
NeuralHash for Privacy Preserving
Image Analysis

BJØRN-INGE STØTVIG THORESEN

SUPERVISORS
Dr. Vladimir Oleshchuk
Dr. Harsha Sandaruwan Gardiyawasam Pussewalage

University of Agder, 2022
Faculty of Engineering and Science
Department of ICT

Abstract

This thesis aims to investigate how Apple’s NeuralHash algorithm can be used in the

context of FR to improve privacy in FR systems. Existing FR solutions rely on hav-

ing facial images available to match identities, however, this can impair the privacy of

individuals, as the images can contain sensitive information that the individuals do not

want to share. In this thesis, the NeuralHash algorithm is used to hash facial images of

subjects in the ColorFERET Dataset, and the NeuralHashes are compared to attempt

to identify the same subjects and different subjects. The NeuralHash algorithm’s ability

to hide information is also investigated, in addition to collision- and evasion attacks on

NeuralHash. The results show that using a threshold of approximately 0.24, the FAR and

FRR are 9.68 %. If the threshold is set to 0.1, the FAR drops to 0.16 %, while the FRR

rises to 31.45 %. Some general information about images such as gender can be inferred

from the NeuralHash, while more nuanced information is not retrievable. Gradient-based

attacks can be used against NeuralHash to evade collisions, and to force collisions with a

target NeuralHash.

i

Acknowledgments

I would like to thank my supervisors, Dr. Vladimir Oleshchuk and Dr. Harsha San-

daruwan for assisting me in the writing of this thesis. I received a lot of helpful input

during discussions, which helped me progress in the writing process.

Portions of the research in this paper use the FERET database of facial images collected

under the FERET program, sponsored by the DOD Counterdrug Technology Development

Program Office [1, 2].

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Field of research . 2

1.3 Problem statement . 2

1.4 Research Objective . 2

1.5 Related work . 3

1.6 Contributions . 6

1.7 Outline . 6

2 Background 7

2.1 Perceptual Hashing . 7

2.2 NeuralHash . 8

3 Solution 11

3.1 Hypothetical scenario . 11

3.2 Solution architecture . 11

3.3 NeuralHash comparison . 12

3.4 Matching . 13

v

4 Experiments 14

4.1 Dataset . 14

4.2 Experimental setup . 16

4.2.1 Obtaining the NeuralHash model 16

4.2.2 Cleaning the dataset . 17

4.2.3 Inference . 17

4.2.4 Hamming Distances . 18

4.3 Experiment 1 . 19

4.3.1 Implementation . 19

4.3.2 Results . 20

4.4 Experiment 2 . 26

4.4.1 Implementation . 26

4.4.2 Results . 28

4.5 Experiment 3 . 29

4.5.1 Implementation . 30

4.6 Results . 31

4.7 Experiment 4 . 32

4.7.1 Implementation . 32

4.7.2 Results . 36

4.8 Experiment 5 . 39

4.8.1 Results . 39

4.9 Experiment 6 . 40

4.9.1 Results . 41

vi

5 Discussion 44

5.1 Experimental results summary . 45

5.2 Hypothetical scenario . 46

5.3 Future work . 48

6 Conclusion 49

References 53

A Data cleaning A-1

B Inference A-2

C Calculate Hamming Distances A-4

D Average Hamming Distances and Standard Deviation A-5

E FAR & FRR A-8

F Few_pixels Attack Script A-11

vii

List of Figures

2.1 Locality-sensitive hashing . 8

2.2 NeuralHash inference . 8

2.3 Contrastive loss . 9

3.1 Proposed solution . 12

3.2 HamD example . 12

4.1 Experiment 1 plot data list . 20

4.2 HamD distribution . 21

4.3 HamD distribution for subject 00106 . 22

4.4 HamD distribution for subject 00135 . 23

4.5 HamD distribution for subject 00407 . 24

4.6 HamD distribution for subject 00538 . 25

4.7 FAR and FRR plot . 31

4.8 Gender network structure . 34

4.9 Race network structure . 35

4.10 Gender model accuracy . 37

4.11 Gender model loss . 37

4.12 Race model accuracy . 38

viii

4.13 Race model loss . 38

ix

List of Equations

4.2 Average SelfDist and DiffDist. 27

4.4 Standard deviation (σ), and variance (σ2). 27

4.5 False Acceptance Rate. 30

4.6 False Rejection Rate. 30

x

List of Listings

4.1 Pseudocode for cleaning the dataset. The complete code is listed in Ap-

pendix A. 17

4.2 Pseudocode for performing inference with the NeuralHash model. The

complete code is listed in Appendix B. 18

4.3 Pseudocode for calculating HamD. The complete code is listed in Appendix

C. 18

4.4 Pseudocode for calculating average HamD and standard deviation. The

complete code is listed in Appendix D . 27

4.5 First row of output from Experiment 2 . 28

4.6 Sample output from Experiment 2. The first four rows correspond to the

subjects highlighted in Experiment 1. The remaining rows are sampled

randomly from the 990 remaining subjects. 29

4.7 Pseudocode for calculating FAR and FRR. The complete code is listed in

Appendix E . 30

4.8 Commands for generating images using the standard evasion attack. 41

4.9 Command for generating images using the edges_only attack. 41

4.10 Command for generating images using the few_pixels attack 42

A.1 Removing all non-frontal face images . A-1

B.1 Code for the NeuralHash class used for inference. A-2

xi

C.1 Method for calculating and storing Hamming Distances. A-4

D.1 Method for calculating average HamD and standard deviation for each

subject. A-5

E.1 Method for aggregating the necessary data to plot average FAR and FRR. A-8

E.2 Method for calculating error rates. A-8

E.3 Method for counting true positives, false positives, true negatives and false

negatives. A-9

E.4 Method for calculating average FAR and FRR for current threshold. A-10

E.5 Method for plotting average FAR and FRR for all threshold values. A-10

F.1 Modified adv2_few_pixels_attack.py script. A-11

xii

List of Tables

4.1 Subject poses in the ColorFERET Dataset. 15

4.2 Distribution of male and female subjects in the ColorFERET Dataset. . . . 15

4.3 Distribution of race for the subjects in the ColorFERET Dataset. 15

4.4 Hyperparameters for the models. 35

4.5 Results from Adversary 1. 40

4.6 Results from Adversary 2. 42

xiii

Abbreviations

Adam Adaptive Moment Estimation

CCTV Closed-Circuit Television

CSAM Child Sexual Abuse Material

DFFN Deep FeedForward Network

DiffDist Hamming Distance between NeuralHashes of images of different subjects

EER Equal Error Rate

FAR False Acceptance Rate

FN False Negative

FP False Positive

FR Facial Recognition

FRR False Rejection Rate

GDPR General Data Protection Regulation

HamD Hamming Distance

IP Internet Protocol

xiv

LFW Labeled Faces in the Wild

LSH Locality-Sensitive Hashing

ML Machine Learning

MSE Mean Squared Error

PPML Privacy-preserving Machine Learning

PriMIA Privacy-preserving Medical Image Analysis

PSI Private Set Intersection

RQ Research Question

SelfDist Hamming Distance between NeuralHashes of images of the same subject

SSIM Structural Similarity

TN True Negative

TP True Positive

ZeroR Zero Rate

xv

1 | Introduction

Facial Recognition (FR) is an advanced technology used in many different applications

such as advertising, healthcare and security. The technology is used to match digital

images or video containing faces against a database of faces. This is achieved by first de-

tecting faces in an image and distinguishing them from other objects, and then identifying

the detected faces [3]. Research on FR goes as far back as 1963, when Woodrow Wilson

Bledsoe attempted to apply pattern-recognition research to the problem of identifying a

given face among many examples of faces [4]. A lot of research has been conducted in this

area since then [5, 6, 7, 8], and many advances and breakthroughs have been achieved as

a result. Furthermore, the rapid evolution of computer technology has dramatically in-

creased the amount of data able to be processed. This has enabled data-driven paradigms

such as Machine Learning (ML) to advance to the forefront of FR research.

1.1 Motivation

One drawback of traditional ML approaches for FR is that these systems typically require

the images of faces to be available in order to function. FR systems can run locally on

user devices, such as Apple’s FaceID for unlocking an iPhone [9], or remotely on a server,

such as images captured by IP CCTV camera systems, and sent to a remote server [10].

In cases where the FR system needs to match captured images against a database of

facial images, either the database must be available on the device capturing images, or

the captured images must be provided to the remote machine containing the database.

This can be problematic if either the captured images or the database contain sensitive

information which neither party is willing to share. One solution to this problem is to

apply transformations to the data before sending it, such that it can still be used for

FR, but the image data is concealed. The NeuralHash algorithm developed by Apple is

a perceptual hashing algorithm used to create a fingerprint of an image, which hides the

1

1.2. FIELD OF RESEARCH CHAPTER 1. INTRODUCTION

image information while retaining enough information about the image to be useful for

image analysis. The motivation for this thesis is to investigate whether NeuralHash can

be used to protect image data while allowing for identification in FR systems.

1.2 Field of research

In order to investigate whether NeuralHash can be used to improve privacy in FR systems,

research within the fields of FR technology, perceptual hashing, and Privacy-preserving

Machine Learning (PPML) is essential. The research lies within the domain of FR, which

means existing solutions for FR can be used as a benchmark. Since NeuralHash is a

perceptual hashing algorithm, research on these types of systems is important in order

to learn their advantages and disadvantages. This is useful for solving problems that

may arise as a result of potential shortcomings of perceptual hashing systems. Finally,

the research focuses on ML for privacy, hence research on PPML will be relevant for the

thesis.

1.3 Problem statement

The main problem this thesis aims to solve is how to use NeuralHash to compare facial

images without revealing the content of the images. Facial images fall under the category

of biometric data according to the General Data Protection Regulation (GDPR) [11], and

need to be protected accordingly. NeuralHash is a promising technique for image analysis,

and it is worth investigating if it can be utilised to improve privacy in FR systems.

1.4 Research Objective

In order to solve the problem introduced in the Problem statement, it is necessary to

investigate how NeuralHashes representing facial images can be compared, and used in

classification. Furthermore, it is necessary to evaluate the classification performance of

such a solution in order to get an idea of how well it works. It is also important to verify

2

1.5. RELATED WORK CHAPTER 1. INTRODUCTION

that the NeuralHashes do not leak any information about the images they represent,

other than the classification result. These research objectives lead to the formulation of

the following Research Questions (RQs):

1. How can NeuralHash be used to identify whether two facial images belong to the

same person?

2. How can the classification performance be evaluated?

3. Does NeuralHash reveal any information about the images other than the classifi-

cation result?

1.5 Related work

The initial publication of the NeuralHash algorithm came as a part of a system for de-

tecting Child Sexual Abuse Material (CSAM) in photos uploaded to an iCloud Photos

account [12]. The system is designed to prevent Apple from learning anything about any

of the uploaded benign photos, and only learn about the photos containing illegal CSAM

content. The system uses a database of known CSAM images which has been transformed

into an unreadable set of hashes using NeuralHash. This transformed database is stored

on users’ devices, and is used in a cryptographic protocol called Private Set Intersection

(PSI). The protocol compares an image on the user device with the images in the trans-

formed CSAM database, and generates a safety voucher which stores the match result.

The safety voucher also encrypts the user image before being uploaded to iCloud Photos.

Even if a match is positive, Apple will not be able to decrypt and view the content of the

user image until a threshold of matches has been exceeded. This helps to prevent false

positive matches from being viewed by Apple.

A case study of NeuralHash was conducted by Struppek et al. (2022) [13], where the

security and privacy aspects of Apple’s CSAM detection system was analysed. The paper

focuses on how the NeuralHash algorithm can be exploited to produce false positive and

3

1.5. RELATED WORK CHAPTER 1. INTRODUCTION

false negative matches. Since the all the NeuralHash model parameters and weights are

publicly available, gradient-based adversarial attacks are possible to implement. These

types of attacks are based on perturbing input images in such a way that the changes

in the image are hardly visible to humans, but a neural network will classify the altered

image differently than the original. The visual similarity between the input image and

the perturbed image is measured using a Structural Similarity (SSIM) score ranging from

0 to 1, where a higher SSIM value denotes visually closer images. In the first experiment,

a database of NeuralHashes is computed, and a target hash is selected according to the

similarity between the NeuralHashes of the target image and an input image. The goal

is to perturb the input image using the gradient of the NeuralHash model and the SSIM

score, such that the NeuralHash matches the target hash, and the altered image is as

close to the original as possible, visually. The next attack details how the gradient of the

NeuralHash model can be used to evade detection of illegal content by perturbing an input

image such that the NeuralHash differs from the original NeuralHash, up to a specified

threshold of bits. This attack uses the same technique as the in the first experiment, and

the visual representations of the original and altered images are negligible for humans

when using a low threshold. The paper also demonstrates that NeuralHash retains some

information about the image the NeuralHash was generated from. By creating a simple

Deep FeedForward Network (DFFN) taking a NeuralHash as input, and predicting classes

for objects depicted in the image the NeuralHash was generated from, the system is able

to learn some of the inherent structure of NeuralHashes, and extract information about

the type of object depicted in the image. The results show that the system is able to alter

an input image to generate hash collisions such that the altered input image is visually

hardly distinguishable from the original. The gradient-based evasion attack shows similar

results, where the input image is visually indistinguishable from the altered image, and

the NeuralHash bits differ up to a set threshold. Finally, the results from the hash

information extraction experiment show that out of 1,000 classes, an image class was

correctly classified in 4.34 % of cases, where random guessing would have resulted in an

accuracy of 0.1 % [13].

4

1.5. RELATED WORK CHAPTER 1. INTRODUCTION

Microsoft has designed its own image-identification technology called PhotoDNA [14].

Similar to Apple’s NeuralHash, the goal of PhotoDNA is to combat the spread of CSAM

by creating signatures of images, and using these to match against known CSAM images.

The signature is a hash which is created by first converting the image to grayscale, resizing

it, and breaking it into a grid. For each grid cell, a histogram of intensity gradients (edges)

is calculated, and this histogram data replaces the pixels in the grid cell. The new image

constitutes the image’s PhotoDNA [15].

In 2015, Google published a paper called FaceNet: A Unified Embedding for Face Recog-

nition and Clustering [6]. The aim of this paper was to shift the trend of treating FR

problems as classification problems, and instead treat them as a clustering problem. This

is achieved by producing an embedding of a face, meaning a dense vector representation

of the face. This embedding is projected to the unit hypersphere [16], and from here, the

L2 distance to other face embeddings can be measured. Similar faces will have a low L2

distance, while different faces will have a higher L2 distance. The neural network used for

the embeddings use triplet loss, which teaches the network to embed similar images close

together, and different images further apart. This is done by using a triplet of images,

where image one is an anchor image (or ground truth), image two is a positive image,

meaning a different image of the same person, and image three is a negative image, which

is an image of a different person. The distance between the anchor and the positive should

be less than the distance from the anchor to the negative, by a set threshold. When test-

ing the performance of the network on the Labeled Faces in the Wild (LFW) dataset, the

network achieved a classification accuracy of 99.63 % ±0.09.

A lot of research has been conducted within the field of ML in the context of FR, however,

the majority of these works focus on the performance of the ML algorithms as opposed

to their impact on privacy. One work that addresses privacy related to image analy-

sis is the work of Ziller et al. (2020) [17]. In the paper, a software framework called

Privacy-preserving Medical Image Analysis (PriMIA) is introduced and evaluated. The

framework builds on PPML, and uses inference-as-a-service and end-to-end encryption to

5

1.6. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

provide a solution for keeping patient data private while simultaneously not exposing the

model performing inference. The results show that the federated secure model is able to

outperform human experts while learning nothing about the input data for the inference.

This is possible due to a "Function Secret Sharing protocol expanded and adapted for

neural networks".

1.6 Contributions

This work aims to contribute to the field of FR systems with focus on privacy. NeuralHash

can be a good alternative solution to existing FR solutions, as image data can remain

hidden during analysis. This work shows how the NeuralHash algorithm can be used

for identity matching, how the performance of this solution can be evaluated, and how

well NeuralHash is able to hide information about gender and race of individuals. This

thesis lays the groundwork for further research on privacy preserving image analysis using

NeuralHash, and deep perceptual hashing algorithms in general.

1.7 Outline

In Chapter 2, this thesis will address the background of the perceptual hashing and Neu-

ralHash technologies. Thereafter, in Chapter 3 the architecture of the proposed solution

will be presented. Next, in Chapter 4 the thesis presents the experiments used to eval-

uate the Research Questions presented in 1.4. This chapter details the implementation

and the results of the experiments. Following this is Chapter 5, which will discuss the

results obtained from the experiments, and the thesis in general. Finally, in Chapter 6

the conclusions are presented.

6

2 | Background

This chapter aims to explain the background on the technologies used for the research in

this thesis. First, perceptual hashing will be explained, followed by NeuralHash, which is

a deep perceptual hashing algorithm.

2.1 Perceptual Hashing

Perceptual hashing is a type of hashing algorithm which is used to generate fingerprints

of various forms of multimedia [18]. Perceptual hashing is a type of Locality-Sensitive

Hashing (LSH), which means similar inputs have similar or identical output. This is done

by mapping inputs into different "buckets", such that each bucket encapsulates similar

features in different inputs. The number of buckets in LSH is significantly smaller than

the number of possible inputs, and similar inputs are mapped into the same bucket. This

allows for data clustering and nearest neighbor search. The distance between inputs can

also more easily be modelled, as polar inputs will be mapped to buckets that are far

apart, meaning the relative distance between inputs and outputs are preserved [19]. This

technique is useful to reduce the dimensionality of data, where the input data is too high-

dimensional to be compared directly. Figure 2.1 illustrates the concept of mapping input

data into buckets. The three hyperplanes b1, b2 and b3 split the input space into distinct

buckets, where hyperplane bn is dedicated to bit n in the output. Each hyperplane has

a positive and negative side, and the output bit corresponding to the hyperplane will be

set to 0 if the input data is located on the negative side of the hyperplane, and 1 if it is

on the positive side.

7

2.2. NEURALHASH CHAPTER 2. BACKGROUND

Figure 2.1: Locality-Sensitive Hashing mapping input data into different buckets [13].

2.2 NeuralHash

NeuralHash is a deep perceptual hashing algorithm, meaning it utilizes a deep neural

network to generate hash values. Figure 2.2 shows an overview of the steps performed in

the calculation of NeuralHashes.

Figure 2.2: NeuralHash inference. The image is preprocessed before being fed to an embedding
network. The network maps the input image to an abstract feature representation. The LSH
step uses a Hashing Matrix which defines 96 hyperplanes to map the feature vector into one of
two buckets for each hyperplane. If a vector product is positive, the corresponding output bit
is mapped to 1, if it is negative, it is mapped to 0 [13].

8

2.2. NEURALHASH CHAPTER 2. BACKGROUND

NeuralHash takes RGB images of shape 360 × 360 × 3 as input, with pixel values in the

range [-1, 1]. The embedding network is based on a modified MobileNetV3 architecture,

and has 1.8 million parameters [13]. The network has been trained in a self-supervised

learning scheme [13], meaning it has seen some labeled examples, and used the learned

structure of this data to label and train on unlabeled examples [20].

The loss function is contrastive loss, which is a way to train the network to cluster data.

This is achieved by creating positive and negative pairs of samples for each training image,

where the training image acts as the anchor image. A positive pair consists of the anchor

image, and a transformed version of the training image, which ensures the pair is similar.

A negative pair consists of visually close images that are from different classes, meaning

the network should learn to distinguish them from one another. The network is trained

to generate close feature vectors for positive pairs, and distant vectors for negative pairs

[13]. Figure 2.3 illustrates the learning problem for contrastive loss.

Figure 2.3: Contrastive loss. Similar datapoints outside the margin m are moved closer to the
anchor, while dissimilar datapoints within the margin are moved further away from the anchor
[21].

9

2.2. NEURALHASH CHAPTER 2. BACKGROUND

Perceptual hashing algorithms usually consist of two steps [13]:

1. Extract visual features from the input

2. Encode features into a feature vector

The feature vector is an abstract representation of the input image, and consists of vectors

of numbers that encode the features of the image.

The next step is LSH, where feature vectors are mapped to buckets such that close fea-

ture vectors end up in the same bucket. This can be achieved by defining a (random)

hyperplane for each bit i in the output, and checking which side of the i-th hyperplane

the corresponding feature vector lies. In Figure 2.2, the hyperplanes are defined in the

Hashing Matrix, and for each feature vector, the dot product of the vector and the hash-

ing matrix is calculated to produce a matrix-vector product. The matrix-vector product

is a vector of real numbers, and a Heavside step function is applied to each element in

the vector to produce the NeuralHash [13]. Figure 2.1 is a 2D representation of mapping

input feature vectors into different buckets, although in the NeuralHash algorithm, this

LSH mapping is 96-dimensional.

10

3 | Solution

This chapter will introduce a hypothetical scenario in order to present the proposed solu-

tion for the problem. This is achieved by showcasing how NeuralHashes can be compared,

and how the classification performance can be evaluated.

3.1 Hypothetical scenario

A hypothetical scenario is introduced to elaborate on a possible use case for a system

making use of the NeuralHash algorithm for identity matching of facial images. The set-

ting of this scenario is airport security, and the system using NeuralHash will be deployed

to identify known persons of interest. The system has access to a database containing the

NeuralHashes of facial images of the known persons of interest, and uses this database for

image comparisons. Facial images of people boarding planes are taken, and the Neural-

Hash of each image is calculated. The NeuralHashes of the captured images are compared

to the NeuralHashes stored in the database of persons of interest, and if the similarity

of the NeuralHashes are within a set threshold, the person is flagged, which leads to

additional security measures for the individual.

3.2 Solution architecture

The architecture of the solution describes how a system using NeuralHash to perform

identity matching can be structured. Figure 3.1 shows the general architecture of the

solution. The NeuralHash Database contains NeuralHashes of persons of interest which

the system should detect. If a match is found, the person being examined is considered

to be present in the database of persons of interest.

11

3.3. NEURALHASH
COMPARISON

CHAPTER 3. SOLUTION

Figure 3.1: Diagram of the proposed solution.

3.3 NeuralHash comparison

The solution consists of evaluating and comparing NeuralHashes of various images of

faces. Each NeuralHash pair is compared by calculating the Hamming Distance (HamD)

between the 96-bit NeuralHashes. The HamD between two strings of the same length is

the number of positions the corresponding character is different [22]. Thus, the HamD is

a measure of how similar two strings are, as seen in Figure 3.2.

Figure 3.2: Example of the HamD between the NeuralHashes of two images.

12

3.4. MATCHING CHAPTER 3. SOLUTION

3.4 Matching

If two distinct images have similar NeuralHashes, the images have a lot of features in

common. If one image contains the face of an individual, and the NeuralHash is almost

identical to the NeuralHash of another image, the images most likely contain the face of

the same person. However, due to variety in facial expression, hairstyle, accessories such

as glasses etc., it is best to assume there will be some discrepancy between NeuralHashes

of different images of the same person. Hence, a threshold is introduced to determine

how similar two NeuralHashes must be in order to facilitate a successful match. Since the

threshold is a measure of similarity between NeuralHashes, it can use Hamming Distance

as its metric.

In order to evaluate the classification performance of the system, the threshold can be

varied, and for each threshold value, the False Acceptance Rate (FAR) and False Rejection

Rate (FRR) can be recorded. This will give insight into which threshold results in the

best classification performance.

13

4 | Experiments

This chapter aims to elaborate on the experiments implemented for this thesis. The

dataset used for the experiments and the experimental setup is described first, followed

by the implementation and results from each experiment.

The experiments are used to investigate the RQs defined in Section 1.4. Four experi-

ments are conducted in order to investigate the three RQs, along with two additional

experiments. Experiment 1 investigates RQ 1, experiments 2 and 3 investigate RQ 2, and

experiment 4 investigates RQ 3. The outcome of these experiments will be used as a basis

for evaluating the RQs. The two additional experiments are conducted in order to discuss

the overall security and privacy aspects of the NeuralHash algorithm.

The python implementation of the experiments is available on GitHub at

https://github.com/bjotho/AppleNeuralHash.

4.1 Dataset

The dataset used for the experiments is the ColorFERET Dataset [23]. The dataset

contains facial images of 994 subjects, from different angles and with a variety of facial

expressions. The dataset is compressed into a tar file, and all the images for a given

subject are located in a folder named after the five-digit ID corresponding to the subject.

Each image file is compressed with bzip2 [24] to create bz2 files, and the image format is

ppm.

The naming scheme of the image files is as follows: SubjectID_session_pose. There are a

total of 13 different poses, which are listed in Table 4.1.

14

https://github.com/bjotho/AppleNeuralHash

4.1. DATASET CHAPTER 4. EXPERIMENTS

fa Regular frontal image
fb Alternative frontal image, taken shortly after the corresponding fa image
pl Profile left
hl Half left - head turned about 67.5 degrees left
ql Quarter left - head turned about 22.5 degrees left
pr Profile right
hr Half right - head turned about 67.5 degrees right
qr Quarter right - head turned about 22.5 degrees right
ra Random image - head turned about 45 degrees left
rb Random image - head turned about 15 degree left
rc Random image - head turned about 15 degree right
rd Random image - head turned about 45 degree right
re Random image - head turned about 75 degree right

Table 4.1: Subject poses in the ColorFERET Dataset.

The dataset also comes with labels for each image, which denote the gender and race of

the depicted subject. Tables 4.2 and 4.3 show the distribution of gender and race in the

dataset respectively. The No. subjects column denotes how many subjects belong to a

particular category, while the No. images column denotes how many images from the

given categories in the dataset were used for the experiments.

No. subjects No. images
Male 591 1715
Female 403 1007

Table 4.2: Distribution of male and female subjects in the ColorFERET Dataset.

No. subjects No. images
Asian 171 485
Asian-Middle-Eastern 53 151
Asian-Southern 1 2
Black-or-African-American 78 215
Hispanic 57 138
White 618 1691
Native-American 2 6
Pacific-Islander 10 26
Other 4 8

Table 4.3: Distribution of race for the subjects in the ColorFERET Dataset.

15

4.2. EXPERIMENTAL SETUP CHAPTER 4. EXPERIMENTS

4.2 Experimental setup

The experimental setup describes the prerequisites for performing the experiments. This

entails how to obtain the NeuralHash model, cleaning the dataset, performing inference

with the NeuralHash model, and calculating Hamming Distances.

4.2.1 Obtaining the NeuralHash model

In order to calculate the NeuralHash of an image, the NeuralHash model is needed. For

this thesis, the model was implemented in Python by following the tutorial by Asuhariet

Ygvar [25]. First, the Python dependencies are installed. Next, the NeuralHash model is

obtained by downloading the IPSW file for iOS 15.2.1 (19C63) for iPhone 13 [26]. This

file contains the firmware of iOS 15.2.1 for iPhone 13, which includes the NeuralHash

model. After unpacking the file, the largest .dmg file is mounted, and the NeuralHash

model files can be copied from the path /System/Library/Frameworks/Vision.framework/

in the mounted system volume. The four required files are:

• neuralhash_128x96_seed1.dat

• NeuralHashv3b-current.espresso.net

• NeuralHashv3b-current.espresso.shape

• NeuralHashv3b-current.espresso.weights

The files are compressed with the LZSFE compression algorithm, which is why the next

step is to install LZFSE and decompress the files. A C implementation of LZSFE can be

installed from [27]. Finally, the model can be converted to ONNX by using a fork of the

deep learning inference framework TNN [28]. This results in a model.onnx file which can

be used together with the neuralhash_128x96_seed1.dat file for inference. Running the

16

4.2. EXPERIMENTAL SETUP CHAPTER 4. EXPERIMENTS

nnhash.py script provided by Ygvar with a sample image yields a hexadecimal NeuralHash

of the image as output.

4.2.2 Cleaning the dataset

The ColorFERET Dataset contains facial images with many different poses. For this

experiment, the only images used are the frontal images, which specifically means the

image files containing "f" in the pose part of the filename. The dataset is therefore cleaned

accordingly, see Listing 4.1.

Listing 4.1: Pseudocode for cleaning the dataset. The complete code is listed in Appendix A.
1 for image in dataset :

2 if ’f’ is not in image filename :

3 delete image

4.2.3 Inference

In order to allow inference of multiple images, the relevant code was moved to a Neural-

Hash class containing the methods calculate_neuralhash and im2array, both taking an

image path as argument.

The first step for calculating the NeuralHash is to convert the input image to a Numpy

array, which happens in the im2array method. This method starts by converting the

image to RGB. Next, the image is resized to 360 × 360. Finally, the RGB values are

normalized to the range [-1, 1] [25].

The next step is to perform inference on the NeuralHash model. The output is a vector of

128 float values. The dot product of this output vector and the 96 × 128 hashing matrix

retrieved from the neuralhash_128x96_seed1.dat file is calculated. A binary step function

17

4.2. EXPERIMENTAL SETUP CHAPTER 4. EXPERIMENTS

is applied to the resulting vector of 96 float values, where positive values (including 0) are

converted to a binary 1 and negative values are converted to a binary 0. The vector of

1’s and 0’s is converted to a string of 96 bits for the binary representation, and a string

of 24 hexadecimal values for the hexadecimal representation [25]. In the experiments, the

resulting hashes are stored in a dictionary called hash_dict. Listing 4.2 shows how the

inference process is implemented.

Listing 4.2: Pseudocode for performing inference with the NeuralHash model. The complete

code is listed in Appendix B.
1 def calculate_neuralhash (image_path):

2 calculate im2array (image_path)

3 calculate NeuralHash

4 calculate dot product of output array and 96 x128 matrix from seed1

5 calculate binary step to get binary NeuralHash

6 format to hex for hexadecimal representation

7 return hex_hash , bin_hash

8

9 def im2array (image_path):

10 Open image from image_path and convert to RGB

11 Resize image to 360 x360

12 Normalize RGB values to range [-1, 1]

13 return normalized values

4.2.4 Hamming Distances

The metric used for measuring image similarities is the Hamming Distance between the

NeuralHashes. Each image is compared to every other image, and the HamD is stored

in a dictionary where the keys are the image filenames, and the values are dictionaries

containing distances to every other image. The Levenshtein C extension module is used

to calculate Hamming Distances [29].

Listing 4.3: Pseudocode for calculating HamD. The complete code is listed in Appendix C.
1 create dictionary for storing hamming distances

2 for hash1 in hash_dict :

18

4.3. EXPERIMENT 1 CHAPTER 4. EXPERIMENTS

3 create slice of hash_dict containing remaining hashes

4 for hash2 in remaining_hashes :

5 calculate hamming distance between hash1 and hash2

6 store distance in hamming_distances

4.3 Experiment 1

The first experiment examines the relationship between the HamD from one image to all

other images, and the proportion of images with a given distance. In this experiment,

images of the same subject are distinguished from images of different subjects, such that

the Hamming Distance between NeuralHashes of images of the same subject (SelfDist)

and Hamming Distance between NeuralHashes of images of different subjects (DiffDist)

can be more easily visualized. The goal of this experiment is to investigate whether images

of the same subject are reliably clustered close together, meaning they will have a low

HamD compared to images of different subjects.

4.3.1 Implementation

In order to examine the relationship between HamDs of NeuralHashes, and the proportion

of images with a given HamD, a plot is created for each subject to visualize this relation-

ship. Each plot contains two subplots, where the blue plot represents the SelfDists for

the current subject, and the red plot represents DiffDists for the current subject. One

additional plot is created which aggregates all comparisons into one graph.

The plot data is created by iterating over the dictionary of Hamming Distances, and

creating two lists of zeroes for each subject. The first list is used to count SelfDists, while

the second list is used to count DiffDists. The length of the lists are equal to the length of

the NeuralHashes plus one, because each element’s index represents the HamD, and the

element itself counts the number of images with the corresponding HamD. After inserting

every image comparison into the lists, each list is normalized to the range [0, 1], and the

19

4.3. EXPERIMENT 1 CHAPTER 4. EXPERIMENTS

lists are used to plot the graphs. Figure 4.1 illustrates how this process works.

Figure 4.1: Creation of plot data list for one subject.

4.3.2 Results

The results from Experiment 1 show that the NeuralHash algorithm is able to cluster

images of the same subject closer together than images of different subjects. Figure 4.2

shows how many comparisons between images of the same subject and images of different

subjects have a given HamD proportionally.

20

4.3. EXPERIMENT 1 CHAPTER 4. EXPERIMENTS

Figure 4.2: Distribution of HamDs. The x-axis represents the HamD, where x=0 means a
HamD of 0, while the y-axis shows how large proportion of the comparisons resulted in a given
HamD, where 0 is the least and 1 is the most.

Figure 4.2 shows that images of the same subject (blue) in general have a lower HamD

than images of different subjects (red). The graph shows that the most common SelfDist

is around 5, while the most common DiffDist is approximately 40. The SelfDists are

more spread out than the DiffDists, and the SelfDist graph is more jagged. This could

be a result of the relative quantity of comparisons, as 743 of the 994 subjects only have

two images, and thus only one comparison to themselves. In contrast, the number of

comparisons to other subjects for each subject is (994−Ns)×Ns, where Ns is the number

of images for subject s.

Figures 4.3, 4.4, 4.5 and 4.6 show examples of comparisons between images of subjects

00106, 00135, 00407 and 00538 respectively. Figures 4.3 and 4.5 show that the NeuralHash

algorithm is able to extract many similar features from a facial image, even with differing

facial expressions and variety in the hairstyle. In Figure 4.4, the two images of subject

00135 have different lighting, which is likely why the HamD is over 20. Still, the HamD

between these two images are among the lowest of all the comparisons for this subject,

21

4.3. EXPERIMENT 1 CHAPTER 4. EXPERIMENTS

which means means the algorithm recognizes that these two images are more similar than

the majority of the remaining images. Figure 4.6 shows that the NeuralHash algorithm

can recognize similar faces even when subjects switch between wearing glasses and not.

Figure 4.3: HamD between images of subject 00106 (blue), and others (red).

22

4.3. EXPERIMENT 1 CHAPTER 4. EXPERIMENTS

Figure 4.4: HamD between images of subject 00135 (blue), and others (red).

23

4.3. EXPERIMENT 1 CHAPTER 4. EXPERIMENTS

Figure 4.5: HamD between images of subject 00407 (blue), and others (red).

24

4.3. EXPERIMENT 1 CHAPTER 4. EXPERIMENTS

Figure 4.6: HamD between images of subject 00538 (blue), and others (red).

25

4.4. EXPERIMENT 2 CHAPTER 4. EXPERIMENTS

4.4 Experiment 2

The second experiment adds to the first experiment by calculating the average SelfDist

and DiffDist for each subject, and for all subjects. Additionally, the standard devia-

tion is calculated for comparisons between the same subject and different subjects. This

experiment will show which subjects’ images the algorithm clusters close together, and

which subject’s images the algorithm considers far apart, as well as how widely spread

the Hamming Distances are.

4.4.1 Implementation

For Experiment 2, a dictionary for storing average distances is created, and it counts four

values for each subject. The values are:

1. Sum of HamD between images of the same subject

2. Sum of HamD between images of current subject and other subjects

3. Total number of comparisons between images of the same subject

4. Total number of comparisons between images of the current subject and other sub-

jects

The average is calculated according to 4.1 and 4.2. xi denotes the HamD between the

current image and image i of the same subject, while x′
i denotes the HamD between the

current image and image i of another subject.

26

4.4. EXPERIMENT 2 CHAPTER 4. EXPERIMENTS

avgself =
∑

xi

Totalself

(4.1)

avgdiff =
∑

x′
i

Totaldiff

(4.2)

The standard deviation is calculated according to 4.3, where x denotes a datapoint value,

µ denotes the average value of the collection, and N denotes the size of the collection.

First a list is created containing the numerator of the fraction in 4.3 without calculating

the sum, hence (xi − µ)2. The list contains lists of two elements each, one for images of

the same subject, and one for images of different subjects. Next, the variance is calculated

for same and different subjects, and since the variance is the standard deviation squared,

the standard deviations for the same and different subjects are calculated by taking the

square root of both the variances. Listing 4.4 shows the implementation of calculating

the average HamD and standard deviation.

σ =
√∑(xi − µ)2

N
(4.3)

σ2 =
∑(xi − µ)2

N
(4.4)

Listing 4.4: Pseudocode for calculating average HamD and standard deviation. The complete

code is listed in Appendix D
1 create empty dictionaries to store average hamd and standard deviation

2 for distance in stored hamming distances :

3 calculate sum of hamd between images of same subject

4 calculate sum of hamd between images of current subject and other subjects

5 count total comparisons between same subject

6 count total comparisons between images of current subject and other subjects

7 append values to average hamd dictionary

8

9 for tally in average hamd dictionary :

10 calculate sum_same / total_same

27

4.4. EXPERIMENT 2 CHAPTER 4. EXPERIMENTS

11 calculate sum_different / total_different

12 store temporarily in standard deviation dictionary

13

14 create new dictionary to store numerators for standard deviation formula

15 for distance in stored hamming distances :

16 calculate and append numerator using average hamds from standard deviation dictionary

17

18 for numerator in numerator dictionary :

19 calculate variance for comparisons between same subject

20 calculate variance for comparisons between current subject and other subjects

21 calculate standard deviation for comparisons between same subject

22 calculate standard deviation for comparisons between current subject and other

↪→ subjects

23

24 for subject in standard deviation dictionary :

25 output average hamd and standard deviation for subject

4.4.2 Results

Listing 4.5 shows the first row of output from running Experiment 2. The output shows

the average SelfDist and DiffDist, in addition to the standard deviation for comparisons

between images for the same subject and different subjects. The results from Experiment

2 nicely reflect the results from Experiment 1, in the sense that the average SelfDist is

lower than the average DiffDist. The listing also reflects that the SelfDists are more spread

out than the DiffDists.

Listing 4.5: First row of output from Experiment 2
1 Avg dist self σ self Avg dist others σ others

2 All: 19.38 14.25 36.61 9.90

Listing 4.6 shows the output from Experiment 2 related to the subjects highlighted in

Experiment 1, in addition to 10 randomly sampled subjects. The output is sorted on the

average SelfDist, from low to high. In all of the samples, the average SelfDist is lower

than the average DiffDist. This again indicates that the NeuralHash algorithm is able to

28

4.5. EXPERIMENT 3 CHAPTER 4. EXPERIMENTS

cluster images of the same subject more closely together than images of different subjects.

The standard deviation for the same subject is 0 in most cases. This is because most

of the subjects in the dataset only have two images, and therefore only one comparison.

For the subjects with more than two images, the standard deviation can become quite

large, such as for subjects 00596 and 00013. The reason for this could be images taken in

different photo sessions with different lighting and the subject wearing different clothes.

Listing 4.6: Sample output from Experiment 2. The first four rows correspond to the subjects

highlighted in Experiment 1. The remaining rows are sampled randomly from the 990 remaining

subjects.
1 Avg dist self σ self Avg dist others σ others

2 00538: 1.83 1.07 29.27 10.33

3 00106: 5.00 0.00 38.66 7.51

4 00407: 13.00 0.00 40.42 7.21

5 00135: 21.00 0.00 48.70 6.57

6

7 00684: 1.00 0.00 36.10 8.13

8 00467: 5.00 0.00 32.43 9.85

9 00305: 7.00 0.00 36.03 10.42

10 01001: 7.00 0.00 41.50 6.28

11 00944: 7.00 0.00 42.13 9.31

12 00889: 12.00 0.00 38.07 7.71

13 00910: 16.00 0.00 34.87 7.70

14 00854: 16.00 0.00 46.62 5.40

15 00596: 27.00 17.02 33.60 10.29

16 00013: 35.50 20.55 41.47 9.19

4.5 Experiment 3

In the third experiment, all the collected data is utilized to calculate the False Acceptance

Rate and False Rejection Rate. A HamD threshold is used to determine if a given pair

of images are considered the same subject, and the threshold is varied to find the best

trade-off between accuracy and leniency.

29

4.5. EXPERIMENT 3 CHAPTER 4. EXPERIMENTS

4.5.1 Implementation

For each subject, one image is selected to best represent that subject in order to minimize

the FAR. Each image’s NeuralHash is compared with all the other NeuralHashes of the

other images. The images are labeled with True or False to indicate if they belong to

the same subject. A threshold variable determines whether the two compared images are

considered to be the same subject. The threshold is a value which denotes the maximum

number of bits the NeuralHash can deviate from the anchor image’s NeuralHash. Hence,

the threshold is a limit for the maximum HamD the two compared NeuralHashes can

have to be considered the same subject. The threshold variable is incremented by one

after all images have been compared, in order to measure the FAR and FRR for all

possible values of the threshold. The FAR and FRR are calculated according to 4.5 and

4.6 respectively. False Positive (FP) and True Negative (TN) are used to calculate FAR,

while False Negative (FN) and True Positive (TP) are used to calculate FRR. Listing 4.7

shows how the FAR and FRR are implemented.

FAR = FP

FP + TN
(4.5)

FRR = FN

FN + TP
(4.6)

Listing 4.7: Pseudocode for calculating FAR and FRR. The complete code is listed in Appendix

E
1 create empty lists of average_far and average_frr

2 for threshold in range (length of hash + 1):

3 for each subject :

4 calculate [true_positives , false_positives , true_negatives , false_negatives]

5 FAR = false_positives / (false_positives + true_negatives)

6 FRR = false_negatives / (false_negatives + true_positives)

7

8 append average FAR and FRR to lists for current threshold

9

10 plot average FAR and FRR

30

4.6. RESULTS CHAPTER 4. EXPERIMENTS

4.6 Results

Figure 4.7 compares the FAR and FRR for all possible values of HamD thresholds. The

threshold along the x-axis ranges from 0 to 1, and denotes how similar two NeuralHashes

must be for a match to be successful. A threshold of 0 means the NeuralHashes must be

identical for a successful match, while a threshold of 1 means the match will always be

successful. The error along the y-axis ranges from 0 to 1, where an FAR of 0 means no

image comparisons are falsely categorised as the same subject, and an FRR of 0 means

no image comparisons are falsely categorised as different subjects. Conversely, an FAR

of 1 means all image comparisons of different subjects are falsely classified as the same

subject, and an FRR of 1 means all image comparisons of the same subject are falsely

classified as different subjects.

Figure 4.7: False Acceptance Rate and False Rejection Rate for varying HamD thresholds.
The threshold denotes the maximum normalized HamD between two images.

Some points to note on the graph are that up to a threshold value of 0.1, almost no image

comparisons of different subjects are classified as the same subject (only about 0.16 %).

With a threshold value exceeding 0.6, almost all comparisons between different subjects

31

4.7. EXPERIMENT 4 CHAPTER 4. EXPERIMENTS

are falsely classified as the same subject (99.55 % at a threshold of 0.6). Further, with

a threshold value exceeding 0.55, almost no image comparisons of the same subject are

falsely categorised as different subjects (0.39 % at a threshold of 0.55). If the threshold is

set to 0, meaning that the NeuralHashes must be identical to confirm a match, 99.08 % of

image comparisons of the same subject are falsely rejected. The Equal Error Rate (EER)

for the FAR and FRR is a threshold value of approximately 0.24. For this threshold, the

FAR and FRR have a value of about 9.68 %.

4.7 Experiment 4

In the fourth experiment, the NeuralHash algorithm’s ability to hide information is exam-

ined. Two simple DFFNs are created in order to uncover any potential underlying patterns

in the NeuralHashes of the various images. The DFFNs take a NeuralHash as input, and

try to predict (1) the gender of the subject which the NeuralHash was generated from,

and (2) the race of the subject which the NeuralHash was generated from.

4.7.1 Implementation

In Experiment 4, the labels for the images in the dataset come to use. A csv file is created

containing information about the gender and race of every subject. Each row in the csv

file contains the name of an image file, the corresponding binary NeuralHash, the gender,

and the race of the subject in the image. This csv file is used to generate the dataset

for the DFFNs used in this experiment. For both the DFFNs, only the NeuralHashes are

used as input data for the networks. The labels for the gender network is the gender of

the subject, and the labels for the race network is the race of the subject. In both cases,

the dataset is shuffled and split into a training dataset and a testing dataset, and the

split ratio is 0.7, meaning 70 % of the dataset is used for training, while 30 % is used

for validation. However, since many of the NeuralHashes of the same subject are very

similar, the data shuffling only shuffles subjects around, as opposed to individual images.

32

4.7. EXPERIMENT 4 CHAPTER 4. EXPERIMENTS

Hence, all images of a given subject end up either in the training dataset or the testing

dataset. This is to prevent overfitting, where the models memorize the labels for certain

NeuralHashes if some images of the corresponding subject end up in the training dataset

while others end up in the testing dataset.

The DFFNs are simple networks taking the 96-bit NeuralHashes as input, and outputting

a binary value for the gender network, and a one-hot encoded vector for the race network.

The network structures are similar in the two cases, where the input layer has a size of

96 to accommodate for the bits in the NeuralHash, followed by dense layers of sizes 256,

512, 256, a dropout layer with a dropout rate of 0.2, and finally the output layer. The

choice of this exact architecture for the networks is somewhat arbitrary, and could be

optimized for better performance. The dropout layer is used to help prevent overfitting

on the training data, as well as preventing co-adaption [30]. Figures 4.8 and 4.9 visualize

the structures of the two networks, and Table 4.4 shows the hyperparameters used for

training. The figures are created using the ANN-visualizer library for Python [31].

33

4.7. EXPERIMENT 4 CHAPTER 4. EXPERIMENTS

gender_model

Input Layer (+86)

 (+246)

 (+502)

 (+246)

Output Layer

1

1112 1314151617181920

23456 78910

2122 2324252627282930

3132 3334353637383940

Dropout Layer

42

Figure 4.8: Structure of the gender network. The number next to each layer denotes how
many additional neurons are present in the layer.

34

4.7. EXPERIMENT 4 CHAPTER 4. EXPERIMENTS

race_model

Input Layer (+86)

 (+246)

 (+502)

 (+246)

Output Layer

1

1112 1314151617181920

23456 78910

2122 2324252627282930

3132 3334353637383940

Dropout Layer

424344454647484950

Figure 4.9: Structure of the race network. The number next to each layer denotes how many
additional neurons are present in the layer.

Gender model Race model
Loss function MSE categorical cross-entropy
Optimizer Adam Adam
Epochs 150 150
Batch size 10 10
Validation split 0.3 0.3

Table 4.4: Hyperparameters for the models.

35

4.7. EXPERIMENT 4 CHAPTER 4. EXPERIMENTS

4.7.2 Results

Figures 4.10 and 4.12 show the training and validation accuracies for the gender and race

models respectively. In order for the models to be useful, they need to exceed a baseline

accuracy. Since the problem in this case is classification, the Zero Rate (ZeroR) Classifier

can be used as a baseline. The ZeroR Classifier always predicts the label of the largest

class [32]. In the case of the gender dataset, Table 4.2 shows that there are 1715 images of

males, and 1007 images of females in the dataset, meaning 63.0 % of the dataset contains

images of males. Hence, the ZeroR Classifier will always predict male, and consequently

achieve an accuracy of 63.0 %. As for the Race dataset, the largest class is White, with

1691 out of 2722 images containing subjects of this class. This results in a ZeroR Classifier

accuracy of 62.1 %.

The results from Experiment 4 show that the gender model is able to extract informa-

tion from the NeuralHashes to predict the gender of the subject better than the ZeroR

Classifier. The gender model has a validation accuracy of approximately 80 %, which is

17 % better than the ZeroR Classifier. This shows that the NeuralHashes contain some

information about the images which can be retrieved using a Neural Network for binary

classification.

The loss of the model is shown in Figure 4.11. The loss is relatively low for the validation,

however, the discrepancy between the training and testing loss can indicate that the model

is overfitting. This is even more evident when considering the discrepancy of accuracy in

Figure 4.10, where the training accuracy is 100 %, while the validation accuracy is around

80 %.

36

4.7. EXPERIMENT 4 CHAPTER 4. EXPERIMENTS

Figure 4.10: Training and validation accuracy values for the gender model.

Figure 4.11: Training and validation loss values for the gender model.

The race model has a training accuracy of 100 %, and a validation accuracy of 60 %, as

seen in Figure 4.12. This accuracy is lower than the ZeroR Classifier, meaning the model

is unable to extract information about the race of the subjects from the NeuralHashes.

37

4.7. EXPERIMENT 4 CHAPTER 4. EXPERIMENTS

The loss of the model is shown in Figure 4.13, and shows a large discrepancy between the

training and validation. This indicates the model is overfitting, and simply memorizing the

input-output pairs from the training samples. This is likely the reason why the training

accuracy and loss values are good, while the validation values are bad.

Figure 4.12: Training and validation accuracy values for the race model.

Figure 4.13: Training and validation loss values for the race model.

38

4.8. EXPERIMENT 5 CHAPTER 4. EXPERIMENTS

In addition to the experiments above, two additional experiments are implemented; Ex-

periment 5 and 6. These experiments are Adversary 1 - Hash Collision Attacks and

Adversary 2 - Gradient-Based Evasion Attacks in the paper by Struppek et al. (2022)

[13], using images from the ColorFERET Dataset. The code for the experiments by

Struppek et al. is available on GitHub at [33].

4.8 Experiment 5

In Experiment 5, a small subset of subjects, S, was selected for image manipulation. Next,

a surrogate hash database containing images of all subjects in the ColorFERET Dataset

except the subjects in S was created. Next, the adv1_collision_attack.py file was invoked

with images of the subjects in S, and the surrogate hash database as input. The output

images were visually indistinguishable from the originals, and the NeuralHashes of the

altered images matched a different subject’s image exactly.

4.8.1 Results

Table 4.5 shows the input images for the adv1_collision_attack.py script in the top row,

output images in the middle row, and target subjects in the bottom row. The Neural-

Hashes of the original images are displayed directly beneath the corresponding images,

and the NeuralHashes for both the altered images, and images of the target subjects are

displayed at the bottom. The NeuralHashes for both the altered image, and the target

subject match exactly for all four subjects. The NeuralHashes are here represented in

hexadecimal, and the differences in the NeuralHashes are highlighted in red.

39

4.9. EXPERIMENT 6 CHAPTER 4. EXPERIMENTS

original

altered

target
subject

Table 4.5: Results from Adversary 1.

4.9 Experiment 6

Experiment 6 is based on altering an input image such that the NeuralHash differs from

the original image, while keeping the visual impact of the changes at a minimum. A

parameter, hamming (here denoted as h), denotes proportionally how different the Neu-

ralHash must be before the output image is accepted, where h is in the range [0, 1]. The

adv2_evasion_attack.py and a modified version of adv2_few_pixels_attack.py scripts

were used to run the experiment with various values for h.

The modified adv2_few_pixels_attack.py script can be found in Appendix F.

40

4.9. EXPERIMENT 6 CHAPTER 4. EXPERIMENTS

4.9.1 Results

Table 4.6 shows the outputs from experiment 6 for subject 00407. The top image is the

original input image. The standard row refers to the standard evasion attack described

in the Adversary 2 - Gradient-Based Evasion Attacks section of [13], and the images were

generated by running the commands in Listing 4.8. The edges_only row was generated

by appending the –edges_only flag to the commands, as shown in Listing 4.9. The last

row containing the image from the few_pixels attack was generated by running the

command shown in Listing 4.10. The hamming or h value denotes how much the binary

representation of the NeuralHash must change before the output image is accepted. Hence,

the images in the table have NeuralHashes which have been changed by at least 1 %, 10

% and 50 %.

All the attack types were run with h values of 0.01, 0.1, and 0.5. However, the edges_only

and few_pixels attack variants were unable to produce a result with an h value of 0.5.

The few_pixels attack could not generate an output with an h value of 0.1 either, as the

limit of 150 pixels was exceeded before the hash was changed sufficiently. Each image

also has an attached NeuralHash below, where the differences from the original image’s

NeuralHash is highlighted in red.

Listing 4.8: Commands for generating images using the standard evasion attack.
1 python3 adv2_evasion_attack .py --hamming =0.01 --source = inputs / adv2_input -- output_folder =

↪→ outputs /adv2

2 python3 adv2_evasion_attack .py --hamming =0.1 --source = inputs / adv2_input -- output_folder =

↪→ outputs /adv2

3 python3 adv2_evasion_attack .py --hamming =0.5 --source = inputs / adv2_input -- output_folder =

↪→ outputs /adv2

Listing 4.9: Command for generating images using the edges_only attack.
1 python3 adv2_evasion_attack .py --hamming =0.01 --edges_only --source = inputs / adv2_input --

↪→ output_folder = outputs /adv2

41

4.9. EXPERIMENT 6 CHAPTER 4. EXPERIMENTS

Listing 4.10: Command for generating images using the few_pixels attack
1 python3 adv2_few_pixels_attack .py --hamming =0.01 --source = inputs / adv2_input --

↪→ output_folder = outputs /adv2

original

h=0.01 h=0.1 h=0.5

standard

edges_only N/A

few_pixels N/A N/A

Table 4.6: Results from Adversary 2.

42

4.9. EXPERIMENT 6 CHAPTER 4. EXPERIMENTS

Both the images for h=0.01 and h=0.1 in the standard evasion attack are visually hard to

distinguish from the original. However, the image for h=0.5 contains some clearly visible

diagonal stripes. This is not surprising, given how much the NeuralHash has changed

from the original. The edges_only attack with h=0.01, again, looks indistinguishable

from the original. However, when h=0.1 for this attack, the output image contains some

ugly perturbations across the face. As for the few_pixels attack, the image again looks

identical to the original. The only change in this image are three pixels on the bottom

right, which have changed the NeuralHash by one bit.

43

5 | Discussion

In this chapter, the thesis in its entirety is discussed. The experimental results are used to

answer the RQs defined in Section 1.4. The hypothetical scenario defined in Section 3.1

is evaluated in context of the results. Finally, the future work for the thesis is presented.

As mentioned in the Related work Section, Google’s FaceNet was able to achieve a clas-

sification accuracy of 99.63 % ±0.09. By using a threshold matching the EER for the

system presented in this thesis, NeuralHash can be used to both correctly match the same

individual, and correctly classify different individuals as different in 90.32 % of cases. It

is clear that FR algorithms have better performance when they have access to facial im-

ages directly. Furthermore, the model used in FaceNet was trained on up to 260,000,000

facial images [6], while the amount and type of training data for the NeuralHash model

is unknown.

Microsoft’s PhotoDNA algorithm is strikingly similar to Apple’s NeuralHash algorithm

in their functionality. Microsoft states that "PhotoDNA is not facial recognition software

and cannot be used to identify a person or object in an image" [14]. However, since it

is used to detect similar images, it would not be surprising if it could be used in an

application such as the one presented in this thesis. Furthermore, Microsoft states that

"A PhotoDNA hash is not reversible, and therefore cannot be used to recreate an image"

[14]. If this claim is true, PhotoDNA is a promising candidate for comparing against

NeuralHash in a FR scenario. The only problem is that the source code for PhotoDNA

is proprietary. If the source code becomes publicly available in the future, it could be a

contender for NeuralHash in the system implemented in this thesis.

The ColorFERET Dataset used in this thesis present facial images of subjects with varying

facial expressions and image cropping. Some images are cropped to fit only the face,

44

5.1. EXPERIMENTAL RESULTS
SUMMARY

CHAPTER 5. DISCUSSION

while others feature large portions of the subject’s torso. Many subjects have multiple

images from the same photo session, where the face position in the image and clothing of

the subject stay consistent. These types of images often generate similar NeuralHashes.

However, a significant portion of the features used to generate the NeuralHash depend

on the clothing, background and other features in the image beside the subjects’ faces.

Hence, an attempt was made to crop the dataset images to only contain the faces of

the subjects. However, the performance on this dataset was poor, and not included in

the thesis. This limitation may be circumvented by performing transfer learning, or by

preprocessing the images differently.

As demonstrated by Brad Dwyer, natural collisions occur in NeuralHash [34]. As such, it

is not unthinkable that facial images of different people can result in the same NeuralHash.

This can be an advantage for the proposed system in terms of privacy, as the processed

NeuralHashes cannot be mapped directly to an identity. Furthermore, variations in facial

expression, lighting and other factors can cause the NeuralHash of a facial image to vary

considerably. Hence, a cluster of neighboring NeuralHashes can be mapped to the same

person, which causes even more overlaps with other identities.

5.1 Experimental results summary

Experiment 1 has shown a method for identifying whether two facial images belong to

the same person. The results show that images of the same subject in general have a

lower HamD than images of different subjects. Consequently, the answer to RQ 1 is that

NeuralHashes representing facial images can be used to identify whether two facial images

belong to the same person by measuring the HamD between the NeuralHashes.

Experiment 2 demonstrates how reliable NeuralHash is in clustering images of the same

subject close together. The results show that NeuralHash consistently clusters images of

the same subject closer together than images of different subjects, and that the SelfDists

are more spread out than the DiffDists.

45

5.2. HYPOTHETICAL
SCENARIO

CHAPTER 5. DISCUSSION

Experiment 3 demonstrates a technique for measuring how consistently NeuralHash clas-

sifies identities correctly by measuring the FAR and FRR for varying HamD thresholds.

The results shows that NeuralHash classifies identities correctly most of the time, however,

there is room for improvement.

Experiment 2 and 3 together demonstrate a method for evaluating the classification per-

formance of NeuralHash. The reliability can be measured by calculating and comparing

the average SelfDist and DiffDist, in addition their standard deviations. The accuracy can

be evaluated by varying the HamD threshold and calculating the FAR and FRR for each

threshold. Together, these techniques provide a method for evaluating the classification

performance.

The results from Experiment 4 show that a NeuralHash can reveal some non-specific

information about the input image, such as gender of the subject. However, when the

classes become more nuanced, the Neural Networks struggle to consistently predict the

correct class. The loss of the race model evidently shows that the model is very insecure

in its predictions, meaning a given prediction has limited credibility. The answer to RQ 3

is therefore that it is possible to retrieve some general information from facial images such

as gender, however, more nuanced information is difficult, if not impossible to retrieve.

5.2 Hypothetical scenario

Regarding the hypothetical scenario introduced in Section 3.1, Experiment 3 shows that if

the threshold is set to the EER at 0.24, the system will fail to recognize 9.68 % of persons

of interest, and falsely match 9.68 % of ordinary people as persons of interest. Since

a positive match involves additional, potentially manual security measures, it is best to

reduce the number of false positives at the cost of increasing false negatives. The rationale

for this is that the result experiments are based on a single matching attempt for each

image in the database. If the system is scaled up to process a handful of images for each

person instead of just one, the probability of a false negative is lowered to pn, where p is

46

5.2. HYPOTHETICAL
SCENARIO

CHAPTER 5. DISCUSSION

the probability of a false negative, and n is the number of images processed. This assumes

that the images capture somewhat different features, meaning they are not monotonous.

According to the results, if the threshold is set to 0.1, only 0.16 % of ordinary people will

be falsely matched, while 31.45 % of persons of interest will be falsely ignored. This could

be an acceptable trade-off.

One critical point about the ColorFERET Dataset, and results presented in this thesis

in relation to the hypothetical scenario is that many of the images of the subjects in

the dataset are captured in rapid succession. In the hypothetical scenario, the database

of persons of interest most certainly contains dated images where the individuals have

different appearance due to aging and everything that entails. As such, it is necessary to

further investigate how NeuralHash performs with this kind of data to provide practical

results for such a scenario.

One potential problem with using NeuralHash to match facial images is that the database

containing NeuralHashes of persons of interest is tied to a particular version of the Neu-

ralHash model. It is possible that the NeuralHash model could see improvements over

time through additional training, however, this could lead to faces being mapped to com-

pletely new hash values. As such, the database would have to be updated along with the

NeuralHash model, and some version tracking system would be necessary.

The results from Experiment 5 and 6 show that it is possible to inconspicuously alter

facial images such that the NeuralHash either matches a target hash value, or such that

the NeuralHash differs from the original image by a certain threshold. This could be very

problematic if the system relies on pre-captured images, such as passport images, as these

can be altered by an adversary beforehand. However, since the system relies on capturing

new images of each person, there is no possibility to alter the images before they are

analysed by the system.

In the hypothetical scenario, it is assumed that the database containing persons of interest

is stored securely, with no unauthorized access or modification. However, if an adversary

47

5.3. FUTURE WORK CHAPTER 5. DISCUSSION

was able to insert new NeuralHashes into the database, the adversary could harass a

victim by inserting a NeuralHash corresponding to the victim.

5.3 Future work

The hyperplanes defined in the neuralhash_128x96_seed1.dat file define the limits for

which feature vectors are mapped to a 0, and which are mapped to a 1. Apple does not

specify how these particular hyperplanes are selected, or if they are optimized to improve

the ability of NeuralHash to assign similar images the same hash value. If these hyper-

planes are defined randomly, there could be potential to improve NeuralHash’s ability to

use features in facial images to assign hash values, by optimizing the hyperplanes.

The NeuralHash algorithm is a fully trained deep perceptual hashing algorithm created

and used by Apple Inc. in their products. The neural network and its parameters are

available in the iOS operating system, however, the data, loss functions and hyperparam-

eters used to train the network are not [13]. The network has been trained to recognize

similar images, although it is uncertain how well it has been trained to recognize faces

specifically. If it is possible to train the network to better recognize faces, the perfor-

mance of the system presented in this thesis could be improved. One way to specialize

a model is with transfer learning. This technique can be used to initialize a model with

prior knowledge, and use that knowledge to speed up the process of learning specialized

skills. The NeuralHash model could be used to initialize a new model with the knowledge

of general image similarity, and further trained to pick up more specific features in facial

images.

48

6 | Conclusion

In this thesis, a system for identity matching using the NeuralHash algorithm was pre-

sented. The goal was to implement the system, and evaluate its privacy and security

aspects. The NeuralHash algorithm was used to generate fingerprints of subjects in a

subset of the ColorFERET facial image Dataset, and the HamD between these finger-

prints was used to match subjects without revealing the facial images. The FAR and

FRR was measured for different thresholds, and two simple DFFNs were implemented

to analyse the NeuralHash algorithm’s ability to hide information. Additionally, two ex-

periments were implemented to investigate hash collisions in NeuralHash, as well as hash

altering. The results show that NeuralHash can be used to identify whether two facial

images belong to the same person. The classification can be somewhat inconsistent, for

example if the threshold for maximum deviation in the NeuralHash is set to 10 %, the

FAR is 0.16 %, however, the FRR is 31.45 %. NeuralHash also hides the image informa-

tion sufficiently for the purposes of FR. It is possible to retrieve some general information

from facial images such as gender, however, more nuanced information is difficult, if not

impossible to retrieve.

49

References

[1] P. J. Phillpis, H. Wechsler, J. Huang, and P. Rauss, “The feret database and evalua-

tion procedure for face recognition algorithms,” Image and Vision Computing, vol. 16,

no. 5, pp. 295–306, 1998.

[2] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, “The feret evaluation method-

ology for face recognition algorithms,” IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 22, pp. 1090–1104, 2000.

[3] PapersWithCode, “Face recognition.” https://paperswithcode.com/task/

face-recognition. Accessed: Apr. 1, 2022.

[4] W. W. Bledsoe, “A facial recognition project report.” https://archive.org/

details/firstfacialrecognitionresearch/FirstReport/page/n33/mode/2up,

1963. Accessed: Apr. 1, 2022.

[5] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Facenet: A unified embedding for face

recognition and clustering.” https://arxiv.org/pdf/1801.07698v3.pdf, 2019. Ac-

cessed: Apr. 1, 2022.

[6] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for

face recognition and clustering.” https://arxiv.org/pdf/1503.03832.pdf, 2015.

Accessed: Apr. 1, 2022.

[7] Y. Sun, X. Wang, and X. Tang, “Deep learning face representation by joint

identification-verification.” https://arxiv.org/pdf/1406.4773v1.pdf, 2014. Ac-

cessed: Apr. 1, 2022.

[8] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap

to human-level performance in face verification.” https://www.cs.toronto.edu/

~ranzato/publications/taigman_cvpr14.pdf, 2014. Accessed: Apr. 1, 2022.

50

https://paperswithcode.com/task/face-recognition
https://paperswithcode.com/task/face-recognition
https://archive.org/details/firstfacialrecognitionresearch/FirstReport/page/n33/mode/2up
https://archive.org/details/firstfacialrecognitionresearch/FirstReport/page/n33/mode/2up
https://arxiv.org/pdf/1801.07698v3.pdf
https://arxiv.org/pdf/1503.03832.pdf
https://arxiv.org/pdf/1406.4773v1.pdf
https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf
https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf

REFERENCES REFERENCES

[9] Apple, “Face id security.” https://www.apple.com/business-docs/FaceID_

Security_Guide.pdf, 2017. Accessed: May 6, 2022.

[10] R. Ullah, H. Hayat, A. A. Siddiqui, U. A. Siddiqui, J. Khan, F. Ullah, S. Hassan,

L. Hasan, W. Albattah, M. Islam, and G. M. Karami, “A real-time framework for hu-

man face detection and recognition in cctv images.” https://downloads.hindawi.

com/journals/mpe/2022/3276704.pdf, 2022. Accessed: May 7, 2022.

[11] “Art. 4 gdpr definitions.” https://gdpr-info.eu/art-4-gdpr/, 2016. Accessed:

Apr. 29, 2022.

[12] Apple Inc., “Csam detection technical summary.” https://www.apple.com/

child-safety/pdf/CSAM_Detection_Technical_Summary.pdf, 2021. Accessed:

May 12, 2022.

[13] L. Struppek, D. Hintersdorf, D. Neider, and K. Kersting, “Learning to break deep per-

ceptual hashing: The use case neuralhash.” https://arxiv.org/pdf/2111.06628.

pdf, 2022. Accessed: Apr. 6, 2022.

[14] Microsoft, “Photodna.” https://www.microsoft.com/en-us/photodna, 2015. Ac-

cessed May 31, 2022.

[15] Microsoft Research, “Photodna™: How it works.” https://www.youtube.com/

watch?v=NORlSXfcWlo, 2009. Accessed May 31, 2022.

[16] T. Ferrandez, “Paper reviews call 002 – facenet: A unified embedding for face recogni-

tion and clustering.” https://www.youtube.com/watch?v=w--c0qG9MCc, 2019. Ac-

cessed May 31, 2022.

[17] A. Ziller, J. Passerat-Palmbach, T. Ryffel, D. Usynin, A. Trask, I. Da Lima Costa Ju-

nior, J. Mancuso, M. Makowski, D. Rueckert, R. Braren, and G. Kaissis, “Privacy-

preserving medical image analysis.” https://arxiv.org/pdf/2012.06354.pdf,

2020. Accessed: May 12, 2022.

[18] Wikipedia, “Perceptual hashing.” https://en.wikipedia.org/wiki/Perceptual_

hashing, 2022. Accessed: May 27, 2022.

51

https://www.apple.com/business-docs/FaceID_Security_Guide.pdf
https://www.apple.com/business-docs/FaceID_Security_Guide.pdf
https://downloads.hindawi.com/journals/mpe/2022/3276704.pdf
https://downloads.hindawi.com/journals/mpe/2022/3276704.pdf
https://gdpr-info.eu/art-4-gdpr/
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://arxiv.org/pdf/2111.06628.pdf
https://arxiv.org/pdf/2111.06628.pdf
https://www.microsoft.com/en-us/photodna
https://www.youtube.com/watch?v=NORlSXfcWlo
https://www.youtube.com/watch?v=NORlSXfcWlo
https://www.youtube.com/watch?v=w--c0qG9MCc
https://arxiv.org/pdf/2012.06354.pdf
https://en.wikipedia.org/wiki/Perceptual_hashing
https://en.wikipedia.org/wiki/Perceptual_hashing

REFERENCES REFERENCES

[19] Wikipedia, “Locality-sensitive hashing.” https://en.wikipedia.org/wiki/

Locality-sensitive_hashing, 2022. Accessed: May 27, 2022.

[20] D. Steen, “A gentle introduction to self-training and

semi-supervised learning.” https://towardsdatascience.com/

a-gentle-introduction-to-self-training-and-semi-supervised-learning-ceee73178b38,

2020. Accessed May 28, 2022.

[21] M. Bekuzarov, “Losses explained: Contrastive loss.” https://medium.com/@maksym.

bekuzarov/losses-explained-contrastive-loss-f8f57fe32246, 2020. Accessed

May 28, 2022.

[22] Wikipedia, “Hamming distance.” https://en.wikipedia.org/wiki/Hamming_

distance, 2021. Accessed: Mar. 21, 2022.

[23] NIST, “Face recognition technology (feret).” https://www.nist.gov/

programs-projects/face-recognition-technology-feret, 2019. Accessed:

Mar. 23, 2022.

[24] Wikipedia, “bzip2.” https://en.wikipedia.org/wiki/Bzip2, 2022. Accessed: Mar.

23, 2022.

[25] A. Ygvar, “Appleneuralhash2onnx.” https://github.com/AsuharietYgvar/

AppleNeuralHash2ONNX, 2021. Accessed: Mar. 24, 2022.

[26] IPSW, “ios 15.2.1 (19c63) for iphone 13.” https://ipsw.me/download/iPhone14,

5/19C63, 2022. Accessed: Mar. 24, 2022.

[27] lzsfe, “Lzsfe.” https://github.com/lzfse/lzfse, 2017. Accessed: Mar. 24, 2022.

[28] Tencent Youtu Lab and Guangying Lab, “TNN.” https://github.com/

AsuharietYgvar/TNN, 2021. Accessed: Mar. 24, 2022.

[29] A. Haapala, “python-levenshtein 0.12.2.” https://pypi.org/project/

python-Levenshtein/, 2021. Accessed: Apr. 5, 2022.

52

https://en.wikipedia.org/wiki/Locality-sensitive_hashing
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
https://towardsdatascience.com/a-gentle-introduction-to-self-training-and-semi-supervised-learning-ceee73178b38
https://towardsdatascience.com/a-gentle-introduction-to-self-training-and-semi-supervised-learning-ceee73178b38
https://medium.com/@maksym.bekuzarov/losses-explained-contrastive-loss-f8f57fe32246
https://medium.com/@maksym.bekuzarov/losses-explained-contrastive-loss-f8f57fe32246
https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Hamming_distance
https://www.nist.gov/programs-projects/face-recognition-technology-feret
https://www.nist.gov/programs-projects/face-recognition-technology-feret
https://en.wikipedia.org/wiki/Bzip2
https://github.com/AsuharietYgvar/AppleNeuralHash2ONNX
https://github.com/AsuharietYgvar/AppleNeuralHash2ONNX
https://ipsw.me/download/iPhone14,5/19C63
https://ipsw.me/download/iPhone14,5/19C63
https://github.com/lzfse/lzfse
https://github.com/AsuharietYgvar/TNN
https://github.com/AsuharietYgvar/TNN
https://pypi.org/project/python-Levenshtein/
https://pypi.org/project/python-Levenshtein/

REFERENCES REFERENCES

[30] Nitin1901, “Dropout in neural networks.” https://www.geeksforgeeks.org/

dropout-in-neural-networks/, 2020. Accessed: May 22, 2022.

[31] T. Gheorghiu, “Ann visualizer.” https://github.com/RedaOps/ann-visualizer,

2018.

[32] A. Lee, “Choosing a baseline accuracy for a clas-

sification model.” https://towardsdatascience.com/

calculating-a-baseline-accuracy-for-a-classification-model-a4b342ceb88f,

2021. Accessed May 24, 2022.

[33] L. Struppek, D. Hintersdorf, D. Neider, and K. Kersting, “Learning to break deep

perceptual hashing: The use case neuralhash (facct 2022).” https://github.com/

ml-research/Learning-to-Break-Deep-Perceptual-Hashing, 2022. Accessed:

May 28, 2022.

[34] B. Dwyer, “neuralhash-collisions.” https://github.com/roboflow-ai/

neuralhash-collisions, 2021. Accessed: May 30, 2022.

53

https://www.geeksforgeeks.org/dropout-in-neural-networks/
https://www.geeksforgeeks.org/dropout-in-neural-networks/
https://github.com/RedaOps/ann-visualizer
https://towardsdatascience.com/calculating-a-baseline-accuracy-for-a-classification-model-a4b342ceb88f
https://towardsdatascience.com/calculating-a-baseline-accuracy-for-a-classification-model-a4b342ceb88f
https://github.com/ml-research/Learning-to-Break-Deep-Perceptual-Hashing
https://github.com/ml-research/Learning-to-Break-Deep-Perceptual-Hashing
https://github.com/roboflow-ai/neuralhash-collisions
https://github.com/roboflow-ai/neuralhash-collisions

A | Data cleaning

Listing A.1 shows the python module for cleaning the ColorFERET Dataset.

Listing A.1: Removing all non-frontal face images
1 import os

2

3

4 if __name__ == " __main__ ":

5

6 img_dir = f"{os. getcwd () }/ images "

7 for subject_dir_name in os. listdir (img_dir):

8 print (f"{ subject_dir_name }")

9 subject_dir = f"{ img_dir }/{ subject_dir_name }"

10 for img_file in os. listdir (subject_dir):

11 file_path = f"{ subject_dir }/{ img_file }"

12 if ’f’ not in img_file :

13 os. remove (file_path)

A-1

B | Inference

Listing B.1 shows the NeuralHash class. The calculate_neuralhash method can be invoked

with an input image to retrieve the NeuralHash of the image.

Listing B.1: Code for the NeuralHash class used for inference.
1 class NeuralHash :

2 def __init__ (self):

3 # Load ONNX model

4 self. model_path = f"{os. getcwd () }/ model / model .onnx"

5 self. session = InferenceSession (self. model_path)

6

7 # Load output hash matrix

8 seed1_path = f"{os. getcwd () }/ model / neuralhash_128x96_seed1 .dat"

9 self. seed1 = open(seed1_path , ’rb ’).read () [128:]

10 self. seed1 = np. frombuffer (self.seed1 , dtype =np. float32)

11 self. seed1 = self. seed1 . reshape ([96 , 128])

12

13 def calculate_neuralhash (self , image_path):

14 """ Calculate neuralhash of the image at image_path """

15

16 arr = self. im2array (image_path)

17

18 # Run model

19 inputs = {self. session . get_inputs () [0]. name: arr}

20 outs = self. session .run(None , inputs)

21

22 # Convert model output to hex hash

23 hash_output = self. seed1 .dot(outs [0]. flatten ())

24 hash_bits = ’’.join ([’1’ if it >= 0 else ’0’ for it in hash_output])

25 hash_hex = ’{:0{} x}’. format (int(hash_bits , 2) , len(hash_bits) // 4)

26

27 return hash_hex , hash_bits

28

29 @staticmethod

30 def im2array (image_path):

31 """ Preprocess image """

32

33 image = Image .open(image_path). convert (’RGB ’)

34 image = image . resize ([360 , 360])

A-2

35 arr = np. array (image). astype (np. float32) / 255.0

36 arr = arr * 2.0 - 1.0

37

38 return arr. transpose (2, 0, 1). reshape ([1 , 3, 360 , 360])

A-3

C | Calculate Hamming Distances

Listing C.1 shows the method used for calculating and storing Hamming Distances for all

images in the self.hash_dict dictionary.

Listing C.1: Method for calculating and storing Hamming Distances.
1 def calculate_hamming_distances (self , max_comp =None):

2 """

3 Calculate hamming distances of NeuralHashes for

4 each image pair and store in self. hamming_distances ,

5 or only compare up to max_comp if supplied

6 """

7

8 if not max_comp :

9 max_comp = len(self. hash_dict)

10

11 for n, i in enumerate (self. hash_dict):

12 dict_slice = dict(itertools . islice (self. hash_dict . items () , n+1, max_comp))

13 for j in dict_slice :

14 hamming_dist_hex = Levenshtein . hamming (self. hash_dict [i][0] ,

15 self. hash_dict [j][0])

16 hamming_dist_bin = Levenshtein . hamming (self. hash_dict [i][1] ,

17 self. hash_dict [j][1])

18 subject_i = i. split (self. split_char)[0]

19 subject_j = j. split (self. split_char)[0]

20 same = subject_i == subject_j

21

22 if i in self. hamming_distances :

23 self. hamming_distances [i][j] = (same , hamming_dist_hex , hamming_dist_bin)

24 else:

25 self. hamming_distances [i] = {j: (same , hamming_dist_hex , hamming_dist_bin

↪→)}

26

27 if j in self. hamming_distances :

28 self. hamming_distances [j][i] = (same , hamming_dist_hex , hamming_dist_bin)

29 else:

30 self. hamming_distances [j] = {i: (same , hamming_dist_hex , hamming_dist_bin

↪→)}

A-4

D | Average Hamming Distances and

Standard Deviation

Listing D.1 shows the method used for calculating and outputting average HamDs and

standard deviations for each subject.

Listing D.1: Method for calculating average HamD and standard deviation for each subject.
1 def print_avg_hamming_distance_and_sd (self , sorting = DIST_SAME):

2 """

3 For each subject , print average hamming distance

4 to other images of the same subject , and average

5 hamming distance to images of other subjects .

6 Also print standard deviation of hamming distance

7 between images of the same subject and different

8 subjects .

9 : param sorting : int

10 Determines how to sort the output

11 DIST_SAME sorts on hamming distance between images

12 of same subject , from lowest to highest

13 DIST_OTHERS sorts on hamming distance between

14 different subjects , from lowest to highest

15 SD_SAME sorts on standard deviation for images

16 of the same subject , from lowest to highest

17 SD_OTHERS sorts on standard deviation for images

18 of different subjects , from lowest to highest

19 """

20

21 if sorting not in [DIST_SAME , DIST_OTHERS , SD_SAME , SD_OTHERS]:

22 print (f"{RED} Unexpected value for parameter \" sorting \"\n"

23 f" Expected int in range [0, 3]\n"

24 f" DIST_SAME = 0\n"

25 f" DIST_OTHERS = 1\n"

26 f" SD_SAME = 2\n"

27 f" SD_OTHERS = 3\n"

28 f"Ex: sorting = SD_SAME {END}")

29 return

30

A-5

31 avg_dist = {}

32 sorted_avg_dist_sd = {}

33 for file_i , dict_i in self. hamming_distances . items ():

34 subject_i = file_i . split (self. split_char)[0]

35 if subject_i not in avg_dist :

36 avg_dist [subject_i] = [0, 0, 0, 0] # [sum_dist_same , sum_dist_different ,

↪→ total_same , total_different]

37

38 for file_j , dist in dict_i . items ():

39 # Add hex or bin distance from file_i to file_j to sum_dist_same or

↪→ sum_dist_different respectively

40 avg_dist [subject_i][not dist [0]] += dist [1 + self. output_format]

41 # Increment total_same or total_different respectively

42 avg_dist [subject_i][(not dist [0]) + 2] += 1

43

44 for subject , tally in avg_dist . items ():

45 try:

46 # (sum_dist_same / total_same , sum_dist_different / total_different)

47 sorted_avg_dist_sd [subject] = [tally [0] / tally [2] , tally [1] / tally [3]]

48 except (IndexError , ZeroDivisionError) as e:

49 print (f"{RED }{e} for subject { subject }{ END}")

50

51 # Build lists of (hamming distance - average hamming distance) ** 2 for each

↪→ comparison and store in deviation

52 deviation = {}

53 for file_i , dict_i in self. hamming_distances . items ():

54 subject = file_i . split (self. split_char)[0]

55 if subject not in deviation :

56 deviation [subject] = [[] , []] # [[distance same], [distance different]]

57 for file_j , dist in dict_i . items ():

58 try:

59 deviation [subject][not dist [0]]. append ((dist [1 + self. output_format]

60 - sorted_avg_dist_sd [subject][not

↪→ dist [0]]) ** 2)

61 except KeyError :

62 pass

63

64 # Calculate standard deviation of hamming distances for same and different subjects

65 for subject , dev in deviation . items ():

66 try:

67 variance_same = sum(dev [0]) / len(dev [0])

68 variance_different = sum(dev [1]) / len(dev [1])

69 sd_same = math.sqrt(variance_same)

70 sd_different = math.sqrt(variance_different)

71 sorted_avg_dist_sd [subject] += [sd_same , sd_different]

72 except ZeroDivisionError :

A-6

73 pass

74

75 # Sort by value determined by sorting

76 sorted_avg_dist_sd = dict(sorted (sorted_avg_dist_sd . items () , key= lambda x: x[1][

↪→ sorting]))

77

78 # Print output to a grid

79 print (self.hl)

80 column_titles = "{0} {1} {2} {3}". format ("Avg dist self", "\ u03C3 self", "

↪→ Avg dist others ",

81 "\ u03C3 others ")

82 print ("{0: >{x}} {1}". format ("", column_titles , x=len(list(avg_dist . items ()) [0][0])

↪→ + 1))

83 for subject , data in sorted_avg_dist_sd . items ():

84 dist_self = "{dist :.2f}". format (dist =(data[DIST_SAME]))

85 dist_others = "{dist :.2f}". format (dist =(data[DIST_OTHERS]))

86 sd_same = "{sd :.2f}". format (sd=data[SD_SAME])

87 sd_others = "{sd :.2f}". format (sd=data[SD_OTHERS])

88 print ("{0: >{x}} {1: >13} {2: >6} {3: >15} {4: >8}". format (

89 f"{ subject }:", dist_self , sd_same , dist_others , sd_others , x=len(subject) + 1

90))

A-7

E | FAR & FRR

Listings E.1, E.2, E.3, E.4 and E.5 show the methods involved in plotting the FAR and

FRR for varying threshold values.

Listing E.1: Method for aggregating the necessary data to plot average FAR and FRR.
1 def plot_far_frr (self):

2 """

3 Plot the average FAR and FRR for threshold

4 varying from 0 to length of hash

5 """

6

7 avg_FAR = []

8 avg_FRR = []

9 for i in range (self. get_hash_length () +1):

10 self. calculate_rates (threshold =i)

11 FAR_i , FRR_i = self. calculate_avg_error_rate ()

12 avg_FAR . append (FAR_i)

13 avg_FRR . append (FRR_i)

14 print (f"FAR_{i}: { FAR_i }, FRR_{i}: { FRR_i }")

15

16 self. plot_avg_error (avg_FAR , avg_FRR)

Listing E.2: Method for calculating error rates.
1 def calculate_rates (self , threshold =None):

2 """ Calculate FAR and FRR for each subject """

3

4 if not threshold :

5 threshold = self. threshold

6

7 # { subject : [true_positives , false_positives , true_negatives , false_negatives , FAR ,

↪→ FRR , image , { img_files }]}

8 self. rates = {}

9 for image in self. hamming_distances :

10 subject = image . split (self. split_char)[0]

11 accepted , rejected , genuine , imposters = self. get_accepted_rejected (image ,

↪→ threshold)

12 true_positives = accepted [0]

A-8

13 false_positives = accepted [1]

14 true_negatives = rejected [0]

15 false_negatives = rejected [1]

16

17 if true_positives > 0:

18 FAR = false_positives / (false_positives + true_negatives)

19 FRR = false_negatives / (false_negatives + true_positives)

20 if subject in self. rates :

21 if self. rates [subject][4] > FAR:

22 self. rates [subject] = [true_positives , false_positives ,

↪→ true_negatives , false_negatives , FAR , FRR , image , {True: genuine , False : imposters

↪→ }]

23 else:

24 self. rates [subject] = [true_positives , false_positives , true_negatives ,

↪→ false_negatives , FAR , FRR , image , {True: genuine , False : imposters }]

Listing E.3: Method for counting true positives, false positives, true negatives and false nega-

tives.
1 def get_accepted_rejected (self , image , threshold):

2 """

3 Take an image filename as input and return a tally of

4 accepted and rejected images , as well as image filenames

5 """

6

7 accepted = [0, 0] # [true_positives , false_positives]

8 rejected = [0, 0] # [true_negatives , false_negatives]

9 genuine = [] # True positive image files

10 imposters = [] # False positive image files

11 for img , dist in self. hamming_distances [image]. items ():

12 if dist [1 + self. output_format] < threshold :

13 accepted [not dist [0]] += 1

14 if dist [0]:

15 genuine . append (img)

16 else:

17 imposters . append (img)

18 else:

19 rejected [dist [0]] += 1

20

21 return accepted , rejected , genuine , imposters

A-9

Listing E.4: Method for calculating average FAR and FRR for current threshold.
1 def calculate_avg_error_rate (self):

2 """ Calculate and return the average error rate """

3

4 FAR_sum = 0

5 FRR_sum = 0

6 for k, v in self. rates . items ():

7 FAR_sum += v[4]

8 FRR_sum += v[5]

9

10 try:

11 FAR = FAR_sum / len(self. rates)

12 FRR = FRR_sum / len(self. rates)

13 except ZeroDivisionError :

14 FAR = 0

15 FRR = 1

16

17 return FAR , FRR

Listing E.5: Method for plotting average FAR and FRR for all threshold values.
1 def plot_avg_error (self , FAR , FRR):

2 """ Plot graph of average error with varying thresholds """

3

4 x_axis = [i for i in range (self. get_hash_length () +1)]

5 plt.plot(x_axis , FAR , color ="blue", label ="FAR")

6 plt.plot(x_axis , FRR , color ="red", label ="FRR")

7 plt. xlabel (" Threshold ")

8 plt. ylabel (" Error ")

9 plt.grid(color ="gray", linestyle ="--", linewidth =0.5)

10 plt. legend ()

11 plt.show ()

A-10

F | Few_pixels Attack Script

Listing F.1 shows the implementation of the adv2_few_pixels_attack.py script used for

this thesis.

Listing F.1: Modified adv2_few_pixels_attack.py script.
1 import argparse

2 import math

3 import os

4 from os.path import isfile , join

5 from random import randint

6

7 import numpy as np

8 import torch

9 import Levenshtein

10 from onnx import load_model

11 from torchvision . transforms . functional import resize

12 from tqdm import tqdm

13

14 from models . neuralhash import NeuralHash

15 from losses . mse_loss import mse_loss

16 from losses . quality_losses import ssim_loss

17 from utils . hashing import compute_hash , load_hash_matrix

18 from utils . image_processing import load_and_preprocess_img , save_images

19 from utils . logger import Logger

20

21

22 def main ():

23 # Parse command -line arguments

24 parser = argparse . ArgumentParser (

25 description =’Perform neural collision attack .’)

26 parser . add_argument (’--source ’, dest=’source ’, type=str ,

27 default =’inputs / source .png ’, help=’image to manipulate ’)

28 parser . add_argument (’-- learning_rate ’, dest=’learning_rate ’, default =1.0 ,

29 type=float , help=’step size of PGD optimization step ’)

30 parser . add_argument (’--optimizer ’, dest=’optimizer ’, default =’Adam ’,

31 type=str , help=’kind of optimizer ’)

32 parser . add_argument (’--steps ’, dest=’steps ’, default =15 ,

33 type=int , help=’number of optimization steps per setting ’)

34 parser . add_argument (’--max_pixels ’, dest=’max_pixels ’, default =150 ,

A-11

35 type=int , help=’maximal number of pixels to modify ’)

36 parser . add_argument (’--hamming ’, dest=’hamming ’, default =0.01 , type=float ,

37 help=’proportion of bits changed in the NeuralHash ’)

38 parser . add_argument (’-- optimize_resized ’, dest=’opt_resized ’,

39 default =True , type=bool , help=’optimize the resized 360 x360 image

↪→ ’)

40 parser . add_argument (’--ssim_weight ’, dest=’ssim_weight ’, default =0,

41 type=float , help=’weight of ssim loss ’)

42 parser . add_argument (’-- experiment_name ’, dest=’experiment_name ’,

43 default =’change_hash_attack_few_pixels ’, type=str , help=’name of

↪→ the experiment and logging file ’)

44 parser . add_argument (’-- output_folder ’, dest=’output_folder ’,

45 default =’few_pixels_attack_outputs ’, type=str , help=’folder to

↪→ save optimized images in ’)

46 parser . add_argument (’-- sample_limit ’, dest=’sample_limit ’,

47 default =1000000 , type=int , help=’Maximum of images to be

↪→ processed ’)

48 args = parser . parse_args ()

49

50 # Create temp folder

51 os. makedirs (’./ temp ’, exist_ok =True)

52

53 # Load model and source image

54 device = ’cuda :0 ’ if torch .cuda. is_available () else ’cpu ’

55 seed = load_hash_matrix ()

56 seed = torch . tensor (seed).to(device)

57 id = randint (1, 100000)

58 temp_img = f’curr_image_ {id}’

59 model = NeuralHash ()

60 model . load_state_dict (torch .load(’./ models / model .pth ’))

61 model .to(device)

62

63 # Prepare output folder

64 try:

65 os. mkdir (args. output_folder)

66 except :

67 if not os. listdir (args. output_folder):

68 print (f’Folder {args. output_folder } already exists and is empty .’)

69 else:

70 print (

71 f’Folder {args. output_folder } already exists and is not empty .’)

72

73 # Prepare logging

74 logging_header = [’file ’, ’optimized_file ’, ’l2 ’,

75 ’l_inf ’, ’ssim ’, ’steps ’, ’target_loss ’, ’num_pixels ’]

76 logger = Logger (args. experiment_name , logging_header , output_dir =’./ logs ’)

A-12

77 logger . add_line ([’Hyperparameter ’, args.source , args. learning_rate ,

78 args.optimizer , args. ssim_weight , args.steps , args. max_pixels])

79 model .to(device)

80

81 # Load images

82 if os.path. isfile (args. source):

83 images = [args. source]

84 elif os.path. isdir (args. source):

85 images = [join(args.source , f) for f in os. listdir (

86 args. source) if isfile (join(args.source , f))]

87 images = sorted (images)

88 else:

89 raise RuntimeError (f’{args. source } is neither a file nor a directory .’)

90 images = images [: args. sample_limit]

91

92 # define loss function

93 loss_function = mse_loss

94

95 # Start optimizing images

96 for img in tqdm(images):

97 # Store and reload source image to avoid image changes due to different formats

98 source = load_and_preprocess_img (img , device)

99 input_file_name = img. rsplit (sep=’/’, maxsplit =1) [1]. split (’.’)[0]

100 save_images (source , args. output_folder , f’{ input_file_name }’)

101 source = load_and_preprocess_img (

102 f’{args. output_folder }/{ input_file_name }. png ’, device)

103 orig_image = source . clone ()

104

105 # Compute original hash

106 with torch . no_grad ():

107 outputs_unmodified = model (source)

108 unmodified_hash_bin = compute_hash (

109 outputs_unmodified , seed , binary =True)

110 unmodified_hash_bin_str = compute_hash (

111 outputs_unmodified , seed , binary =True ,

112 as_string =True)

113 unmodified_hash_hex = compute_hash (

114 outputs_unmodified , seed , binary = False)

115

116 # Compute set of pixel locations and gradient mask

117 pixel_locations = set ()

118 grad_mask = torch . zeros_like (source)

119 for i in range (args. max_pixels):

120

121 # Set up optimizer

122 source . requires_grad = True

A-13

123 if args. optimizer == ’Adam ’:

124 optimizer = torch . optim .Adam(

125 params =[source], lr=args. learning_rate)

126 elif args. optimizer == ’SGD ’:

127 optimizer = torch . optim .SGD(

128 params =[source], lr=args. learning_rate)

129 else:

130 raise RuntimeError (

131 f’{args. optimizer } is no valid optimizer class . Please select --

↪→ optimizer out of [Adam , SGD]’)

132

133 step_size_up = math. floor (args. steps /2)

134 step_size_down = math.ceil(args. steps /2)

135

136 scheduler = torch . optim . lr_scheduler . StepLR (

137 optimizer , step_size =5, gamma =0.5)

138

139 # Compute pixels with the largest gradient (l1 norm)

140 if args. opt_resized :

141 outputs_source = model (source)

142 else:

143 outputs_source = model (resize (source , (360 , 360)))

144 target_loss = - \

145 loss_function (outputs_source , unmodified_hash_bin , seed , c=1)

146 total_loss = target_loss

147 total_loss . backward ()

148 grad = source .grad

149

150 # Identify pixels with largest gradient norm

151 grad_norm = torch .norm(grad , p=1, dim =1)

152 indices = grad_norm . flatten ().topk(k=args. max_pixels)[1]

153 topk_indices = np. array (np. unravel_index (

154 indices .cpu (). numpy () , grad_norm . shape)).T[:, 1:]

155 for k in range (args. max_pixels):

156 pixel_tuple = tuple (topk_indices [k])

157 if pixel_tuple not in pixel_locations :

158 pixel_locations .add(pixel_tuple)

159 break

160

161 # Compute new grad mask

162 for x, y in pixel_locations :

163 grad_mask [:, :, x, y] = 1

164

165 print (f’optimizing {int(grad_mask .sum ().cpu (). numpy () /3)} pixels ’)

166 for j in range (args. steps):

167 with torch . no_grad ():

A-14

168 source .data = torch . clamp (source .data , min=-1, max =1)

169 source . requires_grad = True

170 if args. opt_resized :

171 outputs_source = model (source)

172 else:

173 outputs_source = model (resize (source , (360 , 360)))

174 target_loss = -mse_loss (outputs_source ,

175 unmodified_hash_bin , seed)

176 visual_loss = -ssim_loss (orig_image , source)

177 optimizer . zero_grad ()

178 total_loss = target_loss + args. ssim_weight * visual_loss

179 total_loss . backward ()

180 optimizer . param_groups [0][’params ’][0]. grad *= grad_mask

181 optimizer .step ()

182 scheduler .step ()

183 print (

184 f’Iteration {j+1}: \ tTarget Loss { target_loss . detach () :.4f}, Visual

↪→ Loss { visual_loss . detach () :.4f}’)

185

186 # Check for hash changes after optimizing pixels

187 with torch . no_grad ():

188 save_images (source , ’./ temp ’, temp_img)

189 current_img = load_and_preprocess_img (

190 f’./ temp /{ temp_img }. png ’, device)

191 check_output = model (current_img)

192 source_hash_hex = compute_hash (check_output , seed , binary = False)

193 source_hash_bin = compute_hash (check_output , seed , binary =True , as_string

↪→ =True)

194 print (

195 f’Optimizing {i+1} pixels : Original Hash: { unmodified_hash_hex },

↪→ Current Hash: { source_hash_hex }’)

196 # Log results and finish if hash has changed sufficiently

197 if Levenshtein . hamming (source_hash_bin , unmodified_hash_bin_str) / 96 >

↪→ args. hamming :

198 optimized_file = f’{args. output_folder }/{ input_file_name }_opt ’

199 save_images (source , args. output_folder ,

200 f’{ input_file_name }_opt ’)

201 # Compute metrics in the [0, 1] space

202 l2_distance = torch .norm(

203 ((current_img + 1) / 2) - ((orig_image + 1) / 2) , p=2)

204 linf_distance = torch .norm(

205 ((current_img + 1) / 2) - ((orig_image + 1) / 2) , p= float ("inf"))

206 ssim_distance = ssim_loss (

207 (current_img + 1) / 2, (orig_image + 1) / 2)

208 print (

209 f’Finishing after {i+1} steps - L2 distance : { l2_distance :.4f} -

A-15

↪→ L-Inf distance : { linf_distance :.4f} - SSIM: { ssim_distance :.4f}’)

210

211 logger_data = [img , optimized_file + ’.png ’, l2_distance .item () ,

212 linf_distance .item () , ssim_distance .item () , (i*args.

↪→ max_pixels) + j+1, target_loss .item () , i+1]

213 logger . add_line (logger_data)

214 break

215 # if source_hash_hex != unmodified_hash_hex :

216 if Levenshtein . hamming (source_hash_bin , unmodified_hash_bin_str) / 96 > args.

↪→ hamming :

217 print (

218 f’Finishing optimization after {i+1} iterations and {int(grad_mask .

↪→ sum ().cpu (). numpy () /3)} optimized pixels .’)

219 break

220 logger . finish_logging ()

221

222

223 if __name__ == " __main__ ":

224 main ()

A-16

	Introduction
	Motivation
	Field of research
	Problem statement
	Research Objective
	Related work
	Contributions
	Outline

	Background
	Perceptual Hashing
	NeuralHash

	Solution
	Hypothetical scenario
	Solution architecture
	NeuralHash comparison
	Matching

	Experiments
	Dataset
	Experimental setup
	Obtaining the NeuralHash model
	Cleaning the dataset
	Inference
	Hamming Distances

	Experiment 1
	Implementation
	Results

	Experiment 2
	Implementation
	Results

	Experiment 3
	Implementation

	Results
	Experiment 4
	Implementation
	Results

	Experiment 5
	Results

	Experiment 6
	Results

	Discussion
	Experimental results summary
	Hypothetical scenario
	Future work

	Conclusion
	References
	Data cleaning
	Inference
	Calculate Hamming Distances
	Average Hamming Distances and Standard Deviation
	FAR & FRR
	Few_pixels Attack Script

