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Abstract: Permanent deformation is one of the dominant asphalt concrete damages. Significant
progress has been made to realistically predict the damage. In the last decade, the mechanistic
approach has been the focus of research, and the fundamental theories of viscoelasticity, viscoplasticity,
continuum mechanics, and micromechanics are applied to develop the material laws (constitutive
equations). This paper reviews the advancement of permanent deformation models including
analogical, microstructural, and continuum-based methods. Pavement analysis using the nonlinear
damage approach (PANDA) is the most comprehensive and theoretically sound approach that is
available in the literature. The model coupled different damages and other phenomena (such as
cracking, moisture, and phenomena such as healing, aging, etc.). The anisotropic microstructure
approach can be incorporated into the PANDA approach for a more realistic prediction. Moreover,
the interaction of fatigue and permanent deformation is the gap that is lacking in the literature.
The mechanistic approaches have the capacity to couple these damages for unified asphalt concrete
damage prediction.

Keywords: permanent deformation; mechanistic; viscoplastic; viscodamage; microstructure

1. Introduction

A flexible pavement, the longest continuous structure, comprises an asphalt con-
crete layer supported by unbound compacted layers (aggregate bases and subgrade).
Asphaltic materials have been used for roadway construction since the end of the nine-
teenth century [1]. Asphalt concrete (also called bituminous mixture or hot mix asphalt)
is a complex heterogeneous and three-phase material (aggregate matrix, mastic, and the
air void). Such a material’s performance depends on the mixture composition, proportion,
mechanical properties, and environmental conditions. It is characterized as a viscoelastic,
viscoplastic, and time- and temperature-dependent material. Due to external loads and
environmental factors, different distresses or damages occur in the asphalt layer. Perma-
nent deformation or rutting is one of the primary distresses, making pavements rough
and unsafe for driving, causing hydroplaning, etc. The rutting distress was noticed as a
primary asphalt performance criterion [2]. The asphalt concrete’s susceptibility to perma-
nent deformation is linked to material attributes and climatic and loading factors [3–5].
Material-related factors include excessive asphalt content, fine aggregate, high natural
sand percentage, rounded aggregate particles, the moisture content in the mix, or granular
materials and soils. From the asphalt concrete constituent properties, the chemistry of
asphalt binder is the component (if not only) that makes bituminous mixtures a complex
rate-dependent, nonlinear material. This nonlinear (viscous) behavior of the binder makes
the permanent deformation evolution of asphalt mixtures a nonlinear mechanism [6]. For
this reason, the rheological characteristics of binder (shear modulus, G*, and viscosity, η)
are used to classify deformability properties of mixtures. The Strategic Highway Research
Program (SHRP) rheological parameter, G*/sin δ (δ—the phase angle), is the widely used
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criterion for rutting characterization [7]. The increased value of the criteria G*/sin δ leads
to a reduced tendency to permanent deformation. However, the G*/sin δ showed limi-
tations as it cannot predict modified binders. Thus, researchers have proposed modified
rheological parameters for rutting [8]. Laukkanen et al. [8] conducted multiple stress
creep-recovery (MSCR) tests on unmodified and modified binders. They concluded that
the non-recoverable creep compliance parameter and accumulated strain at the end of
the MSCR test showed a strong correlation and predicted mixture rutting performance
compared to other rheological indicators. Meena et al. [9] investigated the rutting perfor-
mance of asphalt mixture through the prediction of a resilient modulus (MR) based on the
G*/sin δ rheological model. The second major constituent of asphalt concrete mixtures is
the aggregate. As the primary load-carrying component, the aggregate gradation, property,
angularity, texture, etc., have direct influence on the permanent deformation resistance
of asphalt concrete. Research has shown that fine aggregates are better for rutting resis-
tance [6]. Decreasing the maximum aggregate size is also good for rut resistance [10], and a
fine aggregate texture is highly correlated to rutting [11]. Two theories have been assumed
related to fine aggregate’s role for permanent deformation; first, fillers serve to fill the voids
between aggregate particles, thereby increasing the density and strength of the compacted
mixture, and secondly, the fine particles of the filler become suspended in the asphaltic
binder, forming a mastic. The suspended filler particles absorb binder components, hence
increasing the viscosity of the binder and, consequently, the toughness of the mixes. On
the contrary, Kandhal et al. [12] reported that coarse- or fine-graded Superpave mixtures
do not significantly differ in rutting resistance. In addition, the aggregate type and the
chemical composition also play important roles for the creep-recovery behavior of asphalt
mixtures [13]. For example, siliceous aggregate mixes show a better recovery property
than do calcareous aggregates. Thus, permanent deformation is a complex phenomenon
where aggregate, asphalt, and asphalt–aggregate interaction (adhesion) properties control
the overall performance. These properties may change over time as a result of associated
damages such as aging or moisture to the asphalt–aggregate interface and fatigue cracking.
Moreover, temperature-susceptible asphalt concrete and cold weather paving, which leads
to low density, are factors for permanent deformation. Other climatic factors that affect
rutting are temperature, precipitation, duration, type of loading, and loading extent.

The rutting of asphalt concrete is generally related to three mechanisms. The first mech-
anism is related to wear rutting in the wheel path, mainly due to studded tire abrasion [14].
The second mechanism of rutting is due to the viscoplastic strain accumulation (permanent
deformation) in the asphalt layer. This mechanism is caused by the densification (volume
change) and shear flow at a high temperature and stress level. The third form of rutting is
due to a substructural failure (subsidence) of the granular subbase, subgrade layers [15,16].
Furthermore, the development of permanent deformation is a gradual and simultaneous
mechanism of densification (closing of voids), shearing (slippage due to loss of adhesion
between aggregates and binder), and dilation [17] as well as the initiation and growth
of micro-crack damage [18]. Again, the accumulation of permanent deformation (vis-
coplastic strain) within the microstructure of asphalt concrete involves three phenomena:
(1) viscoplastic deformation associated with the asphalt binder, (2) rotation and slippage
of aggregates (evolution of the microstructure), and (3) crack initiation and propagation
(microcracks and macrocracks) [19–22]. The deformation resistance of asphalt concrete
is derived from the aggregate matrix and the viscous asphalt mastic. The microstructure
changes due to loading (such as air void reduction) and chemical transformation (such as
aging) causes the continuous modification of aggregate matrix and asphalt mastic with
time. In addition, the relaxation ability of the pavement upon load removal changes as the
microstructure is continuously modified [23–25]. Furthermore, the growth of permanent
deformation is highly dependent on the stress path and strain rate [26]. Excessive deviatoric
stress and the environment cause a nonlinear, plastic, and viscous flow phenomenon where
the stress–strain relationship shows strong nonlinearity [27] (especially at high strains
where the linear thermo-rheological properties are not valid).



Materials 2022, 15, 3480 3 of 27

In the literature, both permanent deformation and rutting terminologies are used inter-
changeably. The term “Rutting” is used to describe the pavement surface roughness due
to the vertical depression along the wheel path caused by the permanent deformation or
wear in the asphalt layer. Permanent deformation is the accumulation of irrecoverable
strain due to densification, shear deformation, and crack growth in asphalt concrete. In
this paper, the term permanent deformation is used to refer to the plastic and viscoplastic
strains (irrecoverable deformation). Therefore, rutting (RD, mm) is expressed as follows.

RD =
i

∑
i=1

hiεvp,i (1)

where hi is the ith layer’s thickness, and εvp,i is the viscoplastic/permanent strain in the
ith layer.

2. Objective and Scope

The aim of this review is to provide state-of-the art information on the developments of
permanent deformation modeling for asphalt concrete. In the review, the main permanent
deformation modeling theories, methods, models, and calibration tests are discussed in
detail. The focus of the paper is studying the advancement of constitutive modeling ap-
proaches (analogical, microstructural, and continuum-based) and synthesize the capacity of
the approaches, merits, and limitations. The robustness of permanent deformation models
to account for/couple simultaneous damages such as moisture, fatigue cracking, etc., were
also explored. The literature studied in this paper was collected using keywords (strings)
such as viscoelastic, viscoplastic, viscodamage, permanent deformation, rutting, continuum
damage, microstructure or micromechanics, mechanistic methods, creep-recovery, etc. The
organization of the paper is depicted in the flow chart in Figure 1.
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3. Permanent Deformation Prediction
3.1. Analytical Models

The evolution of the irrecoverable deformation of asphaltic material due to cyclic
loading is described by three distinct stages, as shown in Figure 2a. The primary zone



Materials 2022, 15, 3480 4 of 27

is described by the rapid accumulation of permanent deformation at a decreasing strain
rate. In the secondary zone is the constant rate of permanent deformation with strain
hardening, and the tertiary stage is characterized by the increasing rate of deformation
accumulate and crack formation. The flow time (FT) or the flow number (FN) is defined
as the time or number of loading cycles when shear deformation under constant volume
commences. Several researchers have verified that the asphalt concrete’s deformation
evolution showed all the three phases [28–32]. This three-stage deformation property is
also regarded as asphalt concrete material property. The most common and simulative
test used to characterize permanent deformation is the triaxial creep-recovery test. An
example in Figure 2b shows that the creep–recovery deformation is dependent on confining
stress. Confinement increases the friction between aggregates and increases the resistance
to deformation. Although there is no conclusive research, the in situ confining pressure of
asphalt concrete is approximated to be between 100 kPa and 225 kPa.
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Several analytical models have been proposed over several decades to predict the
permanent deformation of asphalt concrete. Sousa et al. [33] gave a summary of selected
analytical models. Some of the commonly used permanent deformation models and the
corresponding calibration tests are summarized in Table 1. These analytical models are
used to predict rutting from typical laboratory experimental data (axial stress–strain test
data). The models in Table 1 can be classified as empirical and mechanistic-empirical, which
are calibrated using simulative laboratory or field data. The models give the macroscopic
responses of the measured data and hardly relate the fundamental material properties.
Other models are regression equations to fit rutting data and lack the explicit physical or
material property for the modeling parameters.

3.2. Calibration Tests

The most common laboratory test protocols used cylindrical specimens of dimensions
(diameter by height) 100 mm by 150 mm for creep-recovery, or 150 mm by 50–70 mm
for creep. The shear strain from simple shear tests is also used to model permanent
deformation [16,34]. The coupling of shear and axial strain components in permanent
deformation modeling has not been performed yet in previous studies [35]. The indirect
tensile test is also used for permanent deformation with different specimen dimensions of
150 or 100 mm diameter by 50 to 70 mm thickness [36]. Moreover, the wheel tracking test is
used to simulate permanent deformation [37–39].
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Table 1. Some selected permanent deformation analytical models.

Model (Equation) Variables Description Reference Calibration Test

εp = aNb a, b Accurate for secondary stages, small
stress/strain deformation

Creep,
creep-recovery

εp = ANB + C
(
eDN − 1

)
Where, A = 115(σ1 −σ3)E∗

B =
0.182 + 0.294(σVM −σVL)

A, B, C, D

Most widely used analytical model
for permanent deformation in all

three creep stages; the first part is a
power function (for low stresses). and

the second part is for high stresses
(tertiary stage). (σVM—maximum

stress, σVL– plastic failure threshold;
σ1, σ3—axial and lateral stress,

E∗—stiffness)

Francken [40] Repeated triaxial
compression

εp
N = AN−m, A = J

(
Mr
σa

)−S J, S, m

Analytical Power Model based on
dissipated energy rate; A is a function

of resilient modulus and applied
stress

Khedr Safwan [41] Multiple step
dynamic test

εp = εoe−(
ρ
N )

β
εo , β, ρ Widely used analytical model to fit all

creep stages
Tseng and Lytton

[42]
Triaxial

creep-recovery test

εp =

δ1
(
1− eδ2N)+ δ3

(
eδ4N − 1

) δ1, δ2,
δ3, δ4

Analytical model for three creep
stages, mainly developed for

unbound materials (δ1, δ3—scale
primary and tertiary strain; δ2,

δ4—rate parameters)

Wilshire and
Evans [43] Creep tests

εp
εr

= 10k1 Tk2 Nk3 k1, k2, k3

Mechanistic-empirical
(MEPDG) Model

εr—resilient strain, T—temperature

Triaxial
creep-recovery test

εI
p = aNb

I ;

εII
p = εI

p + c(NII −NI);

εIII
p = εII

p + d
(

ek(N−NII) − 1
) a, b, c, d, k

Three-stage rutting model (Modified
Francken model) for accurate flow

number identification
Zhou et al. [28] Triaxial

creep-recovery test

εp = A + BN−Ce−DN A, B, C, D
Two phase, Linear exponent model

(mainly for unbound granular
materials)

Cerni et al. [44] Triaxial
creep-recovery test

εp = A+BN
(C+N)α

A, B, C, α

Incremental model: mechanistic
based as a function of viscoplastic
hardening (H and α), loading time,

deviatoric stress, and rest period (A, C
contain the parameters related to

initial behavior of permanent
deformation)

Choi et al. [45] Triaxial
creep-recovery

εp = A+BNred
(C+Nred)

α

Nred = N× 10αtot

αtot = αξp + ασd

αξ p = a1ξa2
p + a3

ασd = b1

(
σd
Pa

)b2
+ b3

a1, a2, a3, b1, b2,
b3, A, B, C, α

A mechanistic shift model based on
the load time and stress–shift function

(master curve). Pa is atmospheric
pressure, ξp is reduced loading time,

and σd is deviatoric stress

Choi et al. [46] Triaxial
creep-recovery

εp = a
(

Nb + ecN
)

a, b, c A three-stage model modified from
Francken model Fang et al. [4]

Wheel tracking,
Uniaxial cyclic
compression

As shown in Figure 3, different models have different accuracy for the same permanent
deformation data. It is evident that the fitting accuracy is variable especially in the primary
and tertiary stages of deformation. The incremental or Choi, Tseng–Lytton, and Francken
models showed close predictions of the measured data. The Francken model is the most
widely used for permanent deformation modeling [30].

Each model has a different accuracy of fitting all the creep stages of permanent defor-
mation. Some of the models presented above have clear limitations such as the implicit
empiricism, being unable to model load history and hardening–relaxation behavior, a lack
of capacity to couple other simultaneous damages, etc. As discussed in the next sections,
mechanistic permanent deformation prediction methods are aimed to resolve the limi-
tations of empirical/mechanistic-empirical models. The latest mechanistic models have
relied on rigorous material models, which are based on fundamental theories of mechanics,
stress–strain relationships, and environmental factors.
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4. Permanent Deformation Damage Modeling
4.1. Stress–Strain Response

The stress-, time-, and temperature-dependent viscoelastic, viscoplastic, and viscodam-
age properties of asphalt concrete material offered considerable challenges to accurately
model the response under variable loading conditions. The response of asphalt concrete is
stress path-dependent [26]. It is also a rate- and history-dependent material [47,48]. The
linearity limits of asphalt concrete are 150 and 100 micro-strain in compression and tension,
respectively [49], but others suggest 122 micro-strain as a limit for linear response [50].
Permanent deformation damage is induced on the asphalt beyond this strain limit at high
temperatures. Moreover, the stress–strain evolution is highly dependent on the stress
and strain levels, number of loading cycles (loading time), and temperature range. In a
typical creep-recovery test, the stress–strain hysteresis loops evolve nonlinearly as shown
in Figure 4a. The loop has the recovery and non-recovery (permanent deformation) parts.
In each creep–recovery cycle, the deviatoric stress causes a non-recoverable strain and
creates an open stress–strain hysteresis loop. Figure 4b shows the stress–strain responses
of a constant rate compressive strength test (without recovery time). Asphalt concrete
undergoes creep deformation during the load phase and a delayed recovery upon the
load removal during the rest period. Traditionally, the additive decomposition of strain is
applied to separate the permanent strain and recoverable strain from the total strain.
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The schematic Figure 5 shows the strain components of a single pulse creep-recovery
loading. The strain components can be separated into four strain components [51,52]
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(elastic εe, viscoelastic εve, plastic εp, and viscoplastic εvp). The elastic (time-independent)
and viscoelastic (time-dependent) are recoverable, while plastic (time-independent) and
viscoplastic (time-dependent) strains are non-recoverable parts of total strain. The total
strain is expressed as follows.

εtot = εe + εve + εp + εvp (2)
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recoverable strain is dependent on the rest period. For tests with short rest periods, the
computed viscoplastic strain can be overestimated [53]. The limitation of strain decomposi-
tion is from the inherent interaction between the viscoelastic and viscoplastic strain (the
viscoelastic response is also a function of viscoplastic deformation history).

4.2. Constitutive Models

The computational modeling of asphalt concrete poses difficulties mainly due to the
material nonlinearity, complexity to characterize under repeated and moving loads, and
variable environmental conditions (temperature, moisture, etc.) [35,54]. The constitutive
equations for the linear viscoelastic strain (εve) in undamaged conditions is defined by the
Boltzmann superposition principle.

εve(t) =
∫ t

0
D(t− τ)dσ(τ)

dτ
dτ (3)

σ(t) =
∫ t

0
E(t− τ)dεve

dτ
dτ (4)

where t is time; E(t) and D(t) are relaxation and creep compliance moduli, respectively;
and τ is the integration variable. Prony series forms of the creep compliance and relaxation
moduli are expressed as follows.

D(t) = Do +
N

∑
i=1

Di

[
1− exp

(
− t
τi

)]
(5)

E(t) = E∞ +
M

∑
i=1

Ei

[
exp

(
− t
ρi

)]
(6)

where N and M are the total numbers of Prony terms; Do, Di, and τi are creep compliance
model coefficients; and E∞, Ei, and ρi are relaxation model coefficients. Often, D(t) is
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obtained from E(t) data via the interconversion technique [55,56] (
∫ t

0 E(t− τ)dD(τ)
dτ dτ = 1).

Once the creep compliance function is defined, the viscoelastic strain can be determined,
and the viscoplastic strain is calculated from the total strain by the additive decomposition
technique. A sufficient rest period is necessary to completely remove the delayed recovery
strain from viscoplastic strain evolution. Cao and Kim [53] showed that 99% of viscoelastic
strain is recovered for the 0.4 s pulse period and 100 s rest duration in the first cycle and 98%
in cycle number 10 within 60 s. Therefore, to obtain a true viscoplastic strain, about 100 s
rest period is required [45]. Experimental observations showed that the total deformation
in each cycle decreases due to hardening as the number of load cycles increases. Since
the viscoelastic strain is obtained from a separate dynamic modulus test (i.e., a constant
viscoelastic strain), subtracting a constant cyclic viscoelastic strain from a decreasing total
strain can result in a negative viscoplastic strain. That means a decreasing viscoelastic
deformation model should be proposed. It is the microstructural change due to viscoplastic
deformation that causes a change in viscoelastic deformation. This interaction between
viscoelastic and viscoplastic deformation is referred to as viscoelastic–viscoplastic coupling,
according to [53]. There is no available literature that couples the two deformations.

Analogical Models

The family of different analogical models has been used to model the viscoelastic–
viscoplastic response of time-dependent materials [57–60]. The common classic mechanical
models are spring, dashpot, slip device, pot, parabolic elements, etc., and the combination
of these elements to analogs. The mechanical elements are advantageous to visualizing
the stress and strain responses using the analogs. The Maxwell model (for the viscoelastic
model), Kelvin model (for creep response), and the Burgers model are used to model
the viscoelastic and viscoplastic strain (Figure 6a,b). The governing differential equations
(viscoelastic constitutive equations) were developed from a number of springs and dashpots
arranged in series and parallel. In the generalized Maxwell model, the same strain is shared
across all elements, and the stress is additive, while in the generalized Burgers model
the strains are additive, and the stress is the same for each element. It can be noted here
that the generalized Burgers model shares the same framework as classical viscoplasticity
models and allows nonlinearities based on stress to be accommodated more easily [57]. The
viscoelastic and viscoplastic components can be calculated using the hereditary integral
formulation as follows.
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εve(t) = Dve(0)σ(t) +
∫ t

0
σ(τ)

dDve(t− τ)
d(t− τ) dτ (7)

εvp(t) = Dvp(0)σ(t) +
∫ t

0
σ(τ)

dDvp(t− τ)
d(t− τ) dτ (8)

Dve and Dvp are viscoelastic and viscoplastic creep compliance. The hereditary inte-
grals in Equations (7) and (8) are different from the one in Equation (3). A formulation
based on stress and the rate of compliance rather than a formulation based on the rate of
stress and compliance is advantageous to avoid problems due to the sudden application
of a stress in which the rate of stress can be extremely high (e.g., in a creep test). The first
derivatives of the viscoelastic and viscoplastic creep compliance for a generalized Burg-

ers model are dDve(t−τ)
d(t−τ) = ∑N

i=1
1
λi

e−(t−τ)/τi and dDvp(t−τ)
d(t−τ) = 1

λ∞
, Dve(0) = Dvp(0) = 0,

τi = λi/Ei, where λi is the viscosity of the ith Voigt element; Ei is the modulus of elasticity;
and λ∞ is the viscosity of viscoplastic element. A power function for creep compliance is
also used for small stress cases. Moreover, the model in Figure 7c is a modified Burgers
model with a plasticity element for asphalt mixture [60,61]. The additional elastoplastic
network composed of the spring and slider in parallel is used. The limit stress in the slider
modeling plasticity is denoted by σo. The authors also extended the fractional rheological
model for nonlinear elastic, nonlinear viscous, and plastic properties and formulated a
differential equation to characterize the viscoelastic–plastic response of asphalt concrete.
Other similar analogical models such as the 2S2P1D (two springs, two parabolic. and
one dashpot elements) in Figure 7a and DBN (Di Benedetto–Neifar) in Figure 7b are also
frequently used to predict linear viscoelastic and creep responses (for a small number of
cycles) for binders and bituminous mixtures [58,59,62]. The DBN model is a special case of
the Kelvin–Voigt model where the DBN model has an elastoplastic (EP) element instead of
an elastic element only.
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for bituminous mixtures, and (c) slip device for the viscoplastic model with viscoelastic component.

From these models, the governing differential equation for creep compliance or stress
and strain functions is derived to predict the permanent deformation response of asphalt
concrete.

One can note that the parabolic elements (k, h) in 2S2P1D model, the slider element
in (Figure 6c), and the spring-pot element in the fractional model (Figure 6d) have similar
arrangements. The parabolic creep elements in 2S2P1D (Figure 7a), the elastic-plastic (EP)
elements in DNB (Figure 7b) and the spring-pot elements in fractional model (Figure 6d)
have also similar functions to model the elastoplastic response of asphalt concrete. The slip
device shown in Figure 7c is placed in parallel with linear viscoelastic (LVE) element which
has similar property as the fractional model in Figure 6c. The slip device functions as an irre-
versible deformation, which means that whenever the LVE device relaxes during unloading,
the slip device locks, thereby disallowing strain recovery. Based on this phenomenology, the
viscoelastic integrals are proposed for hardening and permanent deformation, considering
that viscoelastic deformation, viscoplastic deformation, and hardening function are history
dependent. Subramanian et al. [48] proposed a viscoelastic-like viscoplastic constitutive
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model for the permanent deformation of asphalt concrete. The proposed model takes the
following form in Macaulay brackets.

εvp(t) = 〈
∫ t

0
D1(t− τ)

dσvp(τ)

dτ
dτ〉 (9)

H(t) = Ho + 〈
∫ t

0
D2(t− τ)

dσH(τ)

dτ
dτ〉 (10)

where H(t) is the material hardening variable, Ho denotes the initial hardening state, σH(t)
and σvp(t) are functions of deviatoric stress for hardening and viscoplastic deformation
calculation, and D1(t) and D2(t) are compliance functions. The two stress terms are
approximated by power functions, as follows.

σH(t) = H1(σd(t))
q1 (11)

σvp(t) =
(G1σd(t))

p1 + (G2σd(t))
p2

(H(t))α
(12)

where σd(t) is the deviatoric stress history; and H1, q1, G1, G2, p1, p2, and α are parameters.
This model considers only hardening during loading pulses and ignored the softening
mechanism. Based on the model in [48], Cao and Kim [53] proposed a viscoplastic model
using “internal stress” as the hardening variable. They hypothesized that as soon as the
deformation of the LVE device is constrained (in Figure 7c), the internal stress inside the
device starts to develop due to stress relaxation. As illustrated in Figure 8, the internal
stress decreases with time due to LVE device relaxation before the next load cycle but has
a direction opposite to the external load. Once the applied stress rises above the level
of the concurrent resisting internal stress in the LVE device, the slip device is unlocked
and becomes frictionless, allowing the overall deformation of the mechanical analog to
increase in a viscoelastic fashion. The proposed viscoelastic-type viscoplastic model takes
the following form [53].

εvp(t) = 〈
∫ t

0
D(t− τ)dσd(τ)

dτ
dτ〉 (13)
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This model introduces the coupling of viscoelastic and viscoplastic responses using the
internal stress as a hardening variable and viscoelastic-like hardening–relaxation spectrum.

4.3. Continuum Based Models
4.3.1. Damage Density

Continuum mechanics is a standalone and widely applied theory for damage formula-
tion. The concept of continuum damage mechanics (CDM) was pioneered by Kachanov [63],
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who introduced a scalar measure called damage variable or damage density φ, which is
defined as follows.

φ = 1− A
Ad

=
Ad −A

Ad
(14)

where A—real (intact) area, Ad—damaged area, Ad−A is the area of micro-damage, φ = 0
means the initial state, and φ = 1 mean complete rupture. Based on the damage density
function and effective area, the effective stress concept in CDM is defined as follows.

σij =
σij

1−φ (15)

where σij is the effective stress tensor in an undamaged configuration; and σij is the nominal
Cauchy tensor in damage configuration. For more accurate modeling, the damage evolution
is modified as follows [64].

σij =
σij

(1−φ)2 (16)

The classic Kachanov–Robotnov damage models [63,65] were extensively used for
creep damage (φc) modeling for different materials.

Kachanov :
.
φc = G

( σ
A

)r
(1−φc)

−k (17)

Robotnov :
.
φc =

C1σ
γ

(1−φc)
η ,

.
φc =

C2 exp(kε)
(1−φc)

η (18)

where A, G, r, k, and C1, γ, η, C2, k are material constants. Recently, Darabi et al. [64]
developed a continuum viscodamage model using the effective total strain (εT

ef), viscoplastic
hardening, and temperature coupling functions.

.
φc = Γϕo

[
Y(1−φc)

2

Y0

]q

exp
(

kεT
ef

)
G(T) (19)

where Γϕo is reference damage viscosity, Y0 is reference damage force, Y is damage driving
force in effective configuration, G(T) is temperature coupling term, and k and q are constants.

4.3.2. Viscoplasticity

The classic Perzyna viscoplastic hardening rule [66] assumes a constant hardening
variable for a cyclic creep-recovery load, defined as

.
εvp = Γvpf

∂F(σ)
∂σ

(20)

where Γvp is the viscoplastic fluidity parameter such that 1/Γvp is a measure of viscoplastic
viscosity; and ∂F(σ)

∂σ is a measure of the direction of viscoplastic strain. The classical
hardening assumes that the viscoplastic strain rate decreases progressively with an increase
in loading time. However, the hardening function is not constant due to the hardening–
relaxation behavior [23]. Different researchers pointed out that the Perzyna-type rate
models have limitations such as that the model cannot capture the load history effect, the
relaxation or softening behavior during the rest period is ignored, and it assumes a constant
hardening parameter [23,47,48]. As illustrated in Figure 9, the viscoplastic strain rate is
no longer a decreasing function. The quantity qvp is the hardening–relaxation internal
state variable that memorizes the maximum experienced viscoplastic strain for which the
hardening recovery has occurred.
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4.4. Mechanistic Methods
4.4.1. Pavement Analysis Using the Nonlinear Damage Approach (PANDA)

Pavement analysis using the nonlinear damage approach (PANDA) is the latest gener-
ation of mechanistic pavement design approach [67]. The PANDA is a mechanistic-based
pavement analysis method that is founded on three classic theories: (1) Schapery’s [68] non-
linear viscoelasticity, (2) Perzyna’s [66] viscoplasticity, and (3) Darabi’s [64] viscodamage
constitutive relationship. Based on the three constitutive equations, the PANDA approach
has an unlimited capacity to couple different damage mechanisms of pavement structures.
The approach coupled the temperature, rate, and time-dependent viscoelastic and viscoplas-
tic models to predict the permanent deformation of asphalt concrete. For example, healing,
aging, hardening–relaxation, moisture-induced damage, and other behaviors are conve-
niently incorporated into the PANDA approach [69–73]. In Figure 10, the development of
the PANDA model and the constitutive equations are summarized.

(1) First, the linear and nonlinear viscoelastic variables are obtained from dynamic mod-
ulus (for linear viscoelastic) and creep-recovery tests (nonlinear viscoelastic). The
nonlinear viscoelastic strain is formulated using the well-known Schapery’s viscoelas-
tic constitutive equation [68].

(2) Secondly, the viscoelastic strain is deducted from the total strain to extract the vis-
coplastic strain from the same creep-recovery test data using the strain decomposition
principle. Then, the classic Perzyna’s viscoplasticity [66] theory is adopted to predict
the viscoplastic strain evolution. The Drucker–Prager yield surface function is often
used [23,74].

.
εvp = Γvp〈 f

σo
y
〉

N ∂F(σ)
∂σ

(21)

(3) The third foundation of the PANDA constitutive model is the viscodamage model [64]
using the continuum damage mechanics (CDM) theory. The effective strain is used
in effective configuration. The viscodamage model mainly predicts the permanent
deformation in the tertiary creep.

Therefore, the PANDA model encompasses nonlinear viscoelastic, viscoplastic (harden-
ing), and viscodamage responses. The thermo-piezo-rheological viscoelastic properties [75]
coupled with the viscoplastic yield criteria (the Drucker–Prager yield surface) is an integral
part of the PANDA method [76]. Several material parameters need to be optimized to
calibrate the viscoelastic–viscoplastic–viscodamage, the hardening–relaxation, moisture
damage, and healing responses of asphalt concrete. The parameters and their physical
meaning are presented in Table 2 Despite the unlimited capacity of the PANDA approach,
calibrating the large number of model parameters is a laborious task. Hence, a system-
atic procedure is followed to obtain material parameters with a smaller number of tests.
Once robust mechanistic constitutive models are developed and calibrated, the numerical
implementation (finite element modeling) is performed using the user-defined material
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(UMAT) tool to define material laws in commercial software such as ABAQUS. Finite ele-
ment modeling (FEM) is conducted at the desired modeling space (2D or 3D), and realistic
tire–pavement contact [77], traffic, and full pavement structure (asphalt, base, subbase, and
subgrade), etc., can be constructed [67,76,78–80]. Although the PANDA approach is still at
a research stage, it is evident that advantages as well as limitations can be listed. In Table 3,
some of the merits and limitations of the PANDA are described. The calibration of PANDA
models used uniaxial creep, uniaxial constant stress creep-recovery, the crosshead strain
rate test, and multiple stress creep tests, etc. The influence of confining pressure on the
linear viscoelastic as well as nonlinear viscoelastic responses is significant [75,81]. Most
studies that tried to calibrate the PANDA models used uniaxial test data, or some used a
single confining pressure.
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Table 2. Summary of material parameters of the constitutive equations and physical meaning in
Figure 10.

Parameter Physical Meaning Theory/Domain Calibration Test

Viscoelastic Model Parameters [68,82]

Do
Instantaneous creep compliance. Characterizes the
instantaneous elastic part of the viscoelastic strain Linear viscoelastic

Creep compliance or
Dynamic Modulus

λn
nth retardation time. A measure of the required time for the

viscoelastic material to relax the induced stress

Dn

nth coefficient of the Prony series associated with the nth
retardation time kn. These parameters characterize the

transient compliance of the material

go, g1, g2

Nonlinear viscoelastic parameters, where go measures the
reduction or the increase in the instantaneous compliance; g1
defines the nonlinearity effects in the transient compliance;

and g2 is the nonlinear parameter accounting for the loading
rate effects on the creep response

Schapery’s Nonlinear
viscoelastic Creep-recovery

Viscoplastic Model Parameters [64,66,69]

Γvp Viscoplastic fluidity parameter, such that 1/Γvp is a measure
of viscoplastic viscosity Perzyna’s Viscoplastic

(with Drucker–Prager
yield criteria)

Creep, creep-recovery
(creep part), constrain

strain rate test
κo, κ1, κ2

Isotropic hardening parameters, where κo defines the initial
yield strength; κo + κ1 defines the saturated limit of the

hardening function; and κ2 defines the hardening rate and
controls the shape of the hardening function versus the

effective viscoplastic strain (
.
ε

vp
e )

N Viscoplastic rate sensitivity exponent and describes the
nonlinear rate dependency of viscoplastic response

α , β
Govern the pressure sensitivity of the yield surface and

plastic potential functions. Related to the angle of friction in
the asphalt concrete

dvp Model parameter distinguishing viscoplastic responses in
extension and contraction modes of loading

Visco-damage Model Parameters [64]

Γvd Visco-damage fluidity parameter (1/Γvd is a measure of
damage viscosity)

CDM (Tertiary creep) Creep testsq Stress dependency parameter. Defines the sensitivity of the
damage evolution due to stress level

Yo
The reference damage force obtained at a reference stress of a

creep test

k Strain exponent parameter. Defines the sensitivity of the
damage evolution due to strain level

dvd Model parameter distinguishing visco-damage responses in
extension and contraction modes of loading

Micro-damage healing model Parameters [83]

Γh Micro-damage healing fluidity parameter, such that 1/Γh is a
measure of healing viscosity

CDM for healing

k1, k2
Healing model parameters that describe the effect of the
damage and healing histories on the healing evolution

Temperature coupling terms parameters [64]

θ1, θ2, θ3
Temperature sensitivity model parameters for viscoplastic,

viscodamage and microdamage healing, respectively Time–temperature
superposition

Dynamic Modulus,
Creep complianceTo Reference temperature

Hardening–relaxation Model Parameters [24,25]

Γh−r
The hardening–relaxation fluidity parameter, such that

1/Γh−r is the hardening–relaxation retardation time
controlling the rate of the hardening–relaxation

Creep-recovery (at
different rest periods)

S1, S2, S3

Hardening–relaxation rate-sensitivity parameters that
describe the relaxation behavior of viscoplastic hardening due

to recoverable potential during rest period

Moisture damage Model Parameters [84]
p Adhesion or cohesion moisture damage parameter CDM for moisture

damage Pull-off testδ Parameter that describes the moisture damage history
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Table 3. Advantages and limitations of the PANDA Model.

Advantages Disadvantages

n The approach is based on fundamental
theories of mechanics (mechanistic)

n Unlimited modeling capacity
n The material properties and temperature

coupling are integrated
n The approach has the capacity to couple

different damage types (such as moisture,
fatigue cracking, etc.) with permanent
deformation

n It enables realistic rutting prediction with
full pavement structure modeling using
finite element method (3D modeling)

n Moving loads can be modeled, which
was not possible in traditional methods

n etc.

n Complex constitutive equations
n Large number of modeling parameters
n It requires many different calibration tests
n It is computationally and experimentally

costly
n It is at development stage and some

theories have limitations (e.g., classic
viscoplasticity theory)

n The numerical implementation is based
on user material (UMAT) model (not
standalone)

n etc.

4.4.2. Microstructural Based Models

The micromechanics approach is probably the best way to account the effects of
individual mixture constituents and their interactions and the anisotropy of heterogenous
asphalt mixture. The microstructure change in asphalt concrete is mainly due to the friction
between the aggregates and interlocking bond breakage. This mechanism is responsible
for the accumulation of permanent deformation rather than the recoverable part of the
deformation. The continuous increase in the resistance of the material due to the permanent
microstructure rearrangement is physically related to the strain hardening. The hardening
parameter reflects the combined effect of the cohesion of asphalt binders, the adhesion
properties between binder and aggregate, and the frictional properties of the aggregate
structure. The fabric of granular media refers to the size, shape, and arrangement of the
solid particles and the associated voids. The scalar quantity, like void ratio, is not capable of
characterizing the directional nature of fabric and describing the state of packing of granular
materials [85]. The microstructure approach is necessary to consider the directional nature
of granular fabric. The approach is capable of modeling nonlinearities such as heterogeneity,
aggregate distribution, anisotropy, crack, and air void. The micromechanics coupled with
the continuum damage approach is a powerful way to model the permanent deformation of
granular asphalt concrete with an appropriate representative volume element (RVE) [19–22].
The fundamental element of the granular microstructure is a directional unit vector m and
the vector magnitude ∆ (Figure 11).

∆ =
1
M

[
M

∑
k=1

(
cos 2θk

)2
+

M

∑
k=1

(
sin 2θk

)2
] 1

2

(22)

where M is the total number of objects analyzed in an image; and θk is the orientation
of the unit vector n and ranges between −90 and +90◦. Theoretically, the value of ∆ is
between zero and unity; ∆ = 0 indicates that objects are completely randomly distributed,
which is analogous to isotropic materials; and ∆ = 1 indicates that objects are entirely
oriented in one direction, which is analogous to perfectly transverse anisotropic materials.
Oda and Nakayama [86] introduced a symmetrical microstructure tensor Fij that gives
a measure of the two-dimensional anisotropy produced by the preferred orientation of
non-spherical particles.

Fij =

 (1− ∆)/(3 + ∆) 0 0
0 (1 + ∆)/(3 + ∆) 0
0 0 (1− ∆)/(3 + ∆)

 (23)
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Figure 11. Two-dimensional particles orientation for micromechanics modeling (orientation, θ and
vector, m).

For simplicity the anisotropy value can be taken as constant (the initial value). For
isotropic elements, F11 = (−4∆)/3(3 + ∆) and F22 = F33 = (2∆)/3(3 + ∆).

The microstructure tensor is incorporated in the Drucker–Prager yield function by
modifying the first and second invariants. The classical Perzyna’s viscoplastic and con-
tinuum damage models are then used to formulate the microstructure-based viscoplastic
strain model to characterize permanent deformation of asphalt concrete. The detail deriva-
tion of the model can be found in the study [19,20,86]. The final form of the viscoplastic
model in a triaxial compression test (axial strain) based on micro-structural anisotropy
takes the following form.

.
εvp =

[√
X− β(1−Y)

]
√

3
2 X + 3βY

√
X + 3β2 + 3

2 β2Y2

√
.
ε

vp
ij

.
ε

vp
ij =

.
ε

vp
11 (24)

where X = 1
3 −

4
9

√
24µ

(
∆

3+∆

)2
, Y = 4

3

√
24λ

(
∆

3+∆

)2
, and λ and µ are anisotropy coefficients

that reflect the effect of the aggregate anisotropic distribution on the confining and shear
stresses, respectively. The viscoplastic model considers phenomena including the effect of
the binder fluidity (Γ); confinement and aggregate friction (α); aggregate interlocking and
dilation (β); binder cohesion and its adhesion to the aggregates (κ); anisotropy of aggregate
distribution (∆); and microstructure damage (ξ). As shown in Figure 12, the anisotropy
parameter significantly contributes to compressive viscoplastic behavior and has little
effect or no effect on the tensile and linear viscoelastic property [22]. In a conventional
continuum method (isotropic mode), phenomenologically motivated, microstructural-
based viscoplastic models have been developed, for example in [23,25] and others.
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with permission from [87]. 2005, International Journal of Plasticity, Elsevier.

Microstructure modeling is directly integrated with the utilization of digital tech-
nologies to capture the particles arrangement, deformation, etc., in the granular materials
packing. Digital image correlations, X-ray chromatography, and other tools were used
for asphalt concrete. Coleri et al. [88] used the X-ray computed tomography (CT) method
to model asphalt concrete rutting in a full-scale heavy vehicle simulation (HVS) test site.
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The object segmentation and processing procedure using a digital camera is shown in
Figure 13, and an example of the discretization phases is shown in Figure 14. Using the
digital technology, parts of a heterogenous mixture can be easily dissected, modeled, and
analyzed into the FEM and other post processes.
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Figure 14. The procedure followed for aggregate domain creation: (a) unprocessed 2D X-ray CT
image used for the development of image stacks (left: before HVS trafficking and right: after HVS
trafficking), (b) 3D images developed from X-ray CT image stacks (left: before HVS trafficking and
right: after HVS trafficking), and (c) 3D aggregate volumes (left: before HVS trafficking and right:
after HVS trafficking). Note: direction of HVS traffic is out of the page. Reprinted with permission
from [88]. 2012, Construction and Building Materials, Elsevier.
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In general, the microstructural based micromechanics modeling is ideal to consider
the effect of individual constituent particles in viscoplastic evolution [89]. However, this
approach needs image analyzing tools, discretization, and finite element modeling. Several
material behaviors such as hardening–relaxation, healing, stress history, viscodamage, etc.,
need to be integrated for accurate formulation. Limited literature can be found in this
area. With the advancement of morphological image analyzing tools, the microstructural
approach will be the next active research area to characterize permanent deformation.

4.4.3. Finite Element Simulation

Even if pavement is considered a homogeneous, isotropic, elastic, multi-layered sys-
tem, the calculated stress–strain distribution in the structure under the simple action of
a passing wheel is very complex. For a realistic modeling of pavements, each layer and
material constituent should be modeled with the appropriate material constitutive law, and
the interaction of each layer should be analyzed as a pavement system. The finite element
method is the most versatile approach in the mechanistic pavement design approaches.
The FEM is an integral part of the PANDA approach; the modeling space (2D or 3D),
wheel loading configuration, constitutive law, etc., are of great importance [67,69,76,79].
Collop et al. [57] implemented Burgers analogical constitutive model into FEM to predict
viscoplastic deformation. A comprehensive FEM study by [80] investigated the effect of
loading scenario in 2D and 3D modeling spaces and implemented the PANDA constitu-
tive law. They investigated 11 different loading modes (given in Table 4) and compared
three different material constitutive equations: elasto-viscoplastic, viscoelastic–viscoplastic,
and viscoelastic–viscoplastic–viscodamage or PANDA. Based on wheel tracking test data,
they concluded that the 2D model significantly overestimates permanent deformation
(rutting) compared to the 3D moving load case (which is the most realistic case). More-
over, they found that the viscoelastic–viscoplastic–viscodamage model gives higher rutting
damage predictions compared to elasto-viscoplastic and viscoelastic–viscoplastic models.
The viscoelastic–viscoplastic and elasto-viscoplastic models give close predictions, where
the form gives a still higher rutting prediction. On the contrary, another study using
the viscoelastic–viscoplastic–viscodamage constitutive model and 3D FEM modeling of
tire–pavement interaction showed that the pulsatile and equivalent loading assumptions
overestimated rutting compared to the realistic moving load [90]. The FEM simulation has
been applied for different viscoelastic, viscoplastic, and crack modeling. The linear vis-
coelastic simulation has been modeled using the analogical models (e.g., Maxwell model),
the Prony series, and time–temperature superposition principles in commercial software
such as ABAQUS.

Table 4. The commonly used FEM simulation loading assumptions.

Loading Approach

Mode Load Configuration Pulse
Loading

Equivalent
Loading

Moving
Loading

2D Single wheel (plane strain)
√ √ √

Single wheel (axisymmetric)
√ √ √

Single wheel (moving loading)
√

Multiple wheel (moving loading)
√

3D Single wheel (rectangular)
√ √ √

Whole wheel path
√ √

Single wheel (circular)
√ √

Single wheel (moving)
√

Multiple wheel
√

√
FEM simulation applied.
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5. Permanent Deformation and Fatigue Interaction Damage

Permanent deformation and fatigue cracking are the two dominant pavement damage
mechanisms. Extensive research has been conducted to characterize the two damages
independently. Advanced mechanistic models were proposed [64,83,84,91]. Fatigue dam-
age occurred due to the formation and propagation of cracks due to repetitive loads. The
bottom-up cracking of the asphalt concrete layer was the traditional fatigue mechanism.
However, experimental and field observations showed that top-down cracking due to tire
compression is also the cause of fatigue damage [92,93]. The crack initiation in compression
occurs when the viscoplastic strain hardening reaches saturation at the flow number. The
extra energy at maximum saturation (hardening) is consumed to initiate microcracks and
increase phase angle. When asphalt with pre-existing cracks is subjected to a compressive
load, wing cracks develop and propagate parallel to the load direction [94,95], contrary
to tensile loading (cracks grow perpendicular to the stress direction). When pavement
temperature is considered, fatigue cracking is critical at low temperatures, and permanent
deformation is a high-temperature damage. At elevated temperatures, the critical energy
threshold (the mixture relaxes faster) becomes more resistant to micro-cracks and needs
more energy to initiate cracks [96]. On the other hand, deformation via plastic flow (aggre-
gate re-orientation) is dominant at high temperatures. When asphalt concrete is subjected
to repetitive loading, energy is dissipated by viscous flow and/or plastic flow, leading to
fatigue cracking and/or permanent deformation [97], and some part of the energy is transferred
into heat [50]. The energy dissipation caused material ductility exhaustion, hardening, and
viscoplastic flow. The classic energy balance principle states that the decreasing rate of
potential energy (stored and recoverable) during crack initiation is equal to the dissipated
energy rate due to plastic/viscoplastic deformation and crack opening, and different failure
criteria were proposed [98,99]. The dissipated energy (W) in a cyclic load is the area under
the stress–strain hysteresis and expressed as follows.

W =

τ∫
0

σ(t)
∂ε(τ)

∂τ
dτ (25)

where τ is the integration variable, σ is the stress function, and ε is the strain function. One
hysteresis cycle consists of the total strain energy, which is the sum of damage-causing
dissipated energy (the hysteresis area) and the recovery strain energy (stored energy).

The classic approach considered rutting and fatigue separately (cf. Figure 15a) [100].
However, both fatigue and permanent deformation damages are caused by the same load
in pavements. The difference is which damage mode dominates at different temperatures.
Therefore, a realistic damage modeling should consider the simultaneous damage evolution
of fatigue and permanent deformation. An interaction domain of rutting and fatigue can be
shown in Figure 15b [101]. For an interaction damage condition, the dissipated energy (in
Equation (26)) can be decomposed further into permanent deformation and fatigue damage-
causing energies. As discussed above, the existing models for permanent deformation
or fatigue damages are based on the idealized hysteresis loops of pure creep and pure
fatigue. Only very few attempts can be found; for example, Luo et al. [99] investigated the
permanent deformation behavior of pre-cracked asphalt concrete.

In a cyclic creep-recovery test, material hardening grows, and the hysteresis loops shift
horizontally due to the accumulation of irrecoverable viscoplastic strain (open loops). On
the other hand, in the idealized fatigue test (either stress- or strain-controlled), cyclic load
is applied that causes stiffness reduction and a phase angle increment with a negligible
viscoplastic strain (hysteresis loops do not shift horizontally or loops are closed). In
simultaneous fatigue-permanent deformation damage, the material hardening contributes
to initiate fatigue cracking at intermediate temperatures, and the fatigue cracks accelerate
the microstructure change and contribute to viscoplastic deformation. The viscous flow
creates a plastic zone (the crack initiation point), and fatigue cracking can evolve without
plastic flow (aggregate movement and re-orientation). That means the simultaneous
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occurrence of the two damages cannot be ignored as they are interdependent. Thus, the
hysteresis loops can be modified by superposing the two loops (Figures 4a and 16a) to
account for the interaction of the two damages, as shown in Figure 16b. Similar fatigue–
creep interaction loops can be found elsewhere for steel [102,103]. A detailed discussion of
the interaction of the two damages is presented in next sections.
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One of the limitations for interaction damage modeling is the lack of integrated testing
protocol for permanent deformation and fatigue. Some attempts were made, such as Indi-
rect Tension (IDT) testing for deformation and fracture and applying a haversine loading
waveform in fatigue tests [104,105]. The haversine load is used with the assumption that
the pulse can be decomposed into pure creep and pure sinusoidal components. How-
ever, the creep-recovery behavior cannot be captured with such approaches. In another
study, Zhang et al. [106] conducted a destructive dynamic modulus test to simultaneously
characterize permanent deformation and fracture properties using 16 different asphalt
mixtures. In their work, they successfully modeled viscoelastic, viscoplastic, and viscofrac-
ture properties using a new destructive dynamic modulus test. Another reason for the
independent treatment of fatigue and rutting damages on asphalt concrete damage is the
perception that permanent deformation (creep) is expected in the early life of pavements,
while fatigue is high-cycle damage after asphalt concrete accumulates sufficient hardening
and age. However, this precedence is dependent on several factors such as temperature,
loading range (loading time, rest period, deviatoric stress), material stiffness, number of
cycles, and other climatic factors. For example, fatigue cracking can evolve before creep
damage in stiff and thick pavements. The top-down cracking due to tire compression can
develop without permanent deformation. Some field and laboratory observations have also
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shown that fatigue cracking accompanied rutting [92]. Therefore, both the creep–fatigue
and fatigue–creep damage sequences can occur in asphalt concrete pavements [99].

The main objective in the design and service life estimation of asphalt concrete is to
estimate the number of cycles (Nf) to initiate fatigue cracking and/or the critical strain
(εc—rupture strain) that causes the flow or rutting of asphalt concrete. The simplest way to
evaluate the interaction damage of creep and fatigue is separately calculating the creep and
fatigue damages and adding them together.

∑
n

Nf
+ ∑

ε

εc
= 1 (26)

By the life fraction rule, the sum of fatigue damage (φf) and creep damage (φc) equals
a certain damage density value, φ. The nonlinear summative decomposition of damage
can be expressed as follows for a more general representation.

dφ = dφc + dφf = fc(ε,σ, T,φc +φf)dNc + ff(ε,σ, T,φc +φf)dNf (27)

The classic continuum damage models were used to define the damage rates for
creep [63,65] and fatigue damage [107,108]. Lemaitre et al. [109] proposed sequential dam-
age interaction, and the total damage accumulation during one cycle of creep followed by
fatigue and fatigue followed by a creep sequence can be expressed as follows (respectively).

φc_f =
∫ nc

0

δφc
δN

δN +
∫ nc+nf

nc

δφf
δN

δN (28)

φf_c =
∫ nf

0

δφc
δN

δN +
∫ nf+nc

nf

δφf
δN

δN (29)

For time-dependent materials such as asphalt concrete, damage densities φc_f and φf_c
will not be the same for the same number of cycles in both sequences. This is because of
the different modes of damage formation in creep and fatigue and the possible interactive
damage one on another. A parameter can be defined for “interactive” damage. Skelton
et al. [101] presented analytical expressions to allow creep to be modified by fatigue and
fatigue to be modified by creep. The combined equation for the “creep–fatigue” and
“fatigue–creep” interactive damages can take the following form.

φf
1− Icfφc

+
φc

1− Ifcφf
= 1 (30)

The interaction coefficients Icf (creep on fatigue) and Ifc (fatigue on creep) can take any
value between zero and unity. The damage density for fatigue and creep can be determined
by rearranging terms and solving a quadratic solution. In the creep–fatigue sequence, it
is assumed that pure creep is followed by fatigue damage. The fatigue damage part is
modified to account for the pre-existing creep damage. Therefore, the creep–fatigue and
fatigue–creep interactive damages can be expressed as follows, respectively.

φc +
φf

1− Icfφc
= 1, φf +

φc
1− Ifcφf

= 1 (31)

Re-arranging and solving for φc and φf gives the following expressions.

φc =
(1 + Icf)−

√
(Icf − 1)2 + 4Icfφf

2Icf
, φf =

(1 + Ifc)−
√
(Ifc − 1)2 + 4Ifcφc

2Ifc
(32)

The creep–fatigue and fatigue–creep interaction coefficients Icf and Ifc are non-zero
and take any value between −1 and 1. Figure 17 shows the relationship between creep and
fatigue damage densities at random values of creep–fatigue interaction coefficients.
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6. Summary, Conclusions, Further Research
6.1. Summary

The practice is always trailing the theory in pavement design, and the case of the
permanent deformation prediction is no different. Many highway agencies and road
administrations are practicing an empirical method of permanent deformation characteri-
zations (for example, the Marshall test). Some progresses are being made to transition from
empirical to mechanistic-empirical design methods. The primary motivation of this liter-
ature study was to explore the advancement of asphalt concrete permanent deformation
characterization, constitutive modeling, and application. The current state of research is
focused on the formulation of a mechanistic method that applies the fundamental theories
of mechanics and materials to predict permanent deformation damage. In the last decade,
promising advancements have been made in the development of comprehensive and cou-
pled permanent deformation modeling. Pavement analysis using the nonlinear damage
approach (also known as PANDA) constitutive model is one of the notable progresses that
is gaining wide acceptance (as the next generation mechanistic pavement design approach).
Another promising area of progress is the microstructural approach aided with 3D digital
image analysis equipment and finite element modeling. This digital technology-based
permanent deformation modeling is also the future prospect for accurate permanent defor-
mation modeling and prediction of different asphalt mixtures. The mechanistic methods
offer unlimited potential to expand the modeling parameters, and different damages and
phenomena such as aging, healing, moisture damage, pre-crack, etc., can be coupled to
unify damage prediction. The drawbacks of mechanistic models are sophistication, requir-
ing extensive testing, and the calibration of several modeling variables. For example, the
viscoelastic–viscoplastic–viscodamage model requires more than 21 model variables to be
optimized using at least two different experiments and several test repetitions at different
temperatures stresses and strains. The improvement of the latest models from the classic
viscoplastic strain hardening model is the consideration of cyclic hardening and relaxation
mechanisms and the viscodamage of asphalt concrete. Although the mechanistic method is
theoretically appealing, the calibration cost and rigorous equations can be considered the
limitations. The micromechanics approach considers the evolution of permanent deforma-
tion related to changes in the microstructure of asphalt concrete constituents (aggregates
and mastic). Thus, the micromechanics method is regarded as the most realistic way of
modeling heterogeneous materials such as asphalt concrete. Based on the extensive lit-
erature study, the permanent deformation prediction and modeling approaches can be
categorized into four aspects, as shown in Table 5.
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Table 5. Summary of permanent deformation modeling approaches.

Approach

Properties, Theories, Methods PANDA Microstructure Analogical Empirical

Continuum damage mechanics
√ √

- -
Viscoelastic

√
-

√ √

Viscoplasticity
√ √ √ √

Micromechanics †
√

- -
Finite element simulation

√ √ √
-

Time–temperature superposition
√ √ √

-
Coupling (healing, moisture)

√ √
- -

Coupling fatigue–rutting damage - - - -
Full pavement deformation model

√ √
- -

Hardening–relaxation mechanism
√ √

- -
Uniaxial and triaxial

repeated load test
√ √ √ √

√
Incorporated, † Not yet incorporated.

6.2. Conclusions

A review study was conducted to explore the state of the art on permanent deforma-
tion prediction from the 1960s’ pure empirical to latest mechanistic (from 2011) methods.
The review study revealed that the latest constitutive models integrate and couple different
theories, i.e., continuum mechanics (1958), nonlinear viscoelastic (1969), viscoplasticity
(1971), and viscodamage (2011), along with the crucial time–temperature superposition
principle. Such coupling techniques offered advantages of integrating different asphalt con-
crete damages and opened the possibility of a unified asphalt damage model in the future.
The PANDA model is one of the most comprehensive permanent deformation modeling
approaches available in the literature (the next generation to the mechanistic-empirical
method). The calibration and/or validation tests are reliant upon the conventional creep
or creep-recovery tests in either confined or unconfined modes. The computation and
experiment cost of mechanistic methods are the limitations. The practical application of
the mechanistic models is very limited at the moment. Moreover, the fatigue–permanent
deformation (rutting) interaction is often ignored in the existing (studied) literature. It
is inferred that both damages can evolve simultaneously as the same load caused both
damages. The mechanistic approach has the potential to couple the two predominant
pavement damages. From the extensive study, it can be synthesized that a unified per-
manent deformation damage model can be developed by integrating continuum damage
and microstructure approaches and coupling fatigue, moisture, healing, aging, and other
physical and chemical phenomena in asphalt concrete.

6.3. Further Research

The mechanistic method is “universally” applicable to predict damage regardless of
climatic conditions, stress state, or material type. This characteristic presents wide, open
research questions, for example, (1) developing a unified pavement damage performance
prediction model, (2) a coupled model for fatigue and rutting damages using continuum
mechanics and viscoelastic and viscoplastic theories, (3) considering (coupling) different
strains such as shear and axial strains in permanent deformation prediction models, and
(4) developing simplified (unified) asphalt concrete test methods to characterized different
damages simultaneously (fatigue, rutting, moisture, etc.). The authors of this paper are
conducting research on the simultaneous creep–fatigue damage evolution in a sequen-
tial manner.
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