
Market timing using artificial neural

networks

An Application of Machine Learning in Finance

DANIEL DEBBASU MESELU

JEFFREY BENJAMIN CHARLES

SUPERVISOR
Jochen Jungeilges & Valeriy Ivanovich Zakamulin

University of Agder, 2022

Faculty of Business and Law

Department of Economics and Finance

Acknowledgements

As a part of the Master’s degree in Business Administration with a specialization in An-

alytical Finance at the University of Agder, we have written this master’s thesis. During

the spring semester of 2022, the work has been carried out at the Department of Economics

and Finance. We want to show our gratitude and thank our supervisors Professor Jochen

Jungeilges and Professor Valeriy Ivanovich Zakamulin for their expertise, guidance and pa-

tience. They have guided us through the master’s thesis over the last semester, providing us

with critical, informative, and, when required, deeply welcomed constructive feedback. We

also want to express our appreciation to our family and friends for all of their support over

the years.

i

Abstract

The emergence of artificial neural networks has given us some of the most impressive techno-

logical tools. Inspired by the human brain, these networks consist of interconnected artificial

neurons that can detect patterns invisible to the human eye. These qualities have caught

the attention of investors seeking ways to beat the market. In this thesis, we explore how

artificial neural networks can be used to construct an active trading strategy and evaluate

the strategy’s performance against two benchmark strategies. Two stock indices were used

to train neural networks using the lagged return as input to predict the market state. By

using the networks’ predictions, an active trading strategy was constructed. To evaluate

the network-based strategy, we test if the Sharpe ratio differs significantly from the Sharpe

ratio of a simple moving average strategy and the buy and hold strategy. Additionally, we

estimate the alpha in the capital asset pricing model. The results show that the network

strategy performs similar to the benchmark strategies in terms of Sharpe ratio and fails to

generate significant alphas. Overall, our results contribute to the previous literature seeking

to apply neural networks to finance and should serve as a reminder of the shortcoming of

financial data for machine learning and the importance of statistical testing.

Keywords: Artificial neural networks, Forecasting, Active trading

JEL Classification: C45, C53, G17

ii

Contents

Acknowledgements i

Abstract ii

List of Figures v

List of Tables vii

1 Introduction 1

2 Literature review 4

3 Theory 8

3.1 Neural networks . 8

3.2 Shortcomings of financial data in machine learning 12

3.3 Efficient market hypothesis . 14

4 Data 15

4.1 Description of data . 15

4.2 Descriptive statistics . 17

4.3 Autocorrelation in returns . 18

4.4 Labeling Bull and Bear Markets . 20

4.4.1 Results for S&P Composite . 22

4.4.2 Results for DJI . 22

5 Methods 23

5.1 Model estimation . 23

5.1.1 Entropy and Cross entropy . 23

iii

5.1.2 Gradient descent . 24

5.1.3 Activation function . 25

5.1.4 Back-propagation . 25

5.2 Model selection strategy . 29

5.2.1 Cross validation . 30

5.3 Trend following strategies . 30

5.3.1 Simple moving average . 31

5.4 Evaluation of trading strategy . 32

5.4.1 Sharpe ratio . 32

5.4.2 Bootstrap . 32

5.4.3 Alpha . 34

6 Results 35

6.1 S&P Composite . 35

6.1.1 Model architecture . 35

6.1.2 Active strategy . 37

6.2 Dji . 39

6.2.1 Model architecture . 39

6.2.2 Trading strategy . 41

7 Discussions 43

8 Conclusions 46

A Confusion matrices 48

B R code 50

C Discussion Paper 70

C.1 Jeffrey Benjamin Charles . 70

C.2 Daniel Debbasu Meselu . 76

Bibliography 81

List of Figures

3.1 The anatomy of a biological neuron (Wikipedia, 2008) 9

3.2 The anatomy of the perceptron (Jungeilges, 2022b, p.5) 10

3.3 Activation functions and their derivatives (Géron, 2019, p.289) 12

4.1 S&P Composite historical returns sample period and frequency 16

4.2 DJI historical returns sample period and frequency 16

4.3 Correlogram for the S&P Composite . 19

4.4 Correlogram for DJI . 19

4.5 Bull and Bear States in the S&P Composite Index 21

4.6 Bull and Bear States in the DJI . 21

5.1 Example of network architecture . 26

6.1 Network architecture and corresponding tuning parameter for the S&P Com-

posite . 36

6.2 Descriptive statistics and performance of the trading strategies for the S&P

Composite . 38

6.3 Network architecture and corresponding tuning parameter for the DJI 40

6.4 Descriptive statistics and performance of the trading strategies for the DJI . 42

v

.

List of Tables

4.1 Descriptive statistics of S&P Composite and DJI 17

4.2 Bull and Bear descriptive statistics . 21

A.1 S&P Composite period 1 . 48

A.2 S&P Composite Period 2 . 48

A.3 S&P Composite Period 3 . 48

A.4 DJI period 1 . 49

A.5 DJI period 2 . 49

A.6 DJI period 3 . 49

vii

.

Chapter 1

Introduction

The only way to make money in financial markets is to buy low and sell high. With this

comes the need to identify the times when the price of a commodity is low or high. Primarily,

there are two methods of studying price movements: fundamental- and technical analysis.

Fundamental analysis assumes that the stock price sometimes moves away from its natural

value. A stock with a price under its natural value is said to be undervalued, and one should

buy the stock, while a stock with a price above its natural value is overvalued, and it is

time to sell the stock. The technical analysis seeks to forecast the future price movements

by studying the historical price of data and discovering recurring patterns in price dynamics

(Zakamulin, 2021a).

A well-known hypothesis in finance is the efficient market hypothesis. The hypothesis states

that a security always "fully reflects" all available information in the market (Fama, 1970).

The weak form efficient market hypothesis states that it is impossible for investors to con-

sistently beat the market through the use of historical data. Despite this, investors attempt

to beat the market using historical data of the underlying asset. Constructing effective fore-

casting models is extremely challenging due to the complex nature of stock market data

(Kara et al., 2011).

Machine learning is a branch of Artificial Intelligence and includes different algorithms and

techniques. Like traditional technical analysis, machine learning algorithms in finance seek

to uncover underlying patterns in price dynamics. Technical analysis is based on the assump-

1

tion of specific patterns existing in financial prices. Therefore, technical analysis is tailored

to exploit these patterns, which the human brain can often detect. The different algorithms

used in machine learning have the capability to map continuous non-linear functions using

the historical price data. This allows them to discover patterns that are not visible to the

human eye (Zakamulin, 2021a).

Within the realm of machine learning algorithms, artificial neural networks (ANNs) are

widely used due to their flexibility and scalability, allowing for a wide range of predictive

problems to be solved (Cansiz, 2020). Inspired by the human brain, ANNs consist of in-

terconnected units of large numbers of neurons. The neurons receive input signals, process

them, and send them to an output signal. An artificial neural network consists of a set of

weighted synapses, an adder for summing the input data weighted by the respective synaptic

strength, and an activation function limiting the amplitude of the neuron’s output (Zhang,

2018).

The capability of artificial neural networks (ANNs) to model and predict financial time se-

ries has been shown (Tealab et al., 2017). Return prediction is the most important task

underlying the portfolio construction problem that lies at the heart of the investing industry

(Israel et al., 2020). Existing literature on applying machine learning for return prediction

shows that ANNs have the capability to model market behaviour (Episcopos & Davis, 1996;

Yildiz et al., 2008). It is worth mentioning that these studies primarily focus on the machine

learning algorithms instead of the results of the trading strategies. Consequently, this leads

to the lack of statistical testing of performance measures.

Multiple studies have highlighted the limits and shortcomings of the application of machine

learning algorithms to financial data due to the amount of noise, dimensionality and non-

stationarity (Kara et al., 2011). This is reflected in a subsequent strand of literature showing

that trading strategies built with ANNs are often outperformed by naive financial models

like the random walk or the buy and hold strategy (Olson & Mossman, 2003).

The characteristics of financial markets therefore raise the need for a more sophisticated

2

approach when applying machine learning algorithms. Thus, instead of predicting returns

or their sign, we seek to predict the market state. Specifically, we use a neural network to

predict if the market will be in a bull or bear state. We use two major indices in the US,

namely Standard and Poor’s Composite (S&P composite) and Dow Jones Industrial Average

(DJI).

Building on the existing literature, we present a trading strategy based on the forecast of

our network and provide a statistical justification for our results. To do this, we compare

the Sharpe ratios of the network-based strategy to a benchmark passive buy-and-hold (BH)

strategy and a trading strategy based on a simple moving average (SMA). Additionally, we

estimate the alpha in the capital asset pricing model (CAPM) by regressing the network

strategy’s excess returns on the market’s excess return.

Our results show that neural networks correctly predict the market state with an average ac-

curacy of 77% and 74% for the S&P Composite and DJI, respectively. The trading strategies

based on these predictions showed NN to generate a higher Sharpe ratio than the passive BH

strategy for the S&P Composite. However, the statistical tests show that NN outperforms

the benchmarks in only one period. Furthermore, the NN strategy shows weak performance

for the DJI, with Sharpe ratios lower than both benchmarks for all periods tested. For both

indices, the NN did not generate any significant alphas.

Similar to the existing literature exploring ANNs in financial markets, our results show that

an ANN strategy can give a higher Sharpe ratio and generate positive alpha. The main

difference lies in the statistical testing of the results. Therefore, our findings should stress

the importance of statistical tests and not be deceived by a favourable realization of a test

statistic. The rest of the thesis is organized as follows. In chapter 2, we present a review of

the literature regarding the application of neural networks to financial time series, chapter

3 dives into the theory of artificial neural networks, in chapter 4, we present the data used

for the study, the methodology used is presented in chapter 5, chapter 6 shows our empirical

results, and we elaborate on these in chapter 7. Finally, we present the conclusion of our

study in chapter 8.

3

Chapter 2

Literature review

The usage of a neural network to predict financial markets has been actively researched since

the late 1980s (Pan et al., 2005). For example, Yildiz et al. (2008) trained a three-layered

neural network using mean square error (MSE) and revised backpropagation algorithms to

predict the direction of the Istanbul stock exchange. The results showed that the model

forecasted the direction of the respective index with an accuracy of 74.51%. Kara et al.

(2011) attempted a similar study to predict the direction of movements in the daily Istan-

bul stock exchange. A three-layered feedforward artificial neural network was trained using

root mean square error (RMSE) to forecast the direction of the price index. The statistical

performance of the ANN model was compared to the performance of a model based on a

support vector machine (SVM) approach for the same index. Empirical results showed a

significant performance of 75.75% in predicting stock price movement with the ANN model,

while the performance of the SVM model was 71.52%.

Neural networks also showed good performance in the study conducted by Yildirim et al.

(2011) where they aimed to predict the monthly stock yields of 14 different paper com-

panies using a multi-layered ANN. The forecast performance was compared to that of a

multiple linear regression model using RMSE and mean absolute percentage error (MAPE).

The ANN model correctly predicted stock yields to account for 95% of the data variability.

Similarly, Pan et al. (2005) predicts the Australian stock market index using a multi-layer

neural network. The results show that the model exhibits up to 80% directional prediction

correctness. Addai (2016) compared different techniques such as artificial neural network,

4

Logit model, Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA),

and K-Nearest Neighborhood classification (KNN) to find the best predicting model by com-

paring the accuracy of their forecasts. The results showed that the ANN model performed

relatively better than the other models in classifying up and down movements of returns.

ANN predicted the direction correctly in 61% of the time considered.

Several authors have also tested the results of neural networks against traditional financial

forecast methods. For instance, Olson and Mossman (2003) compared the average direc-

tional accuracy of ANNs to the ordinary least square regression and logistic regression for

the Canadian stock market returns. The results showed that the ANN outperformed the best

regression alternatives. Similarly, Mostafa (2010) conducted an empirical study to forecast

the Kuwait stock exchange closing price movements. They used multi-layer perceptron neu-

ral networks and generalized regression neural networks to predict the closing movements.

In addition, RMSE and mean absolute error (MAE) were used to evaluate the forecasts.

The results showed that the neural network models are expected to outperform traditional

statistical techniques such as regression and ARIMA in forecasting price movements.

Further, Qi (1999) examines the non-linear predictability of the excess returns. For this,

a non-linear neural-network model was used. The author demonstrates that the non-linear

NN model gives a better out-of-sample forecast and in-sample fit than the linear regression

model using RMSE, MAE, MAPE, Pearson’s correlation coefficient and the directional fore-

cast accuracy. The results indicate that neural-network forecasts generate higher profits and

lower risk than the buy-and-hold market portfolio. Similarly, Kanas and Yannopoulos (2001)

conducted a study to forecast the out-of-sample performance of monthly returns for the two

indices, Dow Jones and FTSE All-Share. A non-linear artificial neural network model is

used to generate out-of-sample forecasts, and the RMSE of the forecasts were evaluated.

The results show that the out-of-sample artificial neural network forecast is significantly

more accurate than the linear forecasts.

In addition to the comparison against financial forecast models, studies have been conducted

to compare network-based trading strategies against the random walk model. Among these,

5

Episcopos and Davis (1996) tried predicting returns on the Canadian exchange rates using

neural networks and Egarch-M models and compared the forecast ability with the random

walk model as the benchmark. In addition, the author used MAE to evaluate the performance

of the models. The results showed that neural networks and Egarch-M models outperformed

the random walk model. Additionally, Chen et al. (2003) attempted to predict the direction

of return on the Taiwan stock exchange. Their model is rooted in the probabilistic neural

network (PNN) paradigm, and the statistical performance of the PNN was compared to the

generalized methods of moments with the Kalman filter. The empirical results show that

the probabilistic neural network model demonstrated a stronger predictive power in terms

of accuracy than random walk and generalized methods of moments forecasting models.

Israel et al. (2020) suggests machine learning algorithms should be an addition to existing

forecasting techniques rather than a replacement. This adaptation is seen in a study by

Wang et al. (2019) where a combination of complex network and ANN techniques were used

to predict copper spot price. They first transformed the original time series into a price

volatility network (PVN). Afterwards, three different ANNs techniques were used; the back

propagation neural network, the radial basis function neural network (RBFNN), and the

extreme learning machine (ELM). The results proposed that the PVN-ANN method had

a favourable effect on directional and level predictions compared to the traditional ANNs

methods. MAPE and RSME were used to evaluate the models. Furthermore, Pany and

Ghoshal (2015) uses a local linear wavelet neural network (LLWNN) to predict the electric-

ity price of the Ontario and Indian electricity markets. The performance was compared to

the MLR, NN, heuristic, and wavelet network models using MAPE. The results show that

the proposed model demonstrates a high degree of efficiency and effectiveness and predicts

the price trend better than competing models.

To summarize, ANNs have proved to be a good tool for forecasting financial time series.

However, although the results of the studies listed here are promising, their shortcomings are

evident. Most of the empirical results are revolved around ANNs and their ability to forecast

financial time series and neglect the performance of the trading strategies. Specifically,

they do not test for the statistical significance of trading strategies based on their network

6

forecasts. This motivates the use of statistical tests to assess the performance of ANN-based

trading strategies against traditional benchmark strategies.

7

Chapter 3

Theory

3.1 Neural networks

Throughout time, nature has inspired many inventions. For example, birds inspired us to

fly, and whales inspired us to invent the submarine. Therefore, drawing inspiration from the

brain when trying to build artificial intelligence seems logical. This is the idea that started

artificial neural networks (ANNs). However, despite being inspired by birds, planes don’t

flap their wings. Similarly, despite being inspired by the human brain, ANNs differ from

their biological counterparts.

Figure 3.1 illustrates simplified anatomy of a biological neuron. A biological neuron is a

type of cell found mainly in animal brains. It is composed of a cell body, dendrites and an

axon. At the end of the axon lies the terminals, which are the connection to other neurons.

Signals in biological neurons are passed on as electric impulses from one neuron to the other

through these terminals. When a neuron receives enough signals from other neurons, it fires

off its own signal. Individually, this is a rather simple concept, but biological neurons are

organized in a deep network of billions of neurons, with each neuron connected to thousands

of other neurons. The result is a network that allows for highly complex computations to be

performed by the brain.

8

Figure 3.1: The anatomy of a biological neuron (Wikipedia, 2008)

Artificial adaptation

Artificial neurons were first introduced in a paper by McCulloch and Pitts (1943). This

research contained a simplified computational model of how biological neurons might work

together to perform complex computations in animal brains. This model would later become

known as an artificial neuron. Like the biological neuron, it consisted of one or more binary

(on/off) inputs and one binary output. Furthermore, the neuron would activate if more than

a certain number of inputs were active. Even with such a simple model, McCulloch and Pitts

(1943) showed that it was possible to build a network of artificial neurons to compute any

proposition. However, this type of network had no adaptive connection between neurons

and was therefore limited to one-way operations. In other words, it could not learn.

The Perceptron

One of the most basic ANN architectures is called the perceptron and was invented by

Rosenblatt (1958). It is based on an artificial neuron slightly different from the one presented

by McCulloch and Pitts (1943). Instead of the binary on/off values, the inputs and outputs

are numbers. Additionally, each connection was now being weighted. This introduced an

adaptive connection between neurons, opening up the possibility of learning. This artificial

neuron is called a threshold logic unit (TLU). The TLU takes the weighted sum of the inputs,

applies a step function, and outputs the result. The step function is shown in (3.1)

9

step(x) =

 0, if x < 0

1, if x ≥ 0
(3.1)

.

If the weighted sum of inputs exceeds a threshold, the perceptron gives the value 1, else it

gives 0 (Jungeilges, 2022b). The learning process of a perceptron is achieved by altering the

weights between neurons. More specifically, the perceptron is fed one training example at a

time to make a prediction (1 or 0). For every wrong prediction, the weights are altered until

all training instances are correctly classified. The biological inspiration is reflected in the

elements of the perceptron as they all are related to a component of the biological neuron

and can be seen in figure 3.2.

Figure 3.2: The anatomy of the perceptron (Jungeilges, 2022b, p.5)

A single TLU can be used for linear binary classification, and early adaptations showed

promising results as it was able to recognize letters and spoken words. This led to high

expectations by scientists who sought to utilize this technology. However, the fame would be

short-lived as a publication of Minsky and Papert (1969) highlighted the limitations of the

perceptron and Rosenblatt’s algorithm. In particular, they showed that the perceptron was

limited to learning linear boundaries. For instance, it could not solve the "exclusive-OR"1

classification problem. Minsky and Papert (1969) suggested introducing layers of intercon-

1A logical operator that results in a positive outcome if exactly one (but not both) of two conditions is
positive

10

nected neurons and suggested that this construction should be able to learn more than linear

boundaries. This was the start of the multi-layer perceptron (MLP). An MLP consists of

one input layer, one or more layers of TLUs called the hidden layer, and one final layer of

TLUs called the output layer.

Activation function

The introduction of MLPs meant more neurons and more connections. However, there was

no efficient way for MLPs to learn at the time, and the development in the direction of neural

networks stopped. This would last until 1986 when Rumelhart et al. (1986) published an

important paper for the future of neural networks. In their paper Rumelhart et al. (1986)

introduced the backpropagation algorithm to train MLPs. In short, backpropagation uses

gradient descent to compute the gradient of the MLP’s error with respect to every model

parameter. A more detailed explanation of gradient descent and the backpropagation algo-

rithm is given in chapter 5. For this algorithm to work, a crucial change had to be made

to the architecture of the MLP. The step function in the TLUs of MLPs contained only flat

segments, prohibiting gradient decent to move in the direction local minima. To overcome

this problem, the authors introduced the logistic function, σ(x) = 1
1+e−x , also called the

sigmoidal function. This change was essential as this gave the algorithm a derivative to work

with as the derivative of the logistic function is non-zero and defined for all values. The BP

algorithm also works well with other activation functions in addition to the logistic function.

Two other popular functions are the hyperbolic tangent function tanh(x) = 2σ(2x)− 1, and

the Rectified Linear Unit Function: ReLU(x) = max(0, x). Similar to the logistic function,

the tanh function is continuous and differentiable. The difference between the tanh and the

logistic function is that the tanh function outputs values ranging from -1 to 1, while the

logistic function outputs values from 0 to 1. In contrast, the ReLU function is not differen-

tiable at x = 0 and its derivative is equal to 0 for x < 0. However, the practical application

of the ReLU function has shown to work very well for ANNs. A visual presentation of the

activation functions and their derivatives can be seen in figure 3.3.

11

Figure 3.3: Activation functions and their derivatives (Géron, 2019, p.289)

But why do we need these activation functions? The downfall of the perceptron can mainly

be explained by its inability to learn boundaries other than linear ones. The suggestion

of Minsky and Papert (1969) to stack layers of interconnected perceptrons did not change

this problem. The reason is that stacking several linear transformations results in a linear

transformation. These activation functions all carry non-linear properties, and stacking many

layers of such non-linear functions has left us with some of the most amazing products. For

instance, voice recognition like Apple’s Siri, Google images, and video recommendations on

YouTube show some of the capabilities of ANNs. These inventions represent some most

impressive technological advances in the last two decades. Therefore it may not be far-

fetched to think ANNs have the capability to be used for financial data. However, as we will

see, the financial world brings a turbulent environment that ANNs are not accustomed to.

3.2 Shortcomings of financial data in machine learning

The conditions that have allowed ANNs and other machine learning algorithms to perform

well ultimately narrow down to two key factors. Firstly, they all have huge amounts of data

to work with. Big data sets allow machine learning algorithms to perform well, giving room

for a flexible and rich parameterization. Secondly, these environments have a high “signal

to noise” ratio. The signal-to-noise ratio describes how much predictability there is in a

system. Some systems have clear patterns with a high signal-to-noise ratio and are clearly

predictable. Others are characterized by randomness and are difficult to predict, thus having

a low signal-to-noise ratio (Israel et al., 2020).

Unfortunately, financial data lack these properties that machine learning benefits from the

12

most. Firstly, financial data is small compared to other research fields. The notion of "big

data" in finance lies in predictors. However, for a machine learning algorithm to learn, it

needs sufficient amounts of independent observations. Time is the limiting factor for finan-

cial data, as the only way to get more observations is to simply let time pass by. Most

fields where machine learning has shown success can easily generate mode data as they see

fit (take more pictures for the Google images algorithm, record more videos for YouTube,

etc.) This problem depends to a degree on the frequency we are counting our data. The

frequency should be based on the frequency the investor will be able to re-balance without

acquiring too high transaction costs. A monthly frequency is a sensible frequency for the

average investor, as anything more frequent quickly increases transaction costs and leads to

a bigger gap between what a model predicts and what can be implemented in practice (Israel

et al., 2020).

Secondly, financial data suffer from a low signal-to-noise ratio. Financial markets are diffi-

cult to predict, partly due to the growing nature of the economy. The low signal-to-noise

ratio in financial data results from economic forces like profit maximization and its com-

petitive nature. Investors who carry information that consistently allows them to predict

price movements will exercise upon this information. Consequently, this will push prices up,

which will happen until the information is exhausted, and the price will eventually adjust to

their predictions. This leaves very little predictability on the table. This is the foundation

for the efficient market hypothesis (Israel et al., 2020).

When forecasting financial time series, one usually tries to predict the returns or signs of

return, that is if one should expect positive or negative returns. However, in light of what

has been discussed in the previous paragraphs, high signal-to-noise ratio levels should be

prioritized for machine learning algorithms. Therefore, in efforts to increase the signal-to-

noise ratio in our data set, a reasonable approach may be not to predict the returns or their

sign but rather to look at the market state. That is if the market is on the rise or fall,

denoted by a general increase or decrease in prices. A market where prices are on the rise is

referred to as a bull market, whereas a market where prices are declining is referred to as a

bear market (Pagan & Sossounov, 2003).

13

3.3 Efficient market hypothesis

A market where the price of a security always “fully reflects” all available information is

said to be efficient (Fama, 1970). Furthermore, Fama (1970) divides the efficient market

hypothesis into three subcategories. Namely, weak form, semi-strong form, and strong form

market efficiency. In weak form efficient markets, the available information is set to the

historical prices. Semi-strong efficient markets assume the price of a security is adjusted

efficiently in regard to public information. Finally, the strong form efficient markets, where

prices in addition to reflecting historical prices and publicly available information, also reflect

all private information. According to the weak form efficient market hypothesis, it is not

possible for investors to consistently beat the market through the use of historical data of

the underlying security. Therefore, the efficient market hypothesis motivates using a passive

buy-and-hold strategy. In a buy-and-hold strategy, an investor will buy a security and hold

it for a long period of time without concerns for short-term price fluctuations.

14

Chapter 4

Data

4.1 Description of data

This thesis uses the monthly returns on the stock market index Standard and Poor’s Com-

posite index (S&P Composite), Dow Jones industrial index and the risk-free rate of return.

Robert Shiller introduced this S&P Composite index to extend the returns on the S&P

Composite index back to 1860. The raw data set used for this study was gathered from

two sources. William Schwert 1 provides the first part of the returns from January 1860 to

December 1925. The second part of index returns from January 1926 to December 2018 are

retrieved from the Center for Research in Security Prices (CRSP)2. The returns on the Dow

Jones industrial index are provided by Dow Jones Indices LLC3 and cover the period from

January 1897 to December 2020. The total return in both indices includes dividends. The

risk-free rate of return from January 1920 to December 2020 is the Treasury bill-rate. The

risk-free rate prior to 1920 is constructed using commercial paper rates from New York as

suggested by Welch and Goyal (2008).

To avoid arbitrary split-point, we divide the testing and training sample into 3 different split

points (periods). By doing this, we can generalize the results. For S&P Composite, the

training sample is divided depending on the testing sample. For each index, a time window

is held out for testing the predictions of the network, while the remaining sample is used

1https://www.billschwert.com/gws data.htm
2http://www.hec.unil.ch/agoyal/
3https://www.spglobal.com/en/

15

for training. This time window covers approximately 25% of the data. A training/testing

split of 70/30 and 80/20 is suggested by most practitioners in machine learning (Dixon et

al., 2020; Géron, 2019). The model needs a sufficient amount of data to learn while also

having enough data to generalize the predictions. Since data is scarce in this thesis, we find

a 75/25 split to be a satisfactory middle ground. Thus, for S&P Composite, 1951-1980,

1980-2010 and 1990-2018 are used for testing, while 1951-1980, 1980-2010 and 1990-2020 are

used for DJI. The time periods will hereafter be referred to as period 1, period 2 and period

3, respectively. The periods start on January 1st and end on December 31st.

Figure 4.1: S&P Composite historical returns sample period and frequency

Figure 4.2: DJI historical returns sample period and frequency

16

4.2 Descriptive statistics

The skewness of S&P Composite is positive for all training periods and negative for all

testing periods. In contrast, the DJI shows negative skewness for all periods except for the

second training period. The conditions for a normal distribution call for a skewness equal

to zero. Therefore, a positive skewness indicates a skewed distribution to the right, while a

negative skewness indicates a skewed distribution to the left. A positive skewness could be

an indicator of more small losses and fewer bigger gains in the returns. On the other hand,

a negative skewness could indicate that we are dealing with longer or fatter distributions.

A normal distribution has a kurtosis of exactly 3. We observe a kurtosis larger than 3 for

all training and testing periods. A distribution with a kurtosis larger than 3 is referred to

as leptokurtic. Such distributions are characterized to have a higher probability of extreme

realizations or heavier tails. Knowing the distribution is leptokurtic, we can expect fluctua-

tions resulting in months with greater potential for very high or very low returns relative to

the normal distribution (Brooks, 2019).

Table 4.1: Descriptive statistics of S&P Composite and DJI

S&P Periods Min Max Mean Std Skewness Kurtosis
1860-1950 & 1981-2018 -0.299 0.422 0.005 0.052 0.200 11.528

Training 1860-1980 & 2011-2018 -0.299 0.422 0.005 0.051 0.311 12.068
1860-1990 -0.299 0.422 0.005 0.051 0.264 11.598
1951-1980 -0.119 0.163 0.006 0.040 -0.070 3.769

Testing 1981-2010 -0.218 0.132 0.007 0.045 -0.668 5.187
1991-2018 -0.169 0.112 0.007 0.041 -0.642 4.399

DJI Periods Min Max Mean Std Skewness Kurtosis
1897-1950 & 1981-2020 -0.307 0.402 0.006 0.057 -0.092 8.716

Training 1897-1980 & 2011-2020 -0.307 0.402 0.005 0.056 0.030 9.079
1897-1990 -0.307 0.402 0.005 0.056 -0.006 8.921
1951-1980 -0.140 0.144 0.005 0.039 -0.084 3.763

Testing 1981-2010 -0.232 0.138 0.008 0.044 -0.698 5.697
1991-2020 -0.151 0.118 0.008 0.042 -0.565 4.337

17

4.3 Autocorrelation in returns

The degree of correlation between two consecutive time intervals is referred to as autocorre-

lation. It assesses the relationship between the lagged version of a variable’s value and the

original version in a time series (Brockwell & Lindner, 2012). Studying the linear relationship

between input and output might be sufficient if the returns are autocorrelated. An estimator

of the autocorrelation in returns a time series was proposed by Ljung and Box (1978) with

a null hypothesis stating all L autocorrelations to be equal to zero simultaneously. The

alternative hypothesis states that at least one lag differs from zero.

H0 : ρ1 = ρ2 = ρ3... = ρL = 0, HH1 : At least one ̸= (4.1)

The test estimator can be written as follow:

Q̃ = T (T + 2)
L∑

T+1)

ρ̂2τ
T − τ

χ2
L (4.2)

where T is the sample size, τ is the number of lags, and ρ̂τ is the estimated correlation coef-

ficient. When T → ∞, the estimator has a χ2 density with L degrees of freedom (Jungeilges,

2022a, p.7). The test was conducted using τ=12 for both indices. The results showed a test

statistic of 36.98 and 30.28 for the S$P Composite and DJI, respectively, with corresponding

p-values of 0.0002 and 0.003. In light of the null-hypothesis, we have a highly unlikely ob-

servation. Therefore, the null hypothesis is rejected, and one can expect autocorrelation in

at least one of the lags. The correlograms for the S&P Composite and DJI shown in figure

4.3 and figure 4.4 indicate that the S&P Composite has significant autocorrelation at lat 1

and 5, while the DJI has a significant autocorrelation at lag 5.

18

Figure 4.3: Correlogram for the S&P Composite

Figure 4.4: Correlogram for DJI

19

4.4 Labeling Bull and Bear Markets

There is no common agreement on the dating of bull and bear markets (Zakamulin, 2017a).

Two distinct groups disagree regarding the timing of bull and bear markets. One group

argues that there needs to be a substantial increase (decrease) in the price for it to qualify

as a bull (bear) market. The other group argues that the stock market price needs to in-

crease (decrease) for a substantial amount of time to qualify as a bull (bear) market. In this

study, we implement the algorithm proposed by Bry and Boschan (1971) to transform our

data from monthly returns to bull and bear markets by using the R package provided by

(Zakamulin, 2017a). The algorithm requires prices as input, so the transformation is done in

two steps. First, we calculate the historical prices of the indices using the monthly returns

by calculating the cumulative product of the returns. The algorithm has two major stages:

establishing the initial turning points in the price (P) and censoring operations. The turning

points in P are chosen by first choosing a time window of length τwindow on either side of

the date to identify a peak (trough) in P higher (lower) than other points in the window.

Second, we select the highest of multiple peaks and lowest of multiple troughs to enforce the

alternation of turning points.

The censoring operations require the removal of peaks and troughs in the first and last

months of τcensor, eliminating cycles that last less than τcycle months, and eliminating phases

that last less than τphase months with the exception of instances where the relative change

in P over a month surpasses the threshold θ. The censoring operations are usually repeated

many times before satisfying all constraints. In our implementation of the algorithm, the

following parameters are used:

τwindow = 8, τcensor = 6, τcycle = 16, τphase = 4, θ = 20% .

The algorithm’s output gives us a vector containing TRUE if the market is in a bull state

and FALSE in a bear state. To fit with our classification problem, we transform the signals

to BULL and BEAR such that

Y =

 BULL, if Bull = TRUE

BEAR, if Bull = FALSE
(4.3)

20

Table 4.2: Bull and Bear descriptive statistics

S&P Composite 1860-2018 Bull Bear
Number of phases 53 53
Minimum duration 2 1
Average duration 24 12
Median duration 23 12
Maximum duration 74 44
Minimum amplitude 11 -4
Average amplitude 62 -24
Median amplitude 51 -21
Maximum amplitude 318 -82

DJI 1897-2020 Bull Bear
Number of phases 39 38
Minimum duration 7 3
Average duration 27 13
Median duration 23 9
Maximum duration 73 34
Minimum amplitude 8 -5
Average amplitude 73 -25
Median amplitude 64 -21
Maximum amplitude 338 -89

The table reports the number of bull and bear markets, their duration, and amplitude for S&P Composite
and DJI for the whole sample. The duration of market states is measured in the number of months and the
amplitude in measured in percentages.

Figure 4.5: Bull and Bear States in the S&P Composite Index

Figure 4.6: Bull and Bear States in the DJI

The plots visualize the distinct bull and bear markets as shown in table 4.2. The white lines indicate
distinct bull markets, while the grey lines indicate distinct bear markets. Figure 4.1 shows the market

states for the S&P Composite, while figure 4.2 shows the market states for DJI.

21

4.4.1 Results for S&P Composite

Table 4.2 illustrates that the S&P Composite has 53 phases of bull states and 53 phases of

Bear states. This means that from 1860 to 2020, the market experience equal number of

bull and bear states. The duration of states is given in the frequency of months. This means

that the minimum duration of a bull state is two months, while the minimum duration of a

bear state is one month. The average duration of a bull state is 24 months, while the average

duration of a bear state is 12 months, meaning that one can expect bull states to last longer

than bear states. The maximum duration of a bull state is 74 months and is 30 months

longer than the longest bear state of 44 months. The amplitude is given in percentage and

tells us something about the magnitude of the bull/bear state. The average amplitude of

a bull state is 62%, meaning the stock market index on average increases by 62% over a

bull market. Meanwhile, the average amplitude of a bear state is -24%, meaning the stock

market index on average decreases by 24% over a bear market. This means that the bull

state is much stronger than the bear state in terms of fluctuations. Again, we experience

that the average amplitude of a bull state is larger than the amplitude of a bear state. The

maximum amplitude of the bull state is 318%, and the largest amplitude of a bear state is

-82%.

4.4.2 Results for DJI

Table 4.2 describes the different duration and amplitudes of the bear and bull states of DJI.

From 1897 to 2020, we experience 39 phases of bull states and 38 phases of bear states. The

average duration of a bull state is 27 months, equal to the S&P Composite. The average

duration of the bear state is 13 months, which is a bit below the S&P Composite average.

The maximum duration of a bull state is 73, while the maximum duration of a bear state

is 34 months. This means that the maximum bear state duration of DJI was 10 months

shorter than of the S&P Composite. The minimum duration of a bull state is seven months,

while the minimum duration of a bear state is three months. The average amplitude of a

bull state is 73%, while the average amplitude of a bear state is -25%, similar to the average

amplitude of S&P Composite. The maximum amplitude of a bull state is 338% and -89% of

a bear state. The minimum amplitude of a bull state is 8% and -5% of a bear state.

22

Chapter 5

Methods

5.1 Model estimation

5.1.1 Entropy and Cross entropy

Entropy measures the information content or uncertainty of a probability distribution. Let

Ei stands for an event, and pi denotes the probability of the event Ei to occur. If there are n

events E1., En with probabilities p1,pn adding up to 1, the occurrence of events with a

smaller probability will give us more information since they are less expected. Therefore, it is

reasonable that a function of information h should be a decreasing function of the probability,

pi (Hanusch & Pyka, 2007). The function proposed by Shannon (1948) expresses information

h(pi) through a logarithmic function. h(pi) = log2(
1
pi
). Because of the properties of the

logarithmic function, this function decreases from infinity to 0 for pi ranging from 0 to 1.

This reflects the thought process behind lower probabilities giving higher information. From

the n number of information values h(pi), the expected information content of a probability

distribution (entropy) is derived by weighing the information values h(pi) by their respective

probabilities.

H = −
N∑
i=1

pilog2(
1

pi
) (5.1)

where H is the entropy measured in bits. More interestingly, we can measure the average

number of bits we need to explain data coming from a distribution p when we use model q by

using the cross-entropy between the two. The intuition is, given an underlying probability

distribution p, and an estimate of the target distribution q, the cross-entropy of Q from

23

P is the number of additional bits we need to represent an event using Q instead of P .

This cross-entropy can be formally stated as H(P,Q) where H is the cross-entropy, P is the

underlying distribution, and Q is the estimate of the target distribution. Thus, P ∈ (y, 1−y)

and Q ∈ (ŷ, 1− ŷ) we can calculate the cross-entropy as

H(P,Q) = −
∑

PilogQi = −ylogŷ − (1− y)log(1− ŷ). (5.2)

Cross entropy is widely used as a loss function in the optimization of classification models,

mainly due to the cross-entropy leading to faster training and improved generalization for

classification problems as opposed to the mean square error (Bishop & Nasrabadi, 2006,

p.235).

5.1.2 Gradient descent

Gradient descent is a common algorithm with the ability to find optimal solutions for various

problems (Géron, 2019). The general idea behind Gradient Descent is to change parameters

iteratively to minimize a cost function. The key to minimizing a cost function is to travel in

the direction of descending gradient. We reach a minimum once the gradient is equal to zero.

Intuitively, we start by randomly initializing the parameter vector containing the weights

and gradually improve it by taking small steps, each time trying to reduce the cost function

(in our case, the cross-entropy loss), until the algorithm converges to a minimum. The size

of the steps we take when undergoing Gradient Descent is an important parameter. This is

determined by the learning rate. Choosing a sensible learning rate is essential for us to reach

a minimum within a given time frame. A learning rate that is too small will require more

iterations before converging, which can be time-consuming. In contrast, a learning rate that

is too big may lead to skipping the minimum altogether and end up even higher than we

started. The biggest shortcoming of the gradient descent algorithm is the existence of local

minima. This can cause the algorithm to stop before reaching the global minimum. This

happens when the learning rate is set too small. (Géron, 2019, p.121).

24

5.1.3 Activation function

The goal of activation in the hidden layers of a neural network is to introduce non-linearity

to the model. In instances where the activation functions are linear, the transformation is

just a linear regression, and the number of hidden layers and the neurons within is irrelevant

(Dixon et al., 2020, p. 114). The reason is that a chain of linear transformations results in

nothing but another linear transformation. Consequently, even the deepest networks act as

a single layer and will be incapable of solving complex problems (Géron, 2019). A commonly

used activation function for neural networks is the logistic activation function, the sigmoid

function. The sigmoid function is given by

F (x) =
1

1 + e−x
. (5.3)

For a binary classification task, a single output neuron carrying the sigmoid activation func-

tion is sufficient. The output will be a number between 0 and 1 which can be interpreted

as the estimated probability of our positive class (Bull). The final output of our model

will contain estimated probabilities between 0 and 1 for the positive class. Thus, we set a

threshold of 0.5 for the estimated probability to be of class 1. By doing so, in light of our

problem, we can label each estimated value as belonging to class 1 (bull) or class 0 (bear).

5.1.4 Back-propagation

Although neural networks have the power to model complicated, nonlinear functions, the

weights have to be learned through trial and error. ANNs do this through something called

backpropagation. Backpropagation is a form of stochastic gradient descent. The stochastic

nature of the gradient stems from the random initiation of weights. Descending gradient

refers to the reduction of errors from each node. Intuitively, this means that we have a set

of random weights at the start of our training, which is gradually tuned to give fewer errors.

With the sample from the training set, the network first assigns different weights and runs

through the network until we get an output. The data used is labelled in pairs, so we already

know the target output. By comparing the output from the network with the target output,

we can calculate the error ei = ŷi − yi. When we have obtained the output error, we can

25

propagate the error backwards from the last layer and through the network, hence the name

backpropagation. Specifically, we calculate how a neuron contributed to the error and adjust

the associated weights accordingly. The contribution is measured by how steep the gradient

of the error is. This is calculated by finding the partial derivative of the error function with

respect to a weight wij (Aamodt, 2015).

A simple network is shown in figure 5.1. The network has an input layer with two features, x1

and x2, a hidden layer with two neurons, h1 and h2 and one layer with a single output feature

p̂i. The colour schemes represent the information that the respective neuron receives, and the

weights are labelled accordingly. The superscripts on the weights represent the numbers of

the layers the weights are connecting. The subscripts represent which neurons are connected

together. For instance, w1
11 is a connection from the input layer to the hidden layer between

neuron 1 in the input layer to neuron 1 in the hidden layer.

Figure 5.1: Example of network architecture

The current value of the information a neuron receives from the previous layer can be calcu-

lated as the sum of the weighted input from the previous layer. Specifically, for the neurons

in the hidden layer, we can represent them as the equations in (5.4) and (5.5). This is

equivalent to the blue and red connections in figure 5.1 respectively. After applying the sig-

moid activation function, the value of the neuron can simply be written as (5.6) and (5.7).

Similarly, for the output layer, (5.8) represents the information from the hidden layer, and

(5.9) represents the estimated probability after the application of the sigmoid function, p̂i.

The loss function used to update the weights is shown in (5.10). The estimated probability

26

p̂i is a product of weights and input and will therefore change if we alter the weights.

Z1
1 = w1

11x1 + w1
21x2 + b21 (5.4)

Z1
2 = w1

12x1 + w1
22x2 + b22 (5.5)

h1 = σ(Z1
1) (5.6)

h2 = σ(Z1
2) (5.7)

Z2 = w2
1h1 + w2

2h2 + b2 (5.8)

p̂i = σ(Z2) (5.9)

L = −ŷlogŷ − (1− ŷ)log(1− ŷ) (5.10)

Recall the activation function we are using, the sigmoid function, as presented in section

5.3.1. The partial derivative of the sigmoid function has properties used in backpropagation.

Specifically, if we let

P = σ(x) =
1

1 + e−x
(5.11)

be the value of a neuron, the partial derivative of the neuron with respect to x is given as

∂P

∂x
= (1 + e−x)−2e−x =

1

1 + e−x
∗ e−x

1 + e−x
= P (1− P) (5.12)

As mentioned, updating the weights works backwards from the last layer in the network.

We demonstrate the backpropagation by taking the partial derivative of the error function

with respect to w2
1. That is the weight between h1 and p̂i. So, the question to be answered

is what effect a change in w2
1 has on the error function. Formally, this equation is given by

∂L

∂w2
1

(5.13)

The error is the sum of all the errors derived from all the outputs of the network and their

respective targets.
∂L

∂w2
1

=
N∑
i=1

∂Li

∂w2
1

(5.14)

27

We can calculate the partial derivative of the ith error with respect to w2
1 using the chain rule.

Intuitively, from (5.8), we can see that a change in w2
1 leads to a change in p̂i. Consequently,

a change in p̂i will lead to a change in the error. As we can see, a change in the w2
1 changes

the error, but it happens over several steps. Thus, we can apply the chain rule and multiply

all the small changes in order to get the final change on the error. The equation for the

application of the chain rule is given in (5.15)

∂Li

∂w2
1

=
∂Z2

∂w2
1

∗ ∂p̂i
∂Z2

∗ ∂Li

∂p̂i
. (5.15)

From (5.8) we can see that the partial derivative of Z2 with respect to w2
1 gives us h1.

Furthermore, we apply the logic behind the derivative of the sigmoid function showed in

(5.11) and (5.12) to solve the partial derivative of p̂i with respect to Z2 giving us p̂i(1− p̂i).

And finally, the partial derivative of Li with respect to p̂i gives us (p̂i − yi)

∂Z2

∂w2
1

= h1,
∂p̂i
∂Z2

= p̂i(1− p̂i),
∂Li

∂p̂i
= (p̂i − yi). (5.16)

We can cluster the last two terms together under and call it δ such that the partial derivative

of the ith error function with respect to w2
1 is

∂L

∂w2
1

= δpi . (5.17)

Following the same principle, we can work our way one layer back and look at the effects of

changing w1
21 on the error function. This is the connection between x2 and h1. We again

apply the chain rule and obtain

∂Li

∂w1
21

=
∂Z1

1

∂w1
21

∗ ∂h1

∂Z1
1

∗ ∂Z2

∂h1

∗ ∂p̂i
∂Z2

∗ ∂Li

∂p̂i
. (5.18)

We can solve this for each term in the equation and obtain

∂Li

∂w1
21

= x2 ∗ h1(1− h1) ∗ w2
1 ∗ p̂i(1− p̂i) ∗ (p̂i − yi). (5.19)

We notice that the last two terms are identical to those of (5.16), and we can again cluster

these in the same manner as in (5.17). So for this connection, the partial effect of the partial

28

derivative of the error function with respect to the respective weight is a product of the error

calculated in the previous layer. Thus, the gradient calculated between the output and the

hidden layer is propagated backwards through the network. This allows neural networks

with many layers to be trained efficiently. The process presented in these steps is repeated

for all weights in iterations. Usually, one for each training sample until w converges or a

time limit is reached.

5.2 Model selection strategy

There are several choices one must make when building a neural network. These choices can

be divided into the distinct layers of a neural network, namely the input, hidden and output

layers. The number of input and output layers is always 1 for neural networks. Additionally,

a binary classifier only needs a single neuron in the output layer. This leaves us to choose

the number of hidden layers and neurons within the input and hidden layer. For the input

layer, we choose to have 8 input features consisting of lagged returns to the indices. As

for the hidden layer, Heaton (2008, p.158) states that there are no reasons to use neural

networks with more than two hidden layers and that most practical problems can be solved

using a single hidden layer. Géron (2019, p.319) also supports this claim by saying that

"MLPs with a single hidden layer can model even the most complex functions provided it

has enough neurons". Therefore, we will use a single hidden layer for our network. As

for the number of neurons in the hidden layer, there is no clear-cut answer. Géron (2019,

p.320) suggests gradually increasing the number of neurons until the model starts to overfit.

Heaton (2008, p.159) also says it ultimately boils down to trial and error. Considering these

points, we perform a grid search to look for the best model. Introducing more neurons in the

hidden layer increases the complexity of the model. At the same time, the risk of overfitting

increases. To account for this, we add a penalty to this increased complexity in the form

of weight decay. That is, we train several models with a varying number of hidden layer

neurons and different levels of weight decay. Finally, we choose the one that performs the

best under the cross-validation.

29

5.2.1 Cross validation

A popular method to avoid overfitting and generalising the results of the model is to train

the model using cross-validation. Cross-validation is a strategy used in statistics to evaluate

and compare different learning algorithms. The procedure involves dividing data into two

segments, one used for training and one used for validation. Generally, training and data

sets cross over in successive rounds such that each data point can be validated against. The

most widely used form for cross-validation is called k-fold cross-validation. Here the data is

split into k equal parts where one k − 1 folds are reserved for training the model, while the

remaining fold is left out for validating the model. This is repeated k times such that each

fold gets to serve as the validation set and is included in the training set. In the end, the

performance across the test sets is averaged to give us the cross-validated estimate of the

error for each model based on pre-determined performance criterion. Thus, we train models

using 10-fold cross-validation for every combination of hidden layer neurons and level of

weight decay. Finally, we choose the model that, on average, performs best.

5.3 Trend following strategies

Consider an active trading strategy based on the forecasts of the neural network. Specifically,

we interpret the forecast of the model at time t as a signal regarding the state of the market

at time t + 1. As mentioned in section (4.3), the output of the model at time t indicates a

bull or bear market for the subsequent period. Thus, we try to beat the market by investing

in the financial asset and holding it over the next period if the signal from the model is bull

and investing at a risk-free rate if the signal is bear. The return to this strategy is therefore

given by

Rt+1 =

rt+1 if Signal = Bull

rf,t+1 if Signal = Bear
(5.20)

where rt+1 and rf,t+1 are the total stock return and the risk free rate of return respectively

at time t. We are here only considering a long-only strategy. Alternatively, one can opt for a

long-short strategy to exploit the opportunities in both bull and bear markets. In this case,

whenever a sell signal is generated after a buy signal, we sell all our shares of the stock and

30

sell short the same number of shares. The profits are then invested at the risk-free rate over

the next period. Using the long-only strategy, we simulate the returns to the active strategy

over the same time period as the testing segment of our data, upon which the forecasts of

our model are conducted. Furthermore, we estimate the alpha in the CAPM framework by

regressing our active strategy’s excess returns against the market’s excess returns. We also

compute the Sharpe ratio of our active strategy and test the hypothesis of equal performance.

5.3.1 Simple moving average

The moving average trading rule is among the oldest and most widely used by practitioners.

It is motivated by the belief in trends in stock prices and seeks to uncover the underlying

pattern of the price movements by smoothing the stock price over time. Zakamulin (2017b)

shows that the trading indicator to a moving average strategy can be formulated using past

returns instead of prices. Formally, the indicator is given by

It(n) ≈
n−2∑
i=0

wiXt−i (5.21)

Where Xt−i is the the capital gain return on a financial asset from time period t− i− 1 to

t − i. For a simple moving average (SMA) rule, the weighting function is wi = n − i when

using past returns to approximate the indicator. Furthermore, a trading signal is generated

based on the technical indicator.

Signalt+1(n) =

Buy if It(n) > 0

Sell if It(n) < 0

(5.22)

The intuition is that by averaging the returns with appropriate weighting over the period n,

the signal from the indicator will tell us if the returns will be positive or negative. With this

information, the signal for the next period is generated. This signal tells us to buy (sell) the

stock if the value of our indicator is greater (less) than zero. We use the indicator to build

a trend-following strategy. Specifically, when a buy signal is generated, we buy the stock at

time t and hold it over the subsequent period t+ 1. If a sell signal is generated, we sell the

stock, invest at the risk-free asset at t and wait for the next signal.

31

5.4 Evaluation of trading strategy

5.4.1 Sharpe ratio

A popular performance measure of a trading strategy amongst investors is the Sharpe ratio,

developed by William F.Sharpe. The Sharpe ratio measures the performance of a portfolio

based on the mean-variance theory. It is a meaningful measure of portfolio performance when

the standard deviation can be used to adequately measure risk (Zakamouline & Koekebakker,

2009). The Sharpe ratio is computed as the ratio of the mean excess return per unit of risk.

Given the excess return of an on a risky asset x, the Sharpe ratio is computed as

E[Rt − rft]

σ
(5.23)

Where Rt− rft is the excess return and σ is the standard deviation. Using the simulated re-

turns, we test the hypothesis that the active strategy is better than the benchmark strategies

(BM). Specifically, using the Sharpe ratios of both strategies, we want to test the following

hypothesis.

H0 : SRNN = SRBM , H1 : SRNN > SRBM (5.24)

To test this null hypothesis, Jobson and Korkie (1981) present a test statistic

z =
SRA − SRBM

1
T
[2(1− ρ) + 1

2
(SR2

A + SR2
BM − 2ρ2SRASRBM

(5.25)

where SRA, SRBH , and ρ are the estimated Sharpe ratios and correlation coefficient be-

tween the two strategies being tested over a sample period of T . However, under the null, z

is asymptotically normal. In section 4.4, we concluded that the returns violate the assump-

tion of normality and independency. Thus, the assumptions of the parametric test are not

satisfied. This motivates the use of a non-parametric test instead. Therefore, we use the

bootstrap method.

5.4.2 Bootstrap

Bootstrapping is a statistical method used to estimate the distribution of an estimator or

test statistic by resampling the data (Zakamulin, 2021b). The bootstrap type depends on

32

whether the observations are assumed to be dependent or independent. When bootstrapping

dependent observation, one needs to preserve the dependency when resampling. Therefore,

one resamples a block of observations instead of single observations. This is known as a

block-bootstrap and is conducted as follows: Firstly, we create a test statistic as shown in

(5.26) and wish to test the null hypothesis in (5.25)

f = SRNN − SRBM (5.26)

The null hypothesis in (5.25) states that the Sharpe ratio of the active strategy is equal to that

of the benchmarks strategies. We carry out the test by jointly resampling the excess return

of the active strategy and the buy-and-hold strategy. r∗j,NN represents the resampled returns

to the network-based active strategy, where j indicates the j-th repetition of the bootstrap.

Similarly, r∗j,BM represents the resampled returns to the benchmark strategies. The bootstrap

is repeated j times, each time computing the Sharpe-ratio to the active strategy SR∗
j,NN and

the Sharpe ratio of the benchmarks SR∗
j,BM . The outperformance is then computed as:

H0 : f = 0, H1 : f > 0 (5.27)

As formulated in (5.25), the null hypothesis states that the active strategy and the bench-

marks perform similarly. Therefore, we adjust the computed outperformance by subtracting

the observed outperformance in order to comply with the logic behind the null hypothesis.

This gives us

f ∗
j = (SR∗

j,NN − SR∗
j,BM)− f (5.28)

Finally, we compute the p-value of the test by counting the number of times f ∗
j is larger

than f. Specifically,

p =
J∑

j=i

1∗fj>f

J
(5.29)

where 1∗fj>f is the indicator function that takes the values of 1 if f ∗
j > f and 0 otherwise.

33

5.4.3 Alpha

Another popular performance measure is to estimate a portfolio’s α in the capital asset

pricing model. This is done by regressing the excess return of the trend following strategies

on the excess return of the market.

Rt = α + β(RMt − rft) + ϵt (5.30)

Where Rt is the excess return to the trend-following strategy, RMt−rft is the excess return to

the market index, and β is the associated risk. The intuition is that the α of a trend following

strategy is the excess return of the strategy relative to the benchmark index. Obviously, an α

of zero means the trend following strategy performs equally to the benchmark index. Based

on this intuition, we can formulate the following test:

H0 : α = 0, H1 : α > 0 (5.31)

Additionally, to account for potential time series dependency and heteroskedasticity in our

regression, we compute the Newey and West (1986) standard errors with 12 lags and report

the one-sided p-values.

34

Chapter 6

Results

In this section, we will present our results. Firstly, we present the neural network architec-

tures that gave the best performance and present the accuracy of their forecasts. Secondly,

we present the results of our network-based active trading strategy compared to two bench-

mark strategies, one based on a simple moving average and one based on the buy and hold

strategy. To test for statistical significance between the strategies, a geometric bootstrap is

conducted to test the null hypothesis of an equal Sharpe ratio between the network strategy

and the benchmark strategies. Finally, the α to the CAPM is estimated by regressing the

active trading strategies’ excess return to the market’s excess return.

6.1 S&P Composite

6.1.1 Model architecture

Figure 6.1 visualizes the network architectures using the training samples of S&P Composite

returns for the testing periods identified on page 16. Specifically, (a), (c), and (e) show the

network architecture that gives the lowest cross-validated log-loss. At the same time, (b),

(d) and (f) show how different numbers of hidden layer units and levels of weight decay

influenced the log loss during training. From the plots, we can see that 4, 5, and 3 hidden

layer units combined with a weight decay of 0.01, 0.04 and 0.05 gives the lowest log loss for

period 1, 2 and 3, respectively. These models gave an accuracy of 69%, 79% and 83% on

their forecasts for periods 1, 2 and 3, respectively. The accuracy is calculated as the number

of correct predictions divided by the total number of predictions.

35

Figure 6.1: Network architecture and corresponding tuning parameter for the S&P Compos-
ite

(a) Period 1 (b) Period 1

(c) Period 2 (d) Period 2

(e) Period 3 (f) Period 3

Figure a, c and e show the fitted models for the three testing periods for the S&P Composite. The
thickness of the connection between the layers show the relative size of the weights. Positive weights are

black while negative weights are grey. The horizontal axis in (b), (d) and (f) shows different levels of
weight decay while the vertical axis shows the average log loss over the 10-fold cross validation.

36

6.1.2 Active strategy

The neural network trading strategy is based on the forecasts of the estimated model us-

ing the testing segment of the data. Specifically, the active trading strategy formulated in

section 5.5 is applied to the S&P Composite index for all testing periods. The results are

compared to a simple moving average trend following strategy using a window of 8 months

to generate the weights. Figure 6.2 shows the descriptive statistics and performance of the

network strategy, SMA(8) strategy, and the passive buy-and-hold strategy. Additionally, the

cumulative log return to all strategies is visualized.

For period 1, all strategies generate similar mean returns, while the NN and SMA(8) strate-

gies give noticeably lower standard deviation. Consequently, the Sharpe ratios of the trend

following strategies are higher. The test for equal performance between the NN and bench-

mark strategies resulted in p-values greater than 0.05. Therefore, there is insufficient evi-

dence to suggest that the NN strategy outperforms the benchmark. Additionally, both the

NN and SMA(8) strategies gave positive α values. However, when accounting for time series

dependency and heteroscedasticity in the regression, we do not observe significant p-values.

Thus, there is insufficient evidence to suggest that the α to these trend-following strategies

is greater than 0.

The network strategy gives a slightly higher mean return compared to the SMA(8) and BH

strategy in period 2. The standard deviation is lower than the BH strategy but higher than

the SMA strategy. Again, we observe a p-value greater than 0.05 for the Sharpe ratio dif-

ference between the NN strategy and the benchmarks. Therefore, we fail to reject the null

hypothesis of equal performance. The NN and SMA(8) strategies generate a positive α for

this period, with the SMA(8) having a significant p-value at the 5% level even when account-

ing for time series dependency and heteroscedasticity. The NN strategy shows a p-value of

0.14, and we fail to reject the null of zero α.

Period 3 shows similar results in terms of mean returns for all strategies. The standard

deviation is significantly lower for the trend following strategies. Contrary to the preced-

ing periods, we observe significant p-values between the NN strategy and the benchmarks

37

when testing for the Sharpe ratio difference. Therefore, we can reject the null hypothesis

that states equal performance between the NN and the benchmarks. Both trend-following

strategies generate positive α, with the SMA(8) being significant at the 5% level. The NN

strategy shows a p-value of 0.16, and we fail to reject the null of zero α.

Figure 6.2: Descriptive statistics and performance of the trading strategies for the S&P
Composite

The figures show the cumulative log return over the testing periods for S&P Composite. The table reports
the performance of the trading strategies. One sided p-values are reported in brackets.

38

6.2 Dji

6.2.1 Model architecture

In this section, we briefly repeat the study in the previous section using the data for the

DJI index for the whole sample period from January 1897 to December 2020. Figure 6.3

visualizes the fitted models using the DJI returns for the testing periods identified on page

16. On the left-hand side, (a), (c), and (e) show the network architectures that give the

lowest cross-validated log loss. On the right-hand side, (b), (d), and (f) show how different

numbers of hidden layer neurons and levels of weight decay influenced the log-loss during

training. The plots show that a network with 2, 1 and 1 hidden layer neurons gave the best

performance for periods 1, 2 and 3, respectively. These models were trained using a weight

decay of 0.02, 0.05 and 0.02. These models gave an accuracy of 75%, 75%, and 73% for the

respective periods.

39

Figure 6.3: Network architecture and corresponding tuning parameter for the DJI

(a) Period 1 (b) Period 1

(c) Period 2 (d) Period 2

(e) Period 3 (f) Period 3

Figure a, c and e show the fitted models for the three testing periods for the DJI. The thickness of the
connection between the layers show the relative size of the weights. Positive weights are black while

negative weights are grey. The horizontal axis in (b), (d) and (f) shows different levels of weight decay
while the vertical axis shows the average log loss over the 10-fold cross validation.

40

6.2.2 Trading strategy

Again, the network-based active trading strategy formulated in section 5.4 is applied to the

DJI index for all testing periods. Figure 6.4 shows the descriptive statistics and performance

of the NN, SMA, and BH strategies. The cumulative log return for all strategies for all

periods is also visualized. The results of the NN strategy are compared to a simple moving

average benchmark and a passive buy and hold benchmark.

The NN strategy generates the lowest mean return for all periods, while the BH strategy gen-

erates the highest. The BH strategy also gives the highest standard deviation. The Sharpe

ratios of the different strategies are similar, with the Sharpe ratio of SMA(8) being slightly

higher. We observe p-values greater than 0.05 when testing for equal performance between

the NN strategy and the benchmarks. Therefore, we fail to reject the null hypothesis of

equal performance. Furthermore, both trend-following strategies show a positive α with the

exception of the NN strategy in period 3. None of these is significant when accounting for

serial dependency and heteroscedasticity. Therefore, we fail to reject the null hypothesis of

zero α.

41

Figure 6.4: Descriptive statistics and performance of the trading strategies for the DJI

The figures show the cumulative log return over the testing periods for the DJI. The table reports the
performance of the trading strategies. One sided p-values are reported in brackets.

42

Chapter 7

Discussions

Our findings show interesting results. The first task in our study was to fit a network to our

data and make predictions of the future market state. An input consisting of 8 neurons was

manually defined, and the results show network configurations that differ across all periods

for both indices. An interesting find shows that the S&P Composite periods’ models are

more complex than those for DJI. Specifically, the models fitted for periods 1, 2 and 3 for

the S&P Composite have 4, 5 and 3 neurons in the hidden layer, while the same periods for

DJI have 2, 1 and 1 neurons in the hidden layer. The models for the DJI data are thus more

simple than those for the S&P Composite in terms of hidden layer neurons. Furthermore,

several models have big weights for higher-order lags, indicating that they are being priori-

tized in modelling the pattern in the data.

The results of the different trading strategies showed that the Sharpe ratio of the NN strat-

egy was statistically insignificant from the Sharpe ratios of the BH and SMA(8) strategies.

An exception to this was for S&P Composite period 3, which did show a significant Sharpe

ratio difference between the NN and both benchmark strategies. This indicates equal per-

formance between the NN strategies and the benchmark strategies. Although the Sharpe

ratio is a popular performance measure among practitioners, we should highlight some of

the shortcomings. Firstly, it follows the assumption that investors only care for the mean

and variance of returns. Therefore, higher-order moments such as skewness and kurtosis

are neglected (Kadan & Liu, 2014). Furthermore, section 4.1 showed that the data at hand

strongly deviates from a normal distribution. Therefore, these aspects should be considered

43

when constructing a portfolio or trading strategy. Secondly, the standard deviation is not

a good performance of risk from the viewpoint of an investor since it treats both downside

risk and upside return potential equally.

An important aspect of the data is the labelling of bull and bear markets. As mentioned

in section 4.4, this transformation follows the work of Bry and Boschan (1971)). Since our

target value, Y is a result of this transformation, one must be aware of the shortcomings.

Firstly, the parameters in the algorithm, τwindow, τcensor, τphase, τcycle and θ are chosen arbi-

trarily. As a result, the algorithm sometimes fails to correctly identify bull and bear markets

(Zakamulin, 2017a). This gives us another aspect of uncertainty in our data. One can

mitigate this by reducing τwindow, and see if prices generally increase (decrease) when the

algorithm classifies a bull (bear) market. However, we see this introduction of uncertainty

to our target values as a reasonable trade-off allowing for a higher signal-to-noise for the

network.

From table 4.2, we can see that both indices had a higher proportion of bull markets in

terms of their duration on all the descriptive statistics. Consequently, using the data at a

monthly frequency gives us uneven amounts of bull and bear markets. One should be aware

of this when evaluating the forecasts of the model. For instance, if we look at a testing set

where 80% of the data is classified as a bull market, a dumb model that always predicted

bull would have an accuracy of 80%, which generally is a good result. In reality, an active

strategy based on the signals from such a model would be the same as the buy-and-hold

strategy.

As a second performance measure, we estimated the alpha in the CAPM with the null hy-

pothesis stating the trend following strategies to have zero alpha. For both indices, the

NN strategy generated positive alphas for all periods except for DJI period 3. However,

they were not significant when accounting for serial dependency and heteroscedasticity. We

therefore fail to reject the null hypothesis of zero alpha. Like the Sharpe ratio, the CAPM

also assumes that investors only care about expected return and volatility. Additionally, the

model assumes the beta to be the only risk factor in the market (Womack & Zhang, 2003).

44

As mentioned earlier, the data in this study strongly violates the assumption of normal dis-

tribution. Thus, only focusing on the expected return and volatility leads to higher-order

moments being neglected when they should be accounted for. In addition, researchers be-

lieve that other risk factors significantly impact the expected return and should therefore be

considered. (Womack & Zhang, 2003).

One can argue that a testing period of around 30 years, as used in this study, might be

too short of a window to evaluate the various trading strategies. However, training a neural

network requires sufficient amounts of data, meaning enough observations of the dependent

variable. At the same time, one needs enough data in the testing sample to generalize

the network’s output on unseen data. Splitting the data into a training and testing set of

roughly 75 and 25% aimed to find a reasonable middle ground. To put this in perspective,

for a data set containing 10 million observations, using 1% of the data to test would probably

be enough, as 100 000 data points used to forecast would tell us something about the models

ability to generalize.

We would also like to shed some light on the existing literature and its results. One should

be aware that most of the studies focus on the properties of the algorithms used and lack

a financial justification when suggesting that machine learning algorithms perform better

than other strategies. In most cases, the accuracy of a machine learning-based forecaster was

evaluated in isolation with little to no regard for the financial and statistical performance of

such forecasters. In the process of exploring existing literature, we quickly noticed optimistic

results. However, there was often a lack of statistical procedures to justify these results. The

absence of such statistical procedures can be misguiding in the evaluation of network-based

trading strategies. For instance, our results are aligned with Kara et al. (2011) and Pan et al.

(2005) in terms of accuracy of forecasts. However, our results also show that the NN-based

trading strategy is no better than a passive BH strategy or a simple trend-following strategy

based on moving averages. Furthermore, Qi (1999) showed that a network-based strategy

gave higher profits and lower risk than the BH strategy. At first glance, our results also show

that the NN strategy gives higher profit and lower risk for the S&P Composite. However,

2/3 of the results were not significant when statistically tested.

45

Chapter 8

Conclusions

The main goal of this thesis was to explore the capability of neural networks to model finan-

cial data. To do this, we trained several networks using two major stock indices in the US,

namely the S&P Composite and the DJI. In standard machine learning fashion, the data

was split into a training and testing sample. To better generalize the results, three different

testing periods were chosen. Furthermore, the shortcomings of financial data in machine

learning pointed out by Israel et al. (2020) were to a degree overcome by predicting bear

and bull markets as opposed to the traditional approach of predicting returns or signs of

returns. The results showed that the neural networks, on average, correctly predicted the

market state with an accuracy of 75%.

In addition, an active trading strategy was constructed using the networks’ predictions. To

evaluate the profitability of the predictions, we compared the Sharpe ratio of the network

strategy to the Sharpe ratio of two benchmark (BM) strategies. Using a block-bootstrap,

we estimated the Sharpe ratio difference between the NN strategy and the BM strategies.

The results showed that the NN strategy did not generate a Sharpe ratio significantly larger

than the BM strategies in two of three testing periods for the S&P Composite. For the

DJI, the network strategy gave a lower Sharpe ratio than both BM strategies for all testing

periods. Furthermore, the α in the capital asset pricing model was estimated by regressing

the network strategy’s excess return to the market’s excess return. The results showed that

the NN strategy could not generate a statistically significant α for any of the testing periods

for both indices.

46

To summarize, neural networks have proven to be a powerful tool for forecasting financial

time series. The networks trained in this thesis managed to predict the state of the market

with a high level of accuracy, similar to the results of Kara et al. (2011) and Pan et al.

(2005). However, a trading strategy based on these predictions was not superior to other

traditional trading strategies such as the passive BH strategy and an active SMA strategy.

Our results should highlight the importance of statistical tests to evaluate trading strategies.

Furthermore, following the notion of Israel et al. (2020) we believe that machine learning,

hereunder neural networks, should serve as a tool, supplementary to existing financial models

and not as a replacement.

47

Appendix A

Confusion matrices

Table A.1: S&P Composite period 1

Predicted
Bear Bull

Bear 42 60
Actual

Bull 49 201

Table A.2: S&P Composite Period 2

Predicted
Bear Bull

Bear 40 40
Actual

Bull 32 240

Table A.3: S&P Composite Period 3

Predicted
Bear Bull

Bear 41 29
Actual

Bull 26 232

48

Table A.4: DJI period 1

Predicted
Bear Bull

Bear 52 33
Actual

Bull 54 213

Table A.5: DJI period 2

Predicted
Bear Bull

Bear 33 31
Actual

Bull 58 230

Table A.6: DJI period 3

Predicted
Bear Bull

Bear 26 24
Actual

Bull 71 231

49

Appendix B

R code

listings

rm(list=ls(all=TRUE))

library(tibble)

library(sandwich)

library(zoo)

library(tseries)

library(neuralnet)

library(xts)

library(TTR)

library(Rcpp)

library(bbdetection)

library(boot)

library(lmtest)

library(caret)

library(gbm)

library(nnet)

library(NeuralNetTools)

library(ggplot2)

library(NeuralSens)

library(tidyverse)

library(moments)

library(xtable)

library(pROC)

library(MLmetrics)

source("tfutils.r")

50

ws.lma <- function(n) {

the weighting scheme of the LMA rule

ws <- (1:n)*(2:(n+1))/2

return(ws)

}

sim_tfrule <- function(cap, mkt, rf, ws, short=FALSE) {

this function simulates the returns to a trend-following strategy

Inputs:

cap - capital gain return

mkt - total return

rf - risk-free rate of return

ws - return-weighting function; the weight of the most recent return ...

is in the last element of ws

short - if TRUE, simulate the Long-Short strategy; otherwise - ...

Long-only strategy

nobs = length(cap) # compute the length of vector cap

n = length(ws) # compute the window size in the trend-following rule

r = rep(NA, nobs) # to hold simulated returns

for-loop to simulate the returns

for(j in n:(nobs-1)) {

compute the value of the trading indicator

signal = sum(cap[(j-n+1):j]*ws)

compute the next period return

if(signal > 0) {

if signal is Buy, invest in the stocks

r[j+1] = mkt[j+1]

}

else {

if signal is Sell

if (short==FALSE) {

if Long-only, invest in the risk-free

r[j+1] = rf[j+1]

51

} else {

if Long-short, sell short the stocks

r[j+1] = 2*rf[j+1] - mkt[j+1]

}

}

}

return the returns to a trend-following strategy

return (r)

}

Sharpe <- function(ex) {

computes the (annualized) Sharpe ratio

ex - vector of excess returns

return(mean(ex, na.rm=TRUE)/sd(ex, na.rm=TRUE)*sqrt(12))

}

srdiff <- function(data) {

this function computes the test statistics for each bootstrapped ...

resample of data

mktmrf <- data[,1] # vector that contains the excess returns to the market

retmrf <- data[,2] # vector that contains the excess returns to the nn ...

strategy

compute the f statistics

f <- Sharpe(retmrf) - Sharpe(mktmrf)

return(f)

}

AlphaTest <- function(X, retmrf) {

compute the z-statistic in a multi-factor model and other quantities ...

of interest

Inputs:

X is the matrix of factor returns

retmrf is the excess returns to a mutual fund / trading strategy

Outputs:

alpha - alpha of the Trend-following strategy

z - z statistic (t-statistic) in the test

52

pval - p-value of alpha

yhat - fitted values

resid - residuals

to improve the robustness, conversion to required types

X <- as.matrix(X)

retmrf <- as.vector(retmrf)

perform required computations

X <- cbind(1,X) # add vector of ones as the first column

Y <- retmrf

n <- length(Y) # number of observations

k <- ncol(X) # number of independent variables

xxi <- solve(t(X) %*% X)

xy <- t(X) %*% Y

beta <- as.vector(xxi %*% xy) # regression coefficients

yhat <- as.vector(X %*% beta) # fitted values of Y

resid <- Y - yhat # model residuals

rss <- as.numeric(resid %*% resid) # residual sum of squares

se <- sqrt(diag(rss/(n-k)*xxi)) # standard errors of estimation of ...

beta

tstat <- as.vector(beta/se) # t-statistics of beta

pval <- pnorm(-tstat)

return(list(alpha=beta[1],z=tstat[1],pval=pval[1],

yhat=yhat,resid=resid))

}

#Create a function to simulate the returns using NN predictions

sim_nn <- function(cap, mkt, rf, short=FALSE) {

nobs = length(cap) # compute the length of vector cap

r = rep(0, (nobs)) # to hold simulated returns

for-loop to simulate the returns

for(j in 1:(nobs-1)) {

signal = Ypred

if(signal[j] == "Bull") {

r[j+1] = mkt[j+1]

}

53

else {

if (short==FALSE) {

r[j+1] = rf[j+1]

} else {

r[j+1] = 2*rf[j+1] - mkt[j+1]

}

}

}

return (r)

}

lagpad <- function(x, k) {

if (k>0) {

return (c(rep(NA, k), x)[1 : length(x)]);

}

else {

return (c(x[(-k+1) : length(x)], rep(NA, -k)));

}

}

sp500<-read.zoo("sp500.txt",header=TRUE)

sp500<-window(sp500,start=as.Date.character("1857-01-01"),

end=as.Date("2018-12-31"))

dates<-index(sp500)

data<-coredata(sp500)

return<-data[,"CAP"]

price<-cumprod(1+return)

bull<-run_dating_alg(price)

bb.summary.stat(price,bull)

bb.plot(price,bull,dates)

train<-window(sp500,start=as.Date.character("1860-01-01"),

end=as.Date("1990-12-31"))

test<-window(sp500,start=as.Date.character("1991-01-01"),

end=as.Date("2018-12-31"))

54

#Make a Y vector containing the sign of market state

dates.train <- index(train)

data.train <- coredata(train)

ret.train <- data.train[,"CAP"]

Price.train<-cumprod(1+ret.train)

Bull.train<-run_dating_alg(Price.train)

Y.train<-ifelse(Bull.train==TRUE,"Bull","Bear")

Y.train<-as.factor(Y.train)

dates.test <- index(test)

data.test <- coredata(test)

ret.test <- data.test[,"CAP"]

Price.test<-cumprod(1+ret.test)

Bull.test<-run_dating_alg(Price.test)

Y.test<-ifelse(Bull.test==TRUE,"Bull","Bear")

Y.test<-as.factor(Y.test)

bb.summary.stat(Price.train,Bull.train)

bb.summary.stat(Price.test,Bull.test)

bb.plot(Price.train,Bull.train,dates.train)

bb.plot(Price.test,Bull.test,dates.test)

#Create lagged values for training sample

X1<-lagpad(x=Price.train,1)

X2<-lagpad(x=Price.train,2)

X3<-lagpad(x=Price.train,3)

X4<-lagpad(x=Price.train,4)

X5<-lagpad(x=Price.train,5)

X6<-lagpad(x=Price.train,6)

X7<-lagpad(x=Price.train,7)

X8<-lagpad(x=Price.train,8)

#Create lagged values for testing sample

t.X1<-lagpad(x=Price.test,1)

t.X2<-lagpad(x=Price.test,2)

t.X3<-lagpad(x=Price.test,3)

t.X4<-lagpad(x=Price.test,4)

55

t.X5<-lagpad(x=Price.test,5)

t.X6<-lagpad(x=Price.test,6)

t.X7<-lagpad(x=Price.test,7)

t.X8<-lagpad(x=Price.test,8)

#create data frame containing state of market and lagged returns

df.train<-data.frame(Y.train,X1,X2,X3,X4,X5,X6,X7,X8)

#trim the data frame

df.train<-df.train[-c(1:8),]

df.test<-data.frame(Y.test,t.X1,t.X2,t.X3,t.X4,t.X5,t.X6,t.X7,t.X8)

df.test<-df.test[-c(1:8),]

colnames(df.test)=colnames(df.train)

fitcontrol<-trainControl(method = "cv", number = 10,

summaryFunction = multiClassSummary,

classProbs = TRUE,

savePredictions = TRUE)

nngrid<-expand.grid(size = seq(from = 1, to = 5, by = 1),

decay = seq(from = 0, to = 0.05, by = 0.01))

set.seed(100)

nnfit1<-train(Y.train ~., data=df.train, #Train using cross validation ...

with accuracy as measurement

method="nnet",

metric="logLoss",

trControl=fitcontrol,

tuneGrid=nngrid,

linout=FALSE)

mlp_pred<-predict(nnfit1,df.train)

train.acc<-confusionMatrix(data=mlp_pred,reference = df.train$Y.train, ...

56

positive = "Bull")$overall[1]

mlp_pred<-predict(nnfit1,df.test)

test.acc<-confusionMatrix(data=mlp_pred,reference = df.test$Y.train, ...

positive = "Bull")$overall[1]

plot(nnfit1)

plotnet(nnfit1$finalModel,var_labs=FALSE)

varImp(nnfit1)

df<-nnfit1$results

SensAnalysisMLP(nnfit1)

Ypred <-mlp_pred

Y.test<-df.test$Y.train

length(Ypred)

length(Y.test)

#Confusion matrix

accuracy<-table(Reference=Y.test,Prediction=Ypred)

xtable(accuracy)

################# Simulate SMA #################################

n<-8

sp500<-read.zoo("sp500.txt",header=TRUE)

sp500 <- window(sp500, start=as.Date("1991-01-01"),end=as.Date("2018-12-31"))

dates <- index(sp500) # get dates

data <- coredata(sp500) # get data

mkt <- data[,"MKT"] # the total return

cap <- data[,"CAP"] # the capital gain return

rf <- data[,"RF"] # the risk-free rate of return

ws <- ws.lma(n)

r.sma <- sim_tfrule(cap, mkt, rf, ws, short=FALSE)

nobs <- length(mkt)

57

m <- length(ws)

r.sma <- r.sma[(m+1):nobs]

mkt <- mkt[(m+1):nobs]

rf <- rf[(m+1):nobs]

dates <- dates[(m+1):nobs]

################ Simulate NN #########################

n<-8

sp500<-read.zoo("sp500.txt",header=TRUE)

sp500 <- window(sp500, start=as.Date("1991-01-01"),end=as.Date("2018-12-31"))

get the dates and data

dates <- index(sp500) # get dates

dates<-dates[-c(1:n)]

data <- coredata(sp500) # get data

mkt <- data[,"MKT"] # the total return

mkt<-mkt[-c(1:n)]

cap <- data[,"CAP"] # the capital gain return

cap<-cap[-c(1:n)]

rf <- data[,"RF"] # the risk-free rate of return

rf<-rf[-c(1:n)]

NN_returns<-sim_nn(cap,mkt,rf,short=FALSE)

r.nn <- NN_returns

#Compute the cumulative returns to NN strategy and BH strategy

ind.r <- cumprod(1 + r.nn)

ind.mkt <- cumprod(1 + mkt)

ind.sma <- cumprod(1 + r.sma)

plot(dates,log(ind.mkt),type="l", main = "Cumulative return of trading ...

strategies",

ylab = "return", ylim=c(0,3))

lines(dates,log(ind.r),type="l",col=("red"))

lines(dates,log(ind.sma),type = "l",col=("blue"))

legend("topleft",legend=c("Buy and Hold","NN ...

strategy","SMA(8)"),col=c("black","red","blue"),lty=1,bty = "n")

58

compute the descriptive statistics and the performance

mean.mkt <- mean(mkt)*12*100

mean.sma <- mean(r.sma)*12*100

mean.nn <-mean(r.nn)*12*100

sd.mkt <- sd(mkt)*sqrt(12)*100

sd.sma <- sd(r.sma)*sqrt(12)*100

sd.nn <- sd(r.nn)*sqrt(12)*100

SR.mkt <- Sharpe(mkt-rf)

SR.sma <- Sharpe(r.sma-rf)

SR.nn <- Sharpe(r.nn-rf)

pval <- SharpeTest(mkt-rf, r.sma-rf)$pval

pval

##################### Alpha ########################

mktmrf <- mkt - rf #Excess return to the BH strategy

retmrf <- r.nn - rf #Excess return to the NN long only strategy

Alpha.nn<-AlphaTest(mktmrf,retmrf)

alpha.nn<-(Alpha.nn$alpha)*100*12

pval.alpha.nn<-Alpha.nn$pval

mktmrf <- mkt - rf #Excess return to the BH strategy

smamrf <- r.sma- rf #Excess return to the NN long only strategy

Alpha.sma<-AlphaTest(mktmrf,smamrf)

alpha.sma<-(Alpha.sma$alpha)*100*12

pval.alpha.sma<-Alpha.sma$pval

############################## bootstrapped sharpe ...

##

mktmrf <- mkt - rf #Excess return to the BH strategy

retmrf <- r.nn - rf #Excess return to the NN long only strategy

srdiff <- function(data) {

this function computes the test statistics for each bootstrapped ...

59

resample of data

mktmrf <- data[,1] # vector that contains the excess returns to the market

retmrf <- data[,2] # vector that contains the excess returns to the nn ...

strategy

compute the f statistics

f <- Sharpe(retmrf) - Sharpe(mktmrf)

return(f)

}

fstat <- Sharpe(retmrf) - Sharpe(mktmrf)

data <- cbind(mktmrf, retmrf)

bLen = 5

R <- 5000

bootstrap time series

results <- tsboot(tseries=data, statistic=srdiff,

R=R, l=bLen, sim="geom")

The result is a matrix that contains bootstrapped f-statistics

fstat.sim <- results$t - fstat

compute the p-value of the test

pval.boot.sr <- length(which(fstat.sim > fstat))/R

pval.boot.sr

################################# SMA vs NN ...

###################################

smamrf <- r.sma - rf #Excess return to the BH strategy

retmrf <- r.nn - rf #Excess return to the NN long only strategy

srdiff <- function(data) {

this function computes the test statistics for each bootstrapped ...

resample of data

smamrf <- data[,1] # vector that contains the excess returns to the market

retmrf <- data[,2] # vector that contains the excess returns to the nn ...

strategy

compute the f statistics

60

f <- Sharpe(retmrf) - Sharpe(smamrf)

return(f)

}

fstat <- Sharpe(retmrf) - Sharpe(smamrf)

data <- cbind(smamrf, retmrf)

bLen = 5

R <- 5000

bootstrap time series

results <- tsboot(tseries=data, statistic=srdiff,

R=R, l=bLen, sim="geom")

The result is a matrix that contains bootstrapped f-statistics

fstat.sim <- results$t - fstat

compute the p-value of the test

pval.boot.nnsma <- length(which(fstat.sim > fstat))/R

pval.boot.nnsma

df <- data.frame(BH=c(mean.mkt, sd.mkt, SR.mkt, NA,NA,NA),

SMA=c(mean.sma, sd.sma, SR.sma, ...

pval.boot.sma,alpha.sma,pval.alpha.sma),

NN=c(mean.nn,sd.nn,SR.nn,pval.boot.sr,alpha.nn,pval.alpha.nn))

rownames(df) <- c("Mean return", "Std. deviation", "Sharpe ratio", ...

"P-value","Alpha","P-value alpha")

xtable(df)

####################### Newey west #####################################

retmrf<-r.nn-rf

mktmrf<-mkt-rf

reslm <- lm(retmrf ~ mktmrf)

res <- coeftest(reslm, df = Inf, vcov = NeweyWest(reslm, lag = 12, ...

prewhite = FALSE))

res

61

smamrf<-r.sma-rf

mktmrf<-mkt-rf

reslm <- lm(smamrf ~ mktmrf)

res <- coeftest(reslm, df = Inf, vcov = NeweyWest(reslm, lag = 12, ...

prewhite = FALSE))

res

Sys.setlocale("LC_TIME", "English") # you need this command on computers ...

with Norwegian Windows

DJ <- read.zoo("djia.txt", header=TRUE, FUN=as.yearmon)

train<-window(DJ, index. = index(DJ), start = as.character.Date("Jan ...

1897"), end = as.character.Date("Dec 1990"))

test<-window(DJ, index. = index(DJ), start = as.character.Date("Jan ...

1991"), end = as.character.Date("Dec 2020"))

dates<-index(DJ)

dates<-as.yearmon(dates)

data<-coredata(DJ)

return<-data[,"CAP"]

price<-cumprod(1+return)

bull<-run_filtering_alg(price)

bb.summary.stat(price,bull)

bb.plot(price,bull,as.yearmon(dates))

#Make a Y vector containing the sign of market state

dates.train <- index(train)

data.train <- coredata(train)

ret.train <- data.train[,"CAP"]

Price.train<-cumprod(1+ret.train)

Bull.train<-run_filtering_alg(Price.train)

Y.train<-ifelse(Bull.train==TRUE,"Bull","Bear")

Y.train<-as.factor(Y.train)

dates.test <- index(test)

data.test <- coredata(test)

62

ret.test <- data.test[,"CAP"]

Price.test<-cumprod(1+ret.test)

Bull.test<-run_filtering_alg(Price.test)

Y.test<-ifelse(Bull.test==TRUE,"Bull","Bear")

Y.test<-as.factor(Y.test)

#Create lagged values for training sample

X1<-lagpad(x=Price.train,1)

X2<-lagpad(x=Price.train,2)

X3<-lagpad(x=Price.train,3)

X4<-lagpad(x=Price.train,4)

X5<-lagpad(x=Price.train,5)

X6<-lagpad(x=Price.train,6)

X7<-lagpad(x=Price.train,7)

X8<-lagpad(x=Price.train,8)

#Create lagged values for testing sample

t.X1<-lagpad(x=Price.test,1)

t.X2<-lagpad(x=Price.test,2)

t.X3<-lagpad(x=Price.test,3)

t.X4<-lagpad(x=Price.test,4)

t.X5<-lagpad(x=Price.test,5)

t.X6<-lagpad(x=Price.test,6)

t.X7<-lagpad(x=Price.test,7)

t.X8<-lagpad(x=Price.test,8)

#create data frame containing state of market and lagged returns

df.train<-data.frame(Y.train,X1,X2,X3,X4,X5,X6,X7,X8)

df.train<-df.train[-c(1:8),]

df.test<-data.frame(Y.test,t.X1,t.X2,t.X3,t.X4,t.X5,t.X6,t.X7,t.X8)

df.test<-df.test[-c(1:8),]

63

fitcontrol<-trainControl(method = "cv", number = 10,

summaryFunction = multiClassSummary,

classProbs = TRUE,

savePredictions = TRUE)

nngrid<-expand.grid(size = seq(from = 1, to = 5, by = 1),

decay = seq(from = 0, to = 0.05, by = 0.01))

colnames(df.test)=colnames(df.train)

set.seed(100)

nnfit2<-train(Y.train ~., data=df.train, #Train using cross validation ...

with accuracy as measurement

method="nnet",

metric="logLoss",

trControl=fitcontrol,

tuneGrid=nngrid,

linout=FALSE)

mlp_pred<-predict(nnfit2,df.train)

accuracy.train<-confusionMatrix(data=mlp_pred,reference = ...

df.train$Y.train, positive = "Bull")$overall[1]

mlp_pred<-predict(nnfit2,df.test)

accuracy.test<-confusionMatrix(data=mlp_pred,reference = df.test$Y.train, ...

positive = "Bull")$overall[1]

varImp(nnfit2)

plot(nnfit2)

plotnet(nnfit2$finalModel,var_labs=FALSE)

#make predictions on the testing sample using the model

Ypred <- mlp_pred

Y.test<-df.test$Y.train

accuracy<-table(Reference=Y.test,Prediction=Ypred)

xtable(accuracy)

############################# Simulate SMA #######################

64

n<-8

DJ<-read.zoo("djia.txt",header=TRUE, FUN=as.yearmon)

DJ<-window(DJ, index. = index(DJ), start = as.character.Date("Jan 1981"), ...

end = as.character.Date("Dec 2010"))

dates<-index(DJ)

data<-coredata(DJ)

mkt <- data[,"MKT"] # the total return

cap <- data[,"CAP"] # the capital gain return

rf <- data[,"RF"] # the risk-free rate of return

ws <- ws.lma(n)

r.sma <- sim_tfrule(cap, mkt, rf, ws, short=FALSE)

nobs <- length(mkt)

m <- length(ws)

r.sma <- r.sma[(m+1):nobs]

mkt <- mkt[(m+1):nobs]

rf <- rf[(m+1):nobs]

dates <- dates[(m+1):nobs]

####################### Simulate NN #######################################

DJ <- read.zoo("djia.txt", header=TRUE, FUN=as.yearmon)

DJ<-window(DJ, index. = index(DJ), start = as.character.Date("Jan 1981"), ...

end = as.character.Date("Dec 2010"))

get the dates and data

dates <- index(DJ) # get dates

dates<-dates[-c(1:n)]

data <- coredata(DJ) # get data

mkt <- data[,"MKT"] # the total return

mkt<-mkt[-c(1:n)]

cap <- data[,"CAP"] # the capital gain return

cap<-cap[-c(1:n)]

rf <- data[,"RF"] # the risk-free rate of return

rf<-rf[-c(1:n)]

NN_returns<-sim_nn(cap,mkt,rf,short=FALSE)

r.nn <- NN_returns

65

#Compute the cumulative returns to NN strategy and BH strategy

ind.r <- cumprod(1 + r.nn)

ind.mkt <- cumprod(1 + mkt)

ind.sma <- cumprod(1 + r.sma)

ind <- cbind(ind.mkt,ind.r,ind.sma)

ind <- zoo(ind, order.by = dates)

plot(log(ind))

plot(dates,log(ind.mkt),type="l", main = "Buy and hold VS Neural network",

ylab = "return")

lines(dates,log(ind.r),type="l",col=("red"))

lines(dates,log(ind.sma), type="l",col=("blue"))

legend("topleft",legend=c("Buy and Hold","Long only ...

NN","SMA(8)"),col=c("black","red","Blue"),lty=1,bty = "n")

mktmrf <- mkt - rf #Excess return to the BH strategy

retmrf <- r.nn - rf #Excess return to the NN long only strategy

#Descriptive statistics of NN and BH strategy

mean.mkt <- mean(mkt)*12*100

mean.sma <- mean(r.sma)*12*100

mean.nn <-mean(r.nn)*12*100

sd.mkt <- sd(mkt)*sqrt(12)*100

sd.sma <- sd(r.sma)*sqrt(12)*100

sd.nn <- sd(r.nn)*sqrt(12)*100

SR.mkt <- Sharpe(mkt-rf)

SR.sma <- Sharpe(r.sma-rf)

SR.nn <- Sharpe(r.nn-rf)

pval <- SharpeTest(mkt-rf, r.sma-rf)$pval

pval

########################## Alpha ################################

mktmrf <- mkt - rf #Excess return to the BH strategy

retmrf <- r.nn - rf #Excess return to the NN long only strategy

66

Alpha.nn<-AlphaTest(mktmrf,retmrf)

alpha.nn<-(Alpha.nn$alpha)*100*12

pval.alpha.nn<-Alpha.nn$pval

mktmrf <- mkt - rf #Excess return to the BH strategy

retmrf <- r.sma- rf #Excess return to the NN long only strategy

Alpha.sma<-AlphaTest(mktmrf,retmrf)

alpha.sma<-(Alpha.sma$alpha)*100*12

pval.alpha.sma<-Alpha.sma$pval

#===================Bootstrap==========================

mktmrf <- mkt - rf #Excess return to the BH strategy

retmrf <- r.nn - rf #Excess return to the NN strategy

srdiff <- function(data) {

this function computes the test statistics for each bootstrapped ...

resample of data

mktmrf <- data[,1] # vector that contains the excess returns to the market

retmrf <- data[,2] # vector that contains the excess returns to the nn ...

strategy

compute the f statistics

f <- Sharpe(retmrf) - Sharpe(mktmrf)

return(f)

}

fstat <- Sharpe(retmrf) - Sharpe(mktmrf)

data <- cbind(mktmrf, retmrf)

bLen = 5

R <- 5000

bootstrap time series

results <- tsboot(tseries=data, statistic=srdiff,

R=R, l=bLen, sim="geom")

The result is a matrix that contains bootstrapped f-statistics

67

fstat.sim <- results$t - fstat

compute the p-value of the test

pval.boot.sr <- length(which(fstat.sim > fstat))/R

pval.boot.sr

################################# SMA vs NN ...

##

smamrf <- r.sma - rf #Excess return to the BH strategy

retmrf <- r.nn - rf #Excess return to the NN long only strategy

srdiff <- function(data) {

this function computes the test statistics for each bootstrapped ...

resample of data

smamrf <- data[,1] # vector that contains the excess returns to the market

retmrf <- data[,2] # vector that contains the excess returns to the nn ...

strategy

compute the f statistics

f <- Sharpe(retmrf) - Sharpe(smamrf)

return(f)

}

fstat <- Sharpe(retmrf) - Sharpe(smamrf)

data <- cbind(smamrf, retmrf)

bLen = 5

R <- 5000

bootstrap time series

results <- tsboot(tseries=data, statistic=srdiff,

R=R, l=bLen, sim="geom")

The result is a matrix that contains bootstrapped f-statistics

fstat.sim <- results$t - fstat

compute the p-value of the test

pval.boot.nnsma <- length(which(fstat.sim > fstat))/R

pval.boot.nnsma

################################ Newey west ###############################

68

retmrf<-r.nn-rf

mktmrf<-mkt-rf

reslm <- lm(retmrf ~ mktmrf)

res <- coeftest(reslm, df = Inf, vcov = NeweyWest(reslm, lag = 12, ...

prewhite = FALSE))

res

smamrf<-r.sma-rf

mktmrf<-mkt-rf

reslm <- lm(smamrf ~ mktmrf)

res <- coeftest(reslm, df = Inf, vcov = NeweyWest(reslm, lag = 12, ...

prewhite = FALSE))

res

df <- data.frame(BH=c(mean.mkt, sd.mkt, SR.mkt, NA,NA,NA),

SMA=c(mean.sma, sd.sma, SR.sma, ...

pval.boot.sma,alpha.sma,pval.alpha.sma),

NN=c(mean.nn,sd.nn,SR.nn,pval.boot.sr,alpha.nn,pval.alpha.nn))

rownames(df) <- c("Mean return", "Std. deviation", "Sharpe ratio", ...

"P-value","Alpha","P-value alpha")

xtable(df)

69

Appendix C

Discussion Paper

C.1 Jeffrey Benjamin Charles

Introduksjon

Dette diskusjons papiret reflekterer over hvorvidt masteroppgaven vår er relevant i forhold

til konseptet «responsible» (ansvarlighet), og hvordan vi sammen har skrevet, jobbet og

diskutert oppgaven. Prosessen har vært lang, krevende, og vi har gang på gang møtt på

motstand i form av ulike problemstillinger knyttet til det teoretiske samt det tekniske as-

pektet ved oppgaven. Samtidig har det også vært meget spennende å skrive om teamet

maskinlæring i finans, og dette har gitt oss tverrfaglig kunnskap og dybde i et fagområde

som er ansett som veldig attraktiv og etterspurt i dagens arbeidsmarked. For det første, er

masteroppgaven vår relevant til konseptet «responsiable» ved at studiet er utført på globale

indiser som Standard Poor 500 og Dow Jones Industrial. Det forventes av aksjonærene og

samfunnet at selskapene på disse indeksene utøver tilstrekkelig ansvarlighet på alle aspekter.

For det andre, er maskinlæring en form for kunstig intelligens som har som oppgave å lære

seg selv opp ved hjelp av eksisterende data. Det er derfor spesielt viktig at man opptrer

ansvarlig ved bruk at denne formen for teknologi og ikke stoler blindt på resultatet da dette

kan ha konsekvenser for de involverte. I dette diskusjons papiret presenteres først et kort

sammendrag av masteroppgaven, deretter defineres konseptet «ansvarlighet, så diskuteres

hvordan oppgaven forholder seg til dette konseptet, og til slutt en konklusjon. For det tredje

er oppgaven relevant til konseptet på grunn av alt maskinlæring kan brukes til. I vår oppgave

har vi spesifikt tatt for oss det finansielle aspektet, men det er verdt å nevne at maskinlæring

70

brukes i så mye annet i mange forskjellige industrier. Det er derfor ekstremt viktig at man

er ansvarlig ved bruk av dette.

Presentasjon av masteroppgaven

Den effektive markedshypotesen er en velkjent finansiell hypotese. Ifølge ideen, en sikkerhet

alltid "fullstendig reflekterer" all tilgjengelig informasjon i markedet (Fama, 1970). I følge

den svake formeffektive markedsteorien er det vanskelig for investorer å kontinuerlig overgå

markedet ved å bruke tidligere data. Til tross for dette prøver investorer å utkonkurrere

markedet ved å bruke tidligere data fra den underliggende eiendelen. På grunn av komplek-

siteten til aksjemarkedsdata er det ekstremt vanskelig å utvikle effektive prognosemodeller

(Kara et al., 2011).

"Kunstig intelligens brukt gjennom maskinlæring vil være en av de mest transformerende

teknologiene i vår generasjon, som håndterer noen av menneskehetens mest utfordrende

problemer, øker menneskelig ytelse og maksimerer produktiviteten. Ansvarlig bruk av disse

teknologiene er nøkkelen til å fremme fortsatt innovasjon" - (Amazon, 2022).

Maskinlæring er et underfelt av kunstig intelligens som omfatter mange algoritmer og metoder.

Maskinlæringsalgoritmer innen finans, som konvensjonell teknisk analyse, streber etter å

finne underliggende mønstre i prisatferd. Teknisk analyse er basert på forestillingen om at

visse mønstre eksisterer i finansiell prising. Som et resultat er teknisk analyse designet for å

utnytte disse trendene, som den menneskelige hjernen ofte kan gjenkjenne. De ulike maskin-

læringsmetodene har kapasitet til å kartlegge kontinuerlige ikke-lineære funksjoner ved bruk

av tidligere prisdata. Dette gjør dem i stand til å identifisere mønstre som det menneskelige

øyet ikke kan se. (Zakamulin, 2021a). I vår masteroppgave har vi valgt å ta for oss nettopp

dette spennende dagsaktuelle temaet. Vi har som motivasjon å utforske om vi ved å benytte

oss av maskinlæring, som benytter historisk data, klarer å lage en aktiv strategi som er i

stand til å prestere likt eller bedre enn simple moving average og den tradisjonelle kjøp-og-

hold strategien. Isteden for å predikere avkastning har vi valgt å se predikere oppgang og

nedgang i markedet. Med andre ord, ønsker vi å se om vår strategi basert på «neural net-

work» er i stand til å predikere opptrender og nedtrender i markedet, og om ved at vi handler

71

på signalene som gis fra modellen, klarer å prestere likt eller bedre enn markedet. I oppgaven

valgte vi å se på to indekser i USA: SP Composite og Dow Jones Index. Den eksisterende

litteraturen i dette emnet er sterkt fokusert på maskinlæringssiden, med en tydelig mangel

på det økonomiske aspektet. Som et resultat har vi bestemt oss for å inkludere statistiske

tester som Sharp ratio-testen og Alpha-testen for å se om den aktive strategien basert på

"neural nettverk" er statistisk signifikant sammenlignet med det simple moving average og

kjøp-og-hold. strategi. Algoritmen vår var i stand til å forutse opp- og nedturer i markedet

med et høyt nivå av nøyaktighet som kan sammenlignes med tidligere studier. Sammen-

lignet med kjøp-og-hold-strategien ga en trendfølgende handelsstrategi basert på resultatene

av modellen vår et akseptabelt Sharpe-forhold og en positiv alfaverdi for SP Composite.

Disse funnene var imidlertid ikke banebrytende fordi evaluering av premissene for lignende

ytelse som en kjøp-og-hold-strategi ikke ga noen statistisk signifikante resultater. For Dow

Jones-indeksen presterte modellen vår dårlig, noe som resulterte i et redusert Sharpe-forhold

for alle perioder og en negativ alfaverdi i to av tre perioder. Til slutt vil vi vise til studien av

Israel et al. (2020) som mener at maskinlæring, spesielt "neural network", bør brukes som

et verktøy for å supplere eksisterende økonomiske modeller i stedet for som en erstatning.

Dette skyldes det faktum at funnene våre ikke er representert i den eksisterende litteraturen

som indikerer at maskinlæring har høy grad av nøyaktighet og at det er lettere å forutse

hvordan en aksje eller indeks vil prestere over tid.

Konseptet «Responsiability» (Ansvarlighet)

For å kunne drøfte masteroppgaven i lys av konseptet «Ansvarlighet» er vi først nødt til å

definere dette konseptet. Vedantu (2022) definerer ansvarlighet som

«Ansvarlighet er en moralsk forpliktelse å fullføre det tildelte arbeidet. Med andre ord er det

også definert som "Ansvar er en persons forpliktelse til å utføre tildelte aktiviteter etter beste

evne".

Det å handle ansvarlig er noe som er i stort fokus i dagens samfunn. Bedrifter og intuisjoner

opplever et sosialt press fra samfunnet om å handle etisk og moralsk ovenfor miljøet og

samfunnet. Tidligere har mye av fokuset blant bedrifter vært å maksimere profitt uten

å tenke på konsekvensen av dette, mens i nyere tid har dette tatt et skifte og bedrifter

er mer bundet til å søke velferden til ulike deler av samfunnet og miljøet. Det er viktig

å kunne anlegge et globalt perspektiv som omfatter hele verdens befolkning og fremtidige

72

generasjoner.

"ESG (Enviromantal, Social Governence) er et konsept som ofte blir bundet til det å han-

dle ansvarlig. En litteraturgjennomgang av Liang and Renneboog (2020) forklarer at ved å

ta investorperspektivet kan man forstå hvordan ESG og bærekraftig finans påvirker aktiva

priser og porteføljeavkastning. PRI (The Principles of Responsible Investing), også kjent

som det største globale nettverket av institusjonelle investorer som er forpliktet til å vurdere

ESG-spørsmål i investeringene sine, oppmuntrer investorer til å investere ansvarlig for å øke

avkastningen og bedre risikostyring (UNPRI, 2021). I 2016 introduserte Moriningstar ESG-

rating, og fond med høy ESG-rating observerte positiv kontantstrøm mens fond med lavere

ESG-rating hadde negativ kontantstrøm (Hartzmark & Sussman, 2019). ESG-informasjon

har blitt viktigere i investeringsprosessen på grunn av det økende antallet ansvarlige inve-

storer som vurderer ESG-informasjon i sine investeringsallokeringer (Amel-Zadeh & Ser-

afeim, 2018). Konseptet «ansvarlighet» er bredt og kan derfor anvendes i ulike området

innenfor finans. Videre skal jeg drøfte hvorvidt dette konseptet er relevant" - (Charles &

Larsen, 2021, p.6).

Drøfting av «Ansvarlighet» i lys av masteroppgaven

I denne delen skal etiske utfordringer i lys av ansvarlighet knyttet til masteroppgaven

diskuteres. Maskinlæring har mange suksesshistorier innenfor en rekke forskningsfelt. Gjenkjenne

bilder og stemme, automatisering av kjøretøy, robotikk og strategisk spilling er noen av tin-

gene maskinlæring har utmerket seg på. Maskinlæring er blitt mer og mer anvendt i finans-

bransjen ettersom denne teknologien innehar evnen til å oppdage mønstre som ikke er synlig

for det menneskelige øyet samt løse komplekse problemstillinger. Maskinlæring fører til at

mange arbeidsoppgaver både i og utenfor finans som drives av mennesker kan bli tatt over av

denne teknologien. Det kan argumenteres for at teknologien i seg selv skaper arbeidsplasser,

men når denne teknologien utvikles og blir tilstrekkelig nok, vil det bli mer lønnsomt for

bedrifter å ta i bruk dette fremfor menneskelig arbeidskraft. Dette kan da føre til at det blir

lavere arbeidstilbud på markedet. Dette reiser derfor en rekke spørsmål om hvorvidt det er

ansvarlig å benytte seg av en slik teknologi som er på bekostning av arbeidskraft. Det kan

tenkes at frem i tid så kan teknologien ha utviklet seg såpass at maskinlæring har evnen til

å hente inn løpende finansielle data, og bruke dette til å ta aktive investeringsbeslutninger.

73

Det kan da tenkes at den kunstige intelligensen ikke nødvendigvis tar i betraktning hvilke

selskaper det investeres i, men kun tenker på å maksimere profitt. Dette kan føre til at det

investeres i selskaper som ikke er særlig bærekraftige og scorer lavt på ESG målinger. Det

kan være at algoritmen beslutter å investere i våpenindustri og tobakksindustrien (to indus-

trier som er boikottet fra de fleste verdens fond), og tar beslutninger som ikke er betenkt i et

etisk og morals perspektiv. Ved bruk av maskinlæring er det viktig å trå ansvarlig. Det er

viktig at brukeres tar ansvar for algoritmiske beslutninger, rettferdighet av utfall, åpenhet av

beslutningene og hvordan man kommer frem til de, og muliggjøre byrå og algoritmiske valg.

Under masterskrivingen har vi vært nødt til å ha en ansvarlig forskningsoppførsel. Dette

innebærer at vi tar hensyn og respekterer andre forskers arbeid, ved å referere til deres arbeid

på riktig måte. Det er også viktig at vi fremlegger resultatene og fremgangsmåten vår på

en forståelig måte slik at leser kan forså måten vi har tenkt på. Vi har også vært ansvarlig i

valg av metode i masteroppgaven vår. Det betyr at vi har benyttet oss av en metode hvor

det er utført mye studier på, som er med på å erkjenne og godta metoden som en forsvarlig

fremgangsmåte av eksisterende litteratur. Dette betyr at metoden vår støttes av sterk teori.

Vi har hatt et ansvar overfor oss selv om å utføre en tilstrekkelig og gjennomtenkt jobb under

skriveperioden av oppgaven. Vi har med andre ord måtte opptre ansvarlig i hele prosessen av

masterskrivingen for å kunne levere en tilstrekkelig god masteroppgave etter de standardene

vi har satt oss selv.

Konklusjon

Som diskutert i dette refleksjonsnotatet, forholder denne oppgaven seg til konseptet; ansvarlighet.

Oppgaven har som diskutert dette konseptet på ulike områder, både i forhold til problemstill-

ingen vår, måten vi har arbeidet med oppgaven på, og eventuelle problemstillinger knyttet

til teamet. Det har vært en lærerik prosess og det føles som jeg har gjort det fått litt mer

innsikt og reflektert over viktige temaer som jeg håper vil være nyttige når man går ut i

arbeidslivet. Til slutt vil jeg uttrykke min takknemlighet til hele fakultetet ved UiA. Mer

spesifikt ønsker jeg å takke alle foreleserne jeg har hatt gjennom mitt studieløp. De har

veiledet og bidratt godt til at jeg har klart å tilegne mye nytt kompetanse, som jeg mener

at jeg har et ansvar for å bruke på riktig måte både etisk og moralsk. Denne oppgaven tillot

meg å demonstrere mine evner, presse meg selv og oppdage nye egenskaper. Det har også

74

vært en glede å jobbe med min partner Daniel Meselu, og jeg vil se tilbake på mine fem år

ved UiA med stolthet og glede.

75

C.2 Daniel Debbasu Meselu

Discussion paper – International

This discussion paper is written as a mandatory part of the master’s program in business

and administration with specialization in analytical finance. This thesis was written together

with Jeffrey Benjamin Charles, which under the whole process has been an encouraging and

motivating writing partner. To get this master thesis approved, there has been a couple of

requirements. Such as a mandatory meeting with supervisors, an oral presentation of our

thesis to fellow co-students and writing a discussion paper. The purpose of this discussion

paper is to shed light on the process we’ve gone through when writing this thesis, as well the

knowledge we have accumulated during this two-year master’s program. This paper should

therefore give students an opportunity to reflect upon important subjects before graduating.

I am among the students who will discuss the topic “international” considering our thesis and

the master’s program. Specifically, how our topics, research questions, and findings can be

influenced by international trends and forces and how actors may react to these trends. Our

thesis is written within the topic of machine learning. The choice of topic came naturally

after having the introductory course in machine learning the semester prior to the master

thesis. This offered the opportunity to write about something innovating and fresh, with few

similar studies. It has been a daunting task and we have faced many challenges, but with

the help of our supervisors, we managed to overcome said challenges.

Despite the presence of the efficient market hypothesis, introduced by Fama (1970), investors

constantly try to beat the market by trading actively, oppositely to what the efficient market

hypothesis suggests. The efficient market hypothesis states that historical prices of an asset

do not carry any information that can be used to predict the future price, and that the

movement of prices therefore is random. As a result, investors should not be able to consis-

tently beat the market using purely historical data of the underlying asset. This justifies a

passive buy and hold strategy. The buy-and-hold strategy is a passive long-term investing

strategy where investors will actively select a stock to buy and hold over a long-time horizon

without worrying about short-term price fluctuations. Our thesis seeks to check how an

76

active trading strategy based on the forecasts of a neural network model performs against

the passive buy-and-hold strategy. As a robustness check, we also compare the performance

of a standard trend following strategy based on moving averages. Traditional forecasting

methods to generate trading signals are often characterized by linearity. Machine learn-

ing, being a branch of artificial intelligence has given many success stories in fields, such as

robotics, voice recognition, image recognition and much more. With this came the idea to

apply it to financial data to find patterns in the data invisible to the human eye, and to ex-

ploit these patterns to achieve greater profits. Financial data however tends to be noisy and

have little to no structure, which strengthens the efficient market hypothesis. Thus, there

is a need to adjust the data to facilitate the use of machine learning algorithms. Several

authors have attempted to apply neural networks to financial time series. The results are

often characterized by high accuracy in forecasts and following trading strategies indicating

superior performance. We quickly found these studies to lack the statistical depth required

to evaluate such a trading strategy. Therefore, we wanted to build a neural network to pre-

dict the future market state, build a trading strategy and properly evaluate it in comparison

to pre-determined benchmark strategies.

Motivated by this, we used the historical returns on two major stock market indices in the to

predict the market state, that is if the market would be in a bull state or a bear state. A bull

market is characterized by prices rising, whereas a bear market is the opposite where prices

fall. The idea was to predict the future market sign such that we would know if it would be

a bull or bear and thus invest in the market whenever the prices were on the rise and sell to

invest at a risk-free interest rate whenever the prices were on the downfall. Neural network is

a common name for algorithms where information is passed on through subsequent layers of

non-linear function, allowing for non-linear mapping of functions (Dixon et al., 2020). These

kinds of algorithms have been used in many scientific fields, where some of the results are

astonishing. Picture recognition, voice recognition and robotics are some of the fields where

machines learning has excelled. Our results are promising in the sense that our neural net-

work strategy performs competitively to a simple moving average strategy. The simplicity of

our network configuration leaves room for improvements and lays a path for future research.

77

Although our approach seems simple in the grad scheme of neural networks, we still found it

challenging to construct a meaningful forecaster. One of the main reasons for our struggles

was the lack of precise guidance in the construction of neural network. (Bishop & Nasrabadi,

2006; Géron, 2019; Heaton, 2008) all guided us on the right path, but they all focused on

other tasks than financial modeling. Thus, we were ultimately left to ourselves to test many

configurations before settling with an appropriate result. This experience really brought up

the innovative side of the master’s program.

International trends and forces can be though of as a general development or direction of a

phenomenon across national borders. The topic of machine learning is highly present at the

international level. In fact, developing smart algorithms to automate procedures has been

a key factor to gain competitive advantage in numerous business fields (Attaran & Deb,

2018). An increasing number of everyday functions are being automated. These are often

overlooked as everyday features but are in fact the result of machine learning algorithms.

To set thing in perspective, one of the most useful tools, the spam filter is in fact just a

classification algorithm trained to detect important email and separate it from spam. The

advertisements we see on websites, which coincidentally happen to be something we’ve been

looking for is also the result of a machine learning algorithm. With these success stories,

machine learning has proven to be a powerful tool that can change the ways we do things

completely. The results of our thesis showed that a neural network has the capacity to model

a financial time series, given enough data points and sufficient structure in the data. The

simplicity of the network architecture also motivates the use of more complex networks to

model time series data and truly study if the prices and returns of the stock market are

purely random. Our result gave similar results to other forecasting tools in terms of statisti-

cal significance, relative to the market portfolio. It should be considered as a tool to enhance

already existing forecasting techniques, rather than a replacement.

I would also like to mention other aspects of the master’s program where “international” has

been a core theme. Firstly, we had a subject called sustainable capitalism in the first year of

the program. This subject was divided into two, with the first part consisting of lectures and

oral presentations and the last part consisting of individual work on a term paper discussing

78

environmental issues. Here we learned the importance of international collaboration to re-

duce the amount of pollution in our globe. The problem is deemed to be an international

problem, as it threatens all life of earth equally. Consequently, international collaboration

is also needed to overcome these challenges. The term paper also reviewed an interesting

topic. One of the questions to be answered was if “green growth” was possible, meaning a

capitalistic growth while remaining pollution free. One of our key findings indicated that

the focus should be directed towards the green instead of growth. Additionally, suddenly

reducing the use of fossil fuels would have ramification on developing countries, which could

not be justified given most of developed countries used such fuels to build their wealth.

Another subject to frequently bring up the topic of international trends was supply chain

management. This course quickly highlighted the transition of the supply chain term and

highlighted that it no longer refers to the core business, but through the whole operation

on an international level (Fujita & Hamaguchi, 2016). Businesses who quickly exploited the

advantages of an international supply chain quickly gained a competitive advantage. The

course was held at the same time as the outbreak of the COVID-19 virus. The virus quickly

became a global pandemic, and the consequences were detrimental for many businesses. The

trends and forces that developed because of the pandemic were of an international scale. As

boarders closed, we quickly began to see how much businesses struggled to meet their de-

mands. The adaptation of the supply chain to meet demands was shocking and showed how

vital international cooperation had become.

To summarize, this thesis explores the use of machine learning in finance. Specifically, the

use of neural networks to predict price movements in the market. Our findings are encour-

aging and show that simple configurations of neural networks have the capacity to perform

similarly to traditional forecasting methods. As far as international trends and forces go,

machine learning is a scientific discipline that has been booming in the last decade. It has

quickly become one of the most important tools to gain competitive advantage and has re-

placed many automated jobs (Attaran & Deb, 2018). The school of business administration

and law at the University of Adger has neatly incorporated the topic of international into

the courses of this master’s program. Most notable, we have seen the importance of interna-

79

tional cooperation to overcome the challenges we are facing regarding the environment. The

outbreak of COVID-19 also showed how much businesses rely on international cooperation

in their supply chain. The closing of borders resulted in huge deficiencies that would take a

long time to recover from.

And finally, I would like to thank the School of Business and Law at the University of Agder

and give them credit for the last five years of academic, social, and personal development I

have experienced. The courses have been meaningful, and I feel well armed with knowledge

to step into the working life, and I have no doubt the knowledge I have accumulated during

these five years will help me in my future endeavors. There has been highs and lows during

my stay, but at the core of my memory, it is a time I will look back at with pride and joy.

80

Bibliography

Aamodt, T. (2015). Predicting stock markets with neural networks (master’s thesis).

Addai, S. (2016). Financial forecasting using machine learning (Doctoral dissertation). Uni-

versity of Cape Town.

Amazon. (2022). Responsible use of artificial intelligence and machine learning. https://aws.

amazon.com/machine-learning/responsible-machine-learning/

Amel-Zadeh, A., & Serafeim, G. (2018). Why and how investors use esg information: Evi-

dence from a global survey. Financial Analysts Journal, 74 (3), 87–103.

Attaran, M., & Deb, P. (2018). Machine learning: The new’big thing’for competitive advan-

tage. International Journal of Knowledge Engineering and Data Mining, 5 (4), 277–

305.

Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4).

Springer.

Brockwell, P., & Lindner, A. (2012). Lévy-driven time series models for financial data. Hand-

book of Statistics, 30, 543–563.

Brooks, C. (2019). Introductory econometrics for finance (vol. 4th edition). Cambridge, UK:

Cambridge University Press.

Bry, G., & Boschan, C. (1971). Cyclical analysis of time series: Selected procedures and

computer programs. NBER.

Cansiz. (2020). The math behind training of a neural network. Retrieved May 5, 2022, from

https : // towardsdatascience . com/adventure - of - the - neurons - theory - behind - the -

neural-networks-5d19c594ca16

Charles, J., & Larsen, E. (2021). How does esg create value for stakeholders? (term paper in

be-422-1 21h environmental, social and governance (esg) metrics: Reshaping finance.

81

https://aws.amazon.com/machine-learning/responsible-machine-learning/
https://aws.amazon.com/machine-learning/responsible-machine-learning/
https://towardsdatascience.com/adventure-of-the-neurons-theory-behind-the-neural-networks-5d19c594ca16
https://towardsdatascience.com/adventure-of-the-neurons-theory-behind-the-neural-networks-5d19c594ca16

Chen, A.-S., Leung, M. T., & Daouk, H. (2003). Application of neural networks to an emerg-

ing financial market: Forecasting and trading the taiwan stock index. Computers &

Operations Research, 30 (6), 901–923.

Dixon, M. F., Halperin, I., & Bilokon, P. (2020). Machine learning in finance (Vol. 1170).

Springer.

Episcopos, A., & Davis, J. (1996). Predicting returns on canadian exchange rates with arti-

ficial neural networks and egarch-m models. Neural Computing & Applications, 4 (3),

168–174.

Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The

journal of Finance, 25 (2), 383–417.

Fujita, M., & Hamaguchi, N. (2016). Supply chain internationalization in east asia: Inclu-

siveness and risks. Papers in Regional Science, 95 (1), 81–100.

Géron, A. (2019). Hands-on machine learning with scikit-learn, keras, and tensorflow: Con-

cepts, tools, and techniques to build intelligent systems. " O’Reilly Media, Inc."

Hanusch, H., & Pyka, A. (2007). Elgar companion to neo-schumpeterian economics. Edward

Elgar Publishing.

Hartzmark, S. M., & Sussman, A. B. (2019). Do investors value sustainability? a natural

experiment examining ranking and fund flows. The Journal of Finance, 74 (6), 2789–

2837.

Heaton, J. (2008). Introduction to neural networks with java. Heaton Research, Inc.

Israel, R., Kelly, B. T., & Moskowitz, T. J. (2020). Can machines’ learn’finance? Journal of

Investment Management.

Jobson, J. D., & Korkie, B. M. (1981). Performance hypothesis testing with the sharpe and

treynor measures. Journal of Finance, 889–908.

Jungeilges, J. (2022a). Lecture notes in empirical finance. unit 6: Inference concerning auto-

covariance/orrelation.

Jungeilges, J. (2022b). Lecture notes in machine learning with applications in finance (se-

507-1), unit 4.

Kadan, O., & Liu, F. (2014). Performance evaluation with high moments and disaster risk.

Journal of Financial Economics, 113 (1), 131–155.

82

Kanas, A., & Yannopoulos, A. (2001). Comparing linear and nonlinear forecasts for stock

returns. International Review of Economics & Finance, 10 (4), 383–398.

Kara, Y., Boyacioglu, M. A., & Baykan, Ö. K. (2011). Predicting direction of stock price

index movement using artificial neural networks and support vector machines: The

sample of the istanbul stock exchange. Expert systems with Applications, 38 (5), 5311–

5319.

Liang, H., & Renneboog, L. (2020). Corporate social responsibility and sustainable finance: A

review of the literature. European Corporate Governance Institute–Finance Working

Paper, (701).

Ljung, G. M., & Box, G. E. P. (1978). On a measure of lack of fit in time series models.

Biometrika, 65 (2), 297–303.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. The bulletin of mathematical biophysics, 5 (4), 115–133.

Minsky, M., & Papert, S. (1969). Perceptrons.

Mostafa, M. M. (2010). Forecasting stock exchange movements using neural networks: Em-

pirical evidence from kuwait. Expert systems with applications, 37 (9), 6302–6309.

Newey, W. K., & West, K. D. (1986). A simple, positive semi-definite, heteroskedasticity and

autocorrelationconsistent covariance matrix.

Olson, D., & Mossman, C. (2003). Neural network forecasts of canadian stock returns using

accounting ratios. International Journal of Forecasting, 19 (3), 453–465.

Pagan, A. R., & Sossounov, K. A. (2003). A simple framework for analysing bull and bear

markets. Journal of applied econometrics, 18 (1), 23–46.

Pan, H., Tilakaratne, C., & Yearwood, J. (2005). Predicting australian stock market in-

dex using neural networks exploiting dynamical swings and intermarket influences.

Journal of research and practice in information technology, 37 (1), 43–55.

Pany, P. K., & Ghoshal, S. P. (2015). Dynamic electricity price forecasting using local linear

wavelet neural network. Neural Computing and Applications, 26 (8), 2039–2047.

Qi, M. (1999). Nonlinear predictability of stock returns using financial and economic vari-

ables. Journal of Business & Economic Statistics, 17 (4), 419–429.

Rosenblatt, F. (1958). Perceptron simulation experiments. Proceedings of the IRE, 48 (3),

301–309.

83

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations

by error propagation (tech. rep.). California Univ San Diego La Jolla Inst for Cognitive

Science.

Tealab, A., Hefny, H., & Badr, A. (2017). Forecasting of nonlinear time series using ann.

Future Computing and Informatics Journal, 2 (1), 39–47.

UNPRI. (2021). About the pri. https://www.unpri.org/pri/about-the-pri

Vedantu. (2022). Concept of responsibility. https://www.vedantu.com/commerce/concept-

of-responsibility

Wang, C., Zhang, X., Wang, M., Lim, M. K., & Ghadimi, P. (2019). Predictive analytics

of the copper spot price by utilizing complex network and artificial neural network

techniques. Resources Policy, 63, 101414.

Welch, I., & Goyal, A. (2008). A comprehensive look at the empirical performance of equity

premium prediction. The Review of Financial Studies, 21 (4), 1455–1508.

Wikipedia. (2008). Diagram of neuron with arrows but no labels [[Online; accessed June 10,

2022]]. https://commons.wikimedia.org/wiki/File:Derived_Neuron_schema_with_

no_labels.svg?fbclid=IwAR0VT8GbSWCyGiR7aDv6kkRwnvl5g0EAyFYsxQBeW32BDyJ1pmBLqBcMv98

Womack, K. L., & Zhang, Y. (2003). Understanding risk and return, the capm, and the

fama-french three-factor model. Available at SSRN 481881.

Yildirim, I., Ozsahin, S., & Akyuz, K. C. (2011). Prediction of the financial return of the

paper sector with artificial neural networks. BioResources, 6 (4), 4076–4091.

Yildiz, B., Yalama, A., & Coskun, M. (2008). Forecasting the istanbul stock exchange na-

tional 100 index using an artificial neural network. An International Journal of Sci-

ence, Engineering and Technology, 46, 36–39.

Zakamouline, V., & Koekebakker, S. (2009). Portfolio performance evaluation with gener-

alized sharpe ratios: Beyond the mean and variance. Journal of Banking Finance,

33 (7), 1242–1254.

Zakamulin, V. (2017a). Introduction to the bbdetection package.

Zakamulin, V. (2021b). Lecture notes in se-507 machine learning with applications in finance,

unit 8: Bootstrap methods in finance.

Zakamulin, V. (2017b). Market timing with moving averages: The anatomy and performance

of trading rules. Springer.

84

https://www.unpri.org/pri/about-the-pri
https://www.vedantu.com/commerce/concept-of-responsibility
https://www.vedantu.com/commerce/concept-of-responsibility
https://commons.wikimedia.org/wiki/File:Derived_Neuron_schema_with_no_labels.svg?fbclid=IwAR0VT8GbSWCyGiR7aDv6kkRwnvl5g0EAyFYsxQBeW32BDyJ1pmBLqBcMv98
https://commons.wikimedia.org/wiki/File:Derived_Neuron_schema_with_no_labels.svg?fbclid=IwAR0VT8GbSWCyGiR7aDv6kkRwnvl5g0EAyFYsxQBeW32BDyJ1pmBLqBcMv98

Zakamulin, V. (2021a). Lecture notes in se-507 machine learning with applications in finance,

unit 7: Trend-following rules.

Zhang, Z. (2018). Artificial neural network. Multivariate time series analysis in climate and

environmental research (pp. 1–35). Springer.

85

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Literature review
	Theory
	Neural networks
	Shortcomings of financial data in machine learning
	Efficient market hypothesis

	Data
	Description of data
	Descriptive statistics
	Autocorrelation in returns
	Labeling Bull and Bear Markets
	Results for S&P Composite
	Results for DJI

	Methods
	Model estimation
	Entropy and Cross entropy
	Gradient descent
	Activation function
	Back-propagation

	Model selection strategy
	Cross validation

	Trend following strategies
	Simple moving average

	Evaluation of trading strategy
	Sharpe ratio
	Bootstrap
	Alpha

	Results
	S&P Composite
	Model architecture
	Active strategy

	Dji
	Model architecture
	Trading strategy

	Discussions
	Conclusions
	Confusion matrices
	R code
	Discussion Paper
	Jeffrey Benjamin Charles
	Daniel Debbasu Meselu

	Bibliography

