
����������
�������

Citation: Moghimi, A.;

Mohammadzadeh, A.; Celik, T.;

Brisco, B.; Amani, M. Automatic

Relative Radiometric Normalization

of Bi-Temporal Satellite Images Using

a Coarse-to-Fine Pseudo-Invariant

Features Selection and Fuzzy Integral

Fusion Strategies. Remote Sens. 2022,

14, 1777. https://doi.org/10.3390/

rs14081777

Academic Editors: Benoit Vozel,

Vladimir Lukin and Yakoub Bazi

Received: 3 March 2022

Accepted: 5 April 2022

Published: 7 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Automatic Relative Radiometric Normalization of Bi-Temporal
Satellite Images Using a Coarse-to-Fine Pseudo-Invariant
Features Selection and Fuzzy Integral Fusion Strategies
Armin Moghimi 1,2 , Ali Mohammadzadeh 1 , Turgay Celik 3,4,5 , Brian Brisco 6 and Meisam Amani 7,*

1 Department of Photogrammetry and Remote Sensing, Faculty of Geodesy and Geomatics Engineering,
K. N. Toosi University of Technology, Tehran 19967-15433, Iran; moghimi.armin@email.kntu.ac.ir (A.M.);
a_mohammadzadeh@kntu.ac.ir (A.M.)

2 Institute of Photogrammetry and GeoInformation (IPI), Leibniz Universität Hannover (LUH),
30167 Hannover, Germany

3 School of Electrical and Information Engineering, University of the Witwatersrand,
Johannesburg 2000, South Africa; celikturgay@gmail.com

4 The Wits Institute of Data Science, University of the Witwatersrand, Johannesburg 2000, South Africa
5 Faculty of Engineering and Science, University of Agder, 4630 Kristiansand, Norway
6 The Canada Center for Mapping and Earth Observation, Ottawa, ON K1S 5K2, Canada;

brian.brisco@nrcan-rncan.gc.ca
7 Wood Environment & Infrastructure Solutions, Ottawa, ON K2E 7L5, Canada
* Correspondence: meisam.amani@woodplc.com

Abstract: Relative radiometric normalization (RRN) is important for pre-processing and analyzing
multitemporal remote sensing (RS) images. Multitemporal RS images usually include different land
use/land cover (LULC) types; therefore, considering an identical linear relationship during RRN
modeling may result in potential errors in the RRN results. To resolve this issue, we proposed
a new automatic RRN technique that efficiently selects the clustered pseudo-invariant features (PIFs)
through a coarse-to-fine strategy and uses them in a fusion-based RRN modeling approach. In the
coarse stage, an efficient difference index was first generated from the down-sampled reference and
target images by combining the spectral correlation, spectral angle mapper (SAM), and Chebyshev
distance. This index was then categorized into three groups of changed, unchanged, and uncertain
classes using a fast multiple thresholding technique. In the fine stage, the subject image was first
segmented into different clusters by the histogram-based fuzzy c-means (HFCM) algorithm. The
optimal PIFs were then selected from unchanged and uncertain regions using each cluster’s bivariate
joint distribution analysis. In the RRN modeling step, two normalized subject images were first
produced using the robust linear regression (RLR) and cluster-wise-RLR (CRLR) methods based on
the clustered PIFs. Finally, the normalized images were fused using the Choquet fuzzy integral fusion
strategy for overwhelming the discontinuity between clusters in the final results and keeping the ra-
diometric rectification optimal. Several experiments were implemented on four different bi-temporal
satellite images and a simulated dataset to demonstrate the efficiency of the proposed method. The
results showed that the proposed method yielded superior RRN results and outperformed other
considered well-known RRN algorithms in terms of both accuracy level and execution time.

Keywords: multi-temporal satellite images; pseudo-invariant features (PIFs); relative radiometric
normalization (RRN); image fusion; change detection

1. Introduction

Relative radiometric normalization (RRN) is the process of minimizing radiomet-
ric aberrations (i.e., gray-levels changes caused by variations in sun-target-sensor ge-
ometry, atmospheric conditions, illumination, and viewing angles) from one or more
high/multispectral target images based on a high/multispectral reference image which
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are taken at different times from the same place [1–5]. It is a critical task because it is
a prerequisite for the processing of multitemporal remote sensing (RS) images in several
applications, such as automatic change detection [6,7] and image mosaicking [8].

A variety of RRN methods have been developed to radiometrically adjust RS im-
ages, mainly categorized into two main groups: dense RRN (DRRN) and sparse RRN
(SRRN) [3]. DRRN methods adopt global image statistics to predict the relationship be-
tween image pairs, which are not feasible for image pairs with considerable noise and
land use/land cover (LULC) changes [3,9,10]. In contrast, SRRN methods typically extract
pseudo-invariant features (PIFs) from the target and reference images and use them to
obtain the model transformation between the image pair [9,10]. Since the PIFs are partially
invariant to illumination variation and changed regions, the SRRN can achieve more precise
results than the DRRN methods in dealing with datasets with LULC regions [11]. Many
SRRN methods have been developed in response to questions, such as: how to select
PIFs and establish a reasonable relationship between PIFs? For example, Elvidge et al. [2]
proposed a SRRN method based on an automatic scattergram-controlled regression (ASCR)
to select the pixels close to the regression line. In this method, the regression line was
determined by connecting the centers of water and land clusters at the scattergram between
target and reference images. As a result, this strategy is operationally limited when image
pairs do not include both clusters. Furthermore, due to the lack of PIF refinement in the
ASCR approach, the radiometric resolution of the resulting normalized image may not
be preserved. To address these limitations, a robust SRRN approach was introduced by
Du et al. [12] based on the principal component analysis (PCA) and quality control for PIFs
refinement. Additionally, Canty et al. [13] proposed a robust SRRN method in which PIFs
were selected based on the multivariate alteration detection (MAD) transformations [14],
which was invariant to linear transformation (e.g., affine and conformal) of the image pair
gray-levels. Canty and Nielsen [15] further improved the robustness of the MAD method
through an iterative reweighting scheme, named the iteratively reweighted (IR)-MAD
method, which was affordable for radiometric adjustment of image pairs with signifi-
cant seasonal changes. The MAD and IR-MAD methods have been widely used in the
change detection process [16–18] and are frequently developed by researchers for RRN
tasks [19,20]. For example, Byun et al. [21] developed a new MAD algorithm for RRN
of very high-resolution (VHR) bitemporal images. Their algorithm utilized a weighting
function derived from the normalized difference water index (NDWI) to calculate the MAD
transform’s covariance matrices. Furthermore, Liu et al. [20] presented a robust SRRN for
image mosaicking that extracted the optimal PIFs through the modified IRMAD and used
them in an iteratively reweighted block adjustment.

Despite the advantages of IRMAD-based methods, they only use statistical analysis
to select PIFs and do not take into account their physical properties, which may lead to
potential errors in the RRN modeling process [4,22,23]. To address this, some rule-based
SRRN methods have been suggested to consider the physical nature of land surfaces by
adopting spectral indices over the PIFs selection process. For example, Zho et al. [22]
proposed an automatic SRRN for multiple images with PIFs (MIPIFs) retrieved using step-
by-step dark and bright sets selection based on the NDWI and some statistical sampling
rules. Such PIFs selection is appropriate for the RRN of datasets acquired within the same
time (e.g., season), but it cannot accurately handle the radiometric dispersion induced by
seasonal fluctuations [22]. Furthermore, its results are highly reliant on the regulation of
statistical sampling rules, which were employed to restrict the number of PIFs. To overcome
these constraints, Ghanbari et al. [24] proposed a robust SRRN that took advantage of the
Gaussian mixture modeling (GMM)-based change detection in PIFs selection and an error
ellipsoid (EE) process in RRN modeling. Likewise, Moghimi et al. [3] employed a fast level
set method (FLSM) and patch-based outlier detection to pick an ideal set of PIFs using
a step-by-step unchanged sample selection strategy. With a similar idea, Yan et al. [25]
employed a chi-square test to automatically extract the PIFs from the unchanged regions
detected by an unsupervised autoencoder (AE) method. Although the mentioned methods
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yielded promising results, they were often computationally demanding in terms of both
processing and memory storage.

The prior SRRN methods were mainly developed by assuming a linear relationship
between the PIF values in the reference and target images, which was not feasible for
datasets with nonlinear radiometric differences. Several RRN methods have been suggested
that employ a nonlinear mapping function instead of a linear one in RRN modeling to cope
with this problem [10,19,26,27]. For example, Sadeghi et al. [10] proposed an intelligent RRN
technique using an artificial neural network (ANN) to approximate solutions of a nonlinear
relation between PIFs (unchanged samples) in the reference and target images. This
method had high flexibility for modeling the relationship between PIFs in the reference and
subject images. Nevertheless, its performance depended on its ANN architecture/network
topology and the quality of the training data. Seo, et al. [26] developed the ASCR method [2]
by employing a random forest (RF) regression instead of linear regression for handling
nonlinear radiometric and phenological differences. Although this method had a good
performance in radiometric correction, it was highly prone to overfitting and required
one to set the appropriate RF regression parameters. Bai et al. [19] also developed the
IR-MAD method by exploiting the kernel version of canonical correlation analysis (kCCA)
and cubic polynomial (degree 3), respectively, instead of linear methods to eliminate the
regular nonlinear spectral and radiometric differences. Selecting optimal values for the
kernel parameters regulation and kernel type were the challenges of this approach. In
general, although nonlinear-based SRRN methods [10,19,26,27] can radiometrically reduce
the nonlinear distortions between image pairs, they are prone to overfitting and are often
computationally intensive [28].

Most of the mentioned SRRN studies have provided a great solution to address the
limitations of RRN. However, they do not contribute to the type of ground surfaces/LULC
of PIFs in the RRN modeling, leading to potential errors and bias in the final results [29].
Therefore, several SRRN methods have been proposed that employ PIFs from different
LULCs. These methods aim to create a linear relationship between all LULCs in the image
pairs, while for different LULCs, such a relationship is different [30,31]. For instance,
Sadeghi et al. [29] proposed an automatic RRN method by categorizing unchanged pixels
according to the histogram of subject images for each band using the Otsu thresholding
technique and calculating relevant coefficients of piecewise linear regression. In another
study, He et al. [31] improved a semi-supervised RRN method to select the high correlated
histogram of oriented gradients (HOG) features from image pairs as PIFs in each ground
object class. In this method, an object-based classification was applied to input images to
generate LULC maps for the reference and target images. This study generated the nor-
malized image during linear class-wise RRN modeling using the extracted PIFs. Although
this method had superior results, its automation was low because it used a supervised
classification in its process. In general, the studies of [29,31] produced valuable RRN find-
ings, but they did not refine the PIFs from uncertain/imprecise samples, which might lead
to an imperfect linear model for specific classes. Moreover, their performance depended
on the accuracy of the supervised/unsupervised classification algorithms utilized in their
processes. Furthermore, some discontinuities between adjacent classes were found in the
normalized images generated by these methods, resulting in an imperfect normalized
image in terms of vision inception.

To address the constraints noted above, we present a novel SRRN technique that
could efficiently extract reliable PIFs from various clusters and reduce discontinuities and
bias in the final results by formulating the RRN modeling process with a fusion strategy.
In the first step, the optimal PIFs are selected in a coarse-to-fine process. In the coarse
stage of this process, the Pearson correlation, Chebyshev distance, and spectral angle
mapper (SAM) are combined to construct a change index from the down-sampled input
images in which changed regions were highlighted. This index is further pre-classified to
three regions of changed, unchanged, and uncertain, using efficient multiple thresholding.
In the fine level of the process, the target image is first clustered into different groups
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using the histogram-based fuzzy C-means (HFCM) [32]. Subsequently, the stable PIFs
are collected from unchanged and uncertain pixels (generated by multiple thresholding
pre-segmentation) for each cluster using a hypothesis-test-based outlier detection. In the
next step, the retrieved clustered PIFs are then employed in the proposed fusion-based
RRN modeling to provide a reliable normalized image. In this model, the two normalized
images are initially generated using a standard robust linear regression (RLR) and the new
cluster-wise version, named CRLR. The Choquet integral [33] was then utilized to fuse the
produced normalized images because it is a flexible nonlinear aggregator operator that
can efficiently model the relationships between fusion sources [34]. The performances of
the proposed method were comprehensively evaluated on a simulated dataset and four
different bi-temporal satellite images and compared to several existing state-of-the-art RRN
methods. The key contributions of our work can be summarized as follows:

I. A coarse-to-fine approach is designed to efficiently extract reliable and well-
spatially distributed PIFs from distinct ground surface clusters. Moreover, a
hypothesis-based outlier detection was developed and embedded in this approach
toefficiently refine the PIF candidates by taking advantage of the probability con-
tour of the bivariate normal (BVN) joint distribution.

II. The cluster-wise-RLR (CRLR) is proposed for better modeling the complex relation-
ship between target and reference images with different LULC types. This model
also contains a weight matrix defined based on the distance to PIFs that can reduce
the potential bias in the results of RRN.

III. A novel fusion-based framework is presented for RRN modeling that can integrate
multiple normalized images using the Choquet integral as well as handle potential
uncertainties, such as discontinues and bias in the final results.

The rest of this manuscript is organized as follows. Section 2 describes the proposed
RRN approach and its detailed descriptions, datasets, and quantitative measures utilized
for performance evaluation. Section 3 presents the experimental results on the datasets
to verify the feasibility of the proposed approach. Finally, the concluding remarks are
summarized in Section 4.

2. Materials and Methods
2.1. Proposed SRRN Method

Consider two co/geo-registered satellite images R (i.e., Equation (1)) and T (i.e.,
Equation (2)), respectively, as the reference and target images with the same size, acquired
from the same scene at different times.

R = {R(i, j, b)|1 ≤ i ≤ H, 1 ≤ j ≤W, 1 ≤ b ≤ N } (1)

T = {T(i, j, b)|1 ≤ i ≤ H, 1 ≤ j ≤W, 1 ≤ b ≤ N } (2)

where H ×W refers to height and width in pixels, and N is the number of spectral bands
of the images R and T. The primary goal of this research was to generate a dependable
normalized target image TNC (i.e., Equation (3)) computed using clustered PIFs extracted
from input images R and T so that it is spectrally balanced with the reference image R.

TNC =
{

TNC (i, j, b)
∣∣∣1 ≤ i ≤ H, 1 ≤ j ≤W, 1 ≤ b ≤ N

}
(3)

We designed a novel RRN framework composed of two main steps to reach this goal,
as shown in Figure 1. First, the clustered PIFs were selected and optimized through a
coarse-to-fine no-change selection strategy. The selected PIFs were then used in fusion-
based RRN modeling to generate an optimal normalized target image. The steps included
are detailed in the following sections.
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Figure 1. The block diagram of the proposed SRRN method.

2.1.1. Step 1: Coarse-to-Fine Clustered PIFs Selection

As mentioned before, the first step of the proposed method was to generate reliable
and well-spatially distributed PIFs from input images R and T over a coarse-to-fine no-
change selection. To this end and for further faster processing, the grid size of input images
was reduced to a coarser size P × Q, i.e.,

P = bsHc+ 1, Q = bsWc+ 1 (4)

where the operator b.c rounds its argument toward the nearest integer, s is the scaling factor
of down-sampling, computed by

s = min
(

ϕ

min(W, H)
,

min(W, H)

max(W, H)

)
, (5)

where ϕ is the user-defined positive integer (e.g., 128, 512, 720), min(.) and max(.) are
respectively minimum and maximum operators. Accordingly, the input images R and T were
down-sampled, respectively, to RD and TD which are defined as follows:

RD =
{

RD(p, q, b)
∣∣∣1 ≤ p ≤ P, 1 ≤ q ≤ Q, 1 ≤ b ≤ N

}
(6)
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TD =
{

TD(p, q, b)
∣∣∣1 ≤ p ≤ P, 1 ≤ q ≤ Q, 1 ≤ b ≤ N

}
(7)

To generate a dependable input for the no-change selection process, down-sampled
images TD and RD were then compared through a similarity index CSI which was combined
from three metrics as follows:

CSI =
ρ +

(
1− DCh

)
+ (1− θ)

3
(8)

where ρ, DCh, and θ respectively refer to Pearson correlation, Chebyshev distance, and
SAM [35] metrics, which are given by:

DCh(p, q) = maxb

∣∣∣TD
b (p, q)− RD

b (p, q)
∣∣∣, b = 1, 2, . . . , N (9)

ρ(p, q) =
∑N

b=1

(
TD

b (p, q)− TD
b

)(
RD

b (p, q)− RD
b

)
√

∑N
b=1

(
TD

b (p, q)− TD
b

)2
√

∑N
b=1

(
RD

b (p, q)− RD
b

)2
, b = 1, 2, . . . , N (10)

θ(p, q) = cos−1

 ∑N
b=1 TD

b (m, n)RD
b (m, n)√

∑N
b=1 TD

b (p, q)2
√

∑N
b=1 RD

b (p, q)2

, b = 1, 2, . . . , N (11)

where TD
b (p, q) and RD

b (p, q) represent the gray-level pixel (p, q) in the spectral band bth of
the down-sampled target and reference images, respectively. Such a combination can better
reflect the characteristics of the changed and unchanged areas because it compares the
reference and target images from different perspectives. It is worth noting that each metric
was rescaled to [0, 1] by the Min-Max method before they were used in constructing CSI.

To reinforce the boundaries of the changed/unchanged regions in the index CSI,
gradient magnitude of the index was first calculated as:

GmagCSI = |∇(Gσ ∗ CSI)| (12)

where Gσ ∗ CSI stands for the convolution of the CSI index with a Gaussian smoothing
kernel Gσ, and ∇ denotes the gradient operator. The maximum operator was then used
to supply complementary information from the index CSI and its gradient magnitude
GmagCSI into the enhanced index ECSI which is given by:

ECSI(p, q) = max (CSI(p, q), GmagCSI(p, q)), (13)

The ECSI index makes a trade-off between geometrical detail preserving (edges and
corners) and enhancing changed regions. It should be noted that GmagCSI rescaled to [0, 1]
before applying the max operator.

Generally, due to the coarse resolution of ECSI and the complexity of land surface
features, a binary segmentation result often fails to reflect the real changed/unchanged
regions. To address this issue, an automatic multilevel thresholding was applied to the
index CSI to generate the change map CM = {cm(p, q) ∈ {0, 1, 2}|1 ≤ p ≤ P, 1 ≤ q ≤ Q },
in which cm(p, q) ∈ {0, 1, 2}, (“0” and “1” indicate the pixel respectively belongs to the
certain changed and unchanged classes, whereas “2” involves pixels belonging to the
uncertain class. This process can be performed as follow:

CM(p, q) =


0, i f CSI(p, q) < Th1
1, i f CSI(p, q) > Th2
2, else

(14)

where the low and high thresholds, Th1 and Th2 were determined by the fractional-order
Darwinian particle swarm optimization (FODPSO) thresholding [36] due to its efficiency
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and fast process. The change map, CM, was further up-sampled to the original size of input
images using the nearest-neighbor interpolation and indexed by CMU .

In fine no-change selection, a local outlier detection was introduced, inspired by [37],
to select reliable and well-spatially distributed PIFs from different LULCs by making
decisions based on a hypothesis test. To this end, the target image T, was first converted to
the grayscale target image TG, using CorrC2G [38], and it then partitioned into the c cluster.
Since satellite image typically includes multiple features with overlapped distributions,
fuzzy clustering algorithms have been found to be very beneficial [39,40]. In this study, the
HFCM clustering [32] was selected for this task because it operates on the histogram of
an input image instead of the entire image, leading to a much faster process and reducing
memory storage. The HFCM algorithm typically needs to know the number of clusters
as an input which should be optimally determined. In this study, the optimum number
of clusters

(
copt
)

was self-adaptively selected during the analysis of the Xie-Beni (XB)
index [41] (i.e., Equation (15)) as the workflow of Figure 2.

XB =
∑cn

c=1 ∑L
l=1 um

cl h(l)d2(l, υc)

L minc,z=1,2,...,cn c 6=zd2(υz, υc)
(15)

where
ucl =

1

∑cn
z=1

(
d2(l,υc)
d2(l,υz)

) 2
m−1

(16)

and

υc =
∑L

l=1 um
cl h(l)l

∑L
l=1 um

cl

(17)

where h(l) = {h(l)}l=1,2,...,L is the histogram of the image TG with L gray-levels, i.e.,
L = max

(
TG); d(., .) is the distance metric between two variables, cn is the cluster number,

the membership function ucl (i.e., Equation (16)) and cluster center υc (i.e., Equation (17))
are obtained as a result of applying the HFCM algorithm to the image TG. It is worth noting
that each pixel value of the image TG was normalized according to Equation (18) to make
sure that they are in the range of [0, 255], i.e., TG(i, j) ∈ [0, 255]:

TG(i, j) =

⌊
TG(i, j)−min

(
TG)

max(TG)−min(TG)
× 255

⌋
(18)

After partitioning the image TG into copt clusters, the pixel pairs of input images
belonging to the unchanged class were first picked up from each cluster and considered
as the definite PIFs for that cluster. The hypothesis-test-based method was then proposed
to eliminate the outliers from pixels of the uncertain class in each cluster using statistical
parameters estimated based on the definite PIFs. As a result of this process, more reliable
PIFs could be extracted in each cluster, resulting in accurate modeling between the reference
and target images.

Let’s consider that in each cluster, Ru/c and Tu/c are a vector of pixels values that be-
long to the uncertain class in each spectral band of reference and target images, respectively.
Moreover, suppose that they follow a BVN distribution, and their joint probability density
function (PDF) can be formulated as follows:

f (Zu/c) =
1

2π|Σ|0.5 e−0.5[(Zu/c−µ)′Σ−1(Zu/c−µ)], (19)

where Zu/c
T = (Ru/c, Tu/c) and µ and Σ are, respectively, the mean vector and covari-

ance matrix generated from Ru/c and Tu/c in each cluster. Moreover, as is clear from
Equation (19), (Zu/c − µ)′Σ−1(Zu/c − µ) represent the Mahalanobis distance of input sam-
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ples, following a chi-square distribution with 2 degrees of freedom. Accordingly, the
probability contour of the BVN distribution can be defined for each cluster as follows:

(Zu/c − µ)′Σ−1(Zu/c − µ) = ξ (20)

where ξ is the scale of the probability contour and determined as ξ = χ2
1−$,2, in which $ is

a given level of significance (e.g., the 95% probability contour corresponds to $ = 0.05 level
of significance).
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𝑢𝑐𝑙 =
1

∑ (
𝑑2(𝑙, 𝜐𝑐)
𝑑2(𝑙, 𝜐𝑧)

)

2
𝑚−1𝑐𝑛

𝑧=1

 
(16) 

and 

𝜐𝑐 =
∑ 𝑢𝑐𝑙

𝑚 ℎ(𝑙)𝑙𝐿
𝑙=1

∑ 𝑢𝑐𝑙
𝑚 𝐿

𝑙=1

 (17) 
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fuzzy C-means (HFCM) clustering algorithm.

As can be seen from Equation (20), the performance of the probability contour is highly
dependent on the estimation of its statistical parameters (i.e., µ and Σ). The uncertain class
may include many noises and anomalies in each cluster, leading to incorrect statistical
parameters estimation and distortion of RRN results. To address this problem, we used
unchanged samples (i.e., definite PIFs) to correctly estimate the statistical parameters of
µ and Σ for each cluster. Therefore, the probability contour at the given significance level
was updated with such parameters and then directly adopted to form the critical region for
the hypothesis test in each cluster. For each cluster, the hypothesis had a null hypothesis
H0 : (Zu/c − µ)′Σ−1(Zu/c − µ) ≤ ξ, i.e., all of the uncertain pixel values which fall inside
the critical region added to the set of PIFs in the corresponding band. Since this process
was implemented band-by-band, a majority voting rule over spectral bands produced the
final decision for selecting PIFs from uncertain pixels in each cluster.

2.1.2. Step 2: Fusion-Based RRN Modeling

This step aimed to adjust the target image to the reference image through a novel
fusion-based RRN modeling. To this end, two normalized images of TNG and TNL were
first generated, respectively, through the global and local RRN modeling based on the
clustered PIFs. In fact, the relation between the target and reference images was once
modeled globally through a band-by-band RLR as follows:

TNG
b = αG

b Tb + βG
b (21)
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where αG
b and βG

b are respectively the global slope and intercept for the bth spectral band,
which were estimated using the iteratively reweighted least-squares (IRLS) method [42]
based on the gray-levels of the clustered PIFs in images, T and R. The process of the IRLS
method was started by considering the initial value for αb and βb. At each iteration τ,
the non-negative weights ψ

(τ−1)
b of clustered PIFs were then estimated from the previous

iteration based on the bisquare estimator [43]. In the next stage, the new coefficients were
estimated as follows:

αG
b
(τ) =

∑NPIF
y=1 ψ

(τ−1)
b,y

(
tb,y − µ̃tb

(τ−1)
)(

rb,x − µ̃rb
(τ−1)

)
∑NPIF

y=1 ψ
(τ−1)
b,y

(
tb,y − µ̃tb

(τ−1)
)2 (22)

βG
b
(τ) = µ̃rb

(τ−1) − αG
b
(τ)µ̃tb

(τ−1) (23)

where NPIF is the total number of clustered PIFs, tb,y and rb,y are respectively the gray-levels
for the yth clustered PIF on the bth spectral band of images T and R; µ̃tb

(τ−1) and µ̃rb
(τ−1)

are the weighted means of gray-levels of clustered PIFs in the bth spectral band of images T
and R, respectively, which are calculated from the previous iteration as follows:

µ̃tb
(τ−1) =

∑NPIF
y=1 ψ

(τ−1)
b,y tb,y

∑NPIF
y=1 ψ

(τ−1)
b,y

(24)

µ̃rb
(τ−1) =

∑NPIF
y=1 ψ

(τ−1)
b,y rb,y

∑NPIF
y=1 ψ

(τ−1)
b,y

(25)

The two last stages were repeated until the estimated normalization coefficients con-
verged to optimal values.

The RLR is much more robust to existing outliers than the other conventional linear
regression models due to an efficient weighting function in its procedure [42]. The global
RRN modeling generates a uniform normalized image where the discontinuity problem
is not observed. However, applying such an approach may be insufficient to model the
complex relationship between target and reference images, especially in dealing with
datasets with different LULC types. Additionally, when the number of PIFs in one of the
clusters is high, the global RRN modeling results may be biased to that cluster. To address
these problems, the CRLR was introduced as a local RRN modeling to locally estimate the
relation between image pairs in a band-by-band manner, which is defined as

TNL
b =

∑
copt
c=1 Wb,c

(
αL

b,cTb + βL
b,c

)
∑

copt
c=1 Wb,c

, c = 1, 2, ..., copt (26)

where αL
b,c and βL

b,c are respectively the slope and intercept for oth cluster of the bth spectral
band, which were calculated by the IRLS technique; Wb,o refers to the weight matrix, which
was separately computed for each cluster based on the inverse distance of pixel values of
the target image from the corresponding cluster center as follows:

Wb,c(i, j) =
1

‖ Tb(i, j)− υc ‖ 2 , c = 1, 2, ..., copt (27)

Such an RRN model can generate a normalized image that is well adjusted to the
reference image in different LULC. Furthermore, the weight matrix embedded in this model
can help decrease the potential bias in the RRN results. However, the normalized image
generated by the local model is not as uniform as that provided by the global model, where
discontinuity along the LULC’s edge boundaries could be observed in the results of this
model. Thus, the global and local RRN approaches include advantages and weaknesses in
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producing the normalized image. Accordingly, we looked for a strategy that decreases the
discontinuity along the LULC’s edge boundaries and reduces the bias model problem. This
could be resolved by fusing information from the normalized images TNG and TNL . There
are a variety of fusion approaches available in the literature for merging information from
multiple sources. In this study, we used the Choquet integral operator [33] to construct the
fused normalized image TNC , as it utilizes the fuzzy measures in its calculation, allowing it
to consider all possible combinations of criteria in the decision-making process [44].

Suppose that we have m normalized images, TN =
{

TN1 , TN2 , ..., TNm
}

, for fusion.
Denote the gray-level of kth normalized image, TNk

b , on nth pixel in the bth spectral band,

xb,n, as f
(

TNk
b ; xb,n

)
. The discrete Choquet integral on the instance, xb,n, calculated by [45]:

Cg(xb,n) =
m

∑
k=1

(
f (TNk

b ; xb,n)− f (TNk−1
b ; xb,n)

)
g(Ak), 1 < k < m (28)

where Cg is rearranged so that 0 ≤ f (TN1
b ; xb,n) ≤ f (TN2

b ; xb,n) ≤ ... ≤ f (TNm
b ; xb,n), g(Ak)

refer to the fuzzy measure element value corresponding to the subset Ak ={TN1
b , TN2

b , ..., TNm
b },

and f (TN1
b ; xb,n) = 0. Note that when g is an λ-fuzzy measure, g(Ak) values are determined

by [34]:

g(Ak) = g
({

TNk
b

})
+ g
({

TNk−1
b

})
+ λg

({
TNk

b

})
g
({

TNk−1
b

})
, 1 < k < m (29)

where g
({

TN0
b

})
= 0, the parameter λ refers to the degree of interaction between two

components which is obtained with the condition g
(
TN

b
)
= 1 as the following equation [45]:

λ + 1 =
m

∏
k=1

(
1 + λg({TNk

b })
)

(30)

As for the fusion between two normalized images, TNG and TNL the domain is defined
as TN =

{
TNG , TNL

}
. In this domain and according to Equation (28), the pixel value for

the fused image, TNC , can be obtained as follows:

TNC
b (xb,n) =

{
f (TNG

b ; xb,n)g({TNG
b , TNL

b }) + ( f (TNL
b ; xb,n)− f (TNG

b ))g({TNL
b }), f (TNG

b ; xb,n) ≤ f (TNL
b ; xb,n)

f (TNL
b ; xb,n)g({TNL

b , TNG
b }) + ( f (TNG

b ; xb,n)− f (TNL
b ))g({TNG

b }), f (TNG
b ; xb,n) > f (TNL

b ; xb,n)
(31)

where g({TNL
b }) and g({TNG

b }) are the fuzzy measures respectively for f (TNL
b ; xb,n) and

f (TNG
b ; xb,n), which were determined based on the inverse of the absolute value of the

gray-level difference between normalized and reference images on the nth pixel in the bth
spectral band as follows:

g(
{

TNL
b

}
) =

1∣∣∣ f (TNL
b ; xb,n)− f (Rb; xb,n)

∣∣∣ (32)

g(
{

TNG
b

}
) =

1∣∣∣ f (TNG
b ; xb,n)− f (Rb; xb,n)

∣∣∣ (33)

By substituting g({TNL
b }) and g({TNG

b }) into Equation (29), the joint fuzzy measure
g({TNL

b , TNG
b }) = g({TNG

b , TNL
b }) can be determined as follow:

g({TNL
b , TNG

b }) = g({TNL
b }) + g({TNG

b }) + λg({TNL
b })g({TNG

b }), (34)
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2.2. Datasets

As part of this study, a simulated dataset and four real bi-temporal optical images
taken by Landsat-7, Terra, Sentinel-2, and IRS satellites were used to evaluate the proposed
SRRN method (see Figure 3). The key reasons for choosing these datasets were their
diversity in terms of satellite sensor, geographical coverage, and various atmospheric
conditions. The main characteristics of real datasets are summarized in Table 1.
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Figure 3. The color composites of considered datasets, and the corresponding normalized tar-
get images and binary change maps. (a) target images, (b) normalized target images generated
by the proposed method, (c) reference images, and (d) binary change maps (black = changed,
white = unchanged). False-color composites (NIR/red/green) and (green/red/NIR) were respec-
tively used for the simulated dataset and datasets 1, 2, and 4, whereas the natural color composite
(Red/Green/Blue) was employed for datasets 3 for visual assessments.
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Table 1. Characteristics of the datasets used in this study.

Dataset Reference/Target Satellite
(Sensor)

Band Type

Resolution
Image Size

(Pixels) Date Study AreaSpatial
(m)

Radiometric
(Bits)

# 1
Reference

Landsat 7 (ETM+) Blue, Green, Red, NIR *, SWIR * 1, SWIR 2 30 8 591 × 591
September 2002 Lago Mulargia lake,

Cagliari, ItalyTarget May 2003

# 2
Reference Terra

(ASTER)

Green/Yellow, Red, NIR
SWIR 1, SWIR 2, SWIR 3,
SWIR 4, SWIR 5, SWIR 6,

15/30 8 2000 × 2000
July 2002

Ahwaz, Khuzestan,
IranTarget July 2003

# 3
Reference Sentinel 2

(MSI)
C/A *, Blue, Green, Red, VRE * 1, VRE 2, VRE

3, NIR, NIRn *, WV *, SWIR 1, SWIR 2 10/20/60 12 1500 × 1500
April 2016 Hamoon wetland,

Iran-Afghanistan
borderTarget April 2018

# 4
Reference

IRS (LISSIII) Green, Red, NIR 23.5 8 900 × 900
July 1998 Varzaqan, East

Azerbaijan Province,
IranTarget May 2007

* C/A: coastal aerosol, VRE: vegetation red edge, NIR: near-infrared, NIRn: narrow NIR, SWIR: short wave
infrared, WV: water-vapor.

The simulated dataset was made up of a portion of 1200 × 1200 pixels of an uncali-
brated image acquired by the SPOT 7 satellite over the three channels (green, red, NIR)
in November 2014 from Curitiba, Brazil, i.e., geographically limited between [24◦34′18” S,
49◦43′44” W] and [24◦38′8” S, 49◦39′28” W]. In this dataset, the uncalibrated image was con-
sidered as the target image, whereas its adjusted image (in terms of contrast and brightness)
with some simulated changed areas was selected as the reference image (see Figure 3a,c
first row). The target image includes the different cropland types with low contrast and
brightness. Following RRN, the contrast and illumination of target images must be similar
to those of the reference image, and croplands will be discernible similarly to those shown
in simulated reference images.

Dataset 1 is composed of the bi-temporal Landsat 7 images over Lago Mulargia Lake
in Italy (i.e., geographically limited between [39◦45′01” N, 9◦9′30” E] and [39◦35′02” N,
9◦22′30” E]) spanning a period of about one year (see Figure 3a,c second row). There are
many differences among bitemporal data, including seasonal changes in different LULC,
especially in vegetation, and varying illumination that could result in false changes in
the final results of RS applications such as change detection and time series analysis. The
Landsat 7 image acquired in September 2002 was considered the reference image because
of its reasonable contrast and illumination. The one acquired in May 2003 was used as
the target image due to its non-ideal spectral properties. As a result of RRN, the spectral
response of various LULCs in the target image is expected to be similar to their response in
the reference image.

Dataset 2 consists of the bi-temporal images acquired by the ASTER sensor over the
south of Ahwaz, Iran (i.e., geographically limited between [31◦20′04” N, 48◦10′02” E] and
[31◦01′01” N, 48◦41′03” E]) across a period of about two years (see Figure 3a,c third row).
There are many croplands, vegetation, soil changes, and illumination differences among
this bitemporal data. The ASTER image taken in July 2002 was used as the reference image
because of its realistic illumination and spectral contents. The one acquired in July 2003
was considered the target image. After applying RRN, the target image is expected to be
harmonized with the reference image in terms of contrast, brightness, and spectral content.
It is worth noting that the spatial resolution of 30 m/pixel bands of the ASTER images was
also sharpened to 15 m/pixel by the PCA-based PAN-sharpening algorithm [46].

Dataset 3 contains the bitemporal Sentinel 2 images over the Hamoon wetland, Iran-
Afghanistan border (i.e., geographically limited between [31◦35′38” N, 60◦57′42” E] and
[31◦22′38” N, 61◦15′36” E]) across a period of about two years (see Figure 3a,c forth row).
These images were acquired in the same month but under different atmospheric conditions.
There are significant water body changes as well as illumination variations caused by
slightly different viewing angles among the bitemporal data. The Sentinel 2 image taken
in April 2016 was employed as the reference image, and atmosphere, terrain, and cirrus
corrections were performed on this image by the Sen2Cor model, which is available in
SNAP software. The uncalibrated Sentinel 2 image (at processing Level-1C) acquired in
April 2016 was also used as a target image. After applying RRN, the spectral content of
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the target image is intended to be rectified based on that of the reference image. Moreover,
the spatial resolutions of 20 m/pixel and 60 m/pixel bands of the Sentinel 2 dataset were
also enhanced to 10 m/pixel by the Sen2Res model [47], which is available in the Sentinel
Application Platform (SNAP) open-source software.

Dataset 4 includes the bitemporal IRS images over Varzaqan, Iran (i.e., geographically
limited between [38◦40′24” N, 46◦29′25” E] and [38◦25′12” N, 46◦47′56” E]) spanning a
period of about ten years (see Figure 3a,c last row). There are many LULC changes as
well as mountain offsets caused by different viewing angles among this bitemporal data.
The IRS image taken in July 1998 was employed as the reference image due to its better
brightness and contrast than the one acquired in May 2007. After applying RRN, the target
image was expected to be well-adjusted with the reference image in terms of spectral
content and visual point of view.

All spectral bands of image pairs, except the thermal, cirrus, and panchromatic bands,
were used in the RRN process. The ground truth of the change maps, which is shown in
Figure 3d, was generated by the post-classification comparison and manual analysis of the
image pairs. It is worth noting that the unchanged pixels in these maps were considered for
RRN validation (experiments of Section 3.1, Section 3.3, and Section 3.4) to have fair results.

2.3. Evaluation Metrics

To quantify the global performance of the proposed SRRN method and generate
comparative experiments, the root mean square error (RMSE) was used in this study
(Equation (35)).

RMSE =

√√√√ 1
Nc

Nc

∑
ι=1

(Rι − TN
ι ) (35)

where Nc is the total number of unchanged pixels in the binary change map. A low RMSE
describes the acceptable RRN results.

To locally validate the performance of the proposed SRRN method, the cross-correlation
(CC) to average mean absolute percentage error (AMAPE) ratio index (CAMRI) is sug-
gested, which is calculated for each exciting LULC as follows:

CAMRI =
CC

AMAPE
=

∑
Ncl
nl=1 ∑N

b=1

(
TN

nl ,b−TN
b

)(
Rnl ,b−Rb

)
√

∑
Ncl
nl=1 ∑N

b=1

(
TN

nl ,b−TN
b

)2
√

∑
Ncl
nl=1 ∑N

b=1

(
Rnl ,b−Rb

)2

1
N∗Ncl

∑N
b=1 ∑

Ncl
nl=1

∣∣∣Rb,nl
−TN

b,nl

∣∣∣
Rb,nl

× 100

(36)

where Ncl denotes the number of test samples in a specific LULC, Rb and TN
b are respectively

the average values of these samples in the bth spectral band of the reference and normalized
target images. The higher value of the CAMRI results in a better RRN.

3. Experimental Results
3.1. Analysis of the Coarse-to-Fine PIFs Selection

As clustering is an essential component in the proposed coarse-to-fine PIFs selection,
we present the results of the HFCM algorithm for all datasets used in Figure 4a–c. In this
way, the XB values for the number of clusters from 2 to 10 are shown in Figure 4a during
the clustering process for each dataset. For the best cluster number in each dataset, the
clustering results and membership maps are also shown in Figure 4b,c, whereas the selected
PIFs in each cluster are illustrated in Figure 4d for all datasets.
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Figure 4. (a) The optimal cluster number selection through the HFCM clustering using the XB index
for all datasets. (b) Membership function maps, (c) clustering results for all datasets, and (d) clustered
PIFs extracted by the proposed coarse-to-fine strategy for all datasets.

As can be seen from the subplots in Figure 4a and according to the flowchart pre-
sented in Figure 2, the optimal cluster numbers were self-adaptively selected as 4, 4, 5,
3, and 4, respectively, for the simulated dataset and datasets 1–4. The achieved optimal
cluster number for each dataset corresponds to the first minimum value of the XB index,
which seemed to be consistent with the real number of clusters in the target image (see
Figure 4b,c). As is evident from the clustering results and their membership maps, the
decolorized target images were well categorized from dark to bright clusters. As a result,
the robust and well-spatially distributed PIFs were collected from these clusters through the
proposed hypothesis-test-based method, which was well fitted with the physical properties
of ground surface types. For example, the clustered PIFs were extracted from dark and
bright croplands of the simulated dataset using the proposed coarse-to-fine strategy (see
Figure 4d first row). The PIFs were also collected from different LULC types of dataset 1,
such as water bodies and wetlands (dark regions), dense vegetation (gray regions), sparse
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vegetation (light gray regions), and mountainous, as well as bare soil land cover (bright
regions) (see Figure 4d second row). For dataset 2, the clustered PIFs mainly were selected
from the river and dark-green farmlands (dark regions), wetlands (dark-gray regions),
irrigated croplands (gray regions), harvested cropland areas (light-gray regions), and bare
soil land covers (bright regions) (see Figure 4d third row). The clustered PIFs of dataset 3
were composed of the water bodies, sandy and rocky areas, and the dark, gray, and bright
ground surfaces, respectively (see Figure 4d fourth row). They were also composed of dark
to bright samples collected from the valleys, dense and sparse vegetation, and rocky areas
included in dataset 4 (see Figure 4d last row).

To analyze the efficiency of the proposed coarse-to-fine strategy, its RRN results were
compared to those obtained using the same approach without the downscaling process,
without the hypothesis-test-based method, and when using CVA instead of CSI in terms
of RMSE and computing time (Figure 5). The linear RLR was selected as the core of RRN
modeling in this experiment to provide a fair comparison and investigate the quality of
clustered PIFs generated by the coarse-to-fine approach under the mentioned conditions.
The experiments and the computation time analysis were conducted on all considered
datasets by MATLAB (version 2020a) on an Intel CPU Core (TM) i7-3770 GHz with 16 GB
of RAM.
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Figure 5. The RRN performance resulted from the proposed coarse-to-fine PIF selection and the same
strategy without down-sampling, without hypothesis-test-based, and when CVA was used instead of
the CSI for the simulated dataset (a) and datasets 1–4 (b–e) and (f) their processing time.

It is evident from bar charts Figure 5a–e that using CVA instead of CIS index in the
proposed coarse-to-fine PIFs selection resulted in a significant reduction in RRN perfor-
mance for most analyzed datasets. For example, the average RMSE was reduced by 7.37
and 0.05 in the best (simulated dataset) and worst (dataset 2) cases after using CVA instead
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of the CIS index, whereas it led to an increase in average RMSE by 0.42 only for dataset 3.
These results could be due to the high sensitivity of CVA to radiometric differences between
image pairs because it directly employs only information of spectral bands to generate a
difference/change index. In contrast, the CSI index uses the integration of information
obtained from distance, angle, and correlation between spectral bands of image pairs in
the comparison process, which was less affected by radiometric distortions. However, the
running time was reduced by almost 21% when using CVA in the PIF selection process,
which could be due to the simplicity of CVA calculations (see Figure 5f).

After using the hypothesis-based test in the process of PIF selection, the average RMSEs
were improved by 4.22% for the simulated dataset and 3.83%, 1.68%, 7.34%, and 1.05%,
respectively, for datasets 1–4, indicating its efficacy in the PIF refinement (see Figure 5a–e).
As expected, using a refinement algorithm raised the computational cost of the process.
Knowing this, using a hypothesis-based-test algorithm increased the execution time of the
proposed PIFs selection by almost 40% over most cases, which is worth considering for
better results.

The PIFs selection without down-sampling yielded the best performance over most
of the datasets, but there was no significant difference in its RRN accuracy and that of
the proposed method. For example, when the down-sampling process was discarded
from the proposed method, the average RMSE was reduced by only 0.11%. Furthermore,
as compared to other approaches, the proposed PIF selection without down-sampling
required the greatest processing time in all cases (see Figure 5f). These findings revealed
that adopting down-sampling in the PIF selection process not only reduced execution time
but also provided satisfactory RRN accuracy for most datasets.

3.2. Comparative Results of the RRN Modelling

To evaluate the competence of the RLR and CRLR models, they were compared with
the two most widely used models in the RRN process, including ordinary least squares
(OLS) [48] and orthogonal distance regression (ODR) [49], in terms of RMSE and processing
time (see Figure 6). For this experiment, 67% of the PIFs from each cluster were randomly
selected for training, and the rest was used to test the models (see Figure 6a). In addition,
we calculated the running time only for the modeling step (see Figure 6c).

As depicted in Figure 6b, the proposed CRLR model obtained the best performance in
RRN modeling of all datasets among all considered models, which indicates its robustness
and effectiveness in model fitting. For example, the CRLR outperformed the RLR, ORD,
and OLR, respectively, by 5.20%, 22.19%, and 7.48% in the best case (dataset 2) and by ~1.5%
in the worst cases (dataset 3) in terms of average RMSE. Moreover, RLR had a somewhat
better performance than the OLR in that it slightly improved the average RMSE of the OLR
by ~1% for all datasets. This can be mainly because RLR, like CRLR, benefits from the
bisquare weighting function, resulting in more robust results. Among all considered models,
the ORD had poor RRN results for considered datasets where it conducted somewhat
large RMSE compared with other models. The main reason may be related to a large
number of training samples and their variety of errors, leading to errors in fitting and
estimating coefficients. Although the CRLR and RLR had better quantitative results than
ORD and OLR, both of them were computationally intensive. This was more obvious for
datasets 2 and 3, which have more spectral bands than other datasets (see Figure 6c). In
summary, The CRLR and RLR typically require a much larger computational volume than
conventional models used in the RRN modeling phase, which can be seen as a weakness of
these models.
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Figure 6. The comparative results of the OLR, ODR, RLR, and CRLR models in the proposed RRN
process. (a) Number of training and test samples, (b) the RRN performance resulted from considered
models, and (c) their processing time for the simulated dataset and datasets 1–4.

3.3. Effects of the Fusion-Based RRN Modelling

In this section, we evaluated the performance of the proposed fusion-based RRN
model at the local and global levels over the analyzed datasets. The experiments were
performed with the clustered PIFs selected by the proposed coarse-to-fine process. Figure 7
shows comparative results between the proposed fusion-based RRN model and local and
RRN modeling in terms of accuracy and visual depth.
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Figure 7. The comparative results of the proposed SRRN method using the local, global and fusion-
based RRN modeling. The mosaic images are composed of (a) subject images (left) and reference
images (right), (b) normalized images generated through the local RRN model (left) and reference
images (right), (c) normalized images generated through global RRN model (left) and reference
images (right), and (d) normalized image generated through fusion-based RRN model (left) and
reference images (right) for all analyzed datasets. (e) The performance resulted from local, global,
and the proposed fusion strategy models over all spectral bands of analyzed datasets.

As demonstrated in Figure 7a–e, the normalized images produced by the proposed
fusion strategy were more visually similar to the corresponding reference image than
those generated by local and global models, indicating its effectiveness in the RRN process.
Moreover, the proposed fusion-based strategy significantly reduced the amount of bias
and discontinuities present in the normalized images of datasets 3 and 4, produced from
local and global RRN models. For example, the local RRN modeling generated unde-
sirable normalized images that were not well harmonized with the reference images in
datasets 3 and 4, whereas global RRN modeling produced blurred normalized images. No-
tably, the fused normalized images in these two datasets were in good agreement with the
relevant reference images (See Figure 7a–e second and third rows). On other datasets, there
were not many visual differences between the normalized images generated by methods
compared, where they all visually matched their reference images.
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Based on the results illustrated in Figure 7e, the RMSEs were reduced over most
of the spectral bands of the datasets after fusing the normalized images generated by
the local and global models by the fuzzy Choquet integral. For example, when using
the proposed fusion technique in RRN modeling instead of a single local model, like the
cluster-wise RLR, the average RMSEs were reduced by 8.63% for the simulated dataset
and 2.83%, 6.40%, 0.62%, and 1.69% for datasets 1–4, respectively. Moreover, the average
RMSEs were improved by 1.90% for the simulated dataset and 8.84%, 3.57%, 1.06%, and
4.02%, respectively, for datasets 1–4 when the proposed fusion strategy in RRN modeling
was used instead of the single global model like the RLR. This could mainly be due to
the difference between the reference and normalized target images as the fuzzy Choquet
integral memberships during the fusion process. In addition, local RRN modeling provided
better results for datasets 1, 3, and 4, while global RRN modeling delivered better results
for the simulated dataset and dataset 2. Based on our results, a single RRN model was
not sufficient to achieve better qualitative and quantitative results, and a fused approach,
such as the one proposed in this study, could lead to better results by optimally combining
various normalized images.

The spectral characteristics of different LULC types in multi-temporal images may
be unexpectedly affected due to radiometric distortions. Thus, a local assessment can
be a practical approach to assessing the effectiveness of the proposed RRN methods in
preserving spectral characteristics of LULC types on images pairs. In this way, the spectral
signatures of several LULC types (e.g., vegetation, water, rock mountains) were compared
before and after normalization using the proposed SRRN method under the local, global,
and fused-based RRN modeling (see Figure 8). The CAMRI values before and after normal-
ization were also compared over the LULC classes (see Figure 9). Multiple polygons from
the LULC classes were manually selected for these experiments on the unchanged areas of
reference, target, and normalized images.

As shown in Figure 8a–d, the spectral signatures of LULC types in the target images
were well adjusted after normalization with the proposed SRRN method under different
modeling. Moreover, these results were in good agreement with CAMRI values reported for
datasets before and after RRN (see Figure 9a–d). In more detail, the spectral signatures of
vegetation and water bodies in the normalized image generated by the local approach were
slightly similar to those obtained in the reference image for dataset 1. The fusion-based
method also had the best performance with a CMRI value of ~0.18 in rocky mountains
areas of dataset 1. Similarly, the proposed fused approach provided spectrally better RRN
results in the vegetation and soil LULC types, with the highest CMRI values. Nevertheless,
the local model yielded better results for water bodies in dataset 2. The local, global, and
fusion-based RRN modeling had the same performance for different LULCs included in
dataset 3, as shown in Figures 8c and 9c. Moreover, the local and global models also
had nearly the same RRN performance for LULCs of dataset 4. In contrast, the proposed
fusion-based model produced better results in spectral similarity and CAMRI values (see
Figures 8d and 9d).

Although the SRRN method under the mentioned models had locally acceptable
results, small shifts were observed between the spectral signatures of some of the LULCs
in the reference and normalized images. For example, such shifts were mainly observed
in water bodies due to existing particles floating in these areas, such as phytoplankton,
pollution, and sediments which affect the apparent color of the water between acquisition
times of the reference-target image pair. Moreover, the differences between the spectral
signatures of vegetation in the reference and normalized images were mostly observed for
bi-temporal images acquired in different seasons (e.g., datasets 1, 2, and 4). This could be
mainly due to differences in vegetation phenological properties.
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3.4. Comparative Results of the SRRN Methods

To evaluate the efficiency of the proposed method, it was compared with our imple-
mentations of IRMAD [15], multi-Otsu-based [29], MPIF [22], ASCRRF-based [27], GMM-
EE [24], HOG-based [31], and FLSM-based [3] in terms of quantitative and qualitative
results, as well as operation time (see Tables 2–6 and Figure 10). These SRRN algorithms
were set up as described in their respective works of literature. This study did not report
the componential time of the HOG-based [31] SRRN technique since it is a semi-supervised
SRRN approach that requires training data for its classification process.

Table 2. Comparison between the accuracy and componential time of different SRRN methods and
the proposed method for the simulated dataset.

Method
RMSE

Comp. Time (s)
Green Red NIR Avg.

Raw 1 87.50 65.49 54.41 69.13 —-
IRMAD [15] 22.07 28.84 21.01 23.97 8.16
Multi-Otsu-based [29] 34.97 46.85 41.33 41.05 7.83
MPIF [22] 18.09 29.80 28.80 25.56 8.77
ASCR-RF-based [27] 13.28 13.81 19.32 15.47 15.96
GMM-EE [24] 14.28 16.71 19.44 16.81 11.03
HOG-based [31] 12.59 16.51 9.36 12.82 —-
FLSM-based [3] 16.19 16.92 12.31 15.14 14.44
Proposed Method 8.69 10.52 8.71 9.31 7.54

1 The results without applying any SRRN method.

Table 3. Comparison between the accuracy and componential time of different SRRN methods and
the proposed method for dataset 1.

Method
RMSE

Comp. Time (s)
Blue Green Red NIR SWIR1 SWIR2 Avg.

Raw 1 63.84 80.96 79.80 121.17 95.41 91.72 88.82 —-
IRMAD [15] 29.69 26.30 29.00 29.00 20.14 25.78 26.65 10.44
Multi-Otsu-based [29] 36.21 33.95 41.73 24.19 24.71 32.44 32.20 09.61
MPIF [22] 32.50 27.56 30.28 35.25 21.34 26.90 28.97 17.21
ASCR-RF-based [27] 58.39 40.29 37.91 25.58 23.93 29.00 35.85 21.02
GMM-EE [24] 30.81 28.57 31.50 23.44 22.61 28.52 27.57 14.94
HOG-based [31] 36.84 30.51 32.95 27.97 22.70 28.93 29.98 —-
FLSM-based [3] 30.83 27.18 29.83 23.82 21.02 27.06 26.62 26.19
Proposed Method 26.60 23.53 25.76 21.59 18.78 23.68 23.32 10.04

1 The results without applying any SRRN method.

Table 4. Comparison between the accuracy and componential time of different SRRN methods and
the proposed method for dataset 2.

Method
RMSE

Comp. Time (s)
Green Red NIR SWIR1 SWIR2 SWIR3 SWIR4 SWIR5 SWIR6 Avg.

Raw 1 21.02 25.33 34.17 31.23 45.37 42.22 45.73 47.65 32.38 36.12 —-
IRMAD [15] 14.54 19.99 15.84 19.53 15.74 16.44 15.20 15.34 12.44 16.12 30.12
Multi-Otsu-based [29] 19.06 26.21 20.47 22.84 20.14 21.36 19.88 20.20 15.38 20.62 29.11
MPIF [22] 14.92 21.39 18.45 22.37 18.08 19.05 17.59 17.80 14.05 18.19 40.01
ASCR-RF-based [27] 14.41 19.73 18.94 21.81 18.72 19.48 18.17 18.32 14.85 18.27 79.23
GMM-EE [24] 14.08 19.18 15.06 17.69 14.99 15.65 14.65 14.86 12.03 15.36 58.24
HOG-based [31] 14.49 18.83 13.44 16.24 13.25 14.20 13.13 13.58 10.26 14.16 —-
FLSM-based [3] 14.35 19.48 16.30 18.72 16.19 16.98 15.85 16.17 12.90 16.33 95.26
Proposed Method 11.44 15.46 13.98 16.63 13.89 14.43 13.49 13.47 10.86 13.74 33.26

1 The results without applying any SRRN method.
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Table 5. Comparison between the accuracy and componential time of different SRRN methods and
the proposed method for dataset 3.

Method
RMSE Comp.

Time
(s)C/A Blue Green Red VRE1 VRE2 VRE3 NIR NIRn WV SWIR1 SWIR2 Avg.

Raw 1 5500.07 2252.14 1067.89 1462.33 1633.91 1370.60 1229.10 2394.21 1141.94 9264.19 2160.05 3676.26 2762.72 —–
IRMAD
[15] 452.08 416.01 496.92 630.05 603.69 638.38 678.13 670.13 675.69 320.18 699.54 675.56 579.70 49.13

Multi-Otsu-
based
[29]

425.76 395.79 483.96 624.07 600.28 637.34 676.82 668.39 673.77 316.34 698.23 674.20 572.91 38.52

MPIF [22] 571.85 431.84 526.36 688.72 660.53 679.83 734.87 727.90 733.21 550.00 1132.36 784.99 685.21 42.94
ASCR-RF-
based
[27]

466.67 433.55 538.84 703.77 686.28 734.56 783.50 763.71 789.24 364.08 845.11 814.73 660.34 91.64

GMM-EE
[24] 476.98 452.91 526.46 653.95 631.63 668.90 706.77 699.98 703.79 381.20 730.77 707.50 611.74 62.01

HOG-based
[31] 1321.10 706.17 635.19 745.97 707.52 772.86 809.06 806.86 832.37 393.73 810.76 724.95 772.21 —-

FLSM-
based
[3]

432.02 402.04 485.44 628.45 606.96 647.15 686.70 678.78 685.01 328.16 711.78 686.10 581.55 114.23

Proposed
Method 421.15 389.92 482.63 621.99 598.18 634.77 673.96 664.97 669.78 312.80 693.43 668.66 569.35 45.88

1 The results without applying any SRRN method.

Table 6. Comparison between the accuracy and componential time of different SRRN methods and
the proposed methods for simulated dataset 4.

Method
RMSE

Comp. Time (s)
Green Red NIR Avg.

Raw 1 55.60 58.83 76.86 63.77 —-
IRMAD [15] 40.08 40.20 42.14 40.81 6.15
Multi-Otsu-based [29] 46.18 45.91 48.39 46.82 6.08
MPIF [22] 44.36 43.73 42.93 43.67 6.19
ASCR-RF-based [27] 41.14 47.32 49.62 46.02 8.96
GMM-EE [24] 37.54 37.42 39.07 38.01 8.29
HOG-based [31] 38.20 38.56 42.31 39.69 —
FLSM-based [3] 40.61 39.13 41.78 40.51 13.65
Proposed Method 34.22 34.18 36.26 34.88 5.93

1 The results without applying any SRRN method.

As can be seen from Tables 2–6, RMSE values were significantly reduced after applying
all considered SRRN methods over all datasets. Among these models, the proposed method
obtained the highest accuracy in minimizing radiometric errors from the target images of
the analyzed datasets. Specifically, the average raw RMSEs decreased significantly from
69.13 to 9.31 (~87%), from 88.82 to 23.32 (~74%), from 36.12 to 13.74 (~62%), from 2762.72
to 569.35 (~79%), and from 63.77 to 34.88 (~45%), respectively for the simulated dataset,
and datasets 1–4. Compared with the implemented methods, the proposed methods also
improved the average RMSEs by ~27% and ~1% in best and worst cases, i.e., the simulated
dataset and dataset 3, respectively. This was mainly because the proposed method took
advantage of the efficient coarse-to-fine PIFs selection and fusion-based RRN modeling in
its process.

The multi-Otsu-based [29] had the worst RRN performance in most cases, except
for dataset 3, in which the HOG-based [31] achieved a lower average RMSE compared
with other well-known methods. This could be mainly because this method uses the
Otsu thresholding as segmentation in its process, which is highly sensitive to the non-
uniform illumination and imperfectly segment images with such distortions. The ASCRRF-
based [27] also had an almost poor RRN performance in most cases because it uses the RF
regression in RRN modeling, which is highly prone to overfitting and needs parameter
tuning for each dataset. Although the MPIF [22] had a moderate RRN performance, it
could not perfectly handle radiometric falsifications between image pairs in most cases, as
shown in Tables 2–5. This may be related to using several threshold-based sampling rules
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in PIFs selection that do not take LULC types into account, resulting in insufficient PIFs
with an unsuitable spatial distribution.

The IRMAD [15], FLSM-based [3], and GMM-EE [24] methods were high-end tech-
niques among the considered methods because they provided comparatively reasonable
results for most of the analyzed datasets. Of course, the IRMAD [15] had an incredible
performance of the simulated dataset in RRN compared to the FLSM-based [3] and GMM-
EE [24] methods. The reason for this could be found in the nature of the IRMAD method,
which uses only statistical properties for detecting PIFs. In general, the IRMAD [15], FLSM-
based [3], and GMM-EE [24] methods do not consider the LULC types in the process of
PIFs selection and optimization, resulting in poor RRN results compared with the proposed
method. On the other hand, the HOG-based method [31] had an unstable RRN perfor-
mance among the evaluated methods because it yielded reasonable results for the simulated
dataset and datasets 2 and 4, while it had poor performance in RRN of datasets 1 and 3.
This instability was attributed mainly because this method depends on the value of the
correlation coefficient’s threshold and the accuracy of the classification, which may vary for
different datasets.

As shown in Figure 10a–j, after normalization with the considered SRRN methods, the
target images were significantly close to the relevant reference images from a visual point of
view. Moreover, the visualizations of RRN results were in line with the quantitative results
reported in Tables 2–5. In more detail, the normalized images generated by the proposed
method were more harmonized with the relevant reference images than other methods, in-
dicating the high efficacy of the proposed method in reducing radiometric distortions from
the target images (see Figure 10i). The HOG-based [31], FLSM-based [3], and GMM-EE [24]
methods also generated reasonable normalized images, which were visually well-matched
with the corresponding reference images in most cases (see Figure 10f–h). However, they
produced contrast-distorted normalized images for the simulated dataset, as shown in the
first row of Figure 10f–h. The IRMAD [15] also returned dependable normalized images
with more contrast and saturation than the reference images in most cases. At the same
time, it generated a low-brightness normalized image for dataset 2 (see Figure 10b).

The multi-Otsu-based [29] generated blurred normalized images for the simulated
dataset and datasets 1 and 4, while it induced more appropriate normalized images for
datasets 2 and 3 (see Figure 10c). This could be mainly due to the fluctuated performance
of the Otsu algorithm in dealing with non-uniform illumination (e.g., simulated dataset
and datasets 1 and 4). The MPIF [22] visually yielded unsatisfactory results, especially for
the simulated dataset and dataset 4, where it generated the normalized images with artifact
colors (see Figure 10d). This could be mainly due to the sensitivity of this method to the
numerical thresholds of its sampling rules and the lack of considering different LULC types
in its process. The normalized images of the ASCRRF-based [27] were composed of artifact
colors in the simulated dataset and datasets 1 and 4. This is mainly because this method
was over-fitted to estimate the relationship between their image pairs (see Figure 10e).

In terms of computation time, the proposed method was the most efficient method for
the simulated dataset and dataset 4, while the multi-Otsu-based [29] was inexpensive on
other analyzed datasets. A major reason for the efficiency of the proposed method could be
attributed to the coarse-to-fine PIFs selection, which substantially reduced the execution
time. In fact, a slight increase in time cost was observed when using the fused-based model
in the proposed method, but did not lead to a heavy computational load (see Tables 2–5 and
Figure 6f). The IRMAD [15] and MPIF [22] were also among the computationally efficient
methods in RRN of the analyzed datasets, while the ASCRRF-based [27] and GMM-EE [24]
were mid-range methods in terms of processing time. In all cases, the FLSM-based [3]
method was more expensive, such that in the best and worst cases, its execution times were
approximately twice and three times longer than the proposed method. This was mostly
because the FLSM-based [3] included several image processing algorithms that demanded
massive storage and componential time.
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Remote Sens. 2022, 14, 1777 25 of 27

4. Conclusions

This study introduced a new SRRN method to provide robust and well-distributed
PIFs and a reasonable normalized image. To be specific, a new coarse-to-fine strategy was
embedded in the proposed method to efficiently select robust PIFs from different LULC
types. A fusion-based model was also developed based on the fuzzy Choquet integral that
effectively integrated two normalized images generated by the global (i.e., RLR model) and
local (i.e., proposed CRLR model) models. The experimental results were evaluated on
a simulated dataset and four real datasets, each of which was composed of a bi-temporal
image pair acquired by different RS systems.

The experimental results demonstrated that the proposed coarse-to-fine approach
successfully reduced uncertainties from PIFs and efficiently selected them from dark to
bright regions, which aligned with the nature of LULC types. Moreover, the proposed
fusion-based RRN modeling led to more accurate local and global RRN results than the
RLR and CRLR models. In addition, the spectral signatures of different LULC types in
the target images were closer to those of the reference image after normalization with the
proposed SRRN method, indicating its high potential in preserving spectral characteristics
of various LULC classes. The proposed method also outperformed the other well-known
SRRN methods regarding accuracy, computation time, and visual point of view, indicating
its high potential in reducing the radiometric differences between image pairs.

Although the current work presented an efficient coarse-to-fine strategy for PIF selec-
tion, it employed RLR and its cluster-wise variant in the core of the RRN modeling, which is
computationally expensive. Such an issue reduces the operationality of the proposed SERN
method in dealing with the big-size dataset. Therefore, it is recommended to use much
more efficient and robust models in the RRN modeling process. Moreover, the proposed
method was developed by assuming a linear relationship between image pairs and their
LULC types. However, this relationship can be nonlinear, especially in image pairs with
significant illumination and LULC changes. Therefore, the current fusion scheme could also
be further improved by using multiple normalized images generated by more advanced
nonlinear mapping functions.
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