
This master’s thesis is carried out as a part of the education at the

University of Agder and is therefore approved as a part of this

education. However, this does not imply that the University answers

for the methods that are used or the conclusions that are drawn.

University of Agder, 2015

Faculty of Engineering and Science

Department of Information Systems

Clustered File Type Identification

John Daniel Evensen

Supervisor

Morten Goodwin

Abstract

This thesis examines the possibility of expanding the current field of research
for file type identification in Digital Forensics. A proposed solution is presented
where unsupervised clustering and supervised classification are combined. The
experimentation of the proposed solution increases the speed of file type identi-
fication, however with a decrease of total identification accuracy. A technique of
unsupervised continuous learning is also presented, effectively making the pro-
posed solution capable of adapting to the environment by learning from the test
data while performing file type identification. In the best case scenario, identi-
fication accuracy increases from 85.8% to 90.4% when using the unsupervised
continuous learning technique.

Preface

The work in this thesis is performed as part of the Master’s Programme in Infor-
mation and Communication Technology for the University of Agder, Grimstad.
This thesis is performed under the supervision of professor Morten Goodwin, with
some feedback from professor Ole-Christoffer Granmo.

1

Contents

Contents 2

List of Figures 4

List of Tables 5

1 Introduction 6
1.1 Research Problem . 7

1.1.1 Measurements . 8
1.1.2 Limitations . 8

1.2 Contributions . 9
1.3 Thesis outline . 10

2 Background 11
2.1 Digital Forensics . 11

2.1.1 Files and File type identification 12
2.2 Clustering . 13

3 Related Work 14
3.1 Digital Forensics . 14
3.2 Clustering . 19

4 Proposed Solution 20
4.1 Basic Classification . 21

2

CONTENTS

4.2 Basic Clustering . 22
4.3 Proposed solution . 23

4.3.1 Unsupervised Continuous Learning 25
4.3.2 Adaptive Learning . 26
4.3.3 Features . 27
4.3.4 Clustering Algorithm . 30
4.3.5 Advantages . 30

5 Experiments 31
5.1 Data set . 31
5.2 Clustering . 32

5.2.1 k-means: Constant Number of Clusters 32
5.2.2 k-means: Variable Number of Clusters 33
5.2.3 k-means: Clustering Time 34
5.2.4 Conclusion . 36

5.3 Classification . 37
5.3.1 Support Vector Machine 37
5.3.2 Naı̈ve Bayes . 38
5.3.3 Decision Tree . 38
5.3.4 Multilayer Perceptron 38
5.3.5 Conclusion . 39

5.4 Proposed Solution . 40
5.4.1 Experiment 1 - Speed, Accuracy and Scalability 40
5.4.2 Experiment 2 - Unsupervised Continuous Learning 42
5.4.3 Experiment 3 - Adaptive Learning 45
5.4.4 Discussion of Results . 46

6 Conclusion and further work 48
6.1 Summary of Results . 48
6.2 Conclusion . 50
6.3 Further Work . 50

3

List of Figures

4.1 Basic classification flow . 21
4.2 Basic clustering flow . 22
4.3 Flow of proposed solution . 24
4.4 Flow of Unsupervised Continuous Learning 25
4.5 Flow of Adaptive Learning . 26
4.6 BFD for the BMP File format . 28
4.7 BFD for the GIF File format . 28
4.8 BFD for the JPG File format . 28
4.9 BFD for the MP3 File format . 29
4.10 BFD for the PNG File format . 29
4.11 BFD for the TXT File format . 29

5.1 k-means performance evaluation: Purity 34
5.2 k-means performance evaluation: Time 35
5.3 k-means performance evaluation: Purity with Time where the bub-

ble size is the relative clustering time 35
5.4 Experiment 2 - Unsupervised Continuous Learning 44
5.5 Experiment 3 - Adaptive Learning 45

4

List of Tables

3.1 Important works within file type identification (based on table
from previous work [15]) . 18

5.1 k-means clusters with their assigned files 33
5.2 Experiment 1 - Classification Accuracy and Time 40
5.3 Experiment 1 - Proposed Solution Accuracy and Time 41
5.4 Normal identification of subsets 42
5.5 Identification of subsets by Unsupervised Continuous Learning . . 43

5

Chapter 1

Introduction

Digital forensics is a field of great importance for the opposition of computer
crime. It is often the case that digital forensics teams retrieve data from crimi-
nal investigations. This can be in the form of hard disk drives or other storage
mechanisms potentially storing sensitive data which can be used to assess the jus-
tification of crime. These storage devices may contain large amounts of data, and
sometimes even corrupted or deleted data. The digital forensics teams are then
tasked with the retrieval of any and all data from these devices, which may prove
a significant task if the data is not normally readable.

In digital forensics there exists various techniques of file type identification
used for reconstruction of lost data. These are mainly the extension based, sig-

nature based and content based techniques. The content based method refers to
the identification of file types only by looking at the binary contents of a file,
without type specific information such as file headers. This technique has been
widely applied and researched in combination with traditional machine learning
approaches using supervised learning. This approach has reported great results in
terms of identification accuracy.

One of the major difficulties with this approach is that classification algorithms

6

CHAPTER 1. INTRODUCTION

mostly operate slowly, i.e it can take a long time for classification to complete
depending both on the quantity of data and classification algorithm. This can be
a problem where classification of data is time sensitive. This is often the case in
digital forensics, as the retrieved data can consist of multiple hard disk drives with
multiple terabytes each.

This thesis aims to counteract this problem by applying clustering as a tech-
nique to classify data at a faster speed. This technique utilized the fact that clus-
tering of data is less costly than that of a full-fledged classifier. This approach also
adds a method of unsupervised continuous learning for classification. Instead of
building a predictive model based on new data, clusters can simply be extended
using this data, presumably resulting in an increase of positive predictive results.

By applying the field of Clustering to file type identification, this thesis aims to
investigate the differences in terms of speed, accuracy, and scalability compared to
that of traditional approaches. The possibility of unsupervised continuous learn-
ing is also investigated.

This chapter introduces the problem of classification using clustering with ap-
plication to file type identification.

1.1 Research Problem

The goal of this thesis is to investigate the possibility of using clustering for file
type identification in digital forensics. The main reason for this is to increase the
speed of classification in the field of digital forensics where traditional classifica-
tion techniques are not fast enough to be practically usable.

The outline of this approach is as following. Clustering is performed on the
data to be classified, assigning it to clusters which have been classified using the
training data. Then, the performance of the implementation is compared to the
performance of traditional classification approaches applied within the same field.

7

CHAPTER 1. INTRODUCTION

This is extended to the investigation of unsupervised continuous learning.
Continuous learning refers to the possibility of incremental learning of the test
data. This technique is then taken further to establish whether it can be used to
identify new file types as they are introduced.

This research problem yields three different research questions to be explored
for the proposed solution in this thesis:

• How is the measurements of accuracy, speed and scalability compared to
traditional approaches?

• How well does the proposed solution perform by continuously learning it
with test data?

• How does it adapt to the introduction of new file types as test data?

1.1.1 Measurements

The performance measurements in this thesis are measured in terms of speed, ac-
curacy and scalability. One important thing to note is that the measurement of
accuracy within digital forensics is not always the same as accuracy within clas-
sification. In digital forensics, accuracy is often measured in terms of correctly
identified file types out of all possible files. Therefore, the term accuracy is used
herein as the percentage of correctly assigned files. Scalability refers to the per-
formance in terms of speed and accuracy with a varying number of files.

1.1.2 Limitations

The proposed solution requires the use of both a classification algorithm and a
clustering algorithm. To compare how each combination of all possible algo-
rithms work together for this thesis would be a too significant task. Therefore,

8

CHAPTER 1. INTRODUCTION

a set of classification algorithms are measured in terms of accuracy, and the best
performing algorithm is brought forth and considered as the classifier of choice
for the proposed solution. As for the clustering algorithm, only one is considered
because of reasons mentioned later in this thesis. This limits the thesis in terms of
possible combinations of algorithms, only proving its viability theoretically, not
finding the optimal classification or clustering algorithm to possibly increasing the
overall results achieved.

1.2 Contributions

Extensive research has been done within the file type detection field of digital
forensics. The work is performed and published by experimenting with common
supervised learning classifiers (See Table 3.1). These classifiers work by first
“training” them with a separate learning data set. Using the learned information,
these classifiers can predict the type (class) of new data by comparing given fea-
tures to that of which is learned from training. This approach follows a strict
formula; prediction is dependant of training.

It is assumed that the addition of a clustering technique within the field of
digital forensics will greatly improve the speed of file type detection as the need
to classify each instance of test data is eliminated.

The application of an unsupervised continuously learning technique is also
assumed to add to the existing body of research for file type detection. This due
to the fact that no research has been found for this field regarding unsupervised
learning.

This approach may also generally contribute to pattern detection problems
previously only resolved using traditional classification approaches.

9

CHAPTER 1. INTRODUCTION

1.3 Thesis outline

Chapter 2 presents the necessary background of this thesis, giving an introduction
to digital forensics, files, and file type identification, as well as the principles of
clustering.

Chapter 3 shows previous works and techniques applied to the field of file type
identification.

Chapter 4 presents the proposed solution for this thesis.

Finally, Chapter 5 shows the different experiments performed by the proposed
solution to establish the validity of the various research questions stated above,
while Chapter 6 finally concludes this thesis and its results.

10

Chapter 2

Background

This chapter presents the necessary background for the proposed solution in this
thesis. The field of digital forensics is first presented with the intent of motivating
why the work in this thesis is important. Secondly, a presentation of files and file
type identification is given to provide insight into the problem at hand. Lastly,
the technique of clustering is briefly explained to give a basic understanding of its
relevance for this thesis.

2.1 Digital Forensics

There is an ever-increasing need to store information digitally. The stored in-
formation is expected to be available whenever it is needed, and various storage
media are depended on to be reliable means of storing it.

Hard disk drives are one of the most popular storage media, and in 2007 it was
estimated that over 90% of all digital information is stored on magnetic media
such as hard disks [29]. Cloud storage has recently been taken into more use, but
even though the data exists in the “cloud”, the data is still stored somewhere (e.g.

11

CHAPTER 2. BACKGROUND

on hard disks). Unfortunately, this is not as reliable as one would hope for; these
magnetic drives are prone to data loss, either in the form of corruption caused by
e.g. ageing, or from (un)intentional data deletion.

There are many steps that can be taken to prevent the likelihood of data loss.
Data redundancy and geographical distribution of information can mitigate the
damage caused by natural disasters, etc., but may not help against malicious users.
Properly securing against data loss is very important, both in private households
and for companies, but sadly, hard disk drives are relied upon as fail-safe storage
mechanisms.

But what if the accident is a reality, and the hard disk with all of the family
photographs becomes no longer readable: what can be done? When a hard disk
seems unreadable, i.e. the data can not be read through normal means, the as-
sumption that the data is permanently lost can be made prematurely. Depending
on the actual cause of data loss, the data is not necessarily lost forever.

2.1.1 Files and File type identification

The term files is used herein as the reference to a sequence of bytes, representing
information stored on a storage medium using an associated file system. The file
system manages files and holds information such as the physical location of each
file on the medium. This information is stored in a file table.

As previously mentioned, when a file is deleted, modern operating systems just
remove the entry of the corresponding file from the file table, keeping the actual
data untouched somewhere on the medium. As a file is deleted, the location of the
file’s data will be marked as available, thus giving the file system permission to
store new files in that location.

And when a file is to be written to storage, the file system will try to fill holes
of unused space in between other files in order to preserve space. If the file is split

12

CHAPTER 2. BACKGROUND

into smaller parts—fragments—that can fit in these holes, the file gets fragmented.

When the storage medium suffers from fragmentation, recovery of a previous
file can be difficult because some pieces may be overwritten, and the file’s frag-
ments might be scattered throughout the medium. It is therefore recommended
that if a file is deleted by accident, no write operations should be performed on
the file system until the file has been successfully recovered.

2.2 Clustering

Clustering, also known as Cluster Analysis, is the process of grouping unlabelled
data in groups where selected features are more or less similar. This process sep-
arates and groups data, possibly giving structure to unstructured data. Clustering
is in itself a theoretical process for which there exists many different implemen-
tations for different application areas. A common approach to the clustering of
data, is to assess a measurable distance between features, effectively creating dis-
tances between data in an arbitrary-dimensional space. For instance, the k-means
algorithm uses euclidian distance to measure the differences in distance.

13

Chapter 3

Related Work

This chapter presents related work to the proposed solution with respect to the
background in the previous chapter.

3.1 Digital Forensics

There are many forms of file type identification available both in previous research
and publicly available tools [31]. This section briefly describes the extension-,
signature- and content-based methods.

The extension based method of file type detection looks at the extension of
the actual file name. Operating systems in the Microsoft Windows family use this
method extensively to identify the type of a file. It checks the file name for an
extension, i.e. the string given after the last period mark.

Using the example file name image.jpg, the jpg string is the extension, indi-
cating an image file of the JPEG type.

This simple method of type identification is not very robust; hiding the true
file type is a simple matter of renaming the file with a different extension. This is

14

CHAPTER 3. RELATED WORK

referred to as file spoofing. In other words, the extension alone can not guarantee
that a file is of the actual type that it indicates.

As for the signature based approach, file signatures are mainly two bytes that
are located at the beginning of binary file types. These signatures are not present
in text files, such as txt, html or csv to name a few. The Sleuth Kit[10] and
Scalpel[32] are two of many tools publicly available to identify and recover files
based on their signatures.

In UNIX based operating systems such as Linux, these signatures are read
in order to determine the type of file the following data belongs to. As with the
extension based method, this method can also easily be spoofed. By changing
the two signature bytes from a given file, the operating system can be unable to
correctly open a file.

Consider the scenario where a UNIX based operating system is to open the
file image.jpg. Here, the file name is of no indication of the actual type. If this
file is actually an executable hiding under the disguise of a JPEG image file, it
would not be apparent to the user unless it is explicitly opened in an editor where
the signature bytes can be checked. If this file is executed, it will run as an ex-
ecutable because of the signature bytes telling the operating system to run it as
such, potentially executing malicious code.

Signature based methods for identifying types of file fragments are also not
reliable because with fragmented files, only the first fragment (header) contains
the file signature, rendering the remaining fragments without type identification.

File recovery tools often look at the file table when trying to recover files.
The file table is an integral part of a file system, and contain information about
where on the storage medium the files’ data are found. Using this information,
files can often be restored as long as the data location has not been overwritten or
corrupted.

These tools can also often recover files that have been accidentally deleted;

15

CHAPTER 3. RELATED WORK

when a file is deleted, only the data location in the file table is removed from
the storage medium, while the actual data of the file still exists somewhere on
the medium. Even though the data location is lost through the “deletion” action,
file recovery tools can scan for the data and attempt to recover it without using
existing information about its location.

An important task when recovering data from storage media is to label the data
with some specific type, i.e. to determine what kind of information the data repre-
sents. File recovery tools can search for common signatures—specific sequences
of bytes—which are often located at the beginning of files, in order to identify the
file’s type. But if the file has been fragmented, i.e. split into multiple physical
pieces on the disk, and the reference to the file is removed from the file table, the
file can not so easily be recovered.

It is also important to consider a large amount of files when evaluating methods
for file recovery. Quick and Choo [30] investigates some of the challenges related
to the increasing volume of data. For a file type identification method to be useful
in a real life scenario, it should also be relatively fast since it potentially needs to
be run on huge amounts of data.

The content based approach only consider the actual contents of each file in
order to determine its type. No operating system is able to easily identify the type
of a file based only on its contents unless the contents contain signature bytes at
the start of the file.

Common machine learning techniques have been used in order to detect the
file type of a fragment. McDaniel and Heydari [26] appear to have been the first
in literature to consider the content based approach for file type detection. They
consider the use of different classification techniques in order to achieve this. A
classification accuracy of up to 96% is reported, i.e 96% of all files were correctly
identified. Upon closer inspection, the method yielding their best result is basi-
cally utilizing the signature based approach, as it is dependent on the existence of
consistent signature bytes within files. This renders their method void in terms of

16

CHAPTER 3. RELATED WORK

the content based approach, while their second best, and content based approach,
reported a classification accuracy of 46%. A total number of 120 files among 30
file types were considered.

A problem that exists throughout the literature of content based file type iden-
tification is the lack of a standardized approach [17]. Results are provided with a
varying number of files and types, and they are often produced using private data
sets. The validity of the results can therefore not be established through reproduc-
tion.

Looking at the work done by Amirani, Toorani, and Beheshti [5], they report
a classification accuracy of 85.5% when considering file fragments of 1500 bytes
in size, with a total of 1200 files over 6 different file types. Beebe et al. [7]
reports a correct classification rate of 73.4% when considering 38 different file
types with nearly 100000 fragments of 512 bytes in size. This highlights the
problem of not having directly comparable results. One could argue that Beebe
et al. [7] presents better results than those of Amirani, Toorani, and Beheshti [5]
because of the increased classification accuracy compared to that of a hypothetical
random-choice classifier.

On the note of content based file type identification, a large variety of different
classifiers are used in literature to solve this problem. Solutions are proposed,
many to solve different aspects within file type identification, all with varying
published results. Table 3.1 shows many of the most important findings in this
field.

17

CHAPTER 3. RELATED WORK

Table 3.1: Important works within file type identification (based on table from
previous work [15])

Contributors File/
Fragment Method #Types #Files Accuracy %

McDaniel and
Heydari[26] File BFA, BFC, FHT analysis 30 120 27.5, 45.83, 95.83

Li et al.[25] File
Manhattan distance
Mahalanobis distance
Multi-centroid

8 (5) 800
82 (One-Centroid)
89.5 (Multi-Centroid)
93.8 (Exempler files)

Dunham et al.[13] File Neural Networks 10 760 91.3

Karresand and
Shahmehri[24]

Fragment

Oscar method (based
on Mean and standard
deviation of BFD).
Biased for JPG.

49 53 97.9 (JPG)

Karresand and
Shahmehri[23]

Fragment

Oscar method + rate of
change between consecutive
byte values.
Biased for JPG

51 57
87.3-92.1 (JPG)
46-84 (ZIP)
12.6 (EXE)

Zhang et al.[35] Fragment BFD and Manhattan distance 2 100 92.5

Moody and
Erbacher[27]

Fragment Mean, standard deviation,
kurtosis

8 200 74.2

Calhoun and
Coles[8]

Fragment Fisher’s linear discriminant.
Statistical measurements

2 100
68.3-88.3 (bytes 129-1024)
60.3-86 (bytes 513-1024)

Amirani et al.[5] File
PCA + Neural networks
feature extraction.
MLP Classifier

6 720 98.33

Cao et al.[9] File
Gram Frequency
Distribution, Vector
space model

4 1000
90.34 (2-gram +
256 grams as type
signature

Ahmed et al.[1] File
Cosine similarity,
divide and conquer,
MLP Classifier

10 2000 90.19

Ahmed et al.[3, 2] Both
Feature Selection,
Content Sampling,
KNN Classifier

10 5000

90.5
(40% of features)
88.45
(20% of features)

Amirani et al.[6] Both
PCA + Neural Networks
feature extraction
SVM Classifier

6 1200
99.16 (Whole files)
85.5 (1500 bytes fragments)
82 (1000 bytes fragments)

Evensen et al.[15]
(Reference to self) Both

n-gram analysis with
naı̈ve bayes classifier 6 60000

99.51 (Whole files)
99.08 (8192 bytes fragments, 5 types)
98.34 (1024 bytes fragments, 5 types)

18

CHAPTER 3. RELATED WORK

3.2 Clustering

Extensive reviews of different clustering algorithms have been performed in liter-
ature [34, 4].

There is seemingly no literary work done with respect to file type identification
using clustering techniques. This is assumed to be because traditional classifica-
tion methods have been very successful, foreshadowing the need for additional,
alternative approaches.

Clustering generally has many successful areas of application [20, 16], often
where traditional classification methods are not applicable. This is especially true
for scenarios where there are unknown groups of data, i.e labelling of data cannot
be done. A clustering process will then cluster data based on some measurable
features to determine equality.

There exists mainly two different types of clustering; hard clustering and fuzzy
clustering (also known as soft clustering). In hard clustering, each data point only
has one cluster which it belongs to, while for fuzzy clustering, each data point can
be members of many clusters, with varying degrees of membership.

For the clustering of text, k-means has proved a rather popular choice. [22, 33,
12, 28, 18, 19, 21]. This is a hard clustering algorithm, assigning each data point
to exactly one cluster.

19

Chapter 4

Proposed Solution

The proposed solution presented in this thesis consists of a combination of a clas-
sification algorithm and a clustering algorithm. In order to present how these are
combined to make up the proposed solution, this chapter first introduces the prin-
ciples of classification and clustering as it is implemented. The innovation in this
thesis is the combination of the supervised classification and unsupervised cluster-
ing approaches. Then, the proposed solution is presented, building on principles
of both classification and clustering.

An extension of the proposed solution for unsupervised continuous learning
is presented, while advantages compared to traditional approaches is lastly dis-
cussed.

20

CHAPTER 4. PROPOSED SOLUTION

4.1 Basic Classification

Basic supervised learning classifiers utilizes a process of learning. This is done by
feeding a classifier features extracted from the data which it is trained with. These
features should be class unique, i.e based on the features alone, the class for which
the features belong should be identifiable. A predictive model is then generated
based on the training data. This model should be capable of labelling new data
by comparing its features to that which it has learned. Figure 4.1 illustrates this
process.

Train Data

Classifier

Build Classifier

Test Data

Measured

accuracy

Classify Test Data

Figure 4.1: Basic classification flow

21

CHAPTER 4. PROPOSED SOLUTION

4.2 Basic Clustering

Clustering is an unsupervised learning process which uses measurable features
extracted from data to separate them into distinguishable clusters. Depending on
the data, different clustering algorithms are suited for different types of data. By
clustering unlabelled data, patterns or structures previously unseen can become
apparent. Figure 4.2 illustrates the process of clustering.

Data

Clustering

algorithm

Clusters

Perform clustering

Figure 4.2: Basic clustering flow

22

CHAPTER 4. PROPOSED SOLUTION

4.3 Proposed solution

The proposed solution for this thesis utilizes both clustering and classification in
order to identify the type of a file, only by looking at its binary contents.

The basic idea is to use labelled test data to build a predictive classification
model. The test data is also fed into a clustering algorithm, creating clusters based
on the same features which the classifier was trained with. The classifier then uses
its knowledge to classify the actual clusters, effectively creating labelled clusters.
Some test data, normally unlabelled, are then clustered into the already existing
clusters, assigning the data the label of its assigned cluster. This effectively labels
unlabelled data in the same way a classifier would, only by clustering the data
instead of performing classification of it. The aim is that this method performs
faster than that of a traditional classification-only approach. Figure 4.3 illustrates
this whole process.

The proposed solution is extended into two additional techniques, unsuper-

vised continuous learning and adaptive learning, giving it the possibility to learn
and adapt to the environment in which it operates.

23

CHAPTER 4. PROPOSED SOLUTION

Train Data

Classifier Clusterer

Build

Classifier

Build

Clusterer

Test Data
Labelled

Clusters

Labelled

Test Data

Classify

Cluster

Figure 4.3: Flow of proposed solution

24

CHAPTER 4. PROPOSED SOLUTION

4.3.1 Unsupervised Continuous Learning

Expanding on the proposed solution, this thesis investigates how it can be modi-
fied so that a method of unsupervised continuous learning can be performed. By
splitting some of the test data into smaller parts, the clusters can be built incremen-
tally, effectively learning while clustering. This is performed by first clustering
one part of the test data. This part is then fed into the labelled clusters, updating
the centroids –the representative for its label– to build a cluster that is assumed to
be a better representation of its label due to the continuous learning of test data.
Figure 4.4 illustrates this process.

Test Data
Labelled

Clusters

Labelled

Test Data
Test Data

in parts

Cluster

incrementally
Split test data

Rebuild clusters

incrementally

Figure 4.4: Flow of Unsupervised Continuous Learning

25

CHAPTER 4. PROPOSED SOLUTION

4.3.2 Adaptive Learning

Further, it is assumed that the technique of unsupervised continuous learning can
be extended to include new types of test data, i.e the introduction of new classes.
This is herein referred to as Adaptive Learning.

To achieve an adaptive learning technique from the proposed solution, new
classes of data to the clusterer are introduced, hopefully creating distinct clusters.
The centroids of the clusters are then classified by the classifier in order to es-
tablish a label for the newly clustered data. This in turn means that the classifier
needs to know of all possible classes which may be used as input data for the pro-
posed solution. This may be considered a limitation, but realistically a classifier
can be trained with all possible classes of a domain, preparing it for the identifi-
cation of all possible classes. However, this is assumed to reduce identification
accuracy overall. The process of an adaptive learning technique is illustrated with
Figure 4.5.

Test Data
Labelled

Clusters

Labelled

Test Data

New Test Data

In parts

Rebuild clusters

incrementally

Cluster data

Cluster

incrementally

Figure 4.5: Flow of Adaptive Learning

26

CHAPTER 4. PROPOSED SOLUTION

4.3.3 Features

A standard approach when considering the identification of file types based on
the binary contents of files, is to consider the Byte Frequency Distribution(BFD)
as features. The BFD is a representation of each byte’s occurrence within files,
meaning that for each file different bytes are present, making up the whole con-
tents of a file. These bytes range from 0 to 255.

For the BFD to be a viable option when considering features from files, the
frequency need to be normalized. This intentionally makes the size of each file
irrelevant when considering the frequency of bytes. This is done by dividing the
number of each byte with the total number of bytes within each file.

Figures 4.6 through 4.11 depicts the normalized BFDs generated from the data
set used in this thesis (See Chapter 5).

27

CHAPTER 4. PROPOSED SOLUTION

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

0,05

0 9

1
8

2
7

3
6

4
5

5
4

6
3

7
2

8
1

9
0

9
9

1
0
8

1
1
7

1
2
6

1
3
5

1
4
4

1
5
3

1
6
2

1
7
1

1
8
0

1
8
9

1
9
8

2
0
7

2
1
6

2
2
5

2
3
4

2
4
3

2
5
2

BMP

Figure 4.6: BFD for the BMP File format

0

0,002

0,004

0,006

0,008

0,01

0,012

0 9

1
8

2
7

3
6

4
5

5
4

6
3

7
2

8
1

9
0

9
9

1
0
8

1
1
7

1
2
6

1
3
5

1
4
4

1
5
3

1
6
2

1
7
1

1
8
0

1
8
9

1
9
8

2
0
7

2
1
6

2
2
5

2
3
4

2
4
3

2
5
2

GIF

Figure 4.7: BFD for the GIF File format

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0 9

1
8

2
7

3
6

4
5

5
4

6
3

7
2

8
1

9
0

9
9

1
0
8

1
1
7

1
2
6

1
3
5

1
4
4

1
5
3

1
6
2

1
7
1

1
8
0

1
8
9

1
9
8

2
0
7

2
1
6

2
2
5

2
3
4

2
4
3

2
5
2

JPG

Figure 4.8: BFD for the JPG File format

28

CHAPTER 4. PROPOSED SOLUTION

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0 9

1
8

2
7

3
6

4
5

5
4

6
3

7
2

8
1

9
0

9
9

1
0
8

1
1
7

1
2
6

1
3
5

1
4
4

1
5
3

1
6
2

1
7
1

1
8
0

1
8
9

1
9
8

2
0
7

2
1
6

2
2
5

2
3
4

2
4
3

2
5
2

MP3

Figure 4.9: BFD for the MP3 File format

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0 9

1
8

2
7

3
6

4
5

5
4

6
3

7
2

8
1

9
0

9
9

1
0
8

1
1
7

1
2
6

1
3
5

1
4
4

1
5
3

1
6
2

1
7
1

1
8
0

1
8
9

1
9
8

2
0
7

2
1
6

2
2
5

2
3
4

2
4
3

2
5
2

PNG

Figure 4.10: BFD for the PNG File format

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0 9

1
8

2
7

3
6

4
5

5
4

6
3

7
2

8
1

9
0

9
9

1
0
8

1
1
7

1
2
6

1
3
5

1
4
4

1
5
3

1
6
2

1
7
1

1
8
0

1
8
9

1
9
8

2
0
7

2
1
6

2
2
5

2
3
4

2
4
3

2
5
2

TXT

Figure 4.11: BFD for the TXT File format

29

CHAPTER 4. PROPOSED SOLUTION

4.3.4 Clustering Algorithm

Previous work [15]1 compared the byte frequency distribution within files to that
of letters or words in text classification. This led to the use of the naı̈ve Bayes
classifier as the proposed solution with great results. The reason being that the
naı̈ve Bayes classifier is a popular choice when dealing with text classification.
This assumption is taken further into clustering, i.e since no direct application in
previous literature has been found for clustering with file type identification, the
principles of text clustering become the neighbouring comparison.

As mentioned in chapter 3, the k-means algorithm has proved a very good
approach for the classification of text documents. Hence, k-means is the clus-
tering algorithm of choice in the experiments of this thesis. k-means has proved
“extremely fast” [11], reinforcing the decision to consider this algorithm.

4.3.5 Advantages

Previous work done in digital forensics, specifically the identification of file types,
has mainly been done only with supervised learning techniques. Many of these
results have been proven accurate, however some of them operate slowly. Assign-
ing new instances of data to already existing clusters is assumed to be faster than
utilizing a traditional supervised learning approach to label the data.

With the introduction of an unsupervised continuous learning technique as
well as the adaptive learning technique, it is assumed that the proposed solution is
capable of learning while identifying due to its inclusion of clusters which can be
easily extended incrementally with new data. This is assumed to increase the rate
of which data is correctly identified as it learns and adapts to the environment of
the test data, both with regards to already existing classes of test data and newly
introduced classes.

1Reference to self

30

Chapter 5

Experiments

To achieve a basic implementation of a clustering-classification approach to file
type identification, four classification algorithms are compared at first in terms
of accuracy; Support Vector Machine, Naı̈ve Bayes Classifier, Decision Tree, and
Multilayer Perceptron. The best performing classifier from this experiment is
considered for the experimentation of the proposed solution. Then, clustering and
classification are tested together, where the centroids of clusters created by a k-
means algorithm are classified by the forthbrought classifier. This will provide
empirical results of the proposed method in this thesis, and hopefully add to its
conclusion.

5.1 Data set

The data set considered for these experiments consists of six different file types,
namely BMP, JPG, PNG, MP3, GIF and TXT. This is also the data set used in
previous work [15]1. The four image types are chosen due to a bias to identify
images in digital forensics. This bias is based on serious offences such as the

1Reference to self

31

CHAPTER 5. EXPERIMENTS

possession of child pornography. The two additional file types are chosen simply
to add two completely different types of data, to prove the possibility of not only
image type identification. The files were downloaded as randomly as possible
from various sources on the Internet. This data set consists of 10000 files for each
type, i.e. a total of 60000 files. For each of the files in the data set, fragments of
512 bytes are extracted. The first 512 bytes are ignored due to the occurrence of
file signatures and other file type identifiers in these fragments.

Fragments are chosen instead of whole files, because in a realistic scenario,
whole files are often not available, but only fragments of files due to disk frag-
mentation.

5.2 Clustering

The best yielding configuration for the k-means algorithm is found through a se-
ries of experiments. Its performance is measured in terms of purity. This is a
measurement of how pure each cluster is, i.e the sum of the relations of the most
populated type assigned to each cluster of the total number of files. This calcula-
tion is given by

∑n
k=1

x(k)
y

where n is the total number of clusters, x is a function
yielding the number of the most populated type in k, and y is the total number of
files.

5.2.1 k-means: Constant Number of Clusters

In this experiment, 7000 fragments from each file type are clustered. The number
of clusters is pre-defined, which is a requirement of the k-means algorithm, with
a value six. This is done intuitively because it is the total number of file types
in this data set. It is assumed that by forcing the number of clusters equal to the
number of types, greater purity is achieved. In a real life scenario the number

32

CHAPTER 5. EXPERIMENTS

of clusters should not be known, but is used here for the sake of measuring the
proposed solution.

Table 5.1: k-means clusters with their assigned files

Cluster 0 1 2 3 4 5
BMP 2327 1985 308 65 2285 30
JPG 40 10 0 0 6950 0
PNG 21 14 1 0 6964 0
MP3 710 0 5477 4 804 5
GIF 5 6169 0 0 826 0
TXT 1410 0 0 2346 26 3218

Table 5.1 shows the results of this experiment. The five clusters are shown
together with the clustered number of each file type.

The clustering purity is measured to 63.1%. The results of this experiment can
not be viewed as a good or successful result considering the small number of file
types clustered. It is assumed that the reason for the bad performance is because
of the small number of possible clusters. Upon closer inspection of the fragments,
it is seen that there is variance between files from the same file type, meaning
that they may or should be placed in what may be called sub-classes. A new
experiment is therefore proposed where the number of clusters for the k-means
algorithm is increased.

5.2.2 k-means: Variable Number of Clusters

For the current data set, the number of clusters is set to increase incrementally
from 6, which is the number of file types, to 100. This is an arbitrary large number.
Using the given data set, this experiment yields a good performance evaluation
with regards to the number of clusters for the k-means algorithm.

Figure 5.1 illustrates the performance in terms of purity, given by the vertical
axis, for the k-means algorithm. As seen, and assumed, the purity quickly in-

33

CHAPTER 5. EXPERIMENTS

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0,90

0,95

6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

P
u

ri
ty

Number of clusters

Clustering purity for different number of clusters

Figure 5.1: k-means performance evaluation: Purity

creases when the number of clusters increases. This is the case for up until about
40 clusters total. From here on out, the purity remains consistent around 90%.
However, the elapsed clustering time is assumed to increase when the number of
clusters increases. Therefore, a new experiment is proposed where the elapsed
clustering time is measured to the numbers of clusters tested for this experiment.

5.2.3 k-means: Clustering Time

The same experiment as the previous is performed. This time, instead of mea-
suring purity, the elapsed clustering time for each of the different numbers of
clusters are measured. This is depicted in the graph given by Figure 5.2, where
the vertical axis indicates the time in seconds. This clearly shows that for a large
number of clusters, the clustering time increases seemingly exponentially. Hence,
where clustering is time sensitive, the number of clusters selected for the k-means
algorithm should be set to a minimal, but sufficient value.

34

CHAPTER 5. EXPERIMENTS

0,00

500,00

1000,00

1500,00

2000,00

2500,00

6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Ti
m

e
in

 s
ec

o
n

d
s

Number of clusters

Clustering time for different number of clusters

Figure 5.2: k-means performance evaluation: Time

0,60

0,65

0,70

0,75

0,80

0,85

0,90

0,95

1,00

0 20 40 60 80 100 120

P
u

ri
ty

Number of clusters

Clustering purity with time over different number of clusters

Figure 5.3: k-means performance evaluation: Purity with Time where the bubble
size is the relative clustering time

Lastly, to compare purity with regards to time, a bubble chart is presented in
Figure 5.3. This depicts the purity in form of bubbles, where the size of each
bubble is the relative clustering time for each of the achieved purities.

35

CHAPTER 5. EXPERIMENTS

5.2.4 Conclusion

These results clearly indicate that there is indeed a need to increase the number
of clusters for the k-means algorithm, to a point well beyond that of the number
of assumed classes to cluster. This is assumed to be because of the difference
of file contents within each type, effectively creating sub-classes. For the data
set considered in these experiments, the achieved purity converges from about 40
clusters and onwards. In terms of clustering time, this is also an acceptable num-
ber of clusters. Therefore, the k-means algorithm is considered for the proposed
solution with a configuration set to 40 clusters.

36

CHAPTER 5. EXPERIMENTS

5.3 Classification

Multiple classification algorithms are measured in terms of the number of cor-
rectly assigned fragments from all possible fragments. They are performed on the
data set with all 7000 fragments for training and 3000 fragments for classification
per file type. For these experiments, the time of learning is not taken into con-
sideration. This due to the principle that the process of training is something to
happen once within a domain, while the actual classification happens for every
new instance of unknown data, which can be assumed to happen more often than
training.

The best performing algorithm for these experiments is chosen as the classifier
of choice for the following experiments, evaluating the proposed solution.

5.3.1 Support Vector Machine

The Support Vector Machine classifier is considered for experimentation in this
thesis due to it being a popular choice within the field of general classification and
file type identification.

For this classifier, the LibSVM library is used. Its settings are set to that of
previous work [14]2, which proved to work well when classifying byte frequency
distributions. This means that the SVM classifier is a C-SVC with a kernel type
set to Radial Basis Function. The parameters are set as following:

Gamma 0.0001

Cost 8.0

Epsilon 0.001

The SVM classifier performed with a classification accuracy of 97.95%.
2Reference to self

37

CHAPTER 5. EXPERIMENTS

5.3.2 Naı̈ve Bayes

The naı̈ve Bayes classifier is based on Bayes’ Theorem with the naı̈ve assumption
of independence between features for a class. Because of this, this classifier is
considered simple, but effective is some areas.

The naı̈ve Bayes classifier is the least accurate algorithm with an accuracy of
83.09%.

5.3.3 Decision Tree

Decision trees are based on basic tree structures, where traversal determines the
predictive outcome through a series of probabilities given by the branches of the
tree.

The Decision Tree implementation in this experiment is done using J48, which
is an open source Java implementation of the C4.5 decision tree algorithm. The
parameters for this implementation is set as following (based on previous work[14]):

Confidence 0.25

Minimum Instances 2

Number of Folds 3

The classification accuracy is by the Decision Tree given as 94.12%.

5.3.4 Multilayer Perceptron

The Multilayer Perceptron (MLP) algorithm is based on artificial neural networks,
which are based on the principles of the biological brain for prediction.

The MLP classifier has its attributes set as following (based on previous work[14]):

38

CHAPTER 5. EXPERIMENTS

• Learning Rate 0.3

• Momentum 0.2

• Number of Epochs 500

• Error Threshold 20

Its accuracy is measured to 96.07%.

5.3.5 Conclusion

Algorithm Accuracy
Support Vector Machine 97.95%

Naı̈ve Bayes 83.09%
Decision Tree 94.12%

Multilayer Perceptron 96.07%

As given by these results, the Support Vector Machine classifier clearly out-
performs its competition with a classification accuracy of 97.95%. Hence, SVM
will be the classifier of choice for the following experiments.

39

CHAPTER 5. EXPERIMENTS

5.4 Proposed Solution

An experiment is first performed to establish a comparison between the perfor-
mance of a traditional classification approach to that of the proposed solution.
This is done by measuring both time and classification accuracy on multiple sizes
of data sets. This yields a performance evaluation in terms of speed and accu-
racy, as well as scalability. Secondly, an experiment is performed to examine the
performance of the unsupervised learning technique. Lastly, the possibility of in-
troducing a new file type to the unsupervised learning technique is established and
presented in the last experiment.

5.4.1 Experiment 1 - Speed, Accuracy and Scalability

The SVM classifier is trained with 7000 fragments from the data set. Then, classi-
fication is performed on data sets of 30, 150, 300, 750, 1500 and 3000 fragments.

The results yielded by the classifier are given by Table 5.2.

Table 5.2: Experiment 1 - Classification Accuracy and Time

Test files Correctly assigned files Time in seconds
30 97.22% 0.93

150 98.78% 4.17
300 98.78% 8.35
750 98.58% 20.74

1500 98.47% 41.42
3000 97.95% 83.47

As seen, the classification accuracies are consistently high no matter how
many fragments are classified. This is expected due to the classifier being trained
with 7000 fragments through all classifications.

Next, the proposed solution is measured on the same test data which was clas-
sified, also measuring accuracy and speed. These results are given by Table 5.3.

40

CHAPTER 5. EXPERIMENTS

Table 5.3: Experiment 1 - Proposed Solution Accuracy and Time

Test files Correctly assigned files Time in seconds
30 73.33% 0.02

150 85.78% 0.10
300 86.78% 0.21
750 87.02% 0.52

1500 87.03% 1.03
3000 85.97% 2.06

Although the accuracy of the proposed solution is lower in all cases compared
to that of only classification, the speed of which the fragments are labelled is
significantly increased.

These results provide evidence towards the assumption that clustering is faster
than classification, at least for the case of a k-means clustering algorithm and an
SVM classifier.

Hence, for the current clustering and classification algorithms, the first re-
search question has been answered; the proposed solution is faster than traditional
classification approaches. However, since the accuracy of the proposed solution
is lower than that of only a classifier, the practical usage of the proposed solution
is very situational. In a scenario where there is emphasis on speed, the proposed
solution would be considered a better choice compared to an SVM classifier. An
example of a scenario with emphasis on speed is the monitoring of network traffic
where it is important to read and label every package as they pass by.

41

CHAPTER 5. EXPERIMENTS

5.4.2 Experiment 2 - Unsupervised Continuous Learning

Expanding the proposed solution, an experiment is performed to assess the possi-
bility of an unsupervised continuous learning technique.

For this experiment, the test data is split into smaller sets of 1000 fragments.
The order of the fragments are first randomized to eliminate the possibility of
contiguity of file types. This is done with 3000 fragments per type, yielding a
total of 18000 fragments, i.e 18 subsets of 1000 fragments are created.

To establish a baseline comparison, all of these subsets are first normally iden-
tified using the proposed solution. The identification accuracies are given by Table
5.4.

Table 5.4: Normal identification of subsets

Iteration Accuracy
0 86,6 %
1 84,5 %
2 86,5 %
3 85,8 %
4 86,5 %
5 85,3 %
6 86,7 %
7 84,8 %
8 84,5 %
9 86,9 %

10 85,3 %
11 85,8 %
12 86,8 %
13 86,8 %
14 87,7 %
15 86,2 %
16 85,1 %
17 85,6 %

As seen, these results are expectedly similar to those of Experiment 1.

42

CHAPTER 5. EXPERIMENTS

To achieve unsupervised continuous learning, these subsets are added to the
existing clusters as they are identified. This is done by iteratively recalculating
the centroids of each cluster with the new data, purposely creating a more accurate
representation of each labelled cluster. This is done utilizing the process described
in subsection 4.3.1. The results achieved from this process is given by Table 5.5.

Table 5.5: Identification of subsets by Unsupervised Continuous Learning

Iteration Accuracy
0 86,6 %
1 88,2 %
2 88,3 %
3 90,4 %
4 89,1 %
5 87,6 %
6 87,9 %
7 88,8 %
8 87,2 %
9 89,9 %

10 88,7 %
11 87,8 %
12 89,5 %
13 88,7 %
14 90,4 %
15 90,2 %
16 87,3 %
17 87,9 %

The method of unsupervised continuous learning clearly achieves better re-
sults than that of normal identification of each of the subsets. This is also por-
trayed in Figure 5.4 as a comparison. Purity is also included to show the maximum
attainable identification accuracy. Purity remains more or less constant between
the comparisons. One important thing to note here, is that identification accuracy
will never increase beyond that of the purity of the clustering algorithm. This is
because purity is a measurement of the occurrence of the most populated class

43

CHAPTER 5. EXPERIMENTS

within a cluster. This in turn means that if a cluster is labelled equal to its most
populated class, each point of that class is correctly labelled, yielding the highest
possible purity.

80,0 %

82,0 %

84,0 %

86,0 %

88,0 %

90,0 %

92,0 %

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A
cc

u
ra

cy

Iteration

Identification accuracy by Unsupervised Continuous Learning

Correctly identified files (normal) Purity Correctly identified files (continuous)

Figure 5.4: Experiment 2 - Unsupervised Continuous Learning

As seen by this experiment, introducing a method of unsupervised continuous
learning increases the identification accuracy. However, the purity of the clusters
are a limiting factor to the highest achievable identification accuracy. This means
that if another clustering algorithm is capable of achieving a higher purity based
on the features considered in this thesis, the overall results may increase beyond
that which is shown here. Hence, the possibility of an unsupervised continuous
learning technique is theoretically shown here, but the consideration of other clus-
tering algorithms are out of scope from this thesis.

44

CHAPTER 5. EXPERIMENTS

5.4.3 Experiment 3 - Adaptive Learning

Extending the technique of unsupervised continuous learning, this experiment in-
vestigates the possibility of introducing a new class to the clusters by continuously
building the clusters.

To test this technique, a new file type is introduced; PDF. A data set of 3000
fragments are gathered and created, then split into subsets of 100 files, yielding a
total of 30 subsets.

The classifier is learned using the six previously mentioned file types, as well
as a separate dataset containing PDF files. The clusters contain only knowledge
of the six original file types, as is done in Experiment 1.

The subsets containing PDF files are then clustered iteratively while continu-
ously learning with each subset, i.e the centroids of the clusters are again classi-
fied, labelling them. Figure 5.5 portrays the results achieved from this experiment.

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Fr
ag

m
en

ts

Iteration

Correctly identified fragments by adapting

Figure 5.5: Experiment 3 - Adaptive Learning

45

CHAPTER 5. EXPERIMENTS

As seen, none of the fragments from the first subset is correctly identified.
This is because there exist no labelled cluster for the PDF file type. For the next
subset, some of the fragments are indeed identified. This is because the classifier
now has labelled PDF-containing clusters as PDF.

The results vary greatly when few fragments have been clustered, while sta-
bility is achieved the more fragments are clustered. This is because a more repre-
sentative model of the PDF class is generated with more fragments.

Although the results are not great, it has been theoretically shown that the
proposed solution is capable of adapting to new file types. This is of course limited
to the fact that the classifier needs to know of the file types to be able to label new
clusters, but this may be the case in a realistic scenario.

5.4.4 Discussion of Results

The first experiment investigated the performance of the proposed solution for file
type identification. The results provided evidence toward it being faster, though
less accurate, than traditional supervised learning approaches. This means that
in cases where speed is of the essence, and accuracy is of less importance, the
proposed solution is a viable choice for file type identification in digital forensics.

The second experiment extended the proposed solution to a technique of un-
supervised continuous learning, where the proposed solution continuously learns
from data. This increased the identification accuracy slightly with little impact on
speed, due to the addition of points to the clusters being a non-costly operation.

Lastly, the third experiment extended the unsupervised continuous learning
technique to an adaptive learning technique that continuously learns and adapts
to the environment of which it operates. This experiment was performed by in-
troducing a new file type to the proposed solution to see whether or not it was
capable of adapting to a completely new type of data. The results gave positive

46

CHAPTER 5. EXPERIMENTS

results, meaning that it was in fact able to learn and identify the new type of data,
effectively proving its adaptability.

These results provide evidence towards the proposed solution being a viable
choice for file type identification in digital forensics. Although the identification
accuracy is below that of traditional supervised learning techniques, the proposed
solution provides advantages such as speed, continuous learning and adaptability
to its environment.

47

Chapter 6

Conclusion and further work

This chapter presents the summary of this thesis, discusses and concludes the
results, and presents possible further work.

6.1 Summary of Results

The experimentation of the proposed solution presented in this thesis started by
investigating suitable clustering and classification algorithms. This resulted in the
choice to use a k-means clustering algorithm. This was because of the aforemen-
tioned similarity between that of text and binary representations. As a classifica-
tion algorithm, an SVM classifier was chosen based on its identification accuracy
compared to that of other relevant algorithms. As features for these algorithms,
the byte frequency distributions of file fragments were chosen.

The first experiment utilized these algorithms to test the proposed solution,
establishing its performance in terms of speed, accuracy and scalability compared
to traditional classification approaches. The proposed solution achieved a greater
speed that traditional approaches. However, this impacted the total identification

48

CHAPTER 6. CONCLUSION AND FURTHER WORK

accuracy. When classification was performed using an SVM classifier on 3000
files, the elapsed classification time was 83.47 seconds and its identification accu-
racy was 97.95%. The proposed solution had a running time of 2.06 seconds, but
its identification accuracy was 85.97%, yielding less accurate results at a faster
speed. The practical usage for this is therefore considered situational. In cases
where speed is more important than near-perfect identification accuracy, the pro-
posed solution may prove a valuable choice. As for the scalability, it is seen that
both methods scale linearly in terms of time when the number of files increases.

The second experiment investigated how the proposed solution performed
with the proposed technique of unsupervised continuous learning. The test data
set used for Experiment 1 were split into smaller subsets, containing 1000 files
each. This resulted in 18 iterations where the proposed solution continuously
learned based on previous iterations. Compared to separate identifications of the
subsets, the continuous learning technique slightly increased the identification ac-
curacy as it learned. The most significant increase happened at iteration 4, where
standard identification resulted in an identification accuracy of 85.8%, while by
reinforcing, an identification accuracy of 90.4% was achieved.

The third and last experiment established the possibility of adaptively learning
to identify new file types as they are introduced. 3000 fragments of a new file
type was introduced and split into subsets of 100 files each, creating 30 subsets.
30 iterations of this experiment was therefore performed, learning through each
iteration. When identifying and learning through the subsets, the identification ac-
curacy gradually increased, stabilizing around 70% identification accuracy. This
experiment proved in theory that the proposed solution is capable of adapting to
new file types. However, this is limited to the fact that the classifier need to be
learned with the new file types in order to be able to classify the centroids of the
clusters these new fragments are inserted.

49

CHAPTER 6. CONCLUSION AND FURTHER WORK

6.2 Conclusion

The work in this thesis started by aiming to improve on the speed of file type iden-
tification within digital forensics. The motivation for doing this was that digital
forensics teams are often presented with huge amounts of data, resulting in a very
long identification time. This may not always be practically feasible, as evidence
may need to be found within a limited time frame.

As seen with the first experiment, an increase in speed of file type identifi-
cation was indeed achieved, although this resulted in a decrease of total identifi-
cation accuracy. These results are limited to the considered algorithms, both for
clustering and classification, within this thesis.

The proposed solution was extended to a method of unsupervised continuous
learning. This resulted in it successfully continuously learning while identifying,
both with test data and the introduction of a new file type. These experiments pro-
vide evidence towards the proposed solution being able to adapt the environment
of which it operates. This is however limited to the fact that the classifier needs to
know of all possible file types to be able to label the clusters to that of which the
new data is assigned.

This concludes the proposed solution and this thesis successfully. The research
questions were indeed answered, and the results provide evidence toward it being
a viable choice in some cases of file type identification within the field of digital
forensics.

6.3 Further Work

As previously mentioned, the results of this thesis are limited to the chosen al-
gorithms for clustering and classification. A different choice of algorithms may
result in different results. It is therefore proposed as further work to experiment

50

CHAPTER 6. CONCLUSION AND FURTHER WORK

with different combinations of clustering and classification algorithms to poten-
tially increase the overall results achieved herein.

51

Bibliography

[1] Irfan Ahmed et al. “Content-based File-type Identification Using Cosine
Similarity and a Divide-and-Conquer Approach”. In: IETE Technical Re-

view 27.6 (Nov. 2010), pp. 465–477. ISSN: 0256-4602. DOI: 10.4103/
02564602.2010.10876780. URL: http://www.tandfonline.
com/doi/abs/10.4103/02564602.2010.10876780 (visited on
03/17/2015).

[2] Irfan Ahmed et al. “Fast Content-Based File Type Identification”. en. In:
Advances in Digital Forensics VII. Ed. by Gilbert Peterson and Sujeet Shenoi.
IFIP Advances in Information and Communication Technology 361. Springer
Berlin Heidelberg, Jan. 2011, pp. 65–75. ISBN: 978-3-642-24211-3, 978-3-
642-24212-0. URL: http://link.springer.com/chapter/10.
1007/978-3-642-24212-0_5 (visited on 10/27/2014).

[3] Irfan Ahmed et al. “Fast File-type Identification”. In: Proceedings of the

2010 ACM Symposium on Applied Computing. SAC ’10. New York, NY,
USA: ACM, 2010, pp. 1601–1602. ISBN: 978-1-60558-639-7. DOI: 10.
1145/1774088.1774431. URL: http://doi.acm.org/10.
1145/1774088.1774431 (visited on 10/27/2014).

[4] Ramiz M. Aliguliyev. “Performance evaluation of density-based clustering
methods”. In: Information Sciences 179.20 (Sept. 2009), pp. 3583–3602.
ISSN: 0020-0255. DOI: 10 . 1016 / j . ins . 2009 . 06 . 012. URL:

52

http://dx.doi.org/10.4103/02564602.2010.10876780
http://dx.doi.org/10.4103/02564602.2010.10876780
http://www.tandfonline.com/doi/abs/10.4103/02564602.2010.10876780
http://www.tandfonline.com/doi/abs/10.4103/02564602.2010.10876780
http://link.springer.com/chapter/10.1007/978-3-642-24212-0_5
http://link.springer.com/chapter/10.1007/978-3-642-24212-0_5
http://dx.doi.org/10.1145/1774088.1774431
http://dx.doi.org/10.1145/1774088.1774431
http://doi.acm.org/10.1145/1774088.1774431
http://doi.acm.org/10.1145/1774088.1774431
http://dx.doi.org/10.1016/j.ins.2009.06.012

BIBLIOGRAPHY

http://www.sciencedirect.com/science/article/pii/

S0020025509002564 (visited on 02/26/2015).

[5] M.C. Amirani, M. Toorani, and A. Beheshti. “A new approach to content-
based file type detection”. In: IEEE Symposium on Computers and Commu-

nications, 2008. ISCC 2008. July 2008, pp. 1103–1108. DOI: 10.1109/
ISCC.2008.4625611.

[6] Mehdi Chehel Amirani, Mohsen Toorani, and Sara Mihandoost. “Feature-
based Type Identification of File Fragments”. en. In: Security and Com-

munication Networks 6.1 (Jan. 2013), pp. 115–128. ISSN: 1939-0122. DOI:
10.1002/sec.553. URL: http://onlinelibrary.wiley.
com/doi/10.1002/sec.553/abstract (visited on 10/24/2014).

[7] N.L. Beebe et al. “Sceadan: Using Concatenated N-Gram Vectors for Im-
proved File and Data Type Classification”. In: IEEE Transactions on In-

formation Forensics and Security 8.9 (Sept. 2013), pp. 1519–1530. ISSN:
1556-6013. DOI: 10.1109/TIFS.2013.2274728.

[8] William C. Calhoun and Drue Coles. “Predicting the types of file frag-
ments”. In: Digital Investigation. The Proceedings of the Eighth Annual
DFRWS Conference 5, Supplement (Sept. 2008), S14–S20. ISSN: 1742-
2876. DOI: 10.1016/j.diin.2008.05.005. URL: http://www.
sciencedirect.com/science/article/pii/S1742287608000273

(visited on 10/24/2014).

[9] Ding Cao et al. “Feature selection based file type identification algorithm”.
In: 2010 IEEE International Conference on Intelligent Computing and In-

telligent Systems (ICIS). Vol. 3. Oct. 2010, pp. 58–62. DOI: 10.1109/
ICICISYS.2010.5658559.

[10] Brian Carrier. The Sleuth Kit (TSK) & Autopsy: Open Source Digital Foren-

sics Tools. URL: http://www.sleuthkit.org/ (visited on 11/05/2014).

53

http://www.sciencedirect.com/science/article/pii/S0020025509002564
http://www.sciencedirect.com/science/article/pii/S0020025509002564
http://dx.doi.org/10.1109/ISCC.2008.4625611
http://dx.doi.org/10.1109/ISCC.2008.4625611
http://dx.doi.org/10.1002/sec.553
http://onlinelibrary.wiley.com/doi/10.1002/sec.553/abstract
http://onlinelibrary.wiley.com/doi/10.1002/sec.553/abstract
http://dx.doi.org/10.1109/TIFS.2013.2274728
http://dx.doi.org/10.1016/j.diin.2008.05.005
http://www.sciencedirect.com/science/article/pii/S1742287608000273
http://www.sciencedirect.com/science/article/pii/S1742287608000273
http://dx.doi.org/10.1109/ICICISYS.2010.5658559
http://dx.doi.org/10.1109/ICICISYS.2010.5658559
http://www.sleuthkit.org/

BIBLIOGRAPHY

[11] Adam Coates, Andrew Y. Ng, and Honglak Lee. “An analysis of single-
layer networks in unsupervised feature learning”. In: International Con-

ference on Artificial Intelligence and Statistics. 2011, pp. 215–223. URL:
http://machinelearning.wustl.edu/mlpapers/paper_

files/AISTATS2011_CoatesNL11.pdf (visited on 03/20/2015).

[12] Inderjit S. Dhillon, James Fan, and Yuqiang Guan. “Efficient Clustering of
Very Large Document Collections”. en. In: Data Mining for Scientific and

Engineering Applications. Ed. by Robert L. Grossman et al. Massive Com-
puting 2. Springer US, 2001, pp. 357–381. ISBN: 978-1-4020-0114-7, 978-
1-4615-1733-7. URL: http://link.springer.com/chapter/
10.1007/978-1-4615-1733-7_20 (visited on 03/16/2015).

[13] J.G. Dunham, Ming-Tan Sun, and J.C.R. Tseng. “Classifying file type of
stream ciphers in depth using neural networks”. In: The 3rd ACS/IEEE

International Conference on Computer Systems and Applications, 2005.
2005, pp. 97–. DOI: 10.1109/AICCSA.2005.1387088.

[14] John Daniel Evensen and Stian Guttormsen. “File Type Identification: A
Standardized Approach”.

[15] John Daniel Evensen, Sindre Lindahl, and Morten Goodwin. “File-type De-
tection Using Naı̈ve Bayes and n-gram Analysis”. In: Norsk informasjon-

ssikkerhetskonferanse (NISK) 7.1 (2014). URL: http://ojs.bibsys.
no/index.php/NISK/article/view/54 (visited on 12/11/2014).

[16] B. S. Everitt, S. Landau, and M. Leese. “Cluster Analysis Arnold”. In: A

member of the Hodder Headline Group, London (2001).

[17] Simson L. Garfinkel. “Digital forensics research: The next 10 years”. In:
Digital Investigation. The Proceedings of the Tenth Annual DFRWS Con-
ference 7, Supplement (Aug. 2010), S64–S73. ISSN: 1742-2876. DOI: 10.
1016/j.diin.2010.05.009. URL: http://www.sciencedirect.
com/science/article/pii/S1742287610000368 (visited on
10/27/2014).

54

http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_CoatesNL11.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_CoatesNL11.pdf
http://link.springer.com/chapter/10.1007/978-1-4615-1733-7_20
http://link.springer.com/chapter/10.1007/978-1-4615-1733-7_20
http://dx.doi.org/10.1109/AICCSA.2005.1387088
http://ojs.bibsys.no/index.php/NISK/article/view/54
http://ojs.bibsys.no/index.php/NISK/article/view/54
http://dx.doi.org/10.1016/j.diin.2010.05.009
http://dx.doi.org/10.1016/j.diin.2010.05.009
http://www.sciencedirect.com/science/article/pii/S1742287610000368
http://www.sciencedirect.com/science/article/pii/S1742287610000368

BIBLIOGRAPHY

[18] Johannes Grabmeier and Andreas Rudolph. “Techniques of Cluster Algo-
rithms in Data Mining”. en. In: Data Mining and Knowledge Discovery

6.4 (Oct. 2002), pp. 303–360. ISSN: 1384-5810, 1573-756X. DOI: 10.
1023/A:1016308404627. URL: http://link.springer.com/
article/10.1023/A:1016308404627 (visited on 03/16/2015).

[19] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining, Southeast Asia

Edition: Concepts and Techniques. en. Morgan Kaufmann, Apr. 2006. ISBN:
9780080475585.

[20] John A. Hartigan. “Clustering algorithms”. In: (1975). URL: http://
cds.cern.ch/record/105051 (visited on 03/16/2015).

[21] A. K. Jain, M. N. Murty, and P. J. Flynn. “Data Clustering: A Review”.
In: ACM Comput. Surv. 31.3 (Sept. 1999), pp. 264–323. ISSN: 0360-0300.
DOI: 10.1145/331499.331504. URL: http://doi.acm.org/
10.1145/331499.331504 (visited on 03/16/2015).

[22] Liping Jing et al. “Subspace Clustering of Text Documents with Feature
Weighting K-Means Algorithm”. en. In: Advances in Knowledge Discovery

and Data Mining. Ed. by Tu Bao Ho, David Cheung, and Huan Liu. Lec-
ture Notes in Computer Science 3518. Springer Berlin Heidelberg, 2005,
pp. 802–812. ISBN: 978-3-540-26076-9, 978-3-540-31935-1. URL: http:
//link.springer.com/chapter/10.1007/11430919_94

(visited on 03/16/2015).

[23] M. Karresand and N. Shahmehri. “File Type Identification of Data Frag-
ments by Their Binary Structure”. In: 2006 IEEE Information Assurance

Workshop. June 2006, pp. 140–147. DOI: 10.1109/IAW.2006.1652088.

[24] Martin Karresand and Nahid Shahmehri. “Oscar — File Type Identification
of Binary Data in Disk Clusters and RAM Pages”. en. In: Security and Pri-

vacy in Dynamic Environments. Ed. by Simone Fischer-Hübner et al. IFIP
International Federation for Information Processing 201. Springer US, Jan.
2006, pp. 413–424. ISBN: 978-0-387-33405-9, 978-0-387-33406-6. URL:

55

http://dx.doi.org/10.1023/A:1016308404627
http://dx.doi.org/10.1023/A:1016308404627
http://link.springer.com/article/10.1023/A:1016308404627
http://link.springer.com/article/10.1023/A:1016308404627
http://cds.cern.ch/record/105051
http://cds.cern.ch/record/105051
http://dx.doi.org/10.1145/331499.331504
http://doi.acm.org/10.1145/331499.331504
http://doi.acm.org/10.1145/331499.331504
http://link.springer.com/chapter/10.1007/11430919_94
http://link.springer.com/chapter/10.1007/11430919_94
http://dx.doi.org/10.1109/IAW.2006.1652088

BIBLIOGRAPHY

http://link.springer.com/chapter/10.1007/0-387-

33406-8_35 (visited on 10/27/2014).

[25] Wei-Jen Li et al. “Fileprints: identifying file types by n-gram analysis”.
In: Information Assurance Workshop, 2005. IAW ’05. Proceedings from the

Sixth Annual IEEE SMC. June 2005, pp. 64–71. DOI: 10.1109/IAW.
2005.1495935.

[26] M. McDaniel and M.H. Heydari. “Content based file type detection algo-
rithms”. In: Proceedings of the 36th Annual Hawaii International Con-

ference on System Sciences, 2003. Jan. 2003, pages. DOI: 10.1109/
HICSS.2003.1174905.

[27] S.J. Moody and R.F. Erbacher. “SADI - Statistical Analysis for Data Type
Identification”. In: Third International Workshop on Systematic Approaches

to Digital Forensic Engineering, 2008. SADFE ’08. May 2008, pp. 41–54.
DOI: 10.1109/SADFE.2008.13.

[28] J. M Peña, J. A Lozano, and P Larrañaga. “An empirical comparison of
four initialization methods for the K-Means algorithm”. In: Pattern Recog-

nition Letters 20.10 (Oct. 1999), pp. 1027–1040. ISSN: 0167-8655. DOI:
10.1016/S0167- 8655(99)00069- 0. URL: http://www.
sciencedirect.com/science/article/pii/S0167865599000690

(visited on 02/12/2015).

[29] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. “Fail-
ure Trends in a Large Disk Drive Population.” In: FAST. Vol. 7. 2007,
pp. 17–23. URL: http://static.usenix.org/event/fast07/
tech/full_papers/pinheiro/pinheiro_html/ (visited on
11/19/2014).

[30] Darren Quick and Kim-Kwang Raymond Choo. “Impacts of increasing vol-
ume of digital forensic data: A survey and future research challenges”. In:
Digital Investigation (Dec. 2014). ISSN: 1742-2876. DOI: 10.1016/j.
diin.2014.09.002. URL: http://www.sciencedirect.

56

http://link.springer.com/chapter/10.1007/0-387-33406-8_35
http://link.springer.com/chapter/10.1007/0-387-33406-8_35
http://dx.doi.org/10.1109/IAW.2005.1495935
http://dx.doi.org/10.1109/IAW.2005.1495935
http://dx.doi.org/10.1109/HICSS.2003.1174905
http://dx.doi.org/10.1109/HICSS.2003.1174905
http://dx.doi.org/10.1109/SADFE.2008.13
http://dx.doi.org/10.1016/S0167-8655(99)00069-0
http://www.sciencedirect.com/science/article/pii/S0167865599000690
http://www.sciencedirect.com/science/article/pii/S0167865599000690
http://static.usenix.org/event/fast07/tech/full_papers/pinheiro/pinheiro_html/
http://static.usenix.org/event/fast07/tech/full_papers/pinheiro/pinheiro_html/
http://dx.doi.org/10.1016/j.diin.2014.09.002
http://dx.doi.org/10.1016/j.diin.2014.09.002
http://www.sciencedirect.com/science/article/pii/S1742287614001066
http://www.sciencedirect.com/science/article/pii/S1742287614001066
http://www.sciencedirect.com/science/article/pii/S1742287614001066

BIBLIOGRAPHY

com/science/article/pii/S1742287614001066 (visited on
11/03/2014).

[31] Sriram Raghavan. “Digital forensic research: current state of the art”. en. In:
CSI Transactions on ICT 1.1 (Mar. 2013), pp. 91–114. ISSN: 2277-9078,
2277-9086. DOI: 10.1007/s40012-012-0008-7. URL: http:
//link.springer.com/article/10.1007/s40012-012-

0008-7 (visited on 11/03/2014).

[32] Golden G. Richard III and Vassil Roussev. “Scalpel: A Frugal, High Per-
formance File Carver”. In: DFRWS (2005). URL: http://www.dfrws.
org/2005/proceedings/richard_scalpel.pdf (visited on
10/24/2014).

[33] M. Steinbach, G. Karypis, and V. Kumar. “A Comparison of Document
Clustering Techniques”. In: (). URL: http://www.cs.sfu.ca/

˜wangk/894report/chen1.pdf (visited on 03/16/2015).

[34] Rui Xu and II Wunsch D. “Survey of clustering algorithms”. In: IEEE

Transactions on Neural Networks 16.3 (May 2005), pp. 645–678. ISSN:
1045-9227. DOI: 10.1109/TNN.2005.845141.

[35] Like Zhang and Gregory B. White. “An Approach to Detect Executable
Content for Anomaly Based Network Intrusion Detection.” In: IPDPS. 2007,
pp. 1–8. URL: http://www.researchgate.net/publication/
220952472_An_Approach_to_Detect_Executable_Content_

for _ Anomaly _ Based _ Network _ Intrusion _ Detection /

file/e0b4952220bc77f49f.pdf (visited on 10/27/2014).

57

http://www.sciencedirect.com/science/article/pii/S1742287614001066
http://www.sciencedirect.com/science/article/pii/S1742287614001066
http://www.sciencedirect.com/science/article/pii/S1742287614001066
http://dx.doi.org/10.1007/s40012-012-0008-7
http://link.springer.com/article/10.1007/s40012-012-0008-7
http://link.springer.com/article/10.1007/s40012-012-0008-7
http://link.springer.com/article/10.1007/s40012-012-0008-7
http://www.dfrws.org/2005/proceedings/richard_scalpel.pdf
http://www.dfrws.org/2005/proceedings/richard_scalpel.pdf
http://www.cs.sfu.ca/~wangk/894report/chen1.pdf
http://www.cs.sfu.ca/~wangk/894report/chen1.pdf
http://dx.doi.org/10.1109/TNN.2005.845141
http://www.researchgate.net/publication/220952472_An_Approach_to_Detect_Executable_Content_for_Anomaly_Based_Network_Intrusion_Detection/file/e0b4952220bc77f49f.pdf
http://www.researchgate.net/publication/220952472_An_Approach_to_Detect_Executable_Content_for_Anomaly_Based_Network_Intrusion_Detection/file/e0b4952220bc77f49f.pdf
http://www.researchgate.net/publication/220952472_An_Approach_to_Detect_Executable_Content_for_Anomaly_Based_Network_Intrusion_Detection/file/e0b4952220bc77f49f.pdf
http://www.researchgate.net/publication/220952472_An_Approach_to_Detect_Executable_Content_for_Anomaly_Based_Network_Intrusion_Detection/file/e0b4952220bc77f49f.pdf

	Contents
	List of Figures
	List of Tables
	Introduction
	Research Problem
	Measurements
	Limitations

	Contributions
	Thesis outline

	Background
	Digital Forensics
	Files and File type identification

	Clustering

	Related Work
	Digital Forensics
	Clustering

	Proposed Solution
	Basic Classification
	Basic Clustering
	Proposed solution
	Unsupervised Continuous Learning
	Adaptive Learning
	Features
	Clustering Algorithm
	Advantages

	Experiments
	Data set
	Clustering
	k-means: Constant Number of Clusters
	k-means: Variable Number of Clusters
	k-means: Clustering Time
	Conclusion

	Classification
	Support Vector Machine
	Naïve Bayes
	Decision Tree
	Multilayer Perceptron
	Conclusion

	Proposed Solution
	Experiment 1 - Speed, Accuracy and Scalability
	Experiment 2 - Unsupervised Continuous Learning
	Experiment 3 - Adaptive Learning
	Discussion of Results

	Conclusion and further work
	Summary of Results
	Conclusion
	Further Work

