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Knowing which elements in the environment are associated with various opportunities
and dangers is advantageous. A major role of mammalian sensory systems is to
provide information about the identity of such elements which can then be used for
adaptive action planning by the animal. Identity-tuned sensory representations are
categorical, invariant to nuances in the sensory stream and depend on associative
learning. Although categorical representations are well documented across several
sensory modalities, these tend to situate synaptically far from the sensory organs which
reduces experimenter control over input-output transformations. The formation of such
representations is a fundamental neural computation that remains poorly understood.
Odor representations in the primary olfactory cortex have several characteristics that
qualify them as categorical and identity-tuned, situated only two synapses away from
the sensory epithelium. The formation of categorical representations is likely critically
dependent on—and dynamically controlled by—recurrent circuitry within the primary
olfactory cortex itself. Experiments suggest that the concerted activity of several
neuromodulatory systems plays a decisive role in shaping categorical learning through
complex interactions with recurrent activity and plasticity in primary olfactory cortex
circuits. In this perspective we discuss missing pieces of the categorical learning
puzzle, and why several features of olfaction make it an attractive model system for
this challenge.

Keywords: olfaction, novelty, modulatory systems, cortical dynamics, categorical learning

INTRODUCTION

In a complex and changing world, sensory signals can be extremely rich in information and
therefore challenging for an animal to process rapidly and adaptively. One way for the brain to
mitigate this is through abstraction: sensory structure can be categorized by grouping relevant
signals into simpler representations, thereby facilitating interpretation of the sensory scene. Sensory
signals emanating from unitary phenomena such as objects, conspecifics or contexts tend to covary
in unique ways, meaning correlation structures within the sensory scene can be exploited to
encode identity of external sensory sources. Because physical information arriving at sensory organs
does not completely specify the structure of the environment, however, the brain is tasked with
inferring what that structure is based on previous experience, a process that requires learning and
memory. Knowledge about identity is useful not only for scene interpretation, but for assigning
and predicting specific action-outcome contingencies that reduce uncertainty about environment
dynamics. Identity-tuned representations are categorical in the sense that the neural response
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remains unchanged under variation along certain axes of the
sensory input space. Categorical sensory representations that
provide inference about stimulus identity in the presence
of variable, incomplete or ambiguous sensory data are well
established across a range of sensory and non-sensory cortical
areas. Most of these responses are found in higher-order
cortices, several steps away from the sensory input organs.
This is in part because the sensory feature axes that these
representations become invariant toward tend to be specifically
encoded in lower-order cortices. It is hard to understand
the transformations that take place during the formation of
categorical representations when there are multiple intervening
synaptic steps between sensory input and the neural response.
The rodent olfactory system offers an attractive model system
for studying categorical identity-tuned representations and their
formation as this functionality is implemented already in the first
cortical processing step, two synapses from the sensory organ.

ODOR PROCESSING IN OLFACTORY
CORTEX

Odor representations in the primary olfactory cortex are less like
low-level feature detectors in other primary cortical counterparts,
and more like representations found in higher-order cortices
where representational structure principally reflects intrinsically
relevant encoding axes such as perceptual categories.

Olfactory Processing Reflects the
Discrete and High-Dimensional Nature of
the Olfactory Input Space
The rodent olfactory system has evolved to detect and
perceptually classify a staggering range of volatile chemical
configurations present in the environment. Olfactory sensory
neurons (OSNs) in the nasal epithelium each express one of an
estimated 1500 distinct genes devoted to the mouse olfactory
receptor (OR) complement (Young et al., 2002). There is not a
one-to-one correspondence between chemical stimulus features
and OR activation. Instead, ORs are broadly tuned so that each
OR is activated by a unique range of chemical features, and
each of these chemical features activates a unique range of ORs.
The complex interactions between chemical features and ORs
make it infeasible to deconstruct the exact chemical makeup
that caused the activation, for instance whether the stimulus was
monomolecular or a mixture of molecules. What is available to
the brain are instead combinatorial OSN activation patterns.

One synapse downstream from the olfactory epithelium,
activity in the main olfactory bulb (OB) is organized into
anatomically segregated glomeruli that are clusters of axons
from OSNs that terminate on dendrites of mitral and tufted
cells that then project directly to olfactory cortical areas. Each
glomerulus receives inputs from a single type of OR-OSNs. This
labeled line organization is not preserved one synapse further
downstream in the primary olfactory cortex. Multiple cortical
areas can be included in the term primary olfactory cortex
(O1) on the criterion that they receive direct input from the

OB. Here we focus on the anterior portion of O1 (aO1, see
Box 1 for details). aO1 cells receive convergent input from an
apparently random subset of glomeruli, and aO1 odor responses
are anatomically discontinuous and distributed (Stettler and
Axel, 2009). This random connectivity profile has computational
advantages for specifically learning arbitrary stimulus feature
combinations (Ganguli and Sompolinsky, 2012). Principal cells
in aO1 are recurrently connected and the strength of odor-evoked
responses in these cells is largely determined by recurrent rather
than bulbar inputs (Franks et al., 2011; Poo and Isaacson, 2011).

aO1 Odor Representations Are Synthetic
In the rat OB, exposure to a mixture of two monomolecular
odor components causes neural cross-habituation to the isolated
mixture components in subsequent exposures (Wilson, 2003).
OB responses to mixtures therefore likely involve the same neural
ensembles that activate in response to the isolated components.
While this cross-habituation is also observed in aO1 in response
to short (10 s) mixture exposures, longer (50 s) mixture exposures
eliminates this effect (Wilson, 2003). This suggests that odor
mixture familiarization on the order of minutes is sufficient
to recruit distinct neural ensembles to encode the mixture as
separate from the identity of its components. Odor encoding in
aO1 therefore depends on experience and is synthetic because
the collection of features is represented differently from the
features themselves. aO1 odor mixture representations predict
perceptual performance, implying that they form the basis of
odor perception (Wilson et al., 2020).

aO1 Odor Representations Are
Categorical and Invariant
Responses to familiarized odor mixtures remain stable even
if single mixture components are omitted, a process termed
pattern completion (Barnes et al., 2008). Pattern completion
of odor responses in aO1 critically depends on recurrent aO1
circuitry, suggesting that categorical learning occurs already
within aO1 (Bolding et al., 2020). Furthermore, learning to
perceptually discriminate between very similar odor mixtures
causes neural activation patterns in aO1 to diverge despite no
change to the stimuli, known as pattern separation (Shakhawat
et al., 2014). The timescale of neural pattern separation
developing in aO1 ensembles matches that of behavioral effects of
discrimination training (Chapuis and Wilson, 2011; Shakhawat
et al., 2014). These encoding characteristics highlight that odor
representations in aO1 reflect perceptual classification rather
than exact chemical details present in the input and are flexible
according to perceptual demands.

Natural Odors Are Mixtures and
Interpretable Through Association
The rather unusual primary cortical attributes of aO1 make
sense considering that natural odors are not monomolecular,
and behavioral interpretation of natural odors is not usually
defined by their molecular structure per se. Instead, most
natural odors are mixtures of molecules that become useful
for adaptive behaviors through association. While individual

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 June 2022 | Volume 16 | Article 920334

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-16-920334 June 20, 2022 Time: 19:10 # 3

Stensola and Stensola Categorical Odor Learning

BOX 1 | The many primary cortical areas of the olfactory system.
Multiple cortical structures receive direct bulbar inputs and may thereby be considered part of the primary olfactory cortex. These include anterior olfactory cortex
[AOC, often referred to as anterior olfactory nucleus despite having a cortical architecture (Haberly, 2001; McGinley and Westbrook, 2011)], piriform cortex [PC;
including anterior (aPC) and posterior (pPC) subdivisions], and lateral entorhinal cortex (LEC). We use the convention that the primary olfactory cortex (O1) includes
all cortical areas with direct bulbar inputs. There are anatomical and functional differences between these areas that suggest separate aspects of odor processing
are distributed across O1 subsections, and these follow a general anteroposterior gradient. Afferent projections from the OB are denser to the aO1 compared to the
pO1 (Wang et al., 2020). Connectivity profiles between O1 areas suggests that there are more feed-forward projections going from anterior to posterior than
feed-back projections from posterior to anterior (Yang and Sun, 2015). The long axis of the piriform cortex is characterized by detailed odor encoding anteriorly and
coarser category encoding posteriorly (Gottfried et al., 2006). This representational gradient bears similarities with the long axis of the hippocampus, where fine
spatial detail is represented dorsally and broader spatial context ventrally (Strange et al., 2014). aPC is densely connected with the orbitofrontal cortex and is
suggested to encode behaviorally relevant (action-based) associations with odor input (Haberly, 2001). aPC neural responses display pattern completion and pattern
separation and are dynamically shaped by shifting perceptual demands (Shakhawat et al., 2014). There is little data on whether other parts of O1 display these
characteristics. Compared to aPC, odor responses in pPC are more strongly modulated by odor-outcome associations which likely result from its more prevalent
connections with basolateral amygdala. The pPC is therefore a prime location for integrating emotional associations with odors (Majak et al., 2004; Calu et al., 2007).
While most O1 areas receive inputs from OB mitral cells, the most anterior section (AOC) receives exclusive input from a distinct OB projection neuron, the tufted cell
(Igarashi et al., 2012). AOC is also proposed to be the site of initial odor identity encoding (Haberly, 2001). Odor identity encoding must be independent of AOC to a
certain extent, however, as temporary AOC lesions leave odor discrimination performance unaffected (Levinson et al., 2020). Rats in this study were already
familiarized with the odor stimuli, leaving open the possibility that AOC is important for odor identity encoding during learning but not subsequently. The primary
olfactory cortex is the only cortical region that receives strong primary sensory inputs in combination with substantial direct input from the hippocampus proper, and
this unique input combination is most prominent in the AOC (Aqrabawi and Kim, 2018a,b). Representations in AOC reflect context, and an intact AOC is required for
odor-context learning (Aqrabawi and Kim, 2020; Levinson et al., 2020). Through this combined input, spatial context and/or episodic memory is therefore likely
integrated as part of the initial cortical representation of odor identity. Hippocampal inputs may also play a part in contextually cued pattern completion and pattern
separation in primary olfactory areas and perhaps bias categorical learning toward or away from de novo odor representations depending on the situation. At the
posterior end of O1 lies LEC, one of the main cortical inputs to the hippocampus. Information from the olfactory system therefore has an unusually direct route into
the hippocampus. Although the O1 includes many distinct structures, in this perspective our focus is on the aO1 where characteristics of categorical learning have
been best documented.

odor molecules may belong to several distinct phenomena,
it is the joint probability distribution of molecules across
exposures that qualifies unique odor representations. But how do
these representations form? Because of the high dimensionality
and discrete nature of the olfactory input space, and the
synthetic format of aO1 representations, it is experimentally
straightforward to design unique odor stimuli for aO1. Using
novel odor stimuli offers a way to carefully study the formation
and characteristics of categorical representations within aO1.

STATISTICAL LEARNING OF
CATEGORICAL REPRESENTATIONS

Categorical learning is a statistical and dynamic process that
depends on experience and perceptual demands. It is thought
that categorical representations emerge with experience through
associative learning that extracts and binds together invariant
feature axes from distinct stimulus configurations. To become
separable in neural activity space, these feature axes should
minimize overlap between distinct representations. Categorical
sensory configurations can this way be thought of as distributions
living in a high-dimensional feature space, and determining
the combination of feature axes that best define and separate
various distributions represents a statistical learning problem
(Turk-Browne et al., 2009). Because classification of sensory
configurations can depend on behavioral relevance, context
and novelty, the underlying structure of categorical sensory
representations must be flexible to accommodate dynamic
perceptual demands imposed by the environment. How neural
circuits achieve this feat is ill understood.

Because the mixture component distribution of natural odor
stimuli typically varies across experiences, the aO1 faces a

predicament when encountering a novel stimulus, especially
if the novel odor has considerable component overlap with
familiar odors. Should the novel stimulus be integrated as a
new example of a familiar odor representation, or as a de
novo odor representation? To incorporate a novel stimulus into
an existing representation, the statistics of this representation
must be changed to include the new mixture distribution.
A functional requirement for generating de novo stimulus
representations is to separate the novel stimulus representation
from existing representations. Pattern completion in aO1,
which reflects stimulus generalization, depends on recurrent
circuits that implement attractor dynamics, and experimentally
inhibiting recurrent connectivity in aO1 changes several features
of the attractor landscape (Bolding et al., 2020). This points
to recurrent aO1 connections as a target for dynamically
controlling the balance between representational generalization
and discrimination in odor learning. A central question is how
the brain dynamically controls this balance. As described in the
next section, the concerted activity of several neuromodulatory
systems is a good candidate mechanism for how dynamic control
over both attractor-like activity and synaptic learning rules within
the aO1 recurrent circuitry is implemented (see Figure 1).

CONTROLLING CATEGORICAL
LEARNING IN OLFACTORY CORTEX

While there is a plethora of neuromodulators that might
participate in regulating aO1 dynamics, here we will discuss
a subset that is particularly implicated through the existing
literature. The neuromodulator acetylcholine (ACh) affects both
behavioral and neural measures of odor discrimination and
generalization. ACh selectively inhibits intrinsic activity in
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FIGURE 1 | Schematic of categorical learning in primary olfactory cortex. (A) Odor stimuli as high-dimensional feature vectors. (Top) a familiar odor (A) is
characterized by a distribution of odor component concentrations (horizontal box row, high concentration indicated by dark coloring). A novel odor (B) is shown
below that has considerable overlap with odor A in its component distribution. (Middle) absolute difference in component concentration between odors A and B (top
box row) and the same difference but sorted according to value (bottom box row). (Bottom) the original odors A and B component distributions shown in panel (A)
but sorted according to component similarity. The left-hand side reflects components that are most similar between the odors, while the right-hand side reflects
components that are the most dissimilar, supporting generalization and discrimination respectively. (B) Low dimensional embeddings of odors A and B according to
maximum discrimination (top) or generalization (bottom). Each dot represents one exposure to an odor (odors A and B, color-coded by black and red, respectively).
The embeddings are computed using the top two (top panel) and bottom two (bottom panel) principal components (D1 and D2) of component distributions across
the odors. The embeddings highlight that within overlapping odor distributions, there are embeddings that may dynamically cater to either discrimination (top) or
generalization (bottom) depending on component weighting. (C) Schematic of proposed role of modulatory system regulation of generalization-discrimination
balance during odor learning through regulation of recurrent primary olfactory cortical connections. (Left) Recurrent connections (gray lines) between neurons (gray
circles) represent primary olfactory cortical ensembles. When faced with a novel odor stimulus, modulatory tone (purple frames) regulates activity in recurrent
connections which biases learning between generalization and discrimination. High modulatory tone inhibits recurrent activity (top, indicated by thick frame and thin
connections), while low modulatory tone boosts recurrent activity (bottom, indicated by thin frame and thick connections). Through learning (green box, unknown
mechanisms), the primary olfactory cortex either sets up categorical representations that discriminate a novel odor into a de novo representation separate from a
familiar odor (top panel) or generalizes the novel odor into an existing familiar odor representation (bottom). The middle panels schematically illustrate neural phase
space diagrams. The 2D surface represents variable neural ensemble activations that then through attractor dynamics converge to an invariant and categorical
response (vectors leading to filled circles). The top panel shows the neural phase space resulting from a de novo categorical representation reflected in two fixed
point attractors (black and red circles, familiar and de novo representations, respectively), while the bottom panel shows the neural phase space resulting from
generalizing a novel odor into a familiar representation as reflected in a single fixed-point attractor (black circle). (Right) attractor dynamical landscapes associated
with the neural phase space diagrams in the middle. Filled circles denote attractor basins.

recurrently connected cortices without affecting afferent input
responses (Hasselmo and Bower, 1992), proposed to be a
mechanism that switches between recognizing familiar stimuli

to rapidly encoding novel stimuli in auto-associative networks
(Hasselmo et al., 1992). Interestingly, the same mechanism
also minimizes interference between responses to novel and
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familiar inputs (De Rosa and Hasselmo, 2000). Pharmacological
manipulation studies have shown that ACh plays a critical role in
perceptual learning: odor discrimination learning is impaired by
muscarinic ACh receptor antagonists and facilitated by agonists
(Chapuis and Wilson, 2013). Importantly, these effects are limited
to the acquisition phase, pointing to a central role for ACh in the
initial formation of cortical odor representations.

Noradrenaline (NA) also affects odor learning and is involved
in novelty processing. Like ACh, NA activation selectively
suppressed aO1 recurrent activity while leaving afferent inputs
unaltered (Hasselmo et al., 1997), and was proposed to function
as a reset signal in response to novelty, shifting the system
from retrieval mode to encoding mode (Bouret and Sara, 2005;
Grella et al., 2021). Odor discrimination learning is impaired
by phasic stimulation of the noradrenergic locus coeruleus
(LC) and facilitated by NA antagonists (Ghosh et al., 2021).
In the hippocampus (another recurrently connected cortical
structure), LC stimulation can induce ensemble reconfigurations
(remapping) in a familiar environment, suggesting that it is
sufficient to initiate formation of novel representations even in
the absence of novelty. In a novel environment, inhibition of
LC causes reinstatement of an existing hippocampal ensemble,
demonstrating that LC is necessary for generating novel
representations (Grella et al., 2019) at least in the hippocampal
system. LC is a source of dopamine (DA) in addition to NA. DA
is involved in rapid generation of novel cortical representations.
While novel combinations of familiar stimuli lead to DA release
from the ventral tegmental area, novel stimulus features cause
DA release from the LC, which is required for the formation
of episodic representations in the hippocampus (Duszkiewicz
et al., 2019). In the olfactory system, NA is necessary for
discrimination learning and pattern separation, and both NA
and DA antagonists block the effects of phasic LC stimulation
on olfactory discrimination learning (Shakhawat et al., 2015;
Ghosh et al., 2021). An interesting extension from these findings
is that attentional state may through neuromodulators change
categorical learning rules (Thiele and Bellgrove, 2018).

CATASTROPHIC FORGETTING AND
ODOR LEARNING

Natural Odors Are Extraordinarily
Variable but Specific Spatiotemporal
Contexts Tend to Associate With Distinct
Odor Subsets
As a consequence of natural exploration, it is highly likely
that an animal in the wild continually encounters and learns
novel odor stimuli throughout its lifetime. With continual
learning, the olfactory system must maintain the established
representational catalog while incorporating de novo categorical
representations. Abrupt destructive interference between new
learning and previously learned representations is termed
catastrophic forgetting [as opposed to advantageous forgetting
(Migues et al., 2016)] and is a challenge in state-of-the-art
artificial neural networks (ANNs) (Kirkpatrick et al., 2017;

Kaplanis et al., 2018). The brain clearly overcomes this problem;
the rodent olfactory system has a large capacity to learn novel
inputs with minimal interference, even when previously learned
representations are not frequented (Staubli et al., 1987). ANNs
learn by modifying connection weights between model neurons,
so learned representations are therefore sensitive to changes in
connection weights. Continual ANN learning involves modifying
these weights in response to training sets that contain novel
stimuli without revisiting familiar stimuli. Weight changes
introduced by the novel stimuli can cause abrupt forgetting of
previously learned representations because it is impossible for the
network to simultaneously update weights required to implement
the new representation while preserving weights associated with
existing representations. Categorical learning in aO1 may provide
a better understanding of the differences between these learning
rules in biological versus artificial neural networks.

Arguably, because odor representations are synthetic and
categorical, generating de novo odor representations requires
plasticity at distributed recurrent aO1 synapses. As it is
connectional plasticity that causes catastrophic forgetting in
ANNs, it implies that any biological mechanism that implements
continual categorical learning also needs to modulate learning
rules at the relevant synapses to avoid catastrophic forgetting.
In Kirkpatrick et al. (2017), part of the proposed solution
was to make synaptic learning rates inversely proportional
to their influence in previously learned representations. This
in effect forces learning new stimuli into separate subspaces
of the network that preserves robustness in the remaining
space. In subsequent work (Kaplanis et al., 2018), more
complex and biologically inspired connections that implement
synaptic variables on multiple timescales offered improved
robustness against catastrophic forgetting. Both solutions may
have analogies to structural plasticity at dendritic spines as
observed in cortical networks.

Neuromodulators and Representational
Robustness in aO1 During Continual
Learning
Apart from scaling recurrent excitability, neuromodulators are
also perfectly positioned to control several parameters of synaptic
plasticity in aO1. A large body of literature, although mostly
based on ex vivo and in vitro experiments, has demonstrated that
several modulatory systems powerfully regulates metaplasticity—
the plasticity of plasticity—across a range of physiologically
relevant timescales (see Brzosko et al., 2019 for review). Specific
to our discussion, modulation can drastically alter local learning
rules that may be key to how continual categorical learning
is implemented in aO1 without interfering with previously
learned representations. For instance, modulatory inputs to
the hippocampus can flip the polarity of long-term plasticity
(Sugisaki et al., 2016) and set the “contrast” of plasticity by
changing the threshold for postsynaptic spiking needed to induce
plasticity in prefrontal cortex (Couey et al., 2007). Depending on
the combinatorial activity of several neuromodulators influenced
by behavioral state, synaptic dynamics in aO1 may enter
specific regimes that cater to distinct learning criteria including
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protection of learned representations from formation of new
representations. However, no experiments to our knowledge
have so far targeted these interactions in vivo in recurrent
networks like aO1.

NOVELTY DETECTION IN THE PRIMARY
OLFACTORY CORTEX

A central question in categorical learning is what defines a novel
stimulus? Although one can generate novel stimuli in any sensory
modality, there is a difference between a novel combination of
familiar features and novel features in themselves. In the visual
system for example, it is not the features in V1 that are novel,
rather the constellation of these in higher order cortices. In the
olfactory system, single glomerular activations represent familiar
features, and aO1 representations their unique constellation.
We have little insight into how odor novelty is detected in the
mammalian olfactory system. One structure that is intimately
involved with novelty detection is the hippocampus. Part of
the aO1 (AOC) receives a particularly strong direct projection
from the hippocampus that might take part in novelty detection.
However, the speed with which rats can detect and respond to
odor novelty is faster than a single sniff (50–100 ms) (Wesson
et al., 2008). Inactivation of direct hippocampal inputs to aO1
does not impair novel odor detection in mice (Aqrabawi and
Kim, 2018a). It is therefore likely that odor novelty detection is
computed very rapidly and locally within the olfactory system
itself. Future work is needed to better our understanding of the
mechanisms that implement novelty detection in the olfactory
system. However, the threshold for novelty detection may be
regulated through modulation of local recurrent activity and
plasticity in aO1.

DISCUSSION

Rodent olfaction provides an excellent model system for
understanding how the brain flexibly generates novel categorical
representations and how these are integrated with existing
representations. The aO1 is a unimodal sensory area positioned
only two synapses from the sensory organ, minimizing synaptic
non-linearities that otherwise obscure transformations from
sensory inputs to cortical responses. Unlike in the hippocampus,
where novelty detection unfolds with exploration and is therefore
more difficult to determine with temporal precision, novel odor
stimuli and their detection by the experimental subject can
be precisely timed. Novel odor stimuli with predefined feature
correlations can readily be designed using odor mixtures, making
it trivial to repeatedly provide novel stimuli to the same subject.
It may therefore be possible to disentangle activity motifs on
the population level that are specific to novelty detection and
continual categorical learning versus the stimuli themselves.

Several outstanding questions about categorical
learning in aO1 remain.

(1) Do familiar odor representations in aO1 undergo
reformatting in response to de novo odor representations,

and if so, does that reformatting reflect statistical learning
rules that dynamically optimizes separability between
representations?

(2) How does neuromodulatory activity change population
dynamics on short (seconds) and intermediate (minutes-
hours) timescales within aO1?

(3) Can catastrophic forgetting of established odor
representations be induced by manipulating modulatory
activity in aO1 during continual learning?

(4) How does aO1 activity develop across sniffs during first
exposure to a novel odor?

(5) What distinguishes subsections of aO1 activity during
categorical learning; is acquisition and storage of
representations implemented by separate neural
populations?

Making progress will require recording large ensembles
of aO1 neurons that are trackable across recording sessions.
Furthermore, understanding the dynamics of population activity
on the timescale of individual sniffs requires that the recording
technique offers high temporal resolution, and that odor
delivery is controlled with high temporal precision. Recent
advances in electrophysiological recording techniques, such as
Neuropixels silicon probes (Steinmetz et al., 2021) that allow
simultaneously recording on the order of 103 neurons (Gardner
et al., 2022), offer attractive methodological approaches that
meet these requirements. Virtual reality techniques are well
established in systems neuroscience (Fiser et al., 2016) and
a good match with electrophysiology given the parametric
stimulus control and richness of behavioral readout that it
supports. Finally, optogenetic or chemogenetic techniques can be
leveraged to gain experimental control over specific modulatory
system inputs to aO1.

In conclusion, categorical learning represents a fundamental
neural computation that is attractive on several levels across
several academic disciplines, and the olfactory system offers
unique experimental advantages toward understanding this
neural computation.
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