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Abstract

This thesis explores machine learning techniques for the purpose of  determining gastrointestinal 
tract dysbiosis. Dysbiosis is an unbalance of  bacteria flora. Stool sample analysis of  relevant 
bacterias can be used in "diagnosis" of  this condition. The problem is how to best classify 
dysbiosis from a healthy balance of  bacteria. Pattern recognition methods could be used to create 
a diagnostic decision support system. The approach includes comparisons between classifiers with
the additional use of  feature reduction techniques. Experiments show that the accuracy varies 
significantly depending of  which classifier is used. The best classifier for the data set used here was
found to be the C4.5 decision tree. Much of  the analyzed data is shown to be noisy, confusing and 
irrelevant to the classifier. Accuracy can be improved by reducing the amount of  bacteria species 
with more than 90%. In addition, results imply that the different microbial stool analysis panels 
seriously affect accuracy. Which classifier to use and the highly relevant feature subsets found 
should be helpful for any future work in the field of  gut dysbiosis. And the comparisons could be 
applicable for classification of  similar data sets.
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Chapter 1  

Introduction

1.1 Background

Data mining has been used for medical diagnosis since the beginning. This is particularly practical
for large and complex medical data. The amount of  data can be impossible to diggest manually. 
Instead, machine learning algorithms can discover patterns in data hidden from the human eye. 
The suggested solution presented here includes applying classifiers to a data set of  relevant 
bacteria species occuring in feces. Measurements of  discriminatory effectiveness between healthy 
and unhealthy patients is . Further steps are also explored to optimize this process. Feature 
selection methods are used to not only improve accuracy, but also reduce the amount of  features, 
computational time, and noise.

Gastrointestinal tract dysbiosis (referred to later as dysbiosis) is an imbalance of  bacterial flora in 
the digestive system. The gut microbiota is a community of  microorganisms that live symbiotic to 
their host. Some can be mutualistic, existing in a mutually beneficial relationship to the host. 
Others may be parasitic, degrading the health of  its host. Some may be commensal, living in a 
more neutral state of  co-existance without affecting the host. Several hundred different bacteria 
species live in the gut and fill up to 60% of  the dry mass of  feces according to [1]. These bacterias 
can have a range of  positive affects on humans, from synthesizing vitamins, blocking space for 
infectious bacterias and improving the immune system. A healthy status for the digestive system 
may rely on a certain balance of   the gut microbiota. Dysbiosis is the opposite and according to 
[2]-[11] is associated with various diseases and illnesses like inflammatory bowel disease, chronic 
fatigue syndrome, obesity, cancer and colitis. Endotoxins like lipopolysaccharide created by some 
bacterias have negative impact on a wide range of  bodily functions. 

There are several difficulties when it comes to medical diagnostics using machine learning 
techniques (I would like to add that the word "diagnosis" is not completely appropriate in this 
context. Instead, I will use diagnosis in the sense of  deciding well from ill).

• real-world data is often noisy

• class labels can be uncertain (for instance, there is no exact definition of  dysbiosis)

• small amount of  data (expensive and time consuming to collect)
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As a result of  the lack of  exact defintion, some samples may be incorrectly labeled. And 
laboratory instruments may read more or less incorrect values from samples. Medical data can 
also hold large amount of  features,  preventing any manual analysis. In such cases, machine 
learning and data mining can be the only option. 

The data set used here is new and exhibits unknown patterns. There is no single machine learning 
algorithm that is best in all circumstances according to [12]. And there are a bunch of  alternatives 
to choose from. These range from the simple to highly advanced algorithms. Some are used for 
decades, some are newer. Some algorithms are improvements of  previous ones while others are 
developed to cover different types of  data. For instance, some classifiers may better handle large 
amount of  features and vica versa. There are different "families" of  classifiers like artificial neural 
networks and decision trees. A common approach to find the best classifier for a data set is to 
make comparisons between a selection. To make a selection, research needs to be done to find 
viable candidates.

The theme for the topic question lies in the intersection between machine learning and medical 
diagnostics. As such, the results should be relevant in both fields. As diagnostics, it can be helpful 
as guidance towards future experiments on the topic of  dysbiosis and diagnostics in general. 
Feature reduction methods reveal important and irrelevant features. These features map directly to
bacterias and may give insight into which bacterias affect dysbiosis the most. On the other hand, 
comparisons of  classifiers may be useful for other classification tasks with similar data sets.

The key components of  this project are to search for a decent selection of  classifiers, compare 
their results on the data set and optimizing classification by the use of  feature reduction methods. 

1.2 The dysbiosis data set

A data set has been created by Genetic Analysis (www.genetic-analsys.com). Stool samples were 
collected in 2013 from 278 individuals across Scandinavia. Both negative and positive samples 
have been analyzed with regard to 54 preselected bacteria species and/or families. Each bacteria is
measured based on how much of  it's DNA were found in the feces. Each sample were labeled as 
positive or negative based on the assumed status of  the individual. There are no missing values in 
the data set, but many are assumed to be noisy. 

The analysis was done with laboratory equipment referred to here as "plate". Most samples were 
split into duplicate parts and analysed on multiple different plates. As is common with noisy real-
world data, one sample gets similar but not identical readings if  analyzed multiple times on the 
same plate. But there is a suspicion that plates differ significantly when analyzing the same 
sample. The samples were collected chronologically based on class with an unfortunate time 
period between classes. Because of  this, each class was analyzed on separate sets of  plates. This is 
a known weakness of  the data set because incorrect patterns can occur based on which plates were
used instead of  which class a sample belongs to. 

It is worth mentioning that because the data set is quite fresh and Genetic Analysis has had 
different priorities, no binary classification experiments have yet been conducted on it. The data 
set is the property of  Genetic Analysis and the selection of  the bacterias analysed from the stool 
samples are part of  their trade secret. Because of  this the names of  bacteria species and families 
will be anonymized. The stool samples will also be anonymized because the individuals' identities 
are irrelevant in this work.
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Since the samples are collected from Scandinavia, chances are that they are less representative for 
other countries or regions because of  differences in food, bacterias, virues and so forth. All results 
based on this data set will be overfitted towards Scandinavia population. Results may or may not 
be representative for other places.

1.3 Research questions

The main title of  this work asks the question about how to use machine learning to get best 
possible classification of  dysbiosis. Different classifiers typically have varying results for the same 
data set. Finding the right tool for the job is therefore essential for the best result. The aim is to 
find one classifier in a selection of  classifiers that out outranks the others. Based on the data set 
described above, my proposed solution is to use supervised learning with leave-one-out cross-
validation. Furthermore the top ranking classifier will then be optimized by feature selection 
methods. One side quest is added to find out how different laboratory plates used for feature 
extraction from stool samples affect classification.

The research questions are presented here:

RQ1 To what degree can state-of-art classifiers discriminate between the classes normobiosis 
(healthy condition) and dysbiosis (unhealthy condition)?

RQ2 To what degree can feature selection methods improve accuracy and point to bacterias 
relevant to dysbiosis?

RQ3 Classification accuracy depends on individual laboratory analysis equipments used to extract 
features from samples.

Results should be beneficial for:

• General insight and comparison of  machine learning techniques

• Future work on binary classification of  dysbiosis in context of  diagnostics

• Revealing bacterias that are predictive of  the patient's condition

• Distribution of  samples across multiple stool analysis panels

1.4 Limitations

Due to a high amount of  machine learning algorithms available, the selections proposed here have
to be fairly limited in size. The proposed solution presented later is based on a small selection of  
classifiers which are recommended or have had success in literature. Searching through large 
numbers of  classifiers will probably lead to alot of  mediocre results. Instead, my hope is to search 
among a small but potent collection. Doing multiple sequential experiments can quickly lead to an
explosion in dimensionality of  results. To avoid discussing large outputs of  data, after finding the 
best classifier for RQ1, the rest will be discarded. Additional experiments for RQ2 and RQ3 will 
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only use the winning classifier from RQ1.

Because bacterias are anonymous, no discussion or conclusoin will be made regarding specific 
species or families of  bacteria.

1.5 Acknowledgements
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John Daniel Evensen, Stian Guttormsen, Jan-Vidar Ølberg and all participants of  periodic 
meetings at UiA for critisism and inspiration. And thanks to supervisor Granmo for valuable 
feedback.
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Chapter 2  

State of the art
This chapter explores some of  the most relevant work done in the field of  classification and 
diagnosis using machine learning techniques. General comparisons and overlook of  alternatives 
are examined in the first part. Papers which topic includes diagnosis of  specific diseases and data 
sets are discussed in the second part. A summary is presented in the end of  this chapter.

2.1 General overview of popular classifiers

Work done by Wu et al. in [13] is highly relevant for choosing a classifier or a selection of  
classifiers. They have identified 10 data mining algorithms as the most influential. Their selection 
is not limited to classifiers but also includes association analysis, clustering, link mining and 
statistical learning. They claim that these are among the most important topics in data mining. 
The top 10 algorithms selected are C4.5, k-Means, Support Vector Machine (SVM), Apriori, EM, 
PageRank, AdaBoost, k-Nearest Neighbours (k-nn), Naive Bayes (NB), and CART. Their work is 
very thurough with nominations and voting from different groups in different steps with 
requirements of  minimum citations for each contestant. Out of  the 10 winners, the classifiers 
relevant here are C4.5,  Support Vector Machine, AdaBoost, k-Nearest Neighbours, Naive Bayes 
and CART. Many of  these classifiers are repeatedly used in other work described later in this 
chapter. The classifiers mentioned here weighs heavily for my selection for the purpose of  
diagnosis. All of  these alternatives have had success in numerous applications.

Another relevant paper is [M] by Andrew P. Bradley. This paper advocates Area Under the Curve 
for Receiver Operating Characteristics (ROC) as a ranking measure for comparing classifiers. Six 
datasets have been used to compare results from six different classifiers. The datasets include 
medical data for cervical cancer analysis, breast cancer diagnostics, post-operative bleeding, 
diabetes prediction and two independent data sets for heart disease diagnosis. The data sets are 
summarized in table 1.

10



Dataset Classes Samples Features (used)

Cervical cell nuclear texture 2 117 54 (6)

Post-operative bleeding 2 134 Over 200 (4)

Breast cancer diagnosis 2 683 9

Diabetes prediction 2 768 8

Heart disease diagnosis, 
Cleveland

2 297 76 (13)

Heart disease diagnosis, 
Hungary

2 261 76 (11)

Table 1: Summary of  data sets

A cross-section of  six popular machine learning techniques were used: Quadratic Discriminant 
Function with Bayes decision function, k-Nearest Neighbours, C4.5, Multiscale classifier, 
Perceptron and Multi-layer Perceptron. Evaluation compares accuracy results with ROC. This 
measure of  classification performance is concluded to have desirable properties. The metric is 
mentioned as one of  the best ways to evaluate performance based on a single value. There are few 
overall differences between learning algorithms, but in general C4.5 and Multiscale classifier 
performed worse than the rest on the specific datasets. This paper proves the utility of  classifiers 
on medical datasets. It shows that different datasets require different classifiers. Some datasets are 
used even if  there's few samples available and few features.

Igor Kononenko has written [14] which is very useful in the context of  machine learning and 
diagnostics. The author investigates how machine learning was designed and developed for 
medical purposes. The paper describes the history, current state and future direction of  machine 
learning in medical diagnosis. The focus is on naive Bayesian classifier, neural networks and 
decision trees. The naive Bayesian classifier is specifically mentioned as a good alternative that 
should be tried before any other advanced method. Several important aspects are declared for a 
machine learning system to be useful for diagnosis: performance, dealing with missing data and 
noise, transparency of  diagnostic knowledge, explaining decisions and the ability to reduce the 
amount of  data and still be reliable.

7 classifiers are compared: Assistant-R, Assistant-I, Lookahead Feature Construction (LFC), naive
Bayesian classifier, Semi-naive Bayesian classifier, Backpropagation with weight elimination 
(multilayered feedforward artificial neural network) and k-nearest neighbour. These classifiers 
were used for a total of  8 medical data sets not specified in the paper. The result is cited in table 2.
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Classifier Performance Transparency Explanation Reduction Missing data 
handling

Assistant-R Good Very good Good Good Acceptable

Assistant-I Good Very good Good Good Acceptable

LFC Good Good Good Good Acceptable

Naive Bayes Very good Good Very good No Very good

Semi-naive 
Bayes

Very good Good Very good No Very good

Backpropagati
on

Very good Poor Poor No Acceptable

k-NN Very good Poor Acceptable No Acceptable

Table 2: The appropriateness of  various algorithms for medical diagnosis

Based on this result, naive Bayes and semi-naive Bayes was found to be best.

One additional comparison was made using a heart disease data set from Ljubljana, Slovenia. 
This is shown in table 3.

Dataset Classes Samples

Heart disease diagnosis 2 327

Table 3: Additional data set

Of  the classifiers mentioned, naive, semi-naive Bayes and Assistant-R achieved the best results on 
this data set. In general, Naive Bayesian classifier was particularly recommended by the author as 
a go-to classifier for most new data sets.

2.2 Diagnosis of specific diseases

One example of  machine learning methods compared for the use in diagnosis of  specific diseases 
is [15] written by Dreiseitl et al. They compare the 5 classifiers k-nn, logistic regression (LR), 
conjugate gradient optimization (CGO), decision trees (See5 decision tree software by Rulequest) 
and support vector machines (SVM-Light implementation). These machine learning methods are 
suggested as candidates for a decision tool to aid experts.

The data set is for pigmented skin lesions as common nevi, dysplastic nevi or melanoma and is 
summarized in table 4.

Dataset Classes Samples Features

Skin lesions 3 1619 107

Table 4: Skin lesions data set

K-nn is described as robust and a good starting point to measure the other methods. The 
performance was evaluated with disregards to cost of  model construction and model 
interpretability. Their only focus is on discriminatory power. According to their tests, logistic 
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regresseion, artifical neural networks (CGO) and support vector machines performed best. These 
gave almost identical results. Decision trees  performed worst of  the selection, but still achieves 
precision and recall similar to human experts. The rest were much better on this data set.

Chan et al. has in [16] made comparisons for multilayer perceptron, support vector machine, 
linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), Parzen window (PW),
mixture of  Gaussian (MOG) and mixture of  generalized Gaussian (MOGG). The data set is for 
glaucoma and summarized in table 5. They measured classifiers by the use of  ROC.

Dataset Classes Samples Features

Glaucoma 2 345 53

Table 5: Glaucoma data set

Experiments were conducted with and without the use of  the feature reduction methods forward 
selection and backward elimination. The best classifiers according to ROC were found to be 
support vector machine, quadratic discriminant analysis and mixture of  Gaussian.
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2.3 Summary

Title Author(s) Classifiers Winners

The use of  the Aera 
Under the ROC curve 
in the evaluation of  
machine learning 
algorithms

Andrew P. 
Bradley

QDF, k-nn, C4.5, Multiscale, 
Perceptron and MLP

QDF, k-nn, Perceptron
and MLP

Machine learning for 
medical diagnosis - 
history, state of  the art
and perspective

Igor 
Kononenko

Assistant-R, Assistant-I, LFC, 
NB, Semi-NB, MLP and k-nn

NB, Semi-NB, 
Assistant-R

A Comparison of  
Machine Learning 
Methods for the 
Diagnosis of  
Pigmented Skin 
Lesions

Dreiseitl et 
al.

k-nn, LR, ANN, See5, SVM LR, CGO and SVM

Comparison of  
machine learning and 
traditional classifiers 
in glaucoma diagnosis

Chant et al. MLP, SVM, LDA, QDA, PW, 
MOG, MOGG

SVM, QDA and MOG

Table 6: Research summary

My motivation is to make justifiable decisions for the proposed solution based on the relevant 
literature presented here. The proposed solution will include unique comparisons for a new data 
set.
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Chapter 3 

Data set and proposed solution
This chapter describes the data set and proposed solution in detail. Background for selected 
machine learning techniques and corresponding settings are also discussed here. All of  this will be
used in the experiments of  Chapter 4. I used Weka 3.6 machine learning suite for all machine 
learning algorithms in this project, with the addition of  LibSVM. Both the stand-alone GUI and 
java library were used. The choice of  Weka was made after discussions and recommendations 
from other students and teachers. With no prior experience, I also chose Weka because of  the 
good documentation and multitude of  available guides and walkthroughs.

3.1 Solution Architecture

The answer for the 3 research questions consists of  3 experiments. The experiments are sequential 
and can affect subsequent experiments. Figure 1 illustrates the architecture of  how these 
experiments will be conducted.
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Figure 1: Solution architecture

3.2 Details of the data set

As mentioned in introduction, the data set is built up from 278 unique samples. The binary classes
are fairly balanced with 163 negative samples and 115 positive samples. Each sample has 54 
features which represent the amount of  bacteria DNA found from 54 preselected species/families.
Samples were analyzed on a total of  19 microbial stool analysis plates. The 278 samples were split 
into a total of  697 duplicates and distributed over the 19 plates. The data set also includes the 
position each sample had on a plate, ordered in rows and columns. The samples' position on 
plates are simply ignored in this project as it may be irrelevant and if  it should be relevant there 
still wouldn't be enough data to say much of  certainty about it. 

Negative samples were analyzed on plates 1-13 and positive samples were analyzed on plates 14-
19. This can be problematic for evaluating the results. A classifier could easily be misguided by an 
inaccurate feature extraction from plates. Instead of  identifying a sample based on its class-
dependent features, it would then be classified based on which plate it was analyzed on. Thus 
making any results worthless in the context of  diagnostics.

Because dysbiosis has no exact definition, classes are labeled depending of  the assumed status of  
the patient. So both class labels and feature values are expected to be noisy to an uncertain degree.

Figures 2-4 illustrates the average feature values and standard deviations between classes across all
plates. The x-axis shows feature ID and y-axis shows extracted values representing amounts of  
bacteria. Although quite similar, for higher values, negative samples seem to have higher values 
than positives. And for lower values, negative samples have lower values than positives in many 
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cases. In general, negative class seems to go slightly more into the extremes while positive class 
stays somewhere in between.
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3.3 Classifier Selection

The proposed solution is based on a small, but wide search for high performing classifiers. The 
classifiers are expected to map with varying degree of  success a sample's feature vector to a class 
label (negative or positive). As with many new data sets, it is not intuitively or pre-known which 
classifier is best fit for the job. The selection is mostly unaffected from any personal experiences as 
I have only tried naive Bayes and k-nearest neighbours before. I wish to avoid any expert bias by 
minimizing the search for optimal parameters per classifier. The expert bias means that having 
good experience and knowledge about one classifier would be a disadvantage to the others in a 
competition. With less focus on finding the perfect settings, chances are that the classifiers may 
under-perform and be under-fitted, however this a risk that applies to most of  the classifiers. Naive
Bayes and k-nearest neighbours which I could potentially have an expert bias towards happens to 
have no parameters in the case of  naive Bayes and just a few in the case of  k-nearest neighbours. 
The parameter search for the classifiers are simply done by adjusting one "lever" at a time. Even 
though this does not cover all combinations, it does save a lot of  time. With some classifiers 
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having a multitude of  settings, the parameter space just explodes because of  the classic "curse of  
dimensionality". Instead, some settings can be guided by other work on similar cases. Based on 
State of  the Art in Chapter 2, I have picked out 6 candidates. My main goal for the selection is not
to make the basis for finding the best within a single "family", but instead present a wide selection.
Therefore typically no more than one member per branch of  machine learning classifiers is 
included. And after finding a winner, possible future experiments could instead open up for that 
classifier's branch to be revisited and made basis for a new narrower selection.

All classifiers are selected only with regard to discriminatory power. Any other performance is 
ignored, be it resource usage, classification time, model construction time or other computational 
time. Most of  them will be almost instant or fairly fast anyway with such a small data set. The 
data set is not scaled or manipulated unless it is embedded in Weka and required by the classifier.

3.3.1 Naive Bayes

The first contender for the prize of  being the best diagnostic tool for dysbiosis is an old and well 
used classifier. This is the naive Bayes, one my first acquaintances from the world of  classifiers. It 
is a probabilistic classifier based on Bayes Theorem. It can take large amounts of  feature vectors 
and can handle thousands of  features with ease. Sometimes called simple or stupid, it assumes 
independence between features which is why it has the name naive. It learns by calculating 
features' distribution per class. Therefore the learning size is constant regardless of  feature vectors 
added. New data can also be added to the existing learning data fairly easily. It can make a 
decision by calculating posterior probability using feature f  for each class c and selecting the 
highest value as seen in figure 5. To avoid multiplying numerous small values which would quickly
be rounded to zero, capital pi is replaced with summation of  logarithmic probabilities instead.

Figure 5: Bayes Theorem used in naive Bayes

It is mentioned in [14] as a first choice for classification and a benchmark to measure other 
classifiers against. Naive Bayes works fast even though this will not affect the ranking in this 
project. It is also a good start for beginners as it has no parameters to adjust. According to the 
criteria defined in [14] Naive Bayes has very good performance, good transparency, very good 
explainability, no reduction and very good missing data handling. The current data set has no 
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missing values so this is at the moment irrelevant. The data set do have a lot of  features however, 
and this method does not offer any embedded reduction of  those. The explainability is useful for 
users unskilled in machine learning to understand how decisions are made. Naive Bayes is also 
included in [13] as a top 10 influential data mining algorithm. Naive Bayes does have a lot of  
modified versions, usually to compensate for the independence assumption. This does increase 
complexity and reduces the simplicity. So I have chosen to only consider the basic implementation
here.

3.3.2 K-nearest neighbours

The k-nn classifier is another classifier included in [13] and should therefore be a safe bet to 
include in the proposed selection. [15] recommends it as a good benchmark tool for other 
classifiers as well as describing it as robust. K-nn is categorized as lazy in Weka because it doesn't 
process the data in any way during learning phase. Instead, it simply just copies entire feature 
vectors into corresponding class tables. Adding more data later is therefore just as easy as if  
included from the start. But the size doesn't scale and so can be undesirable or unusable for very 
large amounts of  training data. K-nn uses a few settings, one of  which is the k from it's name. K is
the number of  votes the classifier uses to make a decision. This is illustrated in figure 6. 

Figure 6: K-nearest neighbours example Figure 7: Manhattan and euclidean distance

With a simple data set of  2 dimensions, feature vectors can be plotted as points in a x-y plane.  All 
points from the learning data are iterated through. The distance from each point to the unlabeled 
sample is calculated by some distance function. Two examples are Manhattan distance and 
Euclidian distance (Pythagorean theorem). Figure 7 illustrates the difference with blue and yellow 
marking Manhattan or taxicab distance and green marking the air distance or Euclidean distance. 
The decision is simply made by majority voting from the k nearest samples of  the learning data, 
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also called neighbours. Therefore k is preferably an odd number to always assure a majority result.
With higher dimensionality the math is done exactly the same. Additional distance weighting is 
possible to give closer neighbours more influence during voting. 

The ranking regarding to criterias from [14] give k-nn a very good performance, poor 
transparency, acceptable explanation, no reduction and acceptable missing data handling. Because
k-nn doesn't have any feature reduction, noise could imply a need for higher values of  k. During 
testing however, the optimal value for k was found to be 5. Of  the two distance functions 
mentioned, Manhattan distance performed best. Distance weighting did not improve performance.

3.3.3 Logistic regression

Logistic regression has shown good results on other medical data sets. It is reported as being 
among the best for some data sets. According to [15], classes are separated using a hyperplane and
a logistic function to calculate probabilities of  class membership according to distance. It is 
commonly used for diagnostics purposes allthough it is limited to only calculating linear decision 
boundaries. Allthough similar to Naive Bayes, a key difference is how correlations between 
features are taken into account, resulting in more calibrated predictions. 

Best performance was gained with maximum number of  iterations set to 5.

3.3.4 Multilayer perceptron

According to [14], neural networks lost attention after single-layered perceptrons were proven 
incapable of  solving nonlinear problems. Fortunately developments lead to associative neural 
networks and later the backpropagation rule for neural networks. Today, this is a common 
classifier for medical use. For example scoring among the best in the experiments of  [15]. The 
criterias for medical classifiers in [14] ranks it as having very good performance, poor 
transparency, poor explanation, no reduction and acceptable missing data handling. The reason 
given for why transparancy and explanation is rated so low is because of  typically large amounts 
of  weights which influence the result doesn't easily explain the decisions. Artifical neural networks
have often been described as black boxes because of  the difficulty to interpret or explain the 
behaviour. Because the wide-spread use for medical data sets and good results, I think it is a 
natural choice for inclusion in my selection.

Multilayer perceptron's implementation in Weka has alot of  settings. These are configured with 
inspiration from similar use in [15]. Best results was achieved with 2 hidden layers, learning rate 
of  0.01, momentum set to 0.2 and 2000 epochs.

3.3.5 Support vector machine

Support vector machine is rated as one of  the top 10 data mining algorithms in [13] and described 
as a "must-try" with high rating for both robustness and accuracy. It is also among the best 
classifiers found in similar comparisons of  Chapter 2. It needs little training data and is insensitive
to the amount of  features. Support vector machine works by separating the classes with a line, a 
plane or a hyperplane in the case of  more than 3 dimensions. The maxiumum margin hyperplane 
is only dependant of  the support vectors and other data points play no part in the calculation. 
Thus giving great resilience to overfitting, or in other words better generalization for future data. 
This could be very useful for the data set used here. A kernel function is used to increase 
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dimensionality. A non-linear kernel function can allow for classification of  non-linear data. 

Of  all the classifiers selected in this project, Weka has the highest amount of  settings for support 
vector machine. The polynomial kernel function performed best. The greatest performance I was 
able to achieve was found after normalizing data, setting gamma to 1 and epsilon to 0.001.

3.3.6 C4.5

The C4.5 decision tree is named "J48" in Weka's implementation. This classifier is based on a top-
down recursive divide-and-conquer strategy. A feature is selected as root node. Every node is 
asking a question about its feature. A node for each possible answer is attached as children. This is
repeated recursively, leaving all leaves as class labels. The feature that produce the purest node is 
chosen as root. That is, the feature which discriminate most between classes. The nodes are 
selected with information gain heuristic. A split in the tree is measured by how much information 
is gained before the split minus the information gained after the split. The algorithm then prunes 
the tree to make it smaller. To classify a sample, simply traverse the tree and use the resulting leaf  
node as class prediction. This classifier has a simple and strong explanatory capability, making it 
easy for humans to understand its decisions.

Minimum number of  objects were set to 0 to achieve better performance. 

3.4 Metric

There are alot of  alternatives for comparing and ranking classification results. The confuision 
matrix accounts correct and incorrect classifications per class. This is the normal raw data which a
classifier outputs and is the basis for such measures like accuracy, precision and recall. Accuracy is
commonly used  due to its simplicity. But it must always be compared to a random result. For 
binary classification, this equals to 50% which represents random chance for a balanced data set. 
For my project, I have chosen Cohen's kappa to be the judge. This has some benefits over accuracy
because it compensates unbalanced size of  classes. It is also a scaled measure. Another 
measurement which is strongly advocated for in literature is ROC. The problem with ROC is that 
it can't be measured by the confusion matrix alone, it needs to adjust some threshhold inherit in 
the classifier. Weka calculates ROC automaticly during a standard classification, but some of  my 
experiments will go beyond this and then ROC is not available. Arie Ben-David shows in [17] that 
ROC and kappa are connected and have alot in common, so I think kappa is still very useful even 
though ROC may be better in some circumstances. According to [17], kappa is a scalar meter of  
accuracy which measures the degree of  agreements between reality and the classifier.

Table 7 shows the binary class confusion matrix. Figures 8 and 9 shows how different measures 
are calculated. 
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Actual \
Predicted

Negative Positive

Negative A (true negative) B (false positive)

Positive C (false negative) D (true positive)

Table 7: Standard binary classification confusion matrix

In addition to using kappa as metric for comparisons, the experiments done in Chapter 4 will also 
provide corresponding confusion matrices for better interpretation. Other measures will be added 
where available.

Kappa = 

Figure 8: Kappa formula

Figure 9: Accuracy formula

3.5 Feature reduction methods

The proposed solution involves an optimization process. To optimize a classifier , I want to try 
feature selection methods. More specifically, the plan is to measure the effect of  feature reduction 
on the winning classifier from the selection above. Because the data set has a lot of  features with 
several of  them assumed to be noisy, a classifier could benefit greatly from this approach. Some 
features may be redundant and redundant, others may be noisy and confusing to the classifier. 
Removing such features can lead to increased accuracy. An added bonus of  reducing data is that 
computational time for learning and classification inevitably decreases. Less data means less time 
spent, even though such improvements are not the goal here. A good result should be a feature 
subset with features that are highly predictive of  the class and not predictive of  other features. 

Just as there are alot of  classifiers to choose from, there are also alot of  feature selection methods 
avilable. I expect that at least one classifier can achieve a performance to such a degree that very 
little space is available for improvement. An extensive search for the best feature selection methods
is therefore considered too costly. Instead, I present a small selection consisting of  one wrapper 
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and two filters. A wrapper uses a classifier's results to adjust its selection while a filter makes the 
selection independent of  any classifier. These are described below.

Many feature selection methods in weka require a search method. Just as the abundance in 
alternatives for the previous selections, this option also has multiple possible alternatives. At this 
point, I did not want further selections and comparisons. To avoid getting too much data out of  
this, I simply went with the Best First search method for all proposed feature selection methods. 
Search direction is set to backwards based on suggestion in [18].

3.5.1 Wrapper subset evaluator

The wrapper implementation in Weka is an implementation of  John et al's wrapper from [19]. 
According to [18], John et al were the first to promote wrappers as a general framework for feature
selection. With formal definitions for feature relevance, wrappers are claimed to The search space 
for an optimal feature subset with n amount of  features is 2^n. Usually an exhaustive search is 
needed to find the very best subset. This is in many cases impractical and therefore a heuristic 
search is used instead. The wrapper uses a learning algorithm's discriminatory performance to 
evaluate the feature subset, in my case that means the winning classifier from the classifier 
comparison. The wrapper has one major bias because it will tune the subset for the target 
classifier. 

My original plan was to implement a genetic algorithm-based wrapper, but this is a very time-
consuming approach and would require the target classifier to work very fast. It also has alot of  
options which needed to be adjustet like genetic operators and mutation rates. Instead, I chose 
Weka's wrapper implementation with default settings.

3.5.2 Correlation-based feature selection

According to Hall in [18], this filter ranks features subsets using a heuristic evaluation. The 
algorithm aims for subsets that include features of  high correlation to class and low correlation to 
other features. More details about this filter can be found in [18].

3.5.3 Consistency subset evaluator

According to Dash et al. in [20], this filter measures inconsistency in feature subsets. Evaluation 
conciders samples with same feature values, but belonging to different classes. If  such pattern 
exists, it is concidered as being incosistent using an inconsistency rate. The rate sums up 
inconsistency count. Consistency measure is described as monotonic, fast, multivariate, capable of
reducing some noise and removing redundant and irrelevant features. More details about this filter
can be found in [20].
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Chapter 4  

Experiments
The experiments below have been designed to correspond to the research questions described in 
Chapter 1. The first goal is to establish that at least one classifier is suitable for use in diagnostics 
with the current data set. And preferably that some are better suited than others, hence the need 
for a comparison. This is needed for some of  the other experiments from the proposed solution to 
be viable.

Assuming the first experiment proves classifiers to be usable for the data set, the second 
experiment will try to optimalize classification with feature reduction methods. The last 
experiment is used to discover the impact different plates have in the feature extraction process. 
This could help indicate any weakness in the results of  previous experiments.

Experiment 1 (E1) Run averaged data set on the six classifiers and produce ranking

Experiment 2 (E2) Optimalize best ranked classifier by the use of  feature reduction

Experiment 3 (E3) Test how each plate affect classification
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4.1 Experiment 1 (E1)

The data set includes 278 samples spread out in a total of  697 duplicates across 19 plates. For this 
experiment, the 697 feature vectors are averaged back to 278 unique samples. The averaged data 
set therefore includes 278 feature vectors. All 54 features are used in this experiment. To give the 
results higher generalizability for future unknown data, the leave-one-out cross-validation scheme 
is used. For each sample k in the data set D, training data T = D – k. This prevents any learning 
data to be contaminated by the classification sample. Only kappa is used for ranking, but other 
measures are presented. This experiment results in a ranking of  the proposed classifiers.

4.1.1 Naive Bayes

Classification results for naive Bayes on the averaged data set is shown in table 8.

Table 8: Naive Bayes results of  E1

Additional results are shown in table 9.

Table 9: Additional naive Bayes results of  E1

Scores for kappa and ROC are the worst of  the entire experiment. Discriminatory power is low for
both classes. This data set does not illustrate the strength of  naive Bayes classifier. This classifier is 
unsuited independent of  what measurement is preferred.

4.1.2 K-nearest neighbours

Classification results for k-nn on the averaged data set is shown in table 10.

Table 10: K-nn results of  E1

Additional results are shown in table 11.

Table 11: Additional k-nn results of  E1
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A.\P. negative positive
negative 140 23
positive 39 76

Class TP Rate FP Rate Precision Recall F-Measure ROC Area
Weighted avg. 0.777 0.257 0.776 0.777 0.774 0.853

Correct Incorrect Kappa Mean absolute error Root mean squared error Relative absolute error Root relative squared error
216 62 0.531 0.222 0.460 45.6232% 93.1015%

A.\P. negative positive
negative 155 8
positive 28 87

TP Rate FP Rate Precision Recall F-Measure ROC Area
Weighted avg. 0.871 0.163 0.875 0.871 0.868 0.933

Correct Incorrect Kappa Mean absolute error Root mean squared error Relative absolute error Root relative squared error
242 36 0.726 0.198 0.329 40.5716% 66.4557%



These results are quite impressive when concidering how simple the algorithm is. Allthough kappa
score is unsatisfactory, ROC is quite good.

4.1.3 Logistic regression

Classification results for logistic regression on the averaged data set is shown in table 12.

Table 12: Logistic regression results of  E1

Additional results are shown in table 13.

Table 13: Additional logistic regression results of  E1

These results are modest. ROC is very good allthough kappa is medium in comparison to the 
other classifiers.

4.1.4 Multilayer perceptron

Classification results for multilayer perceptron on the averaged data set is shown in table 14.

Table 14: Multilayer perceptron results of  E1

Additional results are shown in table 15.

Table 15: Additional multilayer perceptron results of  E1

For some reason this classifier has excellent ROC score even if  kappa is just slightly above average.
I am not sure exactly why this is the case. If  ROC should be the desired benchmark measurement 
for future work, this classifier is highly suggested.

4.1.5 Support vector machine

Classification results for support vector machine on the averaged data set is shown in table 16.
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A.\P. negative positive
negative 154 9
positive 14 101

TP Rate FP Rate Precision Recall F-Measure ROC Area
Weighted avg. 0.917 0.094 0.917 0.917 0.917 0.966

Correct Incorrect Kappa Mean absolute error Root mean squared error Relative absolute error Root relative squared error
255 23 0.828 0.099 0.259 20.3555% 52.3549%

A.\P. negative positive
negatiove 155 8
positive 11 104

TP Rate FP Rate Precision Recall F-Measure ROC Area
Weighted avg. 0.932 0.076 0.932 0.932 0.932 0.982

Correct Incorrect Kappa Mean absolute error Root mean squared error Relative absolute error Root relative squared error
259 19 0.859 0.068 0.233 14.0226% 47.2137%



Table 16: Support vector machine results of  E1

Additional results are shown in table 17.

Table 17: Additional support vector machine results of  E1

Support vector machine has very strong results all over. Performance is good across both classes. 
This classifier is a good alternative for future work.

4.1.6 C4.5

Classification results for C4.5 on the averaged data set is shown in table 18.

A.\P. negative positive
negative 156 7
positive 5 110

Table 18: C4.5 results of  E1

Additional results are shown in table 19.

Table 19: Additional C4.5 results of  E1

Of all the classifiers compared in this experiment, C4.5 has the highest kappa score. The 
embedded feature selection of  this decision tree could be the deciding factor why this outperforms 
the rest. However, ROC score is disproportionate compared to previous classifiers. Performance is 
proportionate for both classes. This data set really illustrates the strength of  C4.5.

Weka can output the tree produced during classification. Because this experiment uses leave-one-
out scheme, it means one unique tree is made for each sample classified. Instead of  showing all 
278 trees, a tree based on the entire data set is shown in figure 10. Correct and incorrect 
classifications are shown in paranthesis for each leaf  (correct/incorrect).

29

TP Rate FP Rate Precision Recall F-Measure ROC Area
Weighted avg. 0.957 0.043 0.957 0.957 0.957 9.530

Correct Incorrect Kappa Mean absolute error Root mean squared error Relative absolute error Root relative squared error
266 12 0.911 0.049 0.200 9.9809% 40.5152%

A.\P. negative positive
negative 154 9
positive 8 107

TP Rate FP Rate Precision Recall F-Measure ROC Area
Weighted avg. 0.939 0.064 0.939 0.939 0.939 0.938

Correct Incorrect Kappa Mean absolute error Root mean squared error Relative absolute error Root relative squared error
261 17 0.874 0.061 0.247 12.5583% 50.0322%



Figure 10: Visualized C4.5 tree from complete data set

The tree has size 17 with a total of  9 leaves. Here we can see perfectly the sort of  embedded 
"feature reduction" typical for decision trees. Out of  54 features, only P001, P003, P011, P015, 
P017 and P036 are used after pruning.

4.1.7 Discussion

According to summarized results of  table 20, the highest ranking classifier is the C4.5 decision 
tree.

Table 20: Summarized results of  E1
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Naive Bayes 0.531 216 62 0.853
K-nearest neighbours 0.726 242 36 0.933
Logistic regression 0.828 255 23 0.966

Multilayer perceptron 0.859 259 19 0.982
Support vector machine 0.874 261 17 0.938

C4.5 0.911 266 12 0.953



The difference between the lowest and highest ranked classifiers is substantial. This was expected 
based on similar work discussed in Chapter 2. The difference therefore justifies the comparison 
and proves RQ1 correct. But more importantly, it identifies C4.5 as the best alternative. 
Interestingly, the ROC Area does not follow the same order. If  this was the chosen metric, 
multilayer perceptron would have been the winner and subject of  subsequent experiments. Should 
someone argue for ROC Area or some other metric to be better for comparison, I would advice 
repeating the subsequent experiments with the best classifier according to that metric. 

Because C4.5 scored so high, searching for an even better classifier could easily require a much 
larger selection. The cost of  finding a better classifier is likely relative to C4.5's performance. Since
the proposed selection is so diverse, a narrow successive search including only decision trees could
be profitable. Further experiments are needed to confirm this.

Due to a relatively small data set, it is possible that another classifier in this list would be better on 
data set containing more samples. It is important to note that this ranking is only applicable for 
this specific data set. Any modification in features or size could lead to a different classifier having
better performance.

The tree produced by C4.5 based on the complete data set only includes 6 features, indicating that 
a large number of  features may be obsolete at least for this classifier. The strong explanatory 
power of  this classifier may be helpful in pointing out specific bacterias that play a vital role for the
dysbiosis condition. Most classifiers in my selection have limited or no embedded "feature 
selection" functionality. C4.5 includes similar functionality to feature selection which may have 
helped it gain a foothold in this contest. This is why decision trees get a positive rating for data 
reduction, as seen in [14]. Classification of  complete data set using all features was part of  the 
condition for the comparison and this ordering of  experiments prevents an overwhelming amount 
settings to be adjusted and data to discuss.
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4.2 Experiment 2 (E2)

Now that a ranking of  classifiers shows that the C4.5 achieved highest kappa score, the second 
experiment can improve this result by the use of  feature selection methods. Even though C4.5 do 
have some of  this functionality embedded, performance can potentially still be improved because 
of  the heuristic information gain search algorithm used. Noisy features can make additional 
feature selection methods viable, because C4.5 is not guaranteed to find the best subset on its own.

This experiment uses the same data set as in E1 with 278 unique averaged samples. The same 
leave-one-out cross-validation scheme is used. Each feature selection algorithm produces a 
threshhold value per feature. Because leave-one-out cross-validation is used, the output is not one 
single feature subset, but one feature subset per classified sample. The threshhold values express 
the percentage of  how many times the features were used. So a high percentage means the feature 
was used many times. This can be used to rank features. For each threshhold table presented in the
following experiment, the optimal count of  features is calculated by classification. This can be 
done in two equivalent ways:

• increase threshhold step by step to find best value

• start with all features and remove one by one to find best rank number

Each result is presented with feature threshholds, the optimal threshhold value that achieved 
highest kappa, confusion matrix for classification using this threshhold and additional measures. 
As mentioned before, the features represent a pre-defined selection of  bacteria species and 
families. Each bacteria is anonymized and labeled P0001-P0054. The feature subsets produced 
may be helpfull in indicating important relations and identities of  such bacterias that play a vital 
role in dysbiosis.

4.2.1 Wrapper subset evaluator

This method uses a target classifier for evaluation of  subsets. The settings used for C4.5 in this 
experiment is the same as in experiment 1. The feature threshholds produced by the wrapper is 
shown in table 21.

Table 21: Feature threshholds produced by wrapper

C4.5 achieved best classification score with a threshhold set to 0.74. The corresponding feature 
subset consists of  P0003, P0011, P0015, P0017 and P0036. The classification results for this subset
are shown in table 22 and 23.
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P0001 P0002 P0003 P0004 P0005 P0006 P0007 P0008 P0009 P0010 P0011 P0012 P0013 P0014 P0015 P0016 P0017 P0018
0.04 0.19 0.74 0.13 0.03 0.05 0.03 0.09 0.10 0.10 0.94 0.05 0.19 0.03 1.00 0.13 1.00 0.09

P0019 P0020 P0021 P0022 P0023 P0024 P0025 P0026 P0027 P0028 P0029 P0030 P0031 P0032 P0033 P0034 P0035 P0036
0.04 0.19 0.12 0.10 0.12 0.01 0.04 0.05 0.07 0.21 0.09 0.09 0.03 0.30 0.08 0.14 0.09 1.00

P0037 P0038 P0039 P0040 P0041 P0042 P0043 P0044 P0045 P0046 P0047 P0048 P0049 P0050 P0051 P0052 P0053 P0054
0.30 0.13 0.02 0.03 0.06 0.06 0.35 0.11 0.12 0.14 0.05 0.14 0.07 0.16 0.11 0.06 0.02 0.03



Table 22: Wrapper results of  E2

Table 23: Additional wrapper results of  E2

By removing almost 90% of  the features available, the Wrapper managed to improve performance 
compared to E1. The wrapper's use of  C4.5 as evaluator produced a subset almost identical to 
C4.5's own subset shown previously in figure 10. With the good results from E1, there was only a 
small space for improvement. However, by removing just one feature, P0001, the decision tree 
went from 12 misclassifications to 9. This makes the already good accuracy even better.

4.2.2 Correlation-based feature selection

The feature threshholds produced by the correlation-based feature selection (CFS) is shown in 
table 24.

Table 24: Feature threshholds produced by correlation-based feature selection

C4.5 achieved best classification score with a threshhold set to 0.96. The corresponding feature 
subset consists of  P0001, P0003, P0010, P0011, P0014, P0015, P0016, P0017, P0019, P0021, 
P0022, P0028, P0036, P0040, P0043, P0044 and P0050. The classification results for this subset 
are shown in table 25 and 26.

Table 25: Correlation-based feature selection results of  E2
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A.\P. negative positive
negative 158 5
positive 4 111

Class TP Rate FP Rate Precision Recall F-Measure
Weighted avg. 0.968 0.033 0.968 0.968 0.968

Correct Incorrect Kappa
269 9 0.933

P0001 P0002 P0003 P0004 P0005 P0006 P0007 P0008 P0009 P0010 P0011 P0012 P0013 P0014 P0015 P0016 P0017 P0018
1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.88 0.03 1.00 1.00 0.00 0.83 1.00 0.99 0.98 0.97 0.00

P0019 P0020 P0021 P0022 P0023 P0024 P0025 P0026 P0027 P0028 P0029 P0030 P0031 P0032 P0033 P0034 P0035 P0036
1.00 0.00 1.00 0.98 0.02 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

P0037 P0038 P0039 P0040 P0041 P0042 P0043 P0044 P0045 P0046 P0047 P0048 P0049 P0050 P0051 P0052 P0053 P0054
0.00 0.20 0.02 1.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.02 1.00 0.00 0.00 0.00 0.00

A.\P. negative positive
negative 158 5
positive 5 110



Table 26: Additional correlation-based feature selection results of  E2

With an increase in accuracy and almost 70% reduction of  features, these results are also good, 
allthough not better than the previous.

4.2.3 Consistency subset evaluator

The feature threshholds produced by the consistency feature selection method is shown in table
27.

Table 27: Feature threshholds produced by consistency

C4.5 achieved best classification score with a threshhold set to 0.97. The corresponding feature 
subset consists of  P0015, P0032, P0036, P0039, P0048 and P0050. The classification results for 
this subset are shown in table 28 and 29.

Table 28: Consistency results of  E2

Table 29: Additional consistency results of  E2

Of all the results in E3, these are the worst. This turned out to be a bad choice in this case. The 
reduction in size is good, from initial 54 to 6. But the specific features have very little overlap with 
the ones used in C4.5's tree based on full feature set.
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Class TP Rate FP Rate Precision Recall F-Measure
Weighted avg. 0.964 0.038 0.964 0.964 0.964

Correct Incorrect Kappa
268 10 0.926

P0001 P0002 P0003 P0004 P0005 P0006 P0007 P0008 P0009 P0010 P0011 P0012 P0013 P0014 P0015 P0016 P0017 P0018
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00

P0019 P0020 P0021 P0022 P0023 P0024 P0025 P0026 P0027 P0028 P0029 P0030 P0031 P0032 P0033 P0034 P0035 P0036
0.09 0.12 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.04 0.94 0.00 0.00 0.97 0.00 0.00 0.00 1.00

P0037 P0038 P0039 P0040 P0041 P0042 P0043 P0044 P0045 P0046 P0047 P0048 P0049 P0050 P0051 P0052 P0053 P0054
0.00 0.92 0.99 0.00 0.90 0.00 0.00 0.91 0.00 0.00 0.00 0.98 0.02 1.00 0.00 0.96 0.26 0.00

A.\P. negative positive
negative 151 12
positive 13 102

Class TP Rate FP Rate Precision Recall F-Measure
Weighted avg. 0.910 0.097 0.910 0.910 0.910

Correct Incorrect Kappa
253 25 0.814



4.2.4 Discussion

A summary of  features selected in experiment 2 is shown in figure 11.

Figure 11: Feature selection comparison

A ranked list of  classification results and comparison with full feature set from experiment 1 is 
shown in table 30.

Table 30: Summary of  classification performance with and without feature subsets

Based on this ranking, the wrapper made the best feature subset selection for the C4.5 classifier. 
The improvement is actually surprisingly good. Originally, C4.5 only had 12 incorrect 
classifications. This was reduced to 9 misclassifications with the optimized process of  wrapper 
feature selection. The amount of  features varies greatly between the methods. Consistency did not 
give satisfactory results in this case. Perhaps a different search algorithm would be more approriate
for the consistency method. Correlation-based feature selection impressed because it had the 
disadvantage of  being a filter. Its evaluation of  feature subsets is independent of  any classifier, but 
still managed to give almost as good optimalization as the wrapper which had direct evaluation 
access of  the C4.5 classifier. But the correlation-based feature selection method had one draw-back
which is the size of  the feature subset. Also interesting to see is that every feature selected by the 
wrapper is also found in the selections from C4.5 and correlation-based method. The difference 
between the wrapper's selection and C4.5's selection is the exclution of  P0001. After wrapper 

35

0.00

0.20

0.40

0.60

0.80

1.00

Feature selections with threshholds

Wrapper Cfs Consistency

Kappa Correct Incorrect Features
Wrapper 0.933 269 9 5

Correlation 0.926 268 10 17
Consistency 0.814 253 25 6

C4.5 Full feature set 0.911 266 12 54 (6)



removed this feature, C4.5's kappa score increased from 0.911 to 0.933!

The varying success of  the feature selection methods shows that also this step benefits from a 
comparison. And accuracy can both be improved and degraded depending of  which method is 
used. Based on the results shown here, I would advice using wrapper for further work on this data 
set, allthough correlation-based feature selection is nearly as good. But the wrapper wins also 
because of  a much smaller size of  the subset. This experiment also shows that even if  the target 
classifier includes some feature selection functionality, the use of  additional methods can still be 
viable.

Hopefully the features identified here can be valuable for further research on determining if  a 
patient has dysbiosis and which bacterias has most impact for this condition.
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4.3 Experiment 3 (E3)

Some samples are analysied multiple times on the same plate. The vast majority of  samples are 
analyzed more than once and on more than one plate. One plate typically has similar but not 
identical readings when analyzing the same sample twice. Figure 12 shows the distribution of  the 
278 samples on the 19 plates. Sample 1-163 are in negative class and samples 167-278 are positive. 
Plate 1-13 were used on negative samples and plate 14-19 were used on positive samples.

Figure 12: Sample distribution on plates

The third experiment explores the possibilty that classification performance is dependant of  plates.
Ideally each class is precise and each plate extracts identical feature values from the same sample. 
If  this was true, classification performance should be independent of  which plate was used to 
analyze the samples. But with real-world and noisy data, this is rarely the case. Also the classes are
only assumede as no formal definition exists for dysbiosis.
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This experiment uses winning classifier C4.5 from experiment 1 with the same settings. The data 
set for this experiment is organized differently however. In the previous experiments, average 
samples were used and the individual plates were transparent. Now the individual plates are of  
interest and therefore the complete raw data set consisting of  697 feature vectors are used. Instead 
of  using leave-one-out in this experiment, a scheme of  leave-one-set-out is used instead. One 
sample has multiple duplicates depending on how many times it was analyzed on one or more 
plates. When one set is left out, the training data is not polluted by duplicates of  the classified 
sample. In this experiment, leave-one-set-out cross-validation means that when classifying a 
sample, no other duplicate of  that sample is used for training the classifier.

4.3.1 Classification results per plate

Figure 13 shows the accuracy of  C4.5 on the complete data set per plate.

Figure 13: Accuracy per plate

4.3.2 Discussion

Results from experiment 3 shows that for negative class, plate 7, 8 and 9 are particularly bad. 
Many samples analyzed on these plates are not analyzed on other plates. Performance is also 
lower on plate 13, 14, 15, 16 and 19 in positive class. Several samples are only analyzed on some 
of  these plates. All in all, the difference in classification accuracy between plates is very apparant. 
There can be many reasons why this is the case. Perhaps some samples are labeled incorrectly due 
to lack of  precise definition of  dysbiosis. Or some samples analyzed on these plates are 
particularly noisy. It is also tempting to conclude that precision in measure of  bacteria is 
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inconsistent between plates. The result from this experiment indicates the possibility that some 
plates are simply less accurate for analyzing quantity of  bacteria dna present in human feces.
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Chapter 5 

Conclusion and future work
I investigated the use of  machine learning techniques on the binary classification problem of  gut 
dysbiosis. The proposed solution included a unique selection of  6 classifiers which was 
recommended by or proved succesful in literature for medical diagnosis. In addition, feature 
selection methods were applied to improve accuracy and to reveal the identities of  bacterias that 
were most relevant for classification. The last experiment classified samples with regard to the 
individual stool analysis plates they analyzed on.

Experiments were conducted using supervised learning classifiers and a leave-one-out cross-
validation scheme. Comparisons showed that the discriminatory performance varied greatly 
between classifiers. The C4.5 decision tree performed best, with close competition from support 
vector machine, multilayer perceptron and logistic regression. Naive Bayes and k-nn did not 
perform suitably for this data set.

The accuracy of  C4.5 was optimalized by the addition of  feature selection methods. 3 alternatives 
were compared. Wrapper subset evaluator and correlation-based feature selection both produced 
strong feature subsets. Wrapper achieved the greatest improvement of  accuracy by removing more
than 90% of  the features. Consistency subset evaluator did not perform satisfactory for the C4.5 
classifier on this data set.

The samples were analyzed on 19 plates. Classification varied significantly depending of  which 
plate was used to analyze the sample. This may indicate a certain level of  noise and that some of  
the laboratory equipment used have inaccurate measurements.

The results will be useful guidelines for future work with the gut dysbiosis data set. Specific feature
identities mapping to bacterias have been shown to be particularly predictive of  classes. Any future
binary classification will benefit greatly from selecting the apropriate algorithms and avoiding the 
others.
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5.1 Future work

If  for some reason there is reason to believe a different classifier is better suited or preferred, it 
could be compared to the current results.  There is still a possibility of  applying a classifier with 
better performance or a better feature subset. If  more samples are collected to increase or alter the 
data set, it could be purposefull to re-evaluate the ranking of  classifiers and feature selection 
methods. It would be interesting to see any re-ordering of  the rankings if  the data set is modified.

With a larger data set, a stronger result could be achieved by dividing it in two parts. One part for 
tuning and selecting features and the other part for evaluating efficiency. 
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