solve related tasks.
This architecture is used to simultaneously recognise and translate sign language. The en-
coder learns to recognize sign gloss representations, while the decoder learns spoken language
translations from the sign gloss representations [8]. The work of Camgoz et al. is used as
inspiration for my own work. Their approach is therefore described in more details in chapter
5.

Lastly, Coster et al. applied a pretrained BERT model to the work of Camgoz et al. and
report an increase of 1 to 2 BLEU-4 score. To avoid overfitting, the majority of parameters
were frozen during training, known as frozen pretrained transformer technique [12].

7



Chapter 4

Theory

In this chapter I will explain some of the theory behind the main components used in the
models I have been working with.

4.1 Convolutional Neural Network

One of the most popular deep learning approaches is the Convolutional Neural Networks
(CNN). It is known for being highly effective on diverse computer vision applications. A
CNN is typically composed of three different layers, namely convolutional layers, pooling
layers and fully-connected layers. The first layers learn simple features like colors and edges,
while later layers put together the edges and colors to learn larger shapes and elements [15].
In this section I will explain the three different layers of a CNN.

4.1.1 Convolutional Layer

The main building block of a CNN is the convolutional layer. The convolutional layer involves
three component: the input data, a filter and a feature map. A common input to a CNN is
a colour image. The input will be a matrix with a height and width corresponding to the
image height and width, and a depth of 3, one for each color channel (RGB) [15].

The filter, or kernel, is just another matrix containing weights. If we view the image matrix
as a box, then we can view the filter matrix as a smaller box which fits inside the image box.
Usually, the filter has the same depth as the image, meaning 3 in this case. This means that
the filter-box can not change its direction in the z-direction (depth). The length and height
of the filter is usually the same, commonly 3x3, 5x5 or even 1x1 [15].

The process of convolving is simply just to move the filter around in the larger box (the
image) calculating the dot product between the filter and the pixel values it encapsulates.
Starting in the top left corner of the image, moving one pixel to the right for each calculation.
When the end is reached, the filter moves back to start, and one pixel-row down, doing the
same on the next rows. If the image is of size 10x10, and the filter is of size 3x3, it means
that the filter can move 10−3 = 7 times in x and y direction, giving us 8 possible alignments
of the filter in each direction. This gives us a 8x8 output matrix with the dot products from
the convolving process. The output matrix is known as the feature map of the image [15].

Two additional parameters in a convolutional layer is stride and padding. The stride defines
how many steps the filter should move for each calculation. The default is 1. With a higher
stride, the output dimension decreases. Padding can be added around the image if the output
dimension should be the same as the input dimension. Otherwise, the output dimension will
be reduced with input_dimension− filter_size+ 1 [15].
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The depth dimension can be increased by adding multiple filters, appending the outputs of
each filter at the end [15].

4.1.2 Pooling Layer

A pooling layer is a way to reduce the number of parameters in the input. It works similar
to a convolutional layer, but it does not contain any weights. Instead, the kernel applies
a function to the numbers it embraces. There are mainly two types of functions used by
the pooling layer: max pooling and average pooling. Max pooling simply filters out the
maximum number in the "pool", while average pooling takes the average of all numbers in
the "pool" [15].

A lot of information disappears with the pooling layer. However, it reduces the complexity,
improves the efficiency and reduces the chances of overfitting [15].

4.1.3 Fully-Connected Layer

The fully-connected layer is just a normal feed-forward fully-connected layer which is used
as the last layers in order to do the classification [15].

4.2 Loss Functions

Loss functions are essential components in machine learning. They are used to compute
the distance between the current output of the algorithm, and the expected output. This
calculation can be used to measure how well an algorithm is doing its job. The measurements
are used as feedback to the algorithm in order to adjust the algorithm. In this section I will
briefly cover two loss functions, which will be referred to in this paper [34].

4.2.1 Cross-Entropy Loss

Cross-Entropy Loss is used to optimize classification models. Entropy refers to the level
of uncertainty in a random variable. If a random variable has equal probability for all its
outcomes, for instance a dice, the uncertainty is high, yielding an entropy of 1. On the other
side, if a random variable only has one possible outcome, the uncertainty is low, yielding an
entropy of 0. The cross-entropy loss is defined as

LCE = −
n∑

i=1

ti log2(pi) (4.1)

where ti is the truth label and pi is the probability for the ith class. The goal is to lower the
uncertainty, meaning a cross-entopy loss of 0 would be a perfect model [27].

4.2.2 Connectionist Temporal Classification

The connectionist temporal classification (CTC) loss function is commonly used in seq2seq
models, when the alignment between input and output data is unknown. Formally, when an
input sequence X = [x1, x2, ..., xT ] is being mapped to an output sequence Y = [y1, y2, ..., yU ],
and the length T and U vary, CTC can be used to find an accurate mapping from X to Y .
The CTC algorithm is therefore said to be alignment-free, because it does not require an
alignment between the input and the output [21].

To understand CTC loss we first have to understand frame-level annotation. Figure 4.1 shows
a frame-level annotation of a text input sequence. By removing all duplicate characters we
get the word in the image, "to". To be able to differentiate on words like "to" and "too",
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a blank character, denoted by "_" can be used to separate each character. When removing
duplicate characters, we only remove until the blank [37].

Figure 4.1: Frame-level annotation [37].

Another key to understanding CTC is that different aligmnet sequences can be decoded as
the same word. For the example in Figure 4.1, "tt_ooo" and "ttt_oo" both ends up as "to"
when duplicates and blank is removed [37].

The CTC loss function receives a matrix from the network, mapping each time-frame of a
sequence to probabilities for each possible characters (glosses in the case of SLR). It is not
essential for the CTC to find the correct alignment. Its only job is to train the network to
output the correct word [37].

To find the word with the highest probability we have to find all the alignments which
gives the same final word, and calculate the probability of each of these alignments by
multiplying together the probabilities for each character in each time-frame. By summing
up the probabilities for each sequence giving the same word, we get a probability for that
word. However, for long sequences this is very time and computationally inefficient [37].

Another solution which is commonly used is called Best Path Decoding". It selects the
character with the highest probability at each time step and constructs a sequence of these.
While this often work as a good approximation, the probability might not always be higher
than the joint probability calculated for each word in the last method [37].

Camgoz et al. use CTC loss with something called Beam Search. Beam Search is similar
to Best Path Decoding, but instead of chosing the option with the best option at each time
step, it chooses the n best option at the first time step, where n is the beam size. Then it
calculates the joint probability for each of the three selected options with all the possible
options at the next time step. The n best joint probabilities are then selected and continues
to the next time step. This continues until the last time step is reached, where the best of
the n paths that are left will be chosen [14].

Camgoz et al run beam search for all beam sizes from 1 to 10 [8].

4.3 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a neural network architecture used for detecting
patterns in sequential data. The main difference between a normal Feedforward Neural
Network is that the RNN pass information through the network in cycles, making information
from previous inputs available for the next input [38].
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Figure 4.2: A visualisation of differences between a Feedforward NN and a RNN [38].

There are some challenges with RNNs, which make them less appropriate for certain tasks.
First of all, RNNs take data sequentially, making the algorithm slow. Because all inputs
rely on the preceding inputs, all calculations have to be performed sequentially. Another
challenge is that for long sequences, RNNs have trouble capturing long term dependencies.
Small values in the matrix multiplications cause the gradients to decrease with each layer,
and finally vanishing. This is known as the vanishing gradient problem [38].

Long Short-Term Memory units (LSTMs) were introduced to tackle the latter problem.
However, it still suffers from its sequential nature. LSTMs are not essential for the rest of
this paper, and will therefore not be described in depth [38].

4.4 Transformer

Transformers are neural sequence transduction models which take input sequences parallel,
rather than sequential, like RNNs. Similar to most competitive sequence transduction mod-
els, the transformer has an encoder-decoder structure. The encoder maps an input sequence
(x1, ..., xn) to an intermediate representation sequence (z1, ..., zn). The decoder then takes z
as input, and generates an output sequence (y1, ..., ym), one element at the time. The de-
coder is auto-regressive, meaning that it takes the previously generated tokens as additional
inputs when generating the next token [41].

4.4.1 Encoder

The left side of Figure 4.3 shows the encoder. The encoder consists of N = 6 identical layers.
Each of them has one multi-head self-attention layer and one position-wise fully connected
feed-forward network. Additionally, the encoder contains residual connections around each
sublayers, followed by layer normalization. Both the embedding layer and the sub-layers
produce outputs of dimension dmodel = 512, in order to make the residual connections work
[41].

4.4.2 Decoder

The right side of Figure 4.3 shows the decoder. The decoder is similar to the encoder layer,
but it contains one extra layer, and a modified attention layer, called masked multi-head
attention. The extra layer is the top most multi-head attention layer, which attends to the
output of the encoder stack. The masking of the masked multi-head attention ensures that
the predicted token at position i can depend only on the known outputs at positions less
than i [41]. Chapter 4.4.7 explains the masking.
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Figure 4.3: The Transformer architecture [41].

4.4.3 Self-Attention

The self-attention layer is a sequence-to-sequence operation mapping input vectors x1, x2, ..., xt

to output vectors y1, y2, ..., yt. The input vector is of same dimension as the output vector.
For each xi a corresponding yi is calculated by taking a weighted average over all the input
vectors as:

yi =
∑
j

wijxj. (4.2)

where j indexes over the input sequence x, and the weights sum to one. The weight wij

can in its simplest form be the resulting matrix of the dot product between xT
i and xj [4].

However, the self-attention used in modern transformers are a little more complicated.

To explain how the weight wij is computed it is essential to introduce three new terms. In
Figure 4.4, every xi is used in three different ways. They are compared to all other vectors to
establish the weight for its own output yi, it is compared to every other vector to establish the
weights for their outputs, and it is used together with the corresponding weights to compute
each output vector. These three usages are called the query, key and value, respectively [4].
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Figure 4.4: The simplest form of self-attention without any trainable weights [4].

In the simple attention, in Figure 4.4, each input vector is used as both query, key and
value parameters. In order to get some learnable weights, the original attention mechanism
introduce three weight matrices Wq, Wk and Wv and derive new query, key and value matrices
as:

qi = Wqxi ki = Wkxi vi = Wvxi

The weight wij is then calculated as

wij = softmax(
qTi kj√

k
).

The dot product produces values between −∞ and ∞. We apply a softmax to yield values
between 0 and 1, and to ensure that they sum to 1 over the whole sequence [4]. The softmax
is sensitive to very large input values. We therefore divide the dot product on

√
k, because

the average value of the dot product grows with the embedding dimension k [4]. The final
vectors are then obtained by

yi =
∑
j

wijvj.

To understand why self-attentions work, I will use an example provided by Peter Bloem [4],
showing how movie recommendation systems work. Suppose we have a three-dimensional
vector for every movie, containing values for how much romance, action and comedy the
movie contains. Likewise, for each user in the system we have a corresponding three-
dimensional vector showing how much the user likes these three properties. Values are
from -1 to 1. By taking the dot-product of these two vectors we get a score showing how
good of a match the movie is to a user [4].

The self-attention uses the same principle for word embeddings. Given learned word embed-
dings, the self-attention layer calculates the dot-product between each of them to find the
relation between words in the sentence. For instance, in the sentence “the cat walks on the
street”, the learned embeddings will be more similar for “cat” and “walks”, as these words
relate to each other. The dot-product of two similar vectors will therefore be large, telling
the system that these words are related, and should pay extra attention to each other.
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Figure 4.5: Dot-product between user vector and movie vector [4].

4.4.4 Multi-Head Attention

The transformer is using multiple self-attention layers. In the original paper they employ
8 parallel layers [41]. The reason they do this can be illustrated with another example by
Peter Bloem [4]. Consider the sentence "Mary gave roses to Susan". The word "gave" has
different relations to "Mary" (the giver), "roses" (the gift) and "Susan" (the receiver). In
a single self-attention, all these relations are summed together. If the sentence changes, say
Susan gave roses to Mary instead, the output vector would still be the same, even though
the context has changed.

By combining several self attention mechanisms we can capture all these different relation-
ships. All the different heads have their own weight matrices. In order to make a multi-head
attention almost as fast as a single-head attention, the input vectors are split into chunks
of equal size. This means that for a traditional 8 head attention, and a input vector of
dimension 512, each chunk will be of size 512/8 = 64. The weight of each self attention layer
is adjusted to fit the sizes of the chunks. After all the self-attention layers have generated
their y-values, the resulting vectors are appended together to form a 512 dimensional vector
again [4].

4.4.5 Word Embedding

Machine learning models are mathematical functions which take vectors or scalars as input,
and produce vector or scalar outputs. Therefore, when working with text, there is a need
to convert words into vector representations, which in turn can be fed into the network.
One simple solution to this could be to simply create one-hot encodings. One-hot encodings
are just vectors of zeros, except for a one at the position of the word it represents in the
vocabulary. Say we have a vocabulary of the words "have", "a", "good", "great", "day".
The one-hot encoding for the word "have" will have a one in the first position, and zeros in
the remaining four positions [23].

One-hot representation of words work fine if the words are just different classes in for instance
an image classification problem. When working with NLP (natural language processing),
however, there is a need for some information about the relations among the words. Using
the same words as above, say we have a machine translation system outputting the sentence
"have a good day", but the reference sentence is "have a great day". With no information
about the relations among words, the words "good" and "great" will be treated as total
different words.

The solution to this is word embedding. Word embedding are learned representations of
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words where similar words have a similar representation. A method called Word2Vec, in-
troduced by Mikolov et al. in 2013 [31], is the de facto standard method for developing
pre-trained word embedding [6]. In the same paper, it was found surprisingly mathemati-
cal relationships among the vectors. It turned out that by subtracting vector("Man") from
vector("King"), and adding vector("Women") resulted in a vector closest to the vector rep-
resentation of the word "Queen" [31].

4.4.6 Positional Encoding

Since the transformer model is parallel, and not recurrent, information about the words’
position in the sentence is lost. In recurrent models, the tokens go into the model one
at a time, and therefore the relevant position of the tokens are known to the model. In
transformer models, however, all the tokens are fed in at the same time, eliminating the
positional information. To make up for this loss, the transformer is using something called
positional encodings. These are just simply vectors which are added to the input embedding.
The positional encoding therefore must have the same dimension as the input embedding,
dmodel [24]. So what exactly do the positional encoding vectors contain?

There are many options for positional encodings, both learned and fixed. Positional encod-
ings should, however, satisfy some criteria. First of all, the encodings should be unique for
each position. Secondly, the distance between any two positions should be the same across
sentences with different lengths. Thirdly, the model should be generalizable to longer sen-
tences, meaning there values should be bounded. Lastly, the model must be deterministic
[24].

Vaswani et al. proposed a new method which satisfies all of these criteria, using sine and
cosine functions of different frequencies:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

where pos is the position and i is the dimension [41].

Figure 4.6 demonstrates how the positional encoding with sinus and cosine curves work.
When dmodel = 512 there are 512 different curves to read the values from, where each curve
corresponds to each index in the output vector. For demonstration purpose, only six curves
are included with a small spread in the chosen indexes, to avoid the curves to overlap too
much. The figure is created in Python using matplotlib, and inspiration is taken from the
online resources of Chapter 10.6.3 in the book "Dive into Deep Learning" [43].

Figure 4.6: Positional encoding values for pos = 3.
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4.4.7 Masking

Masking is used in the transformer in order to make the training go faster. The decoder
is an auto-regressive model which gets the previously generated words when generating the
next words of a sentence. During training, however, a technique called "teacher forcing" is
used. Instead of giving the decoder the previously generated word, which most of the times
is wrong during training, the decoder instead receives the previous ground truth word. This
prevents the decoder from generating consequential errors [41].

Because the decoder now has all the words that normally is fed to the decoder sequentially,
available at the beginning, it is not necessary to run this process sequentially. They can be
run in parallel. However, it requires that for each position the decoder is generating a word
for, it can only get access to the preceding words, and not the next words in the sentence.
This is where masking comes in. Masking is applied to hide the next words of a sentence.

4.4.8 Residual Connections

Residual connections are used when training deep network in order to avoid gradients to
shrink or increase exponentially, known as exploding or vanishing gradients. It is simply
just a side-path for letting some data skip certain layers of the network. The data is then
added to the data flowing throgh the normal path. Mathematically this can be expressed as
F (x) + x [42].

4.5 Measurements

One key part of machine translation is measuring translation performance. This is challeng-
ing due to the big variety in languages. The same message can be formulated in several
different ways, without one being more correct than the other. Take for instance the Norwe-
gian sentence "hunden spiser kjeks". Two possible English translations of this sentence are
"the dog eats cookies" and "the dog is eating cookies". To correctly measure the performance
of these two translated sentences we need a method to decide how good these translations
are [13]. Camgöz et al. [8] are using BLEU score and WER for this purpose.

4.5.1 BLEU score

Papineni et al. [33], proposed a method called BLEU (BiLingual Evaluation Understudy)
score. The central idea behind this method is to compare the machine translation to a
professional human translation. The more similar they are, the better the translation is.
In other words, this method relies on a corpus of good quality human translations, and it
needs a numerical metric score for determining the closeness of the machine translation to
the human translation [33].

The main part of calculating the BLEU score is to compare n-grams in the candidate sen-
tences to n-grams in the reference sentences, and count the number of matches [33]. n-grams
are simply all the samples of n consecutive words in a sentence. For instance, the 2-grams
of the sentence "the dog eats cookies", are "the dog", "dog eats", "eats cookies".

The precision of the sentence is calculated for each n-gram using a slightly modified precision
metric known as modified n-gram precision [33]. In modified n-gram precision, similar n-
grams in the candidate sentence are only counted for the same number of occurrences in the
reference sentence. Meaning if the word "the" occurs three times in the candidate sentence,
but only once in the reference sentence, it is only counted once. This score is known as the
clipped count [33].
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Countclip = min(Count,Max_Ref_Count). (4.3)

The BLEU score is evaluated on blocks of text. This is done by summing up the clip counts
for each n-gram in every candidate sentence in the block, and then dividing on the number
of n-grams in total.

pn =

∑
C∈{Candidates}

∑
n-gram∈C

Countclip(n-gram)∑
C′∈{Candidates}

∑
n-gram′∈C′

Countclip(n-gram′)
. (4.4)

The result of equation 4.4 has to be combined for different n’s. As proven in the original
paper, the results of pn decays roughly exponentially with n. To take this exponential
decay into account, the BLEU score is calculated using the geometric mean, rather than the
arithmetic mean [33]. The geometric mean is expressed in logscale in the paper,

exp

(
N∑

n=1

wn log pn

)
. (4.5)

where n is 4 and wn is 1
4

[33]. For n = 4 the same equation can be expressed as

4
√
p1p2p3p4. (4.6)

The last part of the BLEU score is the brevity penalty (BP). The purpose of BP is to
penalize candidate sentences which are shorter than the reference sentence. Without the
BP, the candidate sentence "the cat is black" will match 100% with the reference sentence
"the cat is black and white". The BP is defined for two cases. If c, the length of the
candidate sentence is longer than r, the length of the reference sentence, BP = 1. This is
because candidate sentences longer than the reference sentences are already penalized by
modified n-gram precision measure [33]. The brevity penalty is computed as

BP =

{
1 if c > r
e(1−r/c) if c ≤ r

. (4.7)

The final BLEU score then becomes

BLEU = BP × exp

(
N∑

n=1

wn log pn

)
. (4.8)

The output of the BLEU score will range between 0 and 1. In order to receive a score of 1, the
candidate sentence has to be identical to a reference sentence. In practice, few translations
will receive a score of 1. Even human translations will vary a lot from the reference sentences,
and will therefore rarely receive a score of 1. One thing to keep in mind is that the BLEU
score will increase with the number of reference sentences [33].

The BLEU score is often given as percentage rather than decimal. In general, BLEU scores
higher than 30 reflect understandable translations, while scores higher than 50 reflect good
and fluent translations. [1]. Figure 4.7 gives an indication of how good a translation is based
on its BLEU score.
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Figure 4.7: General interpretability of BLEU score [1].

4.5.2 Word Error Rate

When BLEU score is appropriate for assessing text-to-text translation systems, where the
reference sentences are subjects to interpretation, the same does not apply when assessing
speech-to-text applications, or sign-to-gloss. Word Error Rate (WER) is the metric that is
typically used for these purposes [13].

WER compares the reference sentences to candidate sentences word by word, figuring out
the number of differences between them. A difference can be one of three things. Firstly,
it can be words that are present in the reference sentence, but missing from the candidate
sentence, known as "deletions". Secondly, it can be words that are present in the candidate,
but not in the reference sentence, known as "insertions". Thirdly, it can be altered words
between the candidate and reference sentence [13].

Putting it all together, the formula for WER is the total number of changes divided by the
total number of words in the reference sentence.

WER =
Insertions+Deletions+ Substitutions

Total words in reference sentence
. (4.9)

Word error rate is used for assessing the recognition part, the sign-to-gloss, in the model [8].

4.6 Evolved Transformer

Due to recent advances in the field of neural architecture search, So et al. [39] has come
up with an improved transformer architecture, namely the Evolved Transformer (ET). They
applied tournament selection architecture search on the Transformer architecture, trying to
evolve it into a better and more efficient model. The search process ran through 15,000
different models on 270 TPUs (Tensor Processing Units) for almost 1 billion steps. In the
interest of saving space, neural architecture search and tournament selection architecture
will not be covered here.

The ET shows improved performance over the Transformer at all sizes, but especially on
small, mobile friendly models with less than 7M parameters. In some cases on small sized
models, the ET showed same performance as the Transformer with 37.6% less parameters
[39].

There are mainly four notable differences between the original transformer and the ET:
depth-wise separable convolutions, the Gated Linear Unit (GLU) layer, the use of the Swish
activation function, and the branching structure. In the following subsections I will describe
the separable convolutions, the GLU and the Swish function.
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Figure 4.8: A comparison between the original Transformer architecture and the Evolved Trans-
former architecture [39].

4.6.1 Depth-Wise Separable Convolutions

The depth-wise separable convolutions aim to make a convolutional layer less computational
costly by splitting the filter up into two smaller filters [22]. These two filters are then used
in two sequential convolutional layers. Doing this results in two convolutional operations
instead of one. Following are the steps needed in order to split up a filter of size 5x5x3x256
(256 filters of dimension 5x5x3) into two smaller filters.

The first part is the depth-wise convolution. Assuming we have an RGB image with 3
channels, the depth-wise convolution applies three different convolutions to the image in order
to retain the original depth of the image. Unlike a normal convolutional layer, where all three
convolutions have the same depth as the image, convolutions in a depth-wise convolutional
layer only has one dimension. Each filter is applied to different depth-dimension of the
image. By stacking the resulting matrices together we get an output-matrix of same depth
as the input image [22]. Figure 4.9 illustrates how this works.

Figure 4.9: An image of dimension 12x12x3 convolved with depth-wise convolutions of dimensions
5x5x1, yielding an output matrix of dimension 8x8x3 [22].

The second part is the point-wise convolution. The goal of the point-wise convolution is to
change the depth of the image. It works exactly like normal convolutions, but its filter size
is just 1x1. Using the same example as above, we now have an output matrix of dimensions
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8x8x3. Let’s say we want to increase the depth to 256. We achieve this by using 256 filters of
size 1x1x3. The final output of the depth-wise and the point-wise convolutions then becomes
8x8x256 [22].

4.6.2 Gated Linear Unit

The Gated Linear Unit (GLU) layer were introduced by Dauphin et al. [11] in 2017 and is
expressed as

hl(X) = (X ∗W + b)⊗ σ(X ∗ V + c) (4.10)

where X is the input sequence, W and V are convolutional filters (note that the symbol ∗ is
the convolution operator, not the multiplication operator) and b and V are biases. σ is the
Sigmoid-function, and ⊗ is the element-wise multiplication operator.

4.6.3 Swish Activation Function

The Swish activation function was found by Ramachandran et al. in 2017 [35], and is simply
just

x · σ(βx) (4.11)

where σ is the Sigmoid-function, and β is either a constant, or a learnable parameter. One
will often see Swish implemented as just

x · σ(x).

This is because the most common use of the Swish function is with β = 1, making the
equation similar to the Sigmoid-weighted Linear Unit (Sil) [16].

4.7 Multimodal Machine Learning

Humans are able to understand and experience the world with many different senses - we see
objects, hear sounds, feel texture, smell odors etc. Furthermore, we are able to process all
this information simultaneously, aligning the information perfectly together to one compound
impression. The different ways in which something happens or is experienced is referred to
as different modalities. Many machine learning problems only deal with one modality, for
instance text-to-text problems. In order for machines to handle real world problems, it must
be able to handle multiple modalities. The goal of multimodal machine learning (MMML)
is to build models which can process and relate information from multiple modalities [2].

One of the main challenges in MMML is how to align the different modalities together.
Going back to the human analogy, one can say that if a person sitting next to you claps his
hands, the two modalities sound and vision are aligned if the sound is experienced at the
same time as the clap. Contradictory, if the person is sitting on the other side of a soccer
pitch, clapping his hands, the sound will appear later than the clap. One can say that the
two modalities are not aligned properly in this case. Multimodal alignment is defined as
finding relationships and correspondences between sub-components of instances from two or
more modalities [2].

Sign language processing is a multimodal machine learning task as it deals with video and
text sequences.
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Chapter 5

Implementation

The paper I have been using as inspiration for my work is the paper "Sign Language Trans-
formers: Joint End-to-end Sign Language Recognition and Translation" by Camgoz et al.
[8]. The paper comes with a code base, called SignJoey [9], which I have been working with.
The SignJoey project is highly based on the JoeyNMT project, but with modifications to
realize joint continuous sign language recognition and translation. In this chapter I will cover
the JoeyNMT project, the SignJoey project, and lastly, my own contribution to the project,
namely the Evolved Transformer.

5.1 JoeyNMT

JoeyNMT is a neural machine translation (NMT) toolkit designed specifically for novices.
The code aims to be clean, well documented and minimalist. Their approach is to identify
the core features of NMT that have not changed over the last years, and to provide well
documented, simple quality code. The project contains implementations of some standard
network architectures, such as RNN, transformer, different attention mechanisms, input feed-
ing, and configurable encoder/decoder bridge. It also contains standard learning techniques,
such as dropout, learning rate scheduling, weight tying and early stopping criteria, and it
contains tools for visualization and monitoring [29].

5.2 SignJoey

The SignJoey project is based off of the JoeyNMT project. Most of the code is the same,
except some modification in order to realize joint continuous sign language recognition and
translation [9]. The model is trained and evaluated on the PHOENIX14T corpus. In this
section I will give an overview of the architecture of the "Sign Language Transformer".

The SignJoey project contains the implementation of the Sign Language Transformer (SLT)
used by Camgoz et al. [8]. The SLT jointly learns to recognize and translate video sequences
of sign language into sign glosses and spoken language sentences. Given a sign video se-
quence V = (I1, ..., IT ) with T frames, the goal of the transformer is to learn the conditional
probabilities p(G|V) of generating a sign gloss sequence G = (g1, ..., gN) with N glosses, and
p(S|V) of generating a spoken language sentence S = (w1, ..., wU) with U words [8].

Modelling the above probabilities is a challenging sequence-to-sequence task for several rea-
sons. First of all, the number of source tokens (number of video frames) is much greater
than the number of target tokens. Furthermore, there is no one-to-one mapping from sign
language to spoken language. This is because sign languages and spoken languages have
different vocabularies, different grammar and different word ordering [8].
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Figure 5.1 shows an overview of the model architecture. The two main components are the
Sign Language Recognition Transformer (SLRT) on the left side, and the Sign Language
Translation Transformer on the right side.

Figure 5.1: An overview of the end-to-end SLR and SLT transformer approach by Camgoz et al.
[8].

5.2.1 Spatial and Word Embeddings

Both the spoken language words and the video frames are embedded before they are fed
into the network. The spoken language words are embedded using a linear layer, initialized
from scratch and learned during training. This is implemented in SignJoey using a PyTorch
Embedding layer. The PyTorch Embedding class works as a lookup table, storing and
updating embeddings of a fixed dictionary and a fixed dimension size.

The video frames, on the other hand, are embedded using the SpatialEmbedding approach
from Camgoz et al. [7], which propagate each video frame through a CNN, trying to learn
the non-linear frame level spatial representation [8].

Because transformer models take inputs in parallel, they have no positional information
about the input. Without positional information, inputting a reversed video sequence would
yield the same result as inputting the original video. To overcome this problem, positional
encodings, as described in chapter 4.4.6, are added to both the word embeddings and the
spatial embeddings. The final vectors are given as:

mu = WordEmbedding(wu) + PositionalEncoding(u)

ft = SpatialEmbedding(It) + PositionalEncoding(t)

where wu is the spoken language word at position u and It is the video frame at time t [8].

5.2.2 Sign Language Recognition Transformer

The Sign Language Recognition Transformer (SLRT) is shown on the left side of Figure
5.1. The goal of the SLRT is to recognize sign glosses from continuous sign language videos,
and to learn meaningful spatio-temporal representations which can be forwarded to the Sign
Language Translation Transformer. The SLRT takes in the positionally encoded spatial
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embeddings, and feeds it through a transformer encoder model [41]. The self-attention layer
of the encoder learns the contextual relationship between the frames of a video. The output
of the self-attention, together with a residual connection, is normalized, and passed through
a non-linear point-wise feed forward layer [8].

Because signs have a spatio-temporal representation, sign glosses have a one-to-many rela-
tionship to the video frames. If we had a frame level annotated dataset, the SLRT could
have been trained using a cross-entropy loss. Instead, they use a linear projection layer,
followed by a softmax activation function, followed by a CTC, as described in chapter 4.2.2.
We obtain p(G|V) from the CTC, and calculate the loss of the CSLR as

LR = 1− p(G|V)

[8].

Th SLRT is configured in the encoders file in SignJoey, and implemented in the transformer_-
layers file as "TransformerEncoderLayer". It is configured with 3 layers, an attention-head
size of 8, input dimension size of 512 and a dropout of 0.1, to prevent overfitting. The
point-wise feed forward layer is configured with hidden size of 2048 [8].

5.2.3 Sign Language Translation Transformer

On the right side of the figure we have the Sign Language Translation Transformer (SLTT).
The SLTT is an autoregressive transformer decoder model, meaning it takes previous cal-
culations as input when calculating the next output. The target sentence S is first prefixed
with the special beginning of sentence token, < bos >, before the whole sentence is em-
bedded and positionally encoded. During training, the embeddings are then passed to a
masked self-attention layer, which ensures that each token only have information about its
predecessors when extracting its contextual information [8].

The next attention block in the decoder learns the mapping between source and target
sequences by combining the output of the encoder with the output of the masked attention
layer in the decoder. The outputs from this attention block is then passed through a non-
linear point-wise feed forward layer, just as in the SLRT. All these operations are also
followed by normalization and residual connections, as in the SLRT [8]. This decoding
process is formulated as:

hu+1 = SLTT (mu|m1:u−1, z1:T ), (5.1)

where z1:T is the output sequence from the encoder, m1:u−1 are the positional encoded word
embeddings up to position u-1. hu+1 is the predicted next word in the sentence, which is fed
into the next iteration of the SLTT [8].

The goal of the SLTT is to learn to generate one word at a time until it generates the special
end of sentence token, < eos >. Its ultimate goal is to find the conditional probability
p(S|V). It does so by decomposing it into ordered conditional probabilities

p(S|V) =
U∏

u=1

p(wu|hu). (5.2)

These decomposed probabilities are then used to calculate the cross-entropy loss for each as:

LT = 1−
U∏

u=1

D∑
d=1

p(ŵd
u)p(w

d
u|hu) (5.3)
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where p(ŵd
u) is the probability of the ground truth word wd at decoding step u. D is the

vocabulary size of the target language. The network is then trained by minimizing a weighted
joint loss of the recognition loss LR and the translation loss LT as:

L = λRLR + λTLT (5.4)

where λR and λT are hyper parameters, set in the configuration file, which decides how
important each loss function is during training [8].

5.2.4 Training

The network is initialized using Xavier initialization [19], and an Adam optimizer [25] is
used to train the network. The batch size is 32, and the learning rate is 10−3. The network
is evaluated every 100 iteration. For every 8th evaluation step without any decrease in
development score (WER), the learning rate is decreased by a factor of 0.7, until it reaches
below 10−6 [8].

5.2.5 Essential Classes and Methods

In this section I will briefly go over some of the main components of the SignJoey code base.

The train method in training.py is where most of the work is handled. It loads the config
parameters, sets the random seed, loads the data, builds the model, sets up logging, trains
the model, validates the model and tests the model.

The config-parameters are loaded from the sign.yaml file in the config-folder via load_config.
The set_seed method sets the random seed for PyTorch, NumPy and the random-library.
Both load_config and set_seed are implemented in helpers.py.

The train, dev and test data are loaded from the data-folder together with the gloss and
text vocabularies through load_data implemented in data.py.

The build_model method, implemented in model.py, initializes the spatial embedder, text
embedder, transformer encoder and transformer decoder. All these are passed to a SignModel
object, which is initialized with a Xavier initializer in initialize_model, implemented in ini-
tialization.py.

SignModel inherits from PyTorch’s nn.Module, and holds the full Sign Language Trans-
former model, including the spatial embedding layer and word embedding layer.

The model is then passed to the TrainManager, which manages the training loop, valida-
tion, learning rate scheduling, early stopping and logging.

5.3 Contribution

Much of my time has gone into investigating the SignJoey codebase in order to understand
the concepts, update libraries and run the code myself. The code base is large and complex,
and it contains many unused classes and methods. In order to make the code base smaller
and easier to understand I have removed much of the code which was not used, and done
refactoring and debugging to gain understanding.

The configuration file contains many parameters from the JoeyNMT project which remain
constant in the SignJoey project. In order to make the code more readable I have put many
of these parameters directly into the code.
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After gaining understanding of the code, and after running the original code with some
different parameter variations, I tried to implement the Evolved Transformer by So et al.
[39].

5.3.1 Evolved Transformer

There is an existing implementation of the evolved transformer (ET) in TensorFlow1. How-
ever, because almost all the code in the SignJoey project is running on PyTorch, it was
convenient to create an ET implementation in PyTorch.

There were no public PyTorch-implementations of the full Evolved Transformer available.
However, an ET encoder implementation marked as "work in progress" (WIP) was available
at Github2. I used the available WIP encoder as inspiration for creating the decoder. Further
investigation revealed that the reason for the WIP mark was because of the Separable Con-
volutions were not properly implemented. After reading the theory about Separable CNNs I
made some modifications to the encoder, which yielded slightly better results. Additionally
I added dropout layers with a dropout of 0.1 after both left and right branches, to avoid
overfitting. This is also done in the original TensorFlow implementation.

Creating the decoder, however, was not as straight forward as it seemed when I first had
the theory in place. After several attempts, comparing components to both the ET encoder,
the original Transformer decoder and to the ET implementation in TensorFlow the ET
decoder still produced really poor results. The result was to debug the decoder by removing
parts of it until it performed better. By removing the three layers which use Separable
CNNs, and their surrounding layers (normalization layers, activation function etc.), I received
results close to the results of the original decoder. The findings were strange, as the same
implementation of Separable CNNs were used successfully in the encoder. However, the final
decoder architecture of my modified ET decoder is shown in Figure 5.2.

When comparing the Transformer to the Evolved Transformer (see Figure 4.8) we see that
the Transformer repeats it selves in the comparison. This means that one layer of the ET
encoder/decoder is equivalent to two layers of the Transformer encoder/decoder. Because
the original implementation of the Sign Language Transformer uses 3 layers of encoder and
decoder, it was not possible to divide the number of layers by 2. I have therefore used 2
layers for the ET encoder and decoder. This should be kept in mind when comparing the
parameters in chapter 6.

Figure 5.2: The modified version of the Evolved Transformer, implemented in the SignJoey project.

1https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/evolved_
transformer.py

2https://github.com/Shikhar-S/EvolvedTransformer
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Chapter 6

Results

Table 6.1 shows the WER and the BLEU-4 scores that Camgoz et al. reported, compared
to the my own results when running their implementation. We see that most of the best
results are achieved when the recognition loss weight is 5.0. The same weight is therefore
used when generating the results of table 6.2. It is interesting to see that my own results
are worse than the results from Camgoz et al. The only time my own results are better is
the dev results for recognition loss weight = 20. The dev results are validations done during
training while tuning the model. The model is validated on a dev/validation dataset during
training to test the performance along the way.

Camgoz et al. My own results

Loss Weights DEV TEST DEV TEST

λR λT WER BLEU-4 WER BLEU-4 WER BLEU-4 WER BLEU-4

1.0 1.0 35.13 21.73 33.75 21.22 49.53 20.08 48.84 20.13

2.5 1.0 26.99 22.11 27.55 21.37 29.76 21.10 29.37 20.73

5.0 1.0 24.61 22.12 24.49 21.80 28.56 20.69 28.76 21.50

10.0 1.0 24.98 22.38 26.16 21.32 32.13 19.36 33.32 19.66

20.0 1.0 25.87 20.90 25.73 20.93 29.76 21.10 29.37 20.73

Table 6.1: Comparison between Camgoz et al.’s results and my own results with the same model
and parameters.

Table 6.2 shows a comparison of the BLEU-4 scores between three different models I have
tested, with different embedding dimensions (dmodel) and sizes of the feed-forward hidden
layer (ffsize). Because the implementation of the Evolved Transformer is modified, I also
tested the models running only the ET encoder. Surprisingly, it achieved better results when
the dimensions were reduced.

The modified ET also achieved better results with lower dimensions in some cases. For
dmodel = 256 it achieved almost as good results as the best results generated with the original
implementation.
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Dimensions Transformer ET encoder only Modified ET

dmodel ffsize DEV TEST DEV TEST DEV TEST

64 256 19.65 19.59 21.19 21.30 19.39 19.06
128 512 20.97 20.31 21.60 21.02 20.88 20.18
256 1024 20.71 21.14 20.65 21.40 20.42 21.46
512 2048 20.69 21.50 20.67 20.71 20.26 19.85

Table 6.2: Comparison of results with different network dimensions. The bold results mark the best
dev and test results for each dimensions.

The next table, Table 6.3 shows a comparison of the number of parameters in each model.
Because one layer of ET corresponds to two layers of the Transformer the comparison would
have been better if the Transformer had twice as many layers as the ET. However, in order to
make the results comparable to the results from Camgoz et al. I kept 3 layers in the original
architecture. The most interesting observations here is that the "ET encoder only" model
achieves better results with lower dimensions. This partially proves the point of the Evolved
Transformer, that it works better with less parameters than the Transformer. Partially,
because I am only using the encoder.

dmodel ffsize Transformer ET encoder only Modified ET

64 256 856,767 937,279 947,199
128 512 2,400,575 2,709,055 2,745,279
256 1024 7,552,575 8,759,359 8,897,343
512 2048 26,114,111 30,886,975 32,233,535

Table 6.3: Comparison of the number of parameters in the different models. The "ET encoder only"
model runs with 2 layers of the encoder and 3 layers of the decoder, the Transformer runs with 3
layers in both, and the "Modified ET" runs with 2 layers in both.

The last two tables show the generated sentences and the corresponding generated gloss
sequences by the "ET encoder only" model. Some interesting observations here is that it
translates "dear viewers, good evening" perfectly. There are probably two reasons for this.
The first being that the sentence is short, and the second one being that this is probably
a much repeated line in the dataset, as this is probably the intro of many of the weather
forecasts.

Also sentence 1 is translated correctly. This one is more surprising as it is a much longer
sentence. However, looking at sentence 6, it seems like the same phrase is used in many of
the recordings, but with different dates at the end.

Another interesting observation is the translation of sentence number 6, where it generates
correctly until the last word which is the month. My best guess is that the signs for June
and July are as similar as they are in spoken languages. From the generated glosses we see
that the same error is also present there, meaning the error lies in the encoder.

Comparing the sign gloss sequence of entry number 4 and 5 to their corresponding sentences
show that the sentences vary a lot more than the sign gloss sequences. This might be a hint
of a weakly trained decoder, which is not able to translate from sign glosses to full sentences.

The English translations of the German text are acquired from Google Translate.
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1

Reference und nun die wettervorhersage für morgen mittwoch den zwölften mai
(and now the weather forecast for tomorrow, wednesday, may twelfth)

Generated und nun die wettervorhersage für morgen mittwoch den zwölften mai
(and now the weather forecast for tomorrow, wednesday, may twelfth)

2

Reference später im westen wieder schauer und gewitter
(later in the west again showers and thunderstorms)

Generated im westen und südwesten einige schauer und gewitter
(some showers and thunderstorms in the west and southwest)

3

Reference liebe zuschauer guten abend
(dear viewers, good evening)

Generated liebe zuschauer guten abend
(dear viewers, good evening)

4

Reference der wind weht morgen schwach bis mäßig aus westlichen richtungen
(the wind will blow weak to moderate from westerly directions tomorrow)

Generated der wind weht schwach bis mäßig aus west bis nordwest
(the wind will be weak to moderate from west to northwest)

5

Reference auch am donnerstag neben sonne gebietsweise heftige schauer oder gewitter
(also on thursday, in addition to the sun, heavy showers or thunderstorms in some areas)

Generated am donnerstag teilweise kräftige regenfälle teilweise kräftige gewitter
(on thursday partly heavy rainfall partly heavy thunderstorms)

6

Reference und nun die wettervorhersage für morgen freitag den zehnten juli
(and now the weather forecast for tomorrow, Friday, July 10th)

Generated und nun die wettervorhersage für morgen freitag den zehnten juni
(and now the weather forecast for tomorrow, Friday, June 10th)

Table 6.4: Translations generated by the "ET encoder only" model, with dmodel = 128 and ffsize =
512.
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1
Reference MORGEN WETTER WIE-AUSSEHEN MITTWOCH ZWOELF MAI
Generated MORGEN WETTER WIE-AUSSEHEN MITTWOCH ZWOELF MAI

2
Reference WEST MEHR SCHAUER GEWITTER
Generated WEST MEHR REGEN GEWITTER

3
Reference LIEB ZUSCHAUER GUT ABEND
Generated LIEB ZUSCHAUER GUT ABEND

4
Reference WIND SCHWACH MAESSIG IX WEHEN
Generated WIND SCHWACH MAESSIG WEHEN

5
Reference DONNERSTAG SONNE TEILWEISE REGEN STARK GEWITTER
Generated DONNERSTAG SONNE DANN TEILWEISE REGEN STARK GEWITTER

6
Reference MORGEN WETTER WIE-AUSSEHEN FREITAG ZEHNTE JULI
Generated MORGEN WETTER WIE-AUSSEHEN FREITAG ZEHNTE JUNI

Table 6.5: Corresponding sign gloss sequences generated by the Sign Language Recognition Trans-
former (the encoder).
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Chapter 7

Discussions

Even though there has been done a lot of good research on both Sign Language Recognition
and Sign Language Translation, there are still many tasks that have to be solved before the
research can be applied in real applications. In this chapter I will first discuss what I think
are some of the biggest remaining challenges in the field, based on what I have learnt. Lastly,
I will evaluate the architectures used.

7.1 Deaf Involvement

When working in the field of sign language translation it is important to keep in mind what
the end goal of the research is. The technology is supposed to make the lives of the Deaf
easier. We want to make usable systems that match the user needs of the deaf people.
Most teams working on SLT are all-hearing teams, who lack the experience of being deaf.
Accordingly, they lack the knowledge of use cases and contexts where sign language software
must function [5]. As far as I know, this also applies to Camgoz et al.

Bragg et al. [5] state that Deaf community involvement is essential at all levels. However,
because SLT is still at an early stage, I think it is not very important to have deaf members
in every team. There is a lot of good literature available which describe sign language and
the different aspects which have to be kept in mind when doing research. Requiring deaf
members of all teams would probably limit the amount of research in the field. As SLT
progresses and gets closer to an end product it is much more important to involve the Deaf,
in order to make useful end products which fit their needs.

As briefly mentioned in Chapter 2, it is also important to respect the Deaf community, and
their ownership to sign languages. Forcing the technology can lead to rejection from the
Deaf community. There are examples of systems which have failed because of this [17]. It is
therefore important to keep the Deaf community involved in the research, without needing
deaf members in all teams.

7.2 Dataset

The main challenge in neural sign language translation is the lack of good available datasets.
Even though Camgoz et al. achieves decent results on the PHOENIX14T dataset, there is
still a long way to the end goal of achieving universal sign language translation. Examining
the dataset against what was covered in Chapter 2.3, there are several weaknesses with
PHOENIX14T.

First of all, the corpora is small in size compared to other machine learning datasets. The
dataset contains video recordings of around 67,000 signs from a sign vocabulary of 1066 dif-
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ferent signs distributed over around 8250 video sequences [7]. This is considered a relatively
small dataset in the world of deep learning.

Secondly, the dataset lacks the variety needed in good sign language datasets. The recordings
are performed by 9 different sign language interpreters [7], meaning it lacks native speakers.
Additionally, there is no variation in clothing, ass all the signers wear black clothes, and there
is no variation in camera quality and lightning conditions, as the recordings are performed
in a studio.

Lastly, the videos are recordings of weather forecasts, meaning there is a limited domain. It
is probably easier to learn a language model for a limited domain than to learn a general
model for all domains. It is therefore reasonable to think that the same model would have
performed worse if trained on larger datasets with no specific domain.

7.3 Annotations

No standard annotation methods exist for sign languages, which makes the production of
sign language corpora hard and time consuming. In order to speed up the research in the
field, a standard annotation method would have been a major contribution. Because of the
many differences between spoken languages and sign languages, which make a mapping from
sign language to spoken language hard, a good temporary solution would be to use gloss
annotations. As long as all signs have only one gloss assigned to it, this approach could
at least work well for SLR. However, in order to do full SLT we also need full sentence
annotations, or a mapping from glosses to sentences.

7.4 Measurements

BLEU score and WER are two common measurements to use when measuring the perfor-
mance of a neural machine translation model, and they are both used by Camgoz et al to
measure gloss accuracy and spoken language translation accuracy. One problem with both
of them is that they do not evaluate the meaning of the words. For a ground truth sentence
"this is great", sentences like "this is good" and "this is horrible" would both yield the same
BLEU-score and WER, even though the first prediction obviously is a better translation
than the second one. I will give a suggestion to how this can be done in Chapter 8.1.

7.5 Sign Language Transformer

The Sign Language Transformer architecture seems like a good choice for doing SLT with
the PHOENIX14T dataset. The key here is that the dataset contains both gloss annotations
and full sentence annotations, making it natural to think of glosses as an intermediate
representation. In practice, if the encoder was fully capable of recognizing sign glosses,
the remaining problem would only be to map gloss sequences to sentences. This is just a
text to text translation task, which is a much bigger research area. In fact, autoencoders
[3] are designed for similar use cases, and could have been of interest in that case. For the
purpose of this work, however, autoencoders are not of interest, and will not be described
any further.

7.6 Evolved Transformer

Thinking about possible realistic sign language translation applications it is naturally think-
ing in the direction of mobile devices. Using efficient models with less parameters is therefore
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a big key for success in developing user friendly, useful applications. The Evolved Trans-
former was therefore an interesting model to test with the existing state-of-the-art architec-
ture, as it has reported high performance on mobile-friendly models with fewer parameters
than the Transformer. As mentioned in Chapter 4.6, the ET achieved same performance as
the Transformer in some cases having 37.6% less parameters. As far as I am aware of, the
ET has not been implemented in the SignJoey project before.

As implementing the ET decoder was more challenging than expected, the final decoder I
ended up using was a modified version of the original one. I assume there is an error in my
implementation. However, all the modules have been tested in isolation, and seem to be
working. It is therefore a small possibility that the original decoder is not suitable for this
task, but as the encoder works as expected, I do not see why the decoder should not work.

Looking at table 6.2 we see that especially the "ET encoder only" implementation achieves
better results than the original Transformer when the dimensions and the total number
of parameters decrease. As So et al. report cases where the ET performs as good as
the Transformer with 37.6% less parameters, I find it interesting that my "ET encoder
only" implementation achieves better results with 87.5% less parameters, compared to the
Transformer implementation with dmodel = 256. I have no good explanation for why this
happens.
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Chapter 8

Conclusions and Future Work

The purpose of this work was to gain insight into the field of neural sign language recognition
and translation, understand and test the SignJoey code base by Camgoz et al., and to try
to improve the performance by implementing the Evolved Transformer.

I have learnt a lot about sign languages and its complexity, and why it is a challenging neural
sign language translation task. By studying the work by Camgoz et al. [8] and working with
their code base SignJoey I have learnt about many new concepts in seq2seq neural networks,
such as the Transformer architecture and all its components, the CTC loss function and
BLEU score and WER metrics.

On my attempt to implement the Evolved Transformer I faced challenges in the decoder,
which I did not manage to solve successfully. I therefore applied a modified version of the
Evolved Transformer to the SignJoey project, and successfully ran experiments showing that
it achieved decent results with few parameters. Experiments run with only the ET encoder
achieved better results than the original Transformer for smaller dimensions. At the most
it achieved a BLEU-4 score increase of more than 1.5 BLEU-4. It also partially proves that
the Evolved Transformer is more efficient than the Transformer with lower dimensions.

8.1 Future Work

In Chapter 7 I mentioned that the evaluation metrics do not capture the meaning of the
words. One solution to this could be to do sentiment analysis on the generated sentences
and the source sentences, and compare the outcomes of these. If generated sentences are
similar to the source sentences, but using different words, having a sentiment analysis can in
many cases tell us if these words are somehow similar in meaning. The paper "COVID-19
sentiment analysis via deep learning during the rise of novel cases" by Chandra et al. shows
how this can be done [10].

As I assume that an error in my implementation was the reason why my Evolved Transformer
decoder did not work very well, a new attempt on trying to implement the full ET would
also be interesting to do in the future.

For Sign Language Translation in general, the most important work in the near future is
curating datasets. The bottleneck of SLT lies in the lack of good enough datasets. The Deaf
community has to be more involved especially in curating dataset, but also in the research
field in general.
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