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With recent advances in Machine Learning techniques based on Deep Neural Networks
(DNNs), automated plankton image classification is becoming increasingly popular within
the marine ecological sciences. Yet, while the most advanced methods can achieve
human-level performance on the classification of everyday images, plankton image data
possess properties that frequently require a final manual validation step. On the one hand,
this is due to morphological properties manifesting in high intra-class and low inter-class
variability, and, on the other hand is due to spatial-temporal changes in the composition
and structure of the plankton community. Composition changes enforce a frequent
updating of the classifier model via training with new user-generated training datasets.
Here, we present a Dynamic Optimization Cycle (DOC), a processing pipeline that
systematizes and streamlines the model adaptation process via an automatic updating
of the training dataset based on manual-validation results. We find that frequent
adaptation using the DOC pipeline yields strong maintenance of performance with
respect to precision, recall and prediction of community composition, compared to
more limited adaptation schemes. The DOC is therefore particularly useful when
analyzing plankton at novel locations or time periods, where community differences are
likely to occur. In order to enable an easy implementation of the DOC pipeline, we provide
an end-to-end application with graphical user interface, as well as an initial dataset of
training images. The DOC pipeline thus allows for high-throughput plankton classification
and quick and systematized model adaptation, thus providing the means for highly-
accelerated plankton analysis.

Keywords: machine learning, deep neural networks, plankton community, classification, model adaptation
INTRODUCTION

Plankton is a diverse group of organisms with a key role in marine food-webs and biogeochemical
cycles (e.g. Castellani and Edwards, 2017). It is furthermore responsible for about 50% of the global
primary production, and they serve as prey for upper trophic levels and as recyclers of organic
matter. Changes in their abundance, biogeography or size structure can thus lead to large changes at
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the ecosystem level (e.g. Frederiksen et al., 2006; Capuzzo et al.,
2017). Climate change in particular can cause major changes in
plankton community characteristics. The range of specific
research on plankton in the ecological context is wide,
covering issues such as the effect of ocean acidification on
calcifying organisms (e.g. Stern et al., 2017), migrations of
plankton taxa in response to ocean warming (Beaugrand,
2012), or the determination of available food biomass to larval
fish at changing hatching times (Asch et al., 2019; Durant et al.,
2019). Ultimately, however, many of these address – directly or
indirectly – the effects of environmental change on the
abundance of commercially exploited marine fish species,
which are dependent on plankton either as food for their early
life-stages, or as food of their prey. As plankton forms the base of
any marine food web, climate effects are propagated to higher
trophic levels via the response of the plankton community to
climate change (Winder and Sommer, 2012; Nagelkerken et al.,
2017). Monitoring its composition and abundance is hence of
great importance to understanding the effects of climate change
on the entire marine ecosystem and services it provides
to humanity.

The study of plankton in an environmental context is both
quantitative and qualitative in nature. While certain plankton
estimates (e.g. phytoplankton biomass) can be inferred from
analysis of satellite imagery, most studies require abundance
indices of specific taxa that can only be derived from sampling
plankton in situ and determining its composition. Depending on
the research subject, the taxonomic, life-stage and size
composition of plankton can e.g. indicate the presence of a
community specific to a certain water mass/current (Russell,
1939; Beaugrand et al., 2002), an abundance shift of potentially
climate-sensitive species, or the abundance of planktonic food
suitable to a particular predator of interest (Dam and
Baumann, 2017).

Traditionally, plankton samples have been analyzed by
humans with optical devices like microscopes (Wiebe et al.,
2017). The accuracy of taxonomic classification was usually
high when done by experienced personnel, but it could
decrease significantly in complex tasks, such as the
differentiation between morphologically similar taxa
(Culverhouse et al., 2003). Additionally, sample processing rate
is limiting the total number of samples that could be processed
using traditional microscopy. The introduction of plankton-
image recorders for both in situ (e.g. Video Plankton Recorder,
VPR, (Davis et al., 1992)) and/or fixed samples (e.g. Flow
Cytometer and Microscope [FlowCAM®; Sieracki et al., 1998)],
together with the development of image-classification
algorithms, has led to great advances in the processing of
plankton samples over the last two-to-three decades (e.g.
Kraberg et al., 2017; Lombard et al., 2019; Goodwin et al.,
2022). Image recording enables the temporally unlimited
storage of visual information even for samples that cannot
withstand fixing agents for a long time. Furthermore, given
that the photographs are stored on disk, all visual information
is kept permanently, and is available for discussion, unlike the
memories of an expert. However, one of the challenges of these
Frontiers in Marine Science | www.frontiersin.org 2
plankton image-recording devices (like VPR or FlowCam) is the
large number of images that need to be classified (e.g. > 52
million in Briseño-Avena et al., 2020). So far, classification
models are intended to greatly increase classification speed, be
it via an entire replacement of expert classification with model
predictions (Briseño-Avena et al., 2020), or by yielding a rough
pre-sorting that alleviates expert validation (Álvarez et al., 2014).

Image classification models were introduced in the late 1980s,
first in the form of Neural Networks (NN), which were famously
employed for the classification of handwritten digits by the US
postal service (LeCun et al., 1989). In the mid-1990s, these were
temporally superseded by Support-Vector Machines (SVMs),
and for the first time applied for plankton classification in
1998 by Tang et al. (1998). Neural Networks were, at that
time, relatively simple in design and could only be applied for
simple classification tasks, e.g. discriminating between the
clearly-shaped digits. While theory allowed the design of larger
NNs for more complex targets like plankton images, constraints
in computational power put a temporary constraint on this (e.g.
Gu et al., 2018).

SVMs became the tool of choice for plankton classification in
the 2000s and early 2010s due to relatively strong performance
(e.g. Álvarez et al., 2012). However, they were limited in
capability and convenience-of-use by the need for human-
defined features for class-discrimination (a limitation not
present in NNs). Such “feature-engineering” was required to
reduce the enormous amount of information contained in an
image (a data point in Rn-dimensional space, n being the number
of pixels) to details required to automatically tell classes apart
(Scholkopf and Smola, 2002). Many publications of that time
concerned the engineering of new features for better class
separation, and the problem of the redundancy of devised
features (e.g. Tang et al., 1998; Tang et al., 2006; Li et al.,
2014). Even then, unique difficulties posed by plankton images
became apparent, including the transparent nature of many
plankton taxa and morphological similarities between classes.

Computational power increased strongly in parallel to SVMs
reaching their peak of popularity, and NNs eventually regained
strong popularity (e.g. Chollet, 2017). In 2012, Krizhevsky et al.
won the ImageNet contest with a so –called Deep Convolutional
Neural Net (CNN), beating the peak performance achieved in the
years prior by a before-unachieved margin. The advances in
classification accuracy led to massive investments into the design
and application of Deep Neural Nets (the “parent class” of
CNNs) in research and economy (Chollet, 2017).

Plankton classification eventually followed suite in this
general trend (e.g. Orenstein et al., 2015; Al-Barazanchi et al.,
2018), due to the capability of “deep” CNNs to devise and select
features themselves; a process colloquially termed “Artificial
Intelligence” (AI). CNNs are essentially a complex extension of
multinomial regression, whereby the model input, the image, is
an array of pixel values, and the output a quasi-”one-hot”-
encoded class vector. The vector dimension with maximum
value is taken as the predicted class index. Different from
simple regression, several “layers” of neurons” – essentially
arrays or vectors, lie in-between the model input and output.
April 2022 | Volume 9 | Article 868420
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These contain abstracted information from the image, with
parameters between any element of two adjacent arrays or
vectors determining the flow of information (i.e., the filtering-
out of information) from lower- to higher-order input
representation (LeCun et al., 2010). During model fitting, the
backpropagation algorithm transmits classification loss to each
parameter using differential calculus, allowing for gradient-based
optimization of the complex NN (Rumelhart et al., 1986).
Backpropagation essentially allows the model to “learn” to
filter information “wisely” by optimizing its parameter values
over multiple iterations of fitting (e.g. Goodfellow et al., 2016).

Today, CNN classification models can reach accuracies of well
over 95% (e.g. Al-Barazanchi et al., 2018), making automatic
plankton classification appearing like a “solved task” at first sight.
However, these accuracy values are usually derived from
performance on test data originating from the same statistical
population as the training data. Thus, these outcomes are only
“snapshots” of the range of performances that will occur when a
static model is applied to plankton samples that lie outside the
“population”, where the training data originate from. More
precisely, the plankton community tends to vary strongly in time
and space, and this variability is precisely what most plankton
researchers are interested in. As new taxa appear in a specific
location or as formerly less-frequently encountered taxa increase in
abundance, a classification model trained on a plankton
community, or a pool of communities, from different geographic
Frontiers in Marine Science | www.frontiersin.org 3
or temporal origin will likely perform poorly on the respective new
samples (dataset shift; Moreno-Torres et al., 2012). González et al.
(2016) noted the variability in model performance on samples of
different origins and recommended to focus the development of
applications robust to various distances between training set and
field samples. Also, the non-homogeneous distribution of plankton
taxa in the field means that training datasets are often strongly non-
homogeneous in distribution of images over classes, as well. This
poses a constraint to the successful training of a CNN, since the
resulting model will perform well on the dominating classes, but
poorly on lower-abundant ones. Note that this is not necessarily
reflected in the general accuracy metric, which only accounts for the
total number of correctly classified images pooled over all classes.

One further difficulty in automated plankton classification lies in
the sometimes high inter-class similarity (e.g. bivalves and some
dinoflagellate taxa) (Figure 1A) and high intra-class variability in
appearance (which is founded in the existence of sub-taxa, different
life-stages or different appearances resulting from different imaging
angles) (Figure 1B) of plankton organisms. Thus, if the intra-class
variability is not homogeneously reflected in the training set, the
ability of the CNN to discriminate between classes may be limited to
only a fraction of the existing sub-classes.

In summary, the current constraints on successful training
and application of models for automatic plankton classification
are the often limited quality of training sets, and the high spatio-
temporal dynamics of the plankton community. Under these
A

B

FIGURE 1 | Examples of strong inter-class similarity (A) and high intra-class dissimilarity (B). (A) A dinoflagellate of the genus Protoperidinium spp. (left), and a
juvenile bivalve (right). (B) Two dinoflagellates: Ceratium fusus (left) and Ceratium tripos (right).
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circumstances, manual validation and correction of the model
results is recommended (Gorsky et al., 2010), as is the adaptation
of the model to avoid a decrease in classification performance.
The latter usually requires the availability of machine-learning
expertise, a commodity often lacking in the marine sciences
(Malde et al., 2020). Research and development should thus be
focused on reducing the time required for the validation task and
on improving operability of classifier models by non-AI-experts.

Here, we follow González et al.’s (2016) suggestion and propose
a pipeline for alleviating the task of model adaptation to a changing
plankton community, and thus for reducing the time for manual
validation: A “dynamic optimization cycle” (DOC) for iterative use
accessible by non-AI-experts. By making applied use of a trained
model on field samples, correcting the classification and evaluating
model performance through expert knowledge, and updating
the model training set and the model itself (through training on
the updated image set), the classifier model adapts to spatial and/or
temporal changes in the plankton community. It thus maintains
high classification performance, ensuring that validation workload
remains relatively constant. The systematization of this procedure,
and the implementation of the DOC as an end-to-end application
with graphical user interface, removes the requirement for expertise
in designing and coding CNNs. The DOC was designed for the
classification of FlowCam images and the workflow related to
studies using the FlowCam, but is likely applicable for other types
of plankton images and different types of workflow, as well.
MATERIALS & EQUIPMENT

Hardware and Software Requirements
Training of NNs was performed with a Nvidia® (Santa Clara/
California/US) Quadro P2000 GPU with 4 GiB RAM (driver
version 410.79) on a Dell® (Round Rock/Texas/US) Precision
5530 notebook with 32 GiB RAM. CUDA® (Nvidia, Santa Clara/
California/US) version 10.0.130 was used for enabling the GPU
to be used for general purpose processing. Programming was
performed in Python 3.6.8 (van Rossum, 1995) using the Spyder
Integrated Developer Environment (Raybaut, 2017) with
Ipython version 7.2.0 (Perez and Granger, 2007). Packages
used for analyzing classification outputs included NumPy
(Oliphant, 2006), pandas (McKinney, 2010) and Dplython
(Riederer, 2016). Packages used for image pre-processing
included Matplotlib (Hunter, 2007), PIL (Lundh and Ellis,
2019) and Scipy (Oliphant, 2007). Tensorflow 1.12.0 (Abadi
et al., 2015) and Keras 2.2.4 (Chollet, 2015) (with Tensorflow
backend) Advanced Programming Interfaces were used for
building, training and application of the classifier models.
METHODS

Model Design and Training
A convolutional neural net (CNN) was built based on the
publicly available “VGG16” network architecture (Simonyan
and Zisserman, 2015). This architecture consists of 13
Frontiers in Marine Science | www.frontiersin.org 4
convolutional layers, i.e. 13 intermediate data representations
in the form of a stack of matrices that account for positional
relationships between pixels of the input image. These layers are
arranged in five “blocks” of two-to-three layers each, which are
connected via non-parameterized information-pooling layers.
The sixth block consisting of so-called “dense” layers was
removed – as is usually done when applying a pre-defined
architecture – and replaced with custom layers: one
convolutional layer and two dense layers. The design of this
custom “block” of layers - i.e. the number and type of layers, and
the number of neurons (i.e. representation dimensions) of each –
was the result of a try-and-error approach for achieving
satisfying classification performance on training and validation
images (Conradt, 2020). Details on the custom layers can be
obtained from tab. SI V/2.

Model parameters were initialized with the values provided
together with the VGG16 architecture trained on ImageNet data
(Deng et al., 2009) for the respective part of the model, and with
values drawn randomly from a Glorot uniform distribution
(Glorot and Bengio, 2010) for the custom layers, as per default
in the Keras software. Model training (i.e. fitting) was started
with the custom layers and the final block of convolutional layers
of the VGG16 “base” set to trainable. Training was performed by
feeding all training images in a sequence of batches of 20
randomly chosen images to the model. All other hyper-
parameter settings (e.g. optimizer and learning rate for
gradient-based fitting) can be obtained from Tab. SI IV/1. The
choice of hyper-parameter settings was based on a series of trial
runs for different hyper-parameter set-ups (Conradt, 2020).

The entire set of training images was fed eight times (so-called
“epochs”) to the model, with an increasing number of the layers
of the VGG16 base being set to trainable (“unfrozen”) each
epoch (Tab. SI V/1). “Unfreezing” is a common procedure
applied to ensure that learned features are gradually adapted
towards our plankton dataset (VGG16 was originally trained on
the ImageNet set of everyday-object images). The chosen
number of epochs and the “unfreezing” schedule resulted from
optimization through trial-and-error experimentation, as well
(Conradt, 2020).They resulted in a steady increase of validation
accuracy from approx. 88% to approx. 94% (Figure SI VIII/1 B)
and a decrease of validation loss from approx. 0.34 to approx.
0.29 when trained on the baseline training set, though validation
loss did increase slightly from a minimum value of approx. 0.26
at the third epoch (Figure SI VIII/1 A). Validation accuracy was
surpassed by training accuracy by the second epoch, which is
usually a sign of an onset of over-fitting (e.g. Chollet, 2017);
however, the fact that validation accuracy also still increased over
the eight epochs was taken as a sign of a robust training schedule.

We did not utilize data augmentation, a technique in which
artificial transformations are randomly applied to the training
data to reduce model over-fitting and thus improve its
generalizability (e.g. Chollet, 2017). While the approach is
frequently applied in various image-classification tasks (e.g.
Luo et al., 2018; Plonus et al., 2021), previous work had shown
that data augmentation did not markedly improve the
classification when applied to a partly identical data set of
April 2022 | Volume 9 | Article 868420
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FlowCam images (Conradt, 2020). This observation has also
been made in another instance on an independent plankton data
set (Lumini and Nanni, 2019).

While both the set-up of the CNN and the training scheme
may not represent an optimal configuration (for example, over-
fitting occurred in our experiments), we found the configurations
to yield consistently robust results that were sufficient to support
routine plankton analysis work. Given the relatively high
validation accuracy, our goal was not to further optimize
model design or –training, but instead to maintain this
satisfactory performance level over changes in the composition
of plankton samples.

Image Characteristics
Input image size was set to 120 x 120 x 3 pixels. A size of 256 x
256 x 3 pixels is more commonly used for plankton images (e.g.
Orenstein and Beijbom, 2017; Al-Barazanchi et al., 2018; Cui
et al., 2018), however preparatory work for the present study had
shown that the chosen image size yielded better performance
than a larger size, and leads to a faster processing due to the lower
data dimensionality (Conradt, 2020). The use of a common
square image shape leads to an altered visual appearance of
plankton organisms if the original image had a height-length
ratio very different from 1. This would increase intra-class
variability, an undesirable trait as described above. Therefore,
within the DOC pipeline, images are pre-processed via padding,
i.e. by adding pixels in background color (the mode pixel value of
the outermost pixel row for each color layer) to the sides or top
and bottom to achieve square format, a common procedure in
plankton-image classification (see e.g. Plonus et al., 2021).

Characteristics of the Baseline
Training Set
The baseline image dataset, which is updated as part of the
adaptive procedures of the DOC pipeline, consists of 27900 RGB
FlowCam images of plankton samples gathered from various
North Sea surveys over several years. Images in the dataset were
sorted into 15 classes, including 13 taxonomic groups as well as a
detritus class and a “clumps” class that contains aggregates of
plankton organisms and/or detritus. The distribution of images
over classes was designed to reflect general, though not
empirically determined, patterns of natural relative abundance.
However, the very abundant detritus class was reduced in relative
proportion in order to avoid the learning of a quasi-binary
classification scheme (detritus/non-detritus) by the classifier
model. A random 80% of images of each class were used as
training images for the baseline model, while 10% each were
reserved for validation and testing purposes (see above). The
characteristics of the baseline data set are given in Tab. SI VI/1.

Classification Thresholds
Within the DOC pipeline, the model classification is compared with
expert validation. For each class, the relative amount of correct
predictions is calculated and used as a threshold value against which
the maximum probability value of the CNN output vector (the
Frontiers in Marine Science | www.frontiersin.org
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index of which is the class prediction) is compared. Probability
values above the threshold lead to acceptance of the classification, as
the model classification is deemed “certain”. Probability values
below the threshold lead to rejection of the model classification,
the image is then assigned to an “uncertain-classifications” category.
Initially, thresholds were set to 60% for all classes, as the difference
between the properties of the baseline training set (on which the
baseline model was trained) and the properties of the first station to
be classified was deemed to be larger than that between subsequent
modified training sets and stations.

This procedure was intended to speed up manual validation
by implementing a sort out of images based on probability of
miss-classification, which can then be checked more easily than if
they were not separated from images with high probability of
correct classification.

DOC Pipeline Procedures
The following describes the working steps for applying the DOC
onto any given set of plankton samples (see also Figure 2). A
more thorough user instruction with technical notes of
importance is provided in the appendix (SI 1).

1. Classification (Figure 2A): The DOC pipeline is typically
started by applying the provided classifier model directly on
the classification of plankton samples, thus allowing for
potentially large initial classification error. However, it is
also possible to directly train a custom classifier model if the
user has already generated a training set from manually
labeled images, and perform the classification with this
custom model (for details see SI 1).

2. Validation (Figure 2B): Following the classification of two to
three plankton samples, the model classification is validated
by a plankton expert (by moving images between class folders
into which the images were copied by the DOC application).
The number of samples required before continuing with the
adaptation steps is likely case-specific and might require
some initial trial-and-error experimentation. In our case
studies, we classified two samples at a time. The validated
classification is used as the final classification for further
ecological studies. Model classification and expert validation
are automatically compared and the correct-classification
rate determined for each class.

3. Training-set update and threshold reduction (Figure 2C):
After expert validation, the original model training set is
stocked up with images that were miss-classified by the
model. To this end, first the complement of the correct-
classification rates is normalized via division by the
maximum miss-classification rate over all classes (eq. 1,
top). These values are then multiplied by the number of
miss-classified images of each class to determine the number
of images to be added to the training set (eq. 1, bottom). Not
selecting all miss-classified images reduces the over-
proportionality of naturally-abundant, but well-classified
classes, e.g. detritus, in the image supplement, putting more
emphasis on poorly-classified classes. The images added are
selected randomly.
April 2022 | Volume 9 | Article 868420
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pi =
1− 

Ci
Ni

max(1− 
Cj
Nj
  for j ∈ fclass 1…class ng)

A = Fipi

Eq. 1: Calculation of the proportion of miss-classified images to
be added to the updated training dataset (top) and calculation of
the number of images to be added to the training set (bottom). i =
index for classes, p = proportion, C = number of correctly
classified images in a given class, N = number of images
assigned by expert to that class, A = number of images to be
added to the training set, F = number of miss-classified images

The class-specific training-set update is the first part of the
adaptation procedure. A marked increase in the abundance of a
class that was underrepresented in the previous training set will
lead to that class being better represented in the adapted version.
As a second adaptation step, the previous threshold values for
automatic culling of likely miss-classified images (see
Classification Thresholds) are multiplied with the correct-
classification rates. This reduces the threshold percentage above
which a classification will be deemed correct for classes that receive
an increase in training images in the first adaptation step. It is
assumed that large threshold values reduce classification
Frontiers in Marine Science | www.frontiersin.org 6
performance by the assignment of many in fact correctly-
classified images to the “uncertain-classifications” category. By
decreasing the classification threshold, the number of images
correctly assigned to the predicted classes can theoretically be
increased, leading to higher correct-classification rates.

4. Model training (Figure 2D): The model is then trained on
the updated training set according to the training schedule
described above. It should be noted that a completely new
model instance is generated and trained. This is done to avoid
an over-adaptation of the model on the training data, since
re-training would mean training the existing model for an
additional set of epochs on a still partly identical training set
(no original training images are dropped during training-
set updates).

After training is completed, the new model can be applied on
the next batch of plankton samples, and the adaptation cycle
continues anew. The DOC was devised on the notion that
plankton communities change on a spatial and/or temporal
gradient. It therefore makes sense to process the plankton
samples in the same order as they were taken by the research
vessel (or along hydrographic gradients).

Further notes on the DOC procedures can be found in SI VII.
FIGURE 2 | Sequence of main procedures in the DOC pipeline: After the automatic classification (A) and expert validation of a set of plankton samples (B), the
original model training set is stocked up with a selection of miss-classified images, based on class-specific miss-classification rate. This constrained update reduces
the dominance of naturally-abundant classes in the add-on set. Also, classification thresholds used in automatic pre-classification are reduced based on miss-
classification rates (C). A new classifier model is trained on this updated training set. The new model is used to classify the next set of plankton samples (D).
Further details are given in the text.
April 2022 | Volume 9 | Article 868420
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User Application
A user application with graphical user interface was designed to
aid in the implementation of the DOC pipeline. For practical
purposes, it is intended that the DOC pipeline be implemented
by a broad user group not necessarily familiar in the use of
programming languages and/or Machine-Learning techniques.
The DOC application was therefore designed to enable an end-
to-end implementation of all pipeline steps described above. It
consists of a series of executable, partially nested, Python scripts,
one executable Bash (GNU Project, 2007) script that accesses the
Python scripts and a comprehensive instruction guide describing
the implementation of all DOC-pipeline steps in the application
context (SI 1). None of the scripts is protected, which allows
users familiar with the Python programming language to edit
and change scripts in order to make custom changes to the
pipeline processes, if desired.

The DOC application was written in the Python programming
language, making extensive use of the TkInter package for
graphical-user-interface design (Lundh, 2019) and of the os
package for file-system access. One script utilized to start the
application was written in the Bash command language.

The DOC application was designed for use on Linux (The
Linux Foundation, San Francisco/CA) operating systems (tested
on Ubuntu 18 and Linux Mint 19). It requires hardware and
drivers enabling the training and application of Deep Neural
Networks for image classification. For the application
development and for conducting the case studies, a Nvidia®

Quadro P2000 graphics-processing unit (GPU) was utilized.
Further system details are given in SI II. The DOC application
requires the installation of Python 3 (was tested under Python 3.6)
via the Anaconda (Anaconda Software Distribution, 2020)
distribution, and the creation of a dedicated Python
environment containing i.a. the packages Tensorflow (Abadi
et al., 2015) and Keras (Chollet, 2015). Full details on the
environment setup are given in SI III.
Frontiers in Marine Science | www.frontiersin.org 7
The DOC application is started via the Bash script,
whereupon each of the DOC processes can be started. The
single processes can be executed in the order described above
and suggested in the instruction manual, but can also be executed
singularly, e.g. when only image classification, but not the
implementation of the full DOC pipeline is desired.

The DOC user application, including the baseline training set,
is available on zenodo.org (doi: 10.5281/zenodo.6303679).

Case Studies – North Sea Surveys
The DOC pipeline was applied to samples taken on two plankton
surveys in order to test the performance of the approach.

The surveys were conducted in autumn and winter 2019 in
the Western North Sea. The first survey, undertaken in
September 2019, started offshore the East Coast of Scotland at
approx. 57.5°N/0°E, and moved gradually closer to the British
coast in a zig-zag trajectory between approx. 56.2°N and 57.5°N
(Figure 3A). Samples were taken at these two latitudes and at
approx. 57.9°N. The second survey was conducted in December
2019 in the English Channel, starting at the eastern entrance of
the Channel at approx. 51.6°N/2°E, continuing south-westwards
until approx. 50.25°N/-1°E, and changing direction north-east-
wards, for a route parallel to but closer to the French coast than
the initial trajectory (Figure 3B). Plankton samples were taken
with a PUP net (mesh size: 55 μm) attached to a GULF VII
sampler (HYDRO-BIOS Apparatebau GmbH), which was towed
in double-oblique hauls.

Plankton samples were stored in 4-%-formaldehyde-seawater
solution. Once in the laboratory, samples were processed using a
FlowCam, following the FlowCam® Manual V 3.0 (Fluid
Imaging Technologies, 2011). The FlowCam flow chamber had
a depth of 300 μm, which was also the maximum size of plankton
particles processed by the apparatus (the minimum particle size
was determined by the PUP net mesh size of 55 μm). Flow rate
was set to 1.7 mL min-1, in order to achieve high image quality at
A B

FIGURE 3 | Survey transects and location of the sampling stations from the September (A) and December (B) surveys.
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an acceptable processing speed. Using the AutoImage mode of
the FlowCam’s Visual Spreadsheet software, images were saved
for later processing.

For both surveys, the DOC pipeline was implemented for the
classification of 18 samples, with the samples being processed in
the sequence they were taken at sea (one sample was taken at
each station). The processing sequence equals a spatial and
temporal trajectory through plankton habitat. The adaptation
procedure was implemented every second station, pooling the
images for both stations in order to calculate the misclassification
rate and to supply the information for the update of the training
set. Classification performance was then calculated for each pair
of stations (see below), which in the end yielded a performance
trajectory over the survey samples and adaptation steps. Each
mark on the trajectory thus constituted the performance of one
specific model (trained on one specific version of the training set)
applied to one specific set of images. In the Machine-Learning
context, this information yielded the test performance of the
models at the different adaptation steps, i.e. and indicator of their
performance on non-training images under constant field
conditions (e.g. Chollet, 2017).

In order to assess the importance of the continuous
adaptation, a set of reference runs was performed: After each
adaptation step, the current model was saved, and all subsequent
samples were classified with this model (previous samples were
not classified, as images contained in these were introduced into
the training set during previous adaptation cycles). This way, we
generated a set of reference classification trajectories in which
adaptation is stopped after various numbers of samples
processed (and thus on different points of the survey
trajectory). This set was used to assess the value of continuous
adaptation of the training set and the training of new models
thereon: By comparing the performance of an adapted model to a
non-adapted or less-adapted model at a specific mark on the
classification trajectory, the value of adaptation could be
determined for a specific sample or point on the survey
trajectory. Integrated over all samples, this allowed evaluating
Frontiers in Marine Science | www.frontiersin.org 8
the performance of DOC-based adaptation over the survey-/
adaptation trajectory, with respect to overall advantage and
potent ia l temporal dynamics in the magnitude of
adaptation advantage.

With eight adaptation steps, nine different classification
trajectories resulted in total: The fully-adaptive pathway (with
one adaptation cycle and the usage of a new model every second
station), and eight pathways in which adaptation was stopped at
a specific station (Figure 4).

We implemented the adaptation pathway twice for each
survey to account for random effects in the adaptation
procedure, generating two replicates each. These primarily
include the parameter initialization before training of every
model (i.e., at every adaptation step) except the base model
(which was always identical) and the selection of miss-classified
images for the updating of the training dataset.

We calculated recall and precision to analyze classification
performance on overall- and class level, as well as cross-entropy
to assess the ability to predict the plankton-community
composition (see Box 1 for details). We compared cross-
entropy with class-specific differences between true and
predicted relative abundance to analyze the driving factors
behind changes in cross-entropy. Means and standard
deviations weighted by class abundance of recall and precision
were calculated for each pair of stations and each adaptation
trajectory. Recall and precision values for “detritus”, “clumps”
and “uncertain predictions” classes were not included in the
calculations of averages in order to focus on the living
components of the plankton (which are the target of plankton
research). More specifically, miss-classification of detritus is of
little concern in research focusing on living biomass, and clumps
are miss-classifications per se, since a researcher would need to
analyze clumps compositions manually nevertheless. The three
classes were excluded from calculation of average precision, as
the direct aim of achieving high precision is to reduce the effort
of removing miss-classified images from a given class folder.
Since detritus, clumps and uncertain classifications are not
FIGURE 4 | Model-adaptation/station-classification schedule for performance analyses. The diagonal row (marked with stars) represents the fully-adaptive
implementation of the DOC pipeline, where an adaptation is implemented every second station. All colored rows show reference runs where samples are classified
with an existing model and without further adaptation.
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directly of interest in plankton research, the desire to achieve
“clean” folders for these classes is comparatively low. These
classes were also excluded from calculating cross entropy due
to them not representing biological taxa.

Analyses and visualization were performed in R version 3.6.3
(R Core Team, 2020), partially using the packages “tidyverse”
(Wickham et al., 2019), “viridis” (Garnier, 2018) and
“radiant.data” (Nijs, 2020).
RESULTS

Overall performance in the fully-adaptive mode of the DOC was
relatively high with regard to recall, with weighted means
ranging between approx. 82 and 92% over all survey-station
pairs. Precision was lower, with weighted means ranging between
approx. 50-75% for the September survey, and approx. 60-80%
(with one very low value of 30% at start) for December.
Performance was sufficiently large to enable successful usage of
the DOC application in the context of experimental research
work, which benefitted from the time-savings through semi-
automatic classification and model adaptation (Börner,
unpubl. data).

Altogether, a fully-adaptive implementation (adaptation cycle
implemented every second station) of the DOC frequently
achieved comparatively high or top level mean performance in
recall and precision metrics, though absolute and comparative
performance varied between both survey month, and, more
strongly, between classes (for details see below). Performance
gains were often largest in the first one to two adaptation cycles,
i.e. after the first adaptation of the baseline training set.
Frontiers in Marine Science | www.frontiersin.org 9
Recall
Overall, there were no clear trends in mean recall development
over stations for the larger part of the classification trajectory,
neither in the fully-adaptive nor in the less-adaptive
implementations (Figure 5): In the September trajectory, mean
recall for the fully-adaptive mode decreased from approx. 90% by
approx.10% after the third station pair (stations 5 and 6), and
increased again somewhat after stations 11 and 12 in both
replicates (Figures 5A, B). Mean recall at stations 17/18 was
approx. 91%. In the December trajectory, mean recall for the
same mode increased strongly between stations 3/4 and stations
5/6, from approx. 20% to slightly over 90% in both replicates
(Figures 5C, D). Recall remained at a relatively high, though
slightly decreasing level, having a final value of approx. 85% at
stations 17/18.

Relative performance to less adaptive DOC implementations
differed initially strongly between the two surveys, but became
more similar thereafter. While in the September samples no large
performance difference was visible between the adapted and the
baseline model at stations 2/3 (Figures 5A, B), recall for the
more adaptive model strongly outperformed that of the less
adaptive one in the December samples, as a value of over 90%
was achieved with the former, while no marked performance
difference to the first station (approx. 20% mean recall) was
detected in the latter (Figures 5C, D). With the exception of the
baseline model used for the December samples, which remained
at low-level performance of approx. 40% mean over the
trajectory, recall of the fully-adaptive mode was not markedly
superior or even somewhat inferior (in the December samples) to
that of less adaptive approaches, depending on the replicate.
Performance of all adaptive modes converged to a relatively
similar value (approx. 91%) in the final September sample (see
BOX 1 | METRICS FOR THE ANALYSIS OF CLASSIFICATION PERFORMANCE

Recall: Recall is the class-specific ratio of correctly-classified images (true positive classifications) to the total number of images (true positive plus false negative
classifications), where the total number is defined by the expert classification (eq. B1, top). This metric indicates the expert effort required to find miss-classified images in
all other class folders.

Precision: Precision is the class-specific ratio of correctly-classified images (true positive classifications) to the sum of correctly-classified images (true positive
classifications) and miss-classified images (false positive classifications), where the total number is defined by the expert classification (eq. B1, bottom). This metric
indicates the expert effort required to find all images that were mistakenly assigned to a specific class folder

recall =
n true positiveð Þ

n true positiveð Þ + n false negativeð Þ

precision =
n true positiveð Þ

n true positiveð Þ + n false positiveð Þ
Eq. B1: Definitions of recall and precision (class-specific metrics)
Categorical cross entropy: Categorical cross entropy (hereafter referred to simply as “cross-entropy”) measures the loss between a true and a predicted distribution

(eq. B2). This metric is calculated from the true (derived from expert classification) and the predicted (derived from model classification) relative class abundances. Cross-
entropy measures the goodness of predicting the quantitative plankton-community composition. In the present study, for classes with a predicted relative number of zero,
this value was set to one divided by the total number of images in a given sample (the cross-entropy is not defined for data including zero-values; hence, one correct
classification is introduced, which we assume to be a plausible stochastic error given numbers of images per sample of usually more than ten-thousand).

gi = −o
Nc

i=1

ailogbai

Eq. B2: Categorical cross entropy (g). a = true relative abundance, â = predicted relative abundance, Nc = number of classes
Cross-entropy represents information loss between true and predicted distributions, which makes it difficult to interpret single values. Therefore, the metric is used

exclusively for comparative purposes (e.g. for comparing different models) in the present study.
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also Figure SI XI/1). Convergence was not present in the
December samples.

Recall trajectories differed strongly between classes, and
showed stronger fluctuations between station pairs than the
weighted mean trajectory over all classes, with values of zero
and 100% being reached occasionally (Figures 6, SI XI/2).
Trajectories for the fully-adaptive implementation of the DOC
were relatively similar between replicates, though (compare
Figure 6A vs B, and Figure 6C vs D). For many classes, a
recall of markedly over 90% was achieved at least occasionally in
fully adaptive mode, although the identity of these classes differed
between September (Figures 6A, B) and December surveys
(Figures 6C, D). Classes for which a relatively high recall was
frequently achieved (though not necessarily consistently over all
Frontiers in Marine Science | www.frontiersin.org 10
stations) included Ceratium spp., Protoperidinium spp.
(September survey only), copepods, detritus and diatoms. All
other classes showed relatively high performance at least once in
the recall trajectory; thus it is not possible to name classes for
which recall was particularly poor. The comparative performance
of the fully-adaptive implementation of the DOC varied strongly
between classes, as well. Furthermore, performance also varied
between surveys, and to a smaller extent between replicates. For
some classes, such as bivalves (September), detritus (both
surveys), diatoms (both surveys), dinoflagellates (September),
foraminiferans (September), unknown taxa A, B and C (only
present in September), as well as copepods (December), the fully-
adaptive implementation yielded near- or top-level performance
over the larger part of the stations trajectory. For other classes,
A B

C D

FIGURE 5 | Recall trajectories for different modes of adaptation using the DOC. Solid black line represents weighted mean of the fully-adaptive implementation, grey
area denotes the corresponding weighted standard deviation. Colored solid and dashed lines represent weighted mean and weighted standard deviation of less-
adaptive implementations (denoted by the number of adaptation cycles). (A): September survey, first replicate, (B) September survey, second replicate; (C):
December survey, first replicate, (D): December survey, second replicate. Replicates differ in the random selection of images for training-set updates and random
parameter initializations of models before training (see Case Studies – North Sea Surveys). Trajectories for all nine adaptation modes are shown in Figure SI XI/1.
Note that weighted standard deviation for the fully-adaptive implementation in the December survey is very small compared to that in the September survey.
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including copepods (September) and Dinophysis spp.
(September), comparative performance was relatively constantly
poor. It should be noted that performance differences between
different modes of adaptation were of various magnitudes
between classes. In most classes, the recall trajectory of the
fully-adaptive implementation followed the general trend
shown by all modes of adaptation.

Precision
In general, mean precision increased in both survey trajectories
slightly, in all but the two least adaptive implementations of the
DOC after a more variable initial phase (first two station pairs)
(Figure 7). Mean precision increased from approx. 60% at
stations 5/6 to approx. 75% at stations 15/16 in the September
survey in both replicates (Figures 7A, B), and from approx. 65%
to approx. 80% in the December survey in both replicates
(Figures 7C, D). Mean precision then decreased again from
stations 15/16 to station 17/18, from the mentioned values to
approx. 63% in the September survey, and to approx. 70% in the
December survey. Altogether, the trajectory of mean precision
was smoother for the December survey, i.e. there was little
fluctuation between adjacent station pairs.

Different from the recall trajectories, mean precision of the
fully-adaptive mode of the DOC was frequently at top level
Frontiers in Marine Science | www.frontiersin.org 11
compared to less-adaptive modes, in both the September and the
December survey (for almost every station in the latter;
Figures 7C, D) (see also Figure SI XI/3). The zero-adaptive
implementation (use of the baseline model for all classifications)
showed markedly lower performance than all other
implementations over the full trajectory in the December
samples, while lowest performance was achieved by the one-
time-adapted model in the September samples. In the latter case,
the performance difference was not as pronounced as in the
September samples, though. While mean precision for the
weakest-performing mode was relatively constant to slightly
decreasing in the September survey (approx. 55% at stations 5/
6 to approx. 50% at stations 17/18), it did temporarily increase
from stations 7/8 to a peak at stations 13/14 (from approx. 20%
to approx. 75% to approx. 25% at stations 17/18) in the
December survey.

Precision trajectories differed strongly between classes and
surveys (Figures 8, SI XI/4), but were mostly consistent between
replicates (compare Figures 8A vs B and Figures 8C vs D), both
with regard to the fully-adaptive implementation of the DOC
and to its comparison with less-adaptive implementations. For
most classes, precision varied strongly between adjacent stations,
and did not bear a clearly increasing or decreasing trend. For
many classes in the September survey (Figures 8A, B), the fully-
A B

C D

FIGURE 6 | Class-specific recall trajectories. Black line represents fully adaptive DOC implementation (training-set update every second station); colored lines
represent less-adaptive implementations (denoted by the number of adaptation cycles). (A): September survey, first replicate, (B) September survey, second
replicate; (C): December survey, first replicate, (D): December survey, second replicate. Replicates differ in the random selection of images for training-set updates
and random parameter initializations of models before training (see Case Studies – North Sea Surveys). Trajectories for all nine adaptation modes are shown in
Figure SI XI/2.
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adaptive implementation achieved near- or top-level
performance over the larger part of samples; exceptions
include the “clumps” class, copepod egg clumps, detritus,
dinoflagellates and the two unknown taxa “A” and “B”.
However, unlike in the case of class-specific recall, a
comparatively poor or very poor performance was observed for
none of these exceptions. In the December survey (Figures 8C, D),
the fully-adaptive implementation achieved average performance
for the larger number of classes. Exceptions with near- or top-level
performance over the larger part of the trajectory include bivalves,
Dinophysis spp., foraminiferans and Protoperidinium spp.; for few
additional classes, top-level performance was achieved in only one
of the two replicates. Very poor performance was also noted for a
few classes (appendicularians, copepod egg clumps, gastropods), but
again only in one of the two replicates. As with class-specific recall,
performance differences between differently-adaptive modes were of
different magnitudes for different classes, and the precision
Frontiers in Marine Science | www.frontiersin.org 12
trajectories of the fully-adaptive mode in general followed the
trend of all other modes of adaptation.

Cross-Entropy
Cross-entropy in general decreased over the stations trajectory,
representing an increasing similarity between true (as defined by
classification expert) and predicted distributions of relative
abundances of plankton classes (Figures 9, SI XI/5). By the
end of the trajectory (stations 17/18), cross-entropy of the fully-
adaptive implementation was decreased to approx. 90% and 40%
of its value at the start of the trajectory for the September and
December surveys, respectively. The cross-entropy trajectories
were markedly smoother for the December survey (Figures 9C, D)
than that for the September survey (Figures 9A, B), which featured
an oscillatory pattern from stations five/six onwards. In the
September survey, the deviation between true and predicted
distributions was driven by a variety of classes, including the
A B

C D

FIGURE 7 | Precision trajectories for different modes of adaptation using the DOC. Solid black line represents weighted mean of the fully-adaptive implementation,
grey area denotes the corresponding weighted standard deviation. Colored solid and dashed lines represent weighted mean and weighted standard deviation of
less-adaptive implementations (denoted by the number of adaptation cycles). (A): September survey, first replicate, (B) September survey, second replicate;
(C): December survey, first replicate, (D): December survey, second replicate. Replicates differ in the random selection of images for training-set updates and random
parameter initializations of models before training (see Case Studies – North Sea Surveys). Trajectories for all nine adaptation modes are shown in Figure SI XI/3.
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constantly strongly abundant diatoms and Protoperidinium spp.
classes, as well as the occasionally strongly abundant Ceratium spp.
class and the little-abundant unknown taxa “B” and “C”
(Figures 10A, B). The cross-entropy decrease was primarily
driven by lowered differences between predicted and true relative
abundances of the diatoms class and of the two unknown taxa.
Differences were not lowered by a large amount; however, the
magnitude of absolute differences was not large (<< 10% at
maximum). In the December survey, the deviation was almost
exclusively driven by the strongly-abundant diatoms class and the
little-abundant Protoperidinium spp. class (Figures 10C, D). Cross-
entropy decrease was notably driven by a decrease in the difference
between predicted and true relative abundance for both classes.
Differences decreased by a large magnitude, from more than 50%
absolute to markedly less than 20%. Cross-entropy trajectories and
deviations between true and predicted abundances were very similar
between replicates (compare Figure 9/10A vs B and Figure 9/10
C vs D).

Cross-entropy was lowest over all stations compared to all
other adaptation modes, in the fully-adaptive implementation of
the DOC (see also Figure SI XI/5). It was markedly higher in the
two least-adaptive implementations in the September survey,
and in the none-adaptive implementation in the December
survey, compared to all other implementations. Relative cross-
Frontiers in Marine Science | www.frontiersin.org 13
entropy dynamics over time were similar among all
adaptation modes.
DISCUSSION

Our results show that adapting a classifier model to changes in the
plankton community is vital for ensuring continuously high
classification performance. As the comparison between the fully-
adaptive and less-adaptive performance trajectories demonstrates,
the standardized procedure implemented in the DOC pipeline
generates suitable adaptation steps via training-set stock-up and
reduction of classification thresholds, making the DOC an
appropriate tool for implementing model adaptation

Our results confirm that continuous adaptation via the DOC
pipeline clearly improves classification performance compared to
more limited or no adaptation. The fact that performance of the
classifier model improved over adaptation steps – primarily in
comparison to less-adaptive scenarios, but to some extent also over
survey stations, with regard to precision and cross-entropy – shows
that the DOC is indeed able to cope with and actively learn from a
difficult classification task. However, it is worth noting that
improvement was not existing or continuous for all metrics and
taxa, with e.g. mean recall not showing clear signs of improvement
A B

C D

FIGURE 8 | Class-specific precision trajectories. Black line represents fully adaptive DOC implementation (training-set update every second station); colored lines
represent less-adaptive implementations (denoted by the number of adaptation cycles). (A): September survey, first replicate, (B) September survey, second
replicate; (C): December survey, first replicate, (D): December survey, second replicate. Replicates differ in the random selection of images for training-set updates
and random parameter initializations of models before training (see Case Studies – North Sea Surveys). Trajectories for all nine adaptation modes are shown in
Figure SI XI/4.
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over stations. Given that neural networks generally require large
amounts of data for training (Goodfellow et al., 2016), a larger initial
training set and processing of larger samples might have yielded a
clearer, more universal performance improvement. Still, in the
context of field research, where image data from a new region
and/or time period may initially be sparse, the DOC pipeline makes
effective use of the incoming data such that best possible
performance is frequently achieved.

With regard to precision and cross-entropy metrics, the
highest possible performance is achieved for almost every
sample by the fully-adaptive implementation of the DOC,
while recall performance is often at very high comparative
levels. The same is true for a number of single taxa that are of
Frontiers in Marine Science | www.frontiersin.org 14
strong importance in the study of the ecological function of
marine plankton, e.g. in the determination of planktonic biomass
available as food to commercially-harvested fish (e.g. Peck et al.,
2012). Thus, fully continuous adaptation yields the best
performance possible per sample when integrating over all
three performance metrics.

It should be noted that the DOC was not designed with the
intention of advancing classification performance in terms of
improving accuracy on artificially created validation datasets.
Rather, the aim was to design a procedure that achieves
acceptably good performance for applied research work that
focusses on abundant and broad taxonomic plankton groups,
and in particular maintains that level of performance even as the
A B

C D

FIGURE 9 | Cross-entropy trajectories for different modes of adaptation using the DOC. Solid black line represents weighted mean of the fully-adaptive
implementation, grey area denotes the corresponding weighted standard deviation. Colored solid and dashed lines represent weighted mean and weighted standard
deviation of less-adaptive implementations (denoted by the number of adaptation cycles). (A): September survey, first replicate, (B) September survey, second
replicate; (C): December survey, first replicate, (D): December survey, second replicate. Replicates differ in the random selection of images for training-set updates
and random parameter initializations of models before training (see Case Studies – North Sea Surveys). Trajectories for all nine adaptation modes are shown in
Figure SI XI/5.
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classifier model is confronted with changes in the plankton
community. Still, with weighted mean recall ranging from 80
to over 90%, the classification performance of our model is
comparable to the current state of the art, which ranges
approximately between 80 and 95% (Dai et al., 2016; Luo et al.,
2018; Briseno-Avena et al., 2020). Although some studies have
reported very high accuracies of over 95% (Al-Barazanchi et al.,
2018; Cui et al., 2018), this performance metric appears to
depend strongly on the diversity of samples and on the classes
chosen to report accuracy on (Luo et al., 2018; Briseno-Avena
et al., 2020), which makes model comparisons difficult.
Compared to recall, precision of our approach is somewhat
low at 60 to 80%, but still similar to the 84% reported by Luo
et al. (2018).

Given that speed and easiness of adaptation was also deemed
critical for applied usage of the model, the DOC omits a
thorough sample-specific model optimization (by means of re-
designing the architecture of the Deep Neural Network or
changing the training scheme), which might have yielded
stronger performance. However, trading in performance
optimization for performance reliability and easiness of
adaptation did not affect the usefulness of the procedure in the
Frontiers in Marine Science | www.frontiersin.org 15
particular research application it was designed for (Börner,
unpubl. data) and in routine classification work.

Performance trajectories varied strongly between the two
surveys, but to a lesser extent between replicates, both with
regard to weighted-mean and to class-specific performance in
most classes. This demonstrates that the DOC is affected by
natural variability in the plankton community rather than by
technical random factors (e.g. the sampling of additional training
images during the adaptation procedure). In particular,
performance appears to be affected by the complexity of the
plankton community, as expressed via the degree of
homogeneity of relative abundances of the plankton taxa: In
the September survey, taxa that made up a very minor part of the
total number of plankton organisms of the December samples
(e.g. Ceratium spp.) were comparatively increased in relative
abundance, yielding a more heterogeneous plankton community.
Furthermore, the increase varied between survey stations, creating
an additional spatial level of heterogeneity. Consequently, the
capacity to correctly predict the distribution pattern over classes,
as measured by cross-entropy, became lower, as did the capacity to
improve that performance by applying the DOC over several
stations. As a result, mean precision was also lower for the
A B

C D

FIGURE 10 | Deviation between true and predicted (via non-validated automatic classification) relative class abundances, for the fully-adaptive DOC implementation
and for classification of all samples with the baseline model (no adaptation). Circle size indicates true relative abundance. (A): September survey, first replicate,
(B) September survey, second replicate; (C): December survey, first replicate, (D): December survey, second replicate. Replicates differ in the random selection of
images for training-set updates and random parameter initializations of models before training (see Case Studies – North Sea Surveys).
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September samples, as the increased abundance of non-major
classes (for which fewer training images were available) likely led
to more miss-classifications that reduced the purity of the model-
generated class folders. Given that precision for the September
samples increased slightly over stations, and markedly over the
number of adaptation steps employed, it becomes visible that the
DOC still led to adaptation even in this more difficult
classification situation.

The fact that high recall was achieved for the diatom, copepod
and some dinoflagellate classes, and that poor precision only
occurred in some rather minor classes, makes the DOC useful for
research questions addressing abundant plankton taxa. These
can include analyses on the amount of potential plankton food
available to larval fish, which combine classification with length
measurements on the plankton items to calculate taxon-specific
biomass estimates (e.g. Menden-Deuer and Lessard, 2000;
Kiørboe, 2013). A high classification success on abundant
classes thus enables a rapid estimation of the larger part of
planktonic biomass, while low classification success on more rare
classes does not influence biomass estimation particularly
strongly. The distribution of classification performance over
classes thus also shows that the DOC is particularly useful for
broad quantitative analyses on the plankton community. It is not
particularly well suited for qualitative surveys e.g. intended to
assess the biodiversity of a certain marine area, which naturally
require a classification with higher taxonomic resolution. Still,
the DOC can in theory also facilitate expert-based high-level
classification, as a performance improvement on a broad
taxonomic scale will help the expert to better focus on the
finer-scale classification of the taxon of interest. However, this
would require the usage of different imaging devices, since
FlowCam image resolution only allows for broad taxonomic
classification even by experts (sensu Álvarez et al., 2014).

It should be pointed out that the viability of our DOC over
longer series of survey samples might not necessarily follow the
trends observed on the classification trajectories presented here.
While the fact that performance improvements were observed in
both the September and December transects indicates stability of
the DOC pipeline under various ecological conditions, it remains
to be seen how its performance behaves beyond the 18 stations per
survey covered here. It is possible that at some point, a manual re-
design of the training set might be necessary due to very drastic
changes in the plankton community (note that the DOC approach
does not discard training images during adaptation, leading to an
increase in complexity of the training dataset over samples). Also,
the continued decreasing of classification thresholds might at
some point prove detrimental to classification precision due to
many wrong classifications appearing in class folders instead of the
“uncertain-classifications” folder. Some indications of
deteriorating performance in the final survey samples (precision
in September samples, recall in December samples) were observed
in our case study, which might be an indication of the effects
mentioned. For applied usage, we suggest to monitor the
performance trajectory of the DOC in order to determine
whether manual adjustments are advisable. Additionally,
depending on the performance level found acceptable and the
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perceived chance of strong community changes, it may not be
necessary to implement the DOC adaptation scheme after each
processed sampled. It is up to the user to decide on a good trade-
off between the performance improvement achieved through
model adaptation and the time saved by not implementing the
DOC adaptation steps.

The DOC pipeline proposed by us is not the first attempt at
continually maintaining or improving model performance as
new plankton samples are classified and validated in applied use:
Gorsky et al. (2010) initially made use of a plankton training set
not specifically built for their study, and obtained improved
classification results once adding validated images from their
samples and training a model on this. They continued this
procedure until further improvements became marginal. Li
et al. (2022) systematized a scheme of human-model
interaction, where validated images are added to the training
set during applied usage of the classifier. However, neither study
has explicitly quantified performance decay nor the effect of
training-set updates over a spatial trajectory as presented here.
Also, both used expert validation to grow the training set in a
rather non-systematized manner, and classification thresholds
(to accept or discard a model classification as “uncertain”) were
not adapted. While a non-systematized growing of the training
set achieved marked performance improvements in both studies,
our work shows that careful systematized training-set updates
and adaptation of classification thresholds initially improve and
then maintain classification performance without the need for
continuously adding all validated images, which would lead to
increased training durations.

Our DOC application joins a growing number of pipelines
and applications designed to facilitate the embedding of
machine-learning models into the workflow of plankton
classification. These include the Prince William Sound
Plankton Camera (Campbell et al., 2020), the Scripps Plankton
Camera system (Orenstein et al., 2020) and the MorphoCluster
clustering workflow (Schröder et al., 2020). All of these
applications incorporate a step of manual validation in the
workflow; however, none of them incorporate a dedicated
standardized scheme for dynamic adaptation, as proposed by
our study. The MorphoCluster is an exception to the super-vised
classification schemes presented in most other applications, since
it makes use of an unsupervised clustering algorithm that groups
the plankton images in a data-driven manner. It therefore
appears not to require a dedicated dynamic adaptation;
however, the interpretation of the resulting clusters may be less
straight-forward than the expert check of a machine
classification. While the MorphoCluster appears particularly
useful for in-situ monitoring studies that focus on fine-
resolution taxon recognition, we assume that our DOC may be
of more convenient use in quantitative studies that primarily
address a fixed set of broad taxonomic groups.

Compared to other applications that often present an end-to-
end system from field sampling to classification, and related
hardware, our DOC covers a relatively small part of the overall
workflow. Future extensions of our application would primarily
address a more direct coupling to size measurements on the
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plankton images (used, together with a class-specific conversion
factor, to calculate the biomass of every plankton item (e.g.
Menden-Deuer and Lessard, 2000; Kiørboe, 2013), as well as to
the preceding photography in the FlowCam. Further extensions
could include the incorporation of automatic performance
monitoring in order to give advice to the user of when a
manual re-design of the training set or a manual adaptation of
classification thresholds might be necessary.
CONCLUSIONS

Our DOC proves to be a capable tool for adapting a classifier
model on a plankton community changing over the spatial and
temporal dimension. Our method continually delivers high or
highest performance compared to non- or less-adaptive
approaches, especially for abundant classes, though is subject
to sample-specific variability in the difficulty of classification.
Combined with the streamlining of the adaptation process and
the availability of an easy-to-operate user interface, the DOC
serves as an aide for quantitative plankton analysis on a broad
taxonomic level that performs reliably under changing
community patterns.
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