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Abstract

The application of fibre ropes in offshore lifting operations has significant potential for

further development. With minimum breaking loads (MBL) equivalent to steel wire at

similar diameters and almost neutral buoyancy in water, it is in theory possible to reach

depths exceeding 3000 m with smaller cranes and vessels, representing substantial savings

in not only potential operation costs. However, with fibre ropes there are different re-

quirements and standards to consider with regards to condition monitoring, maintenance

and retirement criteria.

Safe and reliable operations are paramount in the offshore sector and any incidents

that occur during offshore lifting would not be only significantly damaging financially but

could potentially lead to loss of life. Current standards for fibre rope condition monitoring

originate in mooring applications, and are based on manual inspection for retirement and

re-certification. There is significant room for developments in methods that can aid the

inspection process.

To address this problem, computer vision and thermal monitoring methods for fibre

ropes are developed and experimentally investigated at the Mechatronics Innovation Lab

in Grimstad, Norway. The methods are used to monitor changes in fibre rope condition

during cyclic-bend-over-sheave testing and to find relevant condition indicators that give

more information regarding the condition and remaining useful life of the fibre rope. In

addition, the data recorded is used to form machine learning models that both classify

rope condition and predict the remaining life of fibre ropes during CBOS testing. The

expected outcome is to use physics-based machine learning methods to improve both

condition classification and remaining useful life estimation of fibre ropes used in offshore

lifting operations.

In the appended papers at the end of this thesis, the proposed methods have been

experimentally investigated and validated through cyclic-bend-over-sheave experiments

performed at the Mechatronics Innovation Lab and further data analysis performed at

the University of Agder, Norway and at divis in Dortmund, Germany.
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Sammendrag

Anvendelse av fibertau i offshore løfteoperasjoner har betydelig potensial for videre utvikling.

Med minimum bruddlaster (MBL) tilsvarende st̊altr̊ad ved lignende diametre og nesten

nøytral oppdrift i vann, er det i teorien mulig å n̊a dybder over 3000 m med mindre

kraner og fartøyer, som representerer betydelige besparelser i ikke bare potensielle drift-

skostnader. Men med fibertau er det forskjellige re-krav og standarder å vurdere med

hensyn til tilstandsoverv̊aking, vedlikehold og pensjonskriterier.

Sikker og p̊alitelig drift er avgjørende i offshoresektoren og eventuelle hendelser som

oppst̊ar under offshoreløfting vil ikke bare være betydelig økonomisk skadelig, men ogs̊a

kan potensielt føre til tap av liv. Gjeldende standarder for tilstandsoverv̊aking av fibertau

stammer fra fortøyningsapplikasjoner, og er basert p̊a manuell inspeksjon for pensjonist-

tilværelse og ny sertifisering. Det er betydelig rom for utvikling i metoder som kan hjelpe

denne prosessen.

For å løse dette problemet, datasyn og termiske overv̊akingsmetoder for fiber tau er

utviklet og eksperimentelt undersøkt ved Mechatronics Innovation Lab i Grimstad, Norge.

Metodene brukes til å overv̊ake endringer i fibertautilstand under syklisk-bøy-over-skive

testing og for å finne relevante tilstandsindikatorer som gir mer informasjon om tilstanden

og gjenværende brukstid for fibertauet. I tillegg brukes dataene som er registrert for å

danne maskinlæringsmodeller som begge klassifiserer tautilstand og forutsi gjenværende

levetid for fibertau under CBOS-testing. De forventet resultat er å bruke fysikkbaserte

maskinlæringsmetoder for å forbedre begge tilstandsklassifisering og gjenværende levetids-

beregning av fibertau brukt i offshore løfteoperasjoner.
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Chapter 1

Introduction

1.1 Background and Motivation

Safe and reliable lifting operations are of paramount importance in the offshore industry.

Failure of any component in a crane, such as a rope, would not only have significant

financial ramifications and operational downtime, but could also lead to fatality and

implications for the environment. Therefore, effective condition monitoring methods and

robust maintenance schemes are required to avoid these situations. Therefore, effective

condition monitoring methods and robust maintenance schemes are required to lower

costs and avoid failing situations. A poor and uninformed inspection and maintenance

routine could lead to undesirable outcomes. Conversely, a conservative and ultra-cautious

inspection and maintenance regime will significantly reduce chances of failure occurring

but will contribute to unnecessary early retirement or re-certification. The latter is an

ongoing issue in relation to fibre ropes in the marine sector, where there is significant

potential for further digitisation of inspection and monitoring methods to aid intelligent

prognostics and health management (PHM) methods. Additionally, there is a risk for

negative environmental effects from using too much material, and all maintenance contains

risks of introducing errors.

It has become more common for subsea lifting operations to be performed at depths

exceeding 3000 m, which places limitations on steel wire rope crane capabilities due to

rope weight. Therefore there is a motivation to use fibre ropes, as they are an attractive

alternative to steel wire ropes for cranes due to advantageous material properties, with

some typical fibre rope materials shown to have similar or better mechanical properties

to the steel [1, 2, 3, 4, 5]. High-modulus polyethylene (HMPE) has emerged as a leading

candidate for this use and exhibits minimum break loads (MBL) similar to those of steel

wires at comparable diameters, but is almost neutrally buoyant in water. Potential bene-

fits of this property include: reaching depths that exceed 3000 m with smaller cranes due
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to not having to compensate for rope weight; utilising less deck space on vessel; replacing

worn sections of the rope through splicing; and making use of smaller vessels to perform

similar lifts, potentially reducing carbon footprint.

However, there are associated challenges with the implementation of fibre ropes for

offshore lifting operations. To keep a payload at the same depth relative to the seabed

during operations, the crane will use active heave compensation (AHC). This will require

the rope to be subjected to extended periods of cyclic-bend-over-sheave (CBOS) motion,

with the severity being influenced by a combination of payload mass, sea state and local

environment. Traditional use of fibre ropes in the marine sector has been in mooring,

and retirement criteria is mainly based in experience from this application. Some current

standards advocate manual inspection [6], while others detail specific limits in load history

[7] or combinations of load, time and temperature for estimated time-to-rupture [8]. It

is also specified that fibre rope used in deployment and recovery systems requires their

failure mode and material properties to be detailed [9].

Specific guidelines exist that detail a plethora of failure mechanisms and considerations

to take in relation to retirement or re-certification of fibre ropes [10, 11, 6], but these still

rely heavily on manual visual inspection. Fibre ropes comprise of several smaller sub-

structures and their respective interactions add further complexity to condition monitoring

(CM). Therefore, this research deals specifically with developing condition indicators (CI)

that can be extracted by extending these visual inspections methods through the use of

computer vision and thermal monitoring.

The use of fibre ropes in offshore lifting operations is a fairly recent development

but fibre ropes have more established use in other marine applications such as mooring,

tugging, fishing and sailing. Through these different applications there are a variety of

different rope structures and material compositions that can be adapted for specific use

cases [12, 13, 14].

There is still a need to develop a means of continuous condition monitoring of fibre

ropes for lifting operations, rather than simple re-certification or retirement. There is

significant potential in digitisation of manual inspection methods through monitoring of

damage with computer vision and thermal monitoring, shifting towards more data-driven

artificial intelligence (AI) methods using machine learning (ML) for condition classification

and RUL estimation. This shift toward use of intelligent CM methods has been seen in

other industries, with many data-driven approaches for both diagnostics and prognostics

being specified [15, 16, 17]. An issue in applying this to fibre rope CM is the lack of

publicly available datasets that simulate the CBOS motion in AHC lifting operations.

Additionally appropriate features to be monitored require further exploration. These are

issues that need to be addressed to exploit the full potential of intelligent data-driven





solutions for fibre rope CM and help facilitate their further application for offshore lifting

operations.

This dissertation aims to address the problem of developing data-driven fibre rope CM

methods and to subsequently propose and develop algorithms for intelligent diagnostics

and prognostics. The required data for algorithm development is acquired through a

laboratory test set up and a data acquisition system. A CBOS machine is used to test

different types of ropes until failure at pre-defined test tensions. The data acquisition

system consists of machine vision cameras, a thermal camera and a distance measuring

laser, which all monitor changes in the test ropes as the experiments progress. Features

are created and derived from the data recorded during experiments and are used to form

the datasets required for training and testing for the proposed diagnostic and prognostic

algorithms.

1.2 Contributions of the dissertation

The scientific contributions of this dissertation are taken from five research papers pub-

lished or submitted to scientific conferences and journals. The content of these papers

forms the basis of this thesis. Contributions are focused towards developing digitised

methods for fibre rope monitoring and deriving CIs for ML application for both diagnos-

tics and prognostics of rope condition.

1.2.1 Paper A: Preliminary results on condition monitoring of

fibre ropes using automatic width and discrete length mea-

surements

Summary: A review completed in the early stages of the project concluded that cur-

rent practice in industry for rope CM was based mainly on manual inspection, and that

width measurements received little attention in research [18]. Therefore, it was proposed

to extend these manual inspection processes through computer vision application and

geometric measurements using image processing methods. Paper A addresses the initial

iteration and development of an automatic width and length measurement through com-

puter vision methods used to monitor fibre ropes under tension-tension testing. It was

concluded that there was potential in using width and lengths as condition indicators (CI)

but this had to be adapted for the CBOS testing case.

Contributions: Development of algorithm based on computer vision and image process-

ing to monitor width and length of fibre ropes during tension-tension testing.





This paper has been published as: S. Falconer, A. Gromsrud, E. Oland and G.

Grasmo. Preliminary results on condition monitoring of fibre Ropes using automatic

width and discrete length measurements. In Proceedings of the Annual Conference of the

Prognostics and Health Management Society 2017, St. Petersburg, FL, USA, 2017. ISBN:

978-1-936263-26-4.

1.2.2 Paper B: Condition monitoring of HMPE fibre rope using

computer vision during CBOS testing

Summary: Width and length algorithms were adapted to monitor ropes subject to CBOS

testing. Furthermore, it was proposed to calculate the roundness of the rope based on the

width measurements and assess their suitability as a CI. Different bending zones were also

monitored to accurately reflect the differences in deterioration due to bending regime and

to provide local measurements. The work found that length was a suitable CI but should

be monitored at a local level rather than across the whole rope. The width measurements

gave mixed potential as a CI but it was noted there could be further improvements in the

methods used for calculation. Conversely, roundness was shown to contribute very little

to condition assessment. It was also highlighted that the geometric measurements should

be combined with thermal monitoring for the next round of testing.

Contributions: Adaptation of automatic width and length algorithm for fibre ropes

based on computer vision and image processing for application to fibre ropes in CBOS

testing.

This paper has been published as: S. Falconer, G. Grasmo and E. Nordg̊ard-Hansen.

Condition monitoring of HMPE fibre rope using computer vision during CBOS testing. In

Exploring Opportunities - Synthetic/Steel - Proceedings of the OIPEEC Conference 2019,

The Hague, The Netherlands, pp 129-147, 2019. ISBN: 978-1-7336004-0-8.

1.2.3 Paper C: Computer vision and thermal monitoring of HMPE

fibre rope condition during CBOS testing

Summary: In this paper, combined results for computer vision and thermal monitoring

for fibre ropes during CBOS testing are presented. It is shown that localised strand-level

monitoring is required and that length, width and temperature demonstrated changes

while the rope deteriorates. New monitoring features such as local length and width

through computer vision algorithms are presented. These are combined with surface





thermal monitoring and global elongation measurements, where their effectiveness as CIs

is assessed.

Contributions: Validating use of more stable local strand-level width, length and tem-

perature measurements as CIs and developing feature engineering process for future ML

application for ropes during CBOS testing.

This paper has been published as: S. Falconer, E. Nordg̊ard-Hansen, G. Grasmo.

Computer vision and thermal monitoring of HMPE fibre rope condition during CBOS test-

ing. Journal of Applied Ocean Research, 102, 102248, 2020. doi: 10.1016/j.apor.2020.102248

1.2.4 Paper D: Condition classification of HMPE rope during

CBOS testing through supervised machine learning Meth-

ods

Summary: Fault diagnosis is explored within this work, where ML algorithms for clas-

sification are applied to data from two different rope types from CBOS tests at different

safety factors. The data is labelled into healthy (HE) or close to rupture (CTR) classes

based on measurements from global elongation throughout testing. The study uses local

length, width and temperature data as features and classifies data using decision tree

(DT), random forest (RF) and support vector machine (SVM). This is validated through

leave-one-out cross-validation (LOOCV) with the test data being validated against the

other ropes in the data set. The results of these models are presented through confusion

matrices, and their effectiveness are assessed through metrics specific to binary classifica-

tion. The influence of changing feature set, data size and model hyperparameters is also

investigated. The results showed that support vector machine using a linear kernel and

random forest were the most effective techniques in condition classification of fibre ropes

under CBOS testing based on the data in this study.

Contributions: A fault diagnosis scheme for fibre ropes under CBOS testing is detailed.

The proposed method performs binary classification of rope condition based on DT, RF

and SVM models.

This paper has been published as: S. Falconer, P. Krause, T. Bäck, E. Nordg̊ard-

Hansen, G. Grasmo. Condition Classification of Fibre Ropes during Cyclic Bend over

Sheave testing Using Machine Learning. International Journal of Prognostics and Health





Management, Vol. 13, 1, 2022. doi: 10.36001/ijphm.2022.v13i1.3105

1.2.5 Paper E: Remaining useful life estimation of HMPE rope

during CBOS testing through machine learning

Summary: Within this work, the ML approach is further extended for prognostics, where

it is adapted to perform RUL predictions for two rope types subject to different CBOS

test at different safety factors. This is validated through LOOCV, with the test data

being validated against the other ropes in the data set. A target variable based on RUL

is predicted through regression using neural networks (NN), SVM and RF and the vari-

ous approaches are compared to find the best method. The effects of varying algorithm

hyperparameters and the use of different feature sets are also investigated. Additionally,

the two different data sets are combined and LOOCV is performed to assess the effect

and feasibility of using multiple distinct data sets for fibre rope RUL prediction.

Contributions: A prognostics scheme for fibre ropes under CBOS testing is presented.

The proposed method applies NN, SVM and RF to predict a target variable based for

RUL in fibre ropes based on the amount of cycles to failure, CTF . The study also shows

that data from distinct rope types with different safety factors can be combined for train-

ing data to enhance RUL prediction.

This paper has been published as: S. Falconer, E. Nordg̊ard-Hansen, G. Grasmo. Re-

maining useful life estimation of HMPE rope during CBOS testing through machine learn-

ing. Journal of Ocean Engineering, 238(1), 2021. doi: 10.1016/j.oceaneng.2021.109617

1.3 Outline of the dissertation

The dissertation consists of eight chapters. The introduction chapter gives an overview

of the dissertation and a summary of the research conducted. In Chapter 2, the state-of-

the-art for fibre rope CM methods, maintenance strategies, diagnostics and prognostics

are presented and the research direction is identified. The experiments, equipment and

datasets used for developing the data acquisition methods are summarised in Chapter

3. Chapter 4 discusses the computer vision algorithms developed to extract length and

width data from rope images and develop features to be used in ML application. Chapter

5 summarises the proposed diagnostics methods developed using ML for damage clas-

sification of fibre ropes. A prognostics method for fibre rope developed through a ML

framework is given in Chapter 6. Finally, limitations and suggestions for future work





and improvements are presented in Chapter 7 and the conclusions and future work are

presented in Chapter 8.







Chapter 2

State-of-the-art

This chapter introduces the state-of-the-art in material property knowledge, industry and

maintenance standards, CM techniques, fault diagnostics and prognostics for fibre ropes.

This overview provides the basis for the approaches outlined in this dissertation and the

research direction taken.

2.1 Fibre rope and damage mechanisms

There are many challenges related to developing effective fibre rope CM methods related

to both structural and material concerns. Figure 2.1 displays the sub-structures that

comprise a standard fibre rope: the rope, sub-ropes, strands, and filaments. The vari-

ous interactions between these constituent parts and their material properties have the

potential to influence RUL. Fibre ropes can be made from several materials including

HMPE, aramid, polyester and natural fibres [1, 19]. HMPE rope has emerged as a lead-

ing candidate for offshore lifting application [20] and, therefore the methods applied in

this thesis are used on this type of rope. This material has both associated advantages

and disadvantages, in addition to degradation mechanisms common to all types of fibre

rope.

Fibre rope degradation mechanisms related to mooring and offshore lifting have been

summarised and are both relevant in this context [21, 22, 11, 10]. These include but are

not limited to: creep, temperature, abrasion, tension fatigue, compression fatigue, and

shock. These damage mechanisms and potential failure modes add difficulty in developing

an all-encompassing method of monitoring fibre ropes.

Creep in the context of fibre ropes can be classified as the elongation that occurs

when a material is subject to extended periods of static loading [23]. Crane payloads may

be held in suspension for extended periods, so creep considerations are still relevant for

monitoring during lifting operations. A standard creep elongation follows three distinct
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Figure 2.1: Overview of constituent fibre rope sub-structures

stages, namely: Regime I, Regime II and Regime III creep [24]. Regime I is the primary

phase where the rope elongation is reversible. Regime II is second phase where rope

elongation is irreversible due to plastic deformation caused by sliding of polymer molecular

chains. In the third and final stage, Regime III, rope failure is accelerated due to molecular

chain breakdown coupled with an increase in local stresses. This indicates that creep must

be monitored at a local scale, as well as across the whole rope. Creep is also shown to

occur as a result of rearrangement of the various sub-structures highlighted in Figure 2.1

[25]. Creep has been investigated for ropes in tension testing [5, 26, 27, 28] and there have

also been attempts to model this phenomena [29, 30, 31, 32].

The fibre rope will be subjected to extended periods of CBOS motion during AHC.

Heating and temperature will increase as the rope is driven back and forth over the

sheave. The extent of this will be influenced by a combination of payload size, sea state,

friction between rope sub-structures and the environment in which the lifting operation

occurs [33, 34]. Temperature is a particular concern with HMPE due to its relatively low

melting point compared to other rope making materials [1]. HMPE ropes typically have

a working temperature at 65◦C [35]. Above this working temperature, the rope structure

will additionally degrade through thermal means, therefore temperature monitoring is a

vital component of a fibre rope monitoring system. Temperature has been monitored

using both thermocouples and IR camera to gain insights into rope damage [36, 37], as

well as modelling attempts [38].

Abrasion is another concern with fibre ropes in CBOS motion and can lead to reduction

in rope strength. Abrasion can occur both internally and externally and is influenced by





a multitude of factors including: the abrasive surface, the rope construction, the severity

of the movement over the sheave and the environmental conditions where the operation

takes place [39, 40]. Intra-strand abrasion is also a source of heating that causes fibres to

fuse together and is also shown to influence RUL more than external abrasion in CBOS

tests [41]. Internal abrasion is also known to contribute to tension fatigue observed in

fibre ropes that are cyclically loaded at normal working loads [39]. This is also shown to

influence other factors such as the dynamic stiffness and elongation of the rope while in

use [42]. This effect on rope properties is seen in operational data and can be exacerbated

by presence of foreign marine objects within the rope structure [43, 44].

As the rope is driven over the sheave, axial compression will occur in certain portions

of the rope as a result of bending and twisting. Compression fatigue can occur over

extended periods of usage at low tensions, which lead to formations of kinks in all rope sub-

components. The rope can then potentially fail due to buckling at the kinks [39, 45, 46].

It is acknowledged that damage mechanisms observed during CBOS motion interact

with each other, which adds further complexity to CM processes [47]. Therefore an effec-

tive CM approach would have to encompass technology capable of monitoring the fibre

rope from different perspectives and establish relevant condition indicators (CI). A CI

gives information regarding the state of the rope and can be extracted from the measure-

ments and signals provided through different CM techniques. In this study, geometric

and thermal CIs are chosen to give more insight into the rope degradation process and to

be used as relevant features for ML application.

2.2 Industry standards and maintenance strategies

Fibre rope usage in the offshore industry is regulated by several certification societies that

provide specific guidance on manufacturing, testing and fitness for use. The standards

and recommended practices in this section are used to highlight the main considerations

for maintenance and CM of fibre ropes in current industry practice. They may also serve

as reference for development of potential intelligent solutions to CM and provide a basis

for the strategies undertaken in this work.

A general overview of the standards required for offshore fibre rope implementation

is summarised in DNVGL-OS-E303 [7], which uses mooring applications as a basis for

the majority of the document. The general fitness for purpose of the rope is determined

by material properties, application, operational use and condition maintenance approach.

The responsibilities of the manufacturer and end-user are also highlighted. An automated

fibre rope CM system would have to be detailed as one of the methods used to comply this

industry standard, including instrumentation used and features monitored to determine





condition. A specific criteria mentioned for retirement or re-certification in this standard

requires that a rope subjected to greater than 70 % MBL must be retired or re-certified.

Other than this requirement, more detailed information regarding specific practices are

referenced and discussed further in this section.

ABS-90 [48] provides another perspective on fibre ropes for mooring, with more de-

tailed emphasis on different rope materials. HMPE is particularly interesting as it has

gained traction as the material used for lifting applications and its related material prop-

erties are discussed. Creep is a prominent issue, and the various stages while the rope is

in use require monitoring. Temperature and tension considerations are mentioned which

are also echoed in DNVGL-RP-E305 [8].

DNVGL-RP-E304 [6] expands on condition management in more detail and deals with

damage assessment for polyester ropes from a mooring perspective. This is still relevant

for offshore lifting with other types of rope, such as HMPE, as damage in the structure is

described and material propeties are considered. It advocates a thorough manual visual

inspection of each constituent substructure for discard or recertification. This is based on

the number of damaged sub-ropes as a fraction of the total sub-ropes in the structure.

This fraction is then used to calculate the reduction in MBL and give a basic fatigue-life

assessment. This judgement is based on inspector opinion and load history documentation

quality, with assessments potentially varying depending on respective experience.

DNVGL-RP-E305 deals specifically with design, testing and analysis of offshore ropes,

but makes references to condition management [8]. This includes providing a means of

assessing rope condition with or without load history and information related to internal

abrasion, external damage and temperature response. Mooring is the main document fo-

cus but it mentions that combined loading operations such as CBOS in active bend over

sheave require temperature monitoring. This is further highlighted by the 3-T parameter

which estimates synthetic filament endurance based on three critical parameters ”time,

tension, temperature”, and is used as a rope design criteria. This emphasises the impor-

tance of temperature for monitoring and should be considered in combination with visual

inspection, which is relevant in particular for HMPE rope for active heave compensated

cranes.

DNVGL-ST-E407 [9] provides a more general overview of components to be verified

for deployment and lifting system classification and approval for industrial application.

Fibre rope usage is considered as a separate case from steel wire ropes, with its own set

of specific considerations related to critical performance parameters and failure modes.

Critical parameters can be summarised as the local stresses, temperature, time under

tension and wear in the rope. The standard also highlights factors arising during bending,

such as geometry changes due to strand and yarn rearrangement and concentration of





stresses and twisting at local spots. It is specified that all these aspects and factors must

be monitored and given the complexity of their interactions and subsequent effect of RUL

estimation, there is significant potential for ML application.

CI 2001-04 [10] is an inspection guide commissioned by the Cordage Institute that pro-

vides detailed damage descriptions and images, as well as advice on repair, re-certification

and retirement. The mechanisms mentioned can be detected by different forms of auto-

matic visual inspection and the recommended damage and load history logging can be

digitised. Decisions on corrective actions to be taken can then be decided by intelligent

classification and diagnostic algorithms.

While the standards are thorough in their approach to industry requirements for fibre

ropes, there is still potential for improvement in their application to deep sea lifting.

Current standards that mention offshore lifting serve as more of a general guide as the

technology to harness the application is still under development. Therefore, digitisation

of these processes is a possible approach and could allow industry concerns for fibre ropes

to be incorporated into intelligent solutions.

2.3 Condition monitoring techniques

Fibre rope CM techniques can be separated into two distinct categories: embedded and

non-embedded methods. Embedded methods comprise of sensors or threads distinct from

rope fibres that are typically placed or woven into the rope during or after construction.

Non-embedded methods refer to sensors that do not interfere or alter the rope structure

but monitor through observation or measurement of a physical change. There have been

several review papers that detail different technologies applied to fibre ropes. While this

study focusses on the use of fibre rope in offshore lifting, it is important to mention those

applied in mooring applications due to the greater accumulated experience in that sector.

An earlier review on fibre rope CM was provided by Rebel et al [49]. An updated summary

of further CM methods focussed on ropes used in lifting operations was given by Oland

et al [18].

2.3.1 Embedded approaches

Embedded approaches specifically refer to threads or sensors that are designed into the

rope structure that can be monitored during use. There are several different types outlined

in literature related to magnetic, electrical, optical and temperature monitoring.

Magnetic monitoring is common in steel wire rope use but the application to fibre

ropes requires paramagnetic material properties to be interpreted or magnetic threads to

be embedded in the rope. Bryden and Poehler detail an electron paramagnetic resonance





(EPR) method for non-destructive testing (NDT) in polymer materials [50], where frac-

tures in the material can be detected due to variations in magnetic flux. More recently,

Huntley et al detailed a patent with a magnetically detectable strength member in the

rope, where the amplitudes of magnetic flux leakage and eddy currents would be used

as CIs [51]. Additionally, Grabandt et al [52] use a magnetic thread within the rope,

where differences between healthy and deteriorated signals detected through magnetism,

X-ray, terahertz analysis and capacitive effect are potentially used for rope CM. This is

also explored in a paper by Huntley et al [53], where Fast Fourier Transform (FFT) is

used to quantify rope condition based on a voltage from a sensor monitoring the magnetic

thread. De Sousa Faria proposed hoisting rope construction that incorporates a solid core

that allows NDT to be performed through magnetic flux or eddy current monitoring [54].

Ouellette proposed a device that can gauges rope condition through measuring the lay

length, breakage and wear of the embedded magnetic element [55]. Finally, Mupende and

Zerza also suggest including magnetic measurements as part of a wider monitoring system

to determine the state or wear of fibre rope [56].

Electrical conductive threads can also be used in conjunction with magnetic measure-

ments to assess rope condition. Robar et all provide a solution for elevators where the

measured electrical resistance in tension members is used to indicate defects [57]. Gold-

water et al detail an elongation monitoring method based on an indicator thread in a

fibrous structural member [58]. De Angelis also detailed a patent for use in elevators

where a fiber rope is embedded with an electrical thread to monitor wear [59]. Further-

more, Schmieder et al [60] show a method where increasing electrical resistance of an

embedded sensor can be related to the increasing number of bending cycles in a CBOS

test. Additionally, Schneiders has a patent aimed at monitoring the integrity of a splice

for fibre ropes through an electrically conductive thread, as an aid to visual inspection

[61].

Optical fibres can also be embedded into fibre ropes for monitoring purposes. Brillouin

fibre sensing for application in local strain measurement for fibre rope is mentioned by

Thévenaz et al [62]. Cortázar et al detected ruptures in kevlar cable strands based on

propagations of pulses through a fibre-optic based system [63]. D’Agostino et al have a

patent where the stresses and strains in a rope can be monitored by the changes in an

embedded fibre optics light transmissive and reflective properties [64]. Barton Smith and

Williams performed a study where three types of optical fibre were assessed for mooring

rope monitoring, using optical time-domain reflectometry (OTDR) to measure strains

in ropes [65]. There have also been other studies into distributed fibre optic systems

embedded in ropes as a means of detecting yarn breakages in fibre ropes [66, 67]. A

more recent study by Gordelier et al also makes use of optical time-domain reflectometry





(OTDR) to monitor creep in fibre ropes under tensile testing at different strain rates [68].

Temperature can also be monitored using thermocouples embedded inside a rope.

Ning et al performed a study where thermocouples were embedded inside a rope during

CBOS testing to study failure through thermal mechanism [36]. An earlier patent by De

Angelis proposes the inclusion of a thermally conductive thread in a synthetic cable for

elevator installations, which can give warnings if critical temperatures are exceeded [69].

Embedded methods are shown to be useful for fibre rope CM, however their imple-

mentation requires rope design to be slightly altered to be incorporated. The CBOS

motion that occurs during an AHC lifting operation would require the embedded sensors

or threads to be thoroughly tested to ensure they can also last the lifetime of the rope.

Additionally, with rope lengths exceeding three kilometres in some cases, it would be

difficult to implement along the whole length without significant engineering design work.

Due to these considerations, it was decided to focus on non-embedded approaches for CM

in fibre ropes in this thesis.

2.3.2 Non-embedded approaches

Non-embedded approaches refer to means of monitoring a rope without placing special

threads or sensors within the rope. Examples of this include vibration, acoustic, thermal,

X-Ray and visual monitoring to determine rope condition.

Vibration and acoustic measurements have shown to be useful in fibre rope inspec-

tion. Williams and Lee provided a review on acoustic monitoring methods for both fibre

and steel ropes [70]. Williams et al also published a study where they measured the

Stress Wave Factor (SWF) and correlated the tension applied to the rope [71]. Kwun

and Burkhardt detailed a method in both a paper and patent where transverse impulse

vibration method is used to determine flaw locations of a rope in tension [72, 73]. Ferreira

et al present a method where the change in dynamic stiffness of the a rope can be used

as a condition indicator and monitored though the changes in speed of longitudinal prop-

agation of acoustic waves [74]. Padilla et al detail a patent with a non-contact system

consisting of a transmitter and receiver, where changes in rope condition are quantified

through changes in an ultrasonic pulse propagated through and around the rope [75]. For

mooring ropes, Bashir et al conducted a study where the acoustic signatures from ropes

subjected to cyclic tension-tension tests can be potentially used for in-service condition

assessment [76].

As temperature is a concern in fibre CM, thermal monitoring through non-embedded

methods is also important to consider. Heat is generated through interaction with the

sheave but mainly as a results of intra-strand abrasion [20, 41]. Davies et al presented

an example of using an IR camera during CBOS testing to monitor temperature changes,





with clear differences between different bending zones visible [41]. Nordg̊ard-Hansen et al

also explored the use of chemometrics to assess fibre rope condition through IR camera

measurements recorded during CBOS testing on fibre ropes [37].

Computed tomography (CT) and X-ray imaging can also give insight into fibre rope

condition. Davies et al produced X-ray images of fibre rope, highlighting strand rearrange-

ment in a sample from before and midway through CBOS testing [41]. The aforementioned

study by Huntley et al also uses an X-ray imaging of an embedded yarn that can be used to

asses damage during CBOS testing [53]. Toda et al made use of X-ray micro-tomography

where it was shown it is possible to assess the effects of internal abrasion and estimate the

loss of fibres in the rope cross-section [77]. Schmieder et al performed studies on the use

of CT in failure analysis of high-strength fibre ropes during CBOS testing to assess wear

behaviour and produce new discard criteria [60, 78]. Terahertz non-destructive testing

can also be used to detect contaminants and foreign particles within a rope that can con-

tribute to accelerated wear through internal abrasion as demonstrated by Schecklman et

al [79]. Finally, Scanning electron microscopy (SEM) analysis is also shown to be useful

in assessing abrasion and penetration of foreign materials inside ropes [80].

Visual inspection remains the most common method of damage assessment as indi-

cated by current industry standards [6]. Computer vision can potentially automate this

inspection process with several different methods explored to detect changes in fibre yarns

and both steel and fibre ropes [81, 82, 83]. Furthermore, Rudy and Thoresen detailed a

patent where an optical system is used to assess both the condition of rope and hoist in

cranes [84]. Visual inspection also complements the use of marking schemes which have

been adapted for ropes used for elevators, mooring and lifting to determine their condition

[85, 86, 60, 6, 87, 88].

Non-embedded methods were chosen as the approach for this thesis, with both visual

and thermal monitoring used for data recording. This allows both geometric and thermal

data to be used as CIs which are both considered in current industry standards and have

potential for ML application.

2.4 Remaining useful life and modelling methods

There are several examples of RUL prediction methods for fibre ropes. RUL methods

for fibre ropes have been mainly based on empirical evidence where a number of studies

with CBOS testing have been conducted for both steel and fibre ropes of several different

diameters [89, 47, 90, 91, 92]. Tension-tension testing is another suitable method for

deriving empirical based models for rope lifetime, particularly for ropes used in mooring

[30, 27].





Several different modelling approaches have also been adopted to compare to mechan-

ical testing. Feyrer presented a model for determining the remaining useful life for steel

wire ropes subject to CBOS motion [93]. Nuttall then presented an adapted version of

the Feyrer model for fibre ropes in CBOS motion [94]. Frick et al also detail a modelling

approach where viscous deformation of rope is considered combined with fatigue test data

[95]. Sloan has also developed a wear-based parameter for fatigue in fibre ropes during

CBOS testing and compare it to CBOS data [96]. Lian et al detailed a model based on

thermodynamic properties of fibres, yarns and ropes and compared predictions to tensile

tests [97]. Beltran and other collaborators have developed models for behaviour and me-

chanical response of fibre ropes with different types of damage over a number of studies

[98, 99, 100, 101]. Vu et al also used finite element method (FEM) to model ropes and

compare to tensile tests [102]. Similarly, Davies et al also used FEM to investigate the

response of twisting in ropes and compared them to tensile testing [103].

When developing a modelling approach, several parameters and their influence are

considered. There have been some patents developed that incorporate discard parameters

into a wider fibre rope monitoring system. Examples of this are provided by Mupende and

Zerza, who detail similar patents where a discard signal is created from monitoring rope

and environmental parameters [104, 105, 56]. Additionally, van der Woude and Zijlmans

also advocate the approach of real-time monitoring through several sensors that log data

related to use and correlate them to position along the rope [106].

It is shown that RUL approaches for fibre ropes have potential to be further developed,

with little research on the topic of combining both better monitoring techniques and

ML and DL application. While several different approaches have been detailed in this

section, the importance of monitoring specific rope parameters is highlighted. These will

be monitored through non-embedded approaches to allow data to be recorded for ML

application.

2.5 Machine learning

There have been extensive reviews into the use of ML and DL for diagnostics and prognos-

tics over a number of sectors [16, 107, 108, 15, 17, 109]. Many of the developed approaches

are applied to publicly available datasets of data collected from other engineering compo-

nents such as bearings, motors and other rotating machinery. At the time of writing, there

are no publicly available datasets for CBOS testing of fibre ropes that include geometric

and thermal monitoring of discrete rope sections.

ML and DL have been applied previously for steel wire ropes. Onur et al used neural

networks to predict RUL of steel wire rope in CBOS testing and compared the performance





to Feyrer models at different loads and diameter ratios [110]. Xue et al used support vector

machine to classify steel wire rope condition based from vibration monitoring data [111].

Furthermore, Zhou et al used convolutional neural networks (CNN) for classifying faults

in balancing tail ropes for mine shaft hoisting operations [112]. Huang also applied a CNN

approach and computer vision techniques that detect surface damage in steel wire ropes

[113]. Finally, Chung et al detailed a an approach where deep neural networks (DNN) are

used to classify faults simulation data of mooring lines [114].

The ML and DL application detailed in this section mainly deal with steel ropes and

classification of condition, specifically for mooring or mining purposes. At the time of

writing, there is no publicly available research into ML and DL application for fibre ropes

intended for lifting operations under CBOS testing in terms of diagnostics or prognostics.

2.6 Research questions and proposed research

directions

The research presented in this thesis was conducted as part of the SFI Offshore Mecha-

tronics work package 5, dealing with condition monitoring technologies. The specific

subtask 5.3 objective was to develop methods to determine the remaining useful life of

large diameter fibre ropes applied for heave compensated operations.

As stated in the previous sections, manual visual inspection is still the main method

used to determine the retirement of fibre ropes for offshore use. Even then, these standards

are based on ropes used for mooring purposes, instead of lifting operations. There is

significant potential in automation of these processes, as well as developing intelligent

diagnostics and prognostics methods to aid offshore inspectors in decision making. The

following research questions are posed:

1. What condition indicators are best served to indicate the condition of rope during

CBOS testing?

2. What combination of sensors will best monitor the condition of fibre ropes used for

offshore lifting operations?

3. What is the best approach to predict RUL of a fibre rope based on CBOS experi-

mental data?

This research focusses on proposing condition monitoring methods for RUL estimation

of fibre rope during offshore lifting operations . It will specifically focus on increasing the

capabilities of visual inspection through computer vision and thermal monitoring and





the algorithms used to acquire the data. The application of ML algorithms for both

diagnostics and prognostics as a further aid to decision making on re-certification or

retirement of fibre ropes from service will also be explored.







Chapter 3

Design of experiments

This chapter outlines the experiments performed through the course of this project and

used in the publications that form this thesis. The details of tension and CBOS testing

are summarised in Sections 3.1 and 3.2, respectively. Further details of the rope types

used in each experiment are given in Section 4.

3.1 Experiment type 1: Tension testing

The tension tests were performed as part of initial development of data acquisition algo-

rithms and forms the basis of the research presented in Paper A. This thesis focuses on

offshore lifting operations, so tension tests under different conditions were performed as a

way of testing and validating the computer vision algorithms that monitor the CIs length

and width, before future application to CBOS testing.

3.1.1 Equipment

The tests were conducted using a Wolpert tensioner machine, which is capable of delivering

a maximum load of 1000 kN. The test setup is shown in Figure 3.1. The ropes were

fastened into the machine clamps with two 25 ton (250 kN) rated shackles attached to

spliced rope end eye.
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Figure 3.1: Overview of tension test setup with fibre rope in Wolpert tensioner machine

for the experiments outlined in Paper A.

Each experiment was recorded using a Logitech C922 1080p web camera with 1920 x

1080 resolution and recording at 30 fps (frames per second). The camera set up is posi-

tioned so the measurement area on the rope is within the field of view. A white backdrop

was also erected behind the tensioner machine to remove background interference.

3.1.2 Fibre rope and marking scheme

Three samples of 28 mm width, 12 strand, Dextron 12 Plus fibre ropes were used in the

experiments. Splicing of the ropes was carried out before the experiments, making use of

a modified version of the Tuck-Bury splice [115] to make the eyelets to attach the ropes

to the shackles. The measurement section was in between both splice transition zones

and was designated using blue electrical tape. Geometrics measurements such as length

and width were tested as CIs and therefore a marking scheme was implemented. The

markings were a distinct colour from the rope so they could be distinguished easily when





(a) An example of the splice used for the ropes during tension

testing.

(b) An example of the measurement zone on rope for the tension

tests designated by the blue markers.

Figure 3.2: Modifications made to the ropes for tension testing.

the computer vision algorithms measuring length were applied. This was chosen as a

temporary solution to allow validation of measurement algorithms until a more robust

marking scheme had to be developed for future CBOS testing. It is noted that a black

marker pen was used in the first test, but this was replaced by the blue tape in subsequent

tests. The splice and measurement area used for the tension tests are shown in Figures 3.2a

and 3.2b, respectively.

3.1.3 Test procedures

Three different testing regimes were performed on the samples to assess the marker move-

ment. The details of these different test conditions are summarised below:

1. Pre-load phase where the tensioner initially held the rope at 0.4 kN. The load

steadily increased until 338.8 kN before the test was stopped after 160 seconds.

2. Pre-load phase where the tensioner initially held the rope at 0.4 kN. The load was

steadily increased over approximately 100 seconds until 310 kN before the test was

stopped.

3. Pre-load phase where the tensioner initially held the rope at 1.5 kN. The load was





steadily increased in a step-wise fashion of approximately 20 kN until 290 kN before

the test was stopped after 400 seconds.

3.2 Experiment type 2: CBOS testing

The CBOS experiments were performed at the Mechatronics Innovation Lab in Grimstad,

Norway and form the basis of the research detailed in Papers B and C. The data sets form

the basis of the research detailed in Papers B - E. The CBOS machine was used to emulate

deformation process of rope in AHC operations, though under cosntant conditions which

is not realistic.

3.2.1 Test machine

The CBOS machine used in this thesis was designed and installed by DEP Engineering

(www.dep-engineering.fr). An overview of the machine is shown in Figure 3.3 and a

summary of the machine properties is specified in Table 3.1.

Figure 3.3: Overview of CBOS test machine with fibre rope installed. The view is from

behind the test sheave. This was used for the experiments outlined in Papers B - E.

The machine comprises of two different sheaves: a driving sheave and a test sheave.

The rotating driving sheave provides the motion of the rope and force the rope to bend over

the testing sheave. The test sheave is the smallest sheave, meaning the rope experiences

more shear straining on this than on the driving sheave. The rope is held at a pre-defined





Table 3.1: Properties of CBOS machine.

Test sheave diameter (m) 0.8

Driving sheave diameter (m) 1.0

Maximum line pull (kN) 150

Rope diameter range (mm) 20-30

Dimensions (m × m × m) 12 × 1.3 × 2.2

tension throughout testing by a hydraulic cylinder that extends as the rope is elongated

(and creeping) throughout the tests.

Either end of the rope is attached into opposite ends of a connector attached to a

trolley that moves as the rope is cycled back and forth. In Paper B the mounting was done

through a special resin applied to the end of the ropes, held in place by a specially designed

fastener similar to [116]. In the subsequent CBOS experiments detailed in Papers C, D

and E, the ropes were attached via spliced eye at the ends of the rope, similar to those

described in Section 3.1.2. Care was taken to ensure there was minimal twist in the rope

when it was installed in the machine.

3.2.2 Instrumentation

The condition monitoring set-up consists of three parts: a computer vision system, a

thermal monitoring system, and a laser distance measurement. The computer vision

system consisted of five cameras viewing the rope from different angles, each attached

into a frame positioned near the testing sheave as shown in Figures 3.4a and 3.4b. As the

CBOS tests progress, the rope structure will degrade with ruptured strands and extruded

loops. After tension testing it was decided that higher quality machine vision cameras

were needed for CBOS testing, therefore the Edmund Optics 13122C Colour USB 3.0, 1.3

MP resolution model with maximum frame rate of 169 fps, was used to record data. Each

camera recorded around 2000 images for each recording, which corresponded to 13-15

complete cycles. Depending on the ropes used, periodic recordings for 20 seconds were

made every 500 or 1000 cycles of the rope in the CBOS machine.

As highlighted in Section 2.1, thermal monitoring should be incorporated into a fibre

rope monitoring system due to the thermal properties of HMPE ropes. A FLIR A6753sc

infrared thermal camera was used to record rope surface temperature periodically as the

tests progressed. It was placed approximately 50 cm from the rope entrance to the sheave

profile, as shown in Figure 3.5. The recording process was set to sample at 100 Hz for

2000 images, resulting in a 20 seconds video for each period, which recorded one full cycle

of the CBOS test.





(a) The frame and cameras installed at the testing sheave of the CBOS

machine.

(b) Schematic of how cameras are positioned around the rope.

(c) Edmund optics camera.

Figure 3.4: Overview of computer vision system set-up.





Figure 3.5: View of FLIR A6753sc infrared thermal camera during CBOS testing for steel

wire ropes.

A distance measuring laser was used to monitor the extension of the cylinder in the

CBOS machine during the CBOS test. This allowed the global elongation of the rope

to be recorded. The specific properties of each constituent part of the CM system are

available in Section C.9.

3.2.3 Fibre rope and marking scheme

Three different types of fibre ropes were used during CBOS testing. Paper B documents

the testing of 28 mm width, 12 strand, Dextron 12 Plus fibre rope and Paper C describes

CBOS tests with 12 strand Dyneema DM20 XBO HMPE fibre ropes with nominal diam-

eter of 28 mm. Tests are also carried out on 28 mm Samson Amsteel Blue ropes, which

form a part of the data sets used for ML application in Papers D and E.

The rope is subjected to different amounts of bending during one cycle of the CBOS

machine. For the purposes of the research discussed in thesis, three general bending zones

are defined for data recording, namely the straight zone (SZ), single bend zone (SBZ) and

double bend zone (DBZ). SBZ bending can be summarised as the portion of the rope

following a straight-bend-straight motion during one cycle, whereas DBZ bending can

be defined as straight-bend-bend-straight-bend-bend-straight motion during one cycle. A

schematic of these zones is shown in Figure 3.6a. It is noted that this specific example

relates to the zones measured for Paper C and that the research presented in Paper B

featured only one measurement from the DBZ, as shown in B.1.





(a) Approximate location of different coloured markings placed on the rope for length

and width monitoring based on bending zones.

(b) Example of threads sown into a rope sample to designate a bending zone.

Figure 3.6: Overview of measurement zones on ropes during CBOS testing.

Additionally, based on the findings from the tension tests, a more robust means of

defining these measurement areas was implemented. Instead of tape, threads are used to

designate each bend zone, as shown in Figure 3.6b. The markers are arranged such that

there is half a lay length between each one, with its own label to distinguish it from the

neighbouring subsection.

3.2.4 Testing procedure

The ropes were tested until failure. A rope failure was considered to occur when the

machine automatically stopped due to substantial loss in tension or when there was a

more obvious rupture in the rope.

Additionally different safety factors (SF) were used during testing. The SF is defined

using equation 3.1.





SF =
MBLrope

Ttest
(3.1)

where MBLrope is the rope minimum break load as specified by the manufacturer and

Ttest is the test tension exerted by the cylinder in the CBOS machine divided by two. A

summary of the SFs used for each rope during CBOS testing is shown in Table 3.2.

Table 3.2: Summary of data sets taken from CBOS testing.

Campaign Rope SF No. of ropes

1 Dextron 12 13.6 3

2 DM20 XBO 11 5

3 Amsteel Blue 8 4

The number of rope samples tested in this project are limited as CBOS testing is

both time consuming and costly. However, with the samples provided it was possible to

validate the selected condition monitoring methods for condition classification and RUL

estimation.

3.2.5 Calibration

Calibration of the visual measurements was performed using the in-built function in MAT-

LAB that uses a chessboard pattern to adjust the images for distortion and give an ap-

proximate error in pixel size. Additionally, an object of known size is placed next to the

rope to convert the measurement in pixels to millimetres for better comparison between

all the cameras.

Calibration of the thermal camera was performed with two different methods for val-

idation. This was performed through a black-body calibration with an attached sample,

which was further validated through placing thermocouples embedded in rope samples to

find the ropes’ emissivity. There is also further auto-calibration implemented in the FLIR

software used to record the thermal data.







Chapter 4

Feature extraction

This chapter outlines the methods used to extract features from the data recorded in

the experiments outlined in chapter 3 and gives an assessment of their effectiveness for

indicating rope state. Local deformations (lengths of sections of strands), global length,

local width (of cross sections) and temperature were chosen for investigation as poten-

tial condition indicators (CIs) in fibre ropes for both diagnostics and prognostics. The

methods of feature extraction are shown in Sections 4.1 and 4.2. All features, with the

exception of global elongation, are extracted from videos recorded by the machine vision

and thermal cameras.

4.1 Geometric data

The algorithms used for image processing and data analysis were developed in Python

using OpenCV [117]. A series of morphological operations are performed to calculate the

local length, local width and roundness of the rope. While calculating the same data

for CIs, it is noted that there are slight differences between the algorithms applied to

calculate rope geometric data in Papers A, B and C.

4.1.1 Global length

The global length is measured using a infrared distance measuring laser outlined in Sec-

tion 3.2.2. The distance recorded corresponds to the extension of the hydraulic cylinder

as the experiment proceeds.

4.1.2 Local length

The algorithm used to calculate the local length is based on locating the different coloured

markers, an example of which is shown in Figure 3.6b. Figure 4.1 show the progression
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of morphological operations applied to the image that allow the calculation to take place.

Firstly the raw image is converted to HSV colour space to make it easier to detect specific

colours even at varying brightness. In Figure 4.1, the colour red is detected but the scale

can be adjusted to reflect the other colours in the marking scheme in the other bend zones.

A colour mask is created from this scale and a binary image is produced where the areas

coinciding with the colour are converted to white. A dilation operation is applied to fill in

smaller gaps in the white areas to aid finding the centre point. Finally, the centre points

of the marker is found through a contouring operation. The Euclidean distance between

these centre points is then calculated as the local length.

Where possible, at least ten images of the same subsection in each video recording are

used so the median, maximum, minimum and variation as standard deviation of the length

from each image form additional features. These distances are monitored for changes as

the tests proceed.

Figure 4.1: Morphological operations applied to the image to detect a specific colour for

length measurements: (a) original image, (b) binary image created, (c) dilation operation

applied and (d) final processed image with centre point of marker visible after contouring

operation.

4.1.3 Local width

Rope cross section width is calculated from the perspective of each camera used in each

experiment. There are two different methods outlined in the research presented in this

thesis. A width algorithm based on detecting the rope colour forms the approaches

outlined in Papers A and C, whereas a combination of different filters is applied to images

in Paper B.

The approach used in Papers A and C is done in a similar fashion to the length

algorithm specified in Section 4.1.2. The raw image is converted to HSV interpretation

and the rope colour is used to create the binary image. It is then dilated to fill in any gaps

and eroded so the colour mask better coincides with the true edges of the rope. Finally,

the ropes are detected with a contouring algorithm. An example of these morphological

operations is show in Figure 4.2.

The Paper B approach uses a combination of bilateral filter, Gaussian blur, canny





edge detection, dilation, erosion and contouring to find the outer limits of the ropes in

the images.

Both of these approaches share the same final stage, where the lines found through

the contouring operations are saved as coordinates. Seven regions of interest (ROI) are

defined. The shortest length detected between the top and bottom lines defined by the

contour is then saved as the width for that particular ROI (only three ROIs are used in

the tension tests in Paper A). From these seven ROIs, the median is saved as the overall

width for the subsection in question. Median is used rather than average, since median is

a statistical feature less sensitive to outliers. Additionally, the maximum, minimum and

standard deviation are also measured as potential features. As the cameras in the CBOS

experiments are synchronised, the widths from all four perspectives at the same time and

position on the rope can be interpreted.

While both approaches give the same result, the approach outlined in Paper C is less

computationally expensive than that outlined in Paper B.

Figure 4.2: Different stages of morphological operations applied to the image to detect the

rope and calculate the width: (a) original image, (b) binary image created, (c) dilation

operation applied, (d) erosion to reduce edge thickness, (e) contouring to find edges of

rope and applied to original image to find the width (red line).

4.1.4 Roundness

As part of the CBOS experiments outlined in Paper B, an estimation for the roundness

of the rope was also calculated. The roundness, R is specified in equation 4.1.

R =
Ao

P

2

r̄
(4.1)

where R is the roundness shape factor, Ao is the cross-sectional area, P is the perimeter

and r̄ is the average radius. The calculation is based on a circle, where 1 indicates perfect

roundness and any decrease is seen as a reduction in roundness.





The roundness R was not used in any research after Paper B as it was not deemed to

contribute anything to characterization of the rope state not already seen from the width

measures.

4.2 Thermal data

The temperatures from the rope surface are interpreted through FLIR camera software

[118]. As shown in Figure 4.3, an ROI is defined on the rope surface, where the average

temperature is determined from the pixels within it. The maximum, minimum and stan-

dard deviation of the measurements from within this ROI are also recorded. An ROI is

defined so it will always contain the rope and no background interference due to slight

varying vertical displacements of the rope during CBOS testing.

Figure 4.3: Example ROI applied in IR camera software to measure temperature on rope

surface.

4.3 Outliers

Outliers in the geometric features are handled through using the median absolute deviation

(MAD) as shown in equation 4.2. This is applied to the local length and width data due

to these CIs comprising of readings from several images.

MAD = median(| x− x̃ |) (4.2)

where x is each value and x̃ is the median value for each recording. This is done

for both the local length and width measurements, as these operations are performed on

the same images. For local length measurements, this is done from the ten length values

extracted from the ten images. For the width measurements, this will be based on seventy

values comprising seven ROIs from ten images.

The median is known to be more robust than using the average of the measurements,

which can be greatly influenced by outliers. The following criteria shown in expression 4.2

is used to eliminate the outliers from the data set.





| x− x̃ |≥ 3×MAD (4.3)

The median, maximum, minimum and standard deviation of the values that remain

after the application of MAD are used as the feature values at each particular time stamp.

Outliers in the thermal data are limited by the conservative ROI applied during record-

ing. The data collected is limited to the rope surface area with no interference from the

background in the images. Average temperatures within the ROIs can therefore safely be

used as statistical feature here.

4.4 Missing data

After outliers are omitted, linear interpolation is applied to account for missing data.

Missing data may occur as a result of intermittent instrumentation failures or the algo-

rithms failing to detect the specific sections of the rope due to degradation of section

markers.

4.5 Results

4.5.1 Tension testing

Figure 4.4 shows the results of the length and width algorithms monitoring the tension

tests. While the reduction in width and increase in length should be expected given the

nature of the test, the monitoring provided by the algorithms show good correlation with

the increased load in the tests. It served as validation for the method but also showed that

more robust means of marking had to be developed since it was not possible to measure

length in experiments 1 and 2. These findings were then brought forward and adapted to

the CBOS tests.





Figure 4.4: Width and length results in experiment 3 from tension testing.

4.5.2 Cyclic-bend-over-sheave testing

4.5.2.1 Observations

Figures 4.5 and 4.6 show typical damage seen in ropes as a result of CBOS testing.

Compression damage on the surface is seen in the portion of the rope in contact with

the sheave, as shown in top image of Figure 4.5. However, the opposite side of the rope

shows both ruptured strands and extruded loops, which progressively develop through

the testing period. It is possible to monitor these changes in the rope topography as a

CI, in particular through use of the width monitoring algorithm.

This gradual change in the rope can lead to ”larger” width measurements as the

algorithm detects the extruded loops and ruptured strands. This coincides with increases

and decreases in the local length at the measured subsections.

Figure 4.6 shows an example of a rupture in a rope that results in the end of a CBOS

test. There is an increase in local stress concentrations, as the ruptures in the rope build

up as the CBOS test progresses and causes rearrangement in structure.

The number of cycles counted by the CBOS machine for each rope at failure are

summarised in Table 4.1. This details which rope samples were tested in each campaign

and the paper where the analysis was presented. All ropes failed at the smaller test sheave

with the exceptions of C2R1 and C2R4. These particular two samples failed at the larger

driving sheave as a result of unavoidable contact with the splices.





Figure 4.5: Compression damage (top) and extruded loops (bottom).

Figure 4.6: Example of rupture in fibre rope at the end of a CBOS test.

4.5.2.2 Global length

Figure 4.7 shows the global elongation for the ropes tested in campaign 2. It is noted that

Ropes C2R1 and C2R4 failed due to degradation in the splice that was partly in contact

with the larger driving sheave. The other ropes all failed at the test sheave as intended.

Note that the global elongation in all cases was below 1 %, which was in accordance with

the manufacturer’s rope specification.





Table 4.1: List of cycles at failure during CBOS testing for ropes in Papers B, C and D.

Paper Rope No. of cycles SF

at failure

C1R1 57,672 13.9

B C1R2 45,944 13.9

C1R3 44,925 13.9

C2R1 75,324 11

C2R2 122,368 11

C C2R3 120,430 11

C2R4 87,314 11

C2R5 143,374 11

C3R1 14,948 8

D C3R2 13,883 8

C3R3 13,901 8

C3R4 13,998 8

Figure 4.7: Global length progression during testing.

4.5.2.3 Local length

An example of the algorithm working on rope C2R5 is shown in Figure 4.8, local relative

distortion of the strand is shown to be +10.8 % in the DBZ-B-2 subsection when comparing

the first and final measurements. The overall middle relative distortion equates to -0.6 %

across the whole lay length in DBZ-B when the measurement from DBZ-B-1 is taken into

account, highlighting the need for sub-lay length measurements.





For all five ropes tested in campaign 2 the sections monitored in the straight zone

(SZ) and single bend zone (SBZ), had no strains that exceeded 1 % of the original length.

Ropes C2R2, C2R3 and C2R5 ran for significantly more cycles than C2R1 and C2R4,

with significant longer elongation detected in the two DBZ sections than the SZ and

SBZ sections. This can be attributed to DBZ sections being subjected to twice as many

bends over the sheave than SBZ. Figure 4.9 shows the changes detected using the length

calculation method throughout each test, with Rope C2R5 displaying the largest changes

in the marked DBZ sections. There is observed to be a heterogeneous spread of strain

changes in the DBZ sections across all the samples. This was also observed in campaign

3, but there were significantly few cycles than in campaign 2.

Figure 4.8: Example of increase in local length in the DBZ from the start (top) and end

(bottom) of a CBOS test.





Figure 4.9: Local length changes after bedding in phase in Section DBZ-B for all ropes

(R-Rope, S-Subsection).

4.5.2.4 Width

Extruded loops and ruptured strands become more apparent in the DBZ sections due to

repeated bending and unbending, which are detected effectively by the visual system and

algorithm through the larger relative width change. The structure of the rope rearranges

due to repeated deformation. It is noted that generally there are small variations and

continuous increase in width despite the elongation of the same sections.

Unlike the local length measurements, there is no evidence of ”reciprocal” changes.

Each subsection is shown to follow the trend of the neighbouring subsection despite the

occurrence of the opposite elongation behaviour in some of the ropes.

Width monitoring is vital as it indicates changes in rope structure, including both in

shape or through deterioration such as extruded loops or ruptured strands. The width

calculation method applied is adept at monitoring these changes over the testing period,

and it also clearly displays the differences in the different bending zones. An example of

a processed image is shown in Figure 4.11 from Rope C2R1 as observed from Camera 3.

There is visible deterioration in the rope structure with the presence of extruded loops

clearly seen before rupture. The width calculation algorithm adapts to this, with the rope

edge detection including the extruded loops. In this instance, the shortest distance in the

constituent regions of interest will be higher and subsequently produce a larger median

value, allowing the changes to be quantified throughout the rope lifetime.





Figure 4.10: Percentage change in width from camera 2 for all zones in Rope C2R5.

Figure 4.11: Example of differences in a rope sample from the start (top) and showing

extruded loops towards the end of CBOS testing (bottom).

4.5.2.5 Temperature

Thermal images are recorded as they indicate frictional and deformation work in the rope.

Figure 4.12 shows a distinct temperature measurement curve in each rope. However,

within each recording there are distinct zones visible due to temperatures associated with

the bending behaviour in each section. The first and second plateaus in the curves are

associated with the SBZ and DBZ sections respectively.

After increasing from the beginning of the test, the average temperature in the DBZ

section is shown to decrease as the rope heads toward rupture. This also coincides with

lower maximum and minimum temperature at the DBZ section at the more advanced





recording times during testing.

The varying temperatures in the sampling areas of the rope surface are given by the

standard deviation. This follows the same ”plateau” pattern as the temperatures. There

are larger deviations recorded in the DBZ sections at the more advanced recording times.

Additionally there are large standard deviations recorded in the transfer points between

the SZ and DBZ sections in Rope C2R5.

Figure 4.12: Rope C2R5 average, maximum, minimum and standard deviation tempera-

ture measurements along the rope for one cycle with respect to the associated test time.

Thermal monitoring using an IR camera brings not only temperature measurements

but can provide another useful visual aid to assess the rope surface. The method applied

allows each specific bending zone to be scrutinised in detail and monitored over time.

Moreover, the results found using the thermal camera in this study allow the physical

changes of the rope to be compared concurrently with temperature. Monitoring of the

average, maximum, minimum and variation by standard deviation gives information on

changes into the physical structure of the rope.

The lower average, maximum and minimum temperatures that coincide with larger

standard deviations at more advanced testing stages, particularly in the DBZ section, can

be attributed to the increasing presence of structural degradation in the rope. As detected

with the width measurement algorithm, the extruded loops and ruptured strands that are

visible and more prevalent in the latter stages of testing via the thermal camera can be

seen in Figure 4.13. These degradation features are markedly cooler than the main body

of the rope and contribute to the spread of measured temperature values.





Figure 4.13: Example of differences in temperature in rope sample from start (top) and

end (bottom).







Chapter 5

Condition classification

This chapter outlines the application of ML algorithms to the CBOS data sets to classify

the condition of the ropes and serves as a summary for the content presented in Paper D.

The CIs determined from data recorded through methods outlined in chapter 4 are used to

predict fibre rope condition. The methods chosen for classification include: decision trees;

random forest; and support vector machine. Each algorithm is compared and assessed for

its effectiveness for classification.

5.1 Applied methods

5.1.1 Decision trees

This study applies the decision tree algorithm as detailed in [119], using the implemen-

tation in scikit-learn [120]. It comprises a flowchart that assigns each sample to one of

two classes based on a condition selected from the features available. The samples are

split based on an attribute selection measure, in this case the Gini index, which measures

the impurity of a data split with respect to the classes available [121, 122]. This process

is performed recursively until all samples are assigned to a class or there are no more

features available to make splits. The depth of the trees can also be limited to influence

the complexity of the model. For example, a deeper tree can lead to a more accurate

result but has the risk of creating an overfitted model due to unrealistic complexity. Since

there is a random element involved in the algorithm, each tree configuration is repeated

20 times to assess the spread and confidence in the classification predictions.

5.1.2 Random forest

Random forest is an example of an ensemble learning method comprised of many decision

trees. The method is described in detail in [123] and also implemented using sci-kit
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learn [120]. A random forest is formed with a defined number of decision trees, where

each individual tree is formed on a subset of samples and features created through random

sampling with replacement. These multiple predictions are combined in the bagging phase

[124], where the a class is assigned based on a majority vote by the individual trees in the

random forest. Similar to the decision tree algorithm, the depth of the individual tree can

be controlled. The number of trees that make up the forest can also be adjusted. Each

configuration is repeated 20 times to assess the variation in the predictions made by the

model.

5.1.3 Support vector machine

Support vector machine has also found use for classification problems as defined in [125]

and are implemented through scikit-learn [120]. The algorithm works by fitting a hyper-

plane that divides a set of instances into classes. The optimal solution is separated is

defined as where the margin that separates the instances has been maximised, with the

instances used for the separation are referred to as “support vectors” [126]. The gener-

alisation to the nonlinear case is achieved by applying the so-called kernel trick, using

non-linear kernel functions for transforming the task into a higher-dimensional space, in

which the number of possible linearly separating hyperplanes is larger than in the orig-

inal space. In this study linear (SVM-linear), Sigmoid (SVM-Sigmoid) and radial basis

function (SVM-RBF) are applied to alter the hyperplane shape applied to the data. Each

configuration is performed once and the performance of the kernels is compared. The

variation in performance between each classification with SVM is considered negligible

and is therefore performed only once.

5.1.4 Classical statistical methods

The machine learning models detailed previously are compared and assessed along with

the classical statistical approaches k-nearest neighbours [127], Näıve-Bayes [128] and lo-

gistic regression [129]. These methods are commonly used for classification problems as

an alternative to machine learning. As the topic for this research is finding good methods

for condition monitoring, classical statistical methods are also investigated to assess if

they are sufficiently advanced to achieve good classification results.





5.2 Experimental study

5.2.1 Features

The features used for condition classification are derived from the CBOS data recorded

from the experiments and data extraction outlined in Chapters 3 and 4, respectively.

For each of the eight sections defined in Figure 3.6a, one length measurement and four

width measurements (one from each of four cameras) are used as features. Each of these

measurements are aggregated as average, maximum, minimum and standard deviation.

The global length is also measured as a single absolute value.

Temperatures are only available for the lumped zone straight zone (SZ), single-bend

zone (SBZ) and double-bend zone (DBZ) and the temperatures values within the rope part

of each relevant image are aggregated as average, maximum, minimum, standard deviation

and peak-to-peak. The data used for condition classification comes from campaigns 2 and

3, which were tested at different safety factors. A complete list of features used in this

study are shown in Tables 5.1 and 5.2.

Table 5.1: List of features created for condition classification.
Data type Feature (zone) Statistical parameter type

geo Local length (eight sections) Median, max, min, stdev

Width (eight sections) Median, max, min, stdev

Global length Absolute value

therm Temperature (three lumped sections) Average, max, min, stdev, peak-to-peak

Temperature (SBZ-DBZ) Ratio

Table 5.2: Data set summary for C2 and C3 ropes.

Data set ID C2 geo C2 geo therm C3 geo C3 geo therm

Data type geo geo + therm geo geo + therm

Features 65 81 65 81

Ropes 5 5 4 4

Records 509 509 103 103

Manufacturer Dyneema Dyneema Samson Samson

Rope type DM20 XBO DM20 XBO Amsteel Blue Amsteel Blue

SF 11 11 8 8





5.2.2 Data pre-processing

The outliers and missing data are dealt with using the steps outlined in Sections 4.3

and 4.4, respectively. After these steps, the raw measurements from the data acquisition

phase are scaled by subtracting the mean value and dividing by the standard deviation.

This is done for each rope tested to improve comparability between the rope samples and

is a standard step to prepare data for machine learning application. An example of a

record of standardised values for features used to form the models is shown in Figure 5.3:

Table 5.3: Example of standardised values for the length feature located in the straight

zone (SZ).

S1av S1max S1min S1stdev S2av S2max S2min S2stdev

-0.57 0.27 0.91 0.04 -0.64 0.15 -0.01 0.42

5.2.3 Labelling

To perform classification predictions on the ropes, the records need to be appropriately la-

belled. This study is a binary classification problem, therefore the ropes can be considered

Healthy (HE) or Close To Rupture (CTR). The development of the global length resem-

bles a creep curve with three distinct stages: primary, secondary and tertiary creep. The

tertiary creep stage encompasses the accelerated creep phase after the transition point.

Fitting the global length development to a polynomial allows a quantitative definition of

the transition from secondary to tertiary creep, thereby labelling each sample as “HE” or

“CTR”, as shown in Figure 5.1. The “CTR” labelled samples equate to the accelerated

creep phase. This labelling process allows an automated, quantitative definition of rope

condition to be implemented.

Figure 5.1: Example of labelling process on rope C2R5 with transition point between

both classes.





5.2.4 Model training and assessment

Leave one out cross validation (LOOCV) is performed on the CBOS data sets. The steps

in the LOOCV process in this study are detailed in Figure 5.2.

Figure 5.2: Flowchart of operations for fibre rope condition classification.

The results are shown through metrics that are derived from a Confusion matrix

description, which is shown in Figure 5.3.

Figure 5.3: Overview of confusion matrix.

The correct predictions can be summarised as true positives (TP) and true negatives

(TN) and the incorrect classifications are quantified as false positives (FP) and false

negatives (FN). The negative and positive classes coincide with the HE and CTR classes,

respectively. The metrics used for model assessment accuracy (ACC), probability of

detection (POD), probability of false alarm (PFA) and Matthews correlation coefficient

(MCC) are shown in equations 5.1- 5.4:





ACC =
TP + TN

TP + TN + FP + FN
(5.1)

POD =
TP

TP + FN
(5.2)

PFA =
FP

FP + TN
(5.3)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5.4)

ACC is the most general of the metrics presented in this section and simply takes into

account the number of correct predictions across of the whole data set. The closer the

value is to 1, the better the model is performing. However, this does not take into account

the number of samples present in each class.

POD can be summarised as the likelihood of a CTR being correctly classified. The

closer the metric is to 1, the better the model is deemed to have performed in this aspect.

A model that fails to detect CTR samples runs the risk of allowing the rope to continue

operation until it fails.

PFA is interpreted as the probability of an “HE” sample being mislabelled as “CTR”.

If a model has a higher tendency to classify samples as CTR when they are HE, it would

lead to more false alarms during condition monitoring. This could potentially prove to be

costly due to operational stoppages for inspection and therefore a lower value is preferred.

MCC takes into account all four values in the confusion matrix and provides a more

balanced assessment regardless of whether one class is disproportionately over or under-

represented. A value close to 1 means that both classes are being predicted well and show

that true and predicted classes are correlated.

However, none of the metrics give information about what specific samples have been

misclassified. A graphical method is therefore applied to assess this aspect. An example

is Figure 5.5, which shows an example of the classifications predicted by the models at

the various stages of the CBOS test.

Separate results are presented for data sets C2 and C3 and the values of the metrics

are averaged over the number of individual ropes in each data set. The algorithms are

then ranked and compared based on the predictions made.





5.3 Results

5.3.1 Confusion matrices and classification comparison

Figure 5.4 shows an example of confusion matrix results for the six different techniques

applied to rope C2R5. Figure 5.5 shows a qualitative example of the six different tech-

niques applied and the results given for rope C2R5. The true transition point between

the HE and CTR classes is highlighted by the vertical blue line.

It is shown that most models identify a too early transition between the classes. There

are a substantial number of HE instances classified as CTR before the transition point

indicated by the vertical blue line for every different model.

The decision tree is shown to have a particularly poor performance in comparison to

the other algorithms. It misclassifies a significant number of both HE and CTR samples.

Moreover, when a rope break is imminent it continues to classify the rope as safe for use.

K-nearest gives a lot more false alarms in the earlier parts of the CBOS test than

the other algorithms. This could prove costly in terms of operation downtime, as a

rope identified as potentially failing requires inspection and remedial actions to ensure

continually safe use.

5.3.2 Average metrics

The average results for metrics ACC, POD, PFA and MCC in data set C2 and C3 are

shown in Figure 5.6 to 5.9. The best performing configuration of each algorithm is pre-

sented and assessed for classification performance.

An ACC value that exceeds 90 % generally indicates a very good performance, as it

measures how many correct classifications were made across all samples. Random forest

and SVM-linear were shown to be the best performing machine learning algorithms in

data sets C2 and C3 respectively.

K-nearest was also shown to have similar scores in data set C2 to random forest,

however as shown in Figure 5.5 this can be deceptive due to extensive mislabelling of HE

samples as CTR in the earlier portions of the rope test time. These misclassifications are

reflected by the higher PFA score, indicating that there is around a 10 % probability of

a HE sample being misclassified as CTR. These types of misclassifications could prove

costly due to increased down time for inspections.

Similarly, POD above 90 % also indicates a very good performance as this assesses how

effective the model at classifying the CTR class. This was shown to drop between data

sets C2 and C3, indicating that the data used in C3 was to the detriment of successfully

classifying the CTR class.





Figure 5.4: Confusion matrices for results on rope C2R5 for six different algorithms. ”td”

refers to tree depth for both decision tree and random forest. ”100” in random forest

refers to number of trees in forest.





Figure 5.5: Example of classification results on rope C2R5 for six different algorithms.





Generally, a lower PFA score indicates better performance. PFA is shown to decrease

dramatically between data set C2 and C3. From the outset a zero PFA score is ideal,

however in the case of Näıve-Bayes, random forest and decision tree in data set C3 this

indicates the models were biased towards predicting the majority of the samples as HE.

There was no misclassification of HE samples as CTR but they failed to identify a number

of CTR samples.

SVM linear increases dramatically in performance from C2 to C3. This is reflected in

the increase in scores for both MCC and ACC between C2 and C3, indicating that the

algorithm was able to better predict both classes with the change in data used.

When only assessing ACC and POD, the best performing algorithms could be inter-

preted as performing at the same level. However, when considering PFA and MCC scores,

there is a clearer separation between the algorithms indicating that these metrics have to

be used in combination to properly assess a model.

Figure 5.6: ACC results for each algorithm compared between data set C2 and C3.

5.4 Classification method comparison

The performance of each method is assessed and discussed individually in the following

sections. Then the performance of the machine learning algorithms against the classical

statistical methods is also considered and discussed. Despite discrepancies between the

rope lifetimes, it is possible to achieve good condition classification results using both ma-

chine learning and statistical approaches with all the viable data from the zones outlined

in Figure 3.6a.





Figure 5.7: POD results for each algorithm compared between data set C2 and C3.

Figure 5.8: PFA results for each algorithm compared between data set C2 and C3.





Figure 5.9: MCC results for each algorithm compared between data set C2 and C3.

5.4.1 Decision tree

The decision tree method implemented in this study performed worse than all other

algorithms, both machine learning and statistical based. Decision tree is an example of

a heuristic algorithm and will classify instances based on the feature that has the lowest

Gini index value. This approach causes the results of individual trees to vary, as different

features may produce the same “impurity” but the resulting segmentation point could

classify samples differently. Unless explicitly programmed to make consistent data splits

on the same features, the decision tree will produce variation in results.

The method is however shown to be useful for exploratory analysis of the features best

suited to distinguishing between the two classes established in this study. For fibre rope

condition monitoring of CBOS testing it highlights that the features derived from the SBZ

and DBZ are more relevant than those from the SZ section. This is as expected, since the

bending occurs in these zones leading to greater deformation and more variation in width,

length and temperature to form data splits. The method should not be used as a stand-

alone classification method but can be used as a technique for feature reduction before

repeating the modelling process with other machine learning or statistical approaches.

5.4.2 Random forest

Random forest was the most effective method for data set C2 but performed worse than

all other algorithms apart from decision tree in data set C3. Data set C3 had less data

than data set C2, so therefore the decrease in the amount of data to split the records

contributes to the detriment in performance. This is due to the model not being able

to achieve the same model complexity at shallow tree depths with fewer samples. This





highlights the importance of having an extensive data set to make predictions when using

random forest as indicated in data set C2.

The technique is robust due to the properties of the algorithm, with random sam-

pling with replacement and the majority vote system of trees contributing to more stable

predictions. It is also possible to achieve excellent predictions with shallow tree depths,

which limits the need for excessive computer capacity. However, substantial and good

quality data is required to give the good results achieved through random sampling and

the majority vote system.

5.4.3 Support vector machine

The linear kernel was not as effective in data set C2, however was the best performing ma-

chine learning algorithm in data set C3. The linear kernel is the simplest implementation

of SVM, which puts a straight hyperplane in the higher dimensional space to separate

the samples into classes. In data set C2, there is lower temperature variation during the

experiment compared to data set C3. Such features with measurements that change little

contribute noise to the process of finding the optimal hyperplane. In data set C3, there

were larger temperature variations due to greater rope tension, allowing a more optimal

split to be found due to more distinctly scaled values.

SVM using both the radial basis function and sigmoid kernels performed to more or

less the exact same levels in both data sets, indicating the hyperplane shapes imposed

were more adaptable to the differences between data sets C2 and C3. While the linear

kernel is limited in the separating hyperplane it can impose for class separation, the other

kernels presented here can form a more complex hyperplane that can serve to separate

the classes more effectively. Compared to decision tree and random forest, the SVM is a

much more adaptable and consistent algorithm as reflected in the results presented.

5.4.4 Machine learning and statistical methods comparison

Both the machine learning and classical statistical approaches were shown to be valid

methods for classifying the condition of fibre ropes during CBOS testing. The k-nearest

neighbours algorithm was shown to perform just as well or slightly worse than the best

performing machine learning algorithm when assessed using only metrics. However, Fig-

ure 5.5 demonstrates that there is a possibility that k-nearest neighbours produces a sub-

stantial amount of false alarms at earlier stages of testing. The false alarms for random

forest occur closer to the transition point between classes and avoid very early stoppages.

Consequently, the results presented in this chapter show that there is merit in applying

machine learning for fibre rope condition monitoring. In a machine learning application,





the models created can only perform if there is enough data available. In situations where

data is limited a classical statistical approach can suffice, as shown by the robust per-

formance of logistic regression and k-nearest neighbours across both data sets. Logistic

regression was also shown to be less hampered by smaller data sets as reflected by the

stronger performance in data set C3 than in data set C2. Some machine learning algo-

rithms in this study, such as decision tree and random forest, performed worse in data set

C3 than in data set C2 and failed to adapt to the smaller data set.





Chapter 6

Remaining useful life estimation

using machine learning

This chapter is a summary of the work in paper E, and further details are found in the

corresponding appendix. It outlines the application of ML algorithms to the CBOS data

sets for remaining useful life (RUL) estimation of fibre ropes. This builds upon the work

outlined in chapter 5, where the algorithms are now developed further to determine how

much longer the ropes can be expected to last before failure. While classification is useful

to detect patterns that may indicate impeding rope failure, it does not give a continuous

variable to serve as indication of time to failure. From an industrial perspective, this

would be a more attractive inclusion to a condition monitoring regime for fibre ropes.

The methods chosen for RUL prediction include: neural networks, random forest, and

support vector machine. In common with the classification iteration of this analysis, all

these methods are compared for effectiveness. Random forest and support vector machine

were chosen as they had the most promising performance based on the classification

results. Neural networks were introduced as another method to investigated based on

application in other areas.

6.1 Applied methods

6.1.1 Target variable - RUL factor

A target variable is required for regression analysis in ML and will act as the value to

be predicted based on training data used in the modelling process, unlike in Chapter 5,

where only a class is detected. The target variable used in this study is referred to as the

RUL factor (Rf ), a fraction defined by equation 6.1.
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Rf =
CTF t

CTFtest

(6.1)

where Rf denotes the RUL factor, CTF t is the remaining number of cycles to failure at

the time of measurement and CTFtest is the number of cycles at failure in each individual

test where the measurements are made.

The value begins at 1, representing start of life, and ends at 0, representing end of life.

Figure 6.1 shows an example of damage progression in a section from a rope (C2R5) at

various Rf , with the stages highlighted by decreasing Rf from (a) through to (d). The

images show that as Rf decreases the subsection becomes longer and there is more visible

wear, as shown by ruptured strands and extruded loops. The prediction errors made by

the various approaches will be based on comparison to the true, known Rf .

As the CBOS tests are performed at a constant tension, Rf is related to the accumu-

lated damage d from Palmgren-Miner’s rule as shown in equation 6.2.

Rf = 1− d (6.2)

As the CBOS tests progress there is accumulated damage in the form of ruptured

stands and compromised sub-ropes. The rope is extended further as the true Rf values

drop to lower values. Therefore, the reduction in rope residual strength and thereby the

retirement criteria in the experiments can be related to the non-linear progression of the

global elongation of the rope.

Figure 6.1: Example of degradation in rope C2R5.





6.1.2 Neural networks (NN)

The NN structures, designated as NN1 and NN2, used in this study are detailed in

Tables 6.1 and 6.2. These are implemented using the Keras library [130] with a Tensorflow

backend [131]. These two architectures are chosen as they are simple to implement for

the initial application of machine learning to RUL estimation for fibre ropes. Also one

architecture has an additional layer to gauge the influence of using several dense and

dropout layers on Rf results.

Dropout layers are used as a regularisation technique, which randomly prevent 20 % of

the neuron outputs from proceeding through the network. The final output layer consists

of one neuron coupled with a Sigmoid activation function which produces a value between

0 and 1 as a result. This is done to reflect the Rf in Section 6.1.1.

The Adam optimisation function was used for both NN1 and NN2 specified in Ta-

bles 6.1 and 6.2 to update the weight values associated with the input features. The

inputs are fed forward and backpropagated through the networks for 50 epochs, with the

model that produces the lower root mean square error (RMSE) on the test data being

saved as the best model used for predictions. The simulations were initially conducted

with more epochs, but there was no improvement on results, therefore 50 epochs were

used to save on simulation time. Each configuration is simulated 20 times to account for

randomness in the weights assigned in the neural network and give a more robust value

for model output. The average prediction calculated from these instances is compared to

ground truth Rf measured from the CBOS data and a confidence interval is calculated

based on the 20 simulations.

Table 6.1: NN architecture 1 (NN1) used to predict Rf .

Layer Type

1 Input layer, Nfeats inputs

2 Dense layer, 100 neurons, activation function – ‘ReLU’

3 Dropout layer – 20 %

4 Dense layer, 50 neurons, activation function – ‘ReLU’

5 Dropout layer – 20 %

6 Output, Dense layer, 1 neuron, activation function – ‘Sigmoid’

6.1.3 Support vector machine (SVM)

SVM was first used for classification [125] and was later adapted for regression problems

[132]. To predict the Rf in this context, the latter approach is adopted which has also

been applied in other studies related to RUL prediction [133]. As for classification, the





Table 6.2: NN architecture 2 (NN2) used to predict Rf .

Layer Type

1 Input layer, Nfeats inputs

2 Dense layer, 100 neurons, activation function – ‘ReLU’

3 Dropout layer – 20 %

4 Dense layer, 100 neurons, activation function – ‘ReLU’

5 Dropout layer – 20 %

6 Dense layer, 50 neurons, activation function – ‘ReLU’

7 Dropout layer – 20 %

8 Output, Dense layer, 1 neuron, activation function – ‘Sigmoid’

data is separated by a hyperplane in a higher vector space. In regression analysis, the

continuous variable is predicted based on distance from this separation plane.

To compare to the performance of the NN, an SVM framework adapted for regression

analysis from scikit-learn [120] is chosen. Linear and Gaussian kernels are used due to

their simplicity to implement and their previous classification performance. The errors

in the predicted Rf values are compared to other methods. The variation in performance

between each prediction with SVM is considered negligible and is therefore performed

only once.

6.1.4 Random Forest (RF)

RF is an example of an ensemble method which utilises a user-specified number of decision

trees created by bootstrapping data from features and data available from a training

pool [123, 134]. The models created will assign RUL values to the test samples in each

individual tree and an average RUL value will be calculated.

The RF algorithm for regression analysis from scikit-learn [120] is used for Rf prediction.

The configurations for RF implementation in each data set are specified in Table 6.3 for

data sets C2 and C3. Different tree depths are chosen due to the difference in number of

measurements available between the different data sets and to prevent overfitting. Differ-

ent numbers of trees in the forest are used to assess their performance on convergence to

the best performing Rf result. Little improvement was seen after 200 trees, therefore it

was limited at this number to save on computation time. Each configuration is repeated

20 times to account for randomness in the split criteria used in each simulation. The

differences between the data sets are highlighted in Table 5.2.





Table 6.3: Configurations used for RF to predict Rf for data sets C2 and C3.

Data set C2

Tree depth 1-4

Number of trees 50, 100, 200

Data set C3

Tree depth 1-2

Number of trees 50, 100, 200

6.2 Flowchart of operations

Figure 6.2 details the flowchart of operations implemented in the ML process from begin-

ning to final output and performance assessment. Specific details related to part (a) test

methods and data acquisition were summarised in Chapter 4.

Part (b), the pre-processing techniques applied to the data for RUL estimation are

shown in Section 6.2.1. Then in Sections 6.2.2 and 6.2.3 the parts (c) training and RUL

estimation stages and (d) model assessment are detailed.

6.2.1 Data pre-processing

The features used for RUL estimation are shown in Table 5.1. The data sets from each

type of rope are joined together, therefore the same amount of features are used in each

rope type.

The data sets are separated into ”geo” and ”geo therm” feature sets based on data

type to assess the effect of adding thermal features to the ML model. The data set

compositions are summarised in Table 5.2.

Raw measurements from the data acquisition phase are subject to pre-processing,

where the data from various features is standardised. The data was scaled using the

approach detailed in equation 6.3:

zi =
yi − ȳ
σy

(6.3)

where zi is the standardised value, yi is the raw value, ȳ is the average of all raw

values for the rope sample feature and σy is the standard deviation of all readings for the

rope sample feature. This is done for each rope in the data set to increase comparability

between the different samples and is a standard pre-processing step to prepare data for

ML application.

Similar to Section 5.2.2, the data sets are treated for outliers and missing data to

ensure the maximum amount of possible data is available for model simulation.





Figure 6.2: Flowchart of operations detailing steps implemented in (a) data acquisition,

(b) data pre-processing, (c) training and estimating RUL and (d) model assessment.

6.2.2 Training and RUL estimation

The models are tested through LOOCV, where Rf predictions made on a single rope will

be made using models trained with the remaining ropes in the data set. This process is

done separately for both rope types in C2 and C3 and as a combined data set with both

C2 and C3 together.

In addition to investigating the effect of only geometric and combined geometric and

thermal measurements as outlined in Table 5.2, different combinations of features from

the various bending zones detailed in Figure 3.6a are also tested. This includes: testing





using all zones; using only SBZ and DBZ measurements; and finally, using only DBZ

measurements.

6.2.3 Model assessment

The metrics used for model assessment are root mean square error (RMSE) and R2 score

(R2), as outlined in expressions 6.4 and 6.5:

RMSE =

√√√√ 1

N

N∑
n=1

(yi − ŷi)2 (6.4)

R2 = 1− SSres

SStot

(6.5)

where N is the number of measurements made for each rope sample, yi is the observed

Rf at instance i, ŷi is the predicted Rf at instance i, SSres is the sum of squares of

residuals and SStot is the total sum of squares.

RMSE in this context will give an insight into how concentrated the Rf predictions are

around the Rf ground truth using each algorithm configuration outlined in Section 6.2.2.

Additionally, the R2 score gauges the correlation Rf predictions have with the ground

truth Rf using the input variables outlined in Table 5.1.

Model performance is also assessed through the use of Rf graphs and residual analysis.

The Rf graphs include the ground truth from the observed experimental measurements

and tolerance bounds at ±20% based on this data. The average Rf prediction and a

±95% confidence interval of the repeated simulations of each distinct configuration are

compared to the ground truth and tolerance bounds.

The residual values, e are calculated using equation 6.6:

e = yi − ŷi (6.6)

Additional analysis includes plotting residual values against the predicted Rf values,

the actual Rf value against the predicted Rf value and finally a histogram analysis ac-

counting for the numerical spread of the residual values. This provides further information

about the model ability to predict Rf , potential model bias and where overestimation

and underestimation in rope health occurs.





6.3 Results

6.3.1 Average RMSE

A quantitative assessment of Rf prediction is performed by calculating the average RMSE

and R2 scores in each data set using different feature sets. Better performance is reflected

by lower and higher values for RMSE and R2, respectively. The results for different

feature combinations are compared for both C2 and C3 rope data sets separately, as well

as for the combined data set.

The results for the average RMSE for data sets C2 and C3 are shown in Figures 6.3

and 6.4, respectively. The R2 scores are shown in the original paper, in Figures E.5

and E.7.

Figure 6.3 gives an overview of each algorithm performance based on different feature

sets and training model composition. All available features are used in A, the SBZ and

DBZ features are used in B and only the DBZ features are used in C. Both configurations

of RF performed best, followed by NN and finally SVM. Introducing thermal features

generally either changes nothing or leads to detriment in performance when only C2

ropes are used as training data, which is particularly noticeable in both NN and SVM.

When the combined C2 and C3 model is used there is slight improvement in performance

when thermal features are introduced for NN when the SBZ+DBZ and DBZ feature sets

are considered.

RMSE values for data set C3 are shown in Figure 6.4. Both NN configurations

performed best when only C3 data is considered. A noticeable difference in the C3

data from the C2 data is that for both NN and SVM, including the thermal data led

to significantly better predictive performance as indicated by lower RMSE. Using the

combined C2 and C3 data set also improved performance of NN with the exception of the

NN2 configuration in the SBZ+DBZ feature set.

6.3.2 RUL graphs

A qualitative assessment of the algorithm performance during LOOCV is given through

plotting the predicted Rf against number of cycles in each test. A general assessment of

algorithm performance can be gained from the graphs, but they can also reveal at which

times in the test both best and worst predictive performance occurs. It is noted that only

data sets are combined and not the machine learning methods.

The results of cross validation predictions made only using the single and combined

data sets is also considered. Selected RUL prediction results from both C2 and C3 data

sets are shown in Figures 6.5 and 6.6. Additional graphs of RF and SVM implementation





Figure 6.3: Average RMSE values per algorithm for C2 ropes.

Figure 6.4: Average RMSE values per algorithm for C3 ropes.





are shown in Figures E.9 and E.11.

Figure 6.5 considers the predictions by NN2 on rope C3R2 when both geometric and

thermal features from the DBZ are considered. The confidence interval in the prediction

is significantly improved when building the model from the combined C2 and C3 data

sets and almost totally confined to the tolerance bounds. This is seen at the majority of

test times with the exception of between 0 to 4,000 test cycles.

Figure 6.5: Rf prediction using NN2 for rope C3R2, using geometric and thermal features

from DBZ.

Figure 6.6 shows the results of Rf prediction using NN2 for geometric features from

all bending zones for rope C2R4. It is noted that there was a tear in the rope splice at the

driving sheave, instead of the test sheave. This explains why Rf is larger than 0 at the

end of the test. By using the combined C2 and C3 data set, the predictions in the first

half of the test are shown to be closer to the ground truth, as well as showing a reduction

in the ”peak” seen in the middle of the C2 ropes model.

Figure 6.6: Rf prediction using NN2 for rope C2R4, using geometric features from all

bend zones.





6.3.3 Residual analysis

A residual analysis is performed to further investigate Rf predictions and to compare the

differences in results depending on algorithm, features and training data used.

Figure 6.7 shows the residual analysis comparison of using RF with tree depth 4 and

NN2 predictions for rope C2R2 using only geometric features from all bend zones. In this

specific case, both models were trained using only the C2 rope data.

The RF model produces low residual values indicating closer agreement with the

ground truth, while NN2 prediction are shown to both overestimate and underestimate

as indicated by the spread of residual values.

Figure 6.7: Residual analysis and comparison for rope C2R2 predictions made by NN2

and RF, with 200 trees and depth 4 with all features. Both models are trained using only

C2 data.

Figure 6.8 provides analysis of improvements made by combining the C2 and C3 rope

data sets in model training. This is presented for rope C2R1 with NN2 using combined

geometric and thermal data from all bend zones.

An improvement with the combined training set is observed, with magnitude of the

outermost outliers being reduced. Rope C2R1 completed the least amount of cycles at

failure when compared to the other ropes in the C2 data set and showed poor prediction

results in models trained on the C2 data set only.





Figure 6.8: Residual analysis and comparison for C2R1 predictions with geo + therm

features from all zones by NN2, using models trained with C2 data set and combined C2

+ C3 data set.

6.4 Discussion

Model performance varied depending on the algorithm and the data set used. A major

difference shown was that RF performs better than NN for campaign C2 but NN performs

better than RF in campaign C3. Differences in performance can be explained by the

training data used, the size of the data set, and algorithm mechanisms. This will be be

discussed in the subsequent subsections.

6.4.1 Recorded data and availability

Two of the ropes in campaign C2, ropes C2R1 and C2R4, broke where the rope splice

was bent over the driving sheave. This led to earlier failure than for the other ropes of

the campaign, and to failure which was not located where the cameras were, at the test

sheave. Still, the failure mechanism was very similar to what caused failure in the other

ropes tested in this study. RF frequently identified the global elongation as the most

important split variable. In line with this overall sameness of failure mechanism of all

ropes tested, this variable showed a similar development for all ropes, including ropes

C2R1 and C2R4.

It was chosen to include the ropes in the analysis, a choice that has two positive

effects. Excluding them would have lead to even less data for training the machine

learning algorithm, and as discussed earlier, CBOS test data are time consuming and

expensive to obtain. Secondly, in real life, ropes will not always break where expected.

Including ropes C2R1 and C2R4 in the data set makes the models able to handle some

such cases, where the deviation from the expectation is not too large.

The model stability is addressed through the 95 % confidence interval for the pre-





dictions. It was found that combining campaigns C2 and C3 in all cases resulted in a

narrower confidence interval than from each of the campaigns alone. For unstable mod-

els, adding new samples is expected to change the model qualitatively, resulting in wider

confidence intervals. Conversely, the present study’s narrowing of the confidence intervals

indicates a stable model.

6.4.2 Random forest

RF is formed of several individual decision trees, where data is separated based on feature

values that give the purest split. The global elongation shows a steady increase during

testing, and it will therefore create one of the best splits in the decision trees of the RF.

However, this feature will not be available to all trees in the forest, due to feature bagging.

Still, the averaging over 200 trees will ensure its contribution to the overall forests. This

is shown in the residual analysis performed in Figure E.12, where RF has outperformed

NN2. RF was also shown to have a steady balance between slight overestimation and

underestimation of predicted Rf compared to the true value.

It is also noted that increasing the tree depth will also lead to a more complex model

capable of more accurate predications. In general, increased tree depth increases random

forest accuracy, while improvements by increasing forest size tend to plateau. In campaign

C3, each rope had fewer records than in C2. Therefore, to avoid overfitting the result was

using shallower trees for this campaign, giving less accurate RF results. Since the data

is split by random feature sampling in each tree, there would be slightly more variation

in the quality of fits due to data splits made on less suitable features. This leads to less

accurate Rf as indicated by the higher RMSE and lower R2 values.

6.4.3 Neural networks

NN algorithms performed better in C3 than C2. All input variables are considered when

using NN and a feature that varies very little during CBOS testing only contributes noise

to a model and impacts performance negatively. NN struggles to predict RUL in the

earlier CBOS test stages in particular for some ropes in the data set. Initially, the various

widths, lengths and temperatures monitored will not change until later in the test and

therefore NN struggles to predict the distinct Rf values at this testing stage.

Another example is comparing the use of geometric and the combined geometric and

thermal feature sets for C2, where thermal features lead to a higher RMSE. At the lower

test tensions the temperatures do not vary significantly throughout the CBOS tests, but

reach a steady temperature until failure, thus contributing noise to a model formulation.

However, the temperatures recorded in C3 are noticeably higher and have more vari-





ation between the SBZ and DBZ in line with the decreasing Rf , therefore improving the

model. C3 having more variation in measurements leads to NN finding a better model

than developed for C2. Both NN configurations show slight overestimation in the latter

stages of the CBOS tests but not to the same extent as SVM.

Generally, it is noted that despite inconsistent numbers of test cycles in campaign C2,

it is still possible to achieve acceptable results within the range of ± 20 % of the RUL

ground truth.

6.4.4 Support vector machine

SVM performed poorly compared to the other algorithms applied in the RUL prediction

study. If the hyperplane fit to the data is poor and non-representative, it will in turn have

a detrimental impact on Rf prediction using the algorithm.

As with NN, the presence of noise via lack of variation in certain features will negatively

influence this fit. This is particularly prevalent in C2, while it is noticed that SVM

performed slightly better in C3 due to the greater variation in values measured. It is

shown that the fit created by the linear kernel suits this rope test data set better than

the Gaussian kernel. The SVM is also shown to overestimate rope health towards the

later stages of the CBOS tests, giving an unrealistic estimation of RUL which would be

dangerous in operation.

Improvements to RUL predictions using SVM could be achieved by hyperparameter

optimisation for both linear and Gaussian kernels. Finally, other kernel types could also

be considered, to further experiment with hyperplane fits to the data set.

6.4.5 Feature selection

Creating models from feature sets consisting of the different bending zones features also

influences algorithm performance. During CBOS testing, the SBZ and DBZ are subject

to all the bending, whereas there is none present in the SZ. Therefore, in line with what

was previously stated about NN, measurements from the SZ essentially contribute noise

in the modelling process. As only the features that give the best splits in the data are

considered from the random subsets in RF, the likelihood that features from SZ will be

consistently picked as splitting criteria in individual trees is extremely low, hence minimal

effect on both RMSE and R2 values.

However, as expected limiting the features used to only those from the DBZ is shown

to improve algorithm performance for both NN and SVM. There was very little difference

between the results from models that used all features and the combination of SBZ and

DBZ features but the most accurate results for SVM were achieved by reducing to only





training with DBZ features. More frequent repeated bending will cause more accumulated

damage and variation in these features will relate better to the associated RUL value.

The residual analysis performed in Figure E.13 also shows the advantage of combining

both geometric and thermal features as training data. The higher temperatures in cam-

paign C3 contribute features with greater variation and therefore improve the prediction

capabilities of the NN2 model used in this example.

6.4.6 Combining data sets

Combining the two data sets for predictions based on cross validation had either a positive

or a negative impact depending on the algorithm considered. The main benefactors of this

approach were the NN configurations, as shown by improved results in average RMSE

and R2 for both the C2 and C3 ropes. Introducing thermal features for C2 rope predictions

led to decreased performance when only considering the C2 data set, but improved for

the cases where SBZ+DBZ and DBZ features are used with models trained using the C2

and C3 ropes. This can be attributed to the different thermal behaviour in each data set,

with the thermal information from the C3 ropes contributing to better predictions. From

a C3 ropes prediction perspective, combining the C2 and C3 data sets creates a larger

training data set and improves estimations from both NN and SVM. This suggests that

simply increasing the amount of training data with slightly different feature behaviours

will benefit model fitting in these cases. The observations support the finding from this

study that unique rope types subject to different relative test tensions can be combined

to produce more accurate results.

The residual analysis performed in Figure 6.8 also shows the advantage of combining

the separate test campaigns. In campaign C2, the thermal data varied very little due to the

lower test tension applied contributed noise to the modelling process. The introduction of

campaign C3, improved the models due to both the presence of similar global elongation

trends and thermal features with more varied temperatures.

6.5 Recommended approach for RUL estimation

The algorithms in this study are capable of predicting Rf for ropes using features derived

from an experimental set-up that uses computer vision and thermal monitoring.

For data set C2, RF showed the most promise as a RUL prediction method, while

NN was the best performing algorithm in data set C3. The benefit of combining data

from different types of ropes for training data for RUL prediction is also demonstrated

for NN and SVM. RF has been shown to be the most effective in this study, particularly





in cases where larger amounts of data are available, allowing a suitably complex model to

be developed based on features selected by the algorithm.

NN is also shown to be useful, but slightly less effective compared to RF. If large

amounts of data are not available, then NN application with more focus on including only

relevant features is a useful fall-back solution.





Chapter 7

Discussion

This chapter provides discussion of the methods and analyses outlined in Chapters 3-6. It

will also examine the validity of the aforementioned approaches and their potential future

adaptation for field application.

7.1 Experimental methods and instrumentation

This section addresses the testing methods and instrumentation applied during the ex-

periments performed as part of this research. The effect of these methods and instrumen-

tation choices with respect to individual CI behaviour and machine learning approaches

are discussed in later sections in this chapter.

The testing methods presented encompass both tension-tension and CBOS methods.

They represent a progression in the thesis that allowed suitable CM methods to be de-

veloped and have the closest similarity to offshore loads in a laboratory setting. The

first tests using the tension-tension methods allowed the first iterations of the length and

width monitoring algorithms to be implemented. It used a relatively simple set-up and

was much less time consuming compared to the CBOS testing phase. It also provided an

opportunity to gain familiarity with rope handling generally and techniques to be used

later in the project such as splicing and instrumentation set-up. Additionally, it high-

lighted some signs of rope damage to monitor, such as ruptured strands which influences

width measurements and could be potentially related to rope lifetime. This affirmed that

a computer vision set-up was a valid condition monitoring method to track changes in

the rope as the tests progressed.

While the tension-tension testing phase gave useful contributions initially, it high-

lighted some limitations in both testing and instrumentation that needed to be addressed

moving forward to the CBOS case. The tests themselves were limited in the types of

damage being monitored as it provided no bending deformation of the rope. Rope used
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for offshore lifting will experience tension from payloads, however it will experience twist-

ing and bending that are heavily influenced by sea states and payload mass. The ropes

in this testing phase were simply elongated until failure at slightly different tensions and

therefore lacked the load variation that would be seen offshore. Overall, it highlighted

that more robust instrumentation, algorithms, and rope marking schemes were required

if certain sections of the rope were to be monitored accurately throughout testing.

These findings were then taken forward through installing several machine vision cam-

eras that could monitor the rope from different perspectives instead of a simple webcam.

It was also shown that an adequate lighting system around the rope at the CBOS ma-

chine had to be designed to aid measurements. Also, the morphological operations in

the algorithms were reviewed and edited to ensure that the boundaries of the rope were

properly captured to allow optimum length and width monitoring.

The CBOS tests were conducted in three different campaigns that made use of different

types of HMPE rope to verify that the length, width and eventually, thermal monitoring

was applicable. The first campaign revealed the need for monitoring different bending

zones more closely, rather than placing the detectable markers in general areas. This

applied in particular to the SBZ and DBZ, where greater deformation occurred. The

length algorithms also highlighted the need for monitoring at a local level due the presence

of both elongation and compression between the markers applied to the rope, indicating

there was gliding of strands in both directions. The widths also indicated that clearly

visible damage such as extruded loops and ruptured strands could be tracked and that

the “increased” widths were in fact the presence of these damage mechanisms.

However, it was shown that using just one image from a recorded video was not suf-

ficient to accurately calculate the lengths and widths as the tests progressed. Therefore

the widths and lengths algorithms were revised so that it would produce a median, max-

imum, minimum and standard deviation based on ten images or the maximum available

after eliminating outliers through measuring the median absolute deviation. Addition-

ally, given the temperature limitations of HMPE, it was decided that thermal monitoring

would be incorporated into the following campaigns to assess the temperature behaviour

during CBOS motion and potentially gain further insight into rope condition.

The second and third campaigns incorporated thermal monitoring at the sheave. The

different bending zones were clearly distinguishable by the produced temperature pat-

terns from the FLIR software, and measurements including average, maximum, minimum

and standard deviation (representing variation within the field of view) could be easily

extracted and aligned with the length and width data in similar locations along the rope

length. However, the splicing method used ultimately resulted in some discrepancies be-

tween the number of cycles performed, due to the splice running over the driving sheave





of the CBOS machine. This resulted in greater care being taken to measure this length

before the third testing campaign. Additionally, since the third campaign was conducted

at a higher test tension resulting in earlier ruptures, it was decided there would be more

frequent recording to compensate for the drop in data when only recording every 1000

cycles.

Similar to the tension-tension campaign, there were also limiting factors with the

CBOS testing method. While the method did introduce bending motion, it is still a test

to failure at a stationary amplitude of motion. The offshore cases will have alternating

stresses as a result of both varying payloads and sea state. Additionally, the CBOS ma-

chine testing takes place at room temperature indoors which will not accurately simulate

environmental factors influenced by operation location. Slight differences in marker place-

ment and their degradation also will slightly influence the measurements taken for local

length.

7.2 Condition indicators

7.2.1 Local length

The results presented in the project indicated that there was a clear need to monitor length

at a local scale, as the change in length across the whole length of the rope was little in

comparison to local occurrences. This was particularly evident in the measurements taken

from the SBZ and DBZ in the rope samples, where the deformation caused by bending

lead to relative distortion by gliding of strands. The trends displayed for local length

measurement showed that the computer vision methods were effective at tracking these

changes. It also provided further insight into the non-uniform deformation of the rope

at a local scale. There were examples of “reciprocal” changes, where a sub-section was

shown to increase in length, while its neighbouring sub-section was shown to decrease.

With the aid of this monitoring method, it was possible to establish that both extruded

loops and ruptured strands were contributing to the structural rearrangement of the rope

and taking part in these measured length changes.

However, there were limitations to the local length monitoring method implemented

in this project. While a robust marking system was developed to distinguish the different

bending zones, it is noted that there is a slight discrepancy in the placement of the tracked

sections between each rope sample. The markers are placed in the “general vicinity” of

the bending zones and therefore there would be slight differences in measurements as they

are not the exact same points on the rope. The markers were also shown to degrade as

the experiments progressed. This made them both harder to detect by computer vision





and influencing the measurements taken, hence the need for interpolation to account for

missing data. Additionally, the measurements are derived from statistical parameters

collected from ten images. In some occurrences where ten images were not available this

would lead to some slight increase in the uncertainty in the measurements.

7.2.2 Global length

The global length measurement was shown to give insight into the condition of the ropes

during the CBOS tests. While an increase in global length was to be expected due to the

extension of the hydraulic cylinder throughout the test, the monitoring method revealed

this was not a linear increase. It was revealed that the rope increased in length in a

similar fashion to a creep curve with three distinctive zones. The initial bedding in of

the rope of was observed, followed by slower steady increase, and then an accelerated

increase in length towards failure. While the overall global length measurements are

not as significant as the local length measurements throughout testing, a rapid change

indicates that failure is likely to occur. The global length also greatly contributed to

improving machine learning predictions as discussed in Section 7.3.2.

The global length measurement has limitations in the context of CBOS testing. The

CBOS machine tests until failure with the extension of the cylinder, whereas in actual

operation the rope will not be in constant use. As a result, hysteresis of rope global length

will occur through a rearrangement of strands and sub-ropes when the rope is not in use.

Further investigation of this effect would provide knowledge of the permanent elongation

of the rope which could be changed with the effects seen at a local scale.

7.2.3 Width

The width monitoring method was effective at measuring the cross section of the rope

from different perspectives. This was particularly adept at detecting damage such as ex-

truded loops and ruptured strands in the form of increased width measurements evident

in the SBZ and DBZ. Similar to the length measurements, this highlighted the need for

monitoring at a local scale. The rope shape changes as the test progresses and depending

on the perspective used, it is possible to observe the flattening of the rope surface against

the sheave, as well as the previously mentioned visible damage. The statistical mea-

surements also provided further insight, as the greater difference between the maximum

and minimum values observed in a subsection can highlight where damage is particularly

prominent in the rope.

The width monitoring method was shown to have some limitations. The expected

thinning of the rope during testing was not detect due to the visible damage accumulated.





Therefore, the reading calculated did not reflect the true shape of the rope. This led to

the ineffectiveness of the attempted roundness measurements. The rope was also shown

to twist slightly during testing, which would have had an influence on the measurements

taken. Additionally, the lighting conditions and rope colour were also shown to change

as the test progressed. This affected the ability of the algorithm to find the boundary

of the rope that is used to calculate width. Manual adjustments had to be continually

made when post-processing data to get an accurate reading, which was also shown too

time consuming in its current iteration and has potential to be automated.

7.2.4 Temperature

Thermal monitoring was introduced due to concerns over thermal degradation in HMPE.

The methods applied showed that each distinct bending zone had its own temperature

signature during CBOS motion. The SBZ and DBZ temperatures were shown to increase

and reach a steady-state value as the tests progressed. However, the average temperature

measurement was shown to decrease slightly towards the end of the tests. This decrease

in temperature is a result of the average value being calculated from both a warmer

compressed core and the noticeably cooler damage areas such as the extruded loops and

ruptures. This was also reflected by the higher standard deviation values and the increased

range between the maximum and minimum temperature values measured in the area of

interest. This indicates that thermal monitoring is also a useful way to detect damage

along with the local length and width measurements. Additionally, thermal monitoring

revealed that there was a noticeable change in structure of the rope due to the repeated

bending and temperature increase. This stiffer structure takes more effort to bend and had

higher thermal conductivity compared to unused rope. The method also demonstrated

that there were higher temperatures in test campaign three compared to test campaign

two, due to the higher applied test tension at a comparatively lower safety factor. This

indicated that this change would have to be monitored in conjunction with changing loads

over time when implemented into a rope condition monitoring system.

The thermal monitoring method in a laboratory setting is shown to have some limi-

tations. The test was conducted at room temperature, with no further cooling effects or

abrasive particles introduced to the rope. Therefore, the measurements taken are for a

specific set of circumstances, rather than the field application, which will be influenced by

outside temperatures and the presence of potentially abrasive particles. Additionally, the

method is limited to only the surface of the rope and the values inside the rope are not

represented. It has been clearly demonstrated that there is structural rearrangement and

gliding of strands with the CBOS motion, which would contribute to increased tempera-

tures. The temperature here would also have to be monitored to ensure that maximum





working temperatures are never exceeded.

7.3 Machine learning

Machine learning was chosen as the approach in this thesis as it has seen success in

condition monitoring of other types of engineering components. The experiments make

use data recorded from several different physical parameters, which is ideal for machine

learning application. Therefore a machine learning approach on a physics-based model

was shown to be promising approach. The same data can be used in conjunction with

classical statistical methods and therefore machine learning has potential to be used as

an alternative method.

7.3.1 Condition classification

The initial application of machine learning in the project was a condition classification

framework. The condition indicators outlined in previous sections were adapted into

features that were used to form the models that made the classifications. The samples

were divided into two separate classes that were represented as healthy (HE) and close

to rupture (CTR) based on the global elongation. This was shown to be a reasonable

assumption to make, as the CTR-labelled samples coincided with a period of accelerated

global elongation before eventual failure. Decision trees, random forest and SVMs were

chosen as the approaches to perform the condition classifications. These methods were

chosen based on their previous application to other condition classification problems on

other engineering components. Based on the analysis performed, the decision tree was

shown to be the worst performing out of all the methods, due to the model lacking the

complexity required for the data used. The random forest is an extension of this method

that makes use of several trees to make a decision on classification was shown to be more

robust and accurate. Additionally, the SVM was shown to be adaptable to the problem,

with a changeable kernel that can give a different fit to the data.

However, there was shown to be some limits to the condition classification methods

applied in this research. The method only classifies between two general conditions, that

are heavily reliant on the changes in global length as the CBOS tests progress. This is

advantageous when predicting the condition of the a rope that is due to fail in a CBOS test

but it could prove difficult to monitor in an applied industrial setting. Additionally, the

models are also limited by the amount of data available from the instrumentation installed.

As previously stated, CBOS tests are expensive and time consuming, so therefore the data

pool is limited to five and four ropes in campaigns two and three, respectively. Another





alternative would be to increase the sampling rate of the instrumentation used to have

more data from the ropes tested, allowing more data samples to be used in model training.

7.3.2 RUL prediction

The experience from forming the condition classification problem was carried forward to

the development of the RUL prediction framework. Neural networks were also imple-

mented in addition to random forest and SVM, while the decision tree algorithm was left

out. Several different approaches to training the models were also introduced to the RUL

prediction. This included combining both types of ropes tested into the same training

model despite differences in test tensions, to increase the overall data pool. Addition-

ally, limiting the number of features used for training to create more relevant data with

more variation was also attempted. Both random forest and neural networks were shown

to be very effective at RUL prediction in the rope data sets. Combining the data from

campaigns C2 and C3 also contributed to improved performance for the neural networks.

This was apparent for campaign C2, where the increased variation in the thermal data

recorded from C3 allowed for more accurate prediction of the continuous variable intro-

duced to represent RUL. This was also the case with campaign C3, which benefited from

in the significantly increased amount of data included from campaign C2.

The RUL prediction implementation indicated a significant improvement and fine

tuning of methods from the condition classification phase of the project, but there were

some limitations to the methods applied in RUL prediction. Despite the combination

of data sets for RUL prediction, the training models are still limited. The improvement

shown indicates that further testing should be performed to increase the data pool and

potentially achieve further improvements on accuracy. Methods such as neural networks

can also have further tuning to improve upon the accuracy of predictions. Only two

relatively simple networks were considered in this study but other architectures could

also be implemented that could potentially improve upon the results implemented. In

addition, random forest also relies heavily on the global length measurement for its good

performance, which could be potentially difficult to measure in a rope several kilometres

long. In this instance more focus should be put on using features with greater variation

as seen in the SBZ and DBZ in the CBOS tests.

7.4 Validity

The data recording methods are subject to variation and therefore their validity has to be

verified. This is paramount as the data recorded is then used for condition classification

and RUL prediction using machine learning. This is relevant for the machine vision





cameras and thermal cameras. The machine vision cameras are subject to a calibration

process before every test. This is performed using a chessboard pattern target with

several images taken from different angles. As a result of this, the distortion in the

image can be quantified. The relative distortion in the pixel values were shown to have

a negligible effect on measurements. Furthermore, the thermal camera was calibrated

for the emissivity of the rope before the tests started, using thermocouples. In addition,

black-body calibrations were performed before each campaign. During the recordings,

automatic calibrations were also perfomred by the IR camera.

The estimated variation in the measurements taken by the machine vision and thermal

cameras were based on the values taken from the straight zone (SZ), where there was no

bending throughout testing. It was shown that based on calculating the width of the 95

% confidence interval as a percentage of the average readings during the experiment for

the local length, width and temperature values, it is possible to give an indication of noise

in the measurements.

For the local length and width measurements, this was shown to be around 0.3 %

and 2 % respectively, indicating that the values recorded without bending of the rope

were very close to their average values. This is similarly calculated for the temperature

measurements, where there is shown to be an approximate variation of under 10 %. The

FLIR camera guide indicates that there is accuracy of ± 2 ◦C, therefore the variation seen

in the CBOS experiments coincides with this value, showing confidence in measurements

taken.

Table 7.1 shows the 95 % confidence interval half-width in percent of the confidence

interval centre average value for the straight zone (SZ) compared to the double-bed zone

(DBZ) for length, width, and temperature 3 in test campaign 2. It is seen that the

double-bend zone variations are much larger than the noise estimated from the straight

zone. Consequently, the variations observed in the double-bend zone can be interpreted

as real variations, and not as noise.

Table 7.1: 95 % confidence interval half-width in % of confidence interval centre value for

all ropes in Campaign 2

Length Width Temperature

SZ 0.34 1.22 9.08

DBZ 0.96 5.37 14.20

The machine learning models were assessed through several different performance mea-

sures as explained in previous sections. This was performed for both the classification and

RUL prediction algorithms, where the general accuracy and bias of the algorithms was





given. This allowed the best performing algorithms to be properly selected against oth-

ers. Additionally, a 95 % confidence interval was included for the RUL prediction which

allows the reliability of the machine learning algorithms to be seen. This was also used

to demonstrate the improvements in algorithm performance when joining the campaign

2 and 3 test data together.

7.5 Adaptation to field application

The initial stage of adaptation to the field application would be the development of the

condition monitoring system outlined in the CBOS experiments to an offshore crane.

This presents several challenges for sensors and measurements due to the conditions in

the offshore environment.

The monitoring set up can potentially be placed next to one of the main sheaves on

the crane, allowing the computer vision and thermal monitoring set up to observe the

rope during use. These sensors could be incorporated into an enclosure which surrounds

the rope. This enclosed structure would allow light conditions to be controlled more

easily, as well as protecting sensors from the spray and damage from the surrounding

marine environment. Furthermore, this sensor package would also have to satisfy the

various considerations and industry standards such as ATEX and IP ratings to be safely

incorporated into an operational environment. To maintain reliability of the system,

consideration should also be given to continuous calibration and redundancy in case of

sensor failure.

The issue of measuring the global elongation of the entire rope could prove difficult

to implement. Fibre ropes used in offshore cranes can be up to several kilometres long

and would require an extensive marking system to distinguish the different rope sections.

In real practice, it will be different sections of the rope that will be subject to bending

depending on deployment depth and sea state during operations. Therefore the position

and coinciding measurements will have to be properly tracked throughout use. Careful

and thorough data acquisition will ensure smooth adaptation of machine learning to the

condition monitoring process.

However, there is further work required to fully adapt a machine learning approach

usage in offshore construction cranes. Firstly, CBOS testing is an example of a run-to-

failure test where a constant tension is applied at the same rope sections. Other factors

such as payload size, the temperature at the lift location and the operation time will also

influence rope longevity. Data from potential lifting campaigns would have to be recorded

as part of a wider rope condition monitoring system, where data is continually added to

form a model with historical data. This would create a model that specifically pertains to





fibre rope use for offshore lifting, rather than relying on more commonly used S–N curves

for these specific types of ropes. The findings from this study of different ropes at different

relative test tensions show there is potential in using data from a fleet of fibre rope cranes

performing different lifting operations to validate the condition of an individual fibre rope

crane.





Chapter 8

Concluding remarks

8.1 Conclusions

The project focuses on developing condition monitoring methods for fibre rope applied

in cranes for deep sea lifting operations. The research is motivated by the potential use

of fibre ropes instead of steel wire in cranes that could allow lifting operations at depths

exceeding 3000 m with smaller vessels. Within the project framework, three research

problems were identified related to:

1. What condition indicators are best served to indicate the condition of rope during

CBOS testing?

2. What combination of sensors will best monitor the condition of fibre ropes used for

offshore lifting operations?

3. What is the best approach to predict RUL of a fibre rope based on CBOS experi-

mental data?

The first research problem was explored through both tension-tension testing and

cyclic-bend-over-sheave testing, as described in Papers A and B. This showed the length

and width measurements were suitable condition indicators for fibre rope condition mon-

itoring. The first iterations of developing algorithms that measure local deformation are

explored in Paper A, where the length and width changes were monitored through im-

age processing techniques during tension-tension testing. It was concluded they showed

promising direction to continue with in the project. The distinct changes in both length

and width could be effectively tracked until the rope samples ruptured. Furthermore in

Paper B, the length and width measurement algorithms were adapted for cyclic-bend-

over-sheave testing experiments. Changes at a local scale, especially length, were shown
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to give insight into rope condition. However, the width measurements gave mixed re-

sults, but had sufficient potential to be effectively used as a condition indicator fibre rope

condition monitoring.

The second research problem focussed on the combination of sensors to be used to

effectively monitor the ropes during cyclic-bend-over-sheave testing. It was shown that by

combining the length and width condition indicators from computer vision with thermal

measurements from a thermal camera, it was possible to gain informed insight into fibre

rope condition. The work in Paper C built upon the methods outlined in Paper B, with

slight adaptations made to the length and width algorithms that made them more effective

at monitoring condition indicators. This cyclic-bend-over-sheave testing campaign also

included the introduction of thermal monitoring, due to the limited temperature working

range of high modulus polyethylene fibre ropes. The combination of both the computer

vision and thermal cameras gave multiple insights into rope condition and both were

shown to produce useful condition indicators. It also highlighted the need for monitoring

at a local scale as opposed to a global scale, due to different amounts of bending occurring

in the distinct zones in contact with the sheave. It was shown that monitoring at local

scale allowed detailed observation of local deformation such as the relative glide of strands,

ruptures and extruded loops.

The third research question related to finding the best method for remaining useful

life prediction of fibre ropes based on experimental data was performed in two stages.

They both showed that machine learning can be applied successfully to both classify

rope condition and estimate remaining useful life. The first stage of applying machine

learning was for condition classification and was the subject of Paper D. The features

were extracted from the condition indicators monitored in the previous stages of the

project. It was shown that binary classification of the rope was possible with methods

such as random forest, decision tree and support vector machine and that it was possible

to outperform classical statistical approaches. In paper E, a framework for remaining

useful life prediction using random forest, support vector machine and neural networks

was developed. This allowed determination of a continuous variable that indicated the

estimated rope lifetime left. Additionally, it was shown that different types of rope data

could be combined to improve on predictions and algorithms performance. In particular,

random forest was shown to perform best overall with neural networks being a useful

back-up solution.

Overall, the project resulted in methods for feature extraction, condition classification

and remaining useful life prediction for fibre ropes. The results of the research confirm

that machine learning is an effective method to classify the condition and predict the

remaining useful life of fibre ropes in cyclic-bend-over-sheave testing, where condition





indicators can be taken from sensors and instrumentation that are easily applicable in

the field. The format proposed would provide a useful aid to both crane operators and

inspectors in the field in determining when to retire a rope from use.

8.2 Further work

The experiments and machine learning methods applied in this research have potential

for further work. To maximise the possibilities in a laboratory setting, there has to be

expansion of the cyclic-bend-over-sheave testing set-up detailed previously, but with other

parameters considered.

Firstly, elevated temperature testing conducted as the thermal limits of fibre rope are

key to their use. Lifting operations in warmer climates such offshore Brazil, West Africa

or Persian Gulf would place extra demands on the rope in use, therefore learning how

temperature damage influences rope condition or remaining useful life is advantageous.

Additionally, making use of larger diameter ropes during testing would more accurately

reflect the real application of the rope for lifting operations. This can also be further

expanded to testing at different safety factors to increase the overall data pool for future

machine learning application. Finally, the cyclic-bend-over-sheave machine used for the

experiments could also be upgraded with improvements that incorporate alternate stresses

to better replicate heave compensation in real operation. Rather than testing straight to

failure, it would give opportunities to assess accumulated damage under more severe

offshore environments. Further tests can be performed with these conditions, which can

be simply used to produce more data for machine learning application. There is also

the option of testing at five- or three-sheave cyclic-bend-over-sheave machines, which will

allow the rope to be assessed at different lifetime intervals in one test.

The data acquisition methods can also be further developed to improve the presented

models. The current method does not account for the internal degradation for the rope,

which would provide another perspective to assess damage in fibre rope. This could be

done through embedded sensors that could account for changes in internal temperature

or further exploration of localised strain. Additionally, as the structure of the rope fuses

with the test progression, acoustic sensors could be placed on the sheave or internally to

monitor changes in the micro-structure of the rope.

Machine learning applied to condition monitoring of fibre ropes also has further po-

tential for expansion. From the perspective of condition classification, this can be further

expanded to identify specific types of damage such as ruptured strands, compression

damage or extruded loops, rather than a simple binary classification. This would require

extensive manual labelling of each damage type and convolutional neural network archi-





tectures could be exploited to make these classifications direct from images, rather than

physical measurements. If the progression in these damage mechanisms can be quantified,

this then could be adapted for remaining useful life estimation.
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Abstract – As the offshore sector move to deeper waters, fiber ropes have the poten-

tial to replace more traditional solutions such as steel wire ropes for deep sea lifting and

heave-compensated operations. While steel wire ropes must account for their own weight

when determining the maximum depth that a payload can be deployed, fiber ropes such

as high modulus polyethylene (HMPE), are more buoyant than their steel counterparts,

enabling payloads to be deployed at deeper depths using smaller cranes. For this reason,

companies are actively developing fiber rope cranes to be used in industry. The inherent

issue with these designs is monitoring the condition of the fiber rope due the multitude of

damage mechanisms and condition indicators that exist, therefore determining the time

to rupture remains an unsolved problem. To this end, this paper considers the use of com-

puter vision to monitor the width at discrete length sections and use that as a potential

condition indicator. Furthermore, the paper describes in detail how OpenCV is applied to

detect the contour of the rope to find the width, how the experiment has been performed,

as well as other practical experiences from testing a 28mm Dyneema R© fiber rope. The

experimental results show that an exponential relationship between the applied tension

and the reduction in width (which was reduced by more than 10% before rupture), and

it is believed that if the width can be monitored at discrete sections along the rope over

time, the width itself will prove to be a good condition indicator.

A.1 Introduction

Fiber ropes have been used in a offshore context for a variety of purposes including

mooring and general sailing. While the use of fiber ropes in the marine sector is not a

novel concept, the need to develop technology to adequately monitor their condition is

of paramount importance and has substantial potential for progression. A particularly
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interesting alternative to steel wire ropes in offshore construction cranes that is gaining

increasing popularity, is that of fiber ropes. There are already existing designs for fiber

rope cranes by MacGregor, National Oilwell Varco and Rolls Royce. The greater buoy-

ancy of HMPE fiber rope allows for smaller cranes to be used while potentially reaching

water depths between 3000-4000m. Additionally this presents a saving in terms of mass

and vessel deck space required for offshore operations when compared to steel wire rope

designs. The inherent issue with this however is the effect of heave compensation on the

fiber rope, which causes heat build up as it moves over the sheaves to keep the payload

at the same depth relative to the ocean floor. This heat generation can lead the to the

ultimate degradation of the rope through creep, therefore a suitable means of monitoring

the condition must be developed to judge the remaining useful life (RUL).

In terms of industry standards, it is recommended by [135] that visual inspection of

fiber rope is used to gauge its condition. While this is accepted practice there is still

the distinct possibility for premature disposal of the rope due to conservative limits on

their use. The natural extension of a visual inspection routine is the use of computer

vision for monitoring purposes. Computer vision algorithms could be developed in order

to automatically detect changes in the width and elongation of fiber rope and could

serve as a valid condition indicator and lead to better understanding of the RUL of fiber

rope used in offshore operations. Width and elongation measurements were chosen as

the condition indicator based on recommendation from industry expert Nick O’Hear.

Contributing factors towards inconsistent diameter measurement in fiber ropes include

cut strands, compression damage, pulled strands and heavy internal/external abrasion

which can be seen in Figure D.1. In a recent patent [136] propose to correlate physical

measurements related to rope diameter, rope shape, elongation, creep, bending, tension

and temperature to specific positions along the rope to indication its current condition.

Additionally another patent by [?] makes use of a clamp and roller set up attached to

springs to measure rope diameter. The lower set of spring rollers in this device have rotary

axle where the measured diameter is transferred to a position sensor. As a result, cross

sectional changes can be monitored to assess rope condition.

In general for condition monitoring of fiber ropes can be separated into two different

types; embedded and non-embedded technologies. An example of embedded technology

would be the inclusion of a foreign material into the rope. Using this approach it is

possible to use magnetism, X-ray or terahertz analysis to assess the rope condition as was

demonstrated in a patent by [52].

However for the purposes of this article only non-embedded technologies will be consid-

ered. It is proposed that computer vision will automatically monitor the changing width

and elongation through an algorithm formulated in OpenCV. In terms of previous work in





Figure A.1: Different kinds of rope damages. Cut strands (top left), compression damage

(top right), inconsistent diameter (middle left) and pulled strands (middle right), heavy

abrasion (bottom left) and melted fibers (bottom right). Reproduced with permission

from Samson Rope Technologies.

this field, computer vision for condition monitoring has been researched using markings to

detect the length of wire. An example of this is a patent by [86] where markings on load

bearing members in elevators are used for condition monitoring. The elongation between

the markers is measured but there is no mention of the width. [86] also suggest the use

of cameras as sensors for measuring the elongation between the markers. There has been

little research into the use of monitoring the width of rope using computer vision.

This work will document the application and results of an OpenCV algorithm to detect

the width and length changes in a 28mm Dyneema R© fiber rope when subject to tension-

tension testing. The conclusions from these tests will be discussed and potential steps for

future research to progress condition monitoring of fiber ropes will be discussed.

A.2 Computer Vision

Computer vision can be described as a computer understanding the world in the same

way as humans do through vision. Through the use of digital images and videos, the

digital signals can be processed through algorithms and interpreted as useful information.

Computer vision contributes to a number of industries including manufacturing, medical

diagnosis and robot guidance. An example of computer vision being used for condition

monitoring purposes is in the agricultural industry. In their work, [137] used computer

vision in the inspection of fruit and berries to classify their grade and quality.

The algorithm developed for this paper is based on color interpretation, therefore the

main concepts are discussed in the following sections.





A.2.1 Software

The algorithm for width and elongation measurements was developed using OpenCV with

Python chosen as the programming language. The versions used were OpenCV 3.2 and

Python 3.6.

A.2.2 Color and Grayscale Representation

The outgoing digital signal from each pixel in an image is usually represented by 8-bit of

information for each sensor in the pixel. If only one sensor is present in the pixel then the

signal is represented by 256 different values specified on a scale where 0 is black and 255

is white. The computer interprets these different shades of gray as a designated numerical

value for each pixel. In the case of color cameras, each pixel has three sensors with one to

represent each of the primary colors (blue, green, red), known as ”RGB representation”.

Incoming light to the camera is split into three different colours using optical filters and

mirrors, where each of the primary colours will be represented by a scale with values from

0 to 255. This is equivalent to the possibility of 2563 = 16,777,214 different colors that

can be assigned to each pixel. Eq. (A.1) is the formula used by OpenCV when converting

from color to grayscale:

Y = 0.299 ·Red+ 0.587 ·Green+ 0.114 ·Blue (A.1)

where Y is the optimised grayscale value in relation to human perception of colours with

regards to luminance [138]. This will be used to turn the image of the fiber rope into

grayscale representation before further processing.

A.2.3 Thresholding

Thersholding is used to separate background noise from the object of interest. In thresh-

olding a value T between 0 and 255 is set, which will convert all pixel values under the

threshold to 0 and those that are over to 255. This relationship is shown in Eq. (D.2)

and Eq. (D.3):

if f(x, y) ≤ T then g(x, y) = 0 (A.2)

if f(x, y) > T then g(x, y) = 0 (A.3)

where f(x, y) and g(x, y) are a specific pixel on an image before and after the thresholding

operation respectively.





A.2.4 Hue, Saturation, Value (HSV)

Hue, Saturation, Value (HSV) is another method of representing colors in an image. Hue

is the pure color represented by the dominant wavelength in the perceived light with a

given value between 0 and 360 degrees, for example red, green and blue all have Hue values

of 0, 120 and 240 degrees respectively. The Saturation and Value parameters represent

the brightness and darkness of the colors used respectively, both of which can be denoted

by a value between 0 and 255. HSV representation makes focusing on a specific color (i.e

the color of the fiber rope) easier. As a default, OpenCV makes use of Blue, Green, Red

(BGR) representation and must be converted to HSV representation. Conversion from

RGB to HSV is performed by Eqs. (D.4), (D.5) and (A.6).

V = max(R,G,B) (A.4)

S =

{
V−min(R,G,B)

V
if V 6= 0

0 otherwise
(A.5)

H =


60(G−B)/(V −min(R,G,B)) if V = R

120 + 60(B −R)/(V −min(R,G,B)) if V = G

240 + 60(R−G)/(V −min(R,G,B)) if V = B

(A.6)

A.2.5 Border method

In order to follow the outline of the fiber rope in the image, a border following algorithm is employed.

OpenCV makes use of a contour finding method specified in work by [139], where a raster scan is applied

to an input binary image. Essentially the algorithm follows pixels of the same intensity or colour to find

the contour of the fiber rope in the image.

A.2.6 Green’s Theorem

Green’s Theorem is applied in OpenCV to the find the moment of the enclosed area made by the contour.

It describes the relation between the line integral around the closed curve C, and the double integral over

the plane D which C has enclosed. If L and M have continuous first order partial derivatives on D and the

path of integration is anticlockwise, then this can be represented as the mathematical expression shown

in Eq. (A.7): ∮
C

(Ldx+Mdy) =

∫ ∫
D

(
∂M

∂x
− ∂L

∂y
)dxdy. (A.7)

A.3 Experimental Set-up

The experiment consisted of multiple tension-tension tests on different HMPE fiber rope specimens. The

tests were recorded and the video data was analysed using the OpenCV algorithm to detect width and

length changes in the fiber rope specimens.





Figure A.2: Example of splice and eyelet at the end of a fiber rope speicmen.

Figure A.3: The area where width and length measurements were taken

A.3.1 Equipment

The tension-tension testing was performed using a Wolport tensioner machine, which is capable of deliv-

ering a maximum load of 1000 kN. The fiber rope was secured into the machine using two 25 ton rated

shackles attached to eyelets located at either end of the rope.

A 28mm Dyneema R© fiber rope consisting of 12 strands each with 14 yarns was used. Eyelets for

securing the rope into the tensioner were made through splicing performed in house at the University of

Agder. The splice chosen was a modified version of the Tuck-Bury eye splice in order to make the rope

specimen short enough to fit into the tensioner. It is worth note that if this type of splicing is performed

correctly, the areas were the unspliced rope meets the spliced portion will experience a 5-15% reduction

in strength. As this is a modified version of the splice, it is expected that this strength reduction will be

at least 15% or higher in this splice transition zone. An example of the splice is shown in Figure A.2.

The area where the width and length measurements will take place is the portion of the rope between

both splice transition zones highlighted in Figure A.3. Blue markers are placed on this portion at

roughly 100 mm apart for purposes of detecting length measurement in the OpenCV algorithm. Creep

is a behaviour that occurs locally, therefore discrete measurements at different portions of the rope will

be of interest.

The experiments were recorded using a Logitech C922 1080p web camera with a 1920x1080 resolution.

Additionally the camera was full HD and recorded at 30 frames per second (fps). The camera was mounted

so that it focused on the area of interest where measurement occurred. This video was then analyzed by

the OpenCV algorithm.

A white backdrop was erected behind the tensioner rope in order to distinguish the colors of the rope

and markers from background interference. The experimental set up is shown in Figure A.4.





Figure A.4: Experimental set up. Here a fiber rope is secured into the tensioner.

A.3.2 OpenCV Algorithm

A.3.2.1 Length Measurements

The markers were applied to the rope in the area to be tracked by the OpenCV algorithm. Blue was

chosen as it contrasts the colors of the yellow rope and white background. The algorithm was programmed

to measure the distance between these two markers.

To detect the blue markers every frame of the video is converted from RGB to HSV colour repre-

sentation. The formula for the transformation process for each pixel is highlighted by Eqs (4), (5) and

(6).

Once converted, a suitable search band has to be adjusted for the algorithm to detect the color

blue. OpenCV uses a slightly different scale for the Hue portion of HSV representation as previously

highlighted. OpenCV uses a scale of 0 to 179 for Hue, with blue to be equivalent to 120 in this range.

Therefore the search band values (including Saturation and Value) are set with a lower band [90, 50, 50]

and an upper band [150, 255, 255].

The contour is then detected around the marker sections using the border method in the black and

white binary image. In order to avoid noise from smaller contours on the edge of the markers, a threshold

is applied so that only the large blue areas in the range are detected. The area of interest in the rope

along with the binary image after this process is shown in Figure 5.

The image detected essentially works as a coordinate system. The centre point of both markers are

found and given as points (x1, y1) and (x2, y2) for points 1 and 2 respectively. The distance between

these points is used for the length measurements, which are highlighted in Figure 6.

A.3.2.2 Width Measurements

The width measurements took place in the area between the two markers. Three separate width readings

were taken from this area and were denoted as regions of interest (ROI).

The same conversion from RGB to HSV conversation occurs, however in this instance the color of

the rope is used. As the rope is yellow the search bands for HSV thresholding are set as a lower band





Figure A.5: Area with markers (left) and the binary image after HSV conversion and

thresholding (right).

Figure A.6: Measurement area with mid points of markers. The distance between these

points are used for length measurements.

Figure A.7: Areas with markers (left) and the binary image after HSV conversion and

thresholding (right).

[0, 50, 50] and [50, 255, 255]. The measurement area in the rope along with the binary image after this

process is shown in Figure 7.

The contour is then found through the border method used for the length calculation. The green

contour is then applied to the white portions of the binary image. Each pixel in the contour around the

rope has an assigned coordinate. For each frame, the coordinates of each point in the contour are stored

in two separate arrays for the left and right sides of the rope. This is performed for all three ROIs. The





Figure A.8: Measurement area with the three separate ROIs highlighted. The red line in

each section denotes the shortest width measured during each frame.

distance between each point on the left and each point on the right is calculated and the shortest distance

is returned. This shortest distance represents the smallest width recorded in each frame and is show as

a red line in Figure 8.

A.3.3 Method

Three different tests on separate rope specimens were performed with width and length measurements

taken in the area between the markers applied to the rope. For all experiments the markers were applied

at approximately 100mm apart. The common aim in each test was to stretch the rope in the tensioner

until failure. Differences in terms of the markers used and loads applied are detailed in the following

sections.

Experiment 1: A permanent marker pen is used to draw markers on the rope to be evaluated by

the OpenCV algorithm. There was a pre-load phase were the tensioner holds the rope at 0.4kN and was

steadily increased until 338.8kN before stopping the test.

Experiment 2: Blue markers were used for length measurements and to denote the area for the

ROIs for width measurements. There was a pre-load phase were the tensioner holds the rope at 0.4kN

and was steadily increased until 310kN before stopping the test.

Experiment 3: Blue markers were used for length measurements and to denote the area for the

ROIs for width measurements. There was pre-load phase were the tensioner holds the rope at 1.5kN and

was steadily increased until 290kN before stopping the test.

A.4 Results

Three different experiments were performed using the described setup. In the following results, a moving

average filter with window-size 50 has been used to smooth the width measurements, while the length

measurement is smoothed using a filter with window size of 200.

In the first experiment the load was applied linearly from a pre-tension up to 338kN from where the

rope ruptured in the splice above the region of interest. Figure 9 shows the experimental results, where

it is evident that the width of the rope goes from 25.6mm down to 22.9mm at 150 seconds.

In the second experiment, the load is applied over a shorter time (100 seconds). Figure 10 shows the

experimental results, where the width goes from 26.5mm down to 22.9mm right before rupture (from 140





Table A.1: Comparison of results.

Time Exp 1 Exp 2 Exp 3

Load at rupture 338kN 310kN 295kN

Width reduction 10.5% 13.6% 11.2%

Length increase N/A N/A 1.9%

Figure A.9: The first experiment where the load was increased linearly until rupture.

seconds the width decreases linearly, which might be the initial stage of rupture). Pay special attention to

the exponential shape of the reduction in width, which become apparent from this experiment. Going back

to Figure 1, the same exponential relationship can be observed, but with a much larger time-constant.

While the intention for the two first experiments was to also measure the length using external

markers, this proved to be somewhat more challenging than anticipated as the marker moved relative

to the rope during the experiments. In the third experiment, this issue was remedied and these results

therefore also contain the increase in length during the experiment. Further, the load is here increased

in a step-wise manner up to 295kN, instead of linear increase, and over a much longer time. Figure

11 shows the applied load, the width of the rope together with the increase in length at the region of

interest. In this experiment, the width goes from 25.8mm to 22.9mm, while the discrete length increases

from 100mm to 101.9mm right before rupture. The increase in length is measured by fixing two markers

placed 100mm from each-other. This means that the discrete length increases by 1.9%.

Table A.1 shows a summary of the three experiments where it can be observed that the width of the

rope decreases in the range of 10.5 - 13.6% before rupture, while the length in the third scenario increases

by 1.9%. It is evident that the width and length of the rope changes during use, and as such can be good

condition indicators. All three test-samples ruptured at 22.9mm, such that by monitoring the width and

defining a minimum value might serve as a way forward. The differences in width reduction from the

three experiments are due to sensor-noise and the fact that ropes are slightly different based on tension,

temperature, construction, etc. This means that it is the change in diameter that should serve as a

condition indicator, and not an absolute value based on the defined diameter of the rope.





Figure A.10: The second experiment where the load was applied (almost) linearly with a

shorter duration than the first experiment.

Figure A.11: The third experiment with a step-wise load curve and a longer time-period.

A.5 Discussion

In all three experiments there was an exponential decrease in the width measured as each load was

increased. It is also worth note that the separate fiber rope specimens used all ruptured at a width of

22.9mm. Additionally the width measurements across all three experiments vary as there are different

starting widths from slight differences in each rope preparation routine. When each fiber rope specimen is

prepared, a splicing process takes place and no two routines will be exactly the same, causing discrepancy

in the measurements between each test. The ruptures that occurred during testing all came at the splice

due to the reduction of the strength in this portion of the rope. In addition to this, as creep is a local

phenomenon and will not act the same across the whole length of the rope contributing to varying results.

The results do indicate that computer vision is a valid method of tracking the width of fiber rope during

tension-tension tests. However in terms of length measurements a new method of attaching markers to

the rope has to be found as the previous method led to invalid results from the first two experiments.





The length measurements from the third experiment indicate that it is possible to monitor the length

but an improved method is required.

A.6 Conclusion

The overall results indicate that it is possible to monitor the width and length measurements of a fiber

rope under tension-tension testing. They also indicate that there is potential in using these measurements

as condition indicators to evaluate the state of a fiber rope. However, the application that is of most

concern is the effect of heave compensation on fiber rope. In the future, it is proposed thats this technology

is applied to fiber rope undergoing a cyclic-bend-over-sheave (CBOS) regime to simulate the effects of

offshore lifting operations. Additionally, it is desirable to combine this with other technologies such a

thermography, CT scanning and embedded conductive threads in the rope to monitor the condition of

the rope and improve estimates of RUL.

A.7 Acknowledgment

The research presented in this paper has received funding from the Norwegian Research Council, SFI

Offshore Mechatronics, project number 237896. The authors would also like to extend a special thanks

to Cecilie Ødeg̊ard for her assistance during the experiments performed through this work.





Paper B

Condition monitoring of HMPE fibre

rope using computer vision during

CBOS testing

Shaun Falconer, Geir Grasmo and Ellen Nordg̊ard-Hansen

119



This paper has been published as:

S. Falconer, G. Grasmo and E. Nordg̊ard-Hansen. Condition monitoring of HMPE fibre rope using

computer vision during CBOS testing. In Exploring Opportunities - Synthetic/Steel - Proceedings of the

OIPEEC Conference 2019, The Hague, The Netherlands, pp 129-147, 2019. ISBN: 978-1-7336004-0-8.





Condition monitoring of HMPE fibre rope
using computer vision during CBOS testing

Shaun Falconer*, Geir Grasmo*, Ellen Nordg̊ard-Hansen**

*Department of Engineering Sciences

University of Agder

NO-4876 Grimstad, Norway

**NORCE Norwegian Research Centre AS

NO-4876 Grimstad, Norway

Abstract – The paper details the results of recent cyclic-bend-over-sheave (CBOS) experiments

performed at the Mechatronics Innovation Lab (MIL) located at the University of Agder, Norway. A

method for measuring diameter and elongation of discrete sections of fibre rope using computer vision

is detailed. Estimations of the change in roundness of the rope are also explored based on the diameter

measurements. These measurements are then assessed for their suitability as condition indicators.

B.1 Introduction

Fibre ropes are increasingly finding use for deep sea lifting operations in the offshore sector due to their

similar mechanical properties when compared to steel wire ropes at equivalent diameters. However, due

to the lighter weight and almost neutral buoyancy of HMPE fibre rope, they can theoretically be used to

reach greater depths than steel wire which must support for its own weight subsea. Additional benefits

of HMPE fibre rope use include potential use of smaller cranes and vessels due to their greater ease of

handling and lighter weight. The main problem with HMPE fibre rope used for deep sea lifting operations

is the conservative retirement criteria used when deciding on replacement.

Current standards provided by DNV-GL related to the retirement criteria of fibre ropes used in

the offshore sector are predominately centred around mooring of vessels and platforms with only minor

mentions of fibre rope used under CBOS regimes. In DNV-RP-E304 [6], detailed methods for damage

assessment in fibre ropes used in offshore mooring are specified, which take close inspection of the various

constituent substructures in a rope into account when deciding upon any potential recertification or

retirement. Similarly, the standard CI 2001-04 [10] developed by the Cordage Institute, provides a

comprehensive guide to visual inspection of fibre ropes and additional considerations to take in terms of

retirement criteria. A natural extension of visual inspection of fibre ropes is the application of computer

vision to perform the assessment currently done by offshore inspectors or as part of a built-in monitoring

system for a crane. Additionally, DNV-GL-OS-E303 [7] specifies that if a rope is subjected to a tension

level exceeding 70 % MBS (maximum break strength) it has to be recertified or removed from use. As

such, DNV-GL-ST-E407 [9] states that the constituent fibre rope used in a deployment and recovery

system must have a detailed overview of its physical properties, as well as failure modes, in order to be

certified.

In terms of HMPE rope visual inspections, Heins et al [140] provide a detailed summary of the

damage mechanisms that can occur in a sample of HMPE rope. They also provide a scale of abrasion as
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a condition indicator, which they then attempt to link to the residual life of the rope.

In terms of CBOS testing of fibre ropes, experiments have been performed recently on smaller ropes

used as tendons for cable-driven parallel robots up to the much larger scale tests for rope to be used in

cranes. Davies et al [47] propose a model based on experimental CBOS testing of ropes to failure that is

used to derive an expression to estimate the lifetime of a fibre rope subjected to cyclic loading. Horigome

and Endo [91] investigate the repetitive bending behaviour of fibre ropes at a smaller scale and compare

their lifetime results to those of stainless steel wire.

With respect to investigation of diameter measurements, elongation and rope shape there have been

some recent patents submitted incorporating these properties. Van Der Woude and Zijlmans [136] pro-

posed correlating the physical measurements along the length of rope, including an example that the

measured diameter of a steel wire rope can be related to position along a rope. Additionally, another

patent by Ilaka and Zerza [104] makes use of a clamping roller set up that transfers the measured di-

ameter to a position sensor via rotary axle and lever. The rope is classified in different sections where

user-defined discard criteria is established that will result in warnings being sent to operators if the limits

are breached. Position sensors are also included to measure changes in length of the rope along with

diameter changes.

This work is an extension of previous experiments performed using computer vision to monitor

tension-tension tests [141] but adapted to monitor a fibre rope subjected to CBOS motion. Computer

vision algorithms are used to detect the diameter and elongation changes of discrete sections of a fibre

rope. The diameter changes are then used to estimate how the shape of the rope changes through the

course of the CBOS regime. The elongation and diameter changes are interpreted as strain and relatives

changes respectively, which are then investigated for their suitability as condition indicators.

B.2 Experiment Set Up

B.2.1 Equipment

The following subsections outline the equipment used in the experiment along with their main features

and properties.

B.2.1.1 CBOS test machine

The CBOS test machine used to perform the experiments was installed and commissioned by DEP

Engineering in 2017 and is located at the Mechatronics Innovation Lab, Grimstad, Norway. The main

features of the machine are detailed in Table B.1.

Table B.1: General properties of CBOS machine.

Test sheave diameter (mm) 800

Driving sheave diameter (mm) 1000

Maximum line pull (kN) 150

Rope diameter range (mm) 20-30

Dimensions (m) 12 x 1.3 x 2.2

Cycle speed (m/s) 1





Tension in the rope is maintained by a hydraulic cylinder that adjusts the position of the test sheave

as the rope elongates through the testing regime. The rope is attached via two clamps at a trolley that

is cycled back and forth due to the motion of the driving sheave. This motion is maintained until failure

occurs in the rope.

B.2.1.2 Machine vision cameras

The machine vision set-up comprised of five cameras in total. Five cameras were used to give a detailed

in any potential changes in shape from different perspectives around the rope. Four of these cameras

were the Edmund Optics EO-13122C Colour USB 3.0 model and the final was the Basler acA1300-200uc

Colour USB 3.0 model. The specifications for the EO and Basler models are listed in Table B.2. The

cameras were placed in an asymmetric fashion around the rope, with varying distances from the rope.

The ratios applied to each camera measurement to convert form pixels to millimetres was achieved by

calibrating the image with a same-sized object.

Table B.2: The Basler acA1300-200uc Colour USB 3.0 and EO-13122C Colour USB 3.0

camera specification.

Manufacturer Basler EO

Model acA1300-200uc Colour USB 3.0 13122C Colour USB 3.0

Maximum frame rate (fps) 203 169

Resolution (MP) 1.3 1.3

Pixels (H x V) 1280 x 1024 1280 x 1024

Pixel size (µm) 4.8 x 4.8 4.8 x 4.8

B.2.1.3 Distance measuring laser

A Fluke 414D Distance Measuring Laser was used to monitor the position of the cylinder on the CBOS test

machine as it compensated for the change in rope length as the test progressed. The basic specification

is detailed in Table B.3.

Table B.3: Fluke 414D specification.

Typical measuring tolerance ±2.0 mm

Typical range 40 m

B.2.1.4 Webcam

A Logitech C922 Pro Stream Webcam was implemented to count the cycles of the CBOS machine based

on the movement of the trolley to act as a trigger for the machine vision to start the recording process.

A Texas Instruments MSP439F5529 USB Launchpad MCU was used to start the recording process on

the five machine vision cameras based on the cycles counted due to trolley movement from the webcam.





Figure B.1: Simple schematic of rope marking system on the rope with respect to the

sheave.

B.2.2 Method

B.2.2.1 Rope sample and experimental conditions

The five cameras were set up around the rope to record video data of the rope as the test progresses. The

rope is recorded at approximately every 1000 cycles for 2000 frames. This equates to recording between

12 and 13 cycles for during each sampling period.

The machine was configured to apply approximately 50 kN line pull on the rope through the test,

which is equivalent to approximately 6.6 % of the rope MBS.

The rope type tested during the experimental run was a 28 mm diameter, 12 strand HMPE fibre

rope.

B.2.2.2 Rope markings

The fibre rope is marked with three positions along the length of the rope to be tracked during testing.

Each specific sub-section is the equivalent of a half lay-length, both of which are combined to estimate

the whole lay-length. From the recordings, these specific sections are monitored such that any changes

can be detected in the image processing phase performed after the data has been recorded as outlined in

Section B.3.

The parameters S1 and S2, SB1 and SB2 and DB1 and DB2 represent the constituent subsections

of the black, green and red markers respectively, see Figure B.1 for a schematic of the marking system.

The black subsections were not subject to any bending whereas the green and red sections were situated

approximately in the single and double bend zones respectively.

B.3 Image Processing

The image processing phase is performed using algorithms developed in Python 3.6.4 with OpenCV

version 3.4.2. Figure B.2 shows an example of the combined diameter and elongation detection algorithm





Figure B.2: Example image of the rope with both elongation and diameter algorithms

implemented.

Figure B.3: Elongation calculation pre-processing flowchart.

implemented onto an image of the rope. The following subsections highlight the various steps in each

algorithm, including background theory.

B.3.1 Elongation calculation

The elongation of the discrete section of the rope is found by recognition of the markers sewed into

the rope at half lay length intervals. The process of detecting the length change is as follows: HSV

colour conversion, a mask is found based on colour, mask applied to HSV image to create binary image,

dilation of section, contours found in sections, centre points found using Green’s theorem and finally

distance between points found. A general overview of each morphological operation applied to the image

is summarised in Figure B.3. One frame is selected from each recording and is used to calculate the

elongation.

Python OpenCV makes use of Blue, Green, Red (BGR) as a default colour representation and is

converted to Hue, Saturation, Value (HSV) colour representation to apply the thresholding algorithm to

produce the binary image. In BGR representation, each pixel is a discrete value of 0 to 255, which are

modified to produce different colours based on these combinations. In HSV, the Hue parameter is pure

colour represented by the dominant wavelength with a value between 0 and 360 degrees, for example 0,

120 and 240 degrees represent the Hue values for red, green and blue respectively. This colour conversion

is chosen for ease of creating colour search bands to find the different coloured markers sown into the

rope.

Once HSV colour conversion is completed, a binary image is created based on the colour mask the

algorithm is modified to search for. An example of what the detected marker looks like after this operation

is shown in Figure B.4(b). Converting the original image to a binary image based on colour will mean

there are two clear areas representing the markers in the image that can be easily found when detecting

their centre points later in the algorithm. The white area of this image is the detected marker, which

is shown to have some smaller undetected portions. These small portions are then then filled in using





Figure B.4: Elongation algorithm process (left to right): (a) original image, (b) binary

image based on colour mask, (c) dilation and (d) processed image with centre point found

based on contouring.

Figure B.5: Diameter detection pre-processing flowchart.

the dilation to create a solid as shown in Figure B.4(c), to ensure that there is a solid area to detect its

centre point.

Contours are then found around the dilated area representing the marker, which is done through

a built-in function in OpenCV via the Border Method as specified by Suzuki and Abe [139]. This is

selected for its ease of finding the contour around the white areas, that form the enclosed curve required

for Green’s theorem to be applied in the next step.

After the contours are found, OpenCV makes use of Green’s Theorem to find the moment of the

enclosed area by the contour. This was chosen as it is a simple method of finding the centre point of the

marker that will be used in the elongation measurements.

The result of applying this sequence of morphological operations is shown in Figure B.1(d), where

the centre point of the area is shown. The distance between these two centre points on the rope as shown

in Figure B.2 is used to monitor the elongation in a specific subsection.

B.3.2 Diameter calculation

The algorithm for detecting the diameter of the rope is performed through the application of several

filters to identify the rope. The pre-processing stages of the rope images are shown in Figure B.5: a

bilateral filter, Gaussian blurring, Canny edge detection, dilation and erosion.

The edges of the rope are found using a combination of the image smoothing filters built in to

OpenCV. These functions are particularly useful in edge detection. Firstly, a bilateral filter is applied to

the original image. The bilateral filter is described in detail by Tomasi and Manduchi [142] but it can

be summarised as a method for smoothing images through replacing the intensity of a single pixel in the

image with a weighted value from the nearby pixels, therefore allowing detection of the rope shape against

a different coloured background. There is a white background behind the rope, therefor this contrasts

significantly with the yellow coloured rope, which means the line should be detected with ease and made

more prominent. The result of this operation in shown in Figure B.6(b).

Another form of filtering used for edge detection is Gaussian blur. In this method however only,

a neighbourhood of pixels are taken into consideration (i.e defined by the kernel size), where they are





Figure B.6: Diameter calculation algorithm process (left to right): (a) original image, (b)

bilateral filter, (c) Gaussian blur, (d) Canny edge detection, (e) dilation (f) erosion and

(g) processed image with edges detected on original image.

weighted based on a Gaussian function and based on the output. As the rope is made up of strands,

the bilateral filter may count these as lines, therefore a Gaussian filter is applied to generalise the image

more so that the rope shape is more prominent.

This image is then put through a Canny edge detection built into OpenCV, which is described in detail

by Canny [143], to mark out the lines that constitute the edges of the rope as shown by Figure B.6(d).

This is then followed by a dilation of the image in Figure B.6(e), where these lines are made bolder then

followed by an erosion operation to form the final line to be processed in the diameter algorithm as shown

in Figures B.6(f) and B.6(g) respectively.

The top and bottom lines of the processed image are saved as a series of coordinates which are

separated in twelve separate regions of interest. Within each area of interest, the shortest distance

between each edge is found. The average of these values is the used as the diameter measurement in this

specific section.

B.3.3 Roundness calculation

The roundness of the rope is estimated through the combination of diameter measurements from five

different perspectives to serve as a basic geometric estimate of the rope shape. Five points are taken

initially and reflected in the y-axis to create ten points. These ten points are then reflected in the x-axis

to create ten coordinates that are used as the boundary to calculate the roundness of the rope. An

example of the progression of the method is shown in Figure B.7.

Using the coordinates based on the diameter measurements, both the perimeter and the area of the

formed shape are calculated-along with the average radius based on the length between the coordinates

to the origin. Using these parameters, the roundness can be estimated with the following equation.

R =
Ao

P

2

r̄
(B.1)

Where R is the roundness shape factor, Ao is the cross-sectional area, P is the perimeter and r̄ is

the average radius. The calculation is based on a circle, where 1 indicates perfects roundness and any

decrease is seen as a reduction in roundness.

B.4 Results

B.4.1 Rope breakage

The three rope specimens failed after the following amounts of cycles detailed in Table B.4.





Figure B.7: A collection of coordinates that form the outer shape of the rope (left) and the

polygon which is used to calculate the perimeter and cross-sectional area for the roundness

shape factor.

Table B.4: Number of cycles to failure in each test.

Rope number Number of cycles to failure

1 57,672

2 45,944

3 44,925

B.4.2 Elongation

Figure B.7 displays the strain measurements for each subsection in Rope 1, Rope 2 and Rope 3. The

strain is calculated using the following expression for calculating strain based on length changes:

ε =
∆L

Lo
(B.2)

Where ε is engineering strain, ∆L is change in length and Lo is the original length after set-up. The

results are displayed as percentages based on the observations of the changes at each specific section from

the computer vision system. The original lengths of each subsection across the three rope specimens are

detailed in Table B.5.

Table B.5: Original measurements of length (mm) in each subsection for Ropes 1, 2 and

3 .
Rope S1 S2 SLL SB1 SB2 SBLL DS1 DS2 DSLL

1 94 95 189 99 92 191 93 94 187

2 96 96 192 93 95 188 95 100 195

3 98 92 190 97 97 194 97 96 193

It is worth note the final readings displayed in Figure B.9 vary slightly from the final rope failure

values denoted in Table B.5 due to discrepancies in the recording system.

The measurements displayed for Rope 1 in Figure B.8 (top chart) were taken at approximately 57,000

cycles.





Figure B.8: Strain measurements based on differences between first and final elongation

in Rope 1 (top), Rope 2 (middle) and Rope 3 (bottom).

The measurements in Rope 2 in Figure B.8 (middle chart) for positions S1, S2, SLL, SB1, SB2, SBLL

were taken at approximately 45,000 cycles. The final elongation reading in Rope 2 for sections DB1, DB2

and DBLL was taken from the second last recording due to the abrasion on the rope making the markers

undetectable by the elongation algorithm.

The measurements in Rope 3 in Figure B.8 (bottom chart) were taken at approximately 33,000 cycles.

No more readings were taken after this point until failure due to malfunctioning recording equipment

during this phase of the test run.

B.4.3 Diameter

Figures B.10, B.11 and B.12 display the relative changes in diameter size as a percentage at each subsection

across the three rope specimens between the start and end readings in the test.

Figure B.13 shows a timeseries of the change in relative size of diameter for Rope 1.

B.4.4 Roundness shape factor

The roundness measured for Rope 1 as the test progresses is shown in Figure B.14.

B.4.5 Cylinder extension

Figure B.15 shows the change in extension of the cylinder from the start to the end of the test over the

three ropes used in the experiments.





Figure B.9: Strain measurement due to elongation progression in Rope 1.

B.5 Discussion

B.5.1 Elongation

It is clear from the strain readings due to elongation in Figure B.8 that there have been heterogenous

changes across all the sections monitored in the rope. Given the different readings across all sections each

of the three rope specimens, the elongation occurring in the rope during testing is assumed to be localised

rather than uniform throughout the rope. While the sections pertaining to the different colours are not

located at the same positions along the length of the rope, they are placed in similar general vicinities

and subjected to similar bending regimes on the sheave.

The original measurements for the length between the markers in each respective subsection are

outlined in Table B.5.

The black subsections, S1 and S2, are closer to the trolley where the rope is attached in the machine

and is not subjected to any bend on the sheave. The length of these two subsections sees consistent

small changes across all three rope specimens apart from subsection S1 in Ropes 2 and 3, which see slight

reductions in length. However, the overall lay length increases across all three rope specimens.

Similarly, the lay length that is a combination of SB1 and SB2 shows an increase over all three rope

specimens, but some negative strain is shown in the SB1 readings in Ropes 1 and 3 and SB2 in Rope

2. The first and second largest strains calculated in an individual subsection occur at SB1 in Rope 2

and SB2 in Rope 1 respectively. This section of the rope contacts the sheave and is subjected to more

bending than the black section.

Finally, the red section sees an increase in the overall lay length of the section in Ropes 1 and 3 but

is shown to decrease in Rope 2.

The uncertainty is calculated at approximately between 2 and 3 mm based on the initial measurement





Figure B.10: Rope 1 relative change in diameter readings from the start and the third

last recording (around 54,000 cycles) according to all five cameras.

of the lay length distances using callipers and the conversion between pixels to millimetres. Any change

detected above this range can be assumed to be significant.

Figure B.9 shows how the strain measurements change across all subsections in Rope 1 as the test

progresses. The highest increases in elongation are shown in subsection SB2 were the increase exceeds

6 % when compared the original measurement for the subsection. Increases are seen across all strain

measurements when comparing the start and end measurements apart from subsection SB1, where a

slight decrease in length is shown to occur. Much like the results shown in Figure B.8, there are differences

in the strain to time series measurements. In all the ropes, there has been increases in the lay length

measured in the green section, whereas in the red section there was little change in the Rope 2 compared

to the other specimens. As the sections are not at the same positions, only in the same general areas,

this could contribute to some differences in the measured values.

The areas in contact with the sheave show greater changes in measured strain. In all specimens the

rupture occurred in areas of the rope that were in contact with the sheave, which can be seen from the

measurements in the green and red sections. While strain measurements do have potential as a condition

indicator in fibre rope condition monitoring, there is some discrepancy in what amount of strain can be

experienced consistently before rupture in the rope. For example, in subsection SB1 in Rope 2, a strain

reading exceeding 10 % is measured at approximately 100 cycles before failure, whereas in a similar

section in Rope 1, the value just before failure is shown to be around 5 %.

Figure B.15 shows the elongation of the cylinder from the start until the end of the test in all three

rope. Across all tests there is a steady extension of the cylinder, indicating that there is an overall increase

in the length of each respective rope. Rope 2 shows a slightly larger increase overall compared to Ropes

1 and 3 but these differences are minute when the whole length of the rope is taken into consideration.

Other potential influences on the measurement of elongation using this method include the degra-





Figure B.11: Rope 2 relative change in diameter readings from the start and finish ac-

cording to all five cameras.

dation of the markers sewed into the rope. As the algorithm relies on finding the centre point of this

different coloured material on the surface of the rope, any potential damage to the marker could result

in slightly different centre points being detected, altering the length calculated. Additionally, as the rope

deteriorates through the test, it is noticed that the rope’s position with respect to the camera changes

marginally, also impacting the measurements detected by the camera. While such behaviour would de-

crease the accuracy of the measurements, any significant unexpected alterations in measurement would

serve as a sign that the rope must be inspected. These factors would influence the measurements, meaning

some of the observed heterogeneous results would be due to these uncertainties in the method.

B.5.2 Diameter

Figures B.10, B.11 and B.12 show the relative diameter changes as a percentage between the first and last

measurements in Rope 1, Rope 2 and Rope 3 respectively. Initial observations suggest that the spread

is heterogenous with equivalent subsections across the three rope specimens measuring varying increases

or decreases in diameter.

The increases and decreases in diameter can be attributed to two factors throughout the progression of

the experiment. Firstly, the groove shape would have an impact in combination with the tension applied

by the cylinder which would have significant influence on the shape of the rope, which may increase or

decrease the diameter depending on which perspective the camera is viewing the rope. Additionally,

the sheave used in the experiments has also been used in CBOS testing for steel wire ropes, from which

it has accumulated dents that could cause further damage to the fibre rope. The second factor that

influences the diameter detected is due to how the diameter measuring algorithm detects the rope when

there is progressive damage done to the rope via several damage mechanisms such abrasion against the





Figure B.12: Rope 3 relative change in diameter readings from the start and finish ac-

cording to all five cameras.

sheave, the internal friction due to bending in the rope and continuous stress from line pull exerted by the

cylinder. As the test progresses there is an abundance of extruded loops as the individual rope strands

are damaged but also changes in the appearance of the rope, meaning that the algorithm could detect

both larger and smaller diameters than exists in the rope.

Figure B.13 shows a time series from the start to finish of the test with the diameter readings from

all five cameras situated around Rope 1. Cameras 1 and 2 show an increase in relative diameter when

compared between the start and finish of the test and a decrease is shown in cameras 3 and 4. The

readings from camera 0 are shown to be erratic with significantly fluctuating values throughout the test.

Given the position of the camera directly under the rope and facing the part of the rope in direct contact

with the sheave, an increase in diameter should be expected due to the compression of the rope against the

sheave. However, as damage occurs in the rope, the algorithm begins to pick up both shorter lengths in

this cross section due to changes in the “look” of the rope, affecting the overall average diameter detected

in the subsection. The abrasion damage in the rope also creates extruded loops which are picked in the

algorithm and contribute to more inaccuracies in the readings. There are also issues with the lighting

used on the rope, as some of the images were darker, particularly as the test was run overnight, making

some outlines of the rope difficult to detect.

There is mixed potential in using diameter measurements as a condition indicator when using this

specific algorithm as the damage incurred in the rope creates fluctuating values. However, while the

algorithm shows a significant “increase” in diameter for some subsections of the rope when there is no

increase, can serve as a warning for extruded loops occurring due to strand damage due to abrasion

accumulated through use. The algorithm could be modified to ignore certain lengths if they are shown

to be a significantly larger value than the measurements previously recorded.





Figure B.13: Relative diameter change in Rope 1 at each position across the test timespan.

B.5.3 Roundness shape factor

Figure B.14 shows the estimated roundness detected of the specific subsections in Rope 1 throughout

the test. The top graph represents readings in the black section, which do not come into contact with

the sheave groove. The measurements in this section are shown to be more stable than in the other

subsections despite the fluctuations in the diameter measurements as highlighted in the previous section.

Measuring the shape via the use of polygons made up from the coordinates provides a general idea of

how the rope changes shape through the test. An ellipsis cannot be applied given the variation in spread

of the points.

There is shown to be a decrease between the initial and final roundness measurements shown in the

green and red sections which are displayed in middle and bottom graphs in Figure B.14, respectively.

The readings here are more erratic compared to the top graph for the black section. Both the green and

red sections are in contact with the sheave during the cycling motion in the test machine. These sections

are heavily affected by the bending cycle, which could be due to a multitude of damage mechanisms such

as the stress exerted through the line pull, abrasion against the dented sheave and heating from friction

in bending. As these measurements are based ultimately on the average radius measurements affected

by the issues outlined in Section 5.2, there will be slight fluctuations in the readings.

Additionally, when compared to diameter, the shape factor has less value as an indicator. It is shown

to have a low sensitivity to variation and does not change drastically through the tests.

Much like the diameter measurements, the roundness could be used to indicate that there is a de-

terioration in the structure of the rope due to the presence of extruded loops or worn out strands. As

an example, the black area which does not contact the sheave has a distinctly more stable reading and

does not have the same levels of damage progression through the test as the green and red sections. The

fluctuation in these readings could serve as a warning that the rope must be at least visual inspected for

damage.





Figure B.14: Roundness estimates in Rope 1 with respect in the S1 and S2 regions (top),

SB1 and SB2 regions (middle) and the DB1 and DB2 regions (bottom).

B.6 Future Work

Future testing will also include the use of thermal camera recordings of the rope in conjunction with the

computer vision system. With a combination of the elongation measurements, thermal measurements and

a modified algorithm to detect the damage incurred by the sheave (i.e worn strands and extruded loops),

it may be possible to implement into a deep learning model that can be used to predict the remaining

useful life of the rope subjected to the CBOS regime in the machine.

Also, other type of rope will be tested to develop a general model and to validify the method on a

different subject. Finally, different cycling regimes could be used in testing machine. Parameters such as

the line pull exerted by the cylinder in the machine could be modified and the tests could be paused at

different intervals to see if the rope benefits from cooling or the rest from motion.

B.7 Conclusion

There is potential in the use of computer vision for condition monitoring of fibre ropes as it is shown

that elongation can be easily detected using a marking system of a different colour to that of the rope.

Elongation has shown potential as a condition indicator for the fibre rope as the subsections monitored

in this round of testing show significant changes as it progressed towards failure. The diameter and the

roundness measurements based on the diameter have been shown to have mixed potential as a good

condition indicator based on the current algorithm.

In general, computer vision can be used to detect all these different parameters but given that the

changes are unevenly distributed along the rope, they are quite challenging to use for maintenance.





Figure B.15: Cylinder extension in Rope 1 (top), Rope 2 (middle) and Rope 3 (bottom).
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Abstract – Fibre rope usage in deep sea lifting operations is gaining more prominence in recent

times. With rope minimum break loads (MBL) comparable to that of their steel wire counterparts, the

use of high modulus polyethylene (HMPE) ropes is seen as a viable option for use in subsea construction

cranes. The ropes are worn out during use and visual inspection remains one of the main methods of

determining whether a fibre rope is to be retired from use, therefore a natural extension is condition

monitoring through computer vision. Creep and temperature are constraining with HMPE ropes and

should be monitored continuously, particularly when the rope is cyclically bent over sheaves. Addition-

ally, interpreting the thermal history of the rope during use could give insight into deterioration. In this

paper, a condition monitoring system based on combined computer vision and thermal monitoring is used

during cyclic bend over sheave tests performed on 560 kN break load of 12 strand braided HMPE ropes.

New monitoring features such as local length and width through computer vision algorithms combined

with surface thermal monitoring and global elongation are presented and their effectiveness as condition

monitoring features is assessed.

C.1 Introduction

Fibre ropes are increasingly gaining recognition as a viable alternative to steel ropes for use in deep

sea lifting operations. High Modulus Polyethylene (HMPE) ropes have been shown to have about same

mechanical properties to those of steel ropes, but with other potential benefits and contraints. Due to

its lighter weight and almost neutral buoyancy, HMPE ropes can be used in subsea construction cranes

to exceed the depth limits imposed by steel rope usage. Additionally with their greater ease of handling

and lighter weight, there is potential to use smaller cranes and vessels in lifting and subsea deployment

operations.

The first issue with HMPE from an endurance perspective is failure by creep. The three main

parameters that effect creep in HMPE ropes are a combination of the load, temperature and time of

usage. Depending on the size of payload, type of lifting operation and environment where the lift takes

place, the extent at which creep influences deformation behaviour in ropes can vary greatly. HMPE

rope typically has a maximum working temperature of 65 ◦C, on which exceeding this limit will lead to

deterioration of the material through temperature alone.
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The second issue is failure through wear. Offshore lifting operations involve periods where active

heave compensation occurs when deploying a payload subsea. The rope will be subject to cyclic bend

over sheaves (CBOS), where it is continually driven back and forth over sheaves, the severity of which will

be influenced by load size and sea state. In addition to heat generation from bending deformation, friction

from both inter-strand motion and sheave contact will contribute to heat generation during operation.

Due to the plethora of potential damage mechanisms that have potential to influence the remaining

useful life (RUL) of the rope, condition monitoring for this regime requires particular attention through

a combination of methods.

Fibre rope for usage in maritime operations is not a novel concept but their application to deep sea

lifting operations is a fairly recent development. Applications in vessel and offshore structure mooring are

detailed in current standards set by industry, however their application in lifting operations and associated

discard criteria is mentioned briefly. DNV-RP-E304 [6] details how the damage of the fibre rope must

be assessed, where each constituent substructure (i.e filament, strand, sub-rope, etc) has to be checked

by manual inspection and then re-classified or discarded based on inspector judgement. CI 2001-04 [10]

provides a thorough guide of fibre rope damage types and mechanisms for inspectors. DNVGL-OS-E303

[7] states that if a rope has been subjected to 70 % of its minimum break load (MBL), then the rope has to

be retired or re-certified. DNV-GL-ST-E407 [9] requires that fibre rope used in deployment and recovery

systems must have all its physical properties detailed, including potential failure modes, to be certified.

Finally, the 3-T parameter developed by DNV-GL [8] is used to obtain a linear relationship between

tension and time-to-rupture by evaluating the logarithmic time-to-rupture as a function of tension at

a given temperature. However to investigate if longer RUL for deepsea lifting fibre rope is possible, a

continuous means of monitoring with thorough data interpretation must be developed, rather than a

simple re-classification or re-certification.

Extensive CBOS testing is beneficial to explore RUL. Davies et al [47] presented the results of testing

on HMPE braided rope of 19 mm nominal diameter from which an empirical model for RUL was derived,

though it is acknowledged that further testing is required on ropes of larger diameters to qualify their

method for lifting operations.

Given that visual inspection is common for fibre rope, use of computer vision can potentially replace

manual inspection. Hearle et al [81] used a webcam to monitor the strains in yarns during testing. Since

machine vision technology has improved after their work, there were obvious limitations in the equipment

used, but they showed the possible application of computer vision and image processing for fibre rope

monitoring. Additionally, Ghoreishi et al [144] used computer vision and image processing as one of

their three independent measuring systems for extensometry during tension-torsion testing to validate

their analytical model of rope behaviour. For steel wire ropes, Söhnchen [82] details a system for visual

inspection of ropeways and mining shafts from four different perspectives to analyse lay length, diameter,

and wire breaks. Yaman and Karakose [145] proposed image processing for monitoring steel rope in

elevator systems, where fault detection was performed by analysing the auto-correlation signals of pixels

in the rope images to detect wire breaks.

Assessment of rope geometric parameters has been used in other fibre rope monitoring systems. For

example, Mupende and Zerza [?] made a patent where the diameter of the rope for lifting operations is

monitored using clamping roller set up and position sensor with a warning activated at a user-defined

discard criteria, along with length change estimations. Van der Woude and Zijlmans [106] proposed as

monitoring system for offshore lifting operations (using steel rope as an example), where the device can

take cross-sectional area measurements and log its position along the rope. Ernst et al [146] also detail

embedded methods for monitoring of elongation of discrete sections of fibre rope where bending occurs





in operation and replacing the rope subject to exceeding a pre-set limit.

Additionally, it is important to distinguish between the sections being monitored via some form

of marking system throughout the length of the rope and monitor them for changes. De Angelis [85]

proposes a system to replace fibre rope based on the deterioration of markers and evaluate them by visual

inspection. In addition to this, Logan et al [86] detailed a patent for having markers on load bearing

members for elevators such as rope, with the spaces between these markers being monitored for strain

and fatigue.

Temperature measurement of fibre rope for lifting operations is of paramount importance due to

material limitations in maximum temperature. Active heave compensation in offshore construction cranes

will cause heat generation in the rope if a payload is held at the same depth subsea for extended periods

of time. In terms of thermal monitoring of fibre rope, Törnqvist et al [20] analysed rope samples during

CBOS testing with embedded thermocouples and an IR camera. However, both are mainly used to

observe the effects of water cooling on the rope samples, in order to ensure that they do not reach critical

temperature. In addition to this, Davies et al [41] include some results from IR camera during CBOS

testing to try to couple rope properties and temperature changes, however references are only made

regarding the change in temperature in ropes during dry and wet tests. Additionally, Nordg̊ard-Hansen

et al [37] explored the use of chemometrics as method for quantifying aging in fibre ropes based on infrared

images recorded using some of the ropes tested as part of the campaigns outlined in this paper, including

providing extensive review of possible explanations for observed changes as the rope deteriorates. De

Angelis [69] proposed using a conductive thermal element and provides a warning to the user if a critical

temperature is exceeded. More recently, Ning et al [36] used embedded thermocouples inside and outside

of several different rope samples during CBOS testing by evaluating thermal damage through varying

test conditions and its subsequent influence.

Manual inspection of rope without thorough knowledge of its use history has significant potential for

waste through premature retirement. Deterioration in fibre ropes through CBOS deformations results in

length, width and temperature changes that require monitoring throughout use. This paper builds upon

previous work [141] performed at the University of Agder, where computer vision techniques were used

to monitor rope width and length in tension-tension tests.

Improved monitoring systems are the first steps in developing more informed RUL estimations and

subsequently avoiding fibre rope waste. Still, there is currently no single detailed study of a combined

computer vision and thermal monitoring method for fibre ropes under a CBOS regime. In the present

work, data is extracted through image processing algorithms to monitor changes in local length and

width for fibre ropes. It has been confirmed that there is local motion of strands during usage, and the

methods applied allow the continuous monitoring of this movement. The geometric data is combined

with temperature measurements, which show corresponding changes over time. This work may therefore

serve as the basis for a potential monitoring system to be implemented in an offshore crane.

Test details are given in Section C.2, and the algorithms from previous work have been modified,

as presented in Section C.3. These algorithms are then applied to data recorded during CBOS testing.

The results of local length, width and temperature monitoring in different bending zones in five ropes

during CBOS testing are presented in Section E.4, and their effectiveness with regards to rope condition

is discussed in Section C.5, before further work is considered and conclusions offered.





Figure C.1: CBOS test machine as located the MIL, Norway. View is from just behind

the test sheave with the driving sheave visible at the far end of the test frame.

C.2 Monitoring methods and materials

The condition monitoring set-up and feature selection were evaluated on ropes during CBOS testing.

The test machine used was installed by DEP Engineering at the Mechatronics Innovation Lab (MIL) in

Grimstad, Norway, see Figure C.1. The machine is capable of testing both steel and fibre ropes between

20 and 30 mm diameters and can deliver a maximum line pull of 150 kN. The tension is kept constant

by a hydraulic cylinder that extends as the test progresses to compensate for creep. The test and driving

sheaves have diameters of 0.8 m and 1.0 m respectively. The test sheave is made from 42CrNiMo4 steel

and has a U-profile.

The condition monitoring set-up consists of three parts. A computer vision system with four cameras

asymmetrically positioned around the rope, was used to record videos of the rope next to the test sheave

end approximately every 1000 cycles. Each camera recorded 2000 images in each video recording, which

corresponds to 13-15 complete cycles. As seen in Figure C.2, the rope is not centered in the camera

frame, due to the testing sheave being slightly angled.

A FLIR A6753sc infrared thermal camera recorded rope surface temperature periodically as the tests

progressed. It was placed approximately 50 cm from the rope entrance to the sheave profile. The recording

process was set to sample at 100 Hz for 2000 images, resulting in a 20 seconds video for each period. This

was sufficient to record at least one full cycle in the CBOS test. The data was then interpreted using

FLIR ResearchIR Max 4 software and then converted to CSV format.

Finally, an infra-red distance sensor monitored the increase in length of the CBOS machine hydraulic

load cylinder over the duration of the test.

Further details regarding the specification of the optical cameras, thermal camera and distance mea-





suring laser are available in Appendix ??.

The sections of the rope that never reach the sheave, thus never bends, is called the straight zone

(SZ), while the rope section that touches the sheave and bends only once before the sheave changes

direction is called the single bend zone (SBZ). Finally, the rope section that bends across the sheave

and is straightened again below the sheave before the sheave turns, is called the double bend zone

(DBZ). Colour coded markers were sewn into each of these zones, see Figure C.3. These markers were

used to monitor the changes in local length at these positions, in addition to the widths. The thermal

measurements were also taken from these zones.

The procedure was to guide the rope over both the driving and test sheave with the ends attached

to opposite sides of the trolley that moves along the test bench between the sheaves. The spliced eye

loops were placed over 56 mm diameter steel pins in the connector attached to the trolley to hold the

rope in place. Care was taken to ensure there was minimal twist in the rope. The first 1500 cycles were

used to bed in and as a ”calibration” phase for the camera set-up, in which camera parameters where

adjusted for lighting conditions and to ensure that good quality data was recorded automatically. After

this phase, the test was run until failure. A failure was considered to occur when there was a substantial

loss of tension on the cylinder, causing the test to stop automatically or when there was a more obvious

rupture.

The ropes used were 12 strand Dyneema R©DM20 XBO HMPE fibre ropes with nominal diameter of

28 mm and the minimum break load (MBL) was 560 kN. They were approximately 22.2 m long, spliced at

each end over a 2.2 m length with eye loops, and tested on a constant 50 kN line pull over approximately

4.2 m stroke length.

Figure C.2: The computer vision set up with the four cameras used positioned around the

rope. The accompanying schematic shows the designated camera labels for each position

and roughly how they are positioned with respect to the rope and sheave access.

C.3 Theory and data interpretation

C.3.1 Computer vision system and image processing

The algorithms used for image processing and data analysis were developed in Python using the OpenCV

library [117]. The data is interpreted from videos recorded during each CBOS test. During a post-

processing phase, a series of morphological operations were performed to calculate the local length and

width of the rope.





Figure C.3: The approximate location of the colour-coded markers placed on the rope for

localised length and width monitoring.

C.3.1.1 Local length of rope sections

The local length of each subsection is calculated by locating the different coloured markers sewn into

the rope. The image is converted to HSV colour scaling for ease of detecting colours at varying levels

of brightness. A specific colour is selected using this colour regime (”red” in the case of the operations

shown in Figure C.4). This scale is modified in the algorithm to detect the other colours coinciding with

the other zones of interest on the rope. A binary image is created, where the sections of the image that

coincide with the colour mask are converted to white. A dilation operation is performed to fill in the gaps

in the colour mask and the marker centre points are found using a contouring operation. The Euclidean

distance between centre points of both markers is then calculated. The operations are summarised in

Figure C.4.

Figure C.4: Different stages and effects of morphological operations applied to the image

to detect a specific colour for length measurements: (a) original image, (b) binary image

created, (c) dilation operation applied and (d) final processed image with centre point of

marker visible after contouring operation.

It is attempted to find at least ten images of each subsection in each video recording. The median,

maximum, minimum and variation as standard deviation of the length across these images is calculated

and are used as the values to represent the strain of the rope at that specific time stamp. These distances





are monitored for changes as the test proceeded.

C.3.1.2 Rope widths

Rope cross section width was calculated from the perspective of all four cameras. The width calculation

works in a similar fashion to the length algorithm, except it is the rope colour that is detected in the

processing stage. The widths along the whole length of rope visible in the computer vision system are

calculated at the SZ, SBZ and DBZ sections.

As with the local length calculation process, the image is converted to HSV representation, however

the colour of the rope is searched to distinguish it from the background and the different coloured markers.

The image is then dilated to fill in any gaps that may be present and eroded to better coincide with the

edges of the rope. Finally, the edges of the rope are detected using a contouring operation which is then

applied to the original image. Images of selected operations are shown in Figure C.5.

Figure C.5: Different stages and effects of morphological operations applied to the image

to detect the rope and calculate the width: (a) original image, (b) binary image created,

(c) dilation operation applied, (d) erosion to reduce edge thickness, (e) contouring to find

edges of rope and applied to original image to find the width (red line).

The curves that are detected in the vicinity of the rope edges are saved as coordinates. Seven regions

of interest are defined for each image, and within these specific areas the shortest distance from the top

line to the bottom line to be saved as the view width. The median of the resulting seven values is defined

as the width measurement of this section length. The maximum, minimum and standard deviation of

these seven measurements are also measured. Figure C.6 shows an example of this fully processed image

with complete widths found in each specific region of interest.

The cameras are synchronised, therefore allowing the widths from all four perspectives to be directly

compared at the same time and point along the rope.

C.3.1.3 Unit conversion

The cameras are asymmetrically placed around the rope at different distances. Since Python OpenCV’s

default measurement is in pixels, the cameras readings have to be scaled. The estimation for this con-

version is made by placing a metre reference next to the rope at the beginning of each test.





Figure C.6: Example of a processed image with the seven regions of interest applied and

widths detected.

C.3.2 Thermal imaging of rope surface

Figure C.7 shows an example of a screen shot from the FLIR software. In this particular example the

rope has already been subject to CBOS motion and the various levels of temperature are shown, with the

light and dark sections representing the higher and lower temperatures respectively. A region of interest

(ROI) is defined, where the average temperature is determined from the pixels located within it. This

particular region is chosen so it will always contain only rope and no background during the slight varying

vertical displacements of the rope.

Figure C.7: Screen shot from FLIR ResearchIR Max 4 software with the ROI defined for

average temperature calculation.

C.3.2.1 Outliers

Outliers in the geometric features are handled through using the median absolute deviation (MAD) as

shown in equation C.1. This is applied to the local length and width data due to these measurements

comprising of readings from several images of the same sections at each time stamp.

MAD = median(| x− x̃ |) (C.1)

Where x is each value and x̃ is the median value of the recorded data set.

This approach is chosen since it is more robust to outliers than using the average of the measurements.

It is possible to eliminate these outliers from the data set based on a defined limit:

| x− x̃ |≥ 3×MAD (C.2)

The median, maximum, minimum and standard deviation of the values that remain after the appli-

cation of MAD are used as the feature values at each particular time stamp.





Outliers in the thermal data are limited by the conservative ROI applied during recording. The data

collected is limited to the rope surface area with no interference from the background in the images.

C.3.2.2 Missing data

Once outliers are omitted, the data set is treated for missing data. Missing data may occur as a result

of instrumentation failures or the algorithms failing to detect the specific sections of the rope due to

degradation of section markers.

Imputation via linear interpolation is implemented, replacing the missing data through interpolation

in each respective feature over the whole test time of each individual rope. A rolling mean of 3 steps

is applied before presenting the local length and width results to maintain the general trend of the

measurements throughout the monitoring period.

C.3.2.3 Summary of recorded data

Table C.1 gives a summary of the data are recorded for each step by the condition monitoring system.

Table C.1: Data recorded by condition monitoring system

Length Width 1 Width 2 Width 3 Width 4 Temperature

SZ-1 SZ-1 SZ-1 SZ-1 SZ-1 SZ

SZ-2 SZ-2 SZ-2 SZ-2 SZ-2 SBZ

SBZ-1 SBZ-1 SBZ-1 SBZ-1 SBZ-1 DBZ

SBZ-2 SBZ-2 SBZ-2 SBZ-2 SBZ-2

DBZ-A-1 DBZ-A-1 DBZ-A-1 DBZ-A-1 DBZ-A-1

DBZ-A-2 DBZ-A-2 DBZ-A-2 DBZ-A-2 DBZ-A-2

DBZ-B-1 DBZ-B-1 DBZ-B-1 DBZ-B-1 DBZ-B-1

DBZ-B-2 DBZ-B-2 DBZ-B-2 DBZ-B-2 DBZ-B-2

C.4 Results

C.4.1 Initial observations

Table C.2 shows the number of cycles each rope sample reached before failure in the CBOS machine tests.

These numbers are thus the number of cycles to failure (CTF). All the ropes are the same type. (Rope

no. 1 and no. 2 were used for different process and test developments and results are thus excluded.)

Table C.2: Number of cycles to failure (CTF)

Rope no. 3 4 5 6 7

CTF 75,324 122,368 120,430 87,314 143,374

Figure C.8 shows images of the typical state of the rope after each testing phase and removal from

the CBOS machine. The top image is an example of the surface compression damage done to the rope





through contact with the sheave. The bottom image is the other side of the rope that did not get in

contact with the sheave. From this view, the ruptured strands and extruded loops are visible. These

become more apparent as the rope degrades during the test.

Figure C.8: Compression damage (top) and extruded loops (bottom).

Figure C.9 shows the global elongation for the ropes tested. The extension of the rope is based on

the changes in length of the hydraulic cylinder keeping tension on the rope as measured by the IR laser.

This extension is then interpreted as general rope elongation using the ropes’ original length as starting

point.

It is noted that Ropes 3 and 6 failed due to degradation in the splice that was partly running over

the larger driving sheave. The other ropes all failed at the test sheave as intended. Note that the global

elongation in all cases is below 1 %, which is in accordance with the manufacturer’s rope specification.





Figure C.9: Global elongation of the ropes after bedding in.





C.4.2 Computer vision system and image processing

C.4.2.1 Local length

Figures C.10 and C.11 show the results of the relative local nominal length for Ropes 3 to 7, in sections

DBZ-A and DBZ-B respectively. In each figure, the elongation changes (local strains) as detected by the

algorithm for each rope are shown and compared. These are shown against the time, starting from just

after the initial bedding in phase until just before failure occurred in the rope specimen. The % local

length measurements are based on the changes from the original length of each respective subsection from

the end of the bedding in phase. The changes for the SZ and SBZ sections are not presented as they were

negligible in comparison to the DBZ-A and DBZ-B sections.

From Figures C.10 and C.11 it is seen that local distances between the markers vary and increase over

time. Overall the strands are shown to heterogeneously displaced in the DBZ sections. However in Ropes

4, 5 and 7 there are reciprocal changes in the DBZ, where a decrease in one subsection is accompanied

by an increase in adjacent subsection. Rope 7 in particular shows the largest changes in local distance

compared to the other rope samples.

Figure C.10: Local length changes after bedding in phase in Section DBZ-A for all ropes

(R-Rope, S-Subsection).





Figure C.11: Local length changes after bedding in phase in Section DBZ-B for all ropes

(R-Rope, S-Subsection).





C.4.2.2 Width

The % change in relative width measurements are based on the changes from the original width of each

respective subsection. Figure C.12 shows the relative change in width at DBZ-A-1 subsection across

all five ropes against time from after the initial bedding in phase until rupture. It also shows that the

smallest total relative width changes, when comparing initial and just-before-rupture values, occurred in

Ropes 3 and 6, which ran for shortest duration. Substantial varying measurements compared to the other

ropes were also observed for this subsection in Rope 4. Camera 2 coincides with viewing from above the

rope directly along the sheave axis. Views from the other cameras showed the same tendency of increased

width as a function of time, but to a lesser degree.

Examples of relative width change from camera 2 across all sections with respect to time are shown

in Figures C.13 and C.14 for Ropes 5 and 7 respectively. The other ropes showed a similar separation

between SZ and SBZ showing minor changes, and DBZ sections showing increasing width measurements

with the progression of testing. In the SZ section in both examples there is slightly reduced width due to

rope elongation. This similarly occurs in the SBZ section in both examples, however there are increases

in the width detected in some subsections towards the end of the monitoring period.

In general, width changes in the SZ and SBZ sections do not exceed 5 %, whereas the DBZ section

width changes are shown to have reached 10 % and more.

Figure C.12: Percentage change in width from camera 2, perpendicular to sheave axis, at

position DBZ-A-1 for all ropes.





Figure C.13: Percentage change in width from camera 2 for all zones in Rope 5.

Figure C.14: Percentage change in width from camera 2 for all zones in Rope 7.





C.4.3 Thermal imaging

Figures C.15 to C.16 show the results for the average, maximum, minimum and standard deviation of

the temperatures measured in the ROI defined in Figure C.7 for Ropes 4 and 7 respectively at different

times during testing.

Each curve represents the temperature measurements of the rope sections visible to the thermal

camera as it is cycled back and forth over the sheave. The measurement starts in the SZ section, with

the mid point in the DBZ section, then cycles back to the SZ section.

In Rope 4, the average temperature in both the SBZ and DBZ sections measured at 289 hours has

decreased in comparison to the temperatures at 162 and 192 hours. Additionally, the DBZ section is

shown to have a lower maximum temperature and minimum temperature compared to the measurements

at 162 and 192 hours.

Similarly in Rope 7, the average, maximum and minimum temperatures in the DBZ section measured

at 338 hours are lower in comparison to the measurements at 34 and 167 hours. The SBZ average,

maximum and minimum temperatures at 34 and 338 hours are observed to be similar values. This

behaviour is discussed later.

Figure C.15: Rope 4 average, maximum, minimum and standard deviation temperature

measurements along the rope for one cycle with respect to the associated test time.





Figure C.16: Rope 7 average, maximum, minimum and standard deviation temperature

measurements along the rope for one cycle with respect to the associated test time.





C.5 Discussion

In order to monitor the rope state, CBOS testing is used as it can represent rope use during offshore lifting

operations. Focus is put on evaluating adequate monitoring methods that can potentially be applied for

field use.

C.5.1 Local length

C.5.1.1 Findings

For all five ropes tested the sections monitored in the straight zone (SZ) and single bend zone (SBZ),

there were no strains that exceeded 1 % of the original length. Ropes 4, 5 and 7 ran for significantly more

cycles than Ropes 3 and 6, with significant longer elongation detected in the two DBZ sections than the

SZ and SBZ sections. This can be attributed to DBZ sections being subjected to twice as many bends

over the sheave than SBZ.

Figures C.10 and C.11 show the changes detected using the length calculation method throughout

each test, with Rope 7 displaying the largest changes in the marked DBZ sections. There is observed to

be a heterogeneous spread of strain changes in the DBZ sections across all the samples, most severe for

DBZ-A in Rope 7.

Local length changes are attributed to rope structure rearrangement as the test progresses as well as

to actual fibre creep. Extruded loops occur as strands are bunched together with the flexing-unflexing

movement during bending, pulling portions of the sub-rope through the whole structure, resulting in

length changes at the local scale. The strands also rupture and fuse, contributing to rearrangement of

the rope morphology.

Figures C.17 and C.18 are examples taken from the processed data and show the significant changes

in both length and rope structure from the first to the final length measurements. There are instances of

”reciprocal” changes where one subsection increases or decreases in length and the corresponding opposite

behaviour occurs in the continual subsection. The subsections show strands move between each other

and give rise to heterogeneous displacement of markers.

C.5.1.2 Uncertainties and error sources

The markers used for detection are not guaranteed to be placed at the exact same position relative to

the test sheave on each rope, contributing to variations in the measurement results.

The deterioration of the rope condition causes displacement in the position of the rope with respect

to the camera position, for example in Rope 5 where there was pronounced twist before failure. Such

displacements of the rope will contribute to variation in the local length and width measurements.

The algorithm relies on finding the centre point of each marker. The wear on these markers while

testing progresses can have an effect on the lengths measured. It is acknowledged than any reduction in

size of these markers is insignificant compared to the change in length of the subsection. The number of

tests conducted are too few to quantify the errors so far.

C.5.1.3 Application to condition monitoring

The heterogeneous local length changes observed between ropes, across the DBZ sections in particular,

indicate that rope condition monitoring must be addressed at strand level. What the rope experiences

during CBOS motion defines what the system must be capable of monitoring. The present method is





Figure C.17: Subsection DBZ-B-1 in Rope 7 at the beginning of the test (top) and just

before rupture (bottom).

Figure C.18: Subsection DBZ-B-2 in Rope 7 at the beginning of the test (top) and just

before rupture (bottom).

shown to be able to reliably track the changes in local length during testing, allowing local length to be

properly mapped during rope lifetime.

The majority of local length changes over 1 % came after half the rope lifetime, thus this could serve





as warning and call for further inspection when the total for subsection length exceeds this value, as well

as an aid to subsequent decision making.

In Figures C.17 and C.18, local relative distortion of the strand is shown to be -11.4 % and +10.8 %

in the DBZ-B-1 and DBZ-B-2 subsections respectively when comparing the first and final measurements.

The overall middle relative distortion equates to -0.6 % across the whole lay length in DBZ-B, highlighting

the need for sub-lay length measurements.

The presented method is effective at monitoring the local length changes and also provides a useful

visual aid to rope deterioration and how the related subsections interact with each other at strand level.

C.5.2 Width

C.5.2.1 Findings

Extruded loops and ruptured strands become more apparent in the DBZ sections due to repeated bending

and unbending, which are detected effectively by the visual system and algorithm through the larger

relative width change. The structure of the rope rearranges due to repeated deformation. It is noted that

generally there are small variations and continuous increase in width despite the elongation of the same

sections.

Unlike the local length measurements, there is no evidence of ”reciprocal” changes. Each subsection is

shown to follow the trend of the neighbouring subsection despite the occurrence of the opposite elongation

behaviour in some of the ropes.

After inspection of the processed images from Rope 4, there is visible evidence of substantial twist

in the rope, explaining the observation of varying widths for Rope 4 in section DBZ-A-1.

C.5.2.2 Uncertainties and error sources

The rope will not maintain the exact same perspective to the camera due to slight rotation while testing.

Since several hours pass between each recording, it is possible that the portion of the rope in contact

with the sheave changes.

The rope colour also changed slightly during degradation, meaning that edge detection created from

applied binary image created through the colour mask may not resemble the ”true” edge of the rope.

Imputation is used to compensate for missing data and can add uncertainty as it is just an interpo-

lation. However the rolling mean smoothing process helps to show the ”general trend” in width change

with these values included.

C.5.2.3 Application to condition monitoring

Width monitoring is vital as it indicates changes in rope structure, including both in shape or through

deterioration such as extruded loops or ruptured strands. The width calculation method applied is adept

at monitoring these changes over the testing period, but it also clearly displays the differences in the

different bending zones.

An example of a processed image is shown in Figure C.19 from Rope 3 as observed from Camera

3. There is visible deterioration in the rope structure with the presence of extruded loops clearly seen

before rupture. The width calculation algorithm adapts to this, with the rope edge detection including

the extruded loops. In this instance, the shortest distance in the constituent regions of interest will be





higher and subsequently produce a larger median value, allowing the changes to be quantified throughout

the rope lifetime.

Figure C.19: Section of Rope 3 at the beginning of the test (top) and just before rupture,

featuring extruded loops (bottom) as seen from camera 3.

Substantial movement of the rope could be a sign that significant deterioration or structural rear-

rangement has occurred during use. Monitoring these variations using this method can find use as an aid

to decision making regarding discard or re-classification of the rope in use, as well as documenting the

exact location of damage accumulation along the rope. Using the applied method it is straight-forward

to gauge trends in width change and inspect the images that coincide with the measurements.

C.5.3 Thermal imaging

C.5.3.1 Findings

Thermal images are recorded as they indicate frictional and deformation work in the rope. Figures C.15

to C.16 show a distinct temperature measurement curve in each rope. However, within each recording

there are distinct zones visible due to temperatures associated with the bending behaviour in each section.

The first and second plateaus in the curves are associated with the SBZ and DBZ sections respectively.

After increasing from the beginning of the test, the average temperature in the DBZ section is shown

to decrease as the rope heads toward rupture. This also coincides with lower maximum and minimum

temperature at the DBZ section at the more advanced recording times during testing.

The varying temperatures in the sampling areas of the rope surface are given by the standard devia-

tion. This follows the same ”plateau” pattern as the temperatures. There are larger deviations recorded

in the DBZ sections at the more advanced recording times in Ropes 4 and 7. However, the deviations

are approximately the same in the SZ section for the recording times in Rope 4 but are larger in Rope 7.

Additionally in the transfer points between the SZ and DBZ sections in Rope 7 show larger variations.

C.5.3.2 Uncertainties and error sources

The thermal camera is placed at approximately the same distance from the sheave entrance for each

test but slight variations in distance from the rope are possible. The camera distance from the rope





is measured for each rope, and input to the camera software, so these movements do not influence the

accuracy of the recorded temperatures.

Similar to the local length and width measurements, differences in the rope mounting can also lead

to slight variation in values recorded. The temperatures are recorded from the portion of the rope visible

in the defined ROI, therefore if noticeable twist is present, the displacement of the rope will result in

slight differences in temperature recording.

Similar rope degradation and structural rearrangement will result in greater movement of the rope

as the test progresses. The ROI is stationary and is chosen so that a portion of the rope will always be

visible in the defined boundary. There is greater vertical movement in the rope towards the end of testing

instead of the ”smoother” transition of the rope portion visible in the ROI at the start of the test. It is

possible this movement can give variation in the measurements.

Noticeable variations in temperature measurement were observed at the transfer points between the

SZ to SBZ and SBZ to DBZ sections. The measurement ROI will contain portions from two different

bending zones at the transition points and therefore a greater variation of temperatures. Additionally,

the largest overall variations are observed at the latter stages of testing in the DBZ sections.

C.5.3.3 Application to condition monitoring

Thermal monitoring using an IR camera brings not only temperature measurements but can provide

another useful visual aid to assess the rope surface. The method applied allows each specific bending

zone to be scrutinised in detail and monitored over time. Moreover, the results found using the thermal

camera in this study allow the physical changes of the rope to be compared concurrently with temperature.

Monitoring of the average, maximum, minimum and variation by standard deviation gives information

on changes into the physical structure of the rope.

The lower average, maximum and minimum temperatures that coincide with larger standard devia-

tions at more advanced testing stages, particularly in the DBZ section, can be attributed to the increasing

presence of structural degradation in the rope. As detected with the width measurement algorithm, the

extruded loops and ruptured strands that are visible and more prevalent in the latter stages of testing via

the thermal camera, which can be seen in Figure C.20. These degradation features are markedly cooler

than the main body of the rope and contribute to the spread of measured temperature values.

The transfer points between the distinct bending zones are also worth investigation. As expected,

heat generation will vary due to different bending regimes. The distinct shape indicates that the thermal

conductivity in the rope is low and also that the effect of cooling by environment is negligible.

Visible deterioration of the rope will be noticeably more between the SZ and SBZ sections and

the SBZ and DBZ sections respectively due to the differences in temperature between the zones. The

increasing presence of these cooler temperatures through accumulated damage and effect on temperature

measurements serves as an aid to find the exact positions and time for further inspection.

C.6 Future work

The physical properties of the rope have been measured during repeated deformations in a CBOS regime,

thus monitoring the rope state change. For future testing, there is potential for more local length

measurements throughout the SBZ and DBZ, with particular emphasis on applying markers to the same

sub-rope through the test, rather than just the general area, to gain a better overview of localised changes

in the rope condition. Additionally, the tests will make use of higher tensions in order to more accurately





Figure C.20: An example of Rope 7 thermal images at the beginning of the test (top) and

just before rupture, featuring extruded loops (bottom) and ruptured strands.

reflect safety factors used in industry. Monitoring at these conditions will also give useful insight into

how the various condition indicators are influenced in different testing conditions. This will be performed

on different types of rope to confirm applicability.

In real application, the same portion of the rope is not subject to constant repeated bending but

rather distributed along the rope. This will also involve lifting operations with varying size of payloads

instead of a constant applied tension. Additionally there will be differences in moisture and temperature,

depending on vessel location and the surrounding environment. These are all factors that have to be

considered to for testing and further assess the condition monitoring system effectiveness.

Increased understanding of the underlying physical mechanisms for the changes observed in local

length, width and temperature is also required. Changes in the physical structure that occur as damage

progresses and its subsequent effect on properties such as thermal conductivity in the rope and heat

transfer to the environment require greater understanding. This would mean more informed decision

making using the monitoring system and better interpretation of the trends observed in measurement

changes.

In the same way inspectors are trained and build up experience by investigating for certain condition

indicators during routine visual inspection of rope, there is potential to use machine learning algorithms

to detect patterns in rope degradation that cannot be detected by normal visual inspection. The data

shows that there are changes in the various measurements that coincide with the deterioration of the

rope. These condition indicators can be extended to use as features for machine learning application. A

proper understanding of these more subtle changes and identification of deterioration patterns has the

potential to develop better RUL estimation for fibre ropes subject to CBOS regimes.

C.7 Conclusions

This paper presented results from a computer vision monitoring system, thermal camera and distance

measuring laser to monitor the deterioration in ropes subjected to a CBOS regime. The computer vision

algorithms presented are capable of detecting localised length changes subject to appropriate marking





in the rope, as well as detecting rope damage such as extruded loops and ruptured strands through

cross width detection. The deterioration of the rope can also be monitored via thermal imaging, as it is

capable of detecting temperature changes that coincide with structural deterioration in the latter stages

of testing.

This combination of monitoring gives useful insight into fibre rope condition from different per-

spectives and emphasises the need for localised strand-level monitoring at specific sections in the rope.

However, if longitudinal distortion is to be used, then a thorough and consistent account of the rope

pattern and structure is needed, given the demonstrated potential for variations.

Ultimately, the detection of changes over time can be used as condition indicators and can be engi-

neered into features in application of machine learning algorithms to classify damage and better gauge

RUL for fibre rope subject to CBOS regimes.
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Appendices

C.9 Instrumentation details

C.9.1 Optical camera

Table C.3: Optical camera specification

Maximum frame rate 169 fps

Resolution 1.3 MP

Pixels (H x V) 1280 x 1024

Pixel size 4.8 x 4.8 µm

C.9.2 Thermal camera





Table C.4: Thermal camera specification

Image acquisition 0.0015 Hz to 125 Hz

Temperature range -20 ◦C to 350 ◦C

Pixels (H x V) 640 x 512

Accuracy ± 2 ◦C or ± 2 % of reading

C.9.3 Distance measuring laser

Table C.5: Distance measuring laser specification

Typical measuring tolerance ± 2.0 mm

Typical range 40 m
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Abstract – Fibre ropes have been shown to be a viable alternative to steel wire rope for offshore lift-

ing operations. Visual inspection remains a common method of fibre rope condition monitoring and has

the potential to be further automated by machine learning. This would provide a valuable aid to current

inspection frameworks to make more accurate decisions on re-certification or retirement of fibre ropes in

operational use. Three different machine learning algorithms: decision tree, random forest and support

vector machine are compared to classical statistical approaches such as logistic regression, k-nearest neigh-

bours and Näıve-Bayes for condition classification for fibre ropes under cyclic-bend-over-sheave (CBOS)

testing. By measuring the rope global elongation throughout the CBOS tests, a binary classification

system has been used to label recorded samples as healthy or close to rupture. Predictions are made

on one rope through leave-one-out cross validation. The models are then assessed through calculating

the accuracy, probability of detection, probability of false alarm and Matthew’s Correlation Coefficient,

and ranked based on the results. The results show that both machine learning and classical statistical

methods are effective options for condition classification of fibre ropes under CBOS regimes. Typical

values for Matthews Correlation Coefficient (MCC) were shown to exceed 0.8 for the best performing

methods.

D.1 Introduction

As offshore lifting operations move to deeper waters exceeding 3000 m, the possibility of implementing

fibre ropes instead of steel wire ropes has shown to be a viable alternative. The benefits of fibre rope over

steel ropes is well documented ([2], [3] and [4]) but condition monitoring and determination of retirement

criteria remain issues. Machine learning is rapidly gaining traction as a condition monitoring method

across a number of industries ([17], [16] and [147]). Due to improved monitoring methods and storage of

167



historical data, there has been a shift in research towards “intelligent maintenance systems” focusing on

automatically determining the condition and detecting faults of engineering components with less human

intervention. Condition monitoring for fibre ropes used for subsea deployment also has potential for

further advancement with machine learning. Manual inspection methods detailed in industrial standards

are still mainly used in condition classification and are still largely based on experience from mooring

application ([6], [7] and [48]). Machine learning adaptation would serve as a useful aid to these methods

and allow inspectors and operators to make a more informed decision on rope retirement or re-certification.

Fibre rope degradation mechanisms related to mooring and offshore lifting have been summarised in

previous studies ([21], [22] and [11]). These include but are not limited to: creep, temperature, abrasion,

tension fatigue and compression fatigue. These damage mechanisms and potential failure modes add

difficulty in developing an all-encompassing method of monitoring fibre ropes. Therefore a combination

of machine vision cameras, IR camera and a distance measuring laser were proposed for this study.

Machine learning methods have previously been applied to condition classification of steel wire ropes

for hoisting in the mining sector. The use of k-nearest neighbours and artificial neural networks was

adapted to classify the condition of balancing tail ropes in [112] and a type of support vector machine

to classify rope faults based on vibration data in [111]. To the authors’ knowledge there has been no

publicly released research related to machine learning for condition classification of fibre ropes.

Condition monitoring for other engineering components benefits greatly form publicly available data

sets, therefore allowing focus to be fully put on development for intelligent maintenance algorithms,

rather than focusing on data recording. Fibre ropes for lifting operations do not benefit from this and

major efforts are required to create these data sets. This article extends research on such condition

monitoring methods performed at the University of Agder, Norway ([141], [148] and [149]) that make

use of cyclic-bend-over-sheave (CBOS) tests monitored by both computer vision and thermal monitoring.

The changes in geometry and temperature of the rope recorded during CBOS testing are used to create

features that form the machine learning models.

In this study decision trees, random forest and support vector machines are compared to classic statis-

tical methods such as k-nearest neighbours, logistic regression and Näıve-Bayes for binary classification of

fibre rope condition. The methods chosen for application reflect current practice in machine learning for

diagnostics of engineering components. An introduction to these methods is outlined in Section E.2 and

the experimental set-up with associated data processing steps are summarised in Section ??. The results

of the classification models are presented in Section E.4, followed by discussion in Section E.5. Subse-

quently, the potential for industrial application of machine learning for fibre rope offshore construction

cranes is discussed in Section E.6. Finally, conclusions are offered in Section E.7.

D.2 Methods

In this section, a brief overview of the methods that are applied in the present study is given.

D.2.1 Decision trees (DT)

This study applies the decision tree algorithm as detailed in [119], using the implementation in scikit-

learn [120]. It comprises a flowchart that assigns each sample to one of two classes based on a condition

selected from the features available. The samples are split based on an attribute selection measure, in

this case the Gini index, which measures the impurity of a data split with respect to the classes available

([121] and [122]). This process is performed recursively until all samples are assigned to a class or there





are no more features available to make splits. The depth of the trees can also be limited to change the

complexity of the model. For example, a deeper tree can lead to a more accurate result but has the risk

of creating an overfitted model due to unrealistic complexity. Since there is a random element involved

in the algorithm each tree configuration is repeated 20 times to assess the spread and confidence in the

classification predictions.

D.2.2 Random forest (RF)

Random forest is an example of an ensemble learning method comprised of many decision trees. The

method is described in detail in [123] and also implemented using scikit-learn [120]. A random forest

is formed with a defined number of decision trees, where each individual tree is formed on a subset of

samples and features created through random sampling with replacement. These multiple predictions

are combined in the bagging phase [124], where the a class is assigned based on a majority vote by the

individual trees in the random forest. Similar to the decision tree algorithm, the depth of the individual

tree can also be controlled. The number of trees that make up the forest can also be adjusted. Each

configuration is repeated 20 times to assess the variation in the predictions made by the model.

D.2.3 Support vector machines

Support vector machine has also found use for classification problems as defined in [125] and are im-

plemented through scikit-learn [120]. The algorithm works by fitting a hyperplane that divides a set of

instances into classes. The optimal solution is separated is where the margin that separates the instances

has been maximised, with the instances used referred to as “support vectors” [126]. The generalisation

to the nonlinear case is achieved by applying the so-called kernel trick, using nonlinear kernel functions

for transforming the task into a higher-dimensional space, in which the number of possible linearly sep-

arating hyperplanes is larger than in the original space. In this study linear (SVM-linear), Sigmoid

(SVM-Sigmoid) and radial basis function (SVM-RBF) models are applied to alter the hyperplane shape

applied to the data. Each configuration is performed once and the performance of the kernels is compared.

D.2.4 Classical statistical methods

The machine learning models detailed previously are also compared and assessed along with classical

statistical approaches such as k-nearest neighbours [127], Näıve-Bayes [128] and logistic regression [129].

These methods are also commonly used for classification problems as an alternative to machine learning.

As this research is new use for machine learning, classical statistical methods are also investigated to

assess if they are sufficient enough to achieve good classification results.

D.3 Experimental study

D.3.1 CBOS testing and data acquisition

Two different types of 28 mm diameter, 12-strand HMPE fibre rope (denoted “A” and “B”) were tested

in a CBOS test machine installed by DEP Engineering at the Mechatronics Innovation Lab (MIL) in

Grimstad, Norway. The machine has two sheaves: a driving sheave and a test sheave. The test sheave

is designed to be smaller than the driving sheave so that the rope break would occur there. The driving





sheave is controlled via a motor which instigates rope movement during testing. The test sheave is 800

mm diameter and made of 42CrNiMo4 steel with a U-groove profile, which equates to a D/d ratio of

28.6:1. It is attached to a portion of the machine which moves with the extension of a hydraulic cylinder.

Tension in the rope is applied and maintained via this hydraulic cylinder, which will extend as the test

progresses. Each rope is tested until failure, which can occur through rupture or accelerated extension of

the rope detected by sensors in the cylinder. An overview of the machine is shown in Figure D.1. The

safety factor (SF) of the each test is defined by expression A.1:

SF =
MBLrope

Ttest
(D.1)

where MBLrope is the rope minimum break load as specified by the manufacturer and Ttest is the

test tension exerted by the cylinder in the CBOS machine. The safety factors used in testing for data sets

A and B are 11 and 8, respectively. Data set A contains five ropes and data set B contains four ropes.

Data is acquired from a set-up that includes: four machine vision cameras, a thermal camera and a

distance measuring laser. The features used in model training are derived from the data acquired through

the monitoring system. Algorithms developed in OpenCV [117] are used to extract local length and width

data from the machine vision cameras. The change in these parameters as result of fatigue and abrasion

during CBOS testing can be monitored. FLIR software with built-in features is used for thermal data

[118] recorded with the IR cameras. This allows the temperature in each distinct bending zone to be

monitored throughout testing. The distance measuring laser allows the global length to be continuously

monitored and the effect of creep on elongation to be monitored. Further specific details related to data

acquisition are available from previous work [149].

Figure D.2 shows a schematic of different bending zones measured throughout each experiment: the

straight zone (SZ), single bend zone (SBZ) and double bend zone (DBZ). For each of the eight sections

defined in Figure D.2, one length measurement and four width measurements are used as features. Each

separate local length measurement equates to half a lay length. Computer vision data is recorded for

2000 images, corresponding to 13-15 complete cycles, every 1000 cycles. The values for each recording

are thus aggregated to give median, maximum, minimum and standard deviations for these geometric

features. The thermal camera was set to sample at 100 Hz for 2000 images, resulting in a 20 seconds

video for each period. This was sufficient to record at least one full cycle in the CBOS test. Temperatures

are only available for the lumped zone SZ, SBZ and DBZ and the temperature values within the rope

part of each relevant image are aggregated as average, maximum, minimum and standard deviation. A

complete list of features used in this study is shown in Table 1.

D.3.2 Data Pre-processing

After recording the data is treated for outliers and missing data. Outliers in the geometric measurements

are handled using mean absolute deviation. This is due to the morphological operations in the width

and length calculations occasionally detecting points outside of the rope region of interest in the images.

Therefore, this is applied to both length and width measurements and will exclude outliers from the

median, maximum, minimum and standard deviation calculations.

Missing data may occur as a result of instrumentation issues. The machine learning algorithms

applied in this study omit the whole record if any feature has missing data, meaning useful data can also

be left out. Therefore imputation of missing data points is done through interpolation.

After these steps, the raw measurements from the data acquisition phase are scaled by subtracting

the mean value and dividing by the standard deviation. This done for each rope tested to improve





Figure D.1: Overview of CBOS machine at Mechatronics Innovation Lab, Grimstad,

Norway.

Figure D.2: Summary of bending zones monitored during CBOS testing.

comparability between the rope samples and is a standard step to prepare data for machine learning

application.

D.3.3 Labelling

To perform classification predictions on the ropes, the records need to be appropriately labelled. This

study is a binary classification problem, therefore the ropes can be considered either Healthy (HE) or Close

To Rupture (CTR). The development of the global length resembles a creep curve with three distinct

stages: primary, secondary and tertiary creep. The tertiary creep stage encompasses the accelerated

creep phase after the transition point. Fitting the global length development to a polynomial allows a

quantitative definition of the transition from secondary to tertiary creep, thereby labelling each sample

as “HE” or “CTR”, as shown in Figure D.3. The “CTR” labelled examples equate to the accelerated

creep phase. This labelling process allows an automated, quantitative definition of rope condition to be

implemented.





Table D.1: List of features used for condition classification in data sets A and B.

Data type Feature (zone) Parameter

Geometric

Local length:

SZ1, SZ2,

SBZ1, SBZ2,

DBZ-A-1, DBZ-A-2,

DBZ-B-1, DBZ-B-2 median,

maximum,

Width: minimum,

SZ1, SZ2, standard deviation

SBZ1, SBZ2,

DBZ-A-1, DBZ-A-2,

DBZ-B-1, DBZ-B-2

Thermal

average,

Temperature: maximum,

SZ, SBZ, DBZ minimum,

standard deviation

D.3.4 Model Training and Assessment

Leave one out cross validation (LOOCV) is performed on the CBOS data sets. A summary of the steps

in the LOOCV process in this study are detailed in Figure D.4.

The results are shown through metrics that are derived from Confusion matrix description, which is

shown in Figure D.5.

The correct predictions can be summarised as true positives (TP) and true negatives (TN) and the

incorrect classifications are quantified as false positives (FP) and false negatives (FN). The negative and

positive classes coincide with the HE and CTR classes, respectively. The metrics used for model assess-

ment accuracy (ACC), probability of detection (POD), probability of false alarm (PFA) and Matthews

correlation coefficient (MCC) are shown in Expressions D.2- D.5:

ACC =
TP + TN

TP + TN + FP + FN
(D.2)

POD =
TP

TP + FN
(D.3)

PFA =
FP

FP + FN
(D.4)

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(D.5)

ACC is the most general of the metrics presented in this section and simply takes into account the

number of correct predictions across of the whole data set. The closer the value is to 1, the better the





Figure D.3: Example of labelling process on rope A5 with transition point between both

classes.

Figure D.4: Operations flowchart.

model is performing. However, this does not take into account the number of samples present in each

class.

POD can be summarised as the likelihood of a CTR being correctly classified. The closer the metric

is to 1, the better the model is deemed to have performed in this aspect. A model that fails to detect

CTR samples runs the risk of allowing the rope to continue operation until it fails.

PFA is interpreted as the probability of an “HE” sample being mislabelled as “CTR”. If a model

has a higher tendency to classify samples as CTR when they are HE, it would lead to more false alarms

during condition monitoring. This could potentially prove to be costly due to operational stoppages for

inspection and therefore a lower value is preferred.

MCC takes into account all four values in the confusion matrix and provides a more balanced assess-

ment regardless of whether one class is disproportionately over- or under-represented. A value close to 1

means that both classes are being predicted well and show that true and predicted classes are correlated.

However, none of the metrics give information about what specific samples have been misclassified.

Figure D.8 shows an example the classifications predicted by the models at the various stages of the CBOS

test. Separate results are presented for data sets A and B and the values of the metrics are averaged over

the number of individual ropes in each data set. The algorithms are then ranked and compared based

on the predictions made.





Figure D.5: Overview of confusion matrix.

Figure D.6: Example of changes in rope in DBZ between the start and the end of a CBOS

test.

D.4 Results

D.4.1 CBOS test results

Figure D.6 shows an example of changes observed in the rope from the start and end of the CBOS test.

Using the images captured from the computer vision set-up (top image), it is possible to monitor changes

in both local length and width. In this example there is significant localised increase in length, as well

as the presence of ruptured strands and extruded loops. These defects can also be observed using the

thermal monitoring set-up (bottom image). The ropes structure changes as the test progresses and the

temperature difference between warmer compact core and the cooler ruptured strands is clearly visible.

The number of cycles each rope had at failure is summarised in Table 2. It can be seen that the

number of cycles counted for data set B is fairly consistent, however there are slight variations with data

set A. These “earlier” failures for ropes A1 and A4 are attributed to the splicing used in these rope

samples. Due to experimental limitations, a portion of this splice was in contact with the driving sheave,

resulting in failure there instead of at the test sheave.





Figure D.7: Confusion matrices for results on rope A5 for six different algorithms.

D.4.2 Classification Comparison

Figure D.7 shows an example of confusion matrix results for the six different techniques applied to rope

A5. Figure D.8 shows an qualitative example of the six different techniques applied and the results given

for rope A5. The true transition point between the HE and CTR classes is highlighted by the vertical

blue line.

It is shown that most models identify a too early transition between the classes. There are a sub-

stantial number of HE instances classified as CTR before the transition point indicated by the vertical

blue line for every different model.

The decision tree is shown to have a particularly poor performance in comparison to the other

algorithms. It misclassifies a significant number of both HE and CTR samples. Moreover, when a rope

break is imminent it continues to classify the rope as safe for use.

k-nearest neighbor gives a lot more false alarms earlier in the CBOS test than the other algorithms.

This could prove costly in terms of operation downtime, as a rope identified as potentially failing requires

inspection and remedial actions to ensure continually safe use.

D.4.3 Average Metrics

The average results for metrics ACC, POD, PFA and MCC in data set A and B are shown in Figure D.9

to Figure D.12. The best performing configuration of each algorithm is presented and assessed for

classification performance.

An ACC value that exceeds 90 % generally indicates a very good performance, as it measures how

many correct classifications were made across all samples. Random forest and SVM-linear were shown





Figure D.8: Example of classification results on rope A5 for six different algorithms.

Figure D.9: ACC results for each algorithm compared between data set A and B.

to be best performing machine learning algorithms in data sets A and B respectively.

k-nearest was also shown to have similar scores in data set A to random forest, however as shown in

Figure 9, this can be deceptive due to extensive mislabelling of HE samples as CTR in the earlier portions

of the rope test time. These misclassification are reflected by the higher PFA score, indicating that there

is around a 10 % probability of a HE sample being misclassified as CTR. These types of misclassification

could prove costly due to increased down time for inspections.

Similarly, POD above 90 % also indicates a very good performance as this assesses how effective the

model at classifying the CTR class. This was shown to drop between data sets A and B, indicating that

the data used in B was to the detriment of successfully classifying the CTR class.

Generally, a lower PFA score indicates better performance. PFA is shown to decrease dramatically

between data set A and B. From the outset a zero PFA score is ideal, however in the case of Näıve-Bayes,

random forest and decision tree in data set B this indicates the models were biased towards predicting

the majority of the samples as HE. There was no misclassification of HE samples as CTR but they failed

to identify a number of CTR samples. These models could lead to dangerous operation as a rope that is





Figure D.10: POD results for each algorithm compared between data set A and B.

Figure D.11: PFA results for each algorithm compared between data set A and B.

nearing the end of its usage could potentially be classified as being safe to continue.

SVM linear increases dramatically in performance from A to B. This is reflected in the increase in

scores for both MCC and ACC between A and B, indicating that the algorithm was able to better predict

both classes with the change in data used.

Generally the ACC, POD, PFA and MCC show distinct groupings in data set A. When only assessing

ACC and POD, the best performing algorithms could be interpreted as performing at the same level.

However, when considering PFA and MCC scores, there is a clearer separation between the algorithms

indicating that these metrics have to be used in combination to properly assess a model.

D.5 Discussion

The performance of each method is assessed and discussed individually in the following sections. Then the

performance of the machine learning algorithms against the classical statistical methods is also considered

and discussed. Despite discrepancies between the rope lifetimes, it is possible to achieve good condition

classification results using both machine learning and statistical approaches with all the viable data from

the zones outlined in Figure D.2.





Figure D.12: MCC results for each algorithm compared between data set A and B.

D.5.1 Decision Tree

The decision tree method implemented in this study performed worse than all other algorithms, both

machine learning and statistical based. Decision tree is an example of a heuristic algorithm and will

classify instances based on the feature that has the lowest Gini index value. This approach causes the

results of individual trees to vary, as a feature may produce the same “impurity” but the resulting

segmentation point could classify samples differently. Unless explicitly programmed to make consistent

data splits on the same features, the decision tree will produce variation in results.

The method is however shown to be useful for exploratory analysis of the features best suited to

distinguishing between the two classes established in this study. For fibre rope condition monitoring of

CBOS testing it highlights that the features derived from the SBZ and DBZ are more relevant than those

from the SZ section. This is as expected, since more bending occurs in these zones leading to greater

deformation and more variation in width, length and temperature to form data splits. The method should

not be used as a stand-alone classification method but can be used as a technique for feature reduction

before repeating the modelling process with other machine learning or statistical approaches.

D.5.2 Random Forest

Random forest was the most effective method for data set A but performed worse than all other algorithms

apart from decision tree in data set B. Data set B had less data than data set A, so therefore the decrease

in the amount of data to split the records contributes to the detriment in performance. This is due to the

model not being able to achieve the same model complexity at shallow tree depths with fewer samples.

This highlights the importance of having an extensive data set to make predictions when using random

forest as indicated in data set A.

The technique is robust due to the properties of the algorithm, with random sampling with replace-

ment and the majority vote system of trees contributing to more stable predictions. It is also possible

to achieve excellent predictions with shallow tree depths, which limits the need for excessive computer

capacity. However again, both of these characteristics are reliant on substantial and good quality data

to achieve the model complexity needed to give the good results achieved through random sampling and

the majority vote system.





D.5.3 Support Vector Machine

The linear kernel was not as effective in data set A, however was the best performing machine learning

algorithm in data set B. The linear kernel is the simplest implementation of SVM, which puts a straight

hyperplane in the higher dimensional space to separate the samples into classes. In data set A, there is

lower temperatures in the bending zones during the experiment compared to data set B. Features with

measurements that change little contribute noise to the process of finding the optimal hyperplane. In

data set B there were larger temperature differences between the bending zones due to greater tension,

allowing a more optimal split to be found due to more distinctly scaled values.

SVM using both the radial basis function and sigmoid kernels performed to more or less the exact

same levels in both data sets, indicating the hyperplane shapes imposed were more adaptable to the

differences between data sets A and B. While the linear kernel is limited in the separating hyperplane it

can impose for class separation, the other kernels presented here can form a more complex hyperplane

that can serve to separate the classes more effectively. Compared to decision tree and random forest, the

SVM is a much more adaptable and consistent algorithm as reflected in the results presented.

D.5.4 Machine Learning and Statistical Methods Comparison

Both the machine learning and classical statistical approaches were shown to be valid methods for clas-

sifying condition of fibre ropes during CBOS testing. The k-nearest neighbours algorithm was shown

to perform just as well or slightly worse than the best performing machine learning algorithm when as-

sessed using only metrics. However, Figure D.8 demonstrates that there is a possibility that k-nearest

neighbours produces a substantial amount of false alarms at earlier stages of testing. The false alarms

for random forest occur closer to the transition point between classes and avoid very early stoppages.

However, the results presented in this paper show that there is merit in applying machine learning for

fibre rope condition monitoring. In a machine learning application, the models created can only perform

if there is enough data available. In situations where data is limited a classical statistical approach can

suffice, as shown by the robust performance of logistic regression and k-nearest neighbours across both

data sets. Logistic regression was also shown to be less hampered by smaller data sets as reflected by the

stronger performance in data set B than in data set A. Some machine learning algorithms in this study,

such as decision tree and random forest, performed worse in data set B than in data set A and failed to

adapt to the smaller data set. Also SVM-linear showed an increase in performance with a smaller data

set.

This also highlights the adaptability of different machine learning models for different circumstances.

In situations where there is both enough and good quality data, machine learning should be used as the

approach for condition classification. However, in situations where there is a smaller data set, a classical

statistical approach could be more appropriate before attempting machine learning to find potential

improvements in condition classification.

D.6 Future Work and Adaptation for Field Deploy-

ment

Further work is required to develop machine learning applied to fibre rope condition monitoring. There

is a possibility of improving on the current feature set by considering the time each rope spends at





Table D.2: List of cycles at failure during CBOS testing in data sets A and B.

Data type SF Rope ID No. cycles at failure

A 11

A1 73,324

A2 122,368

A3 120,430

A4 87,314

A5 143,374

B 8

B1 14,948

B2 13,883

B3 13,901

B4 13,998

elevated temperatures, which could give further insight into rope lifetime. Moreover, embedded magnetic

or electric threads could be weaved into the rope, which would allow additional data processing techniques

to assess rope degradation. Combining these techniques with the features outlined in this paper can also

improve prediction results.

Another potential improvement could be through limiting the number of features used for training.

Features that vary very little throughout the experiments essentially contribute noise to machine learning

models and hamper classification performance. This can be done by assessing the difference between

using only geometric data and comparing it to using both geometric and thermal data. There is also the

possibility to test the effect of limiting features from certain bend zones on performance and focusing

only on features related to the SBZ and DBZ. The sensitivity of classification results to data loss can

be further explored. The effect of using only visual features or temperatures can be further explored to

assess the effect on what type of data is the best for achieving the best classification results.

In this study, the two different data sets are tested independently of one another. Combining data

from two different rope types can also be assessed to see if it improves algorithm performance. With

respect to field application, this would be useful as an industry-wide approach, where different sizes of

cranes would use potentially several different diameters and types of rope in the same fleet of ships.

Implementing the sensors detailed in this paper at a location near one of the main sheaves would give

insight into how the measurements fluctuate during a real offshore lifting operation. Additionally, the

rope sections would have to be properly tracked and marked, as different parts of the rope could be

subject to extended bending periods and heat build up due to active heave compensation during lifting

operations. The historical data could then be used to analyse the measurements and assess for patterns.

Predictions on ropes in use can be continually updated as ropes are maintained or replaced based on the

historical data from other equipment.

Data availability is also highlighted as an important factor in algorithm performance. Due to lack of

operational data for fibre ropes of offshore lifting, CBOS testing is chosen as the approach to simulate

similar forces and movements in a laboratory environment. However, CBOS testing is a long and expensive

process to perform, so therefore robust intelligence maintenance algorithms that work would be of great

advantage. Data recording was limited during these experiments, in particular for data set B, which

highlighted the need for more frequent data recording to create larger data sets.





Furthermore, there are other machine learning approaches that can be implemented for classification

problems. Neural networks are a suitable candidate as a machine learning technique, in addition to the

algorithms presented in this paper. Similar to the techniques used previously, there is potential to use

and adapt different network architectures and configurations for different data sets, such as the fibre rope

measurements presented in this paper.

In addition to condition classification, the algorithms can also be adapted for remaining useful life

estimation. Rather than simply assessing a class, a continuous variable could be developed to give a more

accurate number or fraction which predicts the rope lifetime.

D.7 Conclusion

The research in this paper has indicated that both machine learning and classical statistical approaches

based on computer vision and thermal monitoring are viable methods for condition classification in fibre

ropes. Both were shown to effectively classify fibre rope condition during CBOS testing. However, it has

also highlighted the need for a greater amount of data to truly gain advantage from different machine

learning approaches. This was shown by the inconsistent performance of random forest between both

data sets presented.

Ultimately, the methods proposed in this paper have the potential to be developed further for condi-

tion classification in fibre ropes. Additionally, with an established framework for machine learning there

is further possibility to adapt these methods for remaining useful life estimation in fibre ropes subject to

CBOS regimes.
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Abstract – Fibre rope use in cranes for offshore deployment and recovery has significant potential to

perform lifts with smaller cranes and vessels to reach depths limited by weight of steel wire rope. Current

condition monitoring methods based on manual inspection and time-based and reactive maintenance have

significant potential for improvement coupled with more accurate remaining useful life (RUL) prediction.

Machine learning has found use as a condition monitoring approach, coupled with vast improvements in

data acquisition methods.

This paper details data-driven RUL prediction methods based on machine learning algorithms applied

on cyclic-bend-over-sheave (CBOS) tests performed on two fibre rope types until failure. Data extracted

through computer vision and thermal monitoring is used to predict RUL through neural networks, support

vector machines and random forest. Random forest and neural networks methods are shown to be

particularly adept at predicting RUL compared to support vector machines . Additionally, improved

RUL predictions can be achieved by combining data from distinct rope types subject to different test

conditions.

E.1 Introduction

Fibre ropes are increasingly used for lifting operations, however there are still issues related to the

implementation. The material advantages of fibre rope are well documented [2, 22], as well as issues

inhibiting their immediate implementation connected to creep, thermal response during cyclic-bend-over-

sheave and lack of available data regarding their implementation in offshore construction cranes. To be

able to exploit this potential fully, more advanced maintenance routines must be established to challenge

the status quo of manual inspection [6]. There is significant potential and benefits with regards to avoiding

premature retirement and reducing the chance of failure during operation through the development of

intelligent maintenance methods for fibre ropes. Automation of manual processes and structured data-

driven approaches to quantify historical health data, damage progression and physical measurements can

lead to more informed decisions regarding rope condition and remaining useful life (RUL) through more

frequent documented state observation. Establishing and verifying these methods would also signal a

shift from time-based maintenance and reactive maintenance strategies to condition-based and predictive

maintenance approaches. Positive implications of this include: preventing failure of rope during operation

from an undetected fault; decreasing operation downtime for routine inspections; and avoiding retiring

ropes with substantial remaining useful life .
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Other sectors have implemented approaches for RUL estimation based on machine learning, with

several reviews available detailing specific implementations [16, 107, 108, 15, 17, 109]. However, this

study will focus on the use of data-driven approaches through machine learning applied to fibre rope

condition monitoring data for RUL prediction from cyclic-bend-over-sheave (CBOS) testing.

While the application of machine learning for prognostics and health management in fibre rope con-

dition monitoring is not as established in the publicly accessible research domain, these applications have

seen successes in other fields. Much like other engineering components, fibre ropes have damage mech-

anisms and physical changes that can be detected by sensors, which can be used in machine learning

approaches. Offshore fibre rope use in particular is concerned with RUL related to time, tension and

temperature as advocated by industry standards [8, 48]. Previous studies into rope behaviour detailing

CBOS testing also advocated acquiring this data [20]. Moving rope inspection from manual visual meth-

ods to computer vision opens up possibilities in machine learning and intelligent data-driven assessment

of fibre rope condition.

In terms of previous work on RUL prediction related directly to fibre rope, extensive CBOS testing

is normally performed, with Davies et all detailing an empirical model for High Modulus Polyethylene

(HMPE) rope based on a linear regression fit to experimental results [47]. Nuttall detailed a modified

version of the Feyrer model for fibre ropes in lifting operations in conjunction with CBOS testing [94].

There has also been other modelling approaches related to CBOS motion in rope [90, 95, 96]. Other

model-based and experimental approaches to estimate service life have also been applied to HMPE ropes,

under tension-tension regimes as seen in mooring [30]. In the context of lifting operations, machine

learning has been applied for prognostics and health management in steel ropes with a focus on mining

hoists. Onur et al used neural networks to predict RUL of steel wire rope in CBOS testing and compared

the performance to Feyrer models at different loads and diameter ratios [110]. Xue et al used a form of

support vector machines to classify steel wire rope condition based on vibration data [111] and Zhou et al

used convolutional neural networks (CNN) applied to images for classifying faults in balancing tail ropes

for mine shaft hoisting operations [112]. Finally, Huang also applied a CNN approach and computer

vision techniques that detect surface damage in steel wire ropes [113].

The contribution of the present article can be summarised as follows: machine learning - based

methods are presented for RUL prediction of fibre rope during CBOS testing. The methods comprise

neural networks (NN), support vector machines (SVM) and random forest (RF), which are applied to

data extracted from computer vision and thermal monitoring. All approaches predict a target variable,

known as the RUL factor (Rf ), which is based on the number of cycles left to failure occur during testing.

The various model performances are then assessed for their effectiveness based on both qualitative and

quantitative means. Conditions that are assessed to find the best methods for RUL assessment include:

variation of hyperparameters in the models, and variations in the variables included in training the

models. The approach of combining data from two rope types under different test conditions for training

and RUL prediction is also explored. To the authors’ knowledge, there is no publicly available detailed

study into the application of machine learning for RUL prediction specifically for fibre ropes intended for

offshore lifting until now.

The paper is organised as follows: The machine learning frameworks and how their performance is

assessed in this context are detailed in Section E.2. The experimental study and data sets are summarised

in Section E.3 and the results of the various approaches are shown in Section E.4. The results are then

discussed in Section E.5 before further work is considered and conclusions are offered.





E.2 Applied methods

E.2.1 Target variable - RUL factor

A target variable is required for regression analysis in ML and will act as the value to be predicted based

on training data used in the modelling process. The target variable used in this study is hereby referred

to as the RUL factor (Rf ), a fraction defined by equation E.1.

Rf =
CTF t

CTFtest
(E.1)

Where Rf denotes the RUL factor, CTF t is the number of cycles to failure at the time of measurement

and CTFtest is the amount of cycles at failure in each individual test where the measurements are made.

This produces a value that starts at 1 representing start of life and ends at 0 representing end of life

respectively (i.e 100% and 0%). Figure E.1 shows an example of damage progression in a section from a

rope (A5) at various Rf , with the different stages highlighted by decreasing Rf from (a) through to (d).

The images show that as Rf decreases the subsection becomes longer and there is more visible wear, as

shown by by ruptured strands and extruded loops. The errors of the predictions made by the various

approaches will be based on comparison to the Rf .

Figure E.1: Example of degradation in rope A5.

E.2.2 Neural networks

The NN structures, designated as NN1 and NN2, used in this study are detailed in Tables E.1 and E.2,

and are implemented using the Keras library [130] with a Tensorflow backend [131]. The number of

inputs in the input layer for both architectures correspond to the number of features, Nfeats, used from

the data extracted from the ropes during CBOS testing. The hidden layers are of a dense layer type with

a specified number of neurons and a Rectified Linear Unit (ReLU) activation function that introduces

non-linearity to the data. Both architectures use dropout layers that will randomly prevent 20 % of the

neuron outputs from proceeding through the network. This is a regularisation technique used to prevent

overfitting. The final output layer consists of one neuron coupled with a Sigmoid activation function

that produces a value between 0 and 1 as a result. This is done to reflect the previously described Rf in

Section E.2.1.





Table E.1: NN architecture 1 (NN1) used to predict Rf .

Layer Type

1 Input layer, Nfeats inputs

2 Dense layer, 100 neurons, activation function – ‘ReLU’

3 Dropout layer – 20 %

4 Dense layer, 50 neurons, activation function – ‘ReLU’

5 Dropout layer – 20 %

6 Output, Dense layer, 1 neuron, activation function – ‘Sigmoid’

Table E.2: NN architecture 2 (NN2) used to predict Rf .

Layer Type

1 Input layer, Nfeats inputs

2 Dense layer, 100 neurons, activation function – ‘ReLU’

3 Dropout layer – 20 %

4 Dense layer, 100 neurons, activation function – ‘ReLU’

5 Dropout layer – 20 %

6 Dense layer, 50 neurons, activation function – ‘ReLU’

7 Dropout layer – 20 %

8 Output, Dense layer, 1 neuron, activation function – ‘Sigmoid’

The Adam optimisation function was used for both network architectures specified in Tables E.1

and E.2 to update the weight values associated with the input features. The inputs are fed forward and

backpropagated through the networks for 50 epochs, with the model that produces the lower mean square

error (MSE) on the test data being saved as the best model used for predictions. Each configuration is

simulated 20 times to account for randomness in the weights assigned in the neural network and give a

more robust value for model output. The average prediction calculated from these instances is used to

compare to the ground truth Rf measured from the CBOS tests and provide a confidence interval.

E.2.3 Support vector machine

SVM was first used for classification [125] and was later adapted for regression problems [132]. To predict

the Rf in this context, the latter approach is adopted which has also been applied in other studies related

to RUL prediction [133]. Essentially, the data is separated by a hyperplane in a higher vector space. This

plane can be formed by use of a kernel. In a classification implementation, this line is used to separate

the measured vectors into classes, but for the regression analysis it will be used to predict a continuous

variable for the other instances in the data set.

To compare to the performance of the NN, it is chosen to use an SVM framework adapted for

regression analysis from scikit-learn [120]. Linear and Gaussian kernels are used to form the fit to the

data and to compare their relative accuracy to Rf are compared to other methods.

E.2.4 Random Forest

RF is an example of an ensemble method which utilises a user-specified number of decision trees created

by bootstrapping data from features and data available from a training pool [123][134]. The models





created will assign RUL values to the test samples in each individual tree and an average RUL value will

be calculated.

The RF algorithm for regression analysis from scikit-learn [120] is used for Rf prediction. The

configurations for RF implementation in each data set are specified in Table E.3 for data sets A and B.

Different tree depths are chosen due to the difference in number of measurements available between the

different data sets and to prevent overfitting. The differences between the data sets are highlighted in

Table E.5.

Table E.3: Configurations used for RF to predict Rf for data sets A and B

Data set A

Tree depth 1-4

Number of trees 50, 100, 200

Data set B

Tree depth 1-2

Number of trees 50, 100, 200





E.3 Experimental study

Figure E.2 details the flowchart of operations implemented in the ML process from beginning to final

output and performance assessment. Specific details related to (a) test methods and (b) data acquisition

are summarised in Section E.3.1 and the subsequent pre-processing techniques applied to the data for

ML application in Section E.3.2. Then in Sections E.3.3 and E.3.4 the (c) training and RUL estimation

stages and (d) model assessment are detailed.

Figure E.2: Flowchart of operations detailing steps implemented in (a) data acquisition,

(b) data pre-processing, (c) training and estimating RUL and (d) model assessment.





E.3.1 Test methods and data acquisition

The data sets were recorded from CBOS experiments performed at the Mechatronics Innovation Lab

in Grimstad, Norway. Computer vision data is extracted via algorithms developed in OpenCV [117]

and thermal data is extracted using FLIR ResearchIR 4 software [118]. Specific details of the various

operations the algorithms use to extract data are summarised in previous work detailing the various

CBOS testing campaigns [149].

The fibre ropes used in testing were 12-strand braided ropes with nominal diameter of 28 mm. The

two types used were Dyneema DM20 XBO and Samson AmSteel Blue which are designated as separate

campaigns A and B, respectively. Additionally, A is tested at safety factor (SF) 11 and B is tested at SF

8. This equates to average tensions of 1/11 and 1/8 of each rope type’s max tensile capacity.

Features are engineered from data recorded during CBOS testing and the ropes were separated into

different zones that reflect the distinct bending regimes during CBOS testing, as highlighted in Figure E.3.

These are the positions in the rope where the rope is bending and unbending due to the cyclic movement

of the sheaves. No bending occurs in section SZ, a single bend occurs during each cycle in SBZ and two

bends occur in the DBZ during one cycle. Data designated as “geo” includes geometric measurements

such as length and width, which were derived from the data recording from computer vision and global

length from a distance measuring laser. The “therm” data represents thermal measurements taken from

a FLIR A6753sc thermal camera. A list of features and their respective bending zones are summarised

in Table E.4.

Figure E.3: Summary of different rope bending zones where the features are derived from.

E.3.2 Data pre-processing

The data sets are separated into ”geo” and ”geo therm” feature sets based on data type to assess the effect

of adding thermal features to the ML model. The data set compositions are summarised in Table E.5. The

records are the number of data samples recorded by the data acquisition set up mentioned in Section E.3.1.





Table E.4: List of features created from data acquisition process.
Rope Feature (zone) Data Statistical

campaign type parameter

A Local length (SZ1, SZ2,

SBZ1, SBZ2,

DBZ-A-1, DBZ-A-2,

DBZ-B-1, DBZ-B-2)

geo Median, max,

min, stdev

A Width (SZ1, SZ2,

SBZ1, SBZ2,

DBZ-A-1, DBZ-A-2,

DBZ-B-1, DBZ-B-2)

geo Median, max,

min, stdev

A Global length geo N/A

A Temperature (SZ, SBZ, DBZ) therm Average, max, min,

stdev, range

A Temperature (SBZ-DBZ) therm Ratio

B Local length (SZ1, SZ2,

SBZ1, SBZ2,

DBZ-A-1, DBZ-A-2,

DBZ-B-1, DBZ-B-2)

geo Median, max,

min, stdev

B Width (SZ1, SZ2,

SBZ1, SBZ2,

DBZ-A-1, DBZ-A-2,

DBZ-B-1, DBZ-B-2)

geo Median, max,

min, stdev

B Global length geo N/A

B Temperature (SZ, SBZ, DBZ) therm Average, max, min,

stdev, range

B Temperature (SBZ-DBZ) therm Ratio

The ropes used in campaign B were tested at a higher tension and failed sooner than those in campaign

A, hence the lower number of records in B compared to A.

Table E.5: Data set summary for 28 mm ropes
Data set ID A geo A geo therm B geo B geo therm

Data type geo geo + therm geo geo + therm

Features 161 177 161 177

Ropes 5 5 4 4

Records 509 509 103 103

Manufacturer Dyneema Dyneema Samson Samson

Rope type DM20 XBO DM20 XBO Amsteel Blue Amsteel Blue

SF 11 11 8 8

The raw measurements from the data acquisition phase are subject to pre-processing, where the

data from the various features is standardised. The data was scaled using the approach detailed in

equation E.2:





zi =
yi − ȳ
σy

(E.2)

Where zi is the individual standardised value, yi is the individual raw value, ȳ is the average of all

readings for the specific feature in the rope sample and σy is the standard deviation of all readings for the

specific feature in the rope sample. This is done for each rope in the data set to increase comparability

between the different samples and is a standard pre-processing step to prepare data for ML application.

E.3.3 Training and RUL estimation

The models are tested through leave one out cross validation (LOOCV), where Rf predictions made on

a single rope will be made using models trained with the remaining ropes in the data set. This process

is done separately for both ropes in campaign A and campaign B and as a combined data set with both

A and B together.

In addition to investigating the effect of only geometric and combined geometric and thermal mea-

surements as outlined in Table E.5, different combinations of features from the various bending zones

detailed in Figure E.3 are also trained and tested. This includes: testing using all zones; using only SBZ

and DBZ measurements; and finally, using only DBZ measurements.

E.3.4 Model assessment

The metrics used for model assessment are root mean square error (RMSE) and R2 score (R2):

RMSE =

√√√√ 1

N

N∑
n=1

(yi − ŷi)2 (E.3)

R2 = 1− SSres

SStot
(E.4)

Where N is the number of measurements made for each rope sample, yi is the observed Rf at instance

i, ŷi is the predicted Rf at instance i, SSres is the sum of squares of residuals and SStot is the total sum

of squares.

RMSE in this context will give an insight into how concentrated the Rf predictions are around the

Rf ground truth using each algorithm configuration outlined in Section E.2. Additionally, the R2 score

gauges the correlation Rf predictions have with the ground truth Rf using the input variables outlined

in Table E.4.

The performance of the models is assessed through the use of Rf graphs and residual analysis. The

Rf graphs will include the ground truth from the observed experimental measurements and tolerance

bounds at ±20% based on this data. The average Rf prediction and a ±95% confidence interval of

the repeated simulations of each distinct configuration are compared to the ground truth and tolerance

bounds.

The residual values, e are calculated using equation E.5:

e = yi − ŷi (E.5)

where yi are the RUL values from CBOS testing and ŷi are the predictions made by each respective

model. The analysis includes plotting the residual values against the predicted Rf values, the actual

Rf value against the predicted Rf value and finally a histogram analysis accounting for the numerical





spread of the residual values. This provides further information about the model ability to predict Rf ,

potential model bias and where overestimation and underestimation in rope health occurs.





E.4 Results

E.4.1 Experimental results

The amount of cycles at failure for all ropes in campaigns A and B are summarised in Table E.6. It is

noted that there is a wider spread of values in A than B. Ropes A1 and A4 were shown to fail at lower

amounts of cycles compared to the other ropes in campaign A. This is owed to the rope failing at the

driving sheave, rather than the test sheave. Due the the method used, parts of the splice were in contact

with the sheave during testing and lead to premature failure of the rope samples. Rope A5 completed a

greater number of cycles than the rest of the ropes in campaign A. This particular sample included an

attempt to embed thermocouples within the strands of the rope and therefore could have contributed to

slight discrepancy in the results.

Some halts in logging occurred sporadically during CBOS testing for campaign A, meaning data

acquisition equipment had to be restarted occasionally. Furthermore, features for Rope B1 were recorded

every 1000 cycles and has less data compared to the other campaign B ropes, which were recorded every

500 cycles. This change was made as a reaction to the comparatively shorter test times for campaign B

than campaign A.

Table E.6: List of cycles at failure for ropes in campaigns A and B.
Rope No. of cycles SF

at failure

A1 75,324 11

A2 122,368 11

A3 120,430 11

A4 87,314 11

A5 143,374 11

B1 14,948 8

B2 13,883 8

B3 13,901 8

B4 13,998 8

E.4.2 Average metrics

A quantitative assessment of Rf prediction is performed by calculating the average RMSE and R2 scores

in each data set using different feature sets. Better performance is reflected by lower and higher values

for RMSE and R2, respectively. The results for different feature combinations are compared for both A

and B rope datasets and ranked by performance of the algorithm on only using geometric features (i.e

A geo with A model and B geo with B model). The results using the various feature combinations cross

validated on a combined A and B rope data set are also presented.

Figure E.4 gives an overview of each algorithm performance based on different feature sets and

training model composition. It is seen that both configurations of RF performed best, followed by NN

and finally SVM based on producing the lowest RMSE scores. Introducing thermal features generally

either changes nothing or leads to detriment in performance when only A ropes are used as training data,

which is particularly noticeable in both NN and SVM. When the combined A and B model is used there





Figure E.4: Average RMSE values per algorithm for A ropes.

is shown to be a slight improvement in performance when thermal features are introduced for NN when

the SBZ+DBZ and DBZ feature sets are considered. There is also shown to be a general reduction of

RMSE as the number of zones used in the training are decreased.

This performance is also reflected in the R2 values as shown in Figure E.5. As seen with the RMSE,

data types, feature sets and model compositions influenced the algorithms differently. The R2 values for

both RF configurations are shown to be the highest, followed by NN and SVM. The high values recorded

for R2 indicate that the features used to create the RF models better explain the changes in Rf . It is

seen that by using both A and B data to train the NN configurations, that a higher R2 is achieved than

by only using A, indicating that the same feature with enhanced data from different ropes better explain

the changes in Rf . This is also seen for both SVM configurations but had little impact on RF.

The RMSE values for data set B are shown in Figure E.6. Both configurations of NN were shown

to perform best when only B data is considered. A noticeable difference in the B data is that for both

NN and SVM, the thermal data led to significantly better predictive performance as indicated by lower

RMSE. Using the combined A and B data set also improved performance of NN with the exception of

the NN2 configuration in the SBZ+DBZ feature set. The combined A and B data set has a detrimental

impact on the RF configuration with depth one.

The R2 scores for the same algorithms using the B rope data set are shown in Figure E.7. The highest

R2 values are achieved with NN, with improvements being shown when thermal data is introduced. It

is noted that higher R2 is recorded using A and B data for training when only geometric features are

considered but similar values are seen for B only and A and B combined when thermal features are

introduced. RF is shown to have similar R2 values no matter what features are used. There is also a





Figure E.5: Average R2 values per algorithm for A ropes.

noticeable increase in R2 for SVM Gaussian when the combined A and B data set is considered.

E.4.3 RUL graphs

A qualitative assessment of the algorithm performance during cross validation is given through plotting

the predicted Rf at various cycles throughout each test. It is possible to gain a general idea of algorithm

performance from the graphs, but they can also reveal at which times in the test both the best and worst

predictions are made. The results of cross validation predictions made only using the single and combined

data sets is also considered. Selected RUL prediction results from both A and B data sets are shown in

Figures E.8, E.9, E.10 and E.11.

Figure E.8 shows the results of Rf prediction using NN2 for geometric features from all bending zones

for rope A4. By using the combined A and B data set, the predictions in the first half of the test are

shown to be closer to the ground truth, as well as showing a reduction in the ”peak” seen in the middle

of the A ropes model.

Figure E.9 presents the results for Rf prediction for rope A3 using RF at tree depth 4 using geometric

features from all bend zones. As shown in the previous RMSE results for RF, the combined A and

B training data performed either the same or to slight decrease in performance, which is reflected in

the Rf graphs. Additionally, both models have very small confidence intervals compared to the NN

configurations.

Figure E.10 considers the predictions by NN2 on rope B2 when both geometric and thermal features

from the DBZ are considered. The confidence interval in the prediction is significantly reduced and almost





Figure E.6: Average RMSE values per algorithm for B ropes.

totally confined to the tolerance bounds. This is seen at the majority of test times with the exception of

between 0 to 40,000 test cycles.

Figure E.11 shows the Rf prediction results of using SVM with a linear kernel when using geometric

and thermal features from the DBZ. The model trained using the B ropes data is shown to significantly

overestimate rope health after around 11,000 cycles but when the A and B data is included, this period

of Rf predictions is corrected, albeit with some underestimation after 12,000 cycles.

E.4.4 Residual analysis

A residual analysis is performed to further investigate Rf predictions and to compare the differences in

results depending on algorithm, features and training data used.

Figure E.12 shows the residual analysis comparison of using RF with tree depth 4 and NN2 predic-

tions for rope A2 using only geometric features from all bend zones. In this specific case, both models were

trained using only the A rope data. The RF model produces low residual values indicating closer agree-

ment with the ground truth, while NN2 prediction are shown to both overestimate and underestimate as

indicated by the spread of residual values.

Figure E.13 presents the residual analysis comparison of using geometric and the combined geometric

and thermal features. This is done for rope B3 predictions made using NN2 with features from the DBZ.

By including thermal data, the magnitude of all residuals is reduced to be within 0.1 of the Rf ground

truth. When comparing predicted and actual Rf values, predictions are more effective generally but there

is little effect on improving the predictions at the end of the test.





Figure E.7: Average R2 values per algorithm for B ropes.

Figure E.8: Rf prediction using NN2 for rope A4, using geometric features from all bend

zones.

Figure E.14 provides analysis of improvements that are possible by combining the A and B rope data

sets in model training. This is presented for rope A1 with NN2 using combined geometric and thermal

data from all bend zones. An improvement with the combined training set is observed, with magnitude

of the outermost outliers being reduced. Rope A1 completed the least amount of cycles at failure when

compared to the other ropes in the A data set and showed poor prediction results on models trained on

this data set.





Figure E.9: Rf prediction with RF, forest size 200, tree depth 4 for rope A3, using

geometric features from all bend zones.

Figure E.10: Rf prediction using NN2 for rope B2, using geometric and thermal features

from DBZ.

Figure E.11: Rf prediction using SVM, linear kernel for rope B3, using geometric and

thermal features from DBZ.

E.5 Discussion

Model performance varied depending on the algorithm and the data set used. A major difference shown

was that RF performs better than NN for campaign A but NN performs better than RF in campaign

B. Differences in performance can be explained by the training data used, the size of the data set, and

algorithm mechanisms.

Previous work on the same data sets as a classification problem indicated that SVM with a linear





Figure E.12: Residual analysis and comparison for rope A2 predictions made by NN2 and

RF, with 200 trees and depth 4 with all features. Both models are trained using only A

data.

Figure E.13: Residual analysis and comparison for rope B3 predictions by NN2 using geo

and geo+therm data, using DBZ features. Both models are trained using only B data.

Figure E.14: Residual analysis and comparison for A1 predictions with geo + therm

features from all zones by NN2, using models trained with A data set and combined A +

B data set.

kernel was the most effective algorithm for classification [150]. However, the previous study did not

include global elongation as a feature for training and prediction purposes, hence the different results in

this study for RF and the implementation of NN are new additions to this study.





E.5.1 Random forest

RF is formed of several individual decision trees, where data is separated based on feature values that give

the purest split. The global elongation shows a steady increase during testing, and it will therefore create

one of the best splits in the decision trees of the RFs. However, this feature will not be available to all

trees in the forest, due to feature bagging. Still, the averaging over 200 trees will ensure its contribution

to the overall forests.

In general, increased tree depth increases random forest accuracy and improvements by increasing

forest size tend to plateau. In campaign B, each rope had fewer records than in campaign A. To avoid

overfitting, the result was shallower trees for this campaign, giving less accurate RF results. The data

is split by random feature sampling in each tree, there would be slightly more variation in the quality

of fits due to data splits made on less suitable features. This leads to less accurate RUL predictions as

indicated by the higher RMSE and lower R2 values.

E.5.2 Neural networks

The NN algorithms performed better in campaign B than campaign A. All input variables are considered

when using NN and depending on the neurons that randomly dropout the network through regularisation,

this can influence the model. A feature that varies very little during the testing only contributes noise

to a model and impacts performance negatively. A clear example is comparing the use of geometric

and the combined geometric and thermal feature sets for campaign A, where thermal features lead to

a higher RMSE. At the lower test tensions the temperatures do not vary significantly throughout the

CBOS tests, but reach a steady temperature until failure, thus contributing noise to a potential model

formulation. However, the temperatures recorded in campaign B are noticeably higher and have more

variation between the SBZ and DBZ in line with the decreasing Rf , therefore contributing to a better

model. Due to campaign B having both less data coupled with more variation in measurements leads to

NN finding a better model than developed for campaign A.

Generally, it is noted that despite inconsistent numbers of test cycles in campaign A, it is still possible

to achieve acceptable results within the range of ± 20 % of the RUL ground truth. Additionally, NN is

shown to struggle with predicting RUL in the earlier stages of the testing in particular for some ropes in

the data set. Initially, the various widths, lengths and temperatures monitored will not change until later

in the test and therefore the networks struggles to predict the distinct Rf values at this testing stage.

E.5.3 Support vector machine

The SVM algorithms performed poorly compared to the other algorithms applied in this study. If the

hyperplane fit to the data is poor and non-representative, it will in turn have a detrimental impact on

Rf prediction using the algorithm. As with NN, the presence of noise via lack of variation in certain

features will negatively influence this fit. This is particularly prevalent in campaign A, however it is

noticed that SVM performed slightly better in campaign B due to the greater variation in values measured.

It is also shown that the fit created by the linear kernel suits this rope test data set better than the

Gaussian kernel.

Potential improvements for SVM could be reducing the number of features used to create a simpler

model. There is also further potential in hyperparameter optimisation for both linear and Gaussian

kernels that can contribute to improve models.





E.5.4 Feature selection

Creating models from different feature sets consisting of the different bending zones features also influences

algorithm performance. During CBOS testing, the SBZ and DBZ are subject to substantially more

bending, whereas there is none present in the SZ. Therefore, in line with what was previously stated

about NN, measurements from the SZ essentially contribute noise in the modelling process. As only the

features that give the best splits in the data are considered from the random subsets in RF, the likelihood

that features from SZ will be consistently picked as splitting criteria in individual trees is extremely low,

hence minimal effect on both RMSE and R2 values.

However, limiting the features used to only those from the DBZ is shown to improve algorithm

performance for both NN and SVM. There was very little difference between the results from models

that used all features and the combination of SBZ and DBZ features but the most accurate results for

SVM were achieved by reducing to only training with DBZ features. More frequent repeated bending

will cause more accumulated damage and variation in these features will relate better to the associated

RUL value.

E.5.5 Combining data sets

Combining the two data sets for predictions based on cross validation had both a positive and negative

impact depending on the algorithm considered. The main benefactors of this approach were the NN

configurations, as shown by improved results in average RMSE and R2 for both the A and B ropes.

Introducing thermal features for A rope predictions led to decreased performance when only considering

the A data set, but improved for the cases where SBZ+DBZ and DBZ features are used with models

trained using the A and B ropes. This can be attributed to the different thermal behaviour in each data

set, with the thermal information from the B ropes contributing to better predictions. From a B ropes

prediction perspective, combining the A and B data sets creates a larger training data set and improves

estimations from both NN and SVM. This suggests that simply increasing the amount of training data

with slightly different feature behaviours will benefit model fitting in these cases. The observations

support the finding from this study that unique rope types subject to different relative test tensions can

be combined to produce more accurate results.





E.6 Future work and adaptation for field deployment

From the perspective of RUL prediction in CBOS testing, the effectiveness of ML approaches is influenced

by the quality and quantity of data recorded. Though good prediction results are achieved at two safety

factors, further ML application to CBOS test sets performed at a wider range of lower safety factors is

needed. These further tests would also benefit from more frequent data recording, that would give a more

rounded picture of the performance of a specific rope type. This would be beneficial for methods such

as RF, which gave excellent results in campaign A but had its performance inhibited by the limited tree

depths in campaign B. Furthermore, it is shown that these further enhanced data sets can be combined

into a common training data pool that can be used to make predictions on new test data from distinct

rope types from various test conditions.

Data availability is another limiting factor to further development of ML algorithms for application

to fibre ropes. Other engineering components such as bearings and motors benefit from publicly available

datasets and can therefore specifically focus on further development of prognostics methods, rather than

the condition monitoring framework for data acquisition.

This study provides an overview of the main ML techniques used for RUL prediction, but each

algorithm mentioned has potential for further exploration. This was done on tabular data that dealt

with measurable physical quantities such as width, length and temperatures but there are still further

opportunities for enhancement by using CNN to quantify damage in the rope condition directly from

visual and thermal images.

However, there is further work required to fully adapt the ML approach usage in offshore construction

cranes. Firstly, CBOS testing is an example of a run-to-failure test where a constant tension is applied

at the same rope sections. In real practice, it will be different sections of the rope that will be subject to

bending depending on lift depth and sea state during operations. Other factors such as payload size, the

temperature at lift location and the operation time will also influence rope longevity. Data from potential

lifting campaigns would have to be recorded as part of a wider rope condition monitoring system, where

data is continually added to form a model with historical data. Generalising the findings from this study

of different ropes at different relative test tensions, it is shown there is potential in using data from a

fleet of fibre rope cranes performing different lifting operations to validate the condition of an individual

fibre rope crane.

Intelligent prognosis techniques would then be applied to assess this data and establish what are the

most relevant features to be monitored in practice and further develop a retirement criteria based on

informed data-driven methods for condition based maintenance, rather than manual inspection geared

towards reactive and time-based maintenance practices. In this study it is shown that there are benefits

from monitoring the length, both locally and globally, and the temperature in different bend zones. Such

measurements would be made from sensors collecting visual and IR data, ideally from a location near

the main sheave, from a rope that has clearly defined sections. The global rope length measurement

would also have to be incorporated through some form of embedded sensor measurements within the

rope structure to monitored continually during use.

E.7 Conclusion

Several approaches for RUL prediction in fibre ropes during CBOS testing are discussed in this work. The

algorithms in this study are capable of predicting a continuous target variable, known as Rf , for ropes

using features derived from an experimental set-up that uses computer vision and thermal monitoring.





In this investigation machine learning methods, such as neural networks, random forest and support

vector machine were applied for prognostics for two sets of CBOS test data at different safety factors.

For data set A, random forest showed the most promise as a RUL prediction method, while NN was the

best performing algorithm in data set B. The benefit of combining data from different types of ropes for

training data for RUL prediction is also demonstrated for NN and SVM. RF has been shown to be the

most effective in this study, particularly in cases where larger amounts of data are available, allowing a

suitably complex model to be developed based on features selected by the algorithm. NN is also shown

to be useful, but slightly less effective compared to RF. If large amounts of data are not available, then

NN application with more focus in including only relevant features is a useful fall-back solution.
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