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Abstract

Mathematical modeling of the Atlantic salmon population is challenging due to

the variability of biological parameters describing its life cycle. Castellani et al.

[9] pointed out the scarcity of research on the impact of numerous ecologic and

genetic factors on the evolution of populations and emphasized an urgent need

for new models incorporating these elements. They suggested an Individual-

Based Salmon Eco-genetic Model (IBSEM) describing the demographic and

population genetic change of an Atlantic salmon population through its entire

life cycle.

The goal of this thesis is to cast biological data available in the research

literature into a deterministic stage-structured discrete model described by a

system of difference equations accounting for all important stages in the life

cycle of Atlantic salmon. Sensitivity and elasticity analyses of the model are

conducted along with numerous numerical simulations to provide practical

recommendations regarding the impact of the changes to survival rates at

different stages on the dynamics of the entire population.
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Chapter 1

Introduction

1.1 Motivation

Norway, the world’s largest producer of farmed salmon, exported a record 1.2

million tonnes of salmon with a value of NOK 81, 269 million in 2021 according

to SSB [2], Norway is an essential fish supplier to the world market and this nat-

ural resource is necessary for Norwegian economy and the world. Management

of the natural resources is required to avoid, for example, overfishing which

can lead to depletion of the fish resources, as happened with the Peruvian

anchovy stock in the 1970s [11]. Therefore, we need some tools to predict

what happens to make those natural resources available for us and the next

generations. The prediction is often based on the historical statistical data

from fisheries management reporting the quantities given of fish harvested from

year to year.

Castellani et al. [9] developed an Individual-Based Atlantic Salmon Population

Model (IBSEM) for the Atlantic salmon life cycle, including the processes of

growth, mortality, and maturation. The IBSEM model accounts for many vari-

ables such as environmental variables and individual genotypes to simulate the

demographic and population genetic change of an Atlantic salmon population

over its entire life cycle.

When I read this paper and other books and papers about the life cycle of
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salmon, I learned how the situation is complicated. This motivated me to

attempt the design of a deterministic model of the life cycle of the Atlantic

salmon, exploring the possibilities for constructing such models and using

them to make meaningful predictions. I intended to write about the salmon’s

life cycle and how the number of adults in one year influences the number of

juveniles and eggs in the following years. I aimed to construct a deterministic

model that can estimate the amount of fish in the coming years as well as

the optimal harvesting levels (the harvesting levels that do not lead to the

extinction of the population in fishery’s terminology) by knowing specific factors

and using an appropriate model. The right amount of natural resources to be

exploited in order for future generations to have access to them. Everything

was different with salmon; this type of fish virtually never follows a defined

pattern in its life cycle, which means that individual salmon at different life

stages can grow, emigrate, spawn, and survive in very diverse ways.

1.2 Research Aims and Objectives

The aim of this thesis is to construct a deterministic model that can predict

how the population of the Atlantic salmon changes over time based on the

description and the model for the life cycle of salmon in the paper by Castellani

et al. [9] and using data from other sources [2, 3, 10].

The objectives of the thesis:

• To review the life cycle of Atlantic salmon following the relevant biological

literature and current research.

• Determine the elements that influence the life cycle of the Atlantic salmon.

• Investigate the dynamics of different age classes of the Atlantic salmon

and explore the impact of changes in the important biological parameters

on the life cycle using sensitivity and elasticity analysis.
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1.3 Structure of this thesis

This thesis is organized as follows. In Chapter 1, we provide our motivation

for the work, describe the aims and objectives, and explain the organization of

the thesis. Chapter 2 introduces and classifies mathematical models. Chapter

3 deals with biological models that study population growth. We described

the biology of the salmon and introduced important models that study the

salmon population in Chapter 4. Important theoretical results from the theory

of non-negative matrices are collected in Chapter 5. Then we introduce our

model, study the properties of the population projection matrix, and test

it by modifying, in turn, each of the parameters, including the “worst-case

scenario.” Furthermore, we conducted full sensitivity and elasticity analyses

and summarized our findings. We conclude the thesis with a discussion of the

limitations of the model and suggestions for further work in Chapter 6.
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Chapter 2

What is a mathematical

model?

2.1 Mathematical models

The Dictionary of the public health [30] gives the following definition of the

mathematical modeling for biological processes:

A representation of a biological process, system, or relationship

by means of a mathematical equation or set of equations, often

involving several random variables. The model usually consists

of a mixture of variables and one or more associated constants or

parameters. A model that does not involve random variables is

deterministic. Models can be used to explain complex processes

and to predict possible future trends, for instance, in the incidence

of diseases.

The purpose of modeling is to provide a tool for understanding what happens

in real-world phenomena, including physical, chemical, economic, biological,

linguistics phenomena [23], and even in social relations as in the book The

Mathematics of Marriage [19]. Generally speaking, we can model all complex

phenomena around us. We need models to explain and predict processes that
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are consistent with what occurs in the real world. We can say that a model

is an illustration of what happens in the world, and a good model in most

situations predicts what would happen if some parameter changes in the model.

The models contain parameters, and the number of parameters rises with the

complexity of questions we want to answer with the help of our model. As

examples of mathematical modeling in real-life situations, we can mention

launching a satellite, flight traffic modeling, highway traffic modeling, and

many more.

In his book Response Surfaces, Mixtures, and Ridge Analyses [6, p. 424],

George Box wrote:

All models are approximations. Essentially, all models are wrong,

but some are useful.

This popular phrase refers to statistical models that are limited and cannot

always predict all of the complexities of real-life situations but may be applied

to scientific models as well.

2.2 Classification of mathematical models

The simplest mathematical model is, at its most basic level, a functional link

between the values of two measurable quantities, one of which we already

know and the other about which we desire to learn more. There are many

forms of mathematical models; for our need, we can classify, for instance, the

mathematical models [29, 31] differently depending on: the subject we study,

the purpose of the model, the parameters of the model, the mathematical

techniques used to solve the model, the variables in the model, the nature of

the model. We present below some popular classifications of mathematical

models according to their type.

Linear/Nonlinear In linear models, the rate of change between variables in

the model is constant, and we can predict the value of a variable by knowing

the value of the other/others. The examples are the equation of a straight line
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and linear regression, which describes the relationship between two variables;

one of them is dependent on the other. Linear models can be analyzed by

dividing them into parts, then solving each one of them, and finally combining

the parts to get the answer. This can be done by using techniques such as

Fourier analysis, Laplace transforms, or other methods. On the other hand, if

the relation between variables is written by a nonlinear equation, then we have

a nonlinear model. As an example of a simple nonlinear model, we can write

the equation that relates the weight of an individual fish to its length, which

can be expressed as follows [12]:

W = 8 · 10−6 · l3.069

where W is the weight of the fish in kg, and l is the fork length in cm (the

length of a fish from the tip of its snout to the fork of the tail). These models

are more difficult to analyze than the linear models [33], and most of them are

impossible to solve analytically since, in the real-life problems, can the parts of

the system interact with each other, cooperate or even compete, and the most

of the real-life’s systems are nonlinear as earthquakes, climate and weather

changes, the spread of infections, and many other. Usually, non-linearity is

related to phenomena like chaos, even in simple systems.

Static/Dynamic Static mathematical models are usually represented by

algebraic equations or functional relations and show us the situations when

the system is in the equilibrium state because, in these models, the time is

not changing. For example, we may use a static model to compute supply and

demand changes in the market model.

The dynamic models are time-dependent, which means that in these models, we

calculate the changes that happen in the system with time: We can represent

the dynamical models using ordinary, functional, partial differential equations,

or difference equations. In differential equations, the time is continuous, but

in difference equations, the time, on the contrary, is discrete. Differential

equations can also be divided into ordinary where the only variable is time,
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and partial differential equations, where the variables are time and space, as in

the heat equation.

Discrete/Continuous The mathematical models can be divided into con-

tinuous and discrete models, depending on the variable, which is often the

time. In continuous models, the variable is a real number t ∈ R, which means

that it could take any number from the set of the real numbers, including the

decimals numbers, which means that the changes in the system can occur at any

time. While in the discrete models, the variable just takes a natural number,

which means that t ∈ N, which means that the events in the system occur on

separate occasions. There are also hybrid models that combine properties of

continuous and discrete models. Continuous mathematical models provide us

with information about the state of the system at any time and can show us

the changes and the effects that occur in the system if we change a parameter.

Descriptive/Predictive Predictive models, as can be deduced from the name,

are used to predict the evolution of real systems. I remember in my first year

as a master’s student; my professor asked me to make a water clock and make

an equation that could predict how fast the water would drain from the vessel.

That is, by knowing the inputs of our model, the volume of the vessel, and

the size of the hole at the bottom, we were able to build a model that makes

us capable of predicting the exact time that takes the water to drain from

the vessel. Contrary to the predictive models, the descriptive models are used

to understand what happened in the past and to understand the nature of a

problem or the organization of the system.

There are many different possibilities for classifying mathematical models. In

this section, we discussed some possible classifications; a particular model can be

classified in many different ways, including various combinations, like nonlinear

stochastic models in biology described by stochastic differential equations and

simulated numerically or discrete linear models based on difference equations

and analyzed analytically. We summarize the classification of mathematical

models in the mind map in Figure 2.1.
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Figure 2.1: Classification of mathematical models
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Deterministic models

I would like to start with one of my favourite quotes [5]

“God does not play dice with the universe.”

This was Einstein’s response to the randomness and probabilistic nature of

the quantum mechanic theory. He was dreaming like the rest of us about a

predictable world. However, in real-life situations, this is not always the case.

As an example, we can mention Heisenberg’s Uncertainty Principle, which

states that “We cannot measure precisely the position and momentum of a

particle at the same time, and if we in any moment know the position of the

particle, we would not be able to measure the momentum of the particle and

vice versa”.

When we use a deterministic model, this means that we want to know what

happens in the future, and necessarily we should have all the data that make

us capable of doing that. In the deterministic models, [37], the present status

of the system determines its behavior in the future; we often have most data

needed for the prediction model, which makes us capable of making projections

for the missing parameters based on the combination of the experimental

data and theoretical research. On the opposite, in the stochastic models,

the randomness is an essential part, and the variables are usually described

statistically by a probability distribution, which implies that the same set of

parameters and initial conditions will provide a range of different results.

Chaos

Chaotic behavior may originate in deterministic systems exhibiting irregular

behavior that depends on the initial conditions, which in turn leads to unpre-

dictable or random behavior, as in the weather systems. Poincaré was the first

person who noticed the possibility of chaos, see [33, p. 3]. In chaotic systems,

any small difference in the initial conditions may lead to very different results.

However, the physicist Feigenbaum [33, p. 4] discovered in the 1970s that
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there are some rules for the transition from predictable to irregular behavior,

meaning that different systems can become chaotic in the same way.

2.3 Why do we need models?

• Models supply us with insight into how the system behaves.

• Models can help policymakers make better decisions:

– By explaining the fundamental causes of complicated phenomena.

– By predicting what happens in the future.

– By predicting what happens in response to changes in the system.

In the following list we illustrate where one can make use of the mathe-

matical models:

• Mathematical models are important for studying climate change. Climate

sensitivity to changes can be determined with the help of models using

simple coupling mechanisms and certain assumptions and conditions or

by simulation. Thus, future temperature increases can be predicted.

• Mathematical models help to protect the environment and they are

recognized as effective tools for studying the economic and environmen-

tal impacts of alternative resources for pollution control - conservation

measures - and thus help planners or decision-makers in formulating

cost-effective management policies.

• Mathematical models are extremely important in the scientific sciences,

particularly physics. Physical theories are basically expressed by math-

ematics. Molecules, for example, can be represented using molecular

orbital models, which are approximate solutions to the Schrödinger equa-

tion.

• When engineers analyze a system to be controlled or improved, they

often use mathematical models. In analysis, engineers can construct a
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descriptive model of the system as a hypothesis of how the system will

operate, or attempt to estimate how an unexpected event will affect

the system. Similarly, when controlling the system, engineers can try

different control methods in simulations.

• Mathematical models contribute to predicting patterns of spread of

infectious diseases, and also help to reach community immunity (herd

immunity) faster and by using fewer doses of vaccines.

• Mathematical models are increasingly being utilized to investigate inter-

group, and national conflicts [17]. The significance of such analysis

arises from the fact that empirical studies of disputes are complex and

time-consuming. Mathematical models combined with modern computer

technology enable the transition from simple fact gathering and analysis

to real-time prediction and appraisal of occurrences. Suppose methods

of observing and analyzing group conflict allow for a single solution

to the conflict event. In that case, mathematical modeling of conflict

phenomena using computers allows for the calculation of various options

for its development and a prediction of possible outcomes and factors

influencing the results.

• Mathematical models simulate complex systems relatively fast and cost

less than laboratory experiments. These models describe the essential

components of interactions helping to identify methods that are most

appropriate and lead to desired outcomes. For medicine, as an example,

tumor models can be calibrated using clinical or laboratory data to

formulate the hypotheses about tumor behavior.

• Mathematical models are used in biological sciences to understand chang-

ing animal populations, the evolution of biological patterns, the spread

of disease, and the functioning of the nervous system.
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Chapter 3

Biological models of

population growth

3.1 Continuous single population models

Population models are constructed on the basis of balance equation:

N(t + 1) = N(t) + birth+ immigration - death- emigration

where N(t) is the number of individuals at time t and N(t + 1) is the number

of individuals at time t + 1. In some models, as we will see (Malthus model),

for simplicity, we assume that the population is closed, meaning that there is

no immigration or emigration, and the birth and death rates are constant.

Malthus model

In his book An essay on the principle of population published in (1798) [27, p.

5], Malthus wrote:

“I say that the power of population is indefinitely greater than the

power in the earth to produce subsistence for man. Population,

when unchecked, increases in a geometrical ratio. Subsistence

increases only in an arithmetical ratio. A slight acquaintance with
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numbers will shew the immensity of the first power in comparison

of the second.”

He predicted that the population number would expand exponentially, and this

would lead to disasters because the food supply could not reasonably be grown

at a continual positive per capita growth rate to keep up with the population

expansion. The Malthusian model is the simplest growth model of a single

population, which assumes that “The population is homogeneous and isolated,

and the habitat is invariant.” The main reasons for changing population size

are death, birth, emigration, and immigration, but in the Malthusian model,

we assume that the population is closed, then the population change is just

by birth and death. For describing the Malthus growth equation (model), we

follow the explanation from the books [7, 22], and this can be done as follows.

We assume that the density of the population at the time (t) is denoted by X(t)

and let X(t) be continuous and differentiable everywhere. In some populations,

there is a proportional relation between the number of new members and the

number of members at present during a short time interval of the length ∆t,

each individual gives birth to β∆t new individuals, and in the same period,

each individual has probability µ∆t of dying, where β, µ denote the per capita

birth rate and per capita death rate, respectively. During this period ∆t, the

total population gives birth to β∆tX(t) and the death in the total population

is µ∆tX(t). In a short time we have

N(t + ∆t) − X(t) ≈ βX(t)∆t − µX(t)∆t ≈ (β − µ)X(t)∆t.

Dividing both sides by ∆t, we obtain:

X(t + ∆t) − X(t)
∆t

≈ (β − µ)X(t).

Passing to the limit as ∆t → 0, we have

lim
∆t→0

X(t + ∆t) − X(t)
∆t

= (β − µ)X(t).
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This can be written in the form of a differential equation

dX(t)
dt

= (β − µ)X(t).

Denoting β −µ = r we introduce r, the instantaneous growth rate. The solution

of the differential equation

dX(t)
dt

= rX(t) (3.1)

with the initial condition X(0) = X0, is given by X(t) = X0ert. This is why we

call Malthus model the exponential growth model. We have three alternatives:

(i) if r < 0, the population will go extinct; (ii) if r > 0, the population will grow;

and (iii) the population size does not change if r = 0. We can see in Figure 3.1

how the exponential growth changes with different value of the growth rate.

20 40 60 80 100 120 140 160 180 200 220 240

10

20

30

40

X

Y
r = 0.01
r = 0.02
r = 0.03
r = 0.04

Figure 3.1: Malthusian growth for different positive values of r.

It is clear that Malthus’s model is unrealistic and is very simple because there

are many factors affecting population growth besides death and birth, such

as immigration and emigration. The next step in the development of the

population models is the logistic model.
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Verhulst model

This model is also known as the logistic model. In this model, the habitat is

assumed to be limited so that it can not support the growth if the population

reaches a certain level called the carrying capacity (the maximum sustainable

population). After this, fertility will decrease, and mortality will increase. We

can write the differential equation as

dX(t)
dt

= rX

(
1 − X

K

)
. (3.2)

It follows from the analysis of the right-hand side of equation (3.2) that


X > K ⇒ dX

dt < 0 and X decreases;

X < K ⇒ dX
dt > 0 and X increases.

(3.3)

The solution of equation (3.2) is given by

X(t) = KX0
X0 + (K − X0)e−rt

, (3.4)

but its behaviour is already explained by (3.3). We plotted solutions to the

logistic equation for different values of the carrying capacity in Figure 3.2.

−2 −1 1 2 3 4 5

50

100

150

X

Y

K = 100
K = 90
K = 60
K = 50

Figure 3.2: Verhulst model for different carrying capacities K = 100, 90, 60, 50,
r = 2, and initial conditions X1

0 = 120, X2
0 = 25.
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Schaefer model

Schaefer’s model is based on the logistic growth model, but it also incorporates

harvesting. It can be written in the form:

dX

dt
= rX

(
1 − X

K

)
− qXE (3.5)

where X is the biomass, K is the carrying capacity, i.e., the maximum popula-

tion size that can be achieved in the habitat, and r is the intrinsic growth rate

of the population. The difference with equation (3.2) is that (3.5) includes the

harvest H introduced as

H = qXE (3.6)

where q is the catchability coefficient defined as the fraction of the biomass

caught by the unit of fishing effort [8], and E is the fishing effort representing

the amount of fishing gear of a specific type used on the fishing grounds over a

given unit of time, e.g., hours trawled per day, the number of hooks set per day,

or the number of hauls of a beach seine per day [1]. Generally, fishing efforts

are regulated by quotas, trip limits, and gear restrictions. From equation (3.6),

we can see that the harvest per unit effort is a function of the size of the

population, H/E = qX. The Schaefer model uses the following assumptions

[28, p. 167]: different species do not interact with each other; r is independent

of age composition. the environmental factors do not affect the population;

there is no time delay in the response of r to the change in the biomass (X); q

is constant; the death for a natural reason and the death due to fishing happen

at the same time; the efficiency of the vessels does not change; the statistics

on the effort and the catch are correct.

18



3.2 Continuous multi-species models

Predator-Prey models

Lotka-Volterra

Lotka-Volterra equations, also known as the predator-prey equations [7], is

presented as a system of first-order nonlinear differential equations. They are

used to explain the dynamics of biological systems involving two species, one of

which is a predator and the other is prey. We denote by x the number of prey

and by y the number of predators. In this model, we have three assumptions:

(i) The food supply of the prey is unlimited, and if there is no predator, the

population of prey will grow exponentially,

dx

dt
= λx, (3.7)

where λ is the growth rate of the prey.

(ii) The predator depends on the prey as food, and in the absence of the prey

predator population decays exponentially,

dy

dt
= −µy, (3.8)

(iii) If the predator hunts the prey, then the number of predators will increase

from −µ to −µ + cx, with the rate c and the number of the prey will change

from λ to λ− by where b is the coefficient that determines the rate of predation,

i.e., the probability of the predator catching the prey.

Then Lotka-Volterra equations are written in the form:

dx
dt = x(λ − by),
dy
dt = y(cx − µ).

(3.9)
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3.3 Age-structured discrete models

The word "structured" means that the model is organized according to a pattern;

the most obvious pattern to recognize the difference between the individuals

in a population is the age or size. The age of individuals affects the birth

and death rates of the population. To account for the impact of age, we must

represent the population by variables Ni(t) that represents the number of

individuals of age i at time t, with i that range between 0 to the maximum

age of the individual.

Leslie Model

The Leslie model [26, 36] is an age-structured single-species population growth

model. In the Leslie model, we only consider the female population, assuming

that males would always fertilize females. Females are classified into age groups

by equal time units. The time unit (1, 2, . . . , m) might be a second, a day, a

month, a year, or something else. For humans, for example, we use a 5-year

time unit, whereas, for whales, we use a 2-year time unit [35]. In the Leslie

model, the fecundity and survival rates do not change with time; therefore, they

are independent of the population density. The life table shows the probability

of death of an individual at a specific age. In other words, it demonstrates the

population’s ability to survive. The life table may also be given as a long-term

mathematical approach to calculating population lifespan. To construct the

Leslie matrix, we need to define some important notions and notation. In what

follows, li is the number of individuals surviving to the age i, it is given by the

equation

li = Ni

N0
,

where N0 is the number of individuals at birth, and Ni is the number of

individuals at age i. The survival probability pi is the probability that an
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individual in the i-th age group will survive to join the i + 1-st age group,

pi = Ni+1
Ni

= Ni+1/N0
Ni/N0

= li+1
li

.

Per capita fertility rate fi is the mean number of offspring an individual can

have in the i-th age group.

Furthermore, Σfi is the gross reproduction rate, defined as the total number

of daughters born for the total population in the absence of mortality, and

R0 = Σfili is the replacement rate (or net reproductive rate), the total number

of daughters born for the total population, taking into account the mortality.

The net reproductive rate is a useful indicator of population fitness. If R0 > 1,

the population size will increase; if R0 = 1, the population size will remain at

the same level, and if R0 < 1, the population size will decrease.

Other useful characteristics are the generation time T = Σ i·li·fi
R0

, the average

period between the birth of an individual and the birth of its offspring, and

the intrinsic growth rate r ≈ log(R0)
T .

One has to distinguish between the post- and pre-breeding models, depending

on when the births occur in relation to the annual census. To understand this,

assume that we run a census every January 1st. In some populations, such as

humans, which give birth to new individuals throughout the year, we count

the offspring Fi the average number of births to individuals in age i whose

offspring survive the same date of the next year. In other populations, the birth

happens once a year, often at a specific season, so we count the offspring as

the number of individuals. So when the offspring happens in a specific season,

we count the number of individuals after birth. If we have fi is the number of

the offspring that each individual at age i has at the present birth pulse, then

the census of the current population after the pulse can be calculated by the

equation Fi = pi × fi+1 where pi is the survival probability to the next year

and fi+1 is the number of the offspring in the next year’s pulse. This is what

we call a post-breeding census.

On the other hand, if we count the population’s number before the pulse, then
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we will have the pre-breeding census Fi = p0 × fi where p0 is the probability

that offspring survive, and fi is the number of the offspring now which will be

counted the next year.

Both ways of counting the population size are valid with appropriate assump-

tions. In the Leslie model, we assume that the probability of survival of the

last age group is zero, that is, pm = 0. Let Ni(t) be the population size of the

i-th age class at the time t. We can make two assumptions:

(1) The individuals in the group i at time t enter age i + 1 at time t + 1 with

the survival probability pi for the i-th age group. Thus

N2(t + 1) = p1 · N1(t);

N3(t + 1) = p2 · N2(t);
...

Nm(t + 1) = pm−1 · Nm−1(t).

(2) During time period t, each individual in age group i has on average fi

offspring. Thus individuals in age group i produce fi · Ni(t) female offspring

during time period t which enter the first age-class at time t + 1:

N1(t + 1) = f1 · N1(t) + f2 · N2(t) + · · · + fm · Nm(t).

Using our assumptions, we can write

N1(t + 1) = f1 · N1(t) + f2 · N2(t) + · · · + fm · Nm(t),

N2(t + 1) = p1 · N1(t),

N3(t + 1) = p2 · N2(t),
...

Nm(t + 1) = pm−1 · Nm−1(t).
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We can write these equations in the matrix form


N1
...

Nm

 (t + 1) =



f1 f2 · · · fm

p1 0 · · · 0

0 p2 · · · 0
... . . .

0 · · · pm−1 0





N1

N2
...

Nm


(t)

.

N(t + 1) = AN(t) (3.10)

where the vector

N(t + 1) =
[
N1(t + 1), N2(t + 1), . . . , Nm(t + 1)

]T

represents the population at time t + 1, and

N(t) =
[
N1(t), N2(t), · · · , Nm(t)

]T

represents the population at time t.

The square matrix A with non-negative entries where all entries are zeros

except for the first row and the sub-main-diagonal,

A =



f1 f2 · · · fm

p1 0 · · · 0

0 p2 · · · 0
... . . .

0 · · · pm−1 0


is called the Leslie matrix. Applying equation (3.10) k times, we obtain

N(t + k) = AkN(t). (3.11)

Since the matrix A is a square matrix with m rows and columns, there will be
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m latent roots and vectors which satisfy the equation:

AN = λN (3.12)

where λ is a latent root (latent roots are solutions of the characteristic equation

for the square matrix A [20]) and N is a latent vector associated with λ.

The Leslie matrix is a useful tool to explore the population growth for closed

cohorts. It does not account for migration and uses only the number of females.

However, as we will see later in Chapter 5, the Leslie matrix does not provide

a good description for animal cohorts where the age of the individuals is less

important because some individuals can grow faster than others. Twins may

show a huge difference in development in size, which leads us to the next step,

the Lefkovitch model.

Stage structured discrete models

Lefkovitch model

In some animal populations, it is impossible to determine the actual age of

the individuals [25]. Therefore, the Lefkovitch model [34] does not take into

account the age but instead divides the population using their development

stages which can easily be recognized by the size of the animals. The Lefkovitch

transition matrix shows the transitions between the different stages and is

used to represent the stage-structured model. In the stage-structured models,

the number of individuals in the population at the time t + 1 depends on the

number of individuals at each stage at the time t, besides the transition from

and to stages and the mortality of individuals. Thus, in the stage-structured

models, we have three options: the individual remains at the same stage, grows

up to the next stage, or dies. Here, we assume that Ni(t) represents the number

of animals at the stage i at time period t. Let bi (i = 0, 1, 2, . . . , m − 1) be

the probability that an individual moves from the stage i to the stage i + 1,

and ai (i = 0, 1, 2, . . . , , m) be the probability that an individual remains at
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the same stage. Then we have

ai + bi = 1 (i = 0, 1, 2, . . . , m − 1),

with the following bounds on the probabilities 0 ≤ ai < 1 and 0 < bi ≤ 1. If

ai = 1, then i = m, since we would not have a transition from the last stage.

Then we have the following system of equations for the number of individuals

at each stage:

N2(t + 1) = b1 · N1(t) + a2 · N2(t),

N3(t + 1) = b2 · N2(t) + a3 · N3(t),
...

Nm(t + 1) = bm−1 · Nm−1 + am · Nm(t).

As in the Leslie model, during time t, each individual in the age group i has

on average fi offspring. Thus, the individuals in age group i at time t produce

fi · Ni(t) female offspring which enter the first age-class at time t + 1:

N1(t + 1) = f1 · N1(t) + f2 · N2(t) + · · · + fm · Nm(t).

Then the recruitment data can be presented by the matrix:

B =



f1 f2 f3 f4 f5 · · · fm

b1 a2 0 0 0 · · · 0

0 b2 a3 0 0 · · · 0

0 0 b3 a4 0 · · · 0

0 0 0 b4 a5 · · · 0
. . .

0 0 0 0 0 am−1 0

0 · · · · · · bm−1 am



.
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Given the column vector N(t) =
[
N1(t), N2(t), . . . , Nm(t)

]T
which represents

the numbers of the animals at time t, and, similarly, if the vector N(t + 1)

representing the number of animals at time t + 1, we can write that

N(t + 1) = BN(t). (3.13)

We can study quantitative changes in the natural resource by comparing the

population structures at periods t and t + 1. If we have stable age distribution

then the number of animals at time t must be proportional to the number of

animals at time t + 1 for each class,

N(t + 1) = λN(t).

and we get from the equation (3.13) that

BN(t) = λN(t).

This means that λ is a latent root of the matrix B. If λ > 1, we will have

an increase in the number of animals over time, and the increasing value is a

measure of the potential harvesting.
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Chapter 4

Biological factors affecting

salmon live cycle

4.1 What are the challenges with salmon?

It is a highly complex life, that of salmon. The salmon are born in freshwater

and live there as juveniles until they grow to a certain size, which makes them

able to survive in the saltwater, then travel to the ocean to grow more and

become adults. After that, they come back to the freshwater to reproduce.

Some juveniles (male parr) can reproduce although they may be eaten or

attacked by the adults; therefore, they sneak into the spawning among the

adults. Moreover, some juveniles may grow in the first year and immigrate to

the ocean, but on the other hand, some juveniles can remain at the same stage

for up to seven years. Some adults spend one year in the ocean, and some

may stay up to seven years before they come back to spawn. Some adults die

after spawning, and some may spawn several times. These differences in the

life patterns of individual salmon may be beneficial because they make salmon

flexible to the changes.

The Atlantic salmon population faces many challenges, including predators,

pollution, climate change, harvesting, and human-made changes to the natural

habitat, such as making dams on the rivers where Atlantic salmon live or
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migrate.

4.2 The life cycle of the Atlantic salmon

In this section, we provide a brief description of the life cycle of salmon following

that in the book Atlantic Salmon Ecology [3, p. 4-6]. Atlantic salmon live in

the arctic and subarctic zones. The species has a wide range of complex life

cycles. However, most of them are anadromous, which means that they hatch

and live as juveniles in the same area in freshwater, then travel to saltwater to

grow up. When they become adults, they come back to the same spawning

sites to reproduce. We can summarize the life cycle of the Atlantic Salmon in

steps as follows.

• From September through February, Atlantic salmon spawn in rivers.

• In the following spring, the eggs hatch, and the tiny fish are known as

alevin (15-25 mm). They live on their yolk sac for 3 to 8 weeks until

emerging from the gravel and becoming fry, at which point they start

feeding in freshwater.

• Juvenile (parr) can be in the freshwater for one to eight years before they

transform into smolt (10-20 cm) that travel to the ocean, and after they

enter into the saltwater, they are called post-smolt.

• Through their life at sea, the salmon grow in weight from 50 g to 1-25

kg before returning to spawn.

• A large number of salmon die after the spawning season due to illnesses,

exhaustion, and predators.

• Individuals can spawn up to seven times throughout their lifetime. How-

ever, the majority only spawn once or twice.
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• Before they emerge to the sea, some of the parr may reach sexual maturity

and be able to produce viable sperm. Still, the adult females are not

interested in them, so they do not exhibit courting, and instead, they

sneak spawn near pairs of adult fish.

4.3 A one-year life cycle of the Atlantic salmon

Based on the IBSEM model [9], we summarize the main events in the life of

the Atlantic salmon in one year.

• October 1, spawning, laying eggs.

• November 1, to March 1, resting season where the fish does not grow up.

• November 1, to May 1, the transition from parr to smolt.

• April 1, hatching eggs.

• May 1, the transition from alevin to parr.

• May 1, to November 1, growth season.

• May 1, the transition from smolt to adult.

• the adult and smolt do not have a resting season. i.e., they grow all year

round.

Figure 4.1 summarizes the life cycle of salmon during one year.

4.4 Mathematical models of salmon life cycle

There are too many difficulties in determining how a population will react

to the changes in the environment [32]. One technique that helps us deal

with these issues is to understand the features of individuals, analyze how the

environment influences changes in these elements, and then develop a structure

of population dynamics. There are several methods to do so, including matrix
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Figure 4.1: The life-cycle of the salmon during one year

population models, delay differential equation models, individual-based models,

and integral projection models. There are two types of mechanistic population

dynamics models: group-based models, in which the population is divided

into size or age groups, and individual-based models, which describe the

interactions between individuals based on the characteristics of each individual

in the population. In the individual-based models for salmon fish [21], we

model the growth rates, the migration, the predator-prey interactions, and

genetic elements, besides many other environmental elements. We present two

useful models.

IBSEM model

There are several studies that consider the ecology and genetics of the Atlantic

salmon. The IBSEM model (Individual-Based Salmon Eco-genetic Model)

is one of such models. Castellani et al. [9] designed a model that considers

the ecology and genetics of the individuals Atlantic salmon as well as the
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environmental variables. They simulated growth, mortality, and maturation

through stochastic procedures, and the result of the simulations showed that

the model reproduces the characteristics of the population, and this is due to

the mix which happens to the salmon population with non-local populations.

The differences in the origin of the fish can be divided into wild, farmed, or

hybrid, which can be seen in the genotype of the individuals. These differences

influence the growth, survival, and maturation of individuals. In IBSEM model

the life cycle of the salmon is divided into three stages: embryonic, juvenile,

and adult. The embryonic stage in freshwater is divided into two stages: egg

and alevin. Juvenile stage is divided into parr and pre-smolt stages. Eggs

hatch in April, and on the first of May, the alevin enters the parr stage and

begins to feed in the river. Parr has been divided into stages based on its

age: (+0) Parr with age less than one year, (+1) one-year-old parr, and (+2)

parr older than two years. The transition from parr to smolt is variable and

can vary between one year to several years. The probability of this transition

depends on the size of the individual. The year is divided into resting seasons

when parr does not grow up in the cold months (November-February) and the

growth seasons when parr is growing up in the warm months (March-October).

There is a possibility of a male parr to mature sexually in October and engage

in the reproducing process known as sneak spawning. The smolts grow in the

resting seasons, remain six months in the sub-phase, and migrate on the first

of May to the ocean as adults. The adults may stay in the ocean up to three

years, and they return to spawn in October, and the returning probability is

depending on the age and genotype of the individuals. There is a percentage

of adults that survive after spawning (they are known as kelts) and travel once

again to the ocean. The adults are grouped depending on the years spent at

sea into: (0SW) as the first year at sea, (1SW) one year, (2SW) two years, and

(3SW) three years or more at sea. Figure 4.2 illustrates the life cycle of salmon

according to the IBSEM model. Castellani et al. [9] introduced the IBSEM

model to explain the life cycle of a wild salmon population that inhabits in
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Figure 4.2: The life cycle of salmon according to IBSEM

the river Os in Norway and migrates to the Norwegian Sea during its oceanic

phase.

A model of the complete life-cycle of Atlantic salmon based on

spatially explicit individual-based approach

Hedger et al. [21] developed a model that predicted the whole life cycle of the

salmon in the freshwater by using the individual-based mechanistic approach.

They used a hybrid model that includes both a deterministic part that can

predict the processes that affect the abundance of the salmon in different

stages, and the stochastic part used to calculate the probability of birth, death,

smolting, and returning of the adult fish to the freshwater. The model includes

the following factors: the time of year when spawning occurs, the section of the

river where spawning occurs, the river/sea where the salmon lives, body mass

and length, variance in growth among individuals, the developmental stages of

the salmon, age in weeks, the age of the cohort, and the number of winters spent

at sea. The functions in this model were picked from the literature or developed

via actual research at the Norwegian Institute for Nature Research (NINA).

The relationship between the abundance and carrying capacity was strongest

in parr, followed by fry, and was less in the post-smolt stage. A significant

survival probability of the post-smolt stage provided an enormous abundance

of the eggs and fry in the next year, and then a big abundance of parr. There

32



was a small effect of the density-independent factors on the abundance of the

parr. The simulations showed that the high carrying capacity of fry provided

a high abundance of parr, leading to a high mortality probability. Similarly,

low post- smolt mortality led to a high probability of the adult returning to

freshwater and caused a high mortality rate in the river.
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Chapter 5

Discrete model of Atlantic

salmon life cycle

5.1 Theoretical background

In this section, we collected the definitions and results we need to analyze our

discrete model.

Definition 5.1.1. We call a matrix non-negative matrix (positive)if all its

entries are non-negative (positive). In this case, we write M ≥ 0 (M > 0) and

this means that for all elements ∀mij ∈ M we will have mij ≥ 0 (mij > 0).

Definition 5.1.2. We call the matrix A of order m ≥ 2 a reducible (also

decomposable or non-connected) if there exists a permutation P that puts the

matrix A into the form

PAP −1 =

B 0

C D


where B, C, and D are square matrices. Otherwise, we say that the matrix A

is irreducible (connected).

Definition 5.1.3. An eigenvalue λ of a square matrix A is a solution of the

equation Av⃗ = λv⃗ where v⃗ is called the right-eigenvector corresponding to the
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eigenvalue λ. Similarly, the left-eigenvector associated with λ is defined as the

solution of the equation w⃗A = λw⃗.

Definition 5.1.4. The dominant eigenvalue λmax of a matrix A is the eigen-

value that satisfies |λmax| > |λi| for all i.

Remark 5.1.1. The long-term dynamics of matrix models depend primarily on

left eigenvectors. In particular, “the dominant left eigenvector (when it exists)

has a biological interpretation as the ‘reproductive value’ of different stages, a

concept due to R.A. Fisher” [13, p. 85].

Both left and right eigenvectors are used to define the eigenvalue sensitivity,

that is, they determine how each matrix element influences the dominant

eigenvalue. Let v⃗ and w⃗ be the right and left eigenvectors corresponding to

the dominant eigenvalue λmax of the primitive matrix A. Then, the eigenvalue

sensitivity for the entries of the matrix A is calculated as follows:

∂λmax

∂ai,j
= wi · vj

w⃗ · v⃗
(5.1)

where wi is the i-th component of the left eigenvector w⃗, vj is the j-th component

of the right eigenvector v⃗, and w⃗ · v⃗ is the dot product of the two eigenvectors

v⃗ and w⃗. The sensitivity analysis helps to determine which matrix elements

have the most influence on the dominant eigenvalue λmax.

However, in our model we measure fecundity and survival probability on

different scales; the number of eggs may be considerably large, while the

other parameters are less than 1. As a result, sensitivity values for survival

probabilities are higher than the sensitivity for fecundity. This information

may not be sufficient and we need to use a better tool, known as proportional

sensitivity or elasticity, defined by the equation

eij = aij

λmax

wi · vj

w⃗ · v⃗
. (5.2)

Remark 5.1.2. The value of (eij) does not specify which matrix elements or how

they should be modified, but “it does identify potential targets of opportunity.
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So in many applications of matrix population models, the main goal of building

the model is to compute the elasticities” [13, p. 91]. Furthermore, one should

remember that elasticity analysis is valid only for small changes in matrix

entries, and the effect of large changes should be computed directly by modifying

the matrix entries and computing the corresponding value of the dominant

eigenvalue, as we do later in this thesis.

The next result summarizes a number of important properties and can be

found in [18, Theorem 2].

Theorem 5.1.5. (Perron-Frobenius theorem) Let A be a square non-

negative irreducible matrix of order n ≥ 2. Then the following hold:

(i) A has a positive dominant eigenvalue λmax and an associated right-eigenvector

v⃗ such that Av⃗ = λmaxv⃗, [16, p. 53].

(ii) The eigenvector x associated with the dominant eigenvalue has positive

coordinates, v⃗ > 0⃗ [16, p. 53].

(iii) By increasing the value of any element in the matrix A the value of the

dominant eigenvalue will λmax increase [15, p. 350].

The next result is important for deciding whether a given matrix is irreducible

[18, Theorem 5]. Any of the conditions listed can be used to verify that our

matrix A is irreducible.

Theorem 5.1.6. (Irreducibility test) Let A ≥ [0] be a square non-negative

matrix of order n ≥ 2 and let λmax be its dominant eigenvalue. Then the

following statements are equivalent.

(i) A is irreducible.

(ii) (I + A)n−1 > [0].

(iii) (I + A + A2 + · · · + An−1 > [0].

(iv) A + A2 + · · · + An > [0].

(v) A has exactly one, up to scalar multiplication, positive eigenvector and this

eigenvector is associated with the dominant eigenvalue λmax.

The following irreducibility criterion can be also useful [18, Theorem 9].
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Theorem 5.1.7. Let A ≥ [0] be a square non-negative matrix of order n ≥ 2.

A necessary and sufficient condition for A to be irreducible is that its dominant

eigenvalue λmax is simple and that both A and AT posses positive eigenvectors

corresponding to λmax.

The irreducibility of the matrix is important for using Perron-Frobenius Theo-

rem but it can be replaced with another useful property.

Definition 5.1.8. A non-negative square matrix A = (ai,j) is said to be a

power positive (primitive) matrix if there exists an integer k such that for all

i, j, the (i, j) entry of Ak is positive, i.e., Ak > 0 .

It turns out that one can avoid the verification of the irreducibility of the

matrix checking that the matrix A is primitive. To this end, several tests can

be used [18, Theorems 14 and 15].

Theorem 5.1.9. An irreducible square matrix A ≥ [0] is primitive if and only

if Am is positive for some integer m.

Theorem 5.1.10. Let the matrix A ≥ [0] be irreducible of order n. Then the

following statements are equivalent.

(i) A is primitive.

(ii) Am > [0] for some positive integer m.

(iii) Am > [0] for all m ≥ n2 − 2n + 2.

(iv) An2−2n+2 > [0].

We conclude by suggesting another convenient irreducibility criterion [18,

Theorem 16].

Theorem 5.1.11. A non-negative square matrix A of order m is irreducible

if and only if I + A is primitive.

Finally, we note that if A is primitive, there exist no other eigenvalues of A with

an absolute value equal to the unique positive eigenvalue λmax, the dominant

eigenvalue.
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5.2 Theoretic foundations of the model

In what follows, we are concerned with a discrete model of the form (3.10)

which we write again for the reader’s convenience

N(t + 1) = AN(t). (5.3)

The dynamics of the system describing a life cycle of Atlantic salmon is governed

by an m × m matrix A, called the projection matrix. It consists of non-

negative entries in the first row associated with the fertility of different cohorts,

entries under the main diagonal associated with the survival probabilities for

individuals at stage i to move to the next stage i + 1, and the rest of the

entries are zeros. The only element affecting the transition to the next stage is

the current population situation. The projection matrix includes all relevant

dynamical information. It offers an overview of how population composition

changes from one moment to the next due to survival, growth, development,

and reproduction. A straightforward way to determine whether a population

will grow or be extinct over time through the matrix model is to know the

behavior of the powers of the projection matrix At, which can be explored with

the help of the eigenvalues and eigenvectors of the matrix A.

We say that the population reached a stable age distribution at time t0, if there

exists a constant λ > 0 such that the equation

N(t + 1) = λN(t) (5.4)

is satisfied for all t > t0. Such λ is called the population growth rate. It follows

from equation (5.3) that the stable age distribution is achieved if and only if

AN(t) = λN(t). (5.5)

Therefore, we are interested in finding positive eigenvalues of the matrix A.

Theorem 5.1.5 assures that a positive eigenvalue exists and Theorem 5.1.6

38



guarantees that it is unique. The eigenvalues can be found by solving the

characteristic equation for the matrix A:

Pch(λ) = λm − f1λm−1 −
m∑

k=2
p1p2 . . . pk−1fkλm−1 = 0. (5.6)

The population long-term fate is determined by the dominant eigenvalue and

associated right eigenvector. If we have m eigenvalues and the corresponding

linearly independent eigenvectors are v⃗m, given the initial vector N(0), we can

find from (5.3) constants ci such that the following expansion for N(0) holds:

N(0) = c1v⃗1 + c2v⃗2 + . . . + cmv⃗m =
m∑
i

civ⃗i. (5.7)

Then

N(1) =A(c1v⃗1 + c2v⃗2 + . . . + cmv⃗m)

=Ac1v⃗1 + Ac2v⃗2 + . . . + Acmv⃗m

=c1λ1v⃗1 + c2λ2v⃗2 + . . . + cmλmv⃗m.

(5.8)

Similarly, for N(2) we have

N(2) = c1λ2
1v⃗1 + c2λ2

2v⃗2 + . . . + cmλ2
mv⃗m (5.9)

and

N(t) =
m∑
i

ciλ
t
iv⃗i. (5.10)

It follows from equation (5.10) that the dominant eigenvalue is the maximal

one, and it has the biggest influence on the fate of the population,

N(t) ∼ c1λt
maxv⃗1 (5.11)

where λmax is the dominant eigenvalue. We say that we have reached a stable

stage distribution if, in the long term, the population grows exponentially

at the rate of the dominant eigenvalue, and the population vector becomes

39



proportional to the eigenvector v⃗1 and relative population numbers at each

stage become constant.

The following result is taken from the paper by Anderson [4, Theorem 1].

Theorem 5.2.1. The growth rate λ in equation (5.4) is between R
1/(k−m+l)
0

and R
1/k
0 .

We summarize the most important information regarding the analysis of discrete

models in Table 5.1.

Model N(t + 1) = AN(t), N(0) = N0

Solutions N(t) = AtN0

Eigenmode expansion N(t) = ∑
ciλiv⃗i

Long-term exponential growth ∑
Ni(t) ≈ cλt as t → ∞

Stable stage distribution N(t) ≈ cλtv⃗

Eigenvalue sensitivity ∂λmax
∂ai,j

= wi·vj

w⃗·v⃗

Elasticity eij = aij

λmax

wi·vj

w⃗·v⃗

Table 5.1: Basic properties of models with a primitive projection matrix

5.3 Where do our data come from?

Due to the lack of the data from the oceanic stage, we concentrate our attention

to the river stages. The main source of data we used is the paper “Inter-stage

survival of wild juvenile Atlantic salmon” [12], especially Table 6 which contains

the estimates for survival probabilities for each of the stages in the river. In

order to build our model, we have combined information from several sources;

most of them are taken from the paper [12] and tables therein providing esti-

mated survival probability for each stage across different years. We took the
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average values of all parameters to construct our model despite the fact that

this may not be realistic since the parameters are changing significantly from

year to year, this is the parameter error. A good news is that we have tested

the model for persistence using minimal possible values of all parameters. As

we will see later, salmon exhibits very high flexibility that allows it to survive

even if it faces disastrous situations at some stages. For easy reference, we have

included the Tables 3, 5, and 6 in the appendix. We also used some important

parameters from IBSEM model like the percentage of the surviving of the

adults after spawning. The next table [12, Table 6] illustrates the probability

for individuals at each stage to survive to the next stage, the average values

are used as reference values in our model.

Cohort Egg to 0+ 0+ to 1+ 1+ to 2+ 1+ to S2 2+ to S3, S4
1986
1987 18,3
1988 47,7 4 22,4
1989 74,7 25,9 0,3 7,6
1990 61 23,5 28,7 0,5 9,3
1991 24,9 32,4 42,9 1,2 12,4
1992 17,7 35,4 30,3 0,2 7,5
1993 53,9 19,8 25,5 0,3
1994 17,3 14
1995 9,2

Average 30,7 33,3 33,5 1,1 12,9
n 6 6 6 6 6

Standard deviation 21,451216 21,772 9,4344 1,474337 6,162278

Table 5.2: Survival probability at different stages

Constructing the model for Atlantic salmon life cycle, we must find a balance

between model errors and parameter errors. In general, the model error shows

that the model’s assumptions are inaccurate, that the model ignores some

critical facts, or is too simplified. Parameter errors arise when parameters

are approximated from limited data set. The model error can be reduced by

making a model more complicated, but in this case parameter error usually

increases since we have to estimate more parameters from the same data set.

In our case, we do not have a complete large set of all relevant biological

parameters and we also have to assume that the values of parameters in the
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saltwater (not available to us) and in freshwater (available to us) are the same.

We also assume that all adults are combined in one cohort only and that they

have the same fecundity which does not fully correspond to the reality.

5.4 Discrete model for Atlantic salmon life cycle

We begin with a Figure 5.1 showing the life cycle of salmon.

E +0 +1

+2

S2

S3, S4 Adults
p1 p2

p3

p6

p4

p5

p′
6

p′
3

p7

Figure 5.1: The transition between age stages

The arrows between stages represent the transition between stages, i.e., the

probability that an individual from the stage i will survive to the stage i + 1

in the period from the time t to time t + 1, while the loop arrows represent the

probability that the individual will survive and remain at the same stage in

the same period.

Remark 5.4.1. This model is not the Leslie model because we have stages

instead of the age, and the survival probability is not the same for individuals

of the same age which are at different stages.

We have the following variables and parameters in our model: N1(t) the number

of eggs at time t; N2(t) the number of parr (0+) at time t; N3(t) the number

of parr (1+) at time t; N4(t) the number of parr (2+) at time t; N5(t) the

number of smolt (S2) at time t; N6(t) the number of smolt (S3, S4) at time t;
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N7(t) the number of adults at time t; N1(t + 1) the number of eggs at time

t + 1; f1 the fertility of eggs; f2 the fertility of parr (0+); f3 the fertility of parr

(1+); f4 the fertility of parr (2+); f5 the fertility of smolt (S2); f6 the fertility

of smolt (S3, S4); f7 the fertility of adults; p1 the survival rate of eggs that grow

to parr (0+); p2 the survival rate of parr (0+) to parr (1+); p3 the survival

rate of parr (1+) to parr (2+); p′
3 the proportion of the parr (+2) which stay

at the same stage; p5 the survival rate of parr (2+) to smolt (S3, S4); p6 the

survival rate of smolt (S3, S4) to adult; p′
6 the rate of transition from smolt

(S2) to adult; p7 the probability for adults to survive after spawning.

With this notation our system can be written as

N1(t + 1) = f1 · N1(t) + f2 · N2(t) + f3 · N3(t) + f4 · N4(t)

+ f5 · N5(t) + f6 · N6(t) + f7 · N7(t),

N2(t + 1) = p1 · N1(t),

N3(t + 1) = p2 · N2(t),

N4(t + 1) = p3 · N3(t) + p′
3 · N4(t),

N5(t + 1) = p4 · N3(t),

N6(t + 1) = p5 · N4(t),

N7(t + 1) = p6 · N5(t) + p′
6 · N6(t) + p7 · N7(t).

We note that the data were approximated in the IBSEM model suggested by

Castellani et al. [9] where the smolting probabilities of individuals longer than

the 90 mm threshold are calculated using a logistic function of size (Fig A in S2

File in [9]). The function was parameterized in order to fit the size distribution

of pre-smolts found in the river Os by Rådgivende Biologer AS [24] in October

2010. The parameterization gives a 50% smolting probability for parr of 103

mm length.

We also use the data from the paper [12, Tables 5 and 6, p. 12] to calculate

survival rates, fecundity rates and the number of salmon at different age stages.

The survival probability of the eggs is 30.7%, so p1 = 0.307.
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The survival probability of the parr (0+) to parr (1+) is 33.3%, so p2 = 0.333.

The survival probability of the parr (1+) to parr (2+) is 33.5%, so p3 = 0.335.

The survival probability of the parr (1+) to smolt (S2) is 1.1%, so p4 = 0.011.

The survival probability of the parr (2+) to smolt (S3, S4) is 12.9%, so p5 =

0.129.

The survival probability of the smolt: We assume that the mortality rate of

smolt is 90% [3, p.4] then p6 = 0.1.

The proportion of the transition from smolt (S2) to adult p′
6 = 0.1 based on

the the survival of smolt in the sea, which is about 10%

According to Fleming [14, p. 26], females lose 50% and males more than 90%

of their energy due to reproduction. This is why the proportion of females is

much greater than males in the fish, which repeat the spawning. The adult

proportion that survives after spawning varies between 10% and 40% in some

rivers. Then we will take p7 = 20% = 0.20 as the survival probability of

adults after spawning in one of our experiments, but we will use the survival

probability p7 = 0.05 as in the IBSEM model, which assume that 95% of adults

die after spawning.

f1 = 0 since eggs do not reproduce.

f2 = 0 we assume that the small parr (0+) do not reproduce.

f5 = 0 and f6 = 0 the smolt do not reproduce since they travel to the ocean.

Based on the Table 5 and 6 from [12] we calculated the number of eggs laid

by each female as follows. The average proportion of females among the adult

spawners was 14, 5% for grils (the fish spend one year at sea) and 78.5% for

MSW (multi sea winter, that is, the fish that spend more than one year in

the ocean). In the year 1990, there were 83 grils and 28 MSW, but because

that some fish escapes the trapping fence, so we did apply a correction for

1.1 of the number of the adults, and this number is the average correction

of all other years. So we get, by the correction of the numbers of the adults:

83 × 1.1 = 91.3 grils and 28 × 1.1 = 30.8 MSW. By taking the percentage of

females from the total number of adults we will have 91.3 × 0.145 = 13.23
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the number of females in grils, and similarly, 30.8 × 0.785 = 24.178 females in

MSW. Then the total number of females is 13.23 + 24.178 = 37.5. From table

A.1, the total number of eggs in the year 1990 was 269, 256. Then

f7 = The number of eggs laid by each female

= Total number of eggs
The number of females = 269256

37.5 = 7180.16.

Table 5.3 collects all parameters in our model which are used as reference

values in all numerical experiments.

f7 p1 p2 p3 p′
3 p4 p5 p6 p′

6 p7

7180.16 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.05

Table 5.3: Parameters in our model.

Using parameters listed in Table 5.3, we can write the system of discrete

equations governing our model as



N1

N2

N3

N4

N5

N6

N7



(t + 1) =



f1 f2 f3 f4 f5 f6 f7

p1 0 0 0 0 0 0

0 p2 0 0 0 0 0

0 0 p3 p′
3 0 0 0

0 0 p4 0 0 0 0

0 0 0 p5 0 0 0

0 0 0 0 p6 p6 p7





N1

N2

N3

N4

N5

N6

N7



(t)

=



0 0 0 0 0 0 7180.16

0.307 0 0 0 0 0 0

0 0.333 0 0 0 0 0

0 0 0.335 0.05 0 0 0

0 0 0.011 0 0 0 0

0 0 0 0.129 0 0 0

0 0 0 0 0.1 0.1 0.05





N1

N2

N3

N4

N5

N6

N7



(t).
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Our population projection matrix is the general case is given by

Agen =



0 0 0 0 0 0 a

b 0 0 0 0 0 0

0 c 0 0 0 0 0

0 0 d e 0 0 0

0 0 f 0 0 0 0

0 0 0 g 0 0 0

0 0 0 0 h i j



.

The characteristic polynomial is given by:

Pgen(λ) = λ7 + (−e − j) λ6 + e j λ5 − a b c f h λ2 + (a b c e f h − a b c d g i) λ.

(5.12)

Computing the powers of Agen, we establish the following result.

Theorem 5.4.1. The matrix Agen is primitive provided all its entries are

non-negative.

Proof. A straightforward computation gives

E = A7
gen =



E1,1 E1,2 E1,3 E1,4 E1,5 E1,6 E1,7

E2,1 E2,2 E2,3 E2,4 E2,5 E2,6 E2,7

E3,1 E3,2 E3,3 E3,4 E3,5 E3,6 E3,7

E4,1 E4,2 E4,3 E4,4 E4,5 E4,6 E4,7

E5,1 E5,2 E5,3 E5,4 E5,5 E5,6 E5,7

E6,1 E6,2 E6,3 E6,4 E6,5 E6,6 E6,7

E7,1 E7,2 E7,3 E7,4 E7,5 E7,6 E7,7



where all entries except for E5,1 are positive: E1,1 = a b c f h j2 + a b c d g i j +

a b c d e g i; E1,2 = a j2 (c d g i + c f h j) + a c d e2 g i + a c d e g i j;

E1,3 = a j2 (
f h j2 + d g i j + d e g i

)
+ a d e3 g i + a d e2 g i j; E1,4 =

a j2 (
g i e2 + g i e j + g i j2)

+a e4 g i+a e3 g i j; E1,5 = b c f a2 h2+a h j5; E1,6 =
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b c f h i a2 + i a j5; E1,7 = 2 b c f h a2 j + b c d g i a2 + a j6; E2,1 = a b2 c d g i +

a b2 c f h j; E2,2 = a b j (c d g i + c f h j) + a b c d e g i; E2,3 =

a b j
(
f h j2 + d g i j + d e g i

)
+a b d e2 g i; E2,4 = a b j

(
g i e2 + g i e j + g i j2)

+

a b e3 g i; E2,5 = a b h j4; E2,6 = a b i j4; E2,7 = c f h a2 b2 + a b j5; E3,1 =

a b2 c2 f h; E3,2 = a b c (c d g i + c f h j) ; E3,3 = a b c
(
f h j2 + d g i j + d e g i

)
;

E3,4 = a b c
(
g i e2 + g i e j + g i j2)

; E3,5 = a b c h j3; E3,6 = a b c i j3; E3,7 =

a b c j4; E4,1 = b c d e4; E4,2 = a b d f h c2 + d c e5; E4,3 = d e6 + a b c d f h e +

b c d (a d g i + a f h j) ; E4,4 = e7 + b c d (a e g i + a g i j) + a b c d e g i; E4,5 =

a b c d h e2 + a b c d h e j + a b c d h j2; E4,6 = a b c d i e2 + a b c d i e j + a b c d i j2;

E4,7 = a b c d e3 + a b c d e2 j + a b c d e j2 + a b c d j3; E5,1 = 0; E5,2 = a b c2 f2 h;

E5,3 = b c f (a d g i + a f h j) ; E5,4 = b c f (a e g i + a g i j) ; E5,5 = a b c f h j2;

E5,6 = a b c f i j2; E5,7 = a b c f j3; E6,1 = b c d e3 g; E6,2 = c d e4 g; E6,3 =

d g e5 + a b c d f g h; E6,4 = e6 g + a b c d i g2; E6,5 = a b c d e g h + a b c d g h j;

E6,6 = a b c d e g i+a b c d g i j; E6,7 = a b c d g e2+a b c d g e j+a b c d g j2; E7,1 =

b c d e (e g i + g i j) + b c f h j3 + b c d g i j2; E7,2 = j3 (c d g i + c f h j) +

c d e2 (e g i + g i j) + c d e g i j2; E7,3 = j3 (
f h j2 + d g i j + d e g i

)
+

d e3 (e g i + g i j) + a b c f2 h2 + d e2 g i j2; E7,4 = j3 (
g i e2 + g i e j + g i j2)

+

e4 (e g i + g i j) + e3 g i j2 + a b c f g h i; E7,5 = h j6 + a b c h (d g i + f h j) +

a b c f h2 j; E7,6 = i j6+a b c i (d g i + f h j)+a b c f h i j; E7,7 = j7+a b c d (e g i + g i j)+

a b c j (d g i + f h j) + 2 a b c f h j2.

Finally,

F = A8
gen =



F1,1 F1,2 F1,3 F1,4 F1,5 F1,6 F1,7

F2,1 F2,2 F2,3 F2,4 F2,5 F2,6 F2,7

F3,1 F3,2 F3,3 F3,4 F3,5 F3,6 F3,7

F4,1 F4,2 F4,3 F4,4 F4,5 F4,6 F4,7

F5,1 F5,2 F5,3 F5,4 F5,5 F5,6 F5,7

F6,1 F6,2 F6,3 F6,4 F6,5 F6,6 F6,7

F7,1 F7,2 F7,3 F7,4 F7,5 F7,6 F7,7
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where all entries are positive: F1,1 = b c d e (a e g i + a g i j) + a b c f h j3 +

a b c d g i j2; F1,2 = a j3 (c d g i + c f h j) + c d e2 (a e g i + a g i j) + a c d e g i j2;

F1,3 = a j3 (
f h j2 + d g i j + d e g i

)
+ d e3 (a e g i + a g i j) + a2 b c f2 h2

+a d e2 g i j2; F1,4 = e4 (a e g i + a g i j)+a j3 (
g i e2 + g i e j + g i j2)

+a e3 g i j2

+ a2 b c f g h i; F1,5 = a h j6 + a b c h (a d g i + a f h j) + a2 b c f h2 j; F1,6 =

a i j6+a b c i (a d g i + a f h j)+a2 b c f h i j; F1,7 = a j7+a b c d (a e g i + a g i j)+

a b c j (a d g i + a f h j) + 2 a2 b c f h j2; F2,1 = a c f h b2 j2 + a c d g i b2 j

+ a c d e g i b2; F2,2 = a b j2 (c d g i + c f h j) + a b c d e2 g i + a b c d e g i j; F2,3 =

a b j2 (
f h j2 + d g i j + d e g i

)
+ a b d e3 g i + a b d e2 g i j; F2,4 =

a b j2 (
g i e2 + g i e j + g i j2)

+a b e4 g i+a b e3 g i j; F2,5 = c f a2 b2 h2 +a b h j5;

F2,6 = c f h i a2 b2 + i a b j5; F2,7 = 2 c f h a2 b2 j + c d g i a2 b2 + a b j6; F3,1 =

a b2 c2 d g i + a b2 c2 f h j; F3,2 = a b c j (c d g i + c f h j) + a b c2 d e g i; F3,3 =

a b c j
(
f h j2 + d g i j + d e g i

)
+a b c d e2 g i; F3,4 = a b c j

(
g i e2 + g i e j + g i j2)

+a b c e3 g i; F3,5 = a b c h j4; F3,6 = a b c i j4; F3,7 = f h a2 b2 c2+a b c j5; F4,1 =

a d f h b2 c2+d b c e5; F4,2 = c d e6+a b c d (c d g i + c f h j)+a b c2 d e f h; F4,3 =

d e7 + a b c d
(
f h j2 + d g i j + d e g i

)
+ b c d e (a d g i + a f h j) + a b c d e2 f h;

F4,4 = e8 + a b c d
(
g i e2 + g i e j + g i j2)

+ b c d e (a e g i + a g i j) + a b c d e2 g i;

F4,5 = a b c d h e3 + a b c d h e2 j + a b c d h e j2 + a b c d h j3; F4,6 = a b c d i e3 +

a b c d i e2 j +a b c d i e j2 +a b c d i j3; F4,7 = a b c d e4 +a b c d e3 j +a b c d e2 j2 +

a b c d e j3 +a b c d j4; F5,1 = a b2 c2 f2 h; F5,2 = a b c f (c d g i + c f h j) ; F5,3 =

a b c f
(
f h j2 + d g i j + d e g i

)
; F5,4 = a b c f

(
g i e2 + g i e j + g i j2)

; F5,5 =

a b c f h j3; F5,6 = a b c f i j3; F5,7 = a b c f j4; F6,1 = b c d e4 g; F6,2 =

a b d f g h c2 + d g c e5; F6,3 = d g e6 + a b c d f g h e + b c d g (a d g i + a f h j) ;

F6,4 = e7 g + b c d g (a e g i + a g i j) + a b c d e g2 i; F6,5 = a b c d g h e2 +

a b c d g h e j + a b c d g h j2; F6,6 = a b c d g i e2 + a b c d g i e j + a b c d g i j2;

F6,7 = a b c d g e3 + a b c d g e2 j + a b c d g e j2 + a b c d g j3; F7,1 =

b c d e
(
g i e2 + g i e j + g i j2)

+b c f h j4+b c d g i j3; F7,2 = j4 (c d g i + c f h j)+

c d e2 (
g i e2 + g i e j + g i j2)

+ a b c2 f2 h2 + c d e g i j3; F7,3 =

j4 (
f h j2 + d g i j + d e g i

)
+ d e3 (

g i e2 + g i e j + g i j2)
+ d e2 g i j3

+ b c f h (a d g i + a f h j) + a b f h (c d g i + c f h j) ;
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F7,4 = e4 (
g i e2 + g i e j + g i j2)

+ j4 (
g i e2 + g i e j + g i j2)

+

e3 g i j3 + b c f h (a e g i + a g i j) + a b g i (c d g i + c f h j) ; F7,5 = h j7

+ a b c h
(
f h j2 + d g i j + d e g i

)
+ a b h j (c d g i + c f h j) + a b c f h2 j2;

F7,6 = i j7+a b c i
(
f h j2 + d g i j + d e g i

)
+a b i j (c d g i + c f h j)+a b c f h i j2;

F7,7 = j8 + a b j2 (c d g i + c f h j) + a b c d
(
g i e2 + g i e j + g i j2)

+

a b c j
(
f h j2 + d g i j + d e g i

)
+ 2 a b c f h j3. Thus, all entries in A8

gen are pos-

itive and thus Agen is a primitive matrix irrelevant of the choice of its non-zero

entries.

5.5 Properties of the population projection matrix

Recall that the population projection matrix A in the model is given by

A =



0 0 0 0 0 0 7180.16

0.307 0 0 0 0 0 0

0 0.333 0 0 0 0 0

0 0 0.335 0.5 0 0 0

0 0 0.011 0 0 0 0

0 0 0 0.129 0 0 0

0 0 0 0 0.1 0.1 0.05



.

The characteristic equation for the matrix A is as follows:

λ7 − 0.55 λ6 + 0.025 λ5 − 0.80742044 λ2 − 2.7683511 λ = 0. (5.13)

The spectral radius is equal to 1.3607 and the eigenvalues are

λ1 = 1.36069, λ2 = 0.66383 + 1.0741i,

λ3 = 0.66383 − 1.0741i, λ4 = −0.55072 + 0.96303i,

λ5 = −0.55072 − 0.96303i, λ6 = −1.03691,

λ7 = −3.3552 · 10−16.
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The right-eigenvectors v⃗i corresponding to eigenvalues λi are given by

v⃗1 =



0.97385

0.21972

0.05377

0.02093

0.00043

0.00198

0.00018



, v⃗2 =



0.96963

0.12395 − 0.20054i

−0.027804 − 0.055613i

−0.018244 + 0.0058894i

−0.00053948 − 4.8672 · 10−5i

−0.00046813 + 0.0019019i

8.9647 · 10−5 + 0.00014505i



,

v⃗3 =



0.96963

0.12395 + 0.20054i

−0.027804 + 0.055613i

−0.018244 − 0.0058894i

−0.00053948 + 4.8672e − 05i

−0.00046813 − 0.0019019i

8.9647 · 10−5 − 0.00014505i



,

v⃗4 =



0.96053

−0.13195 − 0.23074i

−0.040463 + 0.068766i

0.017932 − 0.0054892i

0.00079107 + 9.8017 · 10−6i

−0.0015892 − 0.0014932i

−7.3674 · 10−5 + 0.00012883i



, v⃗5 =



0.96053

−0.13195 + 0.23074i

−0.040463 − 0.068766i

0.017932 + 0.0054892i

0.00079107 − 9.8017 · 10−6i

−0.0015892 + 0.0014932i

−7.3674 · 10−5 − 0.00012883i



,
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v⃗6 =



−0.95471

0.28266

−0.090775

0.019786

0.00096298

−0.0024616

0.00013788



, v⃗7 =



9.0883 · 10−14

2.3667 · 10−14

−2.0827 · 10−14

6.5085 · 10−15

0.70711

−0.70711

−4.4376 · 10−17



.

The left-eigenvectors w⃗i are

w⃗1 =



0.00018156

0.00080470

0.00328810

0.01095534

0.07309381

0.07309381

0.99457683



, w⃗2 =



8.4956 · 10−5 + 0.00014865i

−0.00033637 + 0.00061866i

−0.002666 + 0.00014835i

−0.0071172 − 0.0060553i

0.041378 − 0.066948i

0.041378 − 0.066948i

0.99374



,

w⃗3 =



8.4956 · 10−5 − 0.00014865i

−0.00033637 − 0.00061866i

−0.002666 − 0.00014835i

−0.0071172 + 0.0060553i

0.041378 + 0.066948i

0.041378 + 0.066948i

0.99374



, w⃗4 =



−8.2991 · 10−5 + 0.00013305i

−0.00026848 − 0.000499i

0.0018871 + 4.8812 · 10−5i

−0.0017851 + 0.0078934i

−0.044387 − 0.077619i

−0.044387 − 0.077619i

0.99194



,
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w⃗5 =



−8.2991 · 10−5 − 0.00013305i

−0.00026848 + 0.000499i

0.0018871 − 4.8812 · 10−5i

−0.0017851 − 0.0078934i

−0.044387 + 0.077619i

−0.044387 + 0.077619i

0.99194



, w⃗6 =



0.00014999

−0.00050659

0.00157745

−0.00802014

0.09555236

0.09555236

−0.99079382



,

w⃗7 =



1.4684 · 10−19

−1.0069 · 10−18

−4.699 · 10−18

−0.032556

0.99147

0.12619

2.0407 · 10−15



.

To check that the matrix A is primitive, we apply Theorem 5.4.1 which assures

this. In fact, the direct computation yields

A7 =



1.74665 2.86758 4.30911 6.43202 579.72810 579.72810 23355.12807

0.98622 1.74665 2.64369 3.94890 0.00138 0.00138 1779.76526

0.08254 1.06974 1.74665 2.62760 0.00918 0.00918 0.00459

0.00214 0.09356 1.21664 3.33848 6.82362 6.82362 34.14884

0 0.00296 0.03534 0.05729 0.00202 0.00202 0.00101

0.00055 0.00090 0.03624 0.41121 1.74463 1.74463 8.80247

0.00012 0.00020 0.00119 0.01086 0.32528 0.32528 1.90929



,

and finally,
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A8 =



0.88035 1.43494 8.53174 78.00093 2335.51281 2335.51281 13708.71965

0.53622 0.88035 1.32290 1.97463 177.97653 177.97653 7170.02432

0.32841 0.58164 0.88035 1.31499 0.00046 0.00046 592.66183

0.02872 0.40514 1.19345 2.54949 3.41488 3.41488 17.07596

0.00091 0.01177 0.01921 0.02890 0.00010 0.00010 0.00005

0.00028 0.01207 0.15695 0.43066 0.88025 0.88025 4.40520

0.00006 0.00040 0.00722 0.04739 0.19093 0.19093 0.97581



.

This confirms that the matrix A is primitive.

5.6 Numerical simulations

Sensitivity analysis

Sensitivity analysis of all elements in the reference model facilitated with the

help of Matlab yields the following results:

∂λmax

∂ai,j
= wi · vj

w⃗ · v⃗
=

=



0.1512 0.0350 0.0088 0.0036 0.0001 0.0003 2.790 · 10−5

0.6526 0.1512 0.0380 0.0154 0.0003 0.0015 0.0001

2.5963 0.6016 0.1512 0.0614 0.0013 0.0060 0.0005

10.0562 2.3304 0.5858 0.2379 0.0049 0.0232 0.0019

6.4297 1.4900 0.3745 0.1521 0.0031 0.0148 0.0012

64.2965 14.8997 3.7452 1.5212 0.0311 0.1481 0.0119

851.7952 197.3903 49.6161 20.1522 0.4120 1.9623 0.1572



.

Eliminating elements associated with zero entries in the matrix A, we collect

sensitivity for all non-zero entries of A

∂λmax

∂ai,j
= wi · vj

w⃗ · v⃗
=
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=



0 0 0 0 0 0 2.7903 · 10−5

0.6526 0 0 0 0 0 0

0 0.6016 0 0 0 0 0

0 0 0.5858 0.2379 0 0 0

0 0 0.3745 0 0 0 0

0 0 0 1.5212 0 0 0

0 0 0 0 0.4120 1.9623 0.1572



.

Thus, we have

∂λ

∂a1,7
= 2.7903 · 10−5 ∂λ

∂a2,1
= 0.69964,

∂λ

∂a3,2
= 0.64502 ∂λ

∂a4,3
= 0.52594,

∂λ

∂a4,4
= 0.20471,

∂λ

∂a5,3
= 3.5091,

∂λ

∂a6,4
= 1.3658,

∂λ

∂a7,5
= 0.386,

∂λ

∂a7,6
= 1.7619,

∂λ

∂a7,7
= 0.16388.

Sensitivity analysis allows us to conclude the following.

(i) The sensitivity of the parameter a1,7 = f7 corresponding the fecundity i.e.,

the number of eggs laid by each female, is very small because the number of

eggs is very large, therefore the change of the number of eggs does not have a

big influence on the population fate.

(ii) The largest number in the sensitivity analysis corresponds to the parameter

p4 which is the probability of the parr +1 to survive to become smolt S2, which

means that the number of parr in the stage +1 is influencing the size of the

population.

(iii) The sensitivity of the second parameter p1 which is the probability of the

eggs to survive to the parr 0+ was 0.69964 which is not too big, but still has

significant impact on the dynamics of the population, because at this stage the

mortality is high and transition to the next stage is important.
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(iv) The second largest sensitivity number is for the parameter p′
6 which is

the probability of the smolts S3, S4 to become adults, and this is important

because adults are harvested and should be replenished with smolts.

To understand what parameters influence most the fate of the population, we

calculate the elasticity of the elements of our matrix

eij = aij

λmax
· wi · vj

W · v⃗
=

=



0 0 0 0 0 0 0.15785

0.15785 0 0 0 0 0 0

0 0.15785 0 0 0 0 0

0 0 0.12949 0.07522 0 0 0

0 0 0.02837 0 0 0 0

0 0 0 0.12949 0 0 0

0 0 0 0 0.02837 0.12949 0.00602



.

Table 5.4 summarizes the outcomes of the sensitivity and elasticity analyses

for each non-zero parameter in our model.

Parameter Sensitivity Elasticity
f1 2.790 · 10−5 0.15785
p1 0.6526 0.15785
p2 0.6016 0.15785
p3 0.5858 0.12949
p′

3 0.2379 0.07522
p4 0.3745 0.02837
p5 1.5212 0.12949
p6 0.4120 0.02837
p′

6 1.9623 0.12949
p7 0.1572 0.00602

Table 5.4: Eigenvalue sensitivity and elasticity analyses

Testing the model for persistence

The life cycle of Atlantic salmon is affected by many environmental and

genetic factors, as well as by human activities. To test the persistence of
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our simple model to external perturbations which may change the values of

model parameters, we ran a series of numerical experiments were numerous

tests were combined to determine how sensitive is the salmon population to

changes of the environment. Our numerical experiments were designed to

find for each parameter the minimal values that ensure that the dominant

eigenvalue remains larger than unity (but very close to it) given that one or

more parameters in the model are fixed (these are marked red in Table 5.6).

These threshold values draw “red lines” that should not be crossed to ensure

the sustainability of Atlantic salmon population.

Each raw in Table 5.6 collects information about a multiple number of single

numerical tests exemplified in Table 5.5. First we use Table 5.5 to explain how

single numerical tests were performed. For this series of tests, we fixed for all

tests the value of the parameter p7 = 0. Recall that p7 represents the survival

probability of the adults after spawning, and we assume that no adult survives

after spawning. Keeping all other parameters set as in the reference model

and fixed, we start testing them one by one as explained below. In the first

test, we explored the impact of variation of the parameter f7 which represents

the fecundity (the number of eggs per female). Keeping p7 = 0 and all other

parameters except f7 fixed with the reference values, we gradually decreased the

value of f7 from 7180.16 until the threshold value for the dominant eigenvalue

approached the unity remaining above it, λmax > 1. This gave us the minimal

value f7 = 1004 marked blue in Table 5.5. In the second test, the value for

f7 was set back to the reference, p7 = 0 was kept fixed in all tests, and all

other values were as in the reference except for the value of p1 which represents

the probability of surviving eggs to parr +0. Gradually decreasing the value

of p1 from 0.307 until the dominant eigenvalue was closest to unity but still

larger than it, we found that the threshold value p1 = 0.043 and marked it

blue in the second raw in Table 5.5. By repeating this process, we found the

threshold values for all other parameters, p2 = 0.0466, p3 = 0.011, p′
3 = 0,

p4 = 0, p5 = 0.00393, p6 = 0, and p′
6 = 0.00304. These values ensure that
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the dominant eigenvalue is closest to unity, but large than unity; they all are

marked blue in Table 5.5.

Parameters f7 p1 p2 p3 p′
3 p4 p5 p6 p′

6 p7
Reference 7180.16 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0
Test nr. 1 1004 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0
Test nr. 2 7180.16 0.043 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0
Test nr. 3 7180.16 0.307 0.0466 0.335 0.5 0.011 0.129 0.1 0.1 0
Test nr. 4 7180.16 0.307 0.333 0.011 0.5 0.011 0.129 0.1 0.1 0
Test nr. 5 7180.16 0.307 0.333 0.335 0 0.011 0.129 0.1 0.1 0
Test nr. 6 7180.16 0.307 0.333 0.335 0.5 0 0.129 0.1 0.1 0
Test nr. 7 7180.16 0.307 0.333 0.335 0.5 0.011 0.00393 0.1 0.1 0
Test nr. 8 7180.16 0.307 0.333 0.335 0.5 0.011 0.129 0 0.1 0
Test nr. 9 7180.16 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.00304 0

Table 5.5: Numerical experiment #2 consisting of nine tests.

Table 5.6 collects information from numerous tests combined into experiments;

it is organized as follows. The minimal threshold values for all parameters

obtained during the series of numerical tests similar to those explained in

Table 5.5 and marked blue were recorded in Table 5.6. The data (marked blue

and red) from Table 5.5 appear in the third row of Table 5.6 and should be

interpreted as a summary of all numerical tests conducted to test the impact

of the perturbation on all other parameters in the system, tested one at a time,

while the remaining parameters including the red one are kept fixed. The table

provides minimal threshold values for each of the parameters which guarantee

that the salmon population survives if other parameters in the system are as

in the reference model. The reference values for all parameters in our model

are listed in the first row. All other rows represent the results of consecutive

numerical experiments where several tests were performed, as explained for the

experiment illustrated in Table 5.5. In some experiments, like 7, 8, 9, and 10,

we fixed several parameters (marked red) to test how the model will respond

to these changes.
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Experiment f7 p1 p2 p3 p′
3 p4 p5 p6 p′

6 p7

Ref. 7180.16 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.05
#1 960 0.0408 0.0443 0.0076 0 0 0.00291 0 0.00226 0.05
#2 1004 0.043 0.0466 0.011 0 0 0.00393 0 0.00304 0
#3 804 0.035 0.0373 0 0 0 0 0.1 0.0127 0.2
#4 302 0.013 0.014 0 0 0 0 0 0 0.7
#5 1576 0.0674 0.0775 0.0136 0.5 0 0.00525 0 0.00406 0.05
#6 1701 0.0728 0.07891 0.01499 0.01 0 0.0058 0 0.00446 0.05
#7 3590 0.0816 0.0885 0.0577 0.5 0 0.0223 0 0.0173 0.05
#8 3590 0.1455 0.1578 0.1143 0.01 0 0.044 0 0.0341 0.05
#9 718 0.4079 0.4424 0.4591 0.5 0.043 0.1768 0.3909 0.1371 0.05
#10 718 0.7271 0.7887 0.9089 0.01 0.0858 0.35 0.7798 0.2713 0.05
#11 1063 0.0454 0.0493 0.046 0.5 0 0.0177 0.01 0.0138 0.05
#12 2078 0.0888 0.0964 0.0909 0.01 0 0.035 0.01 0.0272 0.05
#13 4733 0.2023 0.2195 0.0753 0.5 0.0043 0.029 0.0391 0.01 0.05
#14 6050 0.2586 0.2805 0.1491 0.01 0.0086 0.0575 0.078 0.01 0.05

Table 5.6: Summary of numerical experiments

58



Chapter 6

Conclusions and further work

What can our model tell biologists?

Many factors are important for the persistence of a species under different

natural and man-affected ecologic changes. To identify these components, we

conducted both sensitivity and elasticity analyses of the matrix A observing

that the most significant parameters are f7, p1 and p2, closely followed by

p3, p5 and p′
6. We believe that our analysis provides an interesting insight

into sustainability of the life cycle of Atlantic salmon presented schematically

in Figure 5.1. We hope that low cost numerical simulations of different

scenarios including so-called “worse case scenarios” where all model parameters

were set to minimal values are useful for biologists. The threshold values

obtained in our numerical experiments draw “red lines” signalling possible

depletion of the salmon population. If field data show values close to those

in Table 5.6, additional measures should be taken to prevent this. We were

pleasantly surprised that the threshold values in our numerical experiments

were significantly lower in comparison to reference values. This means that

the nature created Atlantic salmon population with certain “safety margins”

for the vital biologic parameters. Therefore, we believe that current situation

allows for commercial fishing at the rates as high as 50% that does not endanger

Atlantic salmon.
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As a criticism of our model, we can mention that several important factors that

influence the population were not considered, as in many other simple matrix

models [13], including the emigration and immigration, density dependency

in fertility and survival, and environmental variability. Contrary to many

other biological models, we take into account only the average number of adult

females and do not distinguish between fertility values for different age cohorts.

It is common to assume that male and female salmon embryo are growing in

the proportion 1:1, but this proportion is changing from stage to stage and

these changes are not reflected in our model. Despite various deficiencies, our

simple model is still useful and has substantial predictive power.

How can our model be improved?

Our simple model can be extended in several directions including more compli-

cated relationships between salmon cohorts at different stages. For example,

we can split adult cohort in several subgroups with different fertility rates. The

model could be further generalized to account for the stages in saltwater, but

this is rather difficult at the moment due to lack of data. We can drop the

fundamental assumption that the parameters are constant. This could open

the door to stochastic matrix models that incorporate random variability in

parameters replacing our constant matrix A with a stochastic matrix. Another

possibility is to assume that density-dependent factors influence population

growth. For example, the survival rate will decrease if there is an inter-species

competition for resources or an intra-species competition between males for

the opportunity to mate with females. We could also include proportional

harvesting into the model and explore the effect of proportional harvesting on

the evolution of the population.
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Appendix A

Data from numerical

experiments

In this appendix we collected Tables from [12] where most of the data for our

model were taken from.

Figure A.1: Table 5 [12]
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Figure A.2: Table 6 [12]

Figure A.3: Table 3 [12]
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Appendix B

Results of our numerical

experiments

In this appendix we collected the results of all fourteen numerical experiments.

They are summarized in a compact form in the Table 5.6.

Parameters f7 p1 p2 p3 p′
3 p4 p5 p6 p′

6 p7
Reference 7180.16 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.05
test nr.1 960 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.05
test nr.2 7180.16 0.0408 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.05
test nr.3 7180.16 0.307 0.0443 0.335 0.5 0.011 0.129 0.1 0.1 0.05
test nr.4 7180.16 0.307 0.333 0.0076 0.5 0.011 0.129 0.1 0.1 0.05
test nr.5 7180.16 0.307 0.333 0.335 0 0.011 0.129 0.1 0.1 0.05
test nr.6 7180.16 0.307 0.333 0.335 0.5 0 0.129 0.1 0.1 0.05
test nr.7 7180.16 0.307 0.333 0.335 0.5 0.011 0.00291 0.1 0.1 0.05
test nr.8 7180.16 0.307 0.333 0.335 0.5 0.011 0.129 0 0.1 0.05
test nr.9 7180.16 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.00226 0.05

Table B.1: Numerical experiment #1.

Parameters f7 p1 p2 p3 p′
3 p4 p5 p6 p′

6 p7
Reference 7180.16 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0
test nr.1 1004 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0
test nr.2 7180.16 0.043 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0
test nr.3 7180.16 0.307 0.0466 0.335 0.5 0.011 0.129 0.1 0.1 0
test nr.4 7180.16 0.307 0.333 0.011 0.5 0.011 0.129 0.1 0.1 0
test nr.5 7180.16 0.307 0.333 0.335 0 0.011 0.129 0.1 0.1 0
test nr.6 7180.16 0.307 0.333 0.335 0.5 0 0.129 0.1 0.1 0
test nr.7 7180.16 0.307 0.333 0.335 0.5 0.011 0.00393 0.1 0.1 0
test nr.8 7180.16 0.307 0.333 0.335 0.5 0.011 0.129 0 0.1 0
test nr.9 7180.16 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.00304 0

Table B.2: Numerical experiment #2.
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Parameters f7 p1 p2 p3 p3’ p4 p5 p6 p6’ p7
Reference 7180.16 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.2
test nr.1 804 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.2
test nr.2 7180.16 0.035 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.2
test nr.3 7180.16 0.307 0.0373 0.335 0.5 0.011 0.129 0.1 0.1 0.2
test nr.4 7180.16 0.307 0.333 0 0.5 0.011 0.129 0.1 0.1 0.2
test nr.5 7180.16 0.307 0.333 0.335 0 0.011 0.129 0.1 0.1 0.2
test nr.6 7180.16 0.307 0.333 0.335 0.5 0 0.129 0.1 0.1 0.2
test nr.7 7180.16 0.307 0.333 0.335 0.5 0.011 0 0.1 0.1 0.2
test nr.8 7180.16 0.307 0.333 0.335 0.5 0.011 0.129 0 0.1 0.2
test nr.9 7180.16 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.0127 0.2
test nr.10 7180.16 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.2

Table B.3: Numerical experiment #3.

Parameters f7 p1 p2 p3 p3’ p4 p5 p6 p6’ p7
Reference 7180.16 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.7
test nr.1 302 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.7
test nr.2 7180.16 0.013 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.7
test nr.3 7180.16 0.307 0.014 0.335 0.5 0.011 0.129 0.1 0.1 0.7
test nr.4 7180.16 0.307 0.333 0 0.5 0.011 0.129 0.1 0.1 0.7
test nr.5 7180.16 0.307 0.333 0.335 0 0.011 0.129 0.1 0.1 0.7
test nr.6 7180.16 0.307 0.333 0.335 0.5 0 0.129 0.1 0.1 0.7
test nr.7 7180.16 0.307 0.333 0.335 0.5 0.011 0 0.1 0.1 0.7
test nr.8 7180.16 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.7
test nr.9 7180.16 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.00473 0.7

Table B.4: Numerical experiment #4.

Parameters f7 p1 p2 p3 p3’ p4 p5 p6 p6’ p7
Reference 7180.16 0.307 0.333 0.335 0.1 0.011 0.129 0.1 0.1 0.05
test nr.1 1576 0.307 0.333 0.335 0.1 0.011 0.129 0.1 0.1 0.05
test nr.2 7180.16 0.0674 0.333 0.335 0.1 0.011 0.129 0.1 0.1 0.05
test nr.3 7180.16 0.307 0.0775 0.335 0.1 0.011 0.129 0.1 0.1 0.05
test nr.4 7180.16 0.307 0.333 0.0136 0.1 0.011 0.129 0.1 0.1 0.05
test nr.5 7180.16 0.307 0.333 0.335 0.1 0.011 0.129 0.1 0.1 0.05
test nr.6 7180.16 0.307 0.333 0.335 0.1 0 0.129 0.1 0.1 0.05
test nr.7 7180.16 0.307 0.333 0.335 0.1 0.011 0.00525 0.1 0.1 0.05
test nr.8 7180.16 0.307 0.333 0.335 0.1 0.011 0.129 0 0.1 0.05
test nr.9 7180.16 0.307 0.333 0.335 0.1 0.011 0.129 0.1 0.00406 0.05

Table B.5: Numerical experiment #5.

Parameters f7 p1 p2 p3 p3’ p4 p5 p6 p6’ p7
Reference 7180.16 0.307 0.333 0.335 0.01 0.011 0.129 0.1 0.1 0.05
test nr.1 1701 0.307 0.333 0.335 0.01 0.011 0.129 0.1 0.1 0.05
test nr.2 7180.16 0.0728 0.333 0.335 0.01 0.011 0.129 0.1 0.1 0.05
test nr.3 7180.16 0.307 0.07891 0.335 0.01 0.011 0.129 0.1 0.1 0.05
test nr.4 7180.16 0.307 0.333 0.01499 0.01 0.011 0.129 0.1 0.1 0.05
test nr.5 7180.16 0.307 0.333 0.335 0.01 0.011 0.129 0.1 0.1 0.05
test nr.6 7180.16 0.307 0.333 0.335 0.01 0 0.129 0.1 0.1 0.05
test nr.7 7180.16 0.307 0.333 0.335 0.01 0.011 0.0058 0.1 0.1 0.05
test nr.8 7180.16 0.307 0.333 0.335 0.01 0.011 0.129 0 0.1 0.05
test nr.9 7180.16 0.307 0.333 0.335 0.01 0.011 0.129 0.1 0.00406 0.05

Table B.6: Numerical experiment #6.
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Parameters f7 p1 p2 p3 p3’ p4 p5 p6 p6’ p7
Reference 7180.16 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.05
test nr.1 1701 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.05
test nr.2 3590 0.0816 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.05
test nr.3 3590 0.307 0.0885 0.335 0.5 0.011 0.129 0.1 0.1 0.05
test nr.4 3590 0.307 0.333 0.0577 0.5 0.011 0.129 0.1 0.1 0.05
test nr.5 3590 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.05
test nr.6 3590 0.307 0.333 0.335 0.5 0 0.129 0.1 0.1 0.05
test nr.7 3590 0.307 0.333 0.335 0.5 0.011 0.0223 0.1 0.1 0.05
test nr.8 3590 0.307 0.333 0.335 0.5 0.011 0.129 0 0.1 0.05
test nr.9 3590 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.0173 0.05

Table B.7: Numerical experiment #7.

Parameters f7 p1 p2 p3 p3’ p4 p5 p6 p6’ p7
Reference 3590 0.307 0.333 0.335 0.01 0.011 0.129 0.1 0.1 0.05
test nr.1 1701 0.307 0.333 0.335 0.01 0.011 0.129 0.1 0.1 0.05
test nr.2 3590 0.1455 0.333 0.335 0.01 0.011 0.129 0.1 0.1 0.05
test nr.3 3590 0.307 0.1578 0.335 0.01 0.011 0.129 0.1 0.1 0.05
test nr.4 3590 0.307 0.333 0.1143 0.01 0.011 0.129 0.1 0.1 0.05
test nr.5 3590 0.307 0.333 0.335 0.01 0.011 0.129 0.1 0.1 0.05
test nr.6 3590 0.307 0.333 0.335 0.01 0 0.129 0.1 0.1 0.05
test nr.7 3590 0.307 0.333 0.335 0.01 0.011 0.044 0.1 0.1 0.05
test nr.8 3590 0.307 0.333 0.335 0.01 0.011 0.129 0 0.1 0.05
test nr.9 3590 0.307 0.333 0.335 0.01 0.011 0.129 0.1 0.0341 0.05

Table B.8: Numerical experiment #8.

Parameters f7 p1 p2 p3 p3’ p4 p5 p6 p6’ p7
Reference 718 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.05
test nr.1 718 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.05
test nr.2 718 0.4079 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.05
test nr.3 718 0.307 0.4424 0.335 0.5 0.011 0.129 0.1 0.1 0.05
test nr.4 718 0.307 0.333 0.4591 0.5 0.011 0.129 0.1 0.1 0.05
test nr.5 718 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1 0.05
test nr.6 718 0.307 0.333 0.335 0.5 0.043 0.129 0.1 0.1 0.05
test nr.7 718 0.307 0.333 0.335 0.5 0.011 0.1768 0.1 0.1 0.05
test nr.8 718 0.307 0.333 0.335 0.5 0.011 0.129 0.3909 0.1 0.05
test nr.9 718 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.1371 0.05

Table B.9: Numerical experiment #9.

Parameters f7 p1 p2 p3 p3’ p4 p5 p6 p6’ p7
Reference 718 0.307 0.333 0.335 0.01 0.011 0.129 0.1 0.1 0.05
test nr.1 718 0.307 0.333 0.335 0.01 0.011 0.129 0.1 0.1 0.05
test nr.2 718 0.7271 0.333 0.335 0.01 0.011 0.129 0.1 0.1 0.05
test nr.3 718 0.307 0.7887 0.335 0.01 0.011 0.129 0.1 0.1 0.05
test nr.4 718 0.307 0.333 0.9089 0.01 0.011 0.129 0.1 0.1 0.05
test nr.5 718 0.307 0.333 0.335 0.01 0.011 0.129 0.1 0.1 0.05
test nr.6 718 0.307 0.333 0.335 0.01 0.0858 0.129 0.1 0.1 0.05
test nr.7 718 0.307 0.333 0.335 0.01 0.011 0.35 0.1 0.1 0.05
test nr.8 718 0.307 0.333 0.335 0.01 0.011 0.129 0.7798 0.1 0.05
test nr.9 718 0.307 0.333 0.335 0.01 0.011 0.129 0.1 0.2713 0.05

Table B.10: Numerical experiment #10.
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Parameters f7 p1 p2 p3 p3’ p4 p5 p6 p6’ p7
Reference 7180 0.307 0.333 0.335 0.5 0.011 0.129 0.01 0.1 0.05
test nr.1 1063 0.307 0.333 0.335 0.5 0.011 0.129 0.01 0.1 0.05
test nr.2 7180 0.0454 0.333 0.335 0.5 0.011 0.129 0.01 0.1 0.05
test nr.3 7180 0.307 0.0493 0.335 0.5 0.011 0.129 0.01 0.1 0.05
test nr.4 7180 0.307 0.333 0.046 0.5 0.011 0.129 0.01 0.1 0.05
test nr.5 7180 0.307 0.333 0.335 0.5 0.011 0.129 0.01 0.1 0.05
test nr.6 7180 0.307 0.333 0.335 0.5 0 0.129 0.01 0.1 0.05
test nr.7 7180 0.307 0.333 0.335 0.5 0.011 0.0177 0.01 0.1 0.05
test nr.8 7180 0.307 0.333 0.335 0.5 0.011 0.129 0.01 0.1 0.05
test nr.9 7180 0.307 0.333 0.335 0.5 0.011 0.129 0.01 0.0138 0.05

Table B.11: Numerical experiment # 11.

Parameters f7 p1 p2 p3 p3’ p4 p5 p6 p6’ p7
Reference 7180 0.307 0.333 0.335 0.5 0.011 0.129 0.01 0.1 0.05
test nr.1 2078 0.307 0.333 0.335 0.5 0.011 0.129 0.01 0.1 0.05
test nr.2 7180 0.0888 0.333 0.335 0.5 0.011 0.129 0.01 0.1 0.05
test nr.3 7180 0.307 0.0964 0.335 0.5 0.011 0.129 0.01 0.1 0.05
test nr.4 7180 0.307 0.333 0.0909 0.5 0.011 0.129 0.01 0.1 0.05
test nr.5 7180 0.307 0.333 0.335 0.5 0.011 0.129 0.01 0.1 0.05
test nr.6 7180 0.307 0.333 0.335 0.5 0 0.129 0.01 0.1 0.05
test nr.7 7180 0.307 0.333 0.335 0.5 0.011 0.035 0.01 0.1 0.05
test nr.8 7180 0.307 0.333 0.335 0.5 0.011 0.129 0.01 0.1 0.05
test nr.9 7180 0.307 0.333 0.335 0.5 0.011 0.129 0.01 0.0272 0.05

Table B.12: Numerical experiment #12.

Parameters f7 p1 p2 p3 p3’ p4 p5 p6 p6’ p7
Reference 7180 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.01 0.05
test nr.1 4733 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.01 0.05
test nr.2 7180 0.2023 0.333 0.335 0.5 0.011 0.129 0.1 0.01 0.05
test nr.3 7180 0.307 0.2195 0.335 0.5 0.011 0.129 0.1 0.01 0.05
test nr.4 7180 0.307 0.333 0.0753 0.5 0.011 0.129 0.1 0.01 0.05
test nr.5 7180 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.01 0.05
test nr.6 7180 0.307 0.333 0.335 0.5 0.0043 0.129 0.1 0.01 0.05
test nr.7 7180 0.307 0.333 0.335 0.5 0.011 0.029 0.1 0.01 0.05
test nr.8 7180 0.307 0.333 0.335 0.5 0.011 0.129 0.0391 0.01 0.05
test nr.9 7180 0.307 0.333 0.335 0.5 0.011 0.129 0.1 0.01 0.05

Table B.13: Numerical experiment #13.

Parameters f7 p1 p2 p3 p3’ p4 p5 p6 p6’ p7
Reference 7180 0.307 0.333 0.335 0.01 0.011 0.129 0.1 0.01 0.05
test nr.1 6050 0.307 0.333 0.335 0.01 0.011 0.129 0.1 0.01 0.05
test nr.2 7180 0.2586 0.333 0.335 0.01 0.011 0.129 0.1 0.01 0.05
test nr.3 7180 0.307 0.2805 0.335 0.01 0.011 0.129 0.1 0.01 0.05
test nr.4 7180 0.307 0.333 0.1491 0.01 0.011 0.129 0.1 0.01 0.05
test nr.5 7180 0.307 0.333 0.335 0.01 0.011 0.129 0.1 0.01 0.05
test nr.6 7180 0.307 0.333 0.335 0.01 0.0086 0.129 0.1 0.01 0.05
test nr.7 7180 0.307 0.333 0.335 0.01 0.011 0.0575 0.1 0.01 0.05
test nr.8 7180 0.307 0.333 0.335 0.01 0.011 0.129 0.078 0.01 0.05
test nr.9 7180 0.307 0.333 0.335 0.01 0.011 0.129 0.1 0.01 0.05

Table B.14: Numerical experiment #14.
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Appendix C

Matlab codes

In this appendix we included Matlab codes used for running numerical experi-

ments.

C.1 Tests for finding the closest to unity value of

the dominant eigenvalue

1 % To c a l c u l a t e the minimum value that g i v e s us the

e i g enva lue o f the matrix l a r g e r than 1 .

2 %Here v i s the t a r g e t parameter that we t e s t .

3

4 f unc t i on [ c , q]=z ( )

5 q=0;

6 c=0;

7 f o r i =1:10000

8 i f i==1

9 v=0;

10 e l s e

11 v=(i −1) /10000;

12 end

13 row1=[0 0 0 0 0 0 7180 ] ;
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14 row2=[v 0 0 0 0 0 0 ] ;

15 row3=[0 0 .333 0 0 0 0 0 ] ;

16 row4=[0 0 0 .335 0 .5 0 0 0 ] ;

17 row5=[0 0 0 .011 0 0 0 0 ] ;

18 row6=[0 0 0 0 .129 0 0 0 ] ;

19 row7=[0 0 0 0 0 .1 0 .1 0 .05 ] ;

20 A=[row1 ; row2 ; row3 ; row4 ; row5 ; row6 ; row7 ] ;

21 V=e i g (A) ;

22 i f r e a l (V(1 , 1 ) )>1

23 q=V(1 ,1 ) ;

24 c=( i −1) /10000;

25 re turn ;

26 e l s e i f r e a l (V(2 , 1 ) )>1

27 q=V(2 ,1 ) ;

28 c=( i −1) /10000;

29 re turn ;

30 e l s e i f r e a l (V(3 , 1 ) )>1

31 q=V(3 ,1 ) ;

32 c=( i −1) /10000;

33 re turn ;

34 e l s e i f r e a l (V(4 , 1 ) )>1

35 q=V(4 ,1 ) ;

36 c=( i −1) /10000;

37 re turn ;

38 e l s e i f r e a l (V(5 , 1 ) )>1

39 q=V(5 ,1 ) ;

40 c=( i −1) /10000;

41 re turn ;

42 e l s e i f r e a l (V(6 , 1 ) )>1

43 q=V(6 ,1 ) ;
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44 c=( i −1) /10000;

45 re turn ;

46 e l s e i f r e a l (V(7 , 1 ) )>1

47 q=V(7 ,1 ) ;

48 c=( i −1) /10000;

49 re turn ;

50 e l s e

51 cont inue

52 end

53 end

C.2 Calculation of the sensitivity and elasticity

1 %To c a l c u l a t e the s e n s i t i v i t y and e l a s t i c i t y o f the

dominant e i g enva lue .

2

3 f unc t i on [m]= s ( )

4 n=7;

5 row1=[0 0 0 0 0 0 7 1 8 0 . 1 6 ] ;

6 row2 =[0.307 0 0 0 0 0 0 ] ;

7 row3=[0 0 .333 0 0 0 0 0 ] ;

8 row4=[0 0 0 .335 0 .5 0 0 0 ] ;

9 row5=[0 0 0 .011 0 0 0 0 ] ;

10 row6=[0 0 0 0 .129 0 0 0 ] ;

11 row7=[0 0 0 0 0 .1 0 .1 0 . 0 5 ] ;

12 A=[row1 ; row2 ; row3 ; row4 ; row5 ; row6 ; row7 ] ;

13 [W,D,V]= e i g (A) ;

14 g=max(D, [ ] , ’ a l l ’ ) ;

15 q=0;

16 f o r i =1:7
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17 i f D( i , i )==g

18 q=i ;

19 end

20 end

21 c=0;

22 m=zero s (n , n) ;

23 Q=V( : , q ) ;

24 P=W( : , q ) ;

25 c=transpose (P) ∗Q;

26 f o r i =1:7

27 f o r j =1:7

28 % m( i , j )=(Q( i , 1 ) ∗P( j , 1 ) ) /c ; % Here i s the part to

c a l c u l a t e the s e n s i t i v i t y .

29 m( i , j )=(A( i , j ) ∗Q( i , 1 ) ∗P( j , 1 ) ) /( c∗g ) ; %The part to

c a l c u l a t e the e l a s t i c i t y .

30 end

31 end

32 g

33 f o r i =1:7

34 f o r j =1:7

35 i f A( i , j )==0

36 m( i , j ) =0;

37 end

38 end

39 end

40 end
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