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Abstract: Collaborative robots (or cobots) are robots that are capable of safely operating in a shared
environment or interacting with humans. In recent years, cobots have become increasingly common.
Compliant actuators are critical in the design of cobots. In real applications, this type of actuation
system may be able to reduce the amount of damage caused by an unanticipated collision. As a
result, elastic joints are expected to outperform stiff joints in complex situations. In this work, the
control of a 2-DOF robot arm with elastic actuators is addressed by proposing a two-loop adaptive
controller. For the outer control loop, an adaptive sliding mode controller (ASMC) is adopted to deal
with uncertainties and disturbance on the load side of the robot arm. For the inner loops, model
reference adaptive controllers (MRAC) are utilised to handle the uncertainties on the motor side of
the robot arm. To show the effectiveness of the proposed controller, extensive simulation experiments
and a comparison with the conventional sliding mode controller (SMC) are carried out. As a result,
the ASMC has a 50.35% lower average RMS error than the SMC controller, and a shorter settling time
(5% criterion) (0.44 s compared to 2.11 s).

Keywords: adaptive sliding mode controller; model reference adaptive controller; elastic robot arm;
robotics

1. Introduction

Cobots are primarily passive robots that are meant to work alongside humans in close
proximity. In our daily life, cobots assist humans in numerous situations, such as in search
and rescue (SAR) missions [1], surveillance and inspection [2], medical support [3], etc.
One aspect that sets cobots apart from traditional robots is their capacity to reduce the
amount of damage caused by unexpected collisions in a dynamic collaborative working
environment. This ability can be achieved in a variety of ways, including the use of
force/torque sensors [4], elastic actuators, or a collision detection algorithm, without
modifying the physical configuration of the robot [5]. As it is efficient and low-cost,
adopting elastic actuators is one of the most common approaches. Elastic actuators provide
several advantages compared to rigid actuators, including the ability to filter shock loads
and facilitate force regulation. The major goal of using elastic actuators to control robots is
to increase the performance of tracking tasks for the joints. Elastic actuators, on the other
hand, have a lower force control bandwidth; hence, their position control is slower than
stiff actuators. Furthermore, with elastic actuators, uncertainties and disturbances in the
system might create oscillation and instability.

To address these challenges, the following contributions are presented in this study:
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• An adaptive control mechanism is proposed to deal with the controlling task of a
2-DOF elastic robot arm. The control mechanism has two loops. The outer loop is an
adaptive sliding mode controller (ASMC) to deal with uncertainties and disturbances
on the load side of the robot arm. The output of this loop is the desired angular position
of the motors. The inner loop consists of the model reference adaptive controllers
(MRAC) to stabilise the motor side of the robot arm;

• Extensive simulation experiments and a comparison with the conventional sliding
mode controller are conducted to demonstrate the effectiveness of the proposed
controller.

The following is a breakdown of the paper’s structure. Section 2 provides an overview
of relevant studies. The mathematical model of the considered 2-DOF robot arm with
elastic actuators is described in Section 3. Then, the proposed controller is presented in
Section 4. To verify the efficiency of the controller, related simulation results are outlined in
Section 5. Finally, conclusions and future works are discussed in Section 6.

2. Related Research Work

Elastic actuators and elastic robots are applied in various applications, which are
summarised in Table 1. In Reference [6], NASA Valkyrie [7], a humanoid robot with
series elastic actuators, is applied for deployment in improvised explosive devices (IEDs)
response. In Reference [8], a series-elastic actuated snake robot is proposed, which is able
to navigate in pipe bends and junctions. Elastic actuators are also adopted in rehabilitation
robots [9–11].

Table 1. Applications of elastic actuators.

Type of Robots Humanoid Robot Snake Robot Rehabilitation Robot

Applications NASA Valkyrie [7]
COMAN [12]

POAL [13,14]
RiceWrist [9]

ULIX [10]
rotary SEA [11]

There is much research related to the control algorithm of elastic actuators and elastic
robots. One of the earliest pieces of research utilises feed-forward terms and a proportional
integral derivative (PID) control loop [15]. In Reference [16], by combining the adaptive
back-stepping and the dynamic surface control techniques, an adaptive fuzzy output feed-
back control approach is developed. In Reference [17], a cascade robust control mechanism
is introduced. The robustness is proved by L2-gain attenuation from the disturbance caused
by uncertainties to performance for the outer loop, and by Lyapunov’s second method
for the inner loop. In Reference [18], the synthesis of robust controllers, based on H∞
loop shaping and µ-synthesis for both position control and vibration damping in a spatial
flexible L-shape mechanism with gravity, is proposed. In [19], a feedback control law
and an observer are proposed based on the finite-element method and model reduction.
Regarding robustness, among the methods of control, a sliding mode controller (SMC)
is a simple approach, which exhibits stability against parameter variations, unmodelled
dynamics and external disturbances [20]. In [21], a hierarchical non-singular terminal SMC
is proposed, which can ensure a faster convergence rate of the systems states to zero within
a finite time and is singularity free. In Reference [22], a voltage-based SMC is proposed,
which has a low computational volume. Despite the inherent advantages of robustness
compared to the disturbances, the performance of SMCs can be affected by changing the
system parameters [23]. Therefore, adaptive sliding mode controllers (ASMCs) are also
commonly considered. In Reference [24], the adaptive fuzzy sliding mode controller is
proposed to stabilise the attitude of the flexible satellite. In Reference [25], a fuzzy adaptive
sliding mode-based feedback linearisation controller is proposed. A feedback linearisation
approach is utilised to change the nonlinear dynamics to a linear dynamics; then, a sliding
mode control strategy is implemented as a trajectory tracking controller. A fuzzy system is
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applied to regulate the controller gains. In Reference [26], a voltage-based sliding mode
controller is combined with an adaptive estimator. However, a controller that can deal with
uncertainties at the load side and the motor side at the same time is still missing.

To address these challenges, our research group previously presented a two-loop
feedback controller [27]. Then, in Reference [28], we compared this controller and a
reinforcement learning algorithm. Then, in Reference [29], we implemented the controller
on a two DOFs robot arm with elastic actuators. However, to the best of our knowledge,
an adaptive control aiming to both stabilize the system and deal with uncertainties to
eliminate the influence of external force/torque has not been released. In Reference [30], we
started our research on this aspect and presented some preliminary results. In this paper,
we extended our research by presenting more simulation experiments. We also made a
comparison with the conventional sliding mode controller to show the effectiveness of the
proposed algorithm.

3. Mathematical Model of the 2-DOF Elastic Robot Arm

The mathematical model of the 2-DOF robot arm with elastic joints is introduced in
this section.

The diagram of the 2-DOF robot arm with elastic joints is shown in Figure 1. Based on
this diagram, the Denavit–Hartenberg (DH) parameters are shown on Table 2, where d is
the offset along the z-axis to the common normal, θ is the angle about the z-axis, from the
old x-axis to new x-axis, a is the length of the common normal, and α is the angle about
common normal, from old z-axis to new z-axis.

Figure 1. Diagram of the elastic robot arm.

Table 2. Denavit-Hartenberg parameters.

d θ a α

Joint 1 l1 q1 0 π/2
Joint 2 0 q2 l2 −π/2

Denote q = [q1 q2]
T and θ = [θ1 θ2]

T as the load side and the motor side angular
positions, respectively. The elastic robot arm in this paper is modelled as a two-side system:
the load side system and the motor side system. They are attached to each other by the torque
of the spring. The dynamic equations of the robot arm are shown in Equations (1) and (2):

M(q)q̈ + C(q, q̇)q̇ + G(q)− Ks(θ − q) = τext (1)

Jθ̈ + Ks(θ − q) = τm (2)

where M(q) is the mass matrix, C(q, q̇) is the Coriolis and centrifugal torque matrix, G(q)
is the gravitational torque vector, Ks is the diagonal matrix of spring stiffness, J is the
inertia matrix of the motors, τext is the external torque, and τm is the motor torques. The
dynamics of the load side and motor side are presented in Equations (1) and (2), respectively.
Equation (1) has the form of a typical robotic dynamic model. The difference is that, instead
of the motor torque, the load side is controlled by an elastic force Ks(θ − q). This elastic
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force is created from the motor torque by creating a deviation between motor (θ) and load
(q) angular positions. This is shown in the Equation (2).

4. Controller Design

In this Section, the proposed control algorithm is presented.
The diagram of the proposed controller is shown in Figure 2. The proposed controller

has two loops. In the outer loop, the centralised ASMC is implemented to tackle uncer-
tainties and disturbances. In the inner loop, there is one MRAC for each joint to stabilise
the motor side. The MRAC was presented in our previous papers [27,29]. Firstly, the
conventional sliding mode controller is established. Rewrite Equation (1) as follows:

q̈ = −M(q)−1[C(q, q̇)q̇ + G(q)] + M(q)−1Ks(θ − q)

= −A(q, q̇) + B(q)−1(θ − q)

where A(q, q̇) = M(q)−1[C(q, q̇)q̇ + G(q)], B(q) = K−1
s M(q) and B(q)−1 = M(q)−1Ks.

Figure 2. The overall system with a centralised ASMC and two MRACs.

The tracking error is defined as:

e = qd − q

where qd = (qd1 qd2)
T is the desired load position vector.

The sliding surface is defined with the PID form as:

σ = ė + Kpe + Ki

∫ t

0
edt

in which,

Kp =

[
Kp1 0

0 Kp2

]
, Ki =

[
Ki1 0
0 Ki2

]
with Kp1, Kp2, Ki1, Ki2 > 0 as design parameters that need to be suitably tuned so that the
characteristic polynomials are strictly Hurwitz [31–33]. This ensures that, in the sliding-
mode phase, limt−>∞e(t) = 0 and the system is globally asymptotically stable. The integral
term added to the standard PD sliding surface has the effect of eliminating the steady-state
error and modifying the reaching time [31,32].

Take the time-derivative of the sliding surface:

σ̇ = ë + Kp ė + Kie

= (q̈d + Kp ė + Kie)− q̈

= (q̈d + Kp ė + Kie) + A(q, q̇)− B(q)−1(θ − q) (3)
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Denote the control input of the sliding surface in reaching phase as u. Then, the
nominal control signal of the sliding mode controller, the desired motor position θd, is
defined as:

σ̇ = u

⇔ (q̈d + Kp ė + Kie) + A(q, q̇)− B(q)−1(θd − q) = u

⇔ θd = B(q)
[
A(q, q̇) + q̈d + Kp ė + Kie− u

]
+ q

(4)

Next, the adaption law is presented. Although it has many advantages, the con-
ventional sliding-mode controller can not be directly implemented because the real sys-
tem matrices are unknown. Therefore, an adaptation law is proposed using Lyapunov
stability criteria. Denote Â(q, q̇), B̂(q) as the estimated parameter matrices and rewrite
Equation (4) as:

θd = B̂(q)
[
Â(q, q̇) + q̈d + Kp ė + Kie− u

]
+ q (5)

Substituting Equation (5) into Equation (3), we have:

σ̇ = (q̈d + Kp ė + Kie) + A(q, q̇)− B(q)−1(θd − q)

= (q̈d + Kp ė + Kie− u) + A(q, q̇)− B(q)−1B̂(q)
[
Â(q, q̇) + q̈d + Kp ė + Kie− u

]
+ u

= −B(q)−1[(B̂(q)− B(q))(q̈d + Kp ė + Kie− u) + (B̂(q)Â(q, q̇)− B(q)A(q, q̇))
]
+ u

= −B(q)−1(Φ−Φ∗)Ψ + u (6)

where,
Φ =

[
B̂(q) B̂(q)Â(q, q̇)

]
and

Φ∗ =
[
B(q) B(q)A(q, q̇)

]
are estimated and real system dynamics matrices, respectively, and

Ψ =

[
q̈d + Kp ė + Kie− u

1

]
.

Denote ∆Φ as the deviation between the real system dynamics matrix Φ∗ and the
estimated system dynamics matrix Φ:

∆Φ = Φ−Φ∗.

Then, Equation (6) is as follows:

σ̇ = −B(q)−1∆ΦΨ + u

A Lyapunov function is chosen as:

V = σσT + B(q)−1∆Φ∆T
ΦB(q)−T .

Taking the derivative of the Lyapunov function, we have:

V̇ = σ̇σT + σσ̇T + Ḃ(q)−1∆Φ∆T
ΦB(q)−T + B(q)−1∆̇Φ∆T

ΦB(q)−T

+ B(q)−1∆Φ∆̇T
ΦB(q)−T + B(q)−1∆Φ∆T

Φ Ḃ(q)−T

= uσT + σuT + B(q)−1∆Φ(−ΨσT + ∆̇T
ΦB(q)−T + ∆T

Φ Ḃ(q)−T)

+ (−σΨT + B(q)−1∆̇Φ + Ḃ(q)−1∆Φ)∆T
ΦB(q)−T .
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The time derivative of inertia matrix can be ignored if it is small enough [34]. If the
adaption law is chosen as:

∆̇Φ = ασΨT ,

with α as a 2-by-2 matrix of constants; then, V̇ becomes as follows:

V̇ = uσT + σuT + B(q)−1∆ΦΨσT(αT B(q)−T − I) + (B(q)−1α− I)σΨT∆T
ΦB(q)−T .

The following assumptions are made:

Assumption 1. B(q)−1 and ∆Φ are bounded.

Assumption 2. We can find a matrix α such that B(q)−1α− I ≈ 0

The matrices B(q)−1 and ∆Φ contain trigonometric functions and bounded physical
parameters. Therefore, the Assumption 1 is acceptable. In addition, because the matrix
B(q)−1 is bounded, the Assumption 2 can be satisfied through system parameter estimation
and further tuning of the matrix α. From the Assumption 2, V̇ becomes:

V̇ = uσT + σuT .

Selecting the control input u is a crucial step in designing ASMC. The fundamental con-
trol input is the first-order one u = −Usign(σ), with U as a positive number. Nevertheless,
this can cause chattering phenomenon. This phenomenon is the reason for the low control
accuracy, high wear of moving mechanical parts, and high heat losses in power electronic
boards, as well as the electrical motors [35]. High-order sliding mode control signals were
proposed to deal with this [36–38]. Although these control signals are able to maintain the
sliding mode properties and eliminate the chattering problem [35], more information is
demanded by the controller [38]. An r-order sliding-mode controller requires derivatives of
the sliding surface up to order r [38]. On the other hand, the “super-twisting” second-order
sliding controller, introduced by Levant [37,39], only requires the measurements of the
sliding surface. Therefore, the “super-twisting” second-order sliding controller is chosen in
this work. This control input is presented as follows:

u = u1 + u2

u1 = −
√

U
√
|σ|tanh(σ)

u̇2 = −1.1Utanh(σ)

where U is a positive constant, which should be sufficiently large to assure good tracking
performance. The term u̇2 = −1.1Utanh(σ) describes the leakage of the “super-twisting”
second-order sliding controller [40]. In addition, the tanh(σ) is used instead of sign(σ)
because it creates a smoother control signal.

By adopting the “super-twisting” second-order sliding algorithm, the term uσT + σTu
is negative definite [35,41]. Thus, the adaptive system is stable.

In adaptive controllers, disturbances and uncertainties can lead to the parameter drift
phenomenon, where the estimated parameters gradually drift before suddenly diverging
sharply. To tackle this, a dead zone [42] is added to reduce the influence of the parameter
drift phenomenon, therefore increasing the stability of the whole system. This is achieved
as follows:

∆̇Φ =

{
−B̂(q)−1σΨT if others
0 if e(i) < εe and ė(i) < εedot, ∀i

where εe and εedot are the dead-zone boundary for the errors and the derivatives of the errors.
There are four parameters that need to be tuned in the proposed approach, namely,

Kp, Ki, α and U. A discussion on the effect of these parameters and how to tune them is
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presented here. Kp and Ki constitute the sliding surface and affect the convergence of the
error. Generally, Kp has a role as the proportional gain of a traditional PID controller [43].
Choosing an appropriate value of Kp would make the system stable [43]. If the value of Kp
is too large, the system may be destabilised, and if the value of Kp is too small, the system
may converge sluggishly [43]. The integral gain Ki affects the rates of error integration. In
addition, Kp and Ki have to be chosen such that the characteristic polynomials

s2 + Kp1s + Ki1 = 0

s2 + Kp2s + Ki2 = 0

with s as the variable in the frequency domain, are strictly Hurwitz [31–33]. Many methods
have been adopted to choose the parameters for the sliding surface. In this paper, the
trial-and-error method is used. Alternative methods are also applied in the literature,
e.g., the Ziegler–Nichols method [44], particle swarm optimisation [44], evolutionary
algorithms [45], etc.

The parameter α could be chosen such that the Assumption A2 (that is B(q)−1α− I ≈ 0)
is satisfied. In practice, the values in matrix B(q)−1 can be obtained from the design or
the values can be measured. In addition, the angular load positions q have to be operated
within a predefined range. Therefore, we can easily estimate the range of matrix B(q)−1

and use that to choose the values in α. The value of parameter U is chosen by trial and
error. The larger the value of U, the better the tracking performance. However, if the value
of U is too large, it could destabilise the system.

5. Simulation

In this Section, simulations implemented in matlab simulink [46] to verify the efficiency
of the proposed controller are presented. Figure 3 shows the simulation diagram. Two
low-pass filters are added at the input side of the system to smooth the input signal. The
simulation parameters are shown in Table 3. The parameters of the proposed approach
are shown in Table 4. In addition, to clarify the effectiveness of the proposed controller,
it is compared with a conventional SMC-MRAC scheme. Two input signals are used:
sine wave and square wave. Furthermore, simulations in disturbed conditions are also
presented. There are two types of simulated disturbances: sine wave and square wave.
The sine waveform disturbances have a 5-Nm amplitude and 2-Hz frequency. The square
waveform disturbances have a 2-Nm amplitude and 0.5-Hz frequency for joint 1, and
a 2-Nm amplitude and 0.25-Hz frequency for joint 2. Moreover, a simulation with step
input is also presented to analyse the transient and chattering dynamics of the proposed
algorithm. In this paper, two specifications are utilised to evaluate the proposed ASMC
algorithm: root mean square (RMS) error and total variance of the control signal [47]. The
RMS error, which is calculated as

erms =

√√√√ 1
N

N

∑
n=1

e2, N is the amount of sample,

is used to evaluate the tracking performance [47]. The total variance of the control signal,
which is calculated as

∆TV =
N

∑
n=1
|u(n + 1)− u(n)|,

is used to evaluate the chattering phenomenon [47]. The RMS errors of the simulations with
sine and square wave inputs are presented in Tables 5 and 6, respectively. The RMS errors
and the total variance of the control signal of the simulation with step input is presented in
Table 7.
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Table 3. System parameters.

Parameter Value Parameter Value Parameter Value

Gear ratio
(N1, N2)

10 Spring stiffness
(Ks1, Ks2)

1500, 1200 Load inertia
(Jl1, Jl2)

0.1

Load damping
coefficient
(Dl1, Dl2)

0.2
Motor damping

coefficient
(Dm1, Dm2)

0.027 Motor inertia
(Jm1, Jm2)

0.003

Motor mass
(mm1, mm2)

1 Link mass
(ml1, ml2)

6, 4 Link length
(l1, l2)

0.3

Table 4. Parameters of the proposed adaptive sliding mode controller.

Parameter Value Parameter Value Parameter Value

Kp

[
3 0
0 3

]
Ki

[
1 0
0 1

]
α 10−7 ×

[
5 0
0 5

]

U 400 εe
π

18
εedot

π

6

Table 5. The root mean square errors of the angular position response with sine wave input in
normal condition and disturbed conditions.

Controller Type

Operating
Condition Normal

Condition
Sine Wave

Disturbance
Square Wave
Disturbance

ASMC-MRAC
Joint 1 0.009929 0.025849 0.014397

Joint 2 0.026402 0.026601 0.029558

SMC-MRAC
Joint 1 0.011813 0.102562 0.017625

Joint 2 0.033602 0.055017 0.038218

Figure 3. Simulation on matlab simulink.

5.1. Sine Wave Input

Figure 4 shows the angular position response of the robot arm in normal condition of
the proposed ASMC and the conventional SMC. We can see that the ASMC has a similar
quality to a conventional SMC in the normal condition. In Figure 5, the control voltage
of the controllers are shown. The fluctuation stage at the beginning in Figure 5a occurs
when the ASMC is in the learning phase. After that phase, the ASMC uses the same voltage
shape as the SMC for the tracking task.
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(a) Proposed adaptive sliding mode controller.

(b) Conventional sliding mode controller.

Figure 4. (a,b) Angular position response of the robot arm with sine wave input in normal condition.
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(a) Proposed adaptive sliding mode controller.

(b) Conventional sliding mode controller.

Figure 5. (a,b) Control voltage of the robot joints with sine wave input in normal condition.

Figures 6 and 7 show the angular position responses of the robot arm in the disturbed
conditions of the proposed ASMC and conventional SMC. They show the systems with
the sine wave and square wave disturbances, respectively. It is clear that the ASMC
outperforms the conventional SMC in disturbed conditions. Figures 8 and 9 show the
control voltage in disturbed conditions with sine wave and square wave disturbances,
respectively. After the learning phase, the ASMC uses the same voltage level as the SMC.
In addition, the control voltage fluctuates due to the presence of disturbances. As shown in
Table 5, the RMS errors of the ASMC are lower than the SMC, implying that the performance
of the ASMC is better than the conventional SMC in the simulated cases.
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(a) Proposed adaptive sliding mode controller.

(b) Conventional sliding mode controller.

Figure 6. (a,b) Angular position response of the robot arm with sine wave input in disturbed
condition with sine wave disturbance.
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(a) Proposed adaptive sliding mode controller.

(b) Conventional sliding mode controller.

Figure 7. (a,b) Angular position response of the robot arm with sine wave input in disturbed
condition with square wave disturbance.
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(a) Proposed adaptive sliding mode controller.

(b) Conventional sliding mode controller.

Figure 8. (a,b) Control voltage of the robot joints with sine wave input in disturbed condition with
sine wave disturbance.
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(a) Proposed adaptive sliding mode controller.

(b) Conventional sliding mode controller.

Figure 9. (a,b) Control voltage of the robot joints with sine wave input in disturbed condition with
square wave disturbance.

5.2. Square Wave Input

Figure 10 shows the angular position response of the robot arm in normal conditions
for the proposed ASMC and conventional SMC with square wave input. The performance
of the ASMC improves over time when the adaptive controller can adapt to the system
parameters. Overall, after the learning phase, the performance of the ASMC is not inferior
to the SMC. Figure 11 presents the control voltage of the two controllers. The ASMC has
more voltage fluctuation than the conventional SMC. However, this fluctuation decreases
over time.
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(a) Proposed adaptive sliding mode controller.

(b) Conventional sliding mode controller.

Figure 10. (a,b) Angular position response of the robot arm with square wave input in normal
condition.
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(a) Proposed adaptive sliding mode controller.

(b) Conventional sliding mode controller.

Figure 11. (a,b) Control voltage of the robot joints with square wave input in normal condition.

Figures 12 and 13 show the angular position response of the robot arm in disturbed
conditions of the proposed ASMC and the SMC. The systems with sine and square wave
disturbances are shown in Figures 12 and 13, respectively. The ASMC has a better tracking
performance than the SMC in both cases. The control voltage diagrams of the robot joints
are illustrated in Figures 14 and 15. Overall, the control voltage of the proposed ASMC
fluctuates more than the conventional SMC. On the other hand, the ASMC has a good
tracking performance. This is more clearly indicated through the RMS error in Table 6. The
ASMC has a 50.35% lower average RMS error than the SMC controller.
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(a) Proposed adaptive sliding mode controller.

(b) Conventional sliding mode controller.

Figure 12. (a,b) Angular position response of the robot arm with square wave input in disturbed
condition with sine wave disturbance.

Table 6. The root mean square errors of the angular position response with square wave input in
normal condition and disturbed conditions.

Controller Type

Operating
Condition Normal

Condition
Sine Wave

Disturbance
Square Wave
Disturbance

ASMC-MRAC
Joint 1 0.013186 0.033616 0.023396

Joint 2 0.029123 0.028937 0.031433

SMC-MRAC
Joint 1 0.049605 0.091040 0.058128

Joint 2 0.085158 0.092527 0.100103
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(a) Proposed adaptive sliding mode controller.

(b) Conventional sliding mode controller.

Figure 13. (a,b) Angular position response of the robot arm with square wave input in disturbed
condition with square wave disturbance.
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(a) Proposed adaptive sliding mode controller.

(b) Conventional sliding mode controller.

Figure 14. (a,b) Control voltage of the robot joints with square wave input in disturbed condition
with sine wave disturbance.

5.3. Step Input

In this section, the simulation with step input and the analysis of the transient and
chattering dynamics of the proposed algorithm are introduced. Figure 16 shows the angular
position response, error and the control voltage of proposed ASMC and SMC. The RMS
error and the total variance in the control signal are shown in Table 7. As illustrated in
Figure 16, the ASMC has a better tracking performance than the SMC. The proposed ASMC
also has a shorter settling time (5% criterion) than the conventional SMC (0.44 s compared
to 2.11 s). However, from the total variance in the control signal in Table 1, the ASMC has a
higher chattering phenomenon. The chattering phenomenon can be reduced by decreasing
the control parameter U, although this increases the rise and settling time.
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(a) Proposed adaptive sliding mode controller.

(b) Conventional sliding mode controller.

Figure 15. (a,b) Control voltage of the robot joints with square wave input in disturbed condition
with square wave disturbance.

Table 7. Performance specifications in the simulation with step input.

Controller Type

Performance
Specs RMS Error Total Variance of

Control Signal

ASMC-MRAC
Joint 1 0.016170 0.083913

Joint 2 0.025250 0.220392

SMC-MRAC
Joint 1 0.064749 0.002466

Joint 2 0.129457 0.002836
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(a) Angular position response.

(b) Angular position error.

(c) Control voltage.

Figure 16. (a–c) Angular position response, error and control voltage of proposed ASMC and
conventional SMC algorithms.



Robotics 2022, 11, 47 22 of 24

6. Conclusions

In this work, we introduced a two-loop controller. To deal with uncertainties and
interference on the load side of the robot arm, an adaptive sliding mode controller (ASMC)
is proposed in the outer loop. Model reference adaptive controllers (MRAC) are adopted
for each joint in the inner loop to address uncertainty on the robot arm’s motor side. The
usefulness of the presented ASMC algorithm in stabilising the system in the presence of
uncertainties and disturbances is proved through detailed simulated studies. Accordingly,
the ASMC has a 50.35% lower average RMS error than the SMC controller. It also has a
shorter settling time (5% criterion) (0.44 s compared to 2.11 s). However, this improvement
comes at the expense of an increase in the total variance of the control signal.

In the future, the proposed method should be implemented on a real elastic robotic arm.
In our previous work [29], a physical 2-DOF robot arm with elastic joints was introduced.
We will carry out further empirical experiments on this prototype to demonstrate the
effectiveness of the proposed algorithm. In addition, we will expand the controller in the
case of robots with an arbitrary number of degrees-of-freedom. Furthermore, we will also
address and prove local and global asymptotic stability. The controller could be verified
on several types of robots (legged robots, snake robots, etc.). Regarding snake robots, our
group is planning to validate the proposed method on Serpens, a highly compliant, low-cost
snake robot with series elastic actuators, previously presented in [48–50].
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