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Abstract 
An ecosystem's ability to respond and maintain key functions during environmental change are 

largely determined by its biodiversity. As human activities continue to alter the composition of 

biological communities at all scales there is a need for up-to-date status of biodiversity, 

including how marine fisheries may affect diversity in coastal systems. In this study, I assessed 

the effect of protection from fishing on a coastal fish community in the Tvedestrand fjord on 

the Norwegian Skagerrak coast. I compared fish species richness, diversity, composition, catch 

per unit effort (CPUE), and fish size (body length) between a marine protected area (MPA) and 

a nearby fished area (i.e., the control). Sampling was conducted by beach seine at eight fixed 

stations, three in the MPA area and five in the control area, every year from 2011-2021. The 

MPA was established in 2012 and our sampling therefore included data from before protection 

(i.e., a before-after-control-impact (BACI) design). In total, more than 26 thousand fish 

representing 31 species was collected and measured for length. No effect of protection was 

detected on either species richness, diversity or evenness. Significant differences in species 

composition were, however, detected between the two areas after protection. In particular, 

goldsinny wrasse (Ctenolabrus rupestris) accounted for this variation (2012-2015: 27 %, 2016-

2021: 14 %). All species combined, CPUE was significantly higher after protection, but this 

increase was seen in both the control area and the protected area, and therefore cannot be linked 

to protection. Species combined, mean fish length inside the MPA was significantly higher than 

in the control area, but this difference was also seen in the data collected before protection. The 

samples of cod (Gadus morhua), as well as three-spined stickleback (Gasterosteus aculeatur), 

black goby (Gobius niger) and goldsinny wrasse were analysed in further detail. There was a 

tendency for an increase in CPUE of black goby, cod and goldsinny wrasse after protection, but 

this increase could not be linked to protection as it was also seen in the control area. Body length 

of cod was significantly higher in the MPA area compared to the control area, but the analyses 

did not detect any change in this relationship in response to protection. For goldsinny wrasse, 

black goby and three-spined stickleback there was a greater tendency for a decline in mean 

body size towards the late period in the MPA area compared to the control area. The latter 

points toward a response to full protection, potentially involving biological control mechanisms 

and trophic interactions. Taken together, however, the major findings in this study suggest that 

MPAs may not necessarily have clear and predictable effects on diversity in the short- to mid-

term. Even longer-term monitoring involving more refined data collection and diversity 

measures could be necessary to reveal community-level consequences of protection. 
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1 Introduction 

1.1 Biodiversity and human impacts 
The planet is subject to human impacts, altering the biodiversity of communities and 

ecosystems in unpredictable ways (Pimm et al., 1995; Magurran, 2016). The concept of 

biodiversity represents the variety and degree of heterogeneity of organisms across all levels of 

the nature hierarchy, from molecules to ecosystems (Morris et al., 2014). Traditionally, the 

focus has been on species diversity, however other forms of diversity, such as phenotypic and 

genetic variation, are also significant and useful (Morris et al., 2014). Over the course of 

evolution, biodiversity has increased as species have adapted to their environments and evolved 

from one another (Allen and Gillooly, 2006). Over the past century, however, the trend has 

shifted, and biodiversity is declining throughout the world's ecosystems (Pimm et al., 1995; 

Zedler et al., 2001; Worm et al., 2006).  

Ecosystems dominated by humans are experiencing an accelerating loss of populations and 

species, with little knowledge of the consequences (Worm et al., 2006). As global biodiversity 

losses accelerate, it may reduce ecosystems resilience and ability to resist change and decrease 

ecosystem function and services (Hooper et al., 2005). Understanding how ecological 

assemblages respond to novel conditions is essential in conserving biodiversity in a rapidly 

changing world (Pandolfi and Lovelock, 2014). Notably, all ecosystems change; with or 

without human impact there will always be a turnover in both presences of species and 

abundance (Magurran et al., 2015). For instance, fish populations worldwide are dynamic and 

subject to constant fluctuations over spatial and temporal scales (Cushing, 1994). These 

fluctuations are complex and rely on direct and indirect biological, environmental and 

anthropogenic effects (Fromentin et al., 1997).  In protecting biodiversity, this baseline turnover 

should be considered (Magurran, 2016).  

1.2 Biodiversity in the coastal zone 
The coastal zone includes some of the world's most productive ecosystems (Waycott et al., 

2009), containing habitats supporting a wide range of marine organisms with access to food, 

nursery grounds, and shelter from predation (Botsford et al., 1997; Jackson et al., 2001; Beck 

et al., 2003; Sheaves et al., 2006; Rönnbäck et al., 2007; Bergström et al., 2016). Several biotic 

and abiotic factors determine the distribution of fish species in these areas (Lekve et al., 1999; 

Pecuchet et al., 2016) and as different fish species consume different resources, the trophic 
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levels and quantity of organisms will differ (Elliott and Dewailly, 1995; Agostini and Bakun, 

2002; Beck et al., 2003; Bakun, 2013).  For instance, predators may serve as agents of biological 

control (Symondson et al., 2002). A decline in the abundance of a dominant predator in an 

ecosystem can cause trophic cascades (Casini et al., 2008; Heithaus et al., 2008; Baum and 

Worm, 2009). These changes may be accompanied by a decline in intra-species variation and a 

loss of biodiversity, followed by a reduction in resilience and durability of the affected system 

(Hutchings, 2000; Frank et al., 2005; Worm et al., 2006; Hutchings et al., 2012; Hutchings, 

2015).  

As marine species are ultimately dependent on suitable habitats, their quality and quantity may 

serve as limiting factors (Carr, 1989; Vytenis and Joseph, 1993; Gibson, 1994). Some species 

live permanently in coastal habitats, while others may be present as juveniles, migrate 

seasonally or pass by (Pihl and Wennhage, 2002). This may result in altered species 

composition related to season, time of day and whether or not the habitat contains vegetation 

(Pihl and Wennhage, 2002) 

Grazers, such as gastropods (Gastropoda) and amphipods (Amphipoda), provide food for 

mesopredators like wrasses (Labridae), sticklebacks (Gasterostediae), and gobies (Gobiidae) 

(Östman et al., 2016). Therefore mid-trophic mesopredatory fish are an essential part of the 

coastal ecosystems (Bergström et al., 2016). Traditionally these species have not been 

commercially exploited, but a fishery for wrasse has increased since the 1990s because of their 

role as cleaner-fish in the salmonid aquaculture industry (Darwall et al., 1992; Deady and Fives, 

1995; Cowx et al., 2003). Even though gobies are not interesting commercially, they serve as 

an intermediate trophic level for connecting smaller benthic species and zooplankton with 

piscivores fish and other predators (Salvanes and Nordeide, 1993; Schückel et al., 2013). 

Changes in the abundance of mesopredators can therefore have consequences for other species 

in the coastal ecosystems (Bergström et al., 2016). Larger piscivorous fishes, like gadoids 

(Gadidae), occupies the higher trophic role as top-predators (Frank et al., 2005; Östman et al., 

2016). They are attracted to the abundance of small mesopredators and influence these prey-

populations through top-down control (Frank et al., 2005; Östman et al., 2016).  Following 

intensive harvesting and the collapse of cod (Gadus morhua) populations in northern European 

coastal systems (Fernández-Chacón et al., 2017; Rogers et al., 2017), abundant mesopredators 

like wrasses are probably involved in trophic cascades, and could influence the state of seagrass 

beds and species occupying these habitats, by preying on algae-grazing amphipods and isopods 

(Östman et al., 2016). 



 3 

1.3 Biodiversity and selective fisheries  
Human exploitation strongly impacts fish dynamics and has been the main reason for the 

collapse of many fish populations (Garrod and Schumacher, 1994; Hutchings, 1996; Myers et 

al., 1996; Cook et al., 1997; Fromentin et al., 1997). Since the 1950’s, fishing has been the 

driver with the greatest impact on marine biodiversity (IPBES, 2019). In order to maximize 

profits, fisheries are selective and usually target large individuals, as well as specific species, 

during certain times of the year (Zhou et al., 2010; Beardmore et al., 2015). Such fishing 

pressures may act on growth and behavioral traits and result in evolutionary changes to fish life 

histories as well as depletion of fish abundance (Hutchings, 2000; Jackson, 2001; Hutchings, 

2005; Olsen et al., 2005; Fenberg and Roy, 2008; Olsen et al., 2009; Olsen and Moland, 2011; 

Olsen et al., 2012; Fernández-Chacón et al., 2017; Halvorsen et al., 2017b; Hollins et al., 2018). 

Additionally, fisheries management often aims to protect smaller fish by introducing minimum 

size limits, allowing them to reach maturity. The result may be fisheries induced selection 

against fast growth and early maturation, ultimately leading to a dominance of smaller, younger 

individuals (Berkeley et al., 2004; Olsen et al., 2004b; Fenberg and Roy, 2008; Zhou et al., 

2010; Olsen and Moland, 2011). Over generations this may lead to altered life history traits 

associated with lower productivity (Olsen et al., 2005; Hollins et al., 2018). For territorial 

species that display high site-fidelity, Shepherd et al. (2010) found that size structure can act as 

an indicator of fishing pressure. Furthermore, by assuming that reproductive output is 

proportional to size, management risks ignoring the contribution of larger mothers to 

replenishment may compromise sustainability (Barneche et al., 2018). Fecundity of larger and 

older females is higher than that of younger and smaller ones, and they will probably devote 

more energy to each offspring and enhance their performance (Berkeley et al., 2004). Larger 

mothers could also indicate better quality larvae and timing of the spawning season (Meager et 

al., 2018). Notably, body size is not the only trait that could influence fishing gear selection 

(Hollins et al., 2018). Selection on bold, mobile, fast growing genotypes may lead to depletion 

of catch rates, and alter physiological traits within populations, affecting resource requirements, 

resilience, distributions, and responses to environmental changes (Hollins et al., 2018).  

1.4 Biodiversity and fisheries management 
Traditionally, fisheries management has focused on the commercially important species, while 

predators and prey of these species often has been ignored (Pikitch et al., 2004). As a 

consequence, the need for a more holistic management approach has grown (Pikitch et al., 
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2004). To shift away from the singular-species focus of traditional fisheries management, and 

toward an ecosystem-based approach, indicators of ecosystem health must be applied 

(Greenstreet and Rogers, 2006).  This requires knowledge and identification of the area's fish 

communities (Costello and Chaudhary, 2017; Kraufvelin et al., 2017). In addition, to manage 

ecosystems effectively, ecological reference points must be identified, against which 

management objectives may be set (Greenstreet and Rogers, 2006). By identifying 

characteristics and traits of fishing communities, we may predict which species are key to 

ecosystem function (Wootton and Oemke, 1992). Identifying the relative frequency and 

distribution of species can, however, be challenging in topographic complex habitats (Harvey 

et al., 2007). With the new Marine resources Act in 2009, conservation and sustainable use was 

integrated in the management of Norwegian fisheries and conservation of biodiversity was 

stated as being an important part of sustainable management (Gullestad et al., 2017).  

1.5 Biodiversity measures 
Biodiversity is a comparative measure, and refers to the diversity of organisms in a community 

(Laamanen et al., 2017). It includes all aspects of the diversity of life, and can be approached 

from multiple angles (Loreau, 2010). Therefore, quantifying biodiversity remains a challenge 

even after deciding on the type of diversity to measure, because there is no one index to 

summarize the concept (Morris et al., 2014). 

Species richness, defined as the number of species in a community, is one of the main indexes 

used to describe biodiversity (Peet, 1974; Gallardo et al., 2011), and a fundamental component 

of many ecological models and conservation strategies (Gotelli and Colwell, 2001). Because 

species richness can positively impact many ecosystem functions (Hooper et al., 2005; 

Balvanera et al., 2006), it is widely regarded as a crucial indicator in quantitative assessments 

of community status (Dorazio et al., 2006).  

Species evenness can be defined as the probability that two individuals selected at random 

belong to the same species, and can also be used to describe the distribution of individuals 

among different taxa (Laamanen et al., 2017). Both Shannon's and Simpson's diversity indices 

combine richness and evenness. Shannon's focuses on rare species, whereas Simpson's focuses 

on the more common (Morris et al., 2014). 

Lastly, the composition of species refers to the quantity of each species in a sample (Birks, 

2012). Analyzing species composition can be done using analysis of similarity (ANOSIM) or 

permutational analysis of variance (ADONIS), which compare the species composition 
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between different groups (areas, seasons, years) (Birks et al., 2012). A similarity of percentages 

(SIMPER) is often used with these parameters to determine which species are responsible for 

the variation between the groups, and identify "significant taxa" (Clarke, 1993). These are the 

species that contribute to the most variation between the groups (Clarke, 1993). 

1.6 Marine protected areas 
An increasing number of marine protected areas (MPAs) have been established for the purpose 

of restoring depleted populations, protecting habitats, maintaining and restoring ecosystems and 

promoting integrated coastal management (Lubchenco et al., 2003; Fernandes et al., 2005; 

Lester et al., 2009; Gaines et al., 2010; Fenberg et al., 2012; Baskett and Barnett, 2015).  A no-

take MPA refers to a specific geographic area in the ocean where no harvesting is allowed. The 

primary expected response to a no-take MPA is increased abundance and biomass of harvested 

species (Lester et al., 2009). Indeed, MPAs have been found to positively affect abundance, 

biomass, body size and age of harvested fish populations (Moland et al., 2013; Baskett and 

Barnett, 2015; Halvorsen et al., 2017b; Fernández‐Chacón et al., 2020). Also, there is growing 

evidence for MPAs to prevent fisheries-induced evolution and replenish populations and export 

of eggs, larvae and adults to adjacent fishing grounds (Stobart et al., 2009; Goñi et al., 2010; 

Harrison et al., 2012; Sørdalen et al., 2020).  

Protection from fishing is expected to restore natural size structures of harvested fish, as more 

individuals survive to reach larger sizes (Baskett and Barnett, 2015; Fernández‐Chacón et al., 

2020), followed by increased reproductive output due to more mature individuals as well as 

increased fecundity as maternal age and size increase (Díaz et al., 2011; White et al., 2013; 

Barneche et al., 2018). On the other hand, body size at age may decline in MPAs if growth is 

increasingly density-dependent when populations recover towards their carrying capacity 

(Taylor and McIlwain, 2010). In relation to this, no-take MPAs also provides unique 

opportunities for studies on fundamental ecological processes and vital rates, by eliminating 

harvest mortality as a driver of change in the ecosystems (Moland et al., 2013).  

The effects of MPAs are related to their design. Individuals with small home ranges may 

experience higher survival, as they avoid fishing mortality by spending most of the time inside 

the MPA, and the effects of protection may be higher for these species  (Moland et al., 2013; 

Villegas-Ríos et al., 2016). Consequently, the responses to MPAs are shaped by which species 

were harvested before the establishment, which species have characteristics that promote 
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greater responses to protection, and cascading responses across protected and harvested areas 

that affects the whole community (Baskett and Barnett, 2015). 
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2 Study objective/aim of the study 
In this project my aim is to assess the impact of protection from fishing on a coastal fish 

community in a region known for intense and size-selective fishing pressure. To this end, I 

compare the composition of fish species and sizes inside a no-take MPA to a control area 

outside the MPA, where fishing is allowed. I use a ten-year dataset collected with beach seine 

from three sites inside the MPA and five neighboring sites outside the MPA. I also compare 

with data collected the year before the establishment of the MPA.  

Specifically, I analyze species richness, diversity, evenness, composition, catch per unit effort 

(CPUE), and length measures of fish caught inside and outside the MPA against the following 

hypotheses:  

1. I hypothesize that the species richness, diversity, and evenness inside the MPA has 

increased during the years of protection, compared to the control area. 

2. I hypothesize there is a difference in the composition of species between MPA and 

control area post-protection, and that harvested species contribute most to this 

difference. 

3. I hypothesize that overall CPUE and mean length of fish inside the MPA has increased 

during the years of protection, relative to the control area. 

4. I hypothesize that CPUE of harvested fish species has increased inside the MPA relative 

to the control area, and, if this is the case, that non-targeted fish species of mid trophic 

levels have decreased in abundance. 

5. I hypothesize that harvested fish species, being protected from fisheries-induced 

selection, has increased in body size inside the MPA.  

6. I hypothesize that non-targeted fish species of mid trophic levels may have decreased 

in mean length if abundance of predators or competition from other mid trophic level 

fish increase.  
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3 Materials and methods 

3.1 Skagerrak coast study system 
This study was conducted in coastal Skagerrak in southern Norway. Coastal Skagerrak waters 

are influenced by a mixture of brackish Baltic Sea water passing through the Kattegat, by North 

Sea coastal water, and by freshwater runoff from rivers (Albretsen et al., 2012). Streaming 

westward in the Skagerrak, the low salinity Norwegian Coastal Current continues northward 

along the Norwegian coast (Albretsen et al., 2012).  

Several commercially important species of fish spawn and hatch in Norwegian coastal waters 

(Sætre et al., 2003). Historically, a variety of fisheries have been conducted in Skagerrak 

(Knutsen et al., 2022). Today, commercial fishing in this region is largely driven by bottom 

trawls that capture Northern shrimp (Pandalus borealis) (Knutsen et al., 2015). Due to decades 

of overfishing and pollution, water quality has been degraded, biodiversity has been lost, and 

traditional coastal fisheries have largely collapsed (Johannessen et al., 2012; Obst et al., 2018; 

Frigstad et al., 2020). Recent declines in both abundance and size of cod is particularly 

illustrative (Rogers et al., 2017). Cod fisheries in Skagerrak are size selective and unsustainable 

(Fernández-Chacón et al., 2017). The pressure on cod is enhanced by ocean warming which 

correlates with decreased cod growth rates (Rogers et al., 2011). More generally, fish 

communities in Skagerrak have now shifted towards smaller pelagic species, compared to what 

was seen during the colder period in the 1960s and the 1970s  (Barceló et al., 2016; Fernández-

Chacón et al., 2017).  

Typical habitats in nearshore Skagerrak waters are eelgrass, kelp and sand (Rozas and Odum, 

1988). Vegetated habitats, like kelp and seaweed, forms the basis for food webs with similar 

structure (Östman et al., 2016). Eelgrass and macroalgae beds are highly productive and provide 

a wide range of marine organisms with food, nursery grounds, and refuge from predators 

(Jackson, 2001). They contribute to coastal and benthic food webs by exporting organic 

material and biomass (Heck et al., 2008). As a result of the continual rearranging of the substrate 

due to wind and waves, sand habitats, containing either rock fragments or biological fragments, 

are dynamic feeding locations (Lasiak, 1984). A high concentration of nutrients yields an 

abundance of zooplankton, and bad visibility caused by turbidity offers good protection from 

predators (Lasiak, 1986).  
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3.2 Sampling design 
The MPA included in this study was established in June 2012 with the aim of restoring a local 

cod population, and it is centered around an important cod spawning site in the Tvedestrand 

fjord (Ciannelli et al., 2010; Espeland et al., 2016) (Figure 1). The MPA covers 1.5 km2 and is 

a strict no-take area where all harvesting of marine resources is forbidden. The Directorate of 

Fisheries, the Coast Guard and local police collaborate on policing the MPAs (Moland et al., 

2013). In addition to cod spawning sites, the MPA holds important near-shore nursery and 

feeding habitats consisting of seagrass and seaweed, in addition to deeper, cooler basins (Freitas 

et al., 2015; Freitas et al., 2016). 

Figure 1: Map of the study area in Tvedestrand. Red shaded area indicates no-take zone (referred to as MPA in 
this thesis), and green shaded areas partially protected areas. Blue dots represent beach seine sampling stations 
in the MPA, red dots in the control areas. Map created using Yggdrasil and maps.google.com. 

The fish community was sampled with a beach seine and followed the standard approach 

maintained during a century-long monitoring program in Skagerrak (Lekve et al., 1999). Beach 

seines are used to estimate fish assemblage composition and length distribution  (Tveite, 1971; 

Tveite, 1984). Since 1919, a beach seine survey has been conducted annually (except the period 

1940-1944) along the Norwegian Skagerrak coast in September-October to monitor local fish 

populations, with a focus on recruitment of cod. The seine is 38 m long, 3.8 m deep and has a 

20 m long rope in each end. The mesh size can be stretched to 14 mm and one haul covers up 

to 390 m2 (Tveite, 1971). It is deployed from a boat and rowed in a semicircle from the shore. 

The depth at the sampling sites varies from about 3 to 15 m (Fromentin et al., 1997). The beach 

seine captures mainly the juvenile stages of larger species living in a wider range of habitats, 
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such as cod, as well as older life stages of smaller species such as gobies and wrasses (Barceló 

et al., 2016). 

For this study, I included all beach seine stations from the historic monitoring program that are 

located in Tvedestrand, representing five control sites (outside the MPA) and three impact sites 

(inside MPA) respectively (Figure 1, Table A-1). The control areas are in the Lyngørfjorden 

area approximately 3-9 kilometers east of the Tvedestrand fjord (Figure 1). Stations inside the 

MPA were only sampled since 2011, one year before the implementation of the MPA. Although 

longer time-series are available from the control sites we restricted our analyses to data 

collected during 2011-2021, for a direct comparison with the MPA sites. This study design 

corresponds to a before-after control-impact (BACI) contrast. The BACI method is regarded as 

the gold standard for assessing effect of MPAs (Russ, 2002; Osenberg et al., 2011; Moland et 

al., 2013). This design is effective due to the ability to detect the impacts from before to after, 

when compared to control areas where impacts persist (Moland et al., 2021).  

3.2.1 Identification of species, CPUE and length 

In the annual survey conducted by the Institute of Marine Research (IMR), fish length is 

measured for the first 100 cod per haul, and the first 50 individuals of other species (Tveite, 

1971; Tveite, 1984). Length-measurements are rounded down to the nearest centimeter. Catch 

per unit effort (CPUE) in this study refers to the number of individuals caught per beach seine 

haul.   

3.3 Analyses of species composition 
The ANOSIM, ADONIS, and SIMPER approaches were used to compare species compositions 

(Oksanen et al., 2020).  

ANOSIM is an analysis of similarity, measuring the difference between the mean ranks and 

determines whether the assemblage composition varies between and within groups (Birks et al., 

2012). In this study, it was used to analyze similarities by comparing areas and periods by 

species composition. The number of permutations used was 999. In general, analysis of 

similarities uses distance or dissimilarity measures to examine statistically significant 

differences in species assemblages between different groups (Clarke, 1993; Clarke and 

Warwick, 1994; Clarke and Warwick, 2001; Birks et al., 2012; Legendre and Birks, 2012). 

Oksanen et al. (2020) suggest that ADONIS provides a more robust non-parametric analysis of 

variance with multivariate response data and should be preferred over ANOSIM (Birks et al., 



 11 

2012). ADONIS partitions sums of squares by using semi-metric and metric distance matrices, 

and because it partitions the sums of squares of a multivariate data set, it is directly analogous 

to the multivariate analysis of variance (MANOVA) (Anderson, 2001; McArdle and Anderson, 

2001). Anderson (2001) and McArdle and Anderson (2001) refers to the method as 

"permutational manova", and due to its inputs of linear predictors, and a response matrix of any 

number of columns (from two to millions), it is a robust alternative to parametric MANOVA 

and to ordination methods for explaining the relationships between experimental treatments and 

uncontrolled covariates. The function anosim() in R (R Core Team, 2021) can also confound 

within-group and between-group differences (Warton et al., 2012). For these reasons, adonis2() 

was the preferred analysis in R in this study, to compare species composition of the control and 

MPA areas over time (Oksanen et al., 2020). 

The similarity percentage test SIMPER was used to identify which taxa accounted for the 

differences between the groups detected by ANOSIM and ADONIS (Clarke and Gorley, 2006; 

Sokal et al., 2008). The species was arranged in decreasing order of their importance in 

determining dissimilarity between the areas in the different periods based on their overall 

percentage contribution to average dissimilarity (Clarke and Gorley, 2006).  

3.4 Species richness, evenness and diversity 

3.4.1 Species richness 

Species richness was quantified inside the MPA and in the control area as the number of species 

present in a given beach seine haul. 

3.4.2 Species evenness  

Evenness was calculated using the Evenness index (E) using the following equation (Pielou, 

1969): 

𝐸 = 	
𝐻´

𝐻𝑚𝑎𝑥 

where H is the Shannon diversity index (see below), and Hmax is number of species present in 

a given beach seine haul. The index ranges between 0 and 1. If the result is 0, it indicates that 

all biomass is accounted for by one species (low diversity). As the number approaches 1, it 

indicates that all species are equally abundant. (Mulder et al., 2004).  
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3.4.3 Species diversity (Shannon and Simpson) 

Shannon-Wiener diversity index (H’) is a measure of diversity, given by the equation (Shannon, 

1948): 

𝐻′ = −+𝑝! 	𝐼𝑛𝑝!

"

!#$

 

where n is the total number of species and pi the fraction of each species i.  The range is between 

0 and 5, and the closer to 5, the more diverse the species in the sample are. A result of 0 means 

only one species is present. Consequently, if the index is low, it indicates some species dominate 

(Shannon, 1948; Morris et al., 2014). Shannon diversity assume all species in a specific 

community is represented and randomly sampled (Peet, 1974).  

Simpson`s diversity index (D) also measures diversity, and is given by the equation (Simpson, 

1949): 

𝐷 =
𝑛 − 1
𝑙𝑛𝑁  

Where n is the number of species and N the number of individuals, and increases with species 

richness and ranges between 0 and 1 (Simpson, 1949). This index emphasizes evenness and 

common species to a greater extent than Shannon diversity index (Morris et al., 2014).  

According to both indices, it is assumed that all species within a community are included and 

randomly sampled (Peet, 1974; Gamito, 2010). In this study, the diversity indexes were 

calculated for each beach seine haul. Community was defined as all species potentially captured 

by the beach seine. It was also assumed that the sampling was consistent, with a constant chance 

of catching the different species.  

3.5 Selected species 
Black goby (Gobius niger), goldsinny wrasse, Atlantic cod and three-spined stickleback 

(Gasterosteus aculeatur) were selected for in-depth analyses based on their perceived 

ecological role and the fact that they were captured in sufficient quantities. In the Skagerrak 

area, cod and goldsinny wrasse are harvested, while black goby and three-spined stickleback 

are not. Therefore, their reactions to protection are expected to differ. 
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3.5.1 Black goby 

Black goby has little commercial value (Pethon, 2019), and is not subject of fisheries. The 

species is found in coastal areas from the shore down to a depth of about 70 m, from Cape Blanc 

in West-Africa to western Norway and the Baltic Sea. It is distributed in Eastern Atlantic and 

Mediterranean Sea and eastward to the Suez Canal (Vesey and Langford, 2006; Pethon, 2019).  

The black goby is a mesopredator and inhabits mud and sandy bottom, but also macroalgae and 

rocky bottoms. It is found in estuaries and tolerates brackish water (Vaas et al., 1975; Pethon, 

2019). It’s diet is variable and depending on habitat (Wennhage and Pihl, 2002). Mating occurs 

in May-August, and males make nests, court, and perform parental care on eggs. Younger males 

can adopt alternative mating tactics, sneaking into nests while spawning occurs (Immler et al., 

2004). The black goby may reproduce repeatedly during several seasons, and may live for up 

to 5 years (Magnhagen, 1990). Larvae are pelagic and settle in benthic habitats when they reach 

10-12 mm (Pethon, 2019).   

3.5.2 Cod 
Cod is a top predator and key species for coastal fisheries (Freitas et al., 2015; Villegas-Ríos et 

al., 2016; Moland et al., 2021). They feed on a wide variety of prey including mesopredators 

and have the capability to influence these prey-populations via top-down control (Frank et al., 

2005; Östman et al., 2016).  

In coastal Skagerrak, cod is harvested most commonly by hook and line, gillnet, fyke net and 

traps, and as by-catch by coastal shrimp trawlers (Moland et al., 2013). South of 62° the 

minimum legal size is 40 cm (Julliard et al., 2001; Moland et al., 2013). Skagerrak has 

experienced a marked decline in adult cod over the last decades (Svedäng, 2003; Olsen et al., 

2009), with as much as 50 per cent of potentially mature cod may be removed by fishing each 

year (Olsen and Moland, 2011). The last 20 years, there has been exceptionally poor recruitment 

of cod along the Skagerrak coast, accompanied by a reduction in size-at-maturation and size-

at-age (Olsen et al., 2004a; Olsen et al., 2005; Rogers et al., 2017). 

Along the Norwegian Skagerrak coast, genetically different populations of cod can be found on 

a fjord-scale separated by 30 km or less (Jorde et al., 2007). Spawning in the coastal populations 

usually occurs in sheltered basins during February-April (Ciannelli et al., 2010), followed by 

metamorphosis of the pelagic larvae in May-June. At this stage the larvae have reached 3-5 cm 

and settle and feed on the bottom (Gotceitas et al., 1997). Together with most 1-group cod (fish 

in their second year of life) these 0-group cod stay in shallow waters (Fromentin et al., 2000). 
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They prefer vegetated areas that provide food and shelter for habitats. Most of the prey 

organisms are associated with this vegetation, but the youngest individuals also feed on 

planktonic crustaceans (Fjøsne and Gjøsæter, 1996). The 0-group cod will change diet in late 

autumn or winter and feed more on fish (Fjøsne and Gjøsæter, 1996; Bromley et al., 1997), 

such as the two-spotted goby (Fosså, 1991; Wennhage and Pihl, 2002). 

Cod in Skagerrak matures relatively early compared to many other North Atlantic cod 

populations, and different cod populations inhabit different growth rates and age at maturation 

(Olsen et al., 2004a)  

3.5.3 Goldsinny wrasse 

Goldsinny wrasse is increasingly harvested in Skagerrak to be deployed as cleaner fish in 

salmonid aquaculture net pens (Darwall et al., 1992; Halvorsen et al., 2016). Such wrasse 

fisheries are size- and sex selective (Halvorsen et al., 2017b). The fishery is regulated with 

minimum size limits, gear modifications for the escapement of undersized fish and a spring 

fishing closure until 17 June to avoid fishing in the main spawning period (Skiftesvik et al., 

2015). 

Goldsinny wrasse is a mesopredator that connects smaller benthic species and zooplankton with 

piscivores fish and other predators (Salvanes and Nordeide, 1993; Schückel et al., 2013), and 

protection may therefore impose trophic cascades that influence CPUE and length through 

competitive or predatory interactions (Micheli et al., 2004). The species is found from the Black 

Ocean and the Mediterranean to Morocco in the south and Norway in the north (Pethon, 2019). 

Goldsinny wrasses prefer shallow, macroalgae covered, rocky habitats with access to refugee 

such as spaces between rocks (Costello, 1991; Darwall et al., 1992; Norderhaug et al., 2005; 

Pethon, 2019). Their diet consists of a wide range of invertebrates and crustaceans, and they 

constitute as prey for larger predatory fish and seabirds (Costello, 1991; Östman et al., 2016; 

Bourlat et al., 2021; Dehnhard et al., 2021).  

Goldsinny wrasse has pelagic eggs and males defend territories for up to 2m2 (Hilldén, 1981; 

Sayer, 1999; Olsen et al., 2019). Goldsinny may reach a maximum size of 30 cm, in Norway 

28 cm (Darwall et al., 1992; Pethon, 2019). It can live for up to 20 years (Sayer et al., 1995). 

The goldsinny males can be divided in two categories, with territorial males that exhibit typical 

sexual characteristics, and sneaker males that appear to be identical to females and perform 

sneak fertilization (Hilldén, 1981; Uglem et al., 2000). Spawning occurs in spring and early 

summer along the Atlantic coasts (Darwall et al., 1992). 
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3.5.4 Three-spined stickleback 

Three-spined stickleback have been fished since the 18th century and used for flour, fish oil, 

fertilizer, and with their spikes cut off as bait (Pethon, 2019), but there are no active fisheries 

for this species in the Skagerrak area at present. Three-spined sticklebacks also serve as an 

intermediate trophic level for connecting smaller benthic species and zooplankton with 

piscivores fish and other predators (Salvanes and Nordeide, 1993; Schückel et al., 2013). 

The species is found in the northern hemisphere north of 40°N (Pethon, 2019). In Europe, the 

distribution extend south to the Black Sea, Italy and the Iberian Peninsula, in both fresh,- 

brackish and saltwater environments  (Pethon, 2019). In the past, marine three-spiked 

sticklebacks have colonized different freshwater habitats repeatedly, resulting in 

morphological, behavioral, and physiological differences (McKinnon and Rundle, 2002).  

Sticklebacks reach maturity at 1-2 years old (Pethon, 2019) and spawn from April to August 

(Sokołowska and Kulczykowska, 2006). When spawning season begins, males establish 

territories and build nests consisting of vegetation (Wootton, 1973; Jakobsson et al., 1999). 

Female sticklebacks spawn their eggs in the nests, and males guard the nests for the first 4-6 

days after hatching (Wootton, 1973; Pethon, 2019). When they reaches 25 mm, they seek 

shallow water (Pethon, 2019).  Gagnon et al. (2019) found sticklebacks were more abundant in 

habitats with high structural complexity (macroalgae beds and seagrass meadows), possibly 

trading off low predation success for a higher food supply and increased shelter against top 

predators. Their diet consists of isopods, amphipods, copepods, fish eggs, gastropods and 

mussels (Wennhage and Pihl, 2002; Bergström et al., 2016; Gagnon et al., 2019). 

3.6 Data analysis and statistical methods 
Data on fish species abundance, length composition and community composition were analyzed 

using the R and RStudio (R Core Team, 2021). The packages used include base R, Tidyverse, 

Vegan and ggplot2  (Wickham, 2016; Oksanen et al., 2020; Wickham et al., 2022). All graphics 

was created using the ggplot2 package (Wickham, 2016). The diversity measures and species 

composition analysis were calculated using the Vegan package (Oksanen et al., 2020).  

Linear mixed effect models (Zuur et al., 2009) were fitted to analyze the effect of protection on 

diversity, overall body length and overall CPUE (all species combined). The analysis of overall 

mean body length was based on mean values per species and beach seine haul while overall 

CPUE represents the total CPUE for a given beach seine haul. Second, linear mixed effects 
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models were also used for analyzing CPUE and length of selected species separately, namely 

black goby, cod, goldsinny wrasse and three-spined stickleback. 

Linear regression is based on assumptions about normality and homogeneity (Zuur et al., 2009). 

Model validation was performed according to Zuur et al. (2009), and included plotting the 

residuals against each explanatory variable to determine independence; checking for 

homogeneity by plotting residuals vs fitted values and checking for normality by plotting QQ-

plots and histograms of the residuals. Based on the results of this diagnostic (Figure C-1, Figure 

C-2, Figure C-3), distribution, length data were log-transformed (Zuur et al., 2010).  

The model response variables include species richness, Shannon’s and Simpson’s diversity 

indexes, evenness, length (cm) and CPUE. For the analyses, it was necessary to combine the 

annual data into three periods: before protection (2011), early after-protection (2012-2015) and 

late (2016-2021). Preliminary analysis showed that the data material was not strong enough to 

run full-resolution models in years (all the models did not converge). To attain the complexity 

necessary to detect real differences, interaction effects also needed to be included.  

For each of the response variables (analyses) I compared a set of five a priory defined models. 

The most complex model included an interaction between area (MPA vs. control) and period 

(before vs. early after vs. late after). This interaction was included to specifically evaluate an 

effect of protection on each of the diversity indexes as well as fish length and CPUE. Also, the 

beach seine stations will differ in, for instance, habitats, and station was therefore fitted as a 

random effect (Zuur and Ieno, 2016): 

1. Response = Area x Period (1 | Station) 

2. Response = Area + Period (1 | Station) 

3. Response = Period (1 | Station) 

4. Response = Area (1 | Station) 

5. Response = 1 (1 | Station) 

To determine which explanatory variables are important, the Aikake Information Criteria (AIC) 

was used for model selection. AIC considers both model complexity (number of parameters 

included) and goodness of fit, and the model with the lowest AIC is, according to this method, 

the most parsimonious one (Zuur et al., 2009). Using AIC to compare models, I was able to 

evaluate each model relative to the best model, and when ∆AIC > 2, the model is said to have 

substantial evidence of validity (Burnham and Anderson, 2002). All models were fitted using 

Maximum Likelihood (ML) estimation with the lme() function in R (Pinheiro et al., 2012). 



 17 

4 Results 
In the period 2011-2021, a total of 26522 individual fish was collected and measured for length 

in the three stations inside the MPA (n = 9159) and five stations in the control area (n = 17454). 

4.1 Overall CPUE and body length 
In the MPA, mean overall CPUE (all species combined) was 295.5 individuals (range: 29 – 

2505) compared to 317.4 in the control area (range: 8 – 4444; figure 2). 

 

Figure 2: CPUE (number of individuals caught at each station) for alle species caught in A) MPA (3) and B) 
control area (5) during the survey from 2011-2021. To outliers not shown, A) 2505 fish caught in one station inside 
the MPA in 2019 (2500 sprat) and B) 4444 fish caught in one station inside the control area in 2016 (4220 sprat). 

For all species combined, model selection supported an effect of period on CPUE, while models 

containing an effect of area produced higher AIC-values and thus received lower support (Table 

1). 

Table 1: Model selection. Linear mixed effect modelling of CPUE) combining all fish species caught in the beach 
seine survey during 2011-2021. Explanatory variables include Area (MPA and Control) and period (Before 
protection, Early years after protection and Late years after protection). Beach seine station is included as a 
random effect. The table also shows the number of estimated parameters for each model, the AIC score and the 
distance in AIC score from the model selected for statistical inference (in bold). 

Response Model structure Parameters AIC ∆AIC 
CPUE Period * Area (1 | station) 6 393.80 4.74 

Period + Area (1 | station) 4 391.00 1.94 
Period (1 | station) 3 389.06 0 
Area (1 | station) 2 401.85 12.79 

 1 (1 | station) 1 399.85 10.79 
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Parameter estimates based on the most parsimonious model, with an additive effect of period 

on overall CPUE, indicates that CPUE was significantly higher in the early and late periods, 

compared to the before-period (Table 2). Overall predicted CPUE increased from 

approximately 332 individuals per seine in the before period to 2310 individuals per seine in 

the late period.  

Table 2: Summary of the most parsimonious linear mixed effect model predicting CPUE of all species combined, 
showing the response variable and model coefficients with associated parameter estimates, standard error and P 
value. Significant terms are illustrated with a p-value in bold. Reference level is 2011 survey. 

All species combined, mean body length in the MPA was 9.9 cm (range: 3 – 61; figure 3). In 

the control area, overall mean body length was 8.5 cm (range: 3 – 65, figure 3). 

 

Figure 3: Boxplots showing (from bottom to top) the minimum, first quartile (25 %), median (solid horizontal 
lines), third quartile (75 %) and maximum body length (cm) of all fish caught at each station inside the A) MPA 
and in the B) control area during the survey from 2011-2021. Filled dots are outliers.  

All species combined, model selection based on mean length of each species supported an effect 

of area on overall mean body length, while models containing an effect of period produced 

higher AIC-values and thus received lower support (Table 3).  

 

 

Response Coefficients Estimate Std. Error P value 
CPUE (Intercept) 332.66 375.28 0.39 

Period Early 398.47 472.93 0.41 
Period Late 1978.47 472.93 0.001 
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Table 3: Model selection. Linear mixed effect modelling of overall mean body length (log-transformed response 
variables) combining all fish species caught in the beach seine survey during 2011-2021. Explanatory variables 
include Area (MPA and Control) and period (Before protection, Early years after protection and Late years after 
protection). Beach seine station is included as a random effect. The table also shows the number of estimated 
parameters for each model, the AIC score and the distance in AIC score from the model selected for statistical 
inference (in bold). 

Parameter estimates based on the most parsimonious model, with an additive effect of area on 

mean length, indicates that mean length was significantly higher in the MPA, compared to the 

control area (Table 4). All species combined, mean predicted length in the MPA area was 10.4 

cm compared to 8.8 cm in the control area. 

Table 4: Summary of the most parsimonious linear mixed effect model predicting overall mean body length of all 
species, showing the response variable and model coefficients with associated parameter estimates, standard error 
and P value. Significant terms are illustrated with a p-value in bold. Reference level is control area. 

4.2 Species composition 
The total catch in this survey was comprised of 31 different species of fish from 14 families 

(Table 5).  

Table 5: List of species caught in control area and MPA, with number of individuals, proportion of total catch in 
control and MPA (%), mean length and minimum/maximum (range). All length measurements in centimeters (cm). 

Response Model structure Parameters AIC ∆AIC 
Length Period * Area (1 | station) 6 1276.10 5.03 

Period + Area (1 | station) 4 1274.11 3.04 
Period (1 | station) 3 1279.58 8.51 
Area (1 | station) 2 1271.07 0 

 1 (1 | station) 1 1276.73 5.66 

Response Coefficients Estimate Std. Error P value 
Length (Intercept) 2.15 0.02 <0.0001 
 Area MPA 0.15 0.04 0.01 

Area Species Latin name Number of 
individuals 

Proportion of 
total catch (%) 

Length 
Mean Min Max 

Control Eel Anguilla anguilla 3 0.02 45.7 7 65 
 Eelpout Zoarces viviparus 2 0.01 18.5 12 25 
 Ballan wrasse Labrus bergylta 28 0.16 19.1 4 37 
 Goldsinny wrasse Ctenolabrus rupestris 2170 12.47 7.4 3 18 
 Cuckoo wrasse Labrus mixtus 11 0,06 9.3 5 30 
 Sprat Sprattus sprattus 4343 24.96 7.9 6 10 
 Longspined 

bullhead 
Taurulus bubalis 8 0.05 12.4 10 14 

 Rock cook Centrolabrus 
exoletus 

48 0.28 5.2 4 9 

 Corkwing wrasse Symphodus melops 554 3.18 6.6 3 20 
 Whiting Merlangius 

merlangus 
633 3.64 12.0 7 18 

 Greater pipefish Syngnathus acus 9 0.05 38.1 31 46 
 Pollack Pollachius pollachius 241 1.39 14.6 9 32 
 Mackerel Scomber scombrus 2 0.01 26.5 26 27 
 Sea trout Salmo trutta 15 0.09 27.3 7 42 
 European plaice Pleuronectes 

platessa 
4 0.02 18.5 18 19 
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The species contributing the most to the catch in the MPA were: sprat (28.11 %), three-spined 

stickleback (21.12 %), goldsinny wrasse (20.10 %), and black goby (10.54 %). In the control 

area, sprat contributed the most (24.96 %), followed by black goby (23.10 %), three-spined 

stickleback (22.53 %), and goldsinny wrasse (12.47 %).  

 Sand goby Pomatoschistus 
minutus 

470 2.70 6.7 4 9 

 Saithe Pollachius virens 252 1.45 13.2 10 25 
 Herring Clupea harengus 4 0.02 7.0 6 8 
 European 

flounder 
Platichthys flesus 21 0.12 26.1 7 35 

 Black goby Gobius niger 4019 23.10 8.2 3 15 
 Broadnosed 

pipefish 
Syngnathus typhle 68 0.39 20.9 13 28 

 Sea stickleback Spinachia spinachia 16 0.09 11.1 8 13 
 Cod Gadus morhua 536 3.08 9.2 6 31 
 Three-spined 

stickleback 
Gasterosteus 
aculeatus 

3919 22.53 5.2 3 8 

 Shorthorn sculpin Myoxocephalus 
scorpius 

21 0.12 16.7 12 27 

MPA Ballan wrasse Labrus bergylta 72 0.79 20.7 6 38 
 Goldsinny wrasse Ctenolabrus rupestris 1834 20.10 8.4 4 15 
 Sprat Sprattus sprattus 2565 28.11 6.3 6 7 
 Rock cook Centrolabrus 

exoletus 
57 0.62 6.1 4 13 

 Corkwing wrasse Symphodus melops 449 4.92 8.0 3 21 
 Whiting Merlangius 

merlangus 
54 0.59 12.7 7 18 

 Lesser pipefish Syngnathus 
rostellatus 

3 0.03 26.0 24 27 

 Greater pipefish Syngnathus acus 16 0.18 40.9 33 50 
 Pollack Pollachius pollachius 434 4.76 17.5 4 42 
 Mackerel Scomber scombrus 2 0.02 29.5 24 35 
 Sea trout Salmo trutta 2 0.02 35.0 25 45 
 Cuckoo wrasse Labrus mixtus 20 0.22 10.3 6 26 
 Sand goby Pomatoschistus 

minutus 
12 0.13 6.7 6 8 

 Saithe Pollachius virens 53 0.58 22.2 11 35 
 Herring Clupea harengus 10 0.11 6.0 5 7 
 Brill Scophthalmus 

rhombus 
2 0.02 34.0 31 36 

 European 
flounder 

Platichtys flesus 1 0.01 33.5 34 34 

 Black goby Gobius niger 962 10.54 8.4 4 14 
 Poor-cod Trisopterus minutus 2 0.02 7.5 7 8 
 Horse mackerel Trachurus trachurus 330 3.62 9.3 5 11 
 Broadnosed 

pipefish 
Syngnathus typhle 66 0.72 21.4 11 31 

 Sea stickleback Spinachia spinachia 32 0.35 11.8 10 14 
 Cod Gadus morhua 205 2.25 11.2 7 61 
 Three-spined 

stickleback 
Gasterosteus 
aculeatus 

1927 21.12 5.2 3 8 

 Shorthorn sculpin Myoxocephalus 
scorpius 

15 0.16 16.7 6 23 
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The ANOSIM analysis did not detect significant differences in species composition between 

the areas in any of the periods. In contrast, the ADONIS analysis detected significant 

differences between the areas in both the early and late period after protection, but not before 

protection (Table 6).  

Table 6: Differences in catch composition between control area and MPA using both ANOSIM and ADONIS 
analyses. Significant terms are illustrated with a p-value in bold. R2 values provided in Table B-1. 

According to the SIMPER analyses, four species accounted for the first 70 % of the variation 

between the two areas (Figure 4). In the early period, the species were goldsinny wrasse, black 

goby, three-spined stickleback and sand goby, with goldsinny wrasse contributing most to the 

variance (27 %) (Figure 4). In the MPA, goldsinny made up higher proportion of the total catch 

(40.3 %) than in the control area (19.8 %). Black goby, stickleback, and sand goby accounted 

for the higher part of the total in the control area (19.8 %, 29.8 %, 6.6 %) than in the MPA (17.2 

%, 3.54 %, 0.05 %). 

 

Figure 4: Species’ contribution to dissimilarities in sampled fish community (~70%) between the MPA and control 
area in the before-protection period (2011), early period after protection (2012-2015) and late period after 
protection (2016-2021), as revealed by the SIMPER analysis. 

 

Period P-values, MPA vs. control area 
 ADONIS ANOSIM 
Before (2011) 0.477 0.34 
Early (2013-2014) 0.011 0.19 
Late (2015-2021) 0.004 0.379  
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In the late period, the species contributing most to the variance in catch composition between 

the protected and unprotected areas were three-spined stickleback, black goby, goldsinny 

wrasse, and sprat, with three-spined stickleback being the species contributing most to the 

variance (23 %) (Figure 4). In the MPA, goldsinny and sprat made up a higher proportion of 

the total catch (14.6 %, 43.0 %) than in the control area (9.1 %, 34.7 %). Stickleback and black 

goby accounted for a higher proportion of the total catch in the control area (20.7 %, 21.2 %) 

than in the MPA (15.1 %, 10.0 %). 

4.3 Species diversity, evenness and richness 
In the MPA, the mean value of Shannon’s diversity index of species diversity was 1.28 (range: 

0.02 – 1.94), compared to 1.39 in the control area (range: 0.24 – 2.02; figure 5). For Simpson’s 

diversity index of species diversity, the mean value in the MPA was 0.64 (range: 0.0 – 0.82) 

compared to 0.60 in the control area (range: 0.10 – 0.83; figure 5). The mean species evenness 

in the MPA was 0.63 (range: 0.01 – 0.90) compared to 0.62 in the control area (range: 0.12 – 

0.97; figure 5). Mean species richness (number of species) in the MPA was 10.61 (range: 4 – 

16), compared to 9.62 in the control area (range: 4 -16; figure 5).  

 

Figure 5: A) Shannon’s diversity index, B) evenness, C) Simpson’s diversity index and D) species richness 
describing the fish community at stations inside the MPA (blue dots) and control area (red dots) during the survey 
from 2011-2021. 
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Model selection did not support effects of area (that is, protection level) on either Shannon’s 

diversity, Simpson’s diversity or evenness (Table 7). Model selection did support an effect of 

period on species richness, while models containing an effect of area produced higher AIC-

values and thus received lower support (Table 7). Parameter estimates based on the most 

parsimonious model, with an additive effect of period on species richness, indicates an incline 

in the number of species in the late period, compared to the before-period (Table 8). Predicted 

species richness increased from 8.7 species in the before period to 9.7 species in the early period 

and 10.3 species in the late period in both areas. 

Table 7: Model selection. Linear mixed effect modelling of Shannon’s diversity, Simpson’s diversity, evenness, 
and species richness (response variables). Explanatory variables include Area (MPA and Control) and period 
(Before protection, Early years after protection and Late years after protection). Beach seine station is included 
as a random effect. The table also shows the number of estimated parameters for each model, the AIC score and 
the distance in AIC score from the model selected for statistical inference (in bold). 

Table 8: Summary of the most parsimonious linear mixed effect models predicting species diversity, evenness and 
richness, showing the response variable and model coefficients with associated parameter estimates, standard 
error and P value. Significant terms are illustrated with a p-value in bold. Reference level is the before-period. 

Response Model structure Parameters AIC ∆AIC 
Shannon Period * Area (1 | station) 6 82.44 8.09 

Period + Area (1 | station) 4 79.75 5.40 
Period (1 | station) 3 78.18 3.83 
Area (1 | station) 2 75.94 1.59 
1 (1 | station) 1 74.35 0 

Evenness Period * Area (1 | station) 6 -44.98 6.36 
Period + Area (1 | station) 4 -47.02 4.32 
Period (1 | station) 3 -48.98 2.36 
Area (1 | station) 2 -49.36 1.98 
1 (1 | station) 1 -51.34 0 

Simpson Period * Area (1 | station) 6 -51.62 6.94 
Period + Area (1 | station) 4 -53.71 4.85 
Period (1 | station) 3 -55.31 3.25 
Area (1 | station) 2 -56.93 1.63 
1 (1 | station) 1 -58.56 0 

Species richness Period * Area (1 | station) 6 401.54 0.84 
Period + Area (1 | station) 4 402.54 1.74 
Period (1 | station) 3 400.80 0 
Area (1 | station) 2 402.87 2.07 
1 (1 | station) 1 401.15 0.35 

Response Coefficients Estimate Std. Error P value 
Shannon (Intercept) 1.31 0.07 <0.0001 
Evenness (Intercept) 0.62 0.03 <0.0001 
Simpson (Intercept) 0.61 0.03 <0.0001 
Species richness (Intercept) 8.66 1.10 <0.0001 
 Period early 1.00 0.90 0.27 
 Period late 1.63 0.87 0.06 
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4.4 Analyses of selected species 
A total of 4981 black goby, 741 cod, 4004 goldsinny wrasse and 5846 three-spined sticklebacks 

was captured and measured for length between 2011-2021 (Table 5).  

4.4.1 CPUE 

 

Figure 6: CPUE (number of individuals caught at each station) of A) black goby, B) goldsinny wrasse, C) cod and 
D) three-spined stickleback caught at each station inside the MPA (blue dots) and control area (red dots) during 
the survey from 2011-2021. 

For black goby, mean CPUE in the MPA was 31.0 individuals (range: 2 – 114) compared to 

73.1 in the control area (range: 1 – 469; figure 6). For goldsinny wrasse, mean CPUE in the 

MPA was 63.2 individuals (range: 5 – 176) compared to 49.9 in the control area (range: 1 – 

138, figure 6). Mean number of cod caught at each station in the MPA were 9.8 (range: 1 – 50). 

In the control area an average of 13.4 cod was caught at each station (range: 1 – 88; figure 6). 

For three-spined stickleback, mean CPU in the MPA was 83.8 (range: 1 – 946) compared to 

126.4 in the control area (range: 1 – 558; figure 6).   

For black goby, model selection supported an effect of period and area on CPUE (Table 9). For 

cod and goldsinny wrasse, model selection supported an effect of period on CPUE, while 

models containing an effect of area produced higher AIC-values and thus received lower 

support (Table 9). For three-spined stickleback the model selection supported no effect of 

neither period nor MPA (Table 9).  
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Table 9: Model selection. Linear mixed effect modelling of CPUE of black goby, cod, goldsinny wrasse and 
corkwing wrasse. Explanatory variables include Area (MPA and Control) and period (Before protection, Early 
years after protection and Late years after protection). Beach seine station is included as a random effect. The 
table also shows the number of estimated parameters for each model, the AIC score and the distance in AIC score 
from the model selected for statistical inference (in bold). 

Table 10: Summary of the most parsimonious linear mixed effect models predicting CPUE of black goby, cod, 
goldsinny wrasse and corkwing wrasse, showing the response variable and model coefficients with associated 
parameter estimates, standard error and P value. Significant terms are illustrated with a p-value in bold. Reference 
level is the before-period and the control area. 

For black goby, parameter estimates based on the most parsimonious model, with an additive 

effect of period and area on CPUE, indicates that mean predicted CPUE was significantly 

higher in the late period, compared to the before period in both the MPA and control area (Table 

10, Figure 7). 

For goldsinny wrasse, parameter estimates based on the most parsimonious model, with an 

additive effect of period on CPUE, indicates that CPUE was significantly higher in the early 

and late period, compared to the before period. However, this pattern was seen in both the MPA 

and control area (Table 10, Figure 7). 

Response Species Model structure Parameters AIC ∆AIC 
CPUE Black goby Period * Area (1 | station) 6 325.00 1.95 

Period + Area (1 | station) 4 323.05 0 
Period (1 | station) 3 324.14 1.09 
Area (1 | station) 2 329.27 6.22 
1 (1 | station) 1 328.88 5.83 

Cod Period * Area (1 | station) 6 232.13 5.57 
Period + Area (1 | station) 4 228.15 1.59 
Period (1 | station) 3 226.56 0 
Area (1 | station) 2 232.53 5.97 
1 (1 | station) 1 230.92 3.36 

Goldsinny wrasse Period * Area (1 | station) 6 280.59 2.72 
Period + Area (1 | station) 4 279.55 1.68 
Period (1 | station) 3 277.87 0 
Area (1 | station) 2 290.84 12.97 
1 (1 | station) 1 289.43 11.56 

Three-spined 
stickleback 

Period * Area (1 | station) 6 276.91 1.26 
Period + Area (1 | station) 4 279.61 3.96 
Period (1 | station) 3 277.68 2.03 
Area (1 | station) 2 277.27 1.62 
1 (1 | station) 1 275.65 0 

Response Species Coefficients Estimate Std. Error P value 
CPUE Black goby (Intercept) 82.94 91.64 0.38 

Period Early 168.36 119.43 0.18 
Period Late 386.60 119.43 0.01 
Area MPA -170.81 101.11 0.14 

Cod (Intercept) 9.34 15.55 0.56 
Period Early 13.04 15.56 0.42 
Period Late 47.91 15.56 0.01 

Goldsinny wrasse (Intercept) 33.14 58.53 0.58 
Period Early 160.73 41.93 0.002 
Period Late 217.86 41.93 0.0002 

Three-spined stickleback (Intercept) 309.58 115.42 0.02 
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For cod, parameter estimates based on the most parsimonious model, with an additive effect of 

period on CPUE, indicates that mean predicted CPUE was significantly higher in the late period 

compared to the before. This was the case for both the MPA and control area (Table 10, Figure 

7).  

 

Figure 7: Predicted CPUE (show ±1 standard error) of A) black goby, B) goldsinny wrasse and C) cod in the 
MPA area (blue) and control area (red) before protection (2011), in the early period after protection (2012-2015) 
and late period (2016-2021). 

4.4.2 Body size 
For black goby, mean body length of fish sampled inside the MPA was 8.4 cm (range: 4 -14 

cm, figure 8). For cod, mean body length of fish sampled inside the MPA was 11.2 cm (range: 

7 – 61, figure 8). For goldsinny wrasse, mean body length of fish sampled inside the MPA was 

8.4 cm (range: 4 – 15, figure 8). For three-spined sticklebacks, mean body length of fish 

sampled inside the MPA was 5.2 cm (range: 3 – 8; figure 8). There was great variation in counts 

of three-spined sticklebacks (Figure 4), but a small variation in length measurements (Figure 

8). 

For black goby, mean body length of fish caught in the control area was 8.2 cm (range: 3 – 15 

cm, figure 9).  For cod, mean body length of fish caught in the control area was 9.2 cm (range: 

6 – 31 cm, figure 9). For goldsinny wrasse, mean body length of fish caught in the control area 

was 7.4 cm (range: 3 – 18 cm, figure 9).  For three-spined stickleback, mean body length of fish 

caught in the control area was the same as in the MPA (Figure 8, Figure 9).  
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Figure 8: Boxplots showing the minimum, first quartile (25 %), median (solid horizontal lines), third quartile (75 
%) and maximum body length (cm) of A) black goby, B) goldsinny wrasse, C) cod and D) three- spined stickleback 
caught at each station inside the MPA) during the survey from 2011-2021. Filled dots are outliers. One outlier not 
shown (a 61 cm cod caught in 2020). 

 

Figure 9:  Boxplots showing the minimum, first quartile (25 %), median (solid horizontal lines), third quartile (75 
%) and maximum body length (cm) of A) black goby, B) goldsinny wrasse, C) cod and D) three-spined stickleback 
caught at each station in the control area during the survey from 2011-2021. Filled dots are outliers. Three outliers 
not shown: one 26 cm cod caught in 2012, one 31 cm cod caught in 2015 and one 31 cm cod caught in 2017. 
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Model selection supported an interaction effect between period and area on body length for 

black goby, goldsinny wrasse, and three-spined stickleback. For cod, model selection supported 

an effect of area on body length, while models containing an effect of period produced higher 

AIC-values and thus received lower support (Table 11).  

Table 11: Model selection. Linear mixed effect modelling of body length of black goby, cod, goldsinny wrasse and 
corkwing wrasse (log-transformed response variables). Explanatory variables include Area (MPA and Control) 
and period (Before protection, Early years after protection and Late years after protection). Beach seine station 
is included as a random effect. The table also shows the number of estimated parameters for each model, the AIC 
score and the distance in AIC score from the model selected for statistical inference (in bold). 

Interaction plots of model predictions revealed that there was a greater tendency for a decline 

in mean body size towards the late period in the MPA compared to the control area for goldsinny 

wrasse, black goby and three-spined stickleback (Table 12, Figure 10).  

The mean predicted body length of cod was significantly higher in the MPA compared to the 

control area, however this was the case in all periods (Table 12, Figure 10).  

 

 
  

Response Species Model structure Parameters AIC ∆AIC 
Length Black goby Period * Area (1 | station) 6 -969.32 0 

Period + Area (1 | station) 4 -946.01 23.31 
Period (1 | station) 3 -947.64 21.68 
Area (1 | station) 2 -929.25 40.07 
1 (1 | station) 1 -930.73 38.59 

Cod 
 

Period * Area (1 | station) 6 -100.05 1.38 
Period + Area (1 | station) 4 -99.76 1.67 
Period (1 | station) 3 -88.71 12.72 
Area (1 | station) 2 -101.43 0 
1 (1 | station) 1 -89.73 11.70 

Goldsinny wrasse Period * Area (1 | station) 6 -608.11 0 
Period + Area (1 | station) 4 -601.10 7.01 
Period (1 | station) 3 -597.21 10.90 
Area (1 | station) 2 -496.64 111.47 
1 (1 | station) 1 -490.30 117.81 

Three-spined stickleback Period * Area (1 | station) 6 -1076.06 0 
Period + Area (1 | station) 4 -1068.50 7.56 
Period (1 | station) 3 -1070.02 6.04 
Area (1 | station) 2 -996.71 79.35 
1 (1 | station) 1 -997.55 78.51 



 29 

Table 12: Summary of the most parsimonious linear mixed effect models predicting body length of black goby, 
cod, goldsinny wrasse and corkwing wrasse, showing the response variable and model coefficients with associated 
parameter estimates, standard error and P value. Significant terms are illustrated with a p-value in bold. Reference 
level is the before-period and the control area. 

 

 

Figure 10: Interaction plots showing the mean predicted body length (show ±1 standard error) of A) black goby, 
B) goldsinny wrasse, C) cod and D) three-spined stickleback in the MPA area (blue) and control area (red) before 
protection (2011), in the early period after protection (2012-2015) and late period (2016-2021).  

Response Species Coefficients Estimate Std. Error P value 
Length Black goby (Intercept) 2.04 0.02 <0.0001 

Period Early 0.05 0.02 0.002 
Period Late 0.04 0.02 0.01 
Area MPA 0.13 0.05 0.04 
Period Early : Area MPA -0.07 0.04 0.09 
Period Late : Area MPA -0.14 0.04 0.0002 

Cod (Intercept) 2.19 0.02 <0.0001 
 Area MPA 0.20 0.03 <0.0001 
Goldsinny wrasse (Intercept) 1.94 0.03 <0.0001 

Period Early 0.08 0.02 0.0002 
Period Late 0.01 0.02 0.62 
Area MPA  0.13 0.04 0.02 

 Period Early : Area MPA -0.004 0.03 0.87 
 Period Late : Area MPA -0.06 0.03 0.03 
Three-spined 
stickleback 

(Intercept) 1.59 0.03 <0.0001 
Period Early 0.05 0.02 0.004 

 Period Late -0.03 0.02 0.11 
 Area MPA 0.10 0.04 0.06 
 Period Early : Area MPA -0.05 0.03 0.11 
  Period Late : Area MPA -0.09 0.03 0.001 
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5 Discussion 
This study assessed the impact of protection on a coastal fish community by comparing the 

composition of species and sizes inside a no-take MPA to control sites outside the MPA, where 

fishing is allowed, and also to data collected at the same locations prior to MPA establishment. 

With such a BACI design, no effect of protection was detected on overall CPUE and body 

length (all species combined), species richness, species diversity or species evenness. 

Significant differences in species composition were, however, detected between the areas in 

both the early and late periods following MPA establishment. Detailed analyses of selected 

species showed that there was tendency for an increase in CPUE for black goby, cod and 

goldsinny wrasse towards the late period after protection, but this increase could not be linked 

to protection as it was also seen in the control area. In contrast, analyses of sizes of selected 

species point towards a more pronounced decrease in body length of goldsinny wrasse, black 

goby and three-spined stickleback in the MPA compared to the control area. The latter suggests 

that biological control mechanisms and trophic interactions linked to protection may be 

involved. In the following sections, I further discuss these findings and how they relate to the 

proposed hypotheses. I argue that MPAs may not necessarily have clear and predictable effects 

on diversity within fish communities in the (relatively) short term, and that even longer-term 

monitoring is necessary to fully resolve such dynamics.  

5.1 MPA-effects on species richness, evenness, diversity and composition 
The BACI analyses revealed no clear effects of protection from fishing on either species 

richness, species diversity or species evenness. These findings do not support the initial 

hypothesis of increased diversity in protected areas, but is consistent with that of Soykan and 

Lewison (2015), who found no consistent differences between MPAs and control sites with 

respect to species richness or Shannon diversity, and suggested that these measures are not very 

useful for MPA assessments and that community-based responses to protection may be difficult 

to predict and detect. For example, Stobart et al. (2009) found lower species diversity inside an 

MPA. They reported this could be explained by the fact that common bycatch fish species have 

increased inside the MPA, while other species that are occasionally caught have not increased, 

which could lower richness and diversity measures. They also conclude that conflicting results 

suggest that further research is needed on the responses of these indices to fishing. This is consistent 

with the finding of Lester et al. (2009), who concluded that increases in species richness and 

other diversity metrics typically do not occur as consistently as increased body size, abundance 
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and biomass. They report there could be several reasons for this, including the fact that not all 

species increase, and some decline after MPAs are established, suggesting an indirect effect of 

protection through competitive or predatory interactions (Micheli et al., 2004; Lester et al., 

2009; Baskett and Barnett, 2015). Complex trophic interactions frequently mediate community 

level responses to MPA establishment (Graham et al., 2003; Willis and Anderson, 2003; 

Takashina et al., 2012), causing unexpected changes to species richness.  Overall, species 

richness may be an easy metric to interpret, but it appears to have limited ability to detect 

changes in community composition (Pillans et al., 2007; Lyashevska and Farnsworth, 2012). 

Also, species richness describes only one aspect of an ecological community, whereas alternate 

metrics describe other aspects of community structure, for instance species composition 

through abundance distribution between species (Pillans et al., 2007).  

My study detected significant differences in catch composition between the protected and 

unprotected areas after protection, but not before. This result is similar to those of Stobart et al. 

(2009) and Claudet et al. (2006), who also found that species composition changed between 

protected areas and control areas. The results of Stobart et al. (2009) clearly indicated that the 

fish community in the protected area changed continuously during a period of 8 to 16 years 

after MPA establishment.	Greater abundance and biomass inside MPAs may lead to shifts in 

the relative abundance of different species and the possibility of greater diversity (Baskett and 

Barnett, 2015). That said, community-level responses to protection will expectedly depend on 

which species are harvested before the MPA is established, their life-history characteristics and 

trophic interactions with non-harvested species (Baskett and Barnett, 2015). 	

In my study, four species accounted for 70 % of the variation in species composition between 

the protected and the unprotected area. Both before and after protection, three-spined 

stickleback and black goby accounted for a large fraction of the variation. Goldsinny wrasse 

only accounted for a large fraction of the variation after protection. These results support the 

initial hypothesis that there would be a difference in catch composition between the areas after 

protection. Goldsinny wrasse comprised a greater proportion of the total catch inside the 

protected area than in the unprotected area and accounted for a larger fraction of the difference 

after protection establishment. This is in support of the hypothesis that harvested species would 

contribute most to the variance in species composition between the areas. However, the findings 

of the current study were not able to find support of protection effect on the increased abundance 

(CPUE) of goldsinny wrasse. This outcome is contrary to that of Claudet et al. (2006) who 

found goldsinny wrasse, among other commercial species, increased in abundance after 
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protection. The non-harvested species contributing most to the variance in the current study, 

that is, three-spined stickleback and black goby, did so in the before period as well as the early 

and late periods, and they also accounted for a larger proportion of the total catch in the 

unprotected area than in the protected area. These results corroborate the findings of Claudet et 

al. (2006), who detected significant differences in abundance between the protected and 

unprotected areas for all species except unfished species. They further discovered that the 

difference in abundance between protected and unprotected areas was more significant for large 

fish than for smaller fish and concluded that changes in the composition of the whole fish 

assemblage should be assessed across MPAs boundaries. The CPUE analysis in the current 

study may be less sensitive due to a small number of data points and large variation. This may 

explain why I did not detect an effect of protection on CPUE of goldsinny wrasse. At the same 

time, the large number of sprats caught in one haul in 2011 (before) could make it difficult to 

detect any other patterns in the data, thus contributing to goldsinny wrasse not comprising more 

variance this year. 

5.2 MPA effects on overall CPUE and length 
All species combined, mean fish length inside the MPA was significantly higher than in the 

control area, but no effect of protection was detected since this difference was also seen in the 

data collected before protection. Similarly, an increase in overall CPUE throughout the study 

could not be linked to protection as it was also seen in the control area. These results, therefore, 

do not support the initial hypothesis that overall CPUE and size of fishes inside the MPA should 

increase during the years of protection. This could be explained by the fact that when all species 

are pooled in the same model, some species will increase and some will decrease, both in length 

and abundance, which could cancel out any clear change and mask trends for particular species 

(Baskett and Barnett, 2015).  

5.3 MPA effects on selected species 
CPUE of goldsinny wrasse and black goby increased in both areas during the last period of the 

study, but no effect of protection within the MPA was detected. For the other non-targeted 

mesopredator, three-spined stickleback, CPUE was variable but with no clear change over time 

or between areas. These results do not support the initial hypothesis that CPUE of harvested 

fish species has increased inside the MPA relative to the control area, and, if this is the case, 

that non-targeted fish species of mid trophic levels have decreased in abundance. The outcome 
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is contrary to that of  Halvorsen et al. (2017a), which reported a 33-36 % increase in CPUE of 

goldsinny wrasse within MPAs. Halvorsen et al. (2017a) sampled four partially protected MPAs 

and neighboring control areas in Skagerrak, in contrast to one fully protected area in our study. 

While our data was collected using beach seine, Halvorsen et al. (2017a) used fyke nets and 

unbated wrasse pots, and deployed on rocky, kelp covered substrate. These differences in study 

design and sampling could explain why the two studies reached different results (Halvorsen et 

al., 2021).  

No effect from protection was detected for CPUE or body length of cod. These results do not 

support the initial hypothesis, that cod, as a harvested top predator, should increase in both size 

and abundance being protected from fisheries-induced selection. There could be a number of 

explanations for this discrepancy. The initial effects of protection on abundance can include 

oscillations within a generation, especially for species with a long lifespan, a late age at 

maturity, and high levels of harvest intensity and duration (White et al., 2013). During this 

transition period, White et al. (2013) reported that the abundance of a species may remain 

unchanged or decline relative to conditions before protection, even when the long-term 

equilibrium outcome is an increasing abundance. Over time, though, species of high trophic 

levels are expected to increase more in MPAs, as they more often are subject of harvesting 

(Jennings, 2000; Baskett and Barnett, 2015). Cod along the Skagerrak coast have experienced 

overfishing followed by declines in stock size and changes in life-history traits (Olsen et al., 

2008; Olsen et al., 2012; Fernández-Chacón et al., 2017). Interestingly, Hutchings (2000) 

reported that overfished cod have experienced little, if any, population recovery as much as 15 

years after 45-99% reductions in reproductive biomass. He suggests Allee effects may affect 

population growth at low densities (Hutchings, 2005; 2015) and this could be the reason why I 

could not detect an increase in CPUE of cod. Basically, a recovery could take a very long time 

(Hutchings, 2000). Also, in our study, cod were primarily sampled as a juveniles in nursery 

areas or feeding grounds (Perry et al., 2018), and sampling by beach seine will not reveal the 

full protection effect on older life stages. In contrast, Moland et al. (2013) found an increase in 

population density and body size of older life-stages of cod in partially protected MPAs in 

Skagerrak, sampled with fyke nets.  

There was an effect of protection on the body length of goldsinny wrasse, black goby and three-

spined stickleback, seen as a significant interaction effect between time period and area in the 

statistical models. Specifically, there was a greater tendency for a decline in mean size towards 

the late period in the MPA compared to the control area for all these fish species. This finding 
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supports the initial hypothesis that the response of mid-trophic species to protection could be a 

decrease in length. Goldsinny wrasse is also a harvested species, and the hypothesis states I 

expect an increase in size for harvested species inside the MPA. The effect of protection on 

these species, indicates that the initial size-response to protection from harvest could be 

countered by effects from trophic cascades (Babcock et al., 2010). In general, trophic-cascades 

involve a secondary response of prey to the initial response of predators, and therefore typically 

occur over longer time scales than direct responses of harvested species (Baskett and Barnett, 

2015). It could also be persistent with the results for goldsinny wrasse, black goby and 

stickleback in this study, that changes in size precedes changes in abundance. Changes in 

biomass due to an increased or decreased body size can occur within a generation, whereas 

increases in abundance caused by higher reproductive output takes place over several 

generations (Molloy et al., 2009).  

Interpreting the goldsinny wrasse's response to protection, both as a harvested species and as 

prey of harvested predator species, is challenging. The wrasse is also probably a competitor to 

the unharvested mesopredators black goby and three-spined stickleback. Baskett et al. (2006) 

stated that cascading effects can occur due to the protection of previously harvested competitors 

and prey of non-target species, and the complex interactions between these species can change 

the response of the harvested species to MPA establishment.  According to Baskett and Barnett 

(2015), these interactions may be hard to interpret and could prevent trophic levels from 

providing a specific indication on community-level responses to MPAs.  

5.4 Limitations and future recommendations 
Major limitations in this study include the absence of additional MPAs and control areas and 

only one year of data before protection. Even though there are several stations within each area, 

it remains possible, in principle, that a change within the MPA is not the result of the protection 

as such. Instead, a change may result from biological processes specific to this area. The 

recommended study design is to have replication on the contrast between MPAs and control 

areas to account for spatial heterogeneity and temporal variation independent of biological 

processes and disturbances other than harvest (Underwood, 1992; Underwood, 1994). 

Additional years of data before protection establishment could make it more robust. Also, since 

the CPUE and diversity models in this study are based on a simple count or index for each 

station and year, additional stations would provide a better foundation for the models and 

evaluation of hypotheses. It should be noted that studies based on a replicated BACI design in 



 35 

relation to MPAs are still rare, likely because there are considerable challenges involved in 

sampling with such a design (Russ, 2002; Willis and Anderson, 2003; Tetreault and Ambrose, 

2007; Osenberg et al., 2011). Because of the increasing use of MPAs to conserve and manage 

fisheries and target species, the need for more replicated BACI design studies assessing the 

effect of them is urgent, as monitoring single MPAs may give variable conclusions 

(Underwood, 1992; Underwood, 1994).  

The beach seine used for sampling in this study is considered adequate for obtaining abundance 

indices of fish inhabiting coastal shallow water areas (Tveite, 1971; Tveite, 1984). Even so, it 

will not sample all components of the fish community, and the sampling efficiency is likely to 

vary with abiotic conditions such as light and temperature. Low temperatures can affect the 

presence of wrasses, as they prefer warmer water, and occupies shallow water when 

temperatures are high (Gjøsaeter, 2002; Freitas et al., 2021). Gadoids may be affected by high 

temperatures, as it makes them seek deeper water, and vice-a-versa shallower water when 

temperatures drop (Espeland et al., 2010; Freitas et al., 2015; Freitas et al., 2016; Freitas et al., 

2021). Cod also has a marked diurnal vertical migration and larger individuals are typically 

absent from the shallow water habitats during daytime (Espeland et al., 2010).  

The mesh size of the seine makes it possible for some fishes, like small-sized gobies, to slip 

through the meshes.  As a result, the samples are not representative of fish of this size. Beach 

seines are among the least selective fishing methods available (Faltas and Akel, 2003). Even 

so, it is to some extent selective, since it selects fish that inhabit shallow water habitats during 

the day. The results of Halvorsen et al. (2017a) and Moland et al. (2013) demonstrates that data 

collected by different methods could yield different results. Therefore, I would recommend 

including different sampling methods to detect the effects of protection, since it is more 

appropriate to compare the same life stages of different species. 

Regarding the ADONIS and ANOSIM analyses, the low R2 values (Table B-1) indicates that a 

lot of variation between the groups is unexplained. This is not unexpected, as marine fish are 

known for their large variation in year-class strength (Hjort, 1914), even in cases where 

spawning biomass and reproductive output does not change substantially (Morgan et al., 2011). 

Year class size of marine fish is determined primarily by the survival rates of larvae and early 

juvenile individuals (Cushing, 1990). Thus, it is expected that our data will be subject to 

variations that cannot be explained. But the significant differences in the early and late periods 

detected by ADONIS, the preferred analysis to compare species composition in this study 
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(Warton et al., 2012), means that despite this, the observed differences can be accounted to area 

(Birks et al., 2012).  

Exactly how the populations respond to protection depends on many factors, connectivity 

between protected and harvested areas being one of them (Moland et al., 2013; Baskett and 

Barnett, 2015; Villegas-Ríos et al., 2016). Villegas-Ríos et al. (2016) suggests that spillover 

may have a demographic benefit to fisheries, however in an evolutionary context, these same 

fisheries might erode the spillover capacity by constantly removing individuals as they exit the 

MPA. Therefore, there is a need for connected patches of juvenile and adult habitats in protected 

areas if a species, like cod, migrates ontogenically (Baskett and Barnett, 2015). A seascape 

mosaic of MPAs can help to preserve behavioral variation in populations, and improve the 

population’s ability to resist change (Moland et al., 2021). This is consistent with the 

conclusions of Halvorsen et al. (2021),that a network of small strategically located MPAs may 

be effective to protect wrasses from selective fishing. 
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6 Conclusions  
Norway’s only no-take MPA set the stage for this study where the main objective was to assess 

the impact of protection from fishing on a coastal fish community. Even though the data 

spanned one decade and included a control area open to fishing as well as before-protection 

data, no clear effect of protection could be detected on either species richness, species diversity 

or species evenness. Significant differences in species composition were, however, detected 

between the protected and unprotected area in the periods after MPA establishment. In 

particular, goldsinny wrasse contributed to this difference after protection was introduced. Also, 

this study revealed that the mean body size of three mesopredators – the goldsinny wrasse, 

black goby and three-spined stickleback – declined within the MPA after protection, relative to 

the control area. This suggests that biological control mechanisms and trophic interactions may 

be involved. We were not, however, able to detect any effects from protection on cod. Together, 

these findings suggest that fish communities may be influenced by small-scale MPAs, but that 

trophic effects and diversity may be hard to measure adequately and may also take considerable 

time to develop.  
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Appendices 
Appendix A  

Table A-1: Stations sampled each year in the study period (2011-2021). Table contains station name, area 
(MPA/control), coordinates, vegetation type and visibility (1: very bad, 2: bad, 3: moderate, 4: good, 5: very good, 
9: not observed). 

Year Area Station Latitude N Longitude E Vegetation Visibility 
2011 MPA Furøyholmen 58.600239 8.950063 Eelgrass Very bad 
2011 MPA Fjerdingskjær 58.605806 8.950062 Eelgrass Very good 
2011 Control 81 58.614314 9.023106 Kelp Very bad 
2011 Control 82 58.614283 9.029033 Eelgrass Very bad 
2011 Control 83 58.620285 9.056222 Kelp Very bad 
2011 Control 85 58.623033 9.058217 Eelgrass Very bad 
2011 Control 86 58.625355 9.107110 Kelp Bad 
2012 MPA Furøyholmen 58.600239 8.950063 Eelgrass Moderate 
2012 MPA Fjerdingskjær 58.605806 8.950062 Eelgrass Good 
2012 MPA Langesand 58.595644 8.944010 Kelp Moderate 
2012 Control 81 58.614314 9.023106 Kelp Moderate 
2012 Control 82 58.614283 9.029033 Eelgrass Good 
2012 Control 83 58.620285 9.056222 Kelp Moderate 
2012 Control 85 58.623033 9.058217 Eelgrass Moderate 
2012 Control 86 58.625355 9.107110 Kelp Moderate 
2013 MPA Furøyholmen 58.600239 8.950063 Eelgrass Good 
2013 MPA Fjerdingskjær 58.605806 8.950062 Eelgrass Moderate 
2013 MPA Langesand 58.595644 8.944010 Kelp Moderate 
2013 Control 81 58.614314 9.023106 Kelp Moderate 
2013 Control 82 58.614283 9.029033 Eelgrass - 
2013 Control 83 58.620285 9.056222 Kelp Good 
2013 Control 85 58.623033 9.058217 Eelgrass Good 
2013 Control 86 58.625355 9.107110 Kelp - 
2014 MPA Furøyholmen 58.600239 8.950063 Eelgrass Moderate 
2014 MPA Fjerdingskjær 58.605806 8.950062 Eelgrass Moderate 
2014 MPA Langesand 58.595644 8.944010 Kelp Moderate 
2014 Control 81 58.614314 9.023106 Kelp Bad 
2014 Control 82 58.614283 9.029033 Eelgrass Good 
2014 Control 83 58.620285 9.056222 Kelp Moderate 
2014 Control 85 58.623033 9.058217 Eelgrass Good 
2014 Control 86 58.625355 9.107110 Kelp Good 
2015 MPA Furøyholmen 58.600239 8.950063 Eelgrass Very bad 
2015 MPA Fjerdingskjær 58.605806 8.950062 Eelgrass Very bad 
2015 MPA Langesand 58.595644 8.944010 Kelp Very bad 
2015 Control 81 58.614314 9.023106 Kelp Very bad 
2015 Control 82 58.614283 9.029033 Eelgrass Very bad 
2015 Control 83 58.620285 9.056222 Kelp Moderate 
2015 Control 85 58.623033 9.058217 Eelgrass Moderate 
2015 Control 86 58.625355 9.107110 Kelp Bad 
2016 MPA Furøyholmen 58.600239 8.950063 Eelgrass Good 
2016 MPA Fjerdingskjær 58.605806 8.950062 Eelgrass Good 
2016 MPA Langesand 58.595644 8.944010 Kelp Good 
2016 Control 81 58.614314 9.023106 Kelp Moderate 
2016 Control 82 58.614283 9.029033 Eelgrass Good 
2016 Control 83 58.620285 9.056222 Kelp Good 
2016 Control 85 58.623033 9.058217 Eelgrass Good 
2016 Control 86 58.625355 9.107110 Kelp Good 
2017 MPA Furøyholmen 58.600239 8.950063 Eelgrass Moderate 
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2017 MPA Fjerdingskjær 58.605806 8.950062 Eelgrass Bad 
2017 MPA Langesand 58.595644 8.944010 Kelp Bad 
2017 Control 81 58.614314 9.023106 Kelp Moderate 
2017 Control 82 58.614283 9.029033 Eelgrass Moderate 
2017 Control 83 58.620285 9.056222 Kelp Bad 
2017 Control 85 58.623033 9.058217 Eelgrass Good 
2017 Control 86 58.625355 9.107110 Kelp Moderate 
2018 MPA Furøyholmen 58.600239 8.950063 Eelgrass Good 
2018 MPA Fjerdingskjær 58.605806 8.950062 Eelgrass Moderate 
2018 Control 81 58.614314 9.023106 Kelp Moderate 
2018 Control 82 58.614283 9.029033 Eelgrass Moderate 
2018 Control 83 58.620285 9.056222 Kelp Moderate 
2018 Control 85 58.623033 9.058217 Eelgrass Moderate 
2018 Control 86 58.625355 9.107110 Kelp Moderate 
2019 MPA Furøyholmen 58.600239 8.950063 Eelgrass Good 
2019 MPA Fjerdingskjær 58.605806 8.950062 Eelgrass Moderate 
2019 MPA Langesand 58.595644 8.944010 Kelp Moderate 
2019 Control 81 58.614314 9.023106 Kelp Bad 
2019 Control 82 58.614283 9.029033 Eelgrass Good 
2019 Control 83 58.620285 9.056222 Kelp Moderate 
2019 Control 85 58.623033 9.058217 Eelgrass Good 
2019 Control 86 58.625355 9.107110 Kelp Moderate 
2020 MPA Furøyholmen 58.600239 8.950063 Eelgrass Moderate 
2020 MPA Fjerdingskjær 58.605806 8.950062 Eelgrass Moderate 
2020 MPA Langesand 58.595644 8.944010 Kelp Good 
2020 Control 81 58.614314 9.023106 Kelp Good 
2020 Control 82 58.614283 9.029033 Eelgrass Good 
2020 Control 83 58.620285 9.056222 Kelp Good 
2020 Control 85 58.623033 9.058217 Eelgrass Good 
2020 Control 86 58.625355 9.107110 Kelp Good 
2021 MPA Furøyholmen 58.600239 8.950063 Eelgrass Good 
2021 MPA Fjerdingskjær 58.605806 8.950062 Eelgrass Good 
2021 MPA Langesand 58.595644 8.944010 Kelp Moderate 
2021 Control 81 58.614314 9.023106 Kelp Moderate 
2021 Control 82 58.614283 9.029033 Eelgrass Good 
2021 Control 83 58.620285 9.056222 Kelp Moderate 
2021 Control 85 58.623033 9.058217 Eelgrass Good 
2021 Control 86 58.625355 9.107110 Kelp Moderate 
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Appendix B  

 Table B-1: R2-values comparing catch composition between stations in control area and MPA using both 
ANOSIM and ADONIS. R2 indicates proportion of variance explained by variables in model/independent variable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Period R2 values for ANOSIM/ADONIS comparing mpa with control area 
 ADONIS ANOSIM 
Before (2011) 0.147 0.036 
Early (2013-2014) 0.107 0.061 
Late (2015-2021) 0.052 0.008  
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Appendix C  

 

 

Figure C-1: Diagnostic plots for linear mixed model on total length of all species before log transformation of 
body length (cm). 
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Figure C-2: Diagnostic plots for linear mixed model on total length of all species after log transformation of body 
length (cm). 
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Figure C-3: Diagnostic plots for linear mixed models on CPUE data of all species before log transformation. 

 

 

 


