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Tackling impaired bioenergetics in multiple sclerosis (MS) has been recently recognized
as an innovative approach with therapeutic potential. Guanidinoacetic acid (GAA) is an
experimental nutrient that plays a significant role in high-energy phosphate metabolism.
The preliminary trials suggest beneficial effects of supplemental GAA in MS, with
GAA augments biomarkers of brain energy metabolism and improves patient-reported
features of the disease. GAA can also impact other metabolic footprints of MS, including
demyelination, oxidative stress, and GABA-glutamate imbalance. In this mini-review
article, we summarize studies evaluating GAA effectiveness in MS, explore mechanisms
of GAA action, and discuss the challenges of using dietary GAA as an element of
MS therapy.
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BACKGROUND

Multiple sclerosis (MS; ICD-11 code 8A40) is a chronic inflammatory demyelinating disease
of the central nervous system with unclear causes. MS requires lifelong treatment, and many
therapies are available with a substantial change in disease trajectories in the last decades (D’Amico
et al., 2019; Wiendl et al., 2021), while understanding its complex etiology often provides new
therapeutic targets. With a prevalence of up to 300 per 100,000 people, MS predominantly affects
individuals in their early adult life, and has a considerable impact functionally, financially, and
on quality of life (Thompson et al., 2018). Neuroinflammation and demyelination in MS disrupt
the transmission of the signals in the parts of the nervous system, including the white matter in
the optic nerve, brainstem, and spinal cord. This could result in a range of classical and unusual
signs and symptoms, including a plethora of physical and mental problems (Huijbregts et al.,
2006; Braley and Chervin, 2010). MS features three clinical stages: a pre-clinical stage detectable
only by magnetic resonance imaging; a relapsing-remitting stage characterized by episodes of
neurologic dysfunction followed by resolution; and a progressive stage, which usually evolves
from the relapsing stage (Baecher-Allan et al., 2018). Besides many environmental and genetic
risk factors for MS (for a detailed review, see Waubant et al., 2019), an impairment in neuronal
bioenergetics has been evoked as a vital contributor to the disease (Vallée et al., 2018; Tepavcevic,
2021). Dysfunction of mitochondria, a key organelle for cell energy provision, has also been
recognized in MS pathogenesis, with pathological permeability transition pore opening mediated
by reactive oxygen species and calcium dysregulation might be central to mitochondrial damage
and neurodegeneration in the disease (Su et al., 2013). Characterization of compounds related
to mitochondrial energy metabolism in MS across body fluids (and tissues) has been suggested
as a practical, easy-to-obtain laboratory tool useful to monitor MS patients and predict disease
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progression (Lazzarino et al., 2017). In particular, depletion of
high-energy phosphates [such as adenosine triphosphate (ATP)
and phosphocreatine] could accompany MS (Lazzarino et al.,
2017; Adiele and Adiele, 2019), with the lower levels correlating
with a more severe disability progression (Lazzarino et al., 2010).
Restoring brain phosphagen bioenergetics thus emerges as a
possible therapeutic approach in the disease (Ostojic, 2020),
with several nutrients explored for their capacity to maintain
or amplify brain energy metabolism in MS patients (Park and
Choi, 2020). Guanidinoacetic acid (GAA) is an N-amidino
derivative of glycine and an experimental nutrient that has
been recently found to improve location-specific brain creatine
(Ostojic, 2021a), implying its possible therapeutic value in
conditions with impaired tissue bioenergetics such as MS. Besides
its effects on boosting creatine levels in the human brain, GAA
might also have additional metabolic roles that could benefit MS
patients, including the modulation of gamma-aminobutyric acid
(GABA)ergic neurotransmission and brain oxidant-antioxidant
status, or a reduction of glutamate neurotoxicity. This mini-
review summarizes studies evaluating GAA effectiveness in MS,
discusses possible mechanisms of GAA action, and sets out open
questions and future frontiers for advancing supplemental GAA
as an element of MS adjuvant therapy.

DIETARY GUANIDINOACETIC ACID IN
MULTIPLE SCLEROSIS

Arguably the first trial that assessed the therapeutic potential
of GAA in patients with MS dates back to the early 1950s.
Fallis and Lam (1952) commenced a pilot study of the effects of
GAA (co-administered with betaine) in a variety of conditions
of impaired neuromuscular functioning, including MS. The
authors highlighted a significant energy-enhancing effect of
this nutritional intervention in an entire case series, yet the
article comprised data restricted to motor deficit residuals
to poliomyelitis, and omitted to present findings for MS
subpopulation. A seminal trial by Dr. John Aldes from the Cedars
of Lebanon Hospital in Los Angeles evaluated the effects of
dietary GAA plus rehabilitation in 226 MS patients over a period
of 5 years (Aldes, 1957). This randomized placebo-controlled
trial demonstrated favorable effects of GAA (6 g/day) together
with a rehabilitation program for symptomatic relief, functional
improvements, and a general sense of wellbeing in individuals
with MS. In addition, patients subjected to GAA supplementation
and a rehabilitation program were able to maintain normal
tissue levels of phosphocreatine and ATP in the skeletal muscle
after 4–12 months on this regimen. The potential of GAA
to improve clinical features and tissue metabolism in MS has
been confirmed in a recent case report (Ostojic et al., 2022).
A middle-aged woman with secondary-progressive MS resistant
to interferon beta-1alpha and corticosteroids was treated with
2 g of GAA per day (co-ingested with creatine monohydrate)
for 21 days. The patient made moderate clinical progress at the
follow-up, with the intensity of general fatigue, weakness, and
numbness dropping from severe to mild. Magnetic resonance
spectroscopy revealed increased levels of total brain creatine,
choline, N-acetyl aspartate, and glutathione, and a drop in

glutamate levels at follow-up compared to levels evaluated at
initial examination. Besides MS, several recent preclinical and
clinical trials demonstrated positive effects of delivering GAA to
the neural tissue (McBreairty et al., 2015; Semeredi et al., 2019;
Robinson et al., 2020; Ahmed-Farid et al., 2021; Seper et al.,
2021; Adriano et al., 2022), corroborating its possible neurotropic
potential in experimental and clinical nutrition.

POSSIBLE MECHANISMS OF
GUANIDINOACETIC ACID ACTION

GAA is a direct natural precursor of creatine. Its exogenous
administration increases tissue levels of creatine across the
human brain (Ostojic et al., 2017), which may tackle impaired
creatine bioenergetics seen in MS. Preclinical trials suggest
that creatine can act as a neuroprotective agent by increasing
ATP production and enhancing oligodendrocyte survival after
demyelinating injury, including MS (Chamberlain et al., 2017).
Interestingly, supplemental GAA might be even better to affect
cerebral creatine concentrations than creatine itself, perhaps
due to more favorable transport kinetics throughout the blood-
brain barrier (Ostojic et al., 2016). Besides augmenting creatine
levels, GAA might affect other neuromodulating compounds
in MS (Figure 1). Demyelination is often characterized
by various neurochemical abnormalities in GABA-glutamate
metabolism (Swanberg et al., 2019), including dysfunctional
glutamatergic excitation and GABAergic inhibition. GAA can
reverse irregularities in glutamate-GABA turnover linked to MS,
acting as an inhibitor of glutamate uptake via Na+, K+ -ATPase
activity-related modulation (Zugno et al., 2007; Marques et al.,
2019). A GAA-driven reduction in brain glutamate levels has
been corroborated in human studies. A strong trend has been
reported for reduced glutamate in white matter after 8 weeks of
GAA supplementation (decrease of ∼4.5% from baseline levels)
in healthy men (Ostojic and Ostojic, 2018). The lowering of
glutamate levels after GAA administration (∼9.5%) was found
in the gyrus cinguli of a patient suffering from acute secondary
progressive MS (Ostojic et al., 2022). In addition, GAA can
interact with neuronal GABA receptors, implying its possible role
in GABA release and utilization in the central nervous system
(Cupello et al., 2008; Chebib et al., 2009; Schulze et al., 2016).
Specifically, GAA can act as a partial agonist of heterogeneously
expressed GABAA receptors (Neu et al., 2002); this might
counteract GABAergic inhibition seen in MS and potentially be of
therapeutic value. Interestingly, creatine has no effect as a GABA
agonist, antagonist, or modulator (Chebib et al., 2009).

Accumulating evidence indicates that oxidative stress plays
a major role in the pathogenesis of MS (Ohl et al., 2016).
Preclinical trials suggest that dietary GAA can minimize
oxidative stress and improve antioxidant defense in target
tissues (Aziza et al., 2020; Oviedo-Rondón and Córdova-
Noboa, 2020; Zhao et al., 2021), possibly via mechanisms
related to attenuating lipid peroxidation. A human study
demonstrated augmented brain glutathione levels, an
antioxidant indispensable for preventing lipid peroxidation
in brain cells, after a 21-day GAA intervention in MS
(Ostojic et al., 2022). Finally, secondary findings from an
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FIGURE 1 | Possible mechanisms of guanidinoacetic acid (GAA) action in multiple sclerosis. GABA, gamma-aminobutyric acid; ATP, adenosine triphosphate.

interesting case report suggest that GAA might be associated
with myelinogenesis in a demyelinating disease similar to
MS (Brunetti-Pierri et al., 2008). The authors detected
possible irregularities in brain GAA levels in a patient with
GM1 gangliosidosis and diffuse reduction of myelination,
accompanied by redundant and inappropriately folded
myelin. Gyrate atrophy of the choroid and retina is another
disease with demyelination, and it appears that the disease is
accompanied by the deficient formation of GAA (Sipilä et al.,
1980). Although of uncertain etiology and significance, GAA
alterations in demyelination might be attributed to disturbed
axon-oligodendrocytes interactions.

OPEN QUESTIONS FOR
GUANIDINOACETIC ACID USE IN
MULTIPLE SCLEROSIS

Although preliminary trials demonstrated favorable results of
using GAA as an adjunct component of MS treatment, many
issues remain to be addressed before its advancement to
everyday care. First of all, we still lack well-sampled longitudinal
pharmacovigilance studies with GAA in MS settings. Addressing
GAA safety is of utmost importance keeping in mind that animal
and in vitro studies suggest possible neurotoxicity of GAA when
accumulated in supraphysiological doses (for a detailed review,
see Ostojic, 2021b). The possibility of dietary GAA accruing in
the human brain is highly unlikely (Ostojic and Ostojic, 2018).
Still, its use in MS might require careful titration in aim to
adjust the dose for the maximum benefit without adverse effects.
Until now, a daily dosage of GAA administered to patients with
MS was up to 75 mg per kilogram of body weight, with most
studies using ∼25 mg of GAA per kg of body weight. Another

open question includes the magnitude of exogenous GAA uptake
from the circulation into the MS-compromised brain. GAA has
a finite capacity to cross the blood-brain barrier (BBB) under
physiological conditions (Tachikawa et al., 2009), and an MS-
driven disruption of the BBB might affect net GAA uptake. For
instance, an early event in MS is a diminished function of the BBB
(Kamphuis et al., 2015) which could facilitate transporting GAA
into the brain; this perhaps requires an additional adjustment
of GAA dosage used in MS. Furthermore, GAA appears to be
effective in MS when co-administered with other nutrients and/or
therapeutic exercise; no clinical trials have evaluated the effects of
sole GAA in the disease.

CONCLUSION

MS is a complex, debilitating disease. Disease trajectories
have been substantially changed by the approval of several
disease-modifying therapies, and research is now moving also
on nutraceuticals. Few preliminary clinical trials suggest that
dietary GAA might be fairly beneficial in improving patient-
and clinician-reported outcomes when added as a nutritional
component to the MS treatment protocol. This likely happens
due to a GAA-driven modulation of brain metabolism involving
creatine bioenergetics and neurotransmitters turnover. Those
promising findings call for long-term randomized controlled
trials with GAA across MS cohorts.
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