
Design, implementation and analysis of a
theft-resistant password manager based on

Kamouflage architecture

by

Torstein Haugum & Lars-Christian K. Rygh

Supervisor
Vladimir A. Oleshchuk

This master’s thesis is carried out as a part of the education at the University of

Agder and is therefore approved as a part of this education. However, this does

not imply that the University answers for the methods that are used or the

conclusions that are drawn.

The University of Agder
Faculty of Engineering and Science

Department of Information and Communication Technology

Grimstad, May 26, 2015

Abstract

As a solution for helping companies and users in the constant security dilemma of
obtaining and using passwords in the securest ways possible, password managers
have become custom around the globe. The design architecture on what develop-
ment of password managers are based on, preserving authenticity, usability and
reliability are principles that keep systems secure and defend against attacks or
unfortunate circumstances. The design principles however, have changed little
over time. After researching password managers and analyzing overall security,
we use our findings to develop a design based on the implementation of decoys,
customized for Android. This development was inspired by a paper named ”Kam-
ouflage: Loss-Resistant Password Management” [27].

Preface

The work carried out in this thesis is done at the University of Agder and is our
final task before completion of the master programme ”Information and commu-
nication technology” with security as the main profile.

We will use this chance to thank our supervisor Professor Vladimir A. Oleshchuk
for helping us academically and giving valuable input regarding our task.

This thesis is written by Torstein Haugum & Lars-Christian K. Rygh.

i

Contents

Contents ii

List of Figures v

1 Introduction 1
1.1 Motivation . 2
1.2 Goals . 4
1.3 Field of research . 4
1.4 Statement of the Problem . 4
1.5 Contributions . 5
1.6 Target audience . 6
1.7 Report outline / Thesis Organization 6
1.8 Delimitations and key assumptions 7

2 Background 8

3 State of the art 11
3.1 General information . 11
3.2 Local password managers . 12
3.3 Web-based password managers 12
3.4 Proposed solutions using decoy-based architecture 13

3.4.1 Kamouflage . 13
3.4.2 NoCrack . 14

ii

CONTENTS

4 Design 15
4.1 Application design . 16

4.1.1 PIN code . 16
4.1.2 Master Password . 17
4.1.3 Login . 18
4.1.4 Creating passwords . 20
4.1.5 Calculating the correct index 20
4.1.6 Database . 24

4.2 User operations . 26
4.2.1 Add . 26
4.2.2 Read/Show . 26
4.2.3 Update/Edit . 26
4.2.4 Delete . 27
4.2.5 Change master password 27

4.3 Cloud design . 28
4.3.1 Production of decoys . 28
4.3.2 Database . 31

4.4 Connection between android application and the cloud 32

5 Proposed Solution 34
5.1 Software used . 36
5.2 Random functions . 36
5.3 Android development . 37

5.3.1 Tools used . 37
5.4 Hexstring to decimal . 37
5.5 Cloud - production of decoys . 39
5.6 Decoy generation . 43
5.7 Discussion of design issues . 45

5.7.1 Login . 45
5.7.2 Internet / No Internet connection 46
5.7.3 Using modulo arithmetic for indexing 47

iii

CONTENTS

6 Performance testing 48
6.1 Android application performance 49

6.1.1 How much MB space do the decoys produce? 49
6.1.2 Do large amounts of decoys slow down the application? . 49
6.1.3 Probability of hitting the correct index 50
6.1.4 Hit rate with 1000 decoys 53
6.1.5 Hit rate with 5000 decoys 54
6.1.6 Hit rate with 10000 decoys 55

6.2 Cloud performance . 57
6.2.1 Decoy generation . 63

7 Security analysis 69
7.1 Attack vectors . 69

7.1.1 Attack vectors targeting the application 69
7.1.2 Attack vectors targeting the cloud 72

7.2 Additional functions to enhance security 74
7.2.1 Honeywords . 74

8 Discussion, conclusion and further work 76
8.1 Discussion of results . 76

8.1.1 Hit rate results . 76
8.1.2 Decoy production in Cloud 78
8.1.3 Storing passwords . 81
8.1.4 Modulo as index function 81
8.1.5 Performance . 82

8.2 Conclusion . 82
8.3 Further Work . 85

Bibliography 86

iv

List of Figures

4.1 Login with master password . 19
4.2 Indexing . 22
4.3 Even distribution . 24
4.4 Database design . 25
4.5 Decoy production overview . 28
4.6 Original password: Password123! 29
4.7 Database design in the cloud . 32

5.1 General overview of our prototype 35
5.2 Code snippet of SHA-256 hex value converted to decimal 38
5.3 Check with 0-100 000 decoys in the database 41
5.4 Average over 10 runs: 1,036 Sec 42
5.5 Screenshot from the database in the cloud 42
5.6 Passwords being sent in JSON-format 42

6.1 Application performance . 50
6.2 Hit rate with 1000 decoys . 53
6.3 Hit rate with 5000 decoys . 54
6.4 Hit rate with 10000 decoys . 55
6.5 Decoy production 10000 - 10 times 58
6.6 Decoy production: 15.5828 sec 58
6.7 Improved time Decoy production: 9.575 sec 59
6.8 Improvement: 6 sec . 59

v

LIST OF FIGURES

6.9 Production of 10 000 x 5 (Time in seconds) 60
6.10 Iterations . 61
6.11 Unique Lookup check with 0-100 000 decoys in the database . . . 62
6.12 Comparison of production 10 000 63
6.13 Original password:PASSWORDDEViCE 65
6.14 Original password:PASSWORDDEViCE 66
6.15 Original password: passwOrDDeviCE 66
6.16 Step 1: Choice of words, separated with ’-’ 67
6.17 Step 2: Choice of uppercase letters 67
6.18 Step 3: Choice of numerals . 68
6.19 Step 4: Choice of special characters, final result 68

vi

List of Abbrevations

• APK Android Application Package

• CA Certificate Authority

• PHP PHP: Hypertext Preprocessor

• KB Kilobytes

• MB Megabytes

• GB Gigabytes

• RAM Random access memory

• DoS Denial of service

• IP Internet Protocol

• AES Advanced encryption standard

• SHA Secure hash algorithm

• USB Universal serial bus

• PBKDF2 Password-Based Key Derivation Function 2

• SSL Secure socket layer

• PBE Password based encryption

vii

Chapter 1

Introduction

Password managers is a solution that helps companies and private users in struc-
turing their password and login credentials. The amount of systems we access
daily have increased, and restrictions in the creation of secure passwords become
harder to satisfy [7, 36, 49]. Remembering all of these passwords is difficult, and
only having to remember one single password with the use of password managers,
is a solution many prefer [47].

Password managers have to be secure, as people trust these applications with their
secrets [47]. The challenge is to make an application secure enough, but still
user friendly so that security is not indirectly compromised because of complex-
ity [30]. It has been proven several times that password manager solutions are not
impenetrable, and in some cases security is decreased as a sacrifice for usability
[26, 22, 41].

One of the contributions and new solutions we based our research on is the im-
plementation of decoys. The theory is that by preventing brute force attacks (a
highly popular method of penetrating systems), a higher level of security is ob-
tained, without a decrease of usability. There have been proposed solutions that

1

CHAPTER 1. INTRODUCTION

help protect against these types of attacks earlier by slowing the process down, but
none of them actually stop the possibility of attacking in this manner. We believe
that by implementing a decoy based design in the correct way, brute force attacks
can be categorized as a minimal threat [27].

1.1 Motivation

By studying Computer Security, it has become apparent that there is always a bal-
ance between absolute security, and usability. Creating systems that are secure
will not contribute if they are so hard to use that they are not used correctly, or
disregarded by users [30].

Systems are often protected by passwords and encryption, in one form or an-
other [34]. Some systems implement more steps for login; one example would
be second factor authentication [31]. Even though these solutions help, they are
basically the same, nothing revolutionary.

While developers are in the process of creating secure systems, the main moti-
vation is to prevent security breaches, which is of course important. The reason
for this is based on three points:

First point: Systems that demand some form of security, often implement the
use of passwords in one way or another. There are few, if any ways around this
because of authentication [31].

Second point: Because of the implementation of passwords restricting systems,
security is based on how secure the password mechanisms are, either calculated
from the probability of guessing a password, or gaining access in other forms
[49, 22].

2

CHAPTER 1. INTRODUCTION

Third point: As most systems use passwords to protect their system, a well
known method of penetrating these types of systems, is brute force [49]. By brute
force we mean automated scripts or applications used offline to generate enough
permutations / dictionary combinations for guessing passwords, which will result
in success. If an attacker has enough time and the system is offline, the attacker
will eventually be successful in obtaining the password. This is why encryption
is highly important, creating an immense amount of possible combinations, re-
sulting in a situation where the amount of time needed to guess the password is
categorized as secure. As technology and resources evolve, encryption in itself
does not stop the problem, it only delays the process [27]. This customary way
of securing systems with the implementation of passwords might one day have to
change, especially in regard to the possibilities of renting botnets [33] to perform
tasks, gaining unthinkable amounts of resources.

We ask ourselves, what if in the development process of designing a secure appli-
cation, it is expected that attackers will gain access to the system, then what?

The motivation for this thesis was to challenge this way of thinking head on, po-
tentially uncovering new approaches that can benefit the industry. Our design
implements solutions based on the unwanted. Attackers penetrating the system
won’t know if the information given is false or real information. The result may
be categorized as fooling, or even trapping the attacker, even if they are aware of
the design.

3

CHAPTER 1. INTRODUCTION

1.2 Goals

By researching decoy-based architecture we wish to achieve the following goals:

• Research known weaknesses in password managers and focus on the weak-
nesses that relate to architecture and design.

• Implement a proof of concept application on a mobile device with our own
decoy-based design.

• Investigate by proof of concept if enough decoy passwords can be produced
in a feasible amount of time.

1.3 Field of research

The field of research in this master thesis is focused on password managers and
security in relation to brute force attacks. We examine a new architecture, built on
the implementation of decoys. It is believed that with the use of decoys, a higher
level of security is achieved, as information is camouflaged and it becomes harder
to confirm if a brute force attack is successful [27].

1.4 Statement of the Problem

Brute force and dictionary attacks are expected in regard to systems that demand
different forms of authentication for access. Protecting systems for users, mak-
ing it difficult for attackers to gain unauthorized access is an ongoing struggle
as dictionaries used in brute force attacks, and computing power increases [26].
Having users implement the use of strong passwords that are hard to guess often
help prevent dictionary attacks [49]. Implementing slow hash functions and salts

4

CHAPTER 1. INTRODUCTION

also help slow down the attack process, but they do not eliminate the possibility
of dictionary attacks from being successful [27]. Password managers are increas-
ing in popularity by users because of higher demands in using strong passwords,
making passwords harder to remember. An increase of password managers being
used leads to the assumption that password managers can become popular tar-
gets for attackers. If an attacker was to gain unauthorized access to a managers
credentials, they obtain highly valuable information [47, 37].

1.5 Contributions

With the implementation of decoys, it is believed that a higher level of protection
is achieved against brute force attacks. To be categorized as a valid solution, im-
plementation must take place on different platforms for analysis.

Sufficient decoy production is ’key’ in developing a secure solution. The de-
coys generated must successfully camouflage stored information. This task can
be challenging as users’ passwords often contain words [36].

By implementing a prototype on a mobile device running Android, we are able
to analyze and evaluate if the implementation of decoy-based architecture is fea-
sible. Decoy-based designs demand a large amount of decoys to achieve an ac-
ceptable level of security. Resources needed, as available space, hardware power
and communication speeds, could make implementation more difficult. We have
proven that producing enough decoys of sufficient quality is possible with the use
of cloud servers and efficient programming, and shown that running our decoy-
based solution on a mobile device is highly possible.

5

CHAPTER 1. INTRODUCTION

1.6 Target audience

The target audience are users in the security industry, application developers and
others who share the common interest of Computer Science.

1.7 Report outline / Thesis Organization

The report outline of our thesis is structured as follows:

Chapter 1 - This chapter is the introduction to our thesis. This chapter addresses
our motivations for this thesis including our goals.

Chapter 2 - This chapter is the background of our thesis. Information that is
needed in order to understand the thesis is mentioned here.

Chapter 3 - This chapter is the state of the art mentioning overall password man-
agers and their different architectures.

Chapter 4 - This chapter is about the design of our password manager. How
the application functions is mentioned here.

Chapter 5 - This chapter is the proposed solution which mentions important func-
tions necessary for our design. It also contains information about design issues.

Chapter 6 - This chapter show results of our application in how it performs.

Chapter 7 - This chapter is a security analysis of our password manager men-
tioning attack vectors for our application.

6

CHAPTER 1. INTRODUCTION

Chapter 8 - This chapter discusses the results performed by our application in-
cluding conclusion and further work.

1.8 Delimitations and key assumptions

We have not implemented the following into our solution:

• Encryption

• SSL between the application and the cloud environment

• Internet / No Internet connection regarding synchronization of decoy pro-
duction (Explained further in 4.3.1)

• Obfuscation of source code in the application

• Strictly hash storage in the cloud, preserving privacy for the user (used for
testing)

We have not incorporated machine learning to conduct an analysis of our decoy
production.

7

Chapter 2

Background

In this thesis we emphasize security, not safety. These terms are not easy to distin-
guish from each other as both terms often are defined by context or presentation.
The word ’safe’ comes from the Latin word ’saluses’, translated as ’uninjured’,
where ’safety’ is a condition of being protected against risk or injury. The word
’secure’ comes from the Latin word ’securus’, a condition of being free from dan-
ger or threat, subtle differences, but within computer science we recognize the
term security as - ”protects against both deliberate and unintended attacks”, while
safety generally protects against unintended attacks [19].

The importance of strong passwords is well known not only in the security in-
dustry, but also by regular citizens as well. This has become common knowledge.
However, creating a strong password, and actually using strong passwords are two
different matters. The dilemma is easy, stronger passwords are harder to remem-
ber, and while the amount of different services used increases, a larger amount of
passwords have to be remembered [53]. This results in users implementing if not
the exact same passwords on multiple services, then very comparable passwords,
that in them selves are not necessarily strong at all. [38, 37, 55].

8

CHAPTER 2. BACKGROUND

If complete words are used in the creation of a password, this helps an attacker
in the scenario of disregarding possible password combinations, especially if the
attacker knows what language the user speaks. This way, a massive amount of
possible combinations needed to brute force the application is decreased as at-
tackers may implement the use of dictionaries. If a user has a password with a
length of 8 characters, it is assumed that the possible permutations are in relation
to the amount of characters available for use, in the power of the length of the
password [49], but this is not necessarily correct.

(An example would be if a password consisted of 8 characters, containing only
lowercase letters from the English alphabet, possible permutations would be 268.)

If we were to assume that all passwords were completely randomly generated,
this would be true, but surveys have discovered that most people use passwords
implemented with words, drastically decreasing the possible combinations in a
users password [49].

While companies and developers try to enforce strong password creation on to
users by implementing restrictions when creating passwords, this may lead to
passwords being reused on multiple services, being forgotten, or even worse, users
writing the passwords down on paper or their smart phone. All of these scenarios
combined, results in the creation of Password Managers, a secure solution of sav-
ing valuable information such as passwords [41, 7, 37, 55].

Password managers are applications that secure valuable information, with re-
stricted access. Many of them are also implemented with functionality making
them easier to use, examples being auto fill when using a web browser, or sync-
ing to other devices so the information is accessible everywhere. If a password
manager allows the use of passwords automatically, then the passwords can be so
strong that there is no need to remember them [26]. Password managers can be

9

CHAPTER 2. BACKGROUND

popular objectives for attackers, as the information to be gathered is of high value.
By researching the security in these types of applications, patterns start to occur.

Several research papers prove that password managers are not impenetrable, which
is a scary truth. If we trust these applications with all of our personal access in-
formation, a successful attack could be catastrophic [27, 22, 41, 47, 37].

Standard systems store real information and nothing else. Valuable information is
often encrypted, relying on the fact that the encryption used is secure. The result
of this is that if a brute force attack was to be successful, the attacker would know
with certainty that all information obtained is real. By implementing a decoy-
based architecture, security will be increased in the situation of an attacker pene-
trating the system, as information obtained will be camouflaged. The attacker can
not distinguish between what is false or real information. This increase of secu-
rity has little to no sacrifice of usability for the user as the changes only become
apparent in the situation of an attack [27].

10

Chapter 3

State of the art

3.1 General information

A traditional password manager protects sensitive information with a master pass-
word. This master password is used to encrypt the information it is supposed to
protect [37]. Protecting the information in this way makes it vulnerable to brute
force attacks. If an attacker managers to obtain a copy of the encrypted database
he can perform an offline brute force attack trying to guess the correct key for
decryption. When a wrong decryption key is used the encryption will fail and the
attacker will keep on trying until the decryption is successful. Upon success the
attacker will retrieve the correct information and is then able to authenticate him-
self. Whereas a password manager using decoy-based architecture the attacker
will never know if the information he receives is real or decoy information. The
only choice left is to try the results online.

11

CHAPTER 3. STATE OF THE ART

3.2 Local password managers

Local password managers, also referred to as stand-alone password managers, are
applications that let users store sensitive information inside a single vault, that is
protected with a master password. If a user needs to access his sensitive informa-
tion, he must decrypt the vault by entering the correct master password. These
password managers store the encrypted file locally, so if a user wants to use this
file on another computer it can be saved on a USB flash drive and moved over
to the desired computer. The disadvantage is that every computer has to have the
application installed [29].

A well known application with this type of architecture, is Keepass [9]. Keepass
is an open source password manager that encrypts sensitive information with the
help of a master password or a key file. To protect against dictionary attacks Keep-
ass uses the encryption algorithm AES-256 [32] and the hash algorithm SHA-256
[40].

3.3 Web-based password managers

Web-based password managers differ from local password managers in the way
that they run in the browser. Web-based password managers store the users pass-
words in a cloud where the users have to authenticate themselves in order to re-
trieve the desired information [47].

A popular web-based password manager is LastPass [10]. LastPass both encrypts
and decrypts sensitive data on the client side before synchronization, ensuring that
the data is only accessible to the user with the correct master password. Lastpass
uses the combination of AES and ”Password-Based Key Derivation Function 2
[35]”, to secure the sensitive information.

12

CHAPTER 3. STATE OF THE ART

3.4 Proposed solutions using decoy-based architec-
ture

3.4.1 Kamouflage

In 2010 four researchers introduced a new architecture for password mangers
based on decoys. The solution they proposed is named ”Kamouflage” [27]. The
idea behind this architecture is to make password managers safer in regard to anti-
theft. With this design an attacker is forced to perform a great amount of work in
order to determine if a password is correct or not. Traditional password managers
only store a single set, which is encrypted with a master password. If an attacker
is able to steal or obtain the mobile device, he can run a brute force attack in order
to find the correct password, and eventually decrypt the database to obtain all the
sensitive information stored.

The idea behind ”Kamouflage” architecture, is to store N plausible (decoy) sets
along with the real set. The purpose of these sets is to camouflage the real set so
an attacker can not with certainty confirm if the correct set is found. Each set is
encrypted with a decoy master password generated from the original master pass-
word. If an attacker is able to steal a mobile device with a password manager using
the ”Kamouflage” architecture, he would have to decrypt each set separately, and
try to use the information given online in order to determine if he successfully
decrypted the correct set or not. Ultimately the idea is to lure an attacker to think
that he has successfully decrypted the real set only to find that it was decoy infor-
mation. The researchers in ”Kamouflage” also mention the use of honey words
[27, 46, 39] which can be used to detect when an attacker is actually trying to
decrypt the database. A user can take a portion of the decoys as honey words and
add them to websites. When these decoys are used in the attempt of accessing a
given website, an alarm would go off or block the user account. This type of tech-
nique has also been used in ”ErsatzPasswords–Ending Password Cracking” [20]

13

CHAPTER 3. STATE OF THE ART

where the researchers propose a solution named ”ErsatzPasswords” that protects
stored password hashes. This scheme is designed so an attacker thinks he suc-
cessfully decrypted the password file of hashes. When an attacker tries to crack
the hashes in the password file he will receive ”ErsatzPasswords”, also known as
”fake” passwords or decoys. If the attacker tries to use these passwords when
logging into the system an alarm will be triggered, exactly as with the intended
use of honey words. This may imply that login credentials are leaked and that an
attacker is trying to gain unauthorized access to the system [20].

3.4.2 NoCrack

Other researchers have recently proposed a new solution regarding cracking-resistant
password vaults named NoCrack [28]. This solution is based on weaknesses they
identified in the proposed solution by ”Kamouflage”. They mention that ”Kamou-
flage” is degrading overall security relative to a traditional PBE (Password based
encryption). One of the weaknesses the researchers mention is that in ”Kamou-
flage” the decoy sets are encrypted with decoy master passwords generated with
the same template as the original master password. If an attacker is able to suc-
cessfully decrypt one of the decoy sets he would then know the template of the
original master password. This would initially help an attacker to narrow down the
search of decrypting the remaining sets. The second vulnerability they mentioned
is how ”Kamouflage” produces decoy master passwords. NoCrack differs from
”Kamouflage” in the way it produces decoys. The researchers were inspired by
a theory named honey encryption [45]. The main idea behind honey encryption
is that when an incorrect master key is used in the attempt of decrypting a cipher
text, it will avoid producing an error and instead return a result in plain text that
looks real.

14

Chapter 4

Design

The design of our application will always grant access, regardless of what you
enter as a master password. The traditional design of a password manager to-
day, one example being KeePass[9], only grants access if the master password is
correct. This master password is used to encrypt the sensitive information that
is stored. When a user types in the correct master password the database is de-
crypted and the information is revealed. If the input (master password) is wrong,
the decryption will fail and the application will cast an error. The main flaw with
this traditional design is that an attacker knows when he typed a faulty password.
If an attacker manages to steal a device with a password manager installed, based
on a standard design, or if the attacker obtains a copy of the encrypted database
file, he will definitely try a technique called brute forcing [51].

Brute-force attacks are techniques used by attackers were they attempt to guess
passwords [51]. An attacker attempting to brute-force has to have in mind that the
password he is trying to break can contain all possible combinations of upper and
lower case letters, numbers, and special characters. Password space is infinite and
it could take years before finding the correct password. Therefore attackers use
tools that help narrow down the exhaustive search to speed up the process, often

15

CHAPTER 4. DESIGN

implementing the use of dictionaries. It is known that users tend to use passwords
that are human-memorable and that makes them vulnerable to brute-force dictio-
nary attacks [49, 55].

To prevent brute-force attacks we have based our design on an architecture called
”Kamouflage” [27]. Our application is designed to grant access to anyone regard-
less of the master password given. By designing the application in this way the
attacker will never know when he has typed in the correct master password, thus
making brute-force attacks difficult. In a traditional design, every time the attacker
receives an error, the probability of guessing the correct password will increase.
With our design the attacker does not know whether the information given by the
application is correct or wrong.

4.1 Application design

4.1.1 PIN code

Since the application allows all inputs, anyone will get access. We could have
implemented a PIN code of four digits, but this would not enhance the security of
the application in any way. With ten digits to choose from and with a length of
four digits, math shows that there are only 104 combinations. Users also tend to
pick guessable PIN codes, such as their birthday or certain patterns [24], which is
the first patterns an attacker would try. From a security point of view this would
not stop an attacker for a very long time, and therefore we have chosen not to
implement this. The only reason to implement this would be to add an extra step
to help prevent friends or others from updating, deleting or adding random data
for fun. It is also worth mentioning that most smart phones are implemented with
a PIN code to access in general. Users often implement the use of the same PIN
codes on multiple access restrictions. If an attacker is able to open the application

16

CHAPTER 4. DESIGN

he already has access to the phone, giving the assumption that the attacker already
knows the general PIN code.

4.1.2 Master Password

The first time the user opens the application he will be asked to create a master
password. The master password must meet some specific criteria before it will
be approved by the application. This quality check ensures that the user gets a
strong and secure master password. A user should be able to remember a master
password of length 8 combined with these restrictions. Even though the applica-
tion will allow all arbitrary input, it is important that the user is forced to create
a strong password containing different types of characters. This will enhance se-
curity in relation to an attacker guessing what the correct master password is with
the use of side information about the user.

To increase security even further the master password is not stored in the ap-
plication. If we chose to store the password in the application, this would result
in precautions having to be made in terms of storing the password securely. An
example would be to run the password through a cryptographic hash function such
as SHA-256 [40]. If we had done this, the attacker would know that if he was able
to generate the same hash, he would obtain the master password. This could be
achieved with the use of brute force, opposing the principles of our application.

17

CHAPTER 4. DESIGN

The master password has to fulfill the following criteria:

• Does it contain a digit(s)

• Does it contain upper case letter(s)

• Does it contain lower case letter(s)

• Does it contain special character(s) specified by us

• Is the length greater or equal to 8 characters.

• No occurrences of white space is allowed

4.1.3 Login

Figure 4.1 shows the login design of the application, how a user accesses and re-
trieves information from the application. This example shows the scenario where
a user has logged in before and created a master password.

1. In order to access the application to retrieve the correct information, the user
has to enter a master password that has already been created by the user.

2. Upon success the user will gain access to the application and will be met
with a list of options. As shown in this example the user has chosen the
option ”Show entries”

3. Choosing the option ”Show entries”, the application will open a new win-
dow with more detailed information about the selected entry.

4. The new window will contain information such as service, username, pass-
word and url, for the selected entry.

18

CHAPTER 4. DESIGN

Figure 4.1: Login with master password

19

CHAPTER 4. DESIGN

4.1.4 Creating passwords

A user has the possibility to choose a password that he wants, but there are some
restrictions in order to make it a strong password. Since users tend to create
memorable passwords [55] we are using dictionaries to create decoys based on
the original password. This means that the original password must include a word
from a dictionary. The requirements are the same as for the master password
except that the password has to include a word from a dictionary so that we can
produce similar decoys. It would not be a problem to implement a more strict
password policy to make the passwords even stronger. An attacker could use this
information about the requirements to his knowledge by omitting all decoys not
satisfying our requirements. To solve this we restricted the production of decoys
to match restrictions in the application, fulfilling password requirements.

4.1.5 Calculating the correct index

Our application is designed in such a way that no matter what master password
that is tried, the application will return a password. The idea is that the attacker
will never know when the correct master password is entered, since the applica-
tion is always returning positive feedback. The only choice left for the attacker
is to try the password given by the application. Hopefully, the attacker won’t be
lucky and get the correct password. This will be discussed more in chapter 7 - Se-
curity analysis. Since we are searching in a database with a lot of records/decoys,
and we also want the calculated index to be within a certain range, we are using
the modulo function [50]. The modulo function will help us to always return a
password from the database. The equation we are using for calculating the correct
index to store and find the correct password for a given entry is: x mod N, where N
is the number of decoy passwords plus the correct password. To generate an index
for the correct password we are using the cryptographic hash algorithm SHA-256
[40] together with the parameters master password and service acting as the key.

20

CHAPTER 4. DESIGN

We do not have to index the decoys because we only care about the correct pass-
word created by the user. The final equation for locating and storing the correct
password is defined as SHA-256 (Master password, service) mod N. As long as
the correct master password is entered the index calculated by the equation will
always be the same. This ensures that the application will select the correct pass-
word for the selected service when the correct master password is entered. Since
we are using with modulo we have to work with numbers. To solve this we are
taking the hex value of the SHA-256 result and converting it to a decimal number.
To make this more understandable let’s perform an example where we explain
how this works in practice. The master password is ”password123”, number of
decoys is one hundred, and the service selected is ”Gmail”. Using our equation
the correct password for the Gmail account is located at index SHA-256 (pass-
word123, Gmail) mod 101 = 89. Let’s say, for the master password an attacker
is trying the password ”qwerty”. This will point to a password located at index
SHA-256 (qwerty, Gmail) mod 101 = 13. The attacker will believe that this is the
correct password for the Gmail account and will definitely try this, but will find
out that this is not the correct password when he is not granted access online.

Figure 4.2 shows how the design is working.

1. If the correct master password is entered the application will calculate the
correct index with our equation and locate the correct password in the database.

2. If a wrong master password is entered the application will calculate an in-
dex that most likely is a decoy password. The worst-case scenario is if the
input master password given by the attacker results in the same index as the
correct password.

21

CHAPTER 4. DESIGN

Figure 4.2: Indexing

22

CHAPTER 4. DESIGN

Modular arithmetic

When we are calculating an index we want to select records from the database
within a certain range, depending on the number of decoys. To accomplish this
we are using a mathematical operation known as modulo [50]. If the correct pass-
word is camouflaged in 999 decoys then the amount of records in the database are
1000. The modulo will therefore be 1000, ensuring that the generated index is
between 0 and 999.

Below is an example of the modulo where the remainder is 4. We do not deal
with decimals in modulo operations. The modulo equation is as follows: 194 mod
10 = 4

1. 194 / 10 = 19

2. 19*10 = 190

3. 194 - 190 = 4

Regarding this example the password or decoy would be located at index 4. The
modulo operator restricts the possible indexes to range from 0 to N. When an
attacker tries to brute force this application in search of the correct password we
want to utilize all decoys. If our index design only utilized half of the indexes the
other half would not have to be there camouflaging. Therefore it is important that
there is an even distribution among all of the indexes. Figure 4.3 is a print screen
from one of our tests, showing that all of the indexes are hit and the number of
times they are hit. The figure is simulating the modulo function where mod is 10
ranging from 0-9.

23

CHAPTER 4. DESIGN

Figure 4.3: Even distribution

4.1.6 Database

Android SQLite

To provide storage for the application we used the inbuilt solution for Android
which is SQLite [3]. SQLite is a light weight database which supports common
database functions like add, delete, update, remove etc. The database is saved in
a SQLite 3 format.

24

CHAPTER 4. DESIGN

Database design

The database design is very simple and consists of one database with a table
named entry. The database has two columns, id and password. The id column
is of the type integer and is the primary key. This column is used in combina-
tion with the modulo operation for finding an index. The password column is of
type text and is used to store passwords and decoys at the index of the column
id. Each entry is added as a set, where each set is equal in size and consists of
N records (correct password + decoys). An entry consists of a service, username,
password and uniform resource locator (URL). As figure 4.4 shows, every set has
a correct password camouflaged in N decoy passwords. The correct password is
placed based on our equation of calculating the correct index. We do not have
to do anything special about the insertion of records, since the id column is auto
incrementing for each record. The rest of the data such as service, username and
url is stored in a built in interface in Android called Shared preferences [2].

Figure 4.4: Database design

25

CHAPTER 4. DESIGN

4.2 User operations

Similar for the operations add, edit and change master password is that the pass-
words are randomly shuffled so an attacker can not find the correct password by
using an image of the database before and after these operations.

4.2.1 Add

Creating an entry in our design will be dependent on whether the user has Internet
connection or not. This is explained in more detail in 4.3 - Cloud design. When
a user creates a new entry the application will send the selected password to the
cloud. The cloud will return a set with decoys including the correct password back
to the application. The original password together with the decoys are inserted
into the database.

4.2.2 Read/Show

To show the correct information when a user chooses an entry from the list of
entries the application has to locate the right password set which is solved by
storing a counter for each entry. The application will calculate the correct index
based on our equation SHA-256 (Master password, service) mod N for the correct
index.

4.2.3 Update/Edit

When a user wants to update or edit his password the application will perform the
same operation as creating a new entry. The new password specified by the user
will be added to the database with new generated decoys. The correct set to edit
is located by the counter stored uniquely for each entry.

26

CHAPTER 4. DESIGN

4.2.4 Delete

Deleting an entry will delete everything such as service, username, url and pass-
word including decoys and the correct password from the database. The correct
set to delete is located by the counter stored uniquely for each entry.

4.2.5 Change master password

When a user wants to change master password the application will do the follow-
ing for each entry:

1. Select all passwords in each set

2. Locate the correct password by calculating the correct index with the current
master password

3. Calculate the new index based on the new master password

4. Randomly shuffle the password list

5. Locate the correct password and change its place with the decoy that is
located at the index generated from the new master password

By only changing the correct password with the decoy password located at the new
index, an attacker could have easily found the correct password if he had a before
and after image of the database, since these two passwords would be the only one
changing index. Therefore we have to shuffle the list so that all passwords change
index. It is a possibility that some decoys have the same index after the shuffle,
but that is only positive, since the new index for the correct password could also
have been generated to the same index as the old. Making it harder for an attacker
to locate the correct passwords.

27

CHAPTER 4. DESIGN

4.3 Cloud design

4.3.1 Production of decoys

By implementing a cloud environment, we have the possibility to move function-
ality from the mobile device, and up into the cloud. By doing this we prevent an
attacker from getting access to source code that could weaken overall security re-
garding the production of decoys. If an attacker is able to analyze the production
of decoys, this could ultimately help the attacker in separating correct passwords
from decoy passwords. The solution Internet connection / Awaiting Internet con-
nection is not implemented in our solution as it is today. Now the application
requires Internet connection. Figure 4.5 shows the general design of how the de-
coys are produced with and without Internet connectivity.

Figure 4.5: Decoy production overview

28

CHAPTER 4. DESIGN

There are two main reasons for producing decoys in a cloud.

First point: The process is not revealed in the source code, which an attacker
could use to his advantage

Second point: Even though mobile phones have become more powerful over
the years, the amount of resources available on a server is much larger and ex-
pandable.

Generating strong passwords has never been a hard task, but it is proven that
people tend to use passwords they have created themselves, built up of words.
[49, 27, 55]

We wish to implement the use of decoy passwords that look like they are pro-
duced by a human, not a machine.

Creating random passwords is not difficult, but producing passwords that first of
all look like they have been produced by a human, and second of all help camou-
flage the users original password, is not an easy task. The reason for this is human
produced passwords are unlikely random as users tend to create easy memorable
passwords. [49, 27, 55]. If the decoys produced were random, it would be clear
to an attacker what password was produced by a human. (See figure 4.6)

Figure 4.6: Original password: Password123!

29

CHAPTER 4. DESIGN

Requirements:

• All passwords have to be unique

• All passwords include one or more words from one or multiple dictionaries

• The original password has to be checked against already existing passwords
and produced decoys

• Generated decoys have to be checked against all passwords, both in the
database and in the same session of generation

• The original password received from the device is shuffled with generated
decoys before sending them all back to the device

• The amount of time should be as short as possible with a production of 10
000 decoys. A feasible amount of time would be maximum 5 seconds

30

CHAPTER 4. DESIGN

Internet connection

The application only requires Internet connection when the user wants to create a
new entry. Since the production of decoys is happening in the cloud the mobile
phone has to have Internet connection in order to request and retrieve decoys.

No Internet connection (not implemented)

When the user wants to create a new entry and the application does not have
Internet connection, it will store the correct password temporarily. Once the ap-
plication detects that it has Internet connection it will carry out the same tasks as if
it had Internet connection in order to produce decoys for the newly created entry.

4.3.2 Database

To provide storage in the cloud environment we are using a MySQL database
from the software MAMP [11]. The purpose of this database is not the same as
the one stored on the android device. This database is primarily used to correlate
newly produced decoys with old ones ensuring that we are not creating equal
decoys for different sets. Worst case scenario would be if each set had the same
decoy passwords camouflaging the correct password. It would have been easy
for an attacker to detect the correct passwords since they would be the only ones
differing when looking at all the sets in context.

Database design

The database design in the cloud consists of a single table with three columns.
The first column is named ”ID” and acts as the primary key. The second column
is named ”Hash”, this is a unique identifier for each password, both decoys and
correct passwords. This ensures unique passwords / decoys avoiding duplicates.

31

CHAPTER 4. DESIGN

The third column is named password and is used to store the passwords. It is im-
portant to mention here that the column ”Password” is implemented in our design
for testing purposes, and it is not necessary in a real implementation. By only
storing the unique hashes in the database, the cloud is able to check uniqueness of
new productions, and privacy is obtained in relation to users passwords.
Figure 4.7 shows a figure of the database design. The column ”Hash” in the figure
is only showing a part of an SHA-256 value. Including the whole value would
make the figure go out of range and therefore we have shortened it.

Figure 4.7: Database design in the cloud

4.4 Connection between android application and the
cloud

An Apache web server is used to simulate a cloud in our solution. The Apache
server is running a PHP-script [16] that is responsible for processing incoming

32

CHAPTER 4. DESIGN

data from the android application and performs tasks based on the input it is re-
ceiving. The Apache web server is communicating with a MySQL database using
the same PHP-script [16].

33

Chapter 5

Proposed Solution

Figure 5.1 shows the general design of our prototype. The prototype consists
of two main elements, the Android application and the cloud environment. The
Android application consists of the application itself and a SQLite database to
store its data. The cloud environment consists of a local Apache web server that
is simulating the cloud and a MySQL database to store its data. To establish a
connection between the Android application and the cloud we used the scripting
language PHP.

34

CHAPTER 5. PROPOSED SOLUTION

Figure 5.1: General overview of our prototype

35

CHAPTER 5. PROPOSED SOLUTION

5.1 Software used

The programming language we have worked mostly with is Java and therefore
it was an easy choice when it came to choosing a programming language. With
Java as our preferable choice, we knew that Android’s programming language is
Java. Android also have a new great software called ”Android Studio” [4] with
a lot of development tools. We have worked with all of these tools earlier in a
previous course, but now they are all implemented in ”Android Studio”, which
makes it easy to use and more productive when creating an application. In order
to simulate a cloud we used a software called MAMP [11]. MAMP contains
software such as an Apache web server and a MySQL database. With these tools
we only had to use PHP on the Apache server, being the connection between the
application and the cloud.

5.2 Random functions

In the choice of random implementation, an equal distribution as well as efficiency
was highly important. In PHP the default random generator is based on ”rand()”,
which produces good results in small scenarios. However, in our case we noticed
that it did not produce sufficient distribution as patterns started to occur. We im-
plemented the use of ”mt rand()”, an improved random generator based on the
original Mersenne Twister (a large linear-feedback shift register), producing sta-
tistically good distribution, as well as being 4 times more efficient than the original
”rand()” function in PHP [15, 12].

36

CHAPTER 5. PROPOSED SOLUTION

5.3 Android development

5.3.1 Tools used

As mentioned Android studio contains a lot of tools that can be used to analyze
Android applications [5]. This helped us a lot when developing the application.
The tools we used were mostly from the Android development kit:

• Android Device Monitor This tool makes it possible to view the file hier-
archy of the mobile phone and pull or upload necessary files. We used this
mostly to pull the database and shared preferences file to view the data as we
added, updated or deleted data. The tool was also used to take screenshots
of the application in action, to show what it looks like and works.

• Android Virtual Device Manager This tool makes it possible to create a
mobile emulator that is identical to a physical device.

• Database Browser for SQLite This tool helped us to open and read the
database file we pulled from the mobile phone using the device monitor
tool.

5.4 Hexstring to decimal

Calculating the index by our index equation cannot be done directly. Since we
are dealing with mathematical operations and the result has to be a number we
must convert the SHA-256 output to a number. The code snippet shown below
shows how we are taking a string as input parameter. The input string is the
master password + service in the function SHA-256 (Master password, service).
The result is a unique SHA-256 value represented as a hex value. To use the
modulo function, this hex value has to be represented as a number. Therefore we
are converting the hex value to a unique number.

37

CHAPTER 5. PROPOSED SOLUTION

public static BigInteger sha256HexToDecimal(String base) {

MessageDigest mda;

BigInteger bi = null;

try {

mda = MessageDigest.getInstance("SHA-256");

mda.reset();

//important part

byte[] array = mda.digest(base.getBytes());

StringBuffer sb = new StringBuffer();

for (byte b : array) {

sb.append(String.format("%02X", b)); // print

the byte as a 0 padded, two digit,

hexadecimal String

}

bi = new BigInteger(sb.toString(), 16);

}catch (NoSuchAlgorithmException e) {

e.printStackTrace();

}

return bi;

}

Figure 5.2 shows a print screen from the output of our function mentioned above.
The input master password is ”Password123%” and the service is ”Gmail”. These
strings are concatenated and run through the SHA-256 algorithm. The result will
be a unique hex value that is transformed to a number. Using online tools we
have confirmed that the SHA-256 value shown in figure 5.2 is correct based on
the input and also that the number value of the SHA-256 result is correct.

Figure 5.2: Code snippet of SHA-256 hex value converted to decimal

38

CHAPTER 5. PROPOSED SOLUTION

5.5 Cloud - production of decoys

When a user adds a service on the Android device the cloud is prompted with
the new password. This should initially be sent over by SSL to keep attackers
from sniffing the traffic (we simply use JSON communication as it suffices for
our concept testing). The password is received by the cloud in form of a JSON
object (other options would off course be possible) and analyzed. The mobile
device would have restrictions for what passwords are acceptable in relation to
length and restrictions. The analysis in the cloud would be to check how long the
password is, how many numbers are used, how many uppercase letters are used
and how many special characters are used. This is for the production of decoys.
It is highly important that the decoys produced are similar. This means that the
dictionaries used must be in the same language as the original password, and that
the dictionary also includes names.

In the cloud, dictionaries are imported and ’cleaned’ so certain characters and
encoding won’t trouble functions in relation to encoding, one example being in-
sert procedures to the database. After this, the checks begin in producing unique
decoys.

In the last chapter it is mentioned that multiple checks have to be carried out
to complete a successful decoy set. In the production of large amount of decoys,
an example being 10 000, the amount of iterations needed highly impact the time.

• Check original password against database

• Check each decoy password against database and within production itself

We implemented a manual form of associative arrays in PHP (Lookup table,
HashMap). By producing a unique value from the decoy generated, the decoy
passwords were indexed with this unique value. In the event of checking if a
decoy is produced earlier, all that is needed is a single lookup on the index.

39

CHAPTER 5. PROPOSED SOLUTION

$DECOYLIST = array();

$Password = "pasSword";

//Variable $Password get’s value "pasSword"

$PasswordSHA = hash(’sha256’, $Password);

/*Unique value is produced with SHA256

$PasswordSHA value =

’218c913efad5c7a174cb30255ec63ad68c3692b51ea77fe940c17624a198a12f’

*/

$DECOYLIST[$PasswordSHA] = $Password;

//Password is inserted into array with unique index

var_dump($DECOYLIST);

/*

Dump of array values :

array(1) {

["218c913efad5c7a174cb30255ec63ad68c3692b51ea77fe940c17624a198a12f"]=>

string(8) "pasSword" }

*/

40

CHAPTER 5. PROPOSED SOLUTION

By doing this, after each decoy creation, a single check can check the uniqueness
before inserted into the decoy table.

if(!$DECOYLIST[$PasswordSHA]){

$collision = false;

} else {

$collision = true;

}

Figure 5.3: Check with 0-100 000 decoys in the database

41

CHAPTER 5. PROPOSED SOLUTION

As shown in the figure, there is little to no increase of time used in relation to how
many decoys there are in the database.

Figure 5.4: Average over 10 runs: 1,036 Sec

Figure showing database in cloud with unique keys and produced decoy pass-
words. (Hash = unique ID, password = the passwords)

Figure 5.5: Screenshot from the database in the cloud

When a user inputs a password it is important that it is not a random sequence,
but that it includes a minimum of one word, with minimum 1 uppercase letter, 1
lowercase letter, 1 special character, and some numbers. This password is sent
to the cloud, decoys are produced and sent back to the device as a shuffled array.
The device remembers in temporary memory what the original password is in the
array. (Simplified passwords shown in figure 5.6)

Figure 5.6: Passwords being sent in JSON-format

42

CHAPTER 5. PROPOSED SOLUTION

5.6 Decoy generation

To start out with, the cloud analyzes the original password, and makes a choice of
words to use from a dictionary. It is randomly chosen what words are to be used
together, with a choice between one and two words. Words can be used multi-
ple times in different decoys, allowing a larger amount of decoy combinations in
comparison to removing a word from the dictionary after first use.

When choosing the amount of uppercase letters, our solution does the following
to conceal original structure, but equally achieves a sufficient amount of variance:

Choosing the amount of uppercase letters is done randomly. The process is done
by choosing 1 of 3 choices for each decoy produced.

Definition: Amount = Amount of characters in generated decoy password.

• Choice 1: Random between (1, ((amount - 1) / 3))

• Choice 2: Random between (1, ((amount - 1) / 2))

• Choice 3: Random between ((amount / 2) , (amount - 1))

There is a 5/8 chance that choice 1 is selected, 2/8 chance that choice 2 is selected
and a 1/8 chance the last choice is selected, each choice in increasing order having
a larger probability of producing larger amounts of uppercase letters.

As passwords commonly contain more lowercase letters then uppercase, there is
a larger probability that choice 1 is used, and least likely that choice 3 is used.[49]
The reason for this is that passwords that include a large amount of uppercase
letters look computerized, but in a scenario where a user actually does implement
many uppercase letters, it is highly important that some decoys produced also
have this structure.

43

CHAPTER 5. PROPOSED SOLUTION

Another common pattern that occurs in password creation by users is that it is
more likely that users implement an uppercase letter in the beginning of words,
rather in the middle [49]. Even though this is true, if all decoys were to begin
with uppercase letters, if a user did the opposite, the original password would be
the only one starting with lowercase. As the amount of decoys produced pr. run
are set to a minimum of 10 000, the choice of uppercase letters are done ran-
domly, thereby all combinations will occur. In the situation of inserting numbers
and special characters, the amount is chosen between 1 and (amount in original
password), the reason being that a large amount gives a strong impression of the
decoy being computerized.

Numerals are chosen from 0-9, and special characters are chosen from
!,#,%,&,/, =,+,@,$,.

44

CHAPTER 5. PROPOSED SOLUTION

5.7 Discussion of design issues

5.7.1 Login

When logging into the application it is important that the user uses the same pass-
word every time. Using different passwords will cause problems for the user,
since the operations in the application are dependent on the master password.
Also, when the user installs the application for the first time, a master password
has to be created. After this is done, the user can still login with another master
password, since the application will allow any master password input. The user is
not forced to use the master password that was created upon installation.

Add entry

When the application is launched it requires a master password. Accidentally
entering a wrong master password can cause problems for the user. If an entry
is added with a different master password rather than the intended one, issues
will occur the next time the user is entering the correct master password. The
wrong master password that was used to create the entry will result in an index
most likely differing from the correct master password and the application will
therefore return a wrong password when the correct master password is used. The
user can be lucky and hit the correct index if the wrong master password and the
correct master password is calculated to the same index.

Change master password

If a user wants to change the master password some parameters are required. The
required parameters are the current master password, new master password and a
confirmation of the new master password. The current master password is used to
locate the correct password from each entry. The new master password is used to

45

CHAPTER 5. PROPOSED SOLUTION

place the correct password at the correct index based on the result of the index cal-
culation. If the user accidentally enters a wrong master password in the ”current
password” field the application will locate wrong passwords from the different
sets. In worst case, this can cause the user to ”loose” all of his passwords.

Also, if the current master password and the new master password results in the
same index, then the real password won’t change its place in the password set
for that entry, while the decoys will. This can be a problem if an attacker has a
before and after image of the database. The probability of this will decrease by
using more decoys, since the space will be larger. The decoys are also randomly
shuffled so the probability of only the correct password being on the same place
after this operation is very small, as they also can have the same index before and
after this operation.

Edit entry

Entering an incorrect master password and editing an entry will also cause prob-
lems. The index of the correct password will be dependent on the master password
that was used. When the user enters the correct master password the next time, he
will most likely calculate another index and therefore retrieve an incorrect pass-
word.

5.7.2 Internet / No Internet connection

If a user does not have Internet connection when creating an entry the application
saves the record and awaits a successful connection before receiving decoys. This
is not implemented into our solution, but it is a weak point as the password is
stored without decoys.

This results in the entry in question not being protected by decoys in this pe-

46

CHAPTER 5. PROPOSED SOLUTION

riod of time (until connection is established), but as mobile devices are connected
to a networks most of the time, we categorize this as a minimal threat.

5.7.3 Using modulo arithmetic for indexing

Since we are using modulo in our design when indexing there will always be col-
lisions. This problem is known as the ”Pigeonhole principle” [18]. In our case we
have n possible numbers and only k decoys. Since n in our case is greater than
k, collisions will occur. Our number n is dependent on the SHA-256 algorithm
which gives 2256 unique values. The number 2256 is a much larger number than
the number of decoys we are using. Therefore, some of the hash values will map
to the same index.

The disadvantage of using modulo for indexing is that the attacker can hit the
correct password even if the master password is incorrect. It does not matter what
the input master password is, if the result of the modulo calculation results in the
same index as the correct master password, then the attacker will retrieve the cor-
rect password for the selected entry. But, it does not necessarily mean that the
same master password will locate the correct password of another entry.

47

Chapter 6

Performance testing

Tests regarding the application were done on an android device with the following
specifications:

• Name: Android Galaxy S3

• Model number: GT-I9300

• Android version: 4.3

• Internal storage: 16 gigabytes

Tests regarding decoy production were done on a computer with the following
specifications:

• Processor: Intel Core i7-3610QM CPU 2.30 GHz

• RAM: 12 Gigabyte

• Operating system: 64-bit

• System type: Windows

48

CHAPTER 6. PERFORMANCE TESTING

6.1 Android application performance

6.1.1 How much MB space do the decoys produce?

When the application is first installed on the mobile device its total size is 3,35
megabytes, where the application is 3,34 MB and additional data is 12 kilobytes.
After adding ten entries where each entry had ten thousand decoys the size of
the application increased to 5,82 MB in total. The additional data stored in the
application after adding these ten entries increased to 2,49 MB. These results show
that space is not a problem regarding the amount of decoys that is needed. It is
normal that a user has between ten and twenty services. With these results, space
would not be a problem. Even increasing the number of decoys would also be
possible.

6.1.2 Do large amounts of decoys slow down the application?

The below results in figure 6.1 show that ten thousand decoys are not a problem
regarding speed in the different operations. These operations can be heavy for
the mobile device and are therefore done in a separate thread. This will ensure
that the main thread is not overloaded and that the user experience is not slow and
lagging. Below is a diagram showing the number of seconds each operation takes.
This is seconds after the application has retrieved the requested information from
the cloud. These tests were done when the application was loaded with ten entries
having ten thousand decoys each. All operations completed in one second, except
when we changed the master password. This is a much heaver task than the others,
since it has to change every index of each entry. Changing master password is not
something that is done that often so this result is acceptable. It is possible that the
test results are better but we are only testing in seconds and not in a smaller scale.

49

CHAPTER 6. PERFORMANCE TESTING

Figure 6.1: Application performance

6.1.3 Probability of hitting the correct index

The security of every real password is dependent on how many decoys are used
to camouflage it. Below is statistics to show how many times an attacker is able
to hit the correct index where the correct password is stored. We had to create
a custom test to be able to simulate an attacker trying various master passwords
attempting to find the correct password. We are generating unique random master
passwords, whereas an attacker would probably use other methods of attacking
the application. The results below are only to show the statistics of whether an
attacker hits the correct password, depending on how many decoy passwords that

50

CHAPTER 6. PERFORMANCE TESTING

are being used to camouflage the correct password. The biggest chance to hit the
correct password is if the modulo calculation based on the master password input
results in the same index as the correct password, rather than guessing the correct
master password. Therefore it is important to increase the number of decoys to
decrease this probability. The test was run 10 times where each run generated
10000 unique master passwords. Below is an explanation of the test that is used
to compute the results in our graphs. For this test we used ”Gmail” as the service
when calculating an index.

1. The real users master password is initialized and the index of the correct
password for the service ”Gmail” is calculated, hence the index is SHA-
256(Master password, Gmail) mod N (Number of decoys plus the correct
password).

2. Two tables are created. The first table is used to add the value of the index
calculation to the appropriate index in the table, so we can count how many
times the correct index is hit. If we are testing the hit rate for 1000 decoys,
then the table size is ranging from 0-1000. The second table is only used
to check whether the generated password is generated before. An attacker
would not try the same password twice, therefore we had to check that the
passwords were unique before trying them. Although, in our scheme it
could be that the master password hits the correct index for one entry but
not another. This is because the value changes when the master password is
concatenated with another service.

3. A loop is run 10000 times, where a unique master password is generated for
each iteration. To generate a random password we are using the secure ran-
dom function in Java [8]. This function picks out random characters from a
defined string we have defined, which contains all alphabetical letters, both
upper and lower case, numbers ranging from 0-9 and some special char-
acters. The length of each password generated is of length 8. The master

51

CHAPTER 6. PERFORMANCE TESTING

password plus the service ”Gmail” is used to calculate the index of the cor-
rect password. If the calculated index is the same as the index of the users,
then the attacker hit the right password for that entry. It does not necessarily
mean that he hit the correct master password, but the modulo calculation
resulted in the same index as the correct password. Nor is it certain that this
master password would generate the correct index of another service, since
the hash value may be different when concatenating the master password
with a different service.

52

CHAPTER 6. PERFORMANCE TESTING

6.1.4 Hit rate with 1000 decoys

Figure 6.2 shows the outcome of our test with 1000 decoys. The highest number
of occurrences where the ”attacker” hit the correct index was fifteen times in one
run and that was in the fourth run. The third run was the one that hit the correct
index first and that was on attempt 15. The eighth run was the one with the most
attempts before hitting the correct index the first time. It did not hit until 3491
attempts.

Figure 6.2: Hit rate with 1000 decoys

53

CHAPTER 6. PERFORMANCE TESTING

6.1.5 Hit rate with 5000 decoys

Figure 6.3 shows the outcome of our test with 5000 decoys. The highest number
of occurrences where the ”attacker” hit the correct index was three times in one
run and that was in the sixth and seventh run. The seventh run was the one that
hit the correct index first and that was on attempt 1004. The first run was the one
with the most attempts before hitting the correct index the first time. It did not hit
until 4625 attempts.

Figure 6.3: Hit rate with 5000 decoys

54

CHAPTER 6. PERFORMANCE TESTING

6.1.6 Hit rate with 10000 decoys

Figure 6.4 shows the outcome of our test with 10000 decoys. The highest number
of occurrences where the ”attacker” hit the correct index was four times in one
run and that was in the eighth run. The eighth run was the one that hit the correct
index first and that was on attempt 3410. The sixth run was the one with the most
attempts before hitting the correct index the first time. It did not hit until 8137
attempts.

Figure 6.4: Hit rate with 10000 decoys

55

CHAPTER 6. PERFORMANCE TESTING

Analyzing the data in the graphs shows that there is a clear difference between
the number of decoys. This is logical since an increase of decoys will give a
smaller probability of hitting the correct index. However, this does not exclude
the possibility that the number of hits is higher when the number of decoys is
10000 versus 1000.

56

CHAPTER 6. PERFORMANCE TESTING

6.2 Cloud performance

In the process of developing a system that has to evaluate such a large number of
decoys, a standard checking mechanism with loops would work, but demand an
increasingly large amount of resources. This would also lead to time increasing in
relation to the amount decoys produced. Having to check a database of 200 000
decoys would take much longer time than a database with 1000, resulting in the
application becoming slower and slower as more decoys are produced.

PHP: String compare for each decoy produced: Returns 0 if equal:

for($s=0; $s<count($DECOYLIST); $s++){

if(strcmp($generatedPassword,$DECOYLIST[$s])==0){

$collision = true;

}//if

} // For-loop

We tested this to analyse expectations on time used. By implementing string com-
parison checks in PHP with the use of arrays, we concluded with the following
times.

57

CHAPTER 6. PERFORMANCE TESTING

Without storing decoys to the database (Strictly production)

Figure 6.5: Decoy production 10000 - 10 times

By calculating the average we can conclude that the production of 10 000 de-
coys without saving to the database would take over 15 seconds (15.5828 sec)
with the use of iterations and string comparison.

Figure 6.6: Decoy production: 15.5828 sec

58

CHAPTER 6. PERFORMANCE TESTING

We improved methods and loops used on the server to make the production more
efficient, one example being the implementation of ’for each’ loops, decreasing
time used by 38.5 %. ((15.5828 - 9.5759) / 15.5828) = 38.5 %

Figure 6.7: Improved time Decoy production: 9.575 sec

Even though this increases efficiency, it is apparent that the resources needed to
produce decoys in a reasonable amount of time are large.

Figure 6.8: Improvement: 6 sec

59

CHAPTER 6. PERFORMANCE TESTING

The checks to validate if a decoy has been produced earlier are efficient, but they
are restricted in relation to how many decoys that have to be compared (an in-
crease of decoys result in an increase of checks needed). Having to check every
single value in the database, and doing this in the production itself is highly time
consuming. An analysis starting initially with an empty database through the
production of 50000 decoys total (10 000 x 5 stored) show the increase of time
needed.

Figure 6.9: Production of 10 000 x 5 (Time in seconds)

If a standard iterative design like this was to be implemented, a production of 5
decoys would result in 15 iterations as every new decoy has to be checked against
already existing decoys. There would be a check after 1 decoy is produced, 2
checks after the second decoy is produced, and 3 checks after the third, and so
on. A simplified version of decoy production is shown in the example under to
illustrate how (no restrictions), original password is shuffled with decoys in the
result.

60

CHAPTER 6. PERFORMANCE TESTING

Figure 6.10: Iterations

Production of 10 decoys would lead to 55 iterations, 100 decoys would result
in 5050 iterations, and 1000 decoys would result in 500500 and so on. This is
calculated without the situation of collisions. If collisions were to happen, the
number of iterations would increase. The solution to avoiding iterations is to im-
plement unique identifiers for decoys. By doing this, string comparison iterations
can be replaced by single look-ups, decreasing overall time by 93%. ((15.5826 -

61

CHAPTER 6. PERFORMANCE TESTING

1,036) / 15.5826). It is also worth mentioning that the improved time using unique
look up is timed with the storage of decoys in the database. The iteration methods
(15.5826) are timed without storing to the database, as it would take longer time
for each run. This is explained in chapter 5.

Implemented lookup method

if(!$DECOYLIST[$PasswordSHA]){

$collision = false;

} else {

$collision = true;

}

As values are stored to the database, there is an increase of decoys that need to be
checked after every run. The graph shows that the increase of decoys has little or
no impact on time needed to check uniqueness with the implementation of look
up checks.

Figure 6.11: Unique Lookup check with 0-100 000 decoys in the database

62

CHAPTER 6. PERFORMANCE TESTING

Comparison of string comparison vs assosiative array lookup.

Figure 6.12: Comparison of production 10 000

6.2.1 Decoy generation

(All examples showed are produced by decoy generation, but are simplified for
illustration purposes. If sufficient camouflage is obtained with examples of 10 de-
coys, it is assumed that camouflage quality is higher in the production of 10 000.)

In our testing we used a dictionary with a total of 114746 words and names.[6, 13]
By allowing several words to be combined, possible combinations increase (2
words = 114746 x 114746), a sufficient number of possible outcomes for testing.
In a real scenario there should be implemented dictionaries in a much larger scale.
There are also many possibilities in the decoy production itself [20]. If it is desired
that decoys only were to contain a word once, the words may be removed from
the dictionary after use. The length of passwords could be adjusted to contain

63

CHAPTER 6. PERFORMANCE TESTING

one to several words, with other variations as well. The database should also be
merged with random passwords in cases where users implement the use of ran-
dom generated passwords, keeping an equal spread of both dictionary passwords
and random passwords in the database.

Our focus was to produce decoys both efficiently, and with good enough qual-
ity to perform a sufficient amount of camouflage, indistinguishable by the human
eye. Further down the line decoys produced should be analyzed by machine learn-
ing software and other pattern recognition tools to avoid exposure of structure, but
for our testing purposes in relation to production efficiency, our results were suf-
ficient. [28]

Scenarios to avoid in relation to exposing original password structure, or elim-
ination.

• Decoys are all uppercase letters - (Violates restrictions)

• Decoys are all lowercase letters - (Violates restrictions)

• All decoys are of the same length as the original - (Expose structure)

• Decoy length is shorter than requirement in application
- (Violates restrictions)

• Decoys have unrealistic length - (Look computerized)

• Decoys are of another language - (Look computerized)

• Decoys have unrealistic amount of numbers or special characters - (Look
computerized)

• Decoys do not contain words - (Look computerized)

64

CHAPTER 6. PERFORMANCE TESTING

By letting a function choose if one or more words are used, the length of the orig-
inal password is not exposed. By limiting the amount of words put together to
avoid unrealistically long passwords, our results show sufficient camouflage.

An example of insufficient camouflage:

Figure 6.13: Original password:PASSWORDDEViCE

In this example, the original password (PASSWORDDEViCE) could easily be
distinguished from the decoys. The reason for this is, even though the original
password contains at least 1 uppercase letter, the decoys produced fail in produc-
ing good camouflage.

65

CHAPTER 6. PERFORMANCE TESTING

Example of sufficient camouflage with same input:

Figure 6.14: Original password:PASSWORDDEViCE

Example showing sufficient camouflage with less uppercase letters in original:

Figure 6.15: Original password: passwOrDDeviCE

66

CHAPTER 6. PERFORMANCE TESTING

Production example of 10 decoys with valid strong input, illustrated in steps:

Original input = 1PAS2sworDdeVi@Ce

Figure 6.16: Step 1: Choice of words, separated with ’-’

Figure 6.17: Step 2: Choice of uppercase letters

67

CHAPTER 6. PERFORMANCE TESTING

Figure 6.18: Step 3: Choice of numerals

Figure 6.19: Step 4: Choice of special characters, final result

We feel this implementation of decoys give sufficient results for testing the so-
lution, both with weak and strong password input.

68

Chapter 7

Security analysis

7.1 Attack vectors

7.1.1 Attack vectors targeting the application

Granting access to the application

If an attacker manages to steal a victims mobile phone he will definitely try to ac-
cess the application to obtain sensitive information that is stored in the password
manager. When the attacker tries to log in he will always gain access with any
password he tries. What he does not know is whether the password for the given
entry is correct or a generated decoy password. Always giving the attacker posi-
tive feedback regarding his input forces him to try the password online in order to
find out if it is correct. These failed attempts are easier to notice online and actions
can be taken to block the user account. This can be done with honey words which
is explained in 7.2.1. The probability of hitting the correct password is based upon
the number of decoys that is generated for each password. By looking at our tests
the probability of hitting the correct index is clearly dropping from a thousand to

69

CHAPTER 7. SECURITY ANALYSIS

ten thousand decoys. If the attacker is not lucky, he has to do a lot of work in
order to hit the correct password. The number of decoys can also be increased.
Hitting the correct index does not mean that the attacker has found the correct
master password. In order to get the correct password for all services the attacker
has to find the correct master password or that the SHA-256 algorithm produces a
collision.

Probability of hitting the correct password

As mentioned, an attacker will gain access to the application no matter what mas-
ter password he types in. Depending on what service that is chosen the index will
be calculated and point to a password in the database. The attacker has the possi-
bility to be lucky enough to get the correct password, but this probability is very
low, depending on how many decoys that are produced for each password. Even
though the application is displaying passwords to the user he still has to try them
online in order to find out if it is the correct password for the selected service. As
our results show, an increase of decoys will lead to a lower probability of hitting
the correct password.

Attacker analyses the source code to find vulnerabilities

It is not hard to reveal the source code from an android application. To learn more
about our application and to find potential vulnerabilities to exploit, an attacker
can reveal the source code and analyze it in hope of finding vulnerabilities that we
have unintentionally made while developing the application. This can give the at-
tacker an upper hand in attacking our application to retrieve sensitive information.
To make it harder for an attacker reverse-engineering the source code, obfusca-
tion can be implemented in order to prevent this [42]. The point of obfuscation is
to make the source code more difficult to understand in order to protect it. This
technique is usually used to protect intellectual property [21]. Obfuscation is not

70

CHAPTER 7. SECURITY ANALYSIS

implemented into our solution as it is today.

Attacker gets access to the database file

Another possibility is if the attacker gets hold of the database file. This is almost
the same attack vector as trying to hit the correct password by typing in arbitrary
master passwords as input. The one thing that differs is that the attacker has a
better overview and can view all passwords at once instead of the application re-
vealing one at a time. Even though the attacker has full overview of the passwords
he does not know which password is the correct one, since it is camouflaged in
decoy passwords similar to the correct one. The only possibility is to try random
passwords and hope he chooses the correct password. To know which password
belongs to the proper service, the attacker also needs the shared preferences file.

Getting hold of the database file is not that easy, even when the mobile device
is stolen. The database file is stored in the internal memory of the mobile device
and is therefore protected by security features provided by the Android platform.
The file is private only to the application and the file is inaccessible by other appli-
cations and also the user [1]. However, there are known vulnerabilities regarding
the internal storage in Android [14].

Collision probability using SHA-256

The importance of always creating a unique value based on an input, in our case
the master password concatenated with the service is crucial for our application,
since this is used to locate the correct password for a given service. If we were
using hash algorithms with a high collision probability the chances of hitting the
correct master password would be higher and this would have weakened the secu-
rity of the application. For us it is important that the probability of an attacker typ-
ing in another master password that results in the same hash value as the original

71

CHAPTER 7. SECURITY ANALYSIS

master password is very low. Therefore we are using the cryptographic algorithm
SHA-256 [40]. In a hash function where the output is m-bits it is possible to find
a collision h in 2m/2 tries [23] if h is regular. The probability of collision with
the SHA-256 algorithm requires 2128 computations on average to get a collision
based on the birthday attack [40].

This number is so large that it is infeasible to try all combinations in order to
get a collision and therefore we are confident using SHA-256 as a hash function
in our design.

7.1.2 Attack vectors targeting the cloud

Attacker gains access to the cloud

If an attacker is able to gain access to the cloud it would be almost the same as ac-
cessing the database file on the mobile device. The database in the cloud contains
only passwords to correlate with newly generated decoys by ensuring that we are
making unique decoys. The attacker becomes aware of all the passwords but does
not know which websites they belong to, since he needs the ”Shared Preferences”
file with the additional information regarding the services. The correct passwords
are also camouflaged in decoys making it harder to locate. As mentioned, storing
the passwords in the cloud is not necessary (testing purposes only). Only storing
the hashes in the cloud database will make it harder for the attacker to retrieve the
passwords. The attacker has to compute a lot of hashes in order find those that
match the ones in the database.

Attacker eavesdropping on traffic to and from the cloud

Implementing a cloud environment into our solution opens up the possibility of
an attacker eavesdropping on traffic between the application and the cloud. Not

72

CHAPTER 7. SECURITY ANALYSIS

using encryption between the application and the cloud will result in sending data
in plain text. To solve this SSL [25] can be implemented in order to increase the
security of sending data with the use of SSL. SSL is not implemented in the solu-
tion as it is today.

As explained earlier in 4.2.1, when the user wants to create a password it is sent to
the cloud where it will be processed and decoys similar to the original passwords
will be created. The original password being sent to the cloud has to be sent over
a secure channel and therefore we have to implement SSL. Not only for secure
data transfer but also for authenticity between client and server.

SSL is an abbreviation for ”Secure socket layer” and is used for securing Inter-
net communication [25]. It is used together with the HTTP-protocol (Hyper Text
transfer Protocol), which is used to communicate on the World Wide Web. Usually
traffic is sent over HTTP port 80 (insecure communication), but when implement-
ing SSL the traffic is sent over HTTPS port 443 (secure communication). SSL is
a protocol that provides two very important factors regarding Internet security:

1. Encryption: The SSL-protocol provides encryption between the communi-
cation from client and server, securing sensitive data and providing integrity
and confidentiality. When the client initiates the connection, the web server
will respond to the request with a certificate and a public key. The client will
then create a symmetric session key, encrypt this key with the public key of
the web server and send it to the web server. When the web server receives
the encrypted message it can decrypt it with its private key. The symmetric
session key will be used to encrypt and decrypt the traffic between the client
and server.

2. Authentication: The SSL-protocol also provides authentication. When a
user visits a website the website has to present a SSL-certificate to prove
their identity. The certificate is signed and issued by a certified certifi-

73

CHAPTER 7. SECURITY ANALYSIS

cate authority. Whenever a client want to connect to the server, the server
presents its certificate for the client. The client will then verify the validity
of the certificate with the certificate authority that issued the certificate.

7.2 Additional functions to enhance security

7.2.1 Honeywords

Blocking an attacker trying to brute-force a user account is quite challenging. A
user account could be blocked after a given of incorrect tries, but this would only
lead to a Denial of Service attack [48, 54] which leads to administrators using a
huge amount of time unlocking user accounts. There are several other possibilities
such as blocking an IP-address after a given of incorrect logins but this can lead to
other legitimate users being blocked, since several users can share the same public
IP-address [44]. One could also add a delay that increases every time an incorrect
password is entered, but this would only slow an attacker down and not ultimately
disable him from his malicious intents. To solve the problem of Denial of service
attacks, websites have implemented a system known as CAPTCHA [54, 52, 43].
This is a system that will distinguish people from computers. After a certain num-
ber of failed login attempts, the website will present a test that is easy for humans
but difficult for computers to pass. This will only stop brute-force attempts to-
wards the website, but some additional security is needed to recognize when an
attacker is trying to access a user account with information from a stolen device.

In order to detect when an attacker is trying to use compromised information from
stolen devices, some defense mechanisms are required. One defense is the use of
honey words [27, 46, 39, 20]. Honey words are ”fake” passwords that will set of
an alarm if anyone of these ”fake” passwords are used when trying to login to a
particular account. In our case the ”fake” passwords would be our decoy pass-

74

CHAPTER 7. SECURITY ANALYSIS

words. A user could add some of these decoys on websites to be used as honey
words and when these passwords are used the account will be locked, prevent-
ing an attacker from accessing the account [27]. This would effectively detect an
attacker trying to use sensitive information from a stolen device.

75

Chapter 8

Discussion, conclusion and further
work

8.1 Discussion of results

8.1.1 Hit rate results

Hit rate with 1000 decoys

Figure 6.2 shows the hit rate from our test with 1000 decoys camouflaging the
correct password. We clearly see that the probability of hitting the correct pass-
word is too high. The average of hitting the correct password from these ten runs
is 11,3 times with our test. These results show that 1000 decoys are not enough to
”protect” the correct password.

76

CHAPTER 8. DISCUSSION, CONCLUSION AND FURTHER WORK

Hit rate with 5000 decoys

Figure 6.3 shows a significant difference when increasing to 5000 decoys. The
hit rate decreases significantly when increasing from 1000 to 5000 decoys. The
average of hitting the correct password from these ten runs is 1,3 times with our
test. Increasing to 5000 decoys gives positive results when it comes to the chance
of hitting the correct password.

Hit rate with 10000 decoys

Figure 6.4 does not show a significant difference from the results with 5000 de-
coys. The runs 2, 5, 6, and 8 are similar to some of the runs with 5000 decoys.
The main difference is that there are more runs where the number of hits is zero.
The average of hitting the correct password from these ten runs is 0,9 times with
our test.

Overall discussion of hit rates

We see that camouflaging the correct password with 1000 decoys is clearly not
enough. The chances of hitting the correct password are too high and would not
be sufficient to protect the correct password.

Increasing to 5000 decoys shows a significant improvement from 1000 decoys.
The average hit rate drops from 11,3 to 1,3, which is a acceptable improvement.

Furthermore, increasing to 10000 decoys does not show a significant improve-
ment from using 5000 decoys. The average hit rate drops from 1,3 to 0,9. The
most noteworthy difference is that there are more runs where the number of hits
is zero.

77

CHAPTER 8. DISCUSSION, CONCLUSION AND FURTHER WORK

Let’s assume the following:

• The attacker has not the possibility of using machine learning in order to
separate our decoys from the correct password

• Each login takes 10 seconds

Even without encryption an attacker has to do significantly of online work on
average in order to determine the correct password. The average of hitting the
correct password when camouflaging with 10000 decoys is 5000. This means that
an attacker will in total use 50000 seconds, which equals 13,8 hours. This means
that an attacker would have to sit 13,8 hours constantly trying passwords before
hitting the correct one.

8.1.2 Decoy production in Cloud

In a scenario where a users’ passwords were random, decoy production could also
be performed on the mobile device, as the source code would not expose more
than that the decoy production would use random functions. Random production
is a spectacular solution, if only users were willing to use random passwords on all
of their services, unfortunately, this is not the case [55, 36]. In the production of
human readable passwords, the situation becomes quiet different, as dictionaries
must be implemented, and that several parameters are used in the production. If
these parameters were to be exposed, an attacker could use this to his advantage,
as well as if an attacker got a hold of the dictionaries used.

As communication between a android device and a cloud can be categorized as
secure, hiding the decoy production in a cloud acts as an advantage. If a larger
amount of decoys was preferred, the amount of resources available in a cloud is

78

CHAPTER 8. DISCUSSION, CONCLUSION AND FURTHER WORK

much larger than on a mobile device which is highly prioritized as the production
has to be fast in order to be user friendly.

Discussion of decoy generation

There are several choices in relation to producing decoys. For testing purposes we
did not implement the largest dictionaries, because the smaller the dictionary, the
higher the probability of collisions happening, which is good for testing purposes.
In a real implementation, the dictionaries should be much larger. Advantages are
an increase of probability that a users password contains words from a dictionary,
possible combinations would increase, thus resulting in a decrease of collision
probability. Disadvantages are that larger dictionaries demand more resources.

For a higher level of uniqueness, words may be removed from a dictionary after
use, thus resulting in a decrease of possible outcomes. Passwords may look alike,
but still be unique because of uppercase/lowercase letters, numbers and special
characters. In our solution the importance of performance and combination pos-
sibilities was chosen over the level of uniqueness.

In the production of decoys the camouflage effect is highly important. There is no
point on hiding a password in between 10 000 decoys if the password lights up as
different by the human eye. Avoiding worst-case scenarios is a minimum, exam-
ples being decoys not fullfilling the same requirements as the original password,
or decoys that clearly are computerised. Decoy generation is an art in itself, and
can always be optimized and improved. A choice of performance vs. quality must
be settled before development as many choices must be made.

Our choice was efficiency over quality in regard to implementation on a mobile
device.

79

CHAPTER 8. DISCUSSION, CONCLUSION AND FURTHER WORK

The amount of decoys produced for each service is set to 10 000. The reasons
being testing, time and probability. For our testing purposes we achieved accept-
able performance in regard to hit rate and showing low likelihood of hitting the
correct passwords unintentionally.

When a user creates a new service and saves a new password, it is important
that the decoy production is efficient. One reason being user friendliness, but
also keeping the needed connection time to a cloud at a minimum. Testing shows
that with production set to 10 000, time needed for production is approximately 1
second. This shows that producing decoys in a much larger scale is also feasible.

Camouflage quality

In the analysis of a user’s password, it is important that the decoys produced are
similar enough to camouflage the valid information, but not so similar resulting
in exposing patterns or structure of the original password. If all decoys produced
were of the same character length as the original, the attacker would know the
original length immediately. Other examples are if all decoys contain the same
amount of numbers, uppercase letters or special characters, this would expose a
great deal of valuable information in regard to penetrating the system.

Finding a balance between good camouflage and variance is not easy, but our
implementation is acceptable in its results.

We feel this produces sufficient camouflage without exposing much of the original
password.

In the process of choosing the amount of numbers and special characters, it is
apparent that many of the decoys expose them selves as computerized (Not hu-
manly readable) which is a big disadvantage. Our choice concluded with keeping

80

CHAPTER 8. DISCUSSION, CONCLUSION AND FURTHER WORK

numbers and special characters to a random choice between 1 and the amount in
the original password. This produces good camouflage quality, and is efficient,
but does in some manner expose the maximum amount of numbers and special
characters in the original password by analyzing the decoys. Value of camouflage
was chosen over possible exposure of original structure.

8.1.3 Storing passwords

Decoy production in the cloud has to check for uniqueness and avoid the produc-
tion of duplicates. Both the unique hash of the passwords and the passwords are
stored in the database. This would expose a user’s password for the developers.
Storing the passwords in plain text as shown on earlier figures is not necessary for
the cloud to work, and is only done for testing purposes in this ”proof of concept”.
Storing the hashes would suffice.

8.1.4 Modulo as index function

Using modulo in our index function makes it possible for us to always give a posi-
tive feedback independent of what master password that is being tried. This results
in an attacker never knowing if he typed in the correct password. The drawback of
using modulo as our index function is that the attacker has the possibility of hit-
ting the correct password if the master password being tried is wrong. The results
show that increasing the number of decoys have a great impact whether the at-
tacker hits the correct password or not. We also see that the authors of ”NoCrack”
[28] used modular arithmetic in one of their honey encryption schemes.

81

CHAPTER 8. DISCUSSION, CONCLUSION AND FURTHER WORK

8.1.5 Performance

Application performance

Looking at figure 6.1, our solution is performing very well on the different op-
erations. Add, delete, show, and edit takes only one second to perform which is
very acceptable. The operation that takes the most time is changing the master
password. This takes nine seconds, and since this is not an operation carried out
so often makes it acceptable.

Overall discussion of performance

The tests we have performed are done on equipment with relatively good specifi-
cations. The results we are showing regarding performance will of course increase
or decrease depending on the specifications of the devices that uses our solution.
Mainly it will only be dependent on the mobile device used since the cloud envi-
ronment is to be run on a powerful server.

We did not test the time from the application to the cloud and vice versa, since
this is dependent on what type of Internet connection the user is using. The two
most important elements for us to test are the application and the cloud perfor-
mance.

8.2 Conclusion

Endorsing the use of passwords to protect systems, rest on developed encryption
methods being classified as secure. As of today, a large amount of faith rests in
AES-256 [32] encryption being unbreakable. (Encryption standard approved by
the US government in June 2003 to protect information categorized as TOP SE-

82

CHAPTER 8. DISCUSSION, CONCLUSION AND FURTHER WORK

CRET). In the year 2015, despite flaws found in the encryption algorithm, security
keys still haven’t been broken.

Brute-force attacks are categorized as a threat to all systems that are implemented
with passwords, as they break encryption and are difficult to protect against.

The success of brute-force attacks is based on the results given. A normal sys-
tem would either return error (No access), or success (Full access) in the situation
of an attack. If information is returned, other than error, the information is con-
firmed as valid. The reason being, in standard systems, all information stored is
valid. The whole system is secured by one single factor, the encryption. If the
encryption is broken, everything is revealed.

By elimination the possibility of error, the attacker has no reference as to if an
attack is successful or not. Furthermore, by eliminating the possibility of con-
firming a result as valid, confirmation is impossible, eliminating the possibility of
successful brute force attacks all together.

Creating a system categorized as secure, but also a solution that users are will-
ing to implement, is a challenge. Higher security often involves an increase of
difficulty in user-friendliness, resulting in users either skipping steps or disregard-
ing the system all together [30]. It is also important that a user feels the system
is both safe and secure to use, eliminating the possibility of a system being so
complex that it may result in users performing unintended actions (mistakes), re-
sulting in poor security.

Our system is designed so no errors are given in the situation of an attack, elim-
inating the possibility of confirming a brute-force attack as successful. Even if
the whole database is returned, the attacker has no possibility of separating valid
information from decoys, as everything is camouflaged. Overall security does not

83

CHAPTER 8. DISCUSSION, CONCLUSION AND FURTHER WORK

depend on one single factor, but rather on multiple factors. In a scenario where
honey words were to be implemented, the whole situation could lead to the at-
tacker in being trapped, or locking down the system, eliminating further progress
in the attack as well.

Implementing our application on a mobile device is highly feasible as decoy pro-
duction is efficient and produced in the cloud. Even though this requires a stable
Internet connection, it does not affect the user in a large degree if no connection
is possible. There are many scenarios where it is troublesome to demand Internet
connection all the time. One example being, looking up access information in the
password manager when located far underground with no Internet connectivity.
The production of decoys is based on dictionary combinations, gaining users the
possibility of using their own passwords. If random passwords are wanted these
can easily be generated for the user on the mobile device, and even implemented
in the decoy database in combination with humanly readable passwords.

The implementation of decoys does not affect the user experience, increasing
overall security without an increase of complexity for the user. The architecture
the system is built on also allows further development of features, a few examples
being SSL traffic and random generated passwords among others.

Even without encryption, our design architecture and implementation of decoys,
result in preventing brute-force attacks to a large degree, categorizing these types
of attacks as a minimal threat.

We have achieved successful results in relation to our goals.

84

CHAPTER 8. DISCUSSION, CONCLUSION AND FURTHER WORK

8.3 Further Work

There are three elements we consider as important for further work.

The first element is implementation of SSL between the application and the cloud
environment to provide encryption and authenticity. Anti-theft functions such as
remote wipe and track my mobile device can also be implemented.

Develop the production of decoys further, so that it becomes more generic and
produces decoys that are even more plausible and not easy to rule out using dif-
ferent techniques, such as machine learning and pattern recognition.

The third element is implementation of encryption into our solution needs to be
investigated. Implementation of encryption must be done in a correct manner
[17], and an architecture that is based on decoys creates some challenges. Further
investigation should be to examine whether it is practicable to implement encryp-
tion into our solution. By this we mean that there is no point in implementing
encryption if the design does not allow it to perform seamlessly. It may turn out
that some changes in the design are needed in order to implement encryption in a
correct way.

85

Bibliography

[1] “Android internal storage,” http://developer.android.com/guide/topics/data/
data-storage.html#filesInternal, [Online: accessed: 29-04-2015].

[2] “Android shared preferences,” http://developer.android.com/reference/
android/content/SharedPreferences.html, [Online: accessed: 18-04-2015].

[3] “Android sqlite database,” http://developer.android.com/reference/android/
database/sqlite/SQLiteDatabase.html, [Online: accessed: 24-02-2015].

[4] “Android studio,” http://developer.android.com/tools/studio/index.html,
[Online: accessed: 20-04-2015].

[5] “Android tools,” https://developer.android.com/tools/help/index.html, [On-
line: accessed: 22-04-2015].

[6] “Dictionary,” http://www-01.sil.org/linguistics/wordlists/english/wordlist/
wordsEn.txt, [Online: accessed: 23-04-2015].

[7] “The importance of using strong passwords,” https://msdn.microsoft.
com/nb-no/enus/library/ms851492%28v=winembedded.11%29.aspx, [On-
line: accessed: 14-04-2015].

[8] “Java - secure random class,” https://docs.oracle.com/javase/7/docs/api/java/
security/SecureRandom.html, [Online: accessed: 4-05-2015].

[9] “Keepass - official website,” http://keepass.info, [Online: accessed: 30-04-
2015].

[10] “Lastpass - official website,” https://lastpass.com/, [Online: accessed: 19-
05-2015].

86

 http://developer.android.com/guide/topics/data/data-storage.html#filesInternal
 http://developer.android.com/guide/topics/data/data-storage.html#filesInternal
 http://developer.android.com/reference/android/content/SharedPreferences.html
 http://developer.android.com/reference/android/content/SharedPreferences.html
http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
 http://developer.android.com/tools/studio/index.html
 https://developer.android.com/tools/help/index.html
http://www-01.sil.org/linguistics/wordlists/english/wordlist/wordsEn.txt
http://www-01.sil.org/linguistics/wordlists/english/wordlist/wordsEn.txt
 https://msdn.microsoft.com/nb-no/enus/library/ms851492%28v=winembedded.11%29.aspx
 https://msdn.microsoft.com/nb-no/enus/library/ms851492%28v=winembedded.11%29.aspx
 https://docs.oracle.com/javase/7/docs/api/java/security/SecureRandom.html
 https://docs.oracle.com/javase/7/docs/api/java/security/SecureRandom.html
 http://keepass.info
https://lastpass.com/

BIBLIOGRAPHY

[11] “Mamp,” https://www.mamp.info/en/, [Online: accessed: 22-04-2015].

[12] “Mersenne twister - creator,” http://www.math.sci.hiroshima-u.ac.jp/
∼m-mat/MT/emt.html, [Online: accessed: 1-05-2015].

[13] “Names,” http://deron.meranda.us/data/census-derived-all-first.txt, [Online:
accessed: 23-04-2015].

[14] “Palo alto - insecure internal storage in android,” http://researchcenter.
paloaltonetworks.com/2014/08/insecure-internal-storage-android/, [Online:
accessed: 23-05-2015].

[15] “Php - mtrand,” http://php.net/manual/en/function.mt-rand.php, [Online: ac-
cessed: 1-05-2015].

[16] “Php - official website,” http://php.net, [Online: accessed: 1-04-2015].

[17] “Use cryptography correctly,” http://cybersecurity.ieee.org/
center-for-secure-design/use-cryptography-correctly.html, [Online: ac-
cessed: 25-05-2015].

[18] M. Ajtai, “The complexity of the pigeonhole principle,” in Foundations of
Computer Science, 1988., 29th Annual Symposium on. IEEE, 1988, pp.
346–355.

[19] E. Albrechtsen, “Security vs safety,” 2003.

[20] M. H. Almeshekah, C. N. Gutierrez, M. J. Atallah, and E. H. Spafford,
“Ersatzpasswords–ending password cracking,” 2015.

[21] A. Balakrishnan and C. Schulze, “Code obfuscation literature survey,”
CS701 Construction of Compilers, vol. 19, 2005.

[22] A. Belenko and D. Sklyarov, “secure password managers and military-grade
encryption on smartphones: Oh, really?” Blackhat Europe, 2012.

[23] M. Bellare and T. Kohno, “Hash function balance and its impact on birthday
attacks,” in Advances in Cryptology-Eurocrypt 2004. Springer, 2004, pp.
401–418.

87

 https://www.mamp.info/en/
 http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
 http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://deron.meranda.us/data/census-derived-all-first.txt
http://researchcenter.paloaltonetworks.com/2014/08/insecure-internal-storage-android/
http://researchcenter.paloaltonetworks.com/2014/08/insecure-internal-storage-android/
 http://php.net/manual/en/function.mt-rand.php
 http://php.net
http://cybersecurity.ieee.org/center-for-secure-design/use-cryptography-correctly.html
http://cybersecurity.ieee.org/center-for-secure-design/use-cryptography-correctly.html

BIBLIOGRAPHY

[24] N. Ben-Asher, N. Kirschnick, H. Sieger, J. Meyer, A. Ben-Oved, and
S. Möller, “On the need for different security methods on mobile phones,”
in Proceedings of the 13th International Conference on Human Computer
Interaction with Mobile Devices and Services. ACM, 2011, pp. 465–473.

[25] M. S. Bhiogade, “Secure socket layer,” in Computer Science and Informa-
tion Technology Education Conference, 2002.

[26] M. Blanchou and P. Youn, “Password managers exposing passwords
everywhere,” https://isecpartners.github.io/whitepapers/passwords/2013/11/
05/Browser-Extension-Password-Managers.html, 2013.

[27] H. Bojinov, E. Bursztein, X. Boyen, and D. Boneh, “Kamouflage: Loss-
resistant password management,” in Computer Security–ESORICS 2010.
Springer, 2010, pp. 286–302.

[28] R. Chatterjee, J. Bonneau, A. Juels, and T. Ristenpart, “Cracking-resistant
password vaults using natural language encoders,” 2015.

[29] M. Ciampa, M. Revels, and J. Enamait, “Online versus local password man-
agement applications: An analysis of user training and reactions,” Journal
of Applied Security Research, vol. 6, no. 4, pp. 449–466, 2011.

[30] L. F. Cranor and S. Garfinkel, Security and usability: designing secure sys-
tems that people can use. ” O’Reilly Media, Inc.”, 2005.

[31] A. Czeskis, M. Dietz, T. Kohno, D. Wallach, and D. Balfanz, “Strengthening
user authentication through opportunistic cryptographic identity assertions,”
ACM, pp. 404–414, 2012.

[32] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced en-
cryption standard. Springer Science & Business Media, 2002.

[33] M. Fabian and M. A. Terzis, “My botnet is bigger than yours (maybe, better
than yours): why size estimates remain challenging,” in Proceedings of the
1st USENIX Workshop on Hot Topics in Understanding Botnets, Cambridge,
USA, 2007.

[34] S. Fahl, M. Harbach, M. Oltrogge, T. Muders, and M. Smith, “Hey, you,
get off of my clipboard,” in Financial Cryptography and Data Security.
Springer, 2013, pp. 144–161.

88

https://isecpartners.github.io/whitepapers/passwords/2013/11/05/Browser-Extension-Password-Managers.html
https://isecpartners.github.io/whitepapers/passwords/2013/11/05/Browser-Extension-Password-Managers.html

BIBLIOGRAPHY

[35] C. Fruhwirth, “Tks1-an anti-forensic, two level, and iterated key setup
scheme,” 2004.

[36] S. Furnell, “An assessment of website password practices,” Computers &
Security, vol. 26, no. 7, pp. 445–451, 2007.

[37] P. Gasti and K. B. Rasmussen, “On the security of password manager
database formats,” pp. 770–787, 2012.

[38] S. Gaw and E. W. Felten, “Password management strategies for online ac-
counts,” ACM, pp. 44–55, 2006.

[39] Z. A. Genc, S. Kardas, and M. S. Kiraz, “Examination of a new defense
mechanism: Honeywords.” IACR Cryptology ePrint Archive, vol. 2013, p.
696, 2013.

[40] H. Gilbert and H. Handschuh, “Security analysis of sha-256 and sisters,” in
Selected Areas in Cryptography. Springer, 2004, pp. 175–193.

[41] R. Gonzalez, E. Y. Chen, and C. Jackson, “Automated password extrac-
tion attack on modern password managers,” arXiv preprint arXiv:1309.1416,
2013.

[42] S. Hada, “Zero-knowledge and code obfuscation,” in Advances in Cryptolo-
gyASIACRYPT 2000. Springer, 2000, pp. 443–457.

[43] A. Hurkała and J. Hurkała, “Authentication system for websites with paid
content: An overview of security and usability issues,” IJCSNS International
Journal of Computer Science and Network Security, vol. 13, no. 7, pp. 42–
49, 2013.

[44] P. Johnston, “Authentication and session management on the web,” Retrieved
December, vol. 13, p. 2009, 2004.

[45] A. Juels and T. Ristenpart, “Honey encryption: Security beyond the brute-
force bound,” in Advances in Cryptology–EUROCRYPT 2014. Springer,
2014, pp. 293–310.

[46] A. Juels and R. L. Rivest, “Honeywords: Making password-cracking de-
tectable,” in Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security. ACM, 2013, pp. 145–160.

89

BIBLIOGRAPHY

[47] Z. Li, W. He, D. Akhawe, and D. Song, “The emperor’s new password man-
ager: Security analysis of web-based password managers,” in 23rd USENIX
Security Symposium (USENIX Security 14), 2014.

[48] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage, “In-
ferring internet denial-of-service activity,” ACM Transactions on Computer
Systems (TOCS), vol. 24, no. 2, pp. 115–139, 2006.

[49] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords using
time-space tradeoff,” in Proceedings of the 12th ACM conference on Com-
puter and communications security. ACM, 2005, pp. 364–372.

[50] K. Rosen, Discrete Mathematics and Its Applications 6th edition (Interna-
tional edition). McGraw-Hill, 2007.

[51] G. Sowmya, D. Jamuna, and M. V. K. Reddy, “Blocking of brute force at-
tack,” in International Journal of Engineering Research and Technology,
vol. 1, no. 6 (August-2012). ESRSA Publications, 2012.

[52] ——, “Blocking of brute force attack,” in International Journal of Engi-
neering Research and Technology, vol. 1, no. 6 (August-2012). ESRSA
Publications, 2012.

[53] W. C. Summers and E. Bosworth, “Password policy: the good, the bad, and
the ugly,” in Proceedings of the winter international synposium on Informa-
tion and communication technologies. Trinity College Dublin, 2004, pp.
1–6.

[54] L. Von Ahn, M. Blum, N. J. Hopper, and J. Langford, “Captcha: Using hard
ai problems for security,” in Advances in CryptologyEUROCRYPT 2003.
Springer, 2003, pp. 294–311.

[55] J. Yan et al., “Password memorability and security: Empirical results,” IEEE
Security & privacy, no. 5, pp. 25–31, 2004.

90

	Contents
	List of Figures
	Introduction
	Motivation
	Goals
	Field of research
	Statement of the Problem
	Contributions
	Target audience
	Report outline / Thesis Organization
	Delimitations and key assumptions

	Background
	State of the art
	General information
	Local password managers
	Web-based password managers
	Proposed solutions using decoy-based architecture
	Kamouflage
	NoCrack

	Design
	Application design
	PIN code
	Master Password
	Login
	Creating passwords
	Calculating the correct index
	Database

	User operations
	Add
	Read/Show
	Update/Edit
	Delete
	Change master password

	Cloud design
	Production of decoys
	Database

	Connection between android application and the cloud

	Proposed Solution
	Software used
	Random functions
	Android development
	Tools used

	Hexstring to decimal
	Cloud - production of decoys
	Decoy generation
	Discussion of design issues
	Login
	Internet / No Internet connection
	Using modulo arithmetic for indexing

	Performance testing
	Android application performance
	How much MB space do the decoys produce?
	Do large amounts of decoys slow down the application?
	Probability of hitting the correct index
	Hit rate with 1000 decoys
	Hit rate with 5000 decoys
	Hit rate with 10000 decoys

	Cloud performance
	Decoy generation

	Security analysis
	Attack vectors
	Attack vectors targeting the application
	Attack vectors targeting the cloud

	Additional functions to enhance security
	Honeywords

	Discussion, conclusion and further work
	Discussion of results
	Hit rate results
	Decoy production in Cloud
	Storing passwords
	Modulo as index function
	Performance

	Conclusion
	Further Work

	Bibliography

