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A B S T R A C T   

Large scale integration of renewable energy system with classical electrical power generation system requires a 
precise balance to maintain and optimize the supply–demand limitations in power grids operations. For this 
purpose, accurate forecasting is needed from wind energy conversion systems (WECS) and solar power plants 
(SPPs). This daunting task has limits with long-short term and precise term forecasting due to the highly random 
nature of environmental conditions. This paper offers a hybrid variational decomposition model (HVDM) as a 
revolutionary composite deep learning-based evolutionary technique for accurate power production forecasting 
in microgrid farms. The objective is to obtain precise short-term forecasting in five steps of development. An 
improvised dynamic group-based cooperative search (IDGC) mechanism with a IDGC-Radial Basis Function 
Neural Network (IDGC-RBFNN) is proposed for enhanced accurate short-term power forecasting. For this pur-
pose, meteorological data with time series is utilized. SCADA data provide the values to the system. The 
improvisation has been made to the metaheuristic algorithm and an enhanced training mechanism is designed 
for the short term wind forecasting (STWF) problem. The results are compared with two different Neural 
Network topologies and three heuristic algorithms: particle swarm intelligence (PSO), IDGC, and dynamic group 
cooperation optimization (DGCO). The 24 h ahead are studied in the experimental simulations. The analysis is 
made using seasonal behavior for year-round performance analysis. The prediction accuracy achieved by the 
proposed hybrid model shows greater results. The comparison is made statistically with existing works and 
literature showing highly effective accuracy at a lower computational burden. Three seasonal results are 
compared graphically and statistically.   

1. Introduction 

Low-cost power generation and abundance of natural renewable 
energy resources enforce the integration of renewable and nonrenew-
able electrical power plants to be utilized simultaneously in national 
transmission grids. The most cost effective power generation is archived 
by wind and solar. Photovoltaic (PV) systems and wind energy conver-
sion systems (WECS) power performance depends on volatile factors 
such as environmental conditions, base technology, and optimization. 
The most detrimental factor is the unpredictability of the total available 
power in a given time and its short-term forecasting. For instance, the 
wind speed vs. blade pitch angle and irradiance vs. power curves of the 

wind and solar show a nonlinear relationship. Alongside, high fluctua-
tions are power generation tendencies along with the low magnitude of 
ideal operating conditions. The loss of available power from renewable 
sources has to be meet with cranking up nonrenewable power sources, 
which are also time-sensitive operations. Increased involvement of the 
European Union (EU), China, and the United states of America (USA) in 
renewable has pushed installed capacity of combined to 2799GW till the 
year 2020, with wind and solar providing 91% of the total increase of 
installed capacity [1]. Wind power forecasting is a difficult job since 
regional wind patterns in wind farms change and wind turbine reactions 
vary based upon turbine conditions. Forecasting wind output is critical 
for the successful integration of wind farms into the electricity system. 

* Corresponding author. 
E-mail address: filippo.sanfilippo@uia.no (F. Sanfilippo).  

Contents lists available at ScienceDirect 

Energy Conversion and Management 

journal homepage: www.elsevier.com/locate/enconman 

https://doi.org/10.1016/j.enconman.2022.115564 
Received 19 January 2022; Received in revised form 20 March 2022; Accepted 28 March 2022   

mailto:filippo.sanfilippo@uia.no
www.sciencedirect.com/science/journal/01968904
https://www.elsevier.com/locate/enconman
https://doi.org/10.1016/j.enconman.2022.115564
https://doi.org/10.1016/j.enconman.2022.115564
https://doi.org/10.1016/j.enconman.2022.115564
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enconman.2022.115564&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Energy Conversion and Management 258 (2022) 115564

2

At the actual time, the power output of a given wind energy conversion 
system can be calculated using: PW = 1

2 ρ∙πR2r ∙Cp∙w3, where the terms ρ, 
Rr and w are the density of air, the rotor radius, and the wind speed, 
respectively [2]. Theoretical power is highly affected by the rotor blade 
area and wind speed. Although the angle of attack of the turbine blade is 
controllable in real-time, the dominant effect of wind speed cannot be 
countered in seconds. To this end, 10 min to hours ahead prediction is 
needed to accommodate the increased or decreased utility of hybrid 
power generation units. The theoretical estimation of wind turbine 
power provides nonlinear s-shaped power characteristics curve logistic 
function for wind speed and density being an independent variable. 
However, due to the unpredictable nature of wind and the complex 
dynamics inside and between turbines, this equation does not perfectly 
represent the actual power production of individual wind turbines. A 
more realistic alternative model for each wind turbine in a farm may be 
produced by fitting measurements to actual data. The PV power 
throughout the year depends upon irradiance density, angle of elevation 
of the sun, changing weather and clouding patterns, cooling caused by 
wind, etc. 

In addition to modelling hybrid PV-wind power generating mecha-
nisms in response to operational conditions, wind farm managers must 
predict power based on present conditions. Recent research has 
employed complicated data-driven models, such as ANNs, to anticipate 
turbine production with some accuracy [3,4]. 

The main research gaps to investigate wind power forecasting are 
mentioned as below:  

1. Primarily, deep neural network efficiency is strongly dependent on 
the hyper-parameter tuning optimization strategy. Nonetheless, the 
meta-heuristics used to enhance the hyper-parameters are frequently 
ineffective, because initializing the control parameters consumes a 
lot of time and is very challenging. Moreover, rather than fine-tuning 
hyperparameters on the target problem, the bulk of them have been 
modified based on numerical standards.  

2. The parameter of decomposition Initialization is a critical function 
for achieving high efficiency. This initialization process is fraught 
with difficulties since insufficient setup options might jeopardize the 
predicting models’ efficacy. Another disadvantage of such models is 
that the amount of processing time required grows drastically as the 
number of parameters grows. 

This paper proposes an integrated methodology that combines ANNs 
with improvised DGCO for precise microgrid PV-Wind power fore-
casting. The input features used in current modeling are irradiance, 
temperatures, wind speed, wind direction, humidity, and theoretically 
available peak power. 

Contributions of this work are as stated as follows:  

1. Two-hybrid DL-based evolutionary intelligence-based frameworks 
(IDGC-RBN and IDGC-GRNN) are proposed for hybrid PV-wind 
power output prediction.  

2. For outliers in SCADA data, complete data filtering is used, which is 
quite successful for seasonal behavior adjustment.  

3. Performance of proposed models using SCADA datasets is compared 
comprehensively to quantify the ability of the proposed structure to 
minimize the impact of the outliers.  

4. Six forecasting models’ performances are compared on basis of 
different subsets of SCADA inputs. The models and generalized 
stepwise method are depicted in Fig. 1: Preprocessing of data for 
extraction; Feature extraction; Outliers minimization training and 
testing; and performance analysis.  

5. Finally, because there is no simple theory for designing and tuning a 
network’s hyper-parameters, the model structure and hyper- 
parameters are updated and fine-tuned by using a novel hybrid 
optimization combined with Sine Cosine Algorithm (SCA) is fused 
with a dynamic group based optimization mechanism with two 
predicting spaces of 10-min and 1-h ahead. 

2. Related work 

To anticipate the available power in impending events, conventional 
methodologies depend on physical models combined with numerical 
weather prediction strategies. These numeric methods are fast but lack 
efficiency due to highly nonlinear monotonic relationships between the 
physical indices of operating conditions. To better incorporate para-
metric relationships, statistical models are being utilized. These methods 
relate the system inputs to the predicted output for energy forecasting. 

The hybrid NN-SI for STWF has been utilized in several scientific 
studies. Physical models, statistical models, ANN models, and hybrid 
intelligence approaches are some forecasting methods that anticipate 
wind power generation [5]. Two methodologies are often integrated 

Fig. 1. Graphical presentation of procedure Hybrid PV/Wind Power using IDGC-GRNN and IDGC-RBFN.  
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into a hybrid intelligent strategy to improve prediction accuracy. It 
employs fuzzy logic control, machine learning, swarm intelligence, and 
neural networks. This combination is used to offset the disadvantages of 
each strategy. The fundamental issue with the fuzzy logic technique is 
that it necessitates the use of an empirical variable in order to set the 
explanatory variables [6]. [7] presents a combined SVM and enhanced 
DFO to estimate wind power generation using adaptive learning pa-
rameters and a differential evolution technique. The parameters for SVM 
are provided by the IDFO. [8] employs a hybrid fuzzy model for interval 
forecasting of wind speed by multiplexing of the learning Gaussian 
process. The final Gaussian process model is chosen because fuzzy- 
driven multiplexers outperform the autoregressive moving average 
model. 

The physical technique, such as numerical weather prediction, uti-
lizes hydro- and thermo-dynamic models of physics and the environ-
ment, resulting in poor forecast performance due to the production of 
precise mathematical models. Statistical approaches, such as probabi-
listic auto-regression [9] and probability mass bias [10], build mathe-
matical correlations between explanatory variables and generate power. 
This technique has a problem with flexibility and learning capabilities, 
and its effectiveness degrades as prediction horizons lengthen. Attention 
mechanisms and multivariate distribution estimates are required to 
overcome these challenges. ANN is often used to predict wind power 
output due to its ability to map nonlinear relationships and adopt self- 
learning from data samples [11]. The primary benefit of this method 
is that no mathematical model is required to construct a link between 
input and output data in order to predict wind power generation 
[12,13]. [14] develops an NN-based 10-min forecasting method to 
demonstrate performance by addressing the concerns of over-under 
fitting in NN. The NN training is prone to data outliers, and a highly 
random process of learning can generate skewed relationships in trying 
data and cost functions. The Spatio-temporal framework, the controlled 
balance between exploration and exploitation processes in swarm in-
telligence, and effective simultaneous weights and bias improvisation 
can successfully outperform back propagation (BP) [15]. Typically, SVM 
struggles with delayed training and poor generalization ability; so, in 
[16], GWO is used to optimize the SVM technique’s kernel function 
parameter. The most common methods include Kalman filters, time 
series methods, the persistent method, and machine learning techniques 
such as KNN, SVM, etc. these moths enhance the prediction efficiency 
but are susceptible to growing errors over time if the data is not accurate 
time-stamped, outliers in the data and system model sensitivity. Among 
time series models the autoregression method (ARM) is better suited for 
short-term forecasting. These include autoregressive moving average 
(ARMA), improved using an enhanced integral model in autoregressive 
integral moving average (ARIMA), and fractional-ARIMA(f-ARIMA). 

To overcome the shortfalls of physical models the statistical models 
show promising results and have been studied thoroughly using 
different statistical data, mathematical models, and data-driven algo-
rithms [17]. In Yuan et al. [18], the least squares support vector machine 
(SVM) is adopted for STWF application. The utility of the gravitational 
search optimization technique is examined to enhance the prediction 
accuracy further. In many cases, the data is not adequate and may miss 
few features. A regression model is presented in Akhter et al. [19] to 
limit this limitation. To undertake uncertainty of prediction, a multiple- 
Imputations Gaussian process regression is proposed in Liu et al. [20]. 
The mechanism utilizes expectation–maximization for the estimation 
mixture components. This technique successfully compensates for the 
missing data of the data distribution. Hybrid models, such as [21], are 
used in the literature. The expected shortfalls of hybrid models have 
increased complexity and less accurate long-term prediction. These 
models predict wind speed using the wind-power characteristics curve 
[22]. Most meteorological data is available in time stamps. 

In Zhao et al. [23], an extreme learning machine (ELM) is designed 
for ultra-short wind power forecasting. Reverse time series is utilized for 
ELM training with a bidirectional mechanism in which ELM and 

optimization algorithm simultaneously incorporate into the learning 
process. The assumptions are made to simplify the process, which limits 
the accuracy and learning rate. A multi-output SVM as an optimization 
scheme is opted in Zhao and Yongning [24] to use Spatio-temporal (ST) 
analysis for SVM training. In Wang et al. [25], a new class of NN is 
employed using singular spectrum analysis. The opposition transition 
state transition algorithm optimizes this hybrid model. The SVM and 
Logistic regression limitations are overtaken by modern LSTM [26]. 

In recent years, the significance of machine learning (ML) techniques 
is acknowledged due to their ability to deal with uncertain mathematical 
models and systems. These algorithms have been applied to the wind 
power prediction problem. The K-nearest neighbors (KNN) using mul-
tiple features metrological input data is employed in Yesilbudak et al. 
[27]. Fast prediction is achieved, however, the accuracy of operation 
stays significantly lower. In Zameer et al. [28], an SVM establishes a co- 
relation between wind speed and power utilizing altering the initial 
individual measurements. The accuracy in the short term is improvised 
at the expense of accuracy in long-term prediction. A combination of 
wavelet transform and an SVM is adopted in Liu et al. [29] to balance 
short- and long-term forecasting. In Devi et al. [30], to obtain an hourly 
ahead forecasting scheme, the authors utilize swarm intelligence opti-
mization and LSTM for forecasting applications. The hybrid mechanisms 
show exceptional results as in Wang et al. [31], where a hybrid SVM 
utilizes the auto-regressive moving average model. Particle swarm 
optimization (PSO) is embedded in PSO-SVM-ARMA for improved effi-
ciency of prediction. The self-organization and stagnation avoidance of 
swarms enables the identification of the globally best solution. Similarly, 
in Zhou et al. [32], the K-means short term memory model (K-Means- 
LSTM) is presented to handle the time dependencies on time series data. 
This technique has superior performance for training the network model 
than the back-propagation (BP) for feedforward neural networks 
(FFNNs). 

The existing hybrid models of supervised learning utilize BP to up-
date the weights and biases of the NN framework. The limitations of BP 
arise from data outliers and stagnation in training. The explorative 
capability of IDGC allows for precise attention towards each weight and 
bias training generating more accurate training patterns. 

The rest of this manuscript is organized into 6 subsections. The first 
section examines current ways of developing power prediction models 
using analytic and DL techniques. Section 2 elaborates on the structure 
of the proposed methods and infusion of hybrid HVDM. Section 4 
summarizes the characteristics of the SCADA datasets used in this study. 
The training process for GRNN and RBFN structure, and the experi-
mental methodology. The new outlier identification approach employed 
in this study is described in Section 4. Section 5 studies observations and 
analysis for the power prediction results trained by datasets of both raw 
and clean SCADA datasets. Section 6 provides the concluding remarks. 

3. Neural networks for regression 

In this section, different neural network models are discussed. GRNN 
and RBFNN are optimized in this study using a novel proposed 
technique. 

3.1. General regression neural network (GRNN) 

This neural network is proposed by SpecNET whose structure is like a 
monitoring type [33]. The methodology of density function (PDF) using 
non-parameter technique and by building Bayes decision [34]. The 
mathematical equation of function is shown in Eq. (1): 

Fk(x) = (
1

NK
)(

1
2πn/2)(

1
σn)
∑Ns

j=1
e(
− |
⃒
⃒x − xkj

⃒
⃒|

2σ2 ) (1)  

where NK is the samples data points average, n is the input sample 
number, σn is the sample probability width, x is the input Euclidean 
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distance, and xkj is the weighted average of the observed values. In a 
classification problem, we assume that the classes are known, so we can 
neglect the magnitude of absolute probabilistic value and only relative 
magnitude is needed to be considered. Therefore, Eq. (2) can be re-write 
as: 

Yk(x) = (
1

NK
)
∑Ns

j=1
e(
− ||x − xk||

2σ2 ) (2)  

Sw =
∑

j=1
wjYj (3)  

In the above equation, σ is the factor of smoothness in these probabilistic 
neural networks. The prediction accuracy can be more enhanced by the 
optimal tuning of σ. Inappropriate tuning of σ leads to a large or too few 
numbers of hidden variables, which causes forever fitting. So, this factor 
is needed to be trained effectively. 

GRNN is a type of probabilistic neural network and it consists of four 
layers as shown in Fig. 2(a). The first layer is the input layer, which acts 
as a pass layer for the input. The second layer is the pattern layer, which 
typically stores the training data and Eq. (2) is implemented, whose 
output is then passed on to the summation layer, which is the third layer. 
In this layer, the calculation of Eq. (3) is performed and passed on to the 
output layer, which then generates the output. The fourth layer is the 
output layer, which is different from the probabilistic neural network 
(PNN). In GRNN, this layer is a linear layer and performs the weighted 
average of the output of the summation layer. 

3.2. RBFNN Radial basis function neural network 

RBFNN is a simple neural network structure with three layers as 
shown in Fig. 2(b) that is, the input layer, hidden layer, and the output 
layer [35]. In order to perform the function approximation or the curve 
fitting, RBFNN uses the scheme in which members of compactly sup-
ported radial basis functions are used. The RBFNN increases the 
dimension of the feature vector by building up basis function φ(||x − Ci||)

with Euclidean distance between input and center, which is the differ-
ence between typical Machine Learning Algorithm and Radial Basis 

Function. 
The typical radial basis function is: 

h(x) = e(
− (x − c)2

r2 ) (4)  

where C is the center, r is the radius and x is the input. In this function 
with longer distance from the center. So, multi-quadric RBF presented in 
Eq. (5)-Eq. (6), 

h(x) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2 + (x − c)2
√

r
(5)  

f (x) =
∑m

j=1
wjh(x) (6)  

where, wj are weights connected between the layers in RBFNN. 

4. Proposed technique 

In this section, a novel meta-heuristic optimization algorithm is 
presented, which is the combination of a dynamic group, based coop-
erative optimization algorithm and the sine cosine algorithm. This 
proposed technique combines the merits of both DGCO and SCA. In this 
technique, the dynamic grouping, property of DGCO is combined with 
SCA to search around the solution in the exploration phase. 

4.1. Dynamic group-based cooperation optimization algorithm 

DGCO is a population-based meta-heuristic optimization algorithm 
that uses the exploration and exploited phase for solving complex 
problems [36]. Unlike other optimization algorithms, DGCO employs a 
distinct group of particles, namely an exploration group and an exploi-
tation group, both of which operate concurrently. The number of par-
ticles in the groups could change if the global best solution is not 
changing for some iterations. Like all other meta-heuristic algorithms 
DGCO also randomly initializes particles in the search space. Eq. (7) is 
used to initialize particles: 

x(i) = mx + rand() × (max x − m x) (7)  

where the parcel position is x(i), m x shows the minimum value of 
search space and max x is the maximum value. For randomness rand() is 
used which generates random particles. 

4.1.1. Exploration and exploitation groups: A necessary balance 
Since DGCO uses two groups for the updation of particle’s position, it 

is very necessary to maintain a balance of the number of particles in both 
groups. Initially, the ratio of exploration and exploitation groups is 70%- 
30%, but over the iterations, the exploration group will decrease and the 
exploitation group will increase the number of particles to converge 
towards the global solution. Fig. 3 shows the dynamic grouping of 
DGCO. 

4.1.2. Explorative group 
Utility of DGCO with highly explorative behavior in initial phases 

allows for a better global search which is crucial to maximize search 
space. In DGCO, the exploration group updates particles position using 
two methods.  

• First it is searching around the current solution for a better solution, 
whose mathematical modeling is presented in Eq. (8) and Eq. (9). 

dist = d1 × (z(j) − 1) (8)  

z(t+ 1) = z(j)+ dist × (2d2 − 1) (9)  
Fig. 2. (a) Four-Layer Structure of General Regression Neural Network; (b) 
General Structure of Radial Basis Function Neural Network. 
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• The second method uses the mutation to generate and create di-
versity in the particle position. 

4.1.3. Exploitation group 
The responsibility of this group is to converge towards a global so-

lution. The exploitation phase defines the best solution finding with 
good convergence capability. DGCO updates the particles in the 
exploitation group using two methods.  

• First particles search in the ring formed around the particle position 
for global best using the following equation, 

dist = d3 × (M(j) − z(j)) (10)  

z(t+ 1) = z(j)+ dist (11)  

where G(i) is the global best solution. 
Updating of particles in the second method for exploitation group is 

searching around the global best solution. This method can be imple-
mented using the following equations. 

dist = (M(j) × N − d4) (12)  

z(t+ 1) = z(i)+ dist × (2∙d5 − 1) (13)  

N = 2 − 2 ×

(
iter2

max iter2

)

(14)  

where iter are the current iterations and max iter show the max number 
of iterations. DGCO also uses the concept of elitism in which the global 
best solution of the previous iteration is transferred to the next iteration 
also. 

4.2. Sine cosine algorithm (SCA) 

SCA uses sine and cosine functions to update the particle position by 
searching around the best solution or the current particle position [37]. 
In SCA, random initial solutions are generated and the particle position 
outwards or towards the best possible solution. The structure of the Sine- 
Cosine Algorithm is shown in Fig. 4. 

The mathematical model of the sine–cosine algorithm is presented in 
the following equations: 

x(t + 1) = Xi + rand() × sin(rand()) × |rand() × G(i) − x(i)| (15)  

x(t + 1) = x(i)+ rand() × cos(rand()) × |rand() × G(i) − x(i)| (16) 

Fig. 3. Dynamic Grouping in Exploration and Exploitation Phases in DGCO.  

Fig. 4. Structure of Sine-Cosine Algorithm for updation of Particle Position.  
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The updating of particle position is dependent upon rand()1 as pre-
sented in Eq. (17). 

x(t + 1) =
{

Xi + rand() × sin(rand()) × |rand() × G(i) − x(i) |rand()1 < 0.5
Xi + rand() × cos(rand()) × |rand() × G(i) − x(i) |rand()1 > 0.5

(17)  

4.3. Dynamic group-based cooperative algorithm with sine cosine 
algorithm (IDGC) 

Since DGCO and SCA are able to perform with greater efficiencies 
under different optimization problems. However, under complex opti-
mization problems, these algorithms do not perform well due to trap-
ping in the local minima. To overcome this issue, a new strategy is 
developed for the updating of particle position in the explorative group 
in DGCO, SCA is used to update the particle position in the explorative 
group. 

In the explorative group of DGCO, the first method uses d to search 
around the particle position. This updating of d is done by SCA in this 
proposed technique. In addition, the mutation factor for the second 
method is also not very effective. In this second method, particle posi-
tion is also updated using SCA. High efficiency, high convergence speed 
are the improvements observed in the proposed technique. The inte-

gration of SCA in DGCO is presented in mathematical form in the 
following equations. 

In the first method, the updation of the particle is happening in the 
following way. 

di =
{

rand() × sin(rand()) × |rand() × M(j) − z(j) |rand()1 > 0.5
rand() × cos(rand()) × |rand() × M(j) − z(j) |rand()1 ≤ 0.5 (18)  

X(i+ 1) = X(i)+ 2 × d (19) 

In the second method, the following model utilized: 

di =
{

rand() × sin(rand()) × |rand() × M(i) − z(j) |rand()1 > 0.5
rand() × cos(rand()) × |rand() × M(i) − z(j) |rand()1 ≤ 0.5 (20)  

N(j+ 1) = N(j)+ (2 × rand() − 1) × di (21) 

The pseudo-code and flow-chart of the proposed IDGC are shown in 
Fig. 5 and Fig. 6 respectively. 

4.4. Comparative analysis of IDGC 

In this section, comparative analysis presented of IDGC with another 
meta-heuristic optimization algorithm. The hardware used for the 
testing of the algorithm is AMD PRO A8-9800 Rs with 8-GB RAM and the 

Fig. 5. Pseudo Code of Proposed IDGC Algorithm.  

M. Hamza Zafar et al.                                                                                                                                                                                                                         



Energy Conversion and Management 258 (2022) 115564

7

software used is MATLAB 2018a. 
The proposed algorithm is tested on 6 different unimodal and 

multimode test functions. These functions with upper and lower bound 
are presented in Table 1. The comparison is made between PSO, GWO, 
FPA, BMO, DGBCO, and IDGC. The convergence curves for all six 
functions are shown in Fig. 7 which shows that the IDGC algorithm 

achieves better results by minimizing the function in a fewer number of 
iterations and the cost achieved by IDGC is far less than other tech-
niques. The performance of all techniques can also be compared by the 
values achieved in Table 2. The performance indices are the best value, 
worst value, average, and standard deviation. It is also confirmed that 
IDGC outperforms other techniques. 

Fig. 6. Flow Chart of Proposed IDGC Algorithm for Particle Position update.  

Table 1 
Uni-modal and Multimodal Functions with dimensions used for Testing of IDGC.  

Func. Formulae Dimension Range Optimal Value 

F1 f(x) =
∑n

i=0 |xi| +
∏n

i=0 |xi| 30 [-10,10][13] 0 
F2 f(x) = maxi{|xi|, 1 ≤ i ≤ n } 30 [-100, 100] 0 
F3 f(x) =

∑n
i=1xi

2 30 [-100,100] 0 
F4 f(x) =

∑n
i=1
[
xi

2 − 10cos(2πxi)+10
]

30 [-5.12,5.12] 0 
F5 

f(x) = − 20e

(

− 0.2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
xi

2
√

)

)

− e

(
1
n
∑n

i=1
cos(2πxi)

)

+ 20 + e 

30 [–32,32] 0 

F6 
f(x) = 1 +

1
4000

∑n
i=1

xi
2 −
∏n

i=1cos
(

xi
̅̅
i

√

)
30 [-600,600] 0  
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4.5. Training of GRNN and RBFNN using IDGC 

GRNN and RBFNN suffer from low prediction accuracy if the pa-
rameters, e.g., σ smoothing parameter with the number of neurons in 
RBFNN do not tune well. For effective training and testing these pa-
rameters are needed to be optimally tuned. In this paper, IDGC is used to 
tune these parameters, and hybrid PV/wind power and energy fore-

casting are done. The flow chart for the training of GRNN and RBFNN 
using IDGC is shown in Fig. 8. Trained models are then tested on the test 
data and the performance evaluation is done. 

5. Experimental test results 

In this section, IDGC-GRNN and IDGC-RBFN prediction models are 

Fig. 7. Convergence curves comparison of test functions for comparative techniques.  

Table 2 
Comparison results for IDGC, DGCO, BMO, DFA, FPA and PSO optimization technique on test functions.  

Functions Parameters PSO FPA DFA BMO DGCO IDGC 

F1 Best 1.0654e+00 1.0919e+00 6.1906e-01 1.1866e+00 7.5599e-01 7.6067e-01 
Worst 3.3183e+00 2.8628e+00 3.8153e+00 4.3919e+00 3.5328e+00 2.6240e+00 
Avg 1.8393e+00 1.7735e+00 1.7069e+00 1.8424e+00 1.8961e+00 1.5810e+00 
Std 5.1143e-01 4.3011e-01 5.6395e-01 5.7943e-01 6.4277e-01 3.7090e-01  

F2 Best 6.6922e-03 3.3945e-03 4.7698e-03 6.0814e-03 1.6544e-02 1.5854e-03 
Worst 1.1381e-01 1.0411e-01 1.1132e-01 8.9605e-02 9.9858e-02 7.7334e-02 
Avg 4.5564e-02 3.7035e-02 3.6736e-02 3.8232e-02 4.0218e-02 3.7157e-02 
Std 3.1212e-02 2.7009e-02 2.3888e-02 1.9897e-02 1.9219e-02 1.9773e-02  

F3 Best 2.2654e-06 6.3339e-05 5.3836e-05 1.4876e-04 1.3072e-05 6.9877e-06 
Worst 1.2967e-02 1.9226e-02 9.5308e-03 1.9549e-02 1.1735e-02 1.1762e-02 
Avg 3.7238e-03 2.4777e-03 2.2740e-03 4.1696e-03 2.9321e-03 2.1681e-03 
Std 3.6706e-03 3.8117e-03 2.4986e-03 5.2296e-03 3.5136e-03 2.9309e-03  

F4 Best 7.9726e+01 7.6398e+01 9.3708e+01 8.4380e+01 1.0531e+02 7.3486e+01 
Worst 1.6835e+02 2.0112e+02 1.8169e+02 1.9579e+02 1.7586e+02 1.8030e+02 
Avg 1.2952e+02 1.2955e+02 1.3894e+02 1.2898e+02 1.3130e+02 1.2830e+02 
Std 2.1996e+01 2.4777e+01 2.0990e+01 2.3905e+01 2.1360e+01 2.0057e+01  

F5 Best 4.7144e+00 3.7397e+00 4.2750e+00 4.2796e+00 4.4399e+00 3.8889e+00 
Worst 6.9701e+00 6.5207e+00 6.4176e+00 6.8326e+00 6.2143e+00 6.1367e+00 
Avg 5.5445e+00 5.2546e+00 5.3881e+00 5.3322e+00 5.2514e+00 5.2592e+00 
Std 5.3648e-01 6.0239e-01 5.2854e-01 5.4322e-01 4.7795e-01 5.2141e-01  

F6 Best 2.4183e+00 2.0644e+00 2.1353e+00 2.2210e+00 2.0899e+00 1.7703e+00 
Worst 5.7100e+00 4.5009e+00 4.5312e+00 4.3186e+00 4.2298e+00 4.2056e+00 
Avg 3.1342e+00 3.0003e+00 3.0786e+00 3.0543e+00 3.1071e+00 3.0092e+00 
Std 6.8570e-01 5.5604e-01 5.5880e-01 5.0741e-01 4.9782e-01 3.3881e-01  
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presented. First data collection and preparation are described. Then the 
objective function is explained. Successively, the evaluation indices, 
which are used for the performance comparison, are considered. Then 
the predictions model and results are discussed for hybrid PV/wind 
power. 

5.1. Data collection and processing 

Historical dataset with 1 h sample time was gathered using cali-
brated sensors which are placed in middle east technical university 
(METU) from 01/01/2015 till 26/12/2015. For the hybrid power plant, 
all the environmental factors affect the performance of the power plant. 
Therefore, seven different factors are then accounted for effective 
reduction of power. These factors are wind, speed (ws), wind direction 
(wd), solar irradiance (G), temperature (T), the pressure of atmosphere 
(P), precipitation (R), and humidity (H). The global positioning system 
(GPS) module of raspberry pi was used for the collection and gathering 
of the data. After the collection of data, two important functions are 
applied to the data:  

• Feature engineering;  
• Normalization. 

First, the dataset is analyzed and a feature section is done. All the 
features that are having an impact on the PV/wind power and energy are 
selected. Only 7 environmental factors are selected as features remain in 
the dataset. After that, data normalization is carried out. Since, the large 
fluctuation in the features, that is, wind, speed, or direction could cause 
the accuracy of the prediction model to become low. Therefore, the 
applied normalization technique is applied, which is shown in Eq. (22). 

Xnorm =
Xi − Xmin

Xmax− Xmin

(22)  

where Xnorm is the normalized values and Xi the current value, Xmin and 
Xmax are minimum and the maximum values of the data. 

Table 3 shows the descriptive statistics of the dataset. Five parame-
ters are used for the analysis, that is, count, max value, min value, 
standard deviation, and mean. For all four seasons, the samples are 
8632. This shows the real-time diversity in the dataset which is catered 
by IDGC-GRNN and IDGC-RBFNN very effectively during the training 
and testing. Then with the help of timestamp, this dataset is then further 
divided for all four seasons and predicted models are trained and tested 
on all four seasons. For every season the training to the testing ratio of 
the dataset is 3:1. Mean variation in the values of features in the dataset 

Fig. 8. Flow Chart for Optimal Tuning of GRNN and RBFNN using IDGC.  
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shows how the parameters/factors are varying. The mean variation in 
temperature is 0.18, wind 0.4, pressure 0.99, humidity 0.7, irradiance 
0.2. Minimum and maximum values of features are given in Table 3. 

5.2. Objective function and evaluation parameters 

A fitness function or objective function is used for the training and 
testing of models. The lower values of the fitness function show that the 
data predicted by the model is close to the true values. Therefore, the 
fitness function defines the prediction accuracy. The most widely used 
fitness function is the mean square error (MSE) which is presented in Eq. 
(23). 

F.F =
1
n

∑n

i=1
(Ti − Pi) (23)  

where Ti is the true value and Pi are the predicted value and n represent 
the total number of samples. For the evaluation of different models, 
other error indices are also used. The degree of dispersion in results can 
be verified by normalized root mean square error (NRMSE) presented in 
Eq. (24). For the indication of deviation of prediction mean absolute 
error (MAE) and mean absolute percentage error (MAPE) is presented in 
Eq. (25) and Eq. (26) respectively. Last but not the least, the correlation 
between actual and predicted value can be measured by R square (R2) 
which is presented in Eq. (27). 

Table 3 
Descriptive Statistics of the Dataset.  

Indices Wind Speed Temp. Humidity Air Pressure Wind Direction Precipitation Irradiance Power Energy 

Count  8632.00  8632.000000  8632.000000  8632.000000  8632.000000  8632.000000  8632.000000  8632.000000  8632.000000 
Mean  0.40785  0.186580  0.709743  0.996968  0.182660  0.254109  0.207660  0.679220  0.611298 
Std  0.22987  0.074352  0.152935  0.005119  0.077407  0.101936  0.284296  0.067437  0.060694 
Min  0.04000  − 0.010000  0.130000  0.830000  0.000000  0.090000  0.000000  0.514000  0.462600 
Max  1.00000  1.000000  1.000000  1.000000  0.360000  0.560000  1.000000  0.910200  0.819200  

Fig. 9. (a) Prediction in summer season (b) Zoomed-in Comparison Summer season (c) Percentage Relative Error for Summer Season.  
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NRMSE =
1
T

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
(Ti − Pi)

2

√
√
√
√ × 100% (24)  

MAPE =
1
N

∑N

i=1

|Ti − Pi|

Pi
× 100% (25)  

NMAE =
1
N

∑N

i=1

|Ti − Pi|

Pi
(26)  

R2 =

∑N
i=1(Ti − Ti))∙(Pi − Pi)

2

∑N
i=1(Ti − Ti)∙

∑N
i=1(Pi − Pi)

(27)  

where Ti is the true value, Pi is the predicted value, N is the total number 
of samples. Ti is the average value of the true output, Pi is the average 
value of predicted output. 

5.3. Proposed IDGC-GRNN and IDGC-RBFN prediction models 

The procedures of prediction of hybrid PV/wind power are shown in 
Fig. 9. First, collected data is preprocessed to extract features. Seven 
features are extracted. The data is divided into training and testing data 
for four seasons. Then training of GRNN and RBFN based NN is done 
using the IDGC algorithm. Finally, the trained model is evaluated using 
test data. A set of comprehensive evaluation indices is utilized to eval-
uate the prediction results using Eq. (24)-Eq. (27). 

5.4. Experimental results and discussion 

In this section, the prediction results of different models are dis-
cussed. Six different models are compared which IDC-GRNN, IDGC- 
RBFN, DGCO-GRNN, DGCO-RBFN, PSO-GRNN, and PSO-RBFN. The 
tuned parameters achieved by all the models are presented in Table 4. 

5.4.1. Forecasting module 
After the original SCADA data has been preprocessed and the pro-

posed IDGC algorithm has been initialized, the training samples are 
separated based on the weather. The sub-series are fed into the trained 
SI-NN model, which predicts future changes with great accuracy. Each 
sub-series of testing data has distinct features, and stability is extensively 
investigated. The superiority of the designed data preparation module 
and optimization method determines performance. As a result, in engi-
neering applications, it can offer the desired predicting outcome. 

5.4.2. Summer season 
The Vector map in Fig. 9(a) shows that the summer season in Turkey 

has larger variations in wind torrents due to strong winds. The difference 
between day and night temperatures is high (Avg. Summer 23 ◦C, Avg. 
Winter − 2 ◦C). The performance of the proposed technique is also 
compared for the summer season. Fig. 9(a) shows a comparison of power 
achieved w.r.t. time by competing techniques and corresponding 
detailed power prediction is presented in Fig. 9(b). The power in the 
summer season is highly non-linear but still proposed algorithm ach-
ieves efficient prediction for the actual value for GRNN and RBFN 
models. The performance of proposed techniques in the summer season 
can also be validated by the relative error shown in Fig. 9(c) where the 

least RE depicts higher efficiency of prediction. 
A comparison is made with true wind power and predicted wind 

power by all four techniques. The data is divided into training and 
testing by ratio of 67% and 33% respectively. Firstly, all techniques are 
trained on a training dataset with optimally tuned parameters. Then 
proposed method and other comparative techniques are tested on the 
testing dataset. Table. 5 shows the minimum error achieved by all 
techniques during the training and testing process which shows that the 
suggested strategy achieves less inaccuracy than the other strategies. 
The training accuracies for the winter season show on run average 0.08 
RE which shows that the IDGB based NN effectively minimizes cost 
function in fewer epochs comparatively. The power predicted by the 
IDGC-GRNN and IDGC-RBFN is close to the measured data. This shows 
that prediction is highly effective for the prediction of the highly volatile 
wind power dataset. 

5.4.3. Spring season 
The volatility of atmospheric parameters in different seasons in the 

Sea of Marmara has a transitional effect on Oceanic and Mediterranean 
climates. Moderately dry summer (≅ 30◦C) with high precipitation in 
Spring yield less fluctuation and the coast prevents elongated winter. 
Hence, more accurate prediction is expected. The PSO algorithm, due to 
its highly random behavior, shows the largest error since the cross- 
correlation between the operating conditions is not accurately trans-
lated into the training of the RBFN and GRNN [38]. The proposed 
methods achieve 70% less RE. The combination of PSO-RBFN shows the 
least accurate metrics. PSO vigorously manipulates the shorter volatile 
learning process of RBFN as a BP alternative although trains the system 
but is highly prone to data outliers. On average, the framework has 67% 

Table 4 
Optimal Tuned parameter for the GRNN and RBFNN using Optimization 
Techniques.   

PSO DGCO IDGC 

Spread Neurons Spread Neurons Spread Neurons 

GRNN 0.021 X 0.012 X 0.009 X 
RBFNN 39 196 56 204 61 208  

Table 5 
Statistical comparison Results summary for different seasons.  

Season Technique RMSE MAE R2 Mean 
RE    

Summer 

IDGC- 
RBFN 

7.3398e- 
05 

2.2242e- 
08  

0.1161  0.0327 

IDGC- 
GRNN 

3.0225e- 
04 

9.1590e- 
08  

0.2125  0.9927 

DGC-RBFN 2.3272e- 
05 

2.3272e- 
06  

0.1397  0.3645 

DGC- 
GRNN 

3.8333e- 
04 

1.1616e- 
07  

0.2295  1.0003 

PSO-RBFN 1.1925e- 
04 

1.1925e- 
05  

0.1616  3.6466 

PSO-GRNN 6.5592e- 
04 

6.5592e- 
05  

0.2890  0.9854    

Spring 

IDGC- 
RBFN 

7.9896e- 
05 

7.9896e- 
06  

3.5831e-04  0.0241 

IDGC- 
GRNN 

4.1369e- 
04 

1.0210e- 
04  

4.1644e-04  0.1114 

DGC-RBFN 5.3789e- 
04 

5.3789e- 
05  

5.1132e-04  0.3468 

DGC- 
GRNN 

0.00091 1.9320e- 
04  

5.2616e-04  0.1090 

PSO-RBFN 5.1076e- 
04 

5.1076e- 
05  

6.1768e-04  0.6082 

PSO-GRNN 0.0018 1.8000e- 
04  

4.1651e-04  0.1063   

Winter 

IDGC- 
RBFN 

1.0853e- 
04 

1.0612e- 
05  

0.9154  0.0847 

IDGC- 
GRNN 

8.5311e- 
04 

8.3654e- 
05  

0.9894  0.4128 

DGC-RBFN 1.6350e- 
04 

1.6032e- 
05  

0.9300  0.2672 

DGC- 
GRNN 

8.5311e- 
04 

8.3654e- 
05  

0.9982  0.4321 

PSO-RBFN 9.7869e- 
04 

9.5969e- 
04  

0.9951  0.5807 

PSO-GRNN 8.5311e- 
04 

8.3654e- 
05  

0.9987  0.4583  
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more error margins. Fig. 10(a) shows that during daytime (0–24 Hours) 
the algorithms using higher random factors tend to generate higher error 
margins leading to lower power tracking efficiency. This duration falls 
typically in the “Peak Hours” where the energy demand surge occurs, 
making it a daunting task to predict the power generation in a shorter 
time accurately. A more detailed view of results in spring season is 
presented in Fig. 10(b). The percentage Relative Error in Spring Season 
is shown in Fig. 10(c). 

5.4.4. Winter season 
The winter data shows relatively higher training and testing accu-

racies. It may owe to lower fluctuation of data. PSO-based SI-NN has the 
least accuracy for both GRNN and RBFN. IDGB shows 81.92% less RMSE 
values as compared to DGC on average. Whereas the PSO shows huge 
errors in predictions. This failure to predict the actual power can cause 
voltage fluctuations leading to a harmonic imbalance in grid-connected 
power generation systems. It may lead to a pole-pole fault in high 
voltage grids. Comparatively, the error margin of the proposed fore-
casting model allows for the negligible error margins that can be easily 
handled by the grid monitoring systems and HVDC protection mecha-
nism well within 0.3 s [39]. Fig. 11(a) shows the forecasting perfor-
mance on a standard 24 h winter days. Fig. 11(b) provides a detailed 

comparison in a smaller window of time whereas Fig. 11(c) provides the 
%age RE with respect to the actual power for competing techniques. 

6. Common observation 

Three criteria were used to assess the performance of proposed 
technique for extremely short-term prediction: MAE, RMSE, and the 
MAPE. For each analysis, 20 runs are performed to provide a fair com-
parison. The following is a quick description of these indexes. 

Normalized Root Mean Square Error (NRMSE): The NRMSE is the 
standard deviation of a sample’s prediction errors. It represents the 
distribution of errors, with a larger value suggesting a higher spread of 
errors. Because a larger difference between actual and predicted values 
has a greater value on NRMSE than NMSE, the value of NRMSE is often 
higher than NMSE due to the presence of outliers, as demonstrated by 
Eq. (24). 

Mean Absolute Percentage Error (MAPE): which is the percentage 
counterpart of NMAE, quantifies how far the model’s predicted values 
are off from their actual values on average. Since this approach also 
employs absolute value, it is immune to the impact of outliers such as 
NMAE. This approach is beneficial for interpreting model performance 
as NMAE and NRMSE to present a value ranging from zero to positive 

Fig. 10. (a) Prediction in Spring season (b) Zoomed-in Comparison Spring season (c) Percentage Relative Error in Spring Season.  
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infinity using percentages, i.e., forecasted values are scaled against the 
real value. As a result, when the real data is 0 or extremely small, it may 
calculate an unexpected number. Eq. (25) provides the formula for 
calculating NMAPE. 

The NMAE (Normalized Mean Absolute Error) is the average 
magnitude of absolute errors between actual and predicted values. It 
takes absolute values into account to avoid cancellation between nega-
tive and positive error values and hence does not refer to the model’s 
underperformance or overperformance. The NMAE is a useful perfor-
mance statistic for mitigating the effects of data outliers or extreme 
values in data sets. A low NMAE value denotes great prediction accu-
racy, but a zero NMAE value denotes the most accurate model for pre-
dicting output data. Eq. (26) represents its mathematical. 

The lower the MAE and RMSE, R2 and MAPE values, the better is 
forecasting performance. All the models are tested on four different 
seasons, that is, winter, summer, autumn, and spring. The average value 
of the evaluation index is shown in Table. 5. This shows that IDGC-RBFN 
outperforms other techniques. The IDGC-RBF achieves up to 80% less 
NRMSE, 6.4978x10-5 less NMAE, up to 90% less MAPE, and 
0.1729–0.582 less R2 as compared to together DGC-RBFN and DGC- 
GRNN. This shows that the proposed technique has higher prediction 
accuracy. This 24 h prediction comparison shows that IDGC-RBFN 

performs with higher accuracy for the short-term power prediction. 

6.1. Forecasting stability 

The proposed techniques show high stability and forecasting. The 
measure for performance variance of forecasting error in [40] is well 
suited to determine the stability of prediction. The smallest magnitude 
of absolute error and low variability indices indicate a higher %age 
accuracy. The forecasting by developed methods shows the least outlier 
influence and shows precise prediction well within the range of 2–5% of 
the average of the competing methods. 

6.2. Practical application of forecasting model 

The forecasting model finds are utilized for the following applica-
tions and objectives [38]. 

1. The accurate forecasting of hybrid PV-wind adds to the competi-
tiveness of renewable energy in the utility market. It solidifies the 
foundation of renewable power making it capable to compete for 
price, intermittence, market share and reduces the uncertainty of 
operation. 

Fig. 11. (a) Prediction of power in Winter season (b) Zoomed-in Comparison Winter season (c) Percentage Relative Error for Winter season.  
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2. Improved power grid scheduling impacts the usage of fossil fuels and 
reduces the CO2, SO2 and fog in the environment while providing 
highly effective real-time load balancing. It lowers the risk of adverse 
effects of grid-connected operations by commercial-scale PV-Wind 
further reduces uncontrollability issues of wind power. 

3. Safe operations of the power grid are ensured by improvised fore-
casting. Most power grids are AC, the voltage fluctuations impact the 
harmonic balance in load-lines. The proposed models with effective 
forecasting time allow for the rotating reserve capacity minimizing 
the cost of operations 

6.3. Training real time assessment 

To assess the computational cost of the hybrid model, GRNN and 
RBFN training are carried out as the backbone of the suggested model for 
a variety of learning rates, batch sizes, and iteration numbers. Fig. 12 
shows the GRNN and RBFN runtime landscape several parameters. It has 
been discovered that batch size, learning rates, and data are major fac-
tors in the computational cost of training. As per these observations, the 
larger number of iteration cycles for IDGC with a small batch size of 
training data having an NN learning rate between 0.012 and 0.09 better 
achieve effective power forecasting results. 

6.4. Computational complexity 

The computational complexity of the recommended hybrid frame-
works is examined by comparing the mean duration of several iterations 
for hybrid models. It is worth mentioning that evolutionary algorithms 
have the same population size. The computing time necessary to apply 
evolutionary operators such as initialization, fitness function evaluation, 
hyper-parameter optimization, and finally cost function evaluation. In 
terms of runtime, using the parallel training configuration yields the best 
results. This concurrent training setup can significantly reduce compu-
tational runtime. The proposed NN may be taught utilizing soft plat-
forms, and the trained NN configuration is then exported into 
microcontrollers. However, there are certain computing overheads, 
mostly due to data transfers, synchronization, thread creation, and 
removal. 

7. Conclusion 

Modern power grids are a combination of volatile renewable and 
environmentally hazardous fossil fuel-based electrical power generation 
systems. To strike a balance between maximum green energy production 
and stably safe grid operations, the power forecasting of renewable 
systems is an essential component. Due to meteorological factors, irra-
diance, precipitation, humidity, etc., the available power fluctuates. 
Additionally, the time-series data from operating microgrid exhibit 
chaotic behaviors making the forecasting unreliable. In this work, a 
combination of outlier detection and feature selection to decrease the 
inherent noise in time series meteorological data. In the second phase, a 
hybrid SC-Algorithm (SCA) and DGB optimization are developed to 
minimize the NN training for hyper parameters. The performance of the 
improvised IDGB model is tested on modern test functions. The hybrid 
NN– meta heuristics optimization method is utilized to effectively design 
IDGBO-GRNN and IDGB-RBFN. Extensive simulated experiments are 
conducted for seasonal performance evaluation in Summer, Autumn, 
Winter, and Spring. The average efficiency is significantly higher. The 
suggested technique is compared with four different hybrid models. As 
per the results, the suggested hybrid model beats its counterparts in 
terms of four statistical criteria in both 10-min and 1-h periods. 

In the future, a broader range of power curve datasets obtained from 
other types of wind turbines in other areas will be reviewed in order to 
improve our model even more. Finally, another exploration of this 
project is to use various outlier identification methodologies with 
decomposition and optimization to enhance predicting outcomes. 
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