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Recent advances in image processing and machine learning methods have greatly enhanced the ability of object classification from
images and videos in different applications. Classification of human activities is one of the emerging research areas in the field of
computer vision. It can be used in several applications including medical informatics, surveillance, human computer interaction,
and task monitoring. In the medical and healthcare field, the classification of patients’ activities is important for providing the
required information to doctors and physicians for medication reactions and diagnosis. Nowadays, some research approaches
to recognize human activity from videos and images have been proposed using machine learning (ML) and soft computational
algorithms. However, advanced computer vision methods are still considered promising development directions for developing
human activity classification approach from a sequence of video frames. This paper proposes an effective automated approach
using feature fusion and ML methods. It consists of five steps, which are the preprocessing, feature extraction, feature selection,
feature fusion, and classification steps. Two available public benchmark datasets are utilized to train, validate, and test ML
classifiers of the developed approach. The experimental results of this research work show that the accuracies achieved are
99.5% and 99.9% on the first and second datasets, respectively. Compared with many existing related approaches, the proposed
approach attained high performance results in terms of sensitivity, accuracy, precision, and specificity evaluation metric.

1. Introduction

In recent years, the e-vision community has focused largely
on recognizing human activities. This is mainly because of
a large number of industrial applications including human-
computer interaction [1], antiterrorist applications [2], traf-
fic surveillance [3], automotive safety [4], pedestrian detec-
tion [5], video surveillance [6], real-time tracking [7],
rescue missions [8], and human-robot interaction [9]. This
research work focuses on efficient recognition of human

activity from recorded videos. Design of an efficient and
optimal cost algorithm to detect a person from a video or
an image is a challenging task. It is challenging in terms of
variations of appearance, color, and movements [10]. Few
other detection issues are also noticed like light and back-
ground variations [11]. Recently, numerous approaches have
been proposed to detect a human from a video or an image.
These approaches focused on the distinct use of classifiers,
segmentation techniques, and feature extraction methods.
Segmentation methods for human detection mainly contain

Hindawi
Applied Bionics and Biomechanics
Volume 2022, Article ID 7931729, 14 pages
https://doi.org/10.1155/2022/7931729

https://orcid.org/0000-0002-5406-0389
https://orcid.org/0000-0003-2831-416X
https://orcid.org/0000-0003-1523-1330
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7931729


foreground detection [12] and template matching [13].
Existing approaches do not yield optimal results with several
humans in an image or a scene. Furthermore, there are
many techniques used to detect humans like the Histogram
of Gradients (HOG) [14], Haar-like features [15], adaptive
contour features (ACF) [16], Hybrid Wind Farm (HWF)
[17], Image Source Method (ISM) [18], edge detection
[19], and movement characteristics [20]. These extraction
methods do not clearly show the mark when people are
unclear or have significant fluctuations in their positions.
However, selections of relevant characteristics significantly
improve human activity recognition. This research imple-
mented a hybrid approach to overcome accuracy challenge
of human activity identification. This is done by enhancing
the quality of frames extracted from videos and later catego-
rizing the regions on the basis of specified feature vectors.
The approach proposed in this paper comprises of five
major stages including (a) normalization, (b) feature extrac-
tion, (c) feature selection, (d) feature fusion, and (e) classifi-
cation. Normalization is a preprocessing stage in which
several techniques like background subtraction, noise
removal, and object extraction are implemented. Three types
of features are extracted which are HOG, Gabor, and chro-
matic features. Principal Component Analysis (PCA) is sep-
arately implemented on three feature vectors to get optimal
features. Later, the serial feature fusion is incorporated on
the selected features. Lastly, five versatile classifiers are
applied to evaluate better accuracy.

1.1. Major Contributions. Inefficient and lengthy preprocess-
ing procedures decline the optimality of any algorithm. This
work focuses on the efficient and accurate use of preprocess-
ing and feature extraction steps. Thus, main contributions in
this work include the following:

(i) Morphological operations are applied after back-
ground subtraction to get the exact region of
interest

(ii) Separate principal component-based scoring for
feature subset selection

(iii) Optimal results are obtained by the application of
multiple classification techniques

The chronological order of this manuscript is as follows:
Section 1 provides domain introduction, Section 2 describes
past work related to the recognition of the human activities,
Section 3 describes the proposed method, and in Section 4,
results are compared with other existing techniques.

2. Related Work

So much work has been done and is ongoing in human
activity recognition. All of the approaches proposed lie
under two main categories: (a) the traditional handcrafted
feature extraction methods [21] and (b) the automatic fea-
tures (deep learning) [22] which employ automatic feature
extraction methods. Some major existing works performed
in human activity recognition are discussed as follows: An

activity recognition system based on streaming data is pre-
sented by Yala et al. [23]. The proposed technique efficiently
detects significant human activities. Nunes et al. [24] pre-
sented a framework for daily human action recognition.
The proposed technique firstly extracts various features.
Later, every human activity frame is encircled by two con-
secutive automatically recognized key positions, in which
maximum static and dynamic characteristics are extracted.
Kantorov and Laptev [25] discovered feature encoding by
Fisher vectors and determined accurate action recognition
utilizing linear classifiers. Liu et al. [26] presented a frame-
work in which multiple features are fused to make action
recognition better. The proposed approach captures the sil-
houette deformation of the performer after considering
activities as 3D objects. Azary and Savakis [27] use sporadic
demonstrations of spatial and temporal aggregate move-
ments with abnormal size and location characteristics. Orei-
fej and Liu [28] defined the depth order incorporating
histogram that records the physical dispersion of the surface
in the 4 dimensions including spatial, coordinates, depth,
and time. Conde et al. [29] introduced a human crawling
technique to watch videos that work in a dynamic environ-
ment. This approach used the combined function of HOG
and Gabor [30].

In deep learning features, Wang et al. [31] proposed an
algorithm which is useful to mine deep features from small
video fragments. Additionally, depiction features of neigh-
boring nodes of the secreted layer were considered according
to similar activation states. Zhang et al. [32] introduced a
less complex descriptor called 3D histogram texture in order
to mine unique features from a given set of depth maps. On
3 orthogonal Cartesian planes, a three-dimensional histo-
gram is formed. In [33], Lan et al. proposed an approach
to influence operational methods from data-independent
and data-driven methods to make action recognition sys-
tems better. Sargano et al. [34] proposed a new technique
for recognizing human activity on the basis of the pretrained
structure of the deep Convolutional Neural Network (CNN)
for extraction and depiction of features in which the support
vector machine (SVM) and K-Nearest Neighbor (KNN) are
fused to recognize activity. In [35], the authors offered a
small radial feature based on imaginary contour points and
adapted to reactive real-time processing. Imaging-based fea-
tures are useful for RGB-D images because of the shape,
which is easily viewed as a bit mask based on the depth data
provided by Microsoft Connect. Another common feature is
presented by Tran and Sorokin [36]. It combines visual flow
and silhouette into a single vector of attributes. With radial
graphs, the silhouette and optical flow are encoded in X, Y
dimensions and linked to a frame of fifteen adjacent frames.
Lv and Nevatia [37] suggested a graph of the polynomial cal-
culated by the selection of modified cell beams based on the
logarithmic scale. Different kinds of human action include
the abnormal activities by using the wireless connection.
Support vector machine and the kernel nonlinear regression
are used for reduction of the false positive rate. This can be
done in the unsupervised learning. The proposed system
performs the great function by using the real data [38]. Sev-
eral techniques are used for finding the human activity in the
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videos. The authors worked on the feature correlation and
frame differencing [39].

3. Proposed Methodology

In the proposed algorithm, a novel technique for human
activity recognition is proposed. The proposed approach
comprises of five basic steps, namely, these approaches are
(a) detecting moving objects from the video sequence; (b)
extracting the HOG, Gabor, and color features of the moving
object; (c) selecting the best characteristics; (d) fusing the
selected features serially; and (e) classifying the moving
object. Figure 1 shows the complete flow of the proposed
technique.

3.1. Preprocessing. In the preprocessing stage, region-wise
sliding window is implemented by considering variation in
each consecutive frame. The needless regions including the
background are ignored. A binary image is achieved after
background subtraction on which the noise removal tech-
nique is applied. The binary image is transformed to RGB
color space and later RGB is converted into Hue Saturation
Intensity (HSI). In the next phase, a person is detected by
drawing a bounding box around the person. The aim of pre-
processing is to enhance the quality of video-extracted
frames. The input image or frame extracted from a video is
in RGB format. Preprocessing is applied to improve the fore-
ground features for further processing. The steps of prepro-
cessing are described below.

3.1.1. Background Subtraction. Background subtraction is
the first step in which RGB frames are extracted from the
background and foreground videos for frame-by-frame pro-
cessing. This is done because every processed frame gives us
diverse results. With the presence of variations in every
processed frame, the authenticity of the proposed algorithm
is judged in a better way. In some cases, moving background
or the presence of multiple objects is challenging to handle.
The background frames are subtracted from the frames hav-
ing a person doing a particular activity. Before taking the dif-
ference, both images are transformed from RGB color to HSI
color. After that, the background image is subtracted from
the actual image after converting from RGB to HSI. The
conversion equation from RGB space and HIS space is given
as [40]

I =
ffiffiffi
3

p
R +G + Bð Þ, ð1Þ

θ = arccos 1/2ð Þ R −Gð Þ + R − Bð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R −Gð Þ2 + R − Bð Þ G − Bð

q , ð2Þ

H = θ G ≥ B 2x − θ G ≤ Bf g, ð3Þ

S = 1 −
3 min R,G, Bð Þ

R +G + B
, ð4Þ

where I, S, and H are intensity, saturation, and hue,
respectively. After this step, the binary image is produced.

Some samples of the resulted images of this step can be seen
in Figure 2(b).

3.1.2. Morphological Operation. Images yielded after general
background subtraction steps are noisy as shown in
Figure 2(b). Morphological operation is applied to minimize
the noise present in the image because the noisy image is not
used for further processing. For this purpose, the prepro-
cessing steps can be performed. The operation is known as
opening by reestablishment of erosion, and it conserves the
underlying shape of the object [41]. Regions having the least
number of pixels are removed. The aim of this step is to
detect the person in the image easily. After applying the
opening morphological operation using the structuring ele-
ment of 12-pixel-wide circular, the resulting images are
much enhanced, and an individual is easily detected from
the frame. The outcome of the enhanced image is shown
in Figure 2(c). Hence, it is obvious that the opening morpho-
logical operation is the necessary step before object detection
in the preprocessing stage.

3.1.3. Image Cropping. Pixels from the white region in an
image are counted to identify an object. The area which
has more than 300 pixels is considered as the required object
or human. All the white regions having less than 300 pixels
are eliminated which are not required. When the object is
detected, the bounding box is drawn around the person
and the unnecessary part of the image is removed. The pur-
pose of drawing the bounding box is to get the required part
of the image by neglecting the unnecessary part as shown in
Figure 2(d).

3.2. Feature Extraction. In the second stage of the proposed
algorithm, three different types of extractors including
HOG, Gabor, and cooccurrence matrices and chromatic fea-
tures are employed to get the features of each frame. HOG,
Gabor, and cooccurrence matrices and chromatic feature
vectors are formed with 1 × 3780, 1 × 60, and 1 × 9 standard
dimensions, respectively. Each feature is described as
follows.

3.2.1. HOG Features. In HOG feature extraction [14], the
image is separated into small segments for individual pro-
cessing. These segments are joined later. To achieve Gx
and Gy directions, the Sobel kernel function is used on proc-
essed images. Mathematically, the process is depicted in the
following equations.

Fseg G i, jð Þj j
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gx i, jð Þ2 +Gy i, jð Þ2

q
, ð5Þ

Fseg∅G
i, jð Þ = tan − 1

Gy i, jð Þ
Gx i, jð Þ
� �

, ð6Þ

where ∣G ∣ represents magnitude, ∅G donates the angle
of gradient, and i and j represent rows and columns
simultaneously. The angle allocates the cell votes to bins
based on the gradient. Later, the standardized vector is
being achieved by using every block of the histogram.
On the segmented image, the HOG feature descriptor is
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being implemented with 8 bin cells which are represented
in the following equation.

FsegVN
i
=

Viffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

2 + ∊2ð Þ
p , ð7Þ

where “∊” is a minor constant which does not divide
by zero and V indicates the vector which is not normal-

ized by containing all histograms in a block. When all of
these vectors are combined in a single block, the HOG
feature vector is achieved. Furthermore, mean variance
and range through each feature are measured. Graphical
representation of HOG features is shown in Figure 3.

3.2.2. Gabor Features. In the spatial area, modified 2D-
Gabor filter [42] is utilized using the “Gaussian Kernel” fea-
ture by a complex sinusoidal wave as shown in the following

Video
acquisition Framing

Background
subtraction

Background
acquisition

Morphological
operations

Bounding-box
and labeling

Classification

Features fusion

PCA based feature
fusion

PCA based feature
scoring

Features selection

Gabor ChromaticHOG
Image processing

Features extraction

Figure 1: Detailed description of proposed model based on the machine learning methods.

Bending 

Hand waving 

Jumping 

Running 

Walking 

(a) (b) (c) (d) (c) (f)

Figure 2: Preprocessing stages: (a) original images; (b) background subtraction images; (c) image enhancement; (d) object detection; (e)
binary to RGB conversion; (f) image cropping.
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equation.

Fseg =
f s2

πY ′η
exp −

p′ + Y2q′
2σ2

 !
exp 2πf sx′+∅

� �
: ð8Þ

Here f s shows sinusoidal frequency, θ represents band
similarity direction of an activity described by Gabor, ∅
indicates the phase offset, σ indicates the Standard Deviation
(SD) of the Gaussian wrapper, and Y shows the characteris-
tics regarding space proportion in which the elliptic support
of the function described by Gabor is designated; p′ and q′
are described in the following equations.

x′ = xcoscos θ + ysinsin θ, ð9Þ

y′ = xsinsin θ + ycoscos θ: ð10Þ
Gabor feature [43] is implemented in six directions and

five scales. Gabor feature measurement is chosen as 1 × 30.
The variance and mean through the Gabor feature are mea-
sured. Graphical representation of HOG features is
described in Figure 4.

3.2.3. Cooccurrence Matrices and Chromatic Features. Grey
tone spatial dependence is linked with cooccurrence tech-
nique. This approach works with the approximation. The
function of the second-order density probability h ði, j ∣ d, θ
Þ is approximated. Each combined density function of the
second order is calculated by measuring all pairs of pixels
which are separated by distance d having gray levels i and
j in the direction of the angle. The angular displacement θ
is generally understood in the following interval: θ = f0, π/
4, π/2, 3π/4g. The correlation table records a considerable
amount of textual information. For a rough texture, these
matrices usually have high values near the main diameter,
while the costs are split into a soft texture. The cooccurrence
matrices are summarized from the different directions to
obtain a rotational invariant characteristic. This technique
has become a reference point because of its intensive use
[44], while other researchers relied on a smaller number of
functions, such as entropy (H), correlation (COR), energy
(E), and local homogeneity (LH).

E =〠
i

〠
j

h i, j ∣ d, θð Þ½ �2, ð11Þ

H = −〠
i

〠
j

h d, θð Þ log h d, θð Þ½ �, ð12Þ

I =〠
i

〠
j

i − jð Þ2 h d, θð� �
, ð13Þ

LH =〠
i

〠
j

i, j ∣ d, θð Þ
1 + i + jð Þ2 , ð14Þ

COR =〠
i

〠
j

i − μxð Þ j − μy

� �
h i, j ∣ d, θð Þ

σxσy
, ð15Þ

where μx is the horizontal mean, σx is the variance, and
both μy and σy are the vertical statistics.

This technique records second-degree grayscale statistics
related to human perception and texture discrimination
which are used with various disadvantages [45]. The disad-
vantage of the given technique is that it does not explain
the aspects of the shape and type of texture. In addition, this
technique involves choosing an appropriate level of quantifi-
cation. Text information may be lost due to the reduced
number of antenna sizes at the quantization level. And a rel-
atively large number of compartments can lead to irrelevant
text features.

3.3. Feature Selection. The sensitivity of various machine
defect features differs meaningfully in dissimilar working
circumstances. It becomes vital to develop an organize fea-
ture selection structure. This provides the basis for organiza-
tion of descriptive structures [46]. In the proposed
technique, PCA is used for feature selection to select the
prominent features separately from the results of HOG,
Gabor, and cooccurrence matrices and chromatic feature
vectors.

Generally, the PCA method converts from d-dimen-
sional space of n vectors to another space of d′-dimensions
having n vectors (x1′ , x2′ ,⋯, xi′,⋯, xn′) as given by the follow-
ing equation [47].

xr′ = 〠
d ′

n=1
an,ren, d′ ≤ d, ð16Þ

where en shows the eigenvectors relating with d′-dimen-
sional space and largest eigenvalues of the disseminated

(a) (b)

Figure 3: Visualization of histogram of oriented gradient features: (a) original image; (b) HOG features.

5Applied Bionics and Biomechanics



matrix S. On the other hand, an,r are forecasts of the vectors
xr on the eigenvectors. These are the main constituents of
true datasets. The d and d′ are both positive integers such
that d′ cannot be greater than d in any of the cases. d × d
matrix S represents the original dataset (x1, x2,⋯, xi,⋯, xn
) which is defined as

S = E xix
T
i

� �
, for i = 1 to n, ð17Þ

where E½xixTi � is the “statistical expectancy operator”
implemented on the external multiplicative product of xi
and xTi . The depiction illustrated in Equation (26) decreases
the occurrence of error between the converted vectors and
the original. If the variance of principal components such
as ðan,rÞ is considered, the problem is simplified.

3.4. Feature Fusion. The purpose of feature fusion makes the
action recognition algorithm efficient. This also enhances
the action classification rate of human in complicated sce-
narios. In this method, feature fusion produces considerably
improved results not only in the dark background but also in
the high brightness environment as compared to original
Gabor and HOG features. Hand-crafted features are com-
bined with the deep learning models. The model is named
as the posteriori algorithm [48].

For fusing the features, a unique method is deployed
which depends on the vector dimension size. The size of
these feature vectors are 1 × 60, 1 × 3780, and 1 × 9 in
HOG, Gabor, and cooccurrence matrices and chromatic fea-
tures, respectively. For feature fusion, let C1, C2, C3,⋯, Cn
be the human activity classes, which need to be classified.
Let Δ = f∅v∅∈RNg indicate the number of training sam-
ples. fΎHOG, ΎGab, ΎChromg ∈ RNHOG+Gab+Chrom are the three fea-
ture vectors extracted. The size is defined as

FV1 = j1,⋯jkf g, FV2 = y1,⋯ykf g, FV3 = d1,⋯dkf g, ð18Þ

where FV1, FV2, and FV3 indicate the size of HOG,
Gabor, and cooccurrence matrices and chromatic features,
respectively. The sizes of the feature vectors are character-
ized through set k, where k ∈ f60, 3780, 9g. As discussed ear-
lier, the sizes of extracted feature sets are
ð′ϒHOG ⟶ 1 × 3780, ′ϒGab⟶ 1 × 60, ′ϒChrom⟶ 1

× 9Þ. The final extracted vector is indicated as

F ∅ð Þ = 〠
FV1

j

ΎHOG + 〠
FV2

t

ΎGab + 〠
FV3

d

ΎChrom, ð19Þ

F ∅ð Þ = 1 × 3780ð Þ + 1 × 60ð Þ + 1 × 9ð Þf g, ð20Þ

Final ∅ð Þ = 1 × 3849f g: ð21Þ

3.5. Classification. Five different classifiers including linear-
SVM, cubic-SVM, complex tree, fine-KNN, and subspace-
KNN are used for result comparisons. Figure 5 depicts the
detailed view of feature selection, fusion, and selection.

The accuracy achieved by subspace-KNN is highest
among all the classifiers on the KTH dataset, while cubic-
SVM has achieved higher accuracy than other classifiers on
the Weizmann dataset. The random subspace approach
depends on a stochastic procedure which selects the compo-
nents of the particular feature vector randomly to construct
every classifier. In the KNN classifier, when a testing sample
is compared to the original, only the chosen features will get
the nonzero contributions [49]. On the other hand, State
Vector Machines construct models which are complicated
and contain radial basis function (RBF), polynomial classi-
fiers, and large neural nets. It is easy to examine mathemat-
ically; it resembles a linear method in a multidimensional
feature space nonlinearly associated with the input
space [50].

4. Results and Analysis of Experiment

The experimental setups, datasets, and results based on the
performance measures are discussed in this section.

4.1. Experimental Setup. The time elapsed during activity
classification depends on resources such as memory, Central
Processing Unit (CPU) speed, power supplies, disk storage,
and cooling systems. This can precisely describe a linear
relationship between elapsed time and CPU usage. The
tested system (DELL Latitude E5520) to run the proposed
algorithm consists of a Microsoft Windows 10 Pro environ-
ment with Intel Core-i5 2540M @ 2.60GHz processor. The
system RAM is 4.00GB with a 64-bit operating system and
an x64 processor. All the results presented in this section
are the results obtained in this system.

(a) (b)

Figure 4: Gabor feature visualization: (a) original image; (b) Gabor features.
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4.2. Datasets. To validate the results, two different types of
datasets are used in this research. This includes KTH and
Weizmann datasets. Both of the datasets are described
briefly hereunder.

4.2.1. Weizmann Dataset. The Weizmann dataset [51] con-
tains 2513 human activity images. It covers five types of
human behavior performed by nine different actors. To ver-
ify the proposed algorithm, a 50 : 50 method is run. This
means that half of the images are used for training the clas-
sifier and the remaining half are used to test the performance
of the algorithm. After the selection and fusion of features,
classification techniques are applied to evaluate the results.
Figure 6 shows some images as a sample from the Weiz-
mann dataset.

4.2.2. KTH Datasets. KTH datasets consists of 1628 images
of six different types of human activities. Images with differ-
ent variations are chosen for the authentication of the pro-
posed method. Half of the images are used in the training
of the classifier while the remaining 50% are used for the
purpose of testing. Figure 7 shows some of the images from
the Weizmann datasets. These datasets include boxing, clap-
ping, hand waving, running, and walking.

4.3. Performance Measures. Performance of the proposed
algorithm is assessed on the basis of performance measures

such as specificity (SPE), area under the curve (AUC), preci-
sion (PRE), sensitivity (SEN), and accuracy (ACU). Mathe-
matically, it is represented by the following equations.

PRE = TP
TP + FP

, ð22Þ

SEN =
TP

TP + FN
, ð23Þ

SPE =
TN

TN + FP
, ð24Þ

ACU =
TP + TN

FP + TP + FN + TN
, ð25Þ

AUC =
ð−∞
∞

TPR Tð ÞFPR
Tð ÞdT : ð26Þ

In the above equations, FP represents false positive, TN
represents true negative, TP represents true positive, and
FN represents false negative.

All of the performance measures mentioned in Equation
(20) to (25) are calculated from confusion matrices. These
matrices have the finest results of the Weizmann and KTH
datasets.

4.4. Experiments. For quantitative outcomes, six different
experiments are implemented using a separate number of

Original image

Features extraction PCA score

Classification

Subspace KNN

Fine KNN

Chromatic
1 × 9

Gabor score
1628 × 9

Chromatic

Cubic SVM

Gabor
1 × 60

Gabor score
1628 × 60

Gabor

Serial based fusion

Linear SVM HOG
1 × 300

Chromatic
1 × 9

Gabor
1 × 60

HOG
1 × 300

HOG score
1628 × 3780HOG

Complex tree

Feature vectors

Feature selection

Chromatic features
vector

Gabor features 
vector

HOG features 
vector

+

+

Figure 5: Feature vector selection, fusion, and classification.
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features. The comprehensive description of all experiments
with a numeral classes, numeral folds, and features can be
seen in Table 1. The comprehensive analyses of experiments
performed on 316 bend, 624 hand waving, 457 jumping, 405
run, and 711 walk images are described in the upcoming
sections.

4.4.1. Experiment 1: Shape Features—100, Texture
Features—60, and Color Features—9. In experiment 1, a
total of 2513 and 1628 images are collected from the Weiz-
mann and KTH datasets, respectively. The Weizmann data-
set consists of 5 categories of manual bending, jumping,
running, and walking images, while the KTH dataset
includes 6 classes which are clapping, boxing, running, hand
waving, and walking. To get the experimental results, 50% of
images are used for the purpose of training and the remain-
ing 50% of them are used for testing. For assessment of the
results, the “5-fold” validation is used. For experiment 1,
the maximum classification rate is 99.3% for the Weizmann
dataset obtained with cubic-SVM. The linear-SVM and
subspace-KNN obtained 99.8% accuracy simultaneously on
the KTH dataset as shown in Table 2. Cubic-SVM obtained
a better sensitivity rate of 98.84, specificity of 99.81 and

accuracy of 98.98 as compared to other classification
methods using the Weizmann dataset. On the other hand,
linear-SVM and subspace-KNN obtained a sensitivity rate
of 99.86, specificity of 99.96, and precision of 98.74 which
is better in comparison with other classification methods
using the KTH dataset.

4.4.2. Experiment 2: Shape Features—300, Texture
Features—60, and Color Features—9. In experiment 2,
2513 and 1628 images are taken from the Weizmann and
KTH datasets, respectively. The Weizmann dataset includes
five categories. These five categories are bending, handshak-
ing, jumping, running, and walking, while the KTH dataset
includes 6 classes which are boxing, clapping, handshake,
jogging, running, and walking. For experimental results, half
of the images from each dataset are used for training and the
remaining half are used for the purpose of testing. For
assessment of the results, “10-fold” validation is used. The
10-fold validation is known as the evaluation method. For
experiment 2, the maximum classification frequency is
99.5% for the Weizmann dataset on cubic-SVM, while for
the KTH dataset, 99.9% is achieved in the subspace-KNN,
as shown in Table 3. The cubic-SVM applied to the

Bending Hand waving Jumping Running Walking

Figure 6: Sample images of Weizmann dataset.

Boxing Clapping Hand waving Jogging Running Walking

Figure 7: Sample images of KTH dataset.
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Weizmann dataset is better in terms of sensitivity of 99.34,
specificity of 99.89, and precision of 99.5 than other
approaches, whereas the KNN subdomain applied to the
KTH dataset is better in terms of sensitivity of 99.97, speci-
fication of 99.99, and accuracy of 99.95 than the other clas-
sification approaches.

The experiment 2 produces the best results among all the
five experiments implemented during this research process.
The proposed algorithm produced the best results on the
conditions provided in the experiment 2. The best results
calculated on the basis of performance measures of the
KTH and Weizmann datasets using confusion matrices are
shown in Tables 4 and 5, respectively. The KTH datasets
give 99.9% accuracy using the subspace-KNN classifier and
the Weizmann dataset produced 99.5% accuracy using
cubic-SVM which is best among all other classifiers.

4.4.3. Experiment 3: Shape Features—500, Texture
Features—60, and Color Features—9. In experiment 3, a
total of 2513 images of the Weizmann dataset and 1628
images of the KTH dataset are collected. Five classes from
the Weizmann dataset are selected which includes bending,
hand waving, jumping, running, and walking. Six classes
from the KTH dataset including clapping, boxing, running,
hand waving, walking, and hand waiving are selected.

For experimental results, half of images from both data-
sets are selected for training purposes and the remaining half
are used for testing. For assessment of the results, “8-fold”
validation is used. Maximum classification frequency
attained on cubic-SVM is 98.7% for the Weizmann datasets.
For the KTH datasets, 99.9% accuracy is attained on
subspace-KNN as given in Table 6. The cubic-SVM imple-
mented for the Weizmann datasets is better in terms of sen-
sitivity of 97.86, specificity of 99.67, and precision of 98.54 as
compared to other approaches. On the other hand, the
subspace-KNN implemented for the “KTH” datasets is bet-
ter in terms of sensitivity of 99.97, specificity of 99.99, and
precision of 99.95 as compared to other approaches.

4.4.4. Experiment 4: Shape Features—800, Texture
Features—59, and Color Features—9. In experiment 4, total
of 2513 images of Weizmann datasets and 1628 images of
KTH datasets are collected. The Weizmann datasets are
comprised of 5 classes including bending, hand waving,
jumping, running, and walking images. The KTH datasets
are comprised of 6 classes including clapping, boxing, run-
ning, hand waving, walking, and hand waiving. For experi-

mental results, half of images from both the datasets are
selected for training and the other half of them are used
for testing. For assessment of the results, “5-fold” validation
is used. Maximum classification frequency of 95.9% for the
Weizmann datasets is attained on linear-SVM while 99.9%
for the KTH dataset on subspace-KNN as given in Table 7.
The linear-SVM implemented for the Weizmann dataset is
better in terms of sensitivity of 93.38, specificity of 98.96,
and precision of 96.09 from other approaches. On the other
hand, the subspace-KNN implemented for the “KTH” data-
set is better in terms of sensitivity of 99.97, specificity of
99.99, and precision of 99.45 from other approaches.

4.4.5. Experiment 5: Shape Features—1100, Texture
Features—55, and Color Features—9. In experiment 5, a
total of 2513 images of the Weizmann dataset and 1628
images of the KTH dataset are collected. The Weizmann
dataset comprising of 5 classes including bending, hand
waving, jumping, running, and walking images is selected.
The KTH dataset comprising of 6 classes including clapping,
boxing, running, hand waving, and walking is selected. For
experimental results, half of the images from both datasets
is selected for training the algorithm and the remaining half
is used for testing. For appraisal of the results, “7-fold” vali-
dation is used. Maximum classification frequency is 92.0%
for the Weizmann datasets on subspace-KNN while 99.9%
for the KTH dataset on subspace-KNN as given in Table 8.
The class-wise AUCs are mentioned in Table 9. The
subspace-KNN implemented for the Weizmann datasets is
better in terms of sensitivity of 88.72, specificity of 97.96,
precision of 90.81, and AUC. We can say that subspace-
KNN gives the better results. On the other hand, the
subspace-KNN implemented for “KTH” datasets is better
in terms of sensitivity of 99.97, specificity of 99.99, and pre-
cision of 99.95. The results of experiment 5 are presented in
Table 8.

5. Discussion

This section presents a detailed analysis of experimental out-
comes through the proposed method on the basis of accu-
racy measures such as precision, sensitivity, specificity, and
accuracy. The proposed algorithm consists of five main
stages. These five main stages include the preprocessing
which is performed first in which datasets are normalized
to get better results. The accurate results will give more accu-
racy. In the second step, feature extraction is implemented
using HOG, Gabor, and chromatic feature extractor. In the
third step, feature selection is implemented separately based
on PCA to get the best features. In the fourth step, features
are fused, while in the final stage, results are taken through
the classification learner. In preprocessing, background sub-
traction is done to detect the human from the image and the
noise is removed using morphological operations. After
removing the noise, a bounding box is drawn to around
the person to ignore the unnecessary parts using cropping.
In the next step, three kinds of features comprising shape,
texture, and color are extracted from segmented images. Five
classifiers containing linear-SVM, cubic-SVM, complex tree,

Table 1: Summary of experiments setting for Weizmann and KTH
datasets.

Exp no.
No. of classes

Shape Texture Color Folds
KTH Weizmann

1 6 5 100 60 9 5

2 6 5 300 60 9 10

3 6 5 500 60 9 8

4 6 5 800 58 9 5

5 6 5 1100 55 9 7
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fine-KNN, and subspace-KNN are used to test the proposed
algorithm. Subspace-KNN and cubic-SVM have achieved
higher accuracy than the other classification learners on
the “Weizmann” and “KTH” datasets, respectively.

In the experimental results, six classes of KTH datasets
and five classes of Weizmann datasets are used to get results.
99.90% and 99.5% accuracies for KTH datasets using
subspace-KNN are achieved using subspace-KNN and

Table 2: Classification results of experiment 1 with all possible values.

Weizmann KTH
Method SEN (%) SPE (%) PRE (%) ACU (%) SEN (%) SPE (%) PRE (%) ACU (%)

Linear-SVM 98.8 99.7 98.52 98.8 99.85 99.95 99.03 99.8

Cubic-SVM 98.84 99.81 98.98 99.3 99.8 99.94 99.09 99.7

Complex tree 85.92 97.33 86.06 89.0 98.26 99.67 97.77 98.4

Fine-KNN 98.99 99.78 99.23 99.0 99.77 99.91 99.75 99.6

Subspace-KNN 90.3 98.30 91.7 93.3 99.86 99.96 99.74 99.8

Table 3: Classification results of experiment 2 along with the sensitivity and other measures.

Weizmann KTH
Method SEN (%) SPE (%) PRE (%) ACU (%) SEN (%) SPE (%) PRE (%) ACU (%)

Linear-SVM 98.83 99.84 99.0 99.3 99.89 99.95 99.89 99.8

Cubic-SVM 99.34 99.89 99.5 99.5 98.81 99.94 98.60 99.7

Complex tree 85.40 97.15 85.0 88.3 98.32 99.67 97.37 98.5

Fine-KNN 87.26 97.21 95.4 91.1 99.42 99.84 99.38 99.2

Subspace-KNN 90.25 98.3 91.9 93.9 99.97 99.99 99.95 99.9

Table 4: Confusion matrix of KTH dataset of experiment 2 on subspace-KNN.

Classification classes Total images Clapping Jogging Hand waving Running Walking Boxing

Clapping 312 312

Jogging 191 191

Hand waving 581 1 580

Running 109 109

Walking 27 27

Boxing 408 408

Table 5: Confusion matrix of Weizmann dataset of experiment 2 on cubic-SVM.

Classification classes Total images Hand waving Running Jumping Walking Bending

Hand waving 624 624

Running 206 201 2 3

Jumping 421 1 420 1

Walking 271 2 2 267

Bending 375 375

Table 6: Classification results of experiment 3 using the linear-SVM method and others.

Weizmann KTH
Method SEN (%) SPE (%) PRE (%) ACU (%) SEN (%) SPE (%) PRE (%) ACU (%)

Linear-SVM 97.90 99.69 98.39 98.7 100 99.72 98.70 98.7

Cubic-SVM 97.86 99.67 98.544 98.7 91.51 99.21 96.39 96.5

Complex tree 85.43 97.212 85.53 88.6 98.34 99.69 97.93 98.5

Fine-KNN 63.7 91.63 90.79 71.9 95.30 99.32 98.02 97.0

Subspace-KNN 89.99 98.18 92.11 93.0 99.97 99.99 99.95 99.9
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Table 7: Classification results of experiment 4.

Weizmann KTH
Method SEN (%) SPE (%) PRE (%) ACU (%) SEN (%) SPE (%) PRE (%) ACU (%)

Linear-SVM 93.38 98.96 96.09 95.9 59.25 96.7 90.90 85.3

Cubic-SVM 91.56 98.5 95.63 94.5 57.56 96.45 74.49 84.3

Complex tree 80.56 97.18 85.57 88.5 97.74 99.63 97.51 98.2

Fine-KNN 46.29 87.54 88.81 58.2 70.14 96.30 90.90 84.0

Subspace-KNN 89.21 98.37 91.44 92.5 99.97 99.99 99.45 99.9

Table 8: Classification results of experiment 5.

Weizmann KTH
Method SEN (%) SPE (%) PRE (%) ACU (%) SEN (%) SPE (%) PRE (%) ACU (%)

Linear-SVM 80.0 96.68 90.0 87.5 50.83 95.49 57.16 80.2

Cubic-SVM 80.0 96.20 90.31 86.3 50.42 95.37 55.03 79.5

Complex tree 85.32 97.8 85.31 88.4 98.49 99.69 97.93 98.6

Fine-KNN 33.42 84.1 87.63 46.7 39.47 93.6 84.92 57.6

Subspace-KNN 88.72 97.96 90.81 92.0 99.97 99.99 99.95 99.9

Table 9: AUC results.

Method Classes Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
Weizmann KTH Weizmann KTH Weizmann KTH Weizmann KTH Weizmann KTH

Linear-SVM

C1
C2
C3
C4
C5
C6

1.00
0.99
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
0.98
1.00

1.00
0.99
1.00
0.99
1.00

1.00
0.98
1.00
0.99
1.00
1.00

1.00
0.98
0.99
0.98
1.00

1.00
0.90
1.00
0.98
1.00
1.00

Cubic-SVM

C1
C2
C3
C4
C5
C6

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
0.99
1.00

1.00
0.99
1.00
0.99
1.00

1.00
0.98
1.00
0.99
0.99
1.00

1.00
0.98
0.99
0.98
1.00

1.00
0.90
1.00
0.98
1.00
0.99

Complex tree

C1
C2
C3
C4
C5
C6

0.98
0.87
0.94
0.90
0.97

1.00
0.98
1.00
0.99
0.98
1.00

0.99
0.89
0.93
0.88
0.95

1.00
0.96
1.00
0.98
0.96
1.00

0.98
0.85
0.94
0.90
0.97

1.00
0.98
1.00
0.99
0.98
1.00

0.98
0.88
0.94
0.88
0.96

0.99
0.99
0.99
0.99
1.00
1.00

0.98
0.87
0.94
0.87
0.96

0.99
0.99
0.99
0.96
1.00
1.00

Fine-KNN

C1
C2
C3
C4
C5
C6

1.00
0.99
0.99
0.99
1.00

0.98
1.00
0.98
0.81
1.00
0.98

0.93
0.87
0.91
0.92
1.00

0.97
1.00
0.99
0.69
1.00
0.96

0.79
0.63
0.71
0.76
0.99

0.98
0.99
0.98
0.64
1.00
0.94

0.69
0.51
0.65
0.61
0.89

0.95
0.88
0.91
0.61
0.76
0.91

0.60
0.50
0.62
0.51
0.71

0.75
0.54
0.76
0.50
0.54
0.81

Subspace-KNN

C1
C2
C3
C4
C5
C6

1.00
0.98
1.00
0.99
1.00

1.00
1.00
1.00
1.00
1.00
1.00

1.00
0.98
0.99
0.99
1.00

1.00
1.00
1.00
1.00
1.00
1.00

1.00
0.98
1.00
0.99
1.00

1.00
1.00
1.00
1.00
1.00
1.00

1.00
0.98
0.99
0.99
1.00

1.00
1.00
1.00
1.00
1.00
1.00

1.00
0.98
1.00
0.99
1.00

1.00
1.00
1.00
1.00
1.00
1.00
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cubic-SVM, respectively. Comparison of the previously
implemented algorithms with the proposed algorithm is
shown in Table 10. The table is explained in a better way.
On the basis of the above discussion, it is clear that the com-
bination of three feature extractors used in the proposed
algorithm gives better accuracy as compared to the already
implemented algorithms.

6. Conclusion

In this research, a technique is proposed for the “detection”
and “classification” of several activities from videos and mul-
timedia frames. The proposed algorithm consists of five
pipeline processes which are preprocessing, feature extrac-
tion, feature selection, serial feature fusion, and classifica-
tion. From all results shown above and in Discussion, it is
obvious that by using the proposed technique, the detection
of human activities is tackled. Five different experiments are
executed to judge the authenticity of this algorithm. The
results of all five experiments are discussed in detail in
Results and Analysis of Experiment. The KTH and Weiz-
mann datasets are selected to check the reliability of this
algorithm. This method executed better on the KTH and
Weizmann datasets. Moreover, it is determined that shape
features are very important for the classification of chosen
classes such as bending, jumping, running, walking, and
hand waving. The texture and color features are very essen-
tial for the detection and classification of different usual
activities performed by a human being. To enhance the sys-
tem performance, feature selection and feature fusion seem
to be quite significant as accuracy and sensitivity. In contrast
to the existing techniques, the proposed technique has

achieved higher accuracy which is 99.9% on KTH datasets
and 99.5% on Weizmann datasets.
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