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Sammendrag

Den produseres stadig mer data fra den virkelige verden, inkludert kundeforbruks-
data, sosiale nettverksaktiviteter, økonomiske data, temperaturdata fra forskjellige
regioner og målinger av operatørpaneler. Dette resulterer i raskt voksende data-
mengder. Å samle, overføre, lagre, hente og behandle disse enorme datavolumene
er utfordrende på grunn av behovet for høye beregningsressurser og datalagringska-
pasitet. Men den viktigste oppgaven, og grunnen til at dataene ble samlet inn i
utgangspunktet, er dataanalyse: Finne korrelasjoner, mønstre og sammenhenger,
aggregere til høyere nivåer, og til slutt trekke ut nyttig informasjon og kunnskap.
Nylig har rammeverket Graph Signal Processing (GSP) forenklet analysen av store
datavolumer ved bruk av grafteori, der grafhjørner representerer komponentene i
datanettverk av interesse. Dermed er forskjellige applikasjoner involvert i grafer
som fanger den underliggende topologien mellom forskjellige enheter i nettverket.
De fleste forskningsprosjektene i dette rammeverket prøver å manipulere de ”klas-
siske” signalbehandlingskonseptene og lage en ”grafisk” versjon ved å migrere fra
en enhet til et nettverket av enheter. Resultatene er lovende, men det er fortsatt
noen plasser for dette forskningsrammeverket for mer realistiske scenarier og app-
likasjoner.

Et av de utfordrende områdene i rammeverket for signalbehandling er å tilpasse
en algoritme til nye data. Disse nye dataene kan være tidsprøver over en gitt tid eller
nylig oppdaterte sensorvariabler på grunn av endringer i interne nettverksforhold.
Denne Ph.D. avhandlingen undersøker dette emnet i GSP-domenet og løser prob-
lemet med adaptiv grafsignalbehandling. Som et resultat kan vi bruke GSP for et
bredere spekter av applikasjoner, for eksempel ikke-stasjonære prosesser. Avhan-
dlingen bruker tre perspektiver: 1) graftopologilæringen under ulike forhold, 2)
adaptiv grafsignalrepresentasjon og gjenoppretting når sanntids grafprosesser er
gitt, og 3) grafsignalrepresentasjonen i et nytt domene ved å bruke transformativ
læring. Å være tilpasningsdyktig til nye data krever at løsningen har noen ret-
ningslinjer angående støy og avvik. Vi bruker realistiske antakelser, f.eks. signal-
glattheten over graftopologien, sparsomhet av dataavvik, sparsomheten til grafen,
og støymodellen. Som et biprodukt estimerer vi også selve grafsignalet fra de
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støyende målingene. Med andre ord, for å representere og gjenopprette grafsignalet
fra forskjellige grafprosesser, undersøker denne avhandlingen dataadaptive algorit-
mer for å re-estimere graftopologien når en ny observasjon er tilgjengelig. Disse
tilnærmingene er i stand til å forringe målingene og gjenopprette grafsignalene i
støyende omgivelser. Hovedtrekk til de foreslåtte metodene er den lave beregn-
ingskompleksiteten, noe som fører til mulighet for nettbasert implementering.

For å representere grafsignalene i et transformdomene fokuserer denne avhan-
dlingen på faktoranalysemodellen for Gaussian Markov random field (GMRF) pros-
esser og ordboklæringen for den generelle signalmodellen. Faktoranalysen repre-
senterer grafsignalene på grunnlag av egenvektorene til Laplace grafen. Det betyr
at vi kan koble grafsignalene direkte til den underliggende topologien. Ved å bruke
ordboklæringskonseptene, transformeres graftopologien og grafsignalene til ord-
bokdomenet og gir en ny fordelaktig representasjon for spesifikke bruksområder,
som temperaturflyt i ulike regioner.
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Abstract

The ever increasing rate of acquisition of real-world data sets including customer
consumption data, social networks activities, financial data, temperature data from
different regions, and brain-computer interface measurements results in rapidly
growing data volumes. Collecting, transmitting, storing, retrieving, and process-
ing these huge data volumes are challenging because of the need for high compu-
tational resources and data storage capacity. But the most important task, and the
reason why the data was collected in the first place, is data analysis: Finding corre-
lations, patterns and connections, aggregating to higher levels, and finally extracting
useful information and knowledge. Recently, the Graph Signal Processing (GSP)
framework has simplified the analysis of large data volumes by the use of graph
theory, where graph vertices represent the components of the data network of inter-
est. Thus, different applications are involved with graphs capturing the underlying
topology among different entities of the network. Most of the research projects
in this framework try to manipulate the ”classical” signal processing concepts and
make a ”graphical” version by migrating from one sole entity to the network of en-
tities. The results were promising but there are still some spaces for this research
framework for more real-world scenarios and applications.

One of the challenging areas in the signal processing framework is to adapt an
algorithm to new upcoming data. This new data can be time samples that are pro-
vided over time or recently updated sensor variables due to some changes in internal
network conditions. In this Ph.D. thesis, we investigate this topic in the GSP domain
and tackle the problem of adaptive graph signal processing. As a result, we can ap-
ply the GSP for a broader range of applications, like non-stationary processes. To
aim it, we approach these three perspectives: 1) the graph topology learning un-
der different conditions, 2) the adaptive graph signal representation and recovery
when real-time graph processes are given, and 3) the graph signal representation in
a new domain by using the transform learning’s concept. Being adaptive to new
data requires the solution to have some policies regarding noise and outliers. We
apply some real-world assumptions here, e.g. the signal smoothness over the graph
topology, the outlier sparsity, the sparsity of the graph, and the model of the noise.
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As a by-product, we also estimate the graph signal itself from the noisy measure-
ments. In other words, to represent and recover the graph signal from different
graph processes, this dissertation investigates some data-adaptive algorithms to re-
estimate the graph topology when a new observation is provided. Moreover, these
approaches are capable of denoising the measurements and recovering the graph
signals in noisy environments. The main characteristic of the proposed methods is
the low computational complexity, leading to online implementation possibility.

To represent the graph signals in a transform domain, this dissertation focuses on
the factor analysis model for Gaussian Markov random field (GMRF) processes and
the dictionary learning for the general signal model. The factor analysis represents
the graph signals on the basis, provided by the eigenvectors of the graph Laplacian.
In this respect, we can connect the graph signals to the underlying topology directly.
By applying the dictionary learning concepts, the graph topology and graph signals
are transformed to the dictionary domain and have a new representation which is
beneficial for specific applications, like temperature flow in different regions.
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Preface

This dissertation is a result of the research work carried out at the Department of
Information and Communication Technology (ICT), University of Agder (UiA),
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Chapter 1

Introduction

The current huge amount of existing non-structured data generated
and collected anywhere and anytime has raised challenging issues of
data storage, statistical processing, information inference, and so on.
The sources of this high volume of data may be, for instance, wireless
sensor networks installed to control and monitor some real-world pro-
cesses, including several sensor variables at different locations. This
network of sensors is connected based on an underlying topology that
can be modeled by a graph in an abstract form. In many applications,
we have no a priori information about the underlying structure, but it
can be extracted from data and then used for prediction, filtering, and
data inpainting. A graph learning algorithm may be proposed based on
the given data, a priori knowledge about the underlying process, and
some assumptions such as graph sparsity and signal smoothness. The
graph sparsity refers to the fact that the number of available edges in
a real-world graph is much less than that of a complete graph. Signal
smoothness means that the data changes smoothly from one vertex to
its neighbors and/or also at each vertex across time. These assumptions
are reasonable in real applications, e.g. spatial relation of temperature
in close regions where each region is only affected by a small number of
other regions. Here, in this Ph.D. thesis, we are interested in solving
some inference problems in the above-mentioned domain, where we are
given a set of data series. Then, our main desired goals are to estimate
the network topology, apply noise removal on graph signals, represent
the graph signals in a transform domain by using the dictionary learn-
ing framework.
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1.1 Background and Motivation

A signal is a function that ”conveys information about the behavior or attributes
of some phenomena”. In the physical world, any quantity exhibiting variation in
the time or space is potentially a signal, e.g. audio, video, speech, image, com-
munication, geophysical, sonar, radar, medical and musical signals. The ”Signal
Processing” framework concerns the analysis, synthesis, and modification of sig-
nals. ”Statistical Signal Processing” is an approach to signal processing that treats
signals as stochastic processes, utilizing their statistical properties to perform signal
processing tasks.

In this Ph.D. thesis, we investigate new statistical signal processing techniques
for some inference tasks on dynamic graph processes. By inference, we mean more
information extraction from the signal at hand. Examples of such inference tasks
are signal reconstruction, filtering, and estimation of the underlying topology. A
set of measurements of these signals are collected by a set of entities from real-
world networks, such as a temperature sensor network, EEG sensors located on
the head of a person, or social networks. In other words, the works in this area
of research focus on multivariate signals, and the recently proposed framework of
”Graph Signal Processing” discusses many topics and problems around it. Here, we
investigate some solutions for the problem of adaptivity for inference algorithms in
the GSP framework. In other words, the main concern of this Ph.D. thesis is to
approach adaptive graph signal processing.

Why should an algorithm be adaptive? When dealing with sequential data, time
series data, or when the data comes from a non-stationary process, the currently
proposed algorithm on the previous batch of the data is not working as it should
be. The problem is mainly due to the changing nature of the data. In this situation,
one solution is to adapt the proposed algorithm in some ways to the underlying
data. This is a well-defined framework for many signal processing problems, like
adaptive filters. In the GSP framework, this has not been discussed enough and
needs more investigation. In this Ph.D. thesis, we try to tackle this problem for
different scenarios and investigate solutions that help to implement GSP algorithms
for a broader range of network data applications. To aim it, the following tasks
should be done:

• Extending adaptive filter concept for graph signals,

• Applying dictionary learning methods to sparsely code the recently received
graph signals (A sparse signal is a signal that has many zeros among its en-
tries),
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Figure 1.1: An example of the graph structure: red circles show the vertices and black lines
are the edges.

• Using transform learning concepts to map the underlying structure to a new
domain that can capture dependencies among graph signal coefficients in the
transform domain,

• Learning the underlying graph structure in real-world scenarios and for dif-
ferent online applications.

1.1.1 Graph Signal Processing Framework

First of all, what is a graph? A graph can be defined simply as a set of ”entities”
connected based on their ”relations”. In an abstract form, we show an entity by a
”vertex” and the relation between two entities by an ”edge” (Figure 1.1).

The emerging field of graph signal processing (GSP) [3, 8] provides a valuable
tool for analysis of a large amount of data by leveraging a graph structure where
each vertex represents the time series associated with a certain node variable, and
where the edges capture the space-time dependencies. An edge weight usually rep-
resents the similarity between two end vertices.

The connectivities and edge weights can be dictated by the physics of the prob-
lem or inferred from the given set of data. For example in some geometrical applica-
tions, the weights are inversely proportional to the physical distance between sensor
nodes in the network. By taking a snapshot of the values over such sensor nodes at
a specific time instant, we collect different nodes’ values in a vector, called a ”graph
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Figure 1.2: An example of a graph structure and a graph signal. The height of each blue bar
represents the signal value at the vertex.

signal”. In Figure (1.2), the red circle shows the vertex (or the sensor node), and the
dashed line shows the underlying graph structure, and the height of each blue line
represents the value of signal over the corresponding vertex (generally, these values
can be positive or negative). By stacking all of these values in a vector, we have
a graph signal. In this respect, a graph signal with N vertices can be shown by a
vector in RN which is the same way of representing a classical discrete-time signal
with N samples. The main difference between these two is that a graph signal also
conveys information of dependencies arising from the irregular data domain.

There are many examples of graph signals in real-world engineering problems.
By using magnetic resonance imaging (MRI) or other brain image sampling meth-
ods, we infer the connectivity of the cerebral cortex and represent it by a weight ad-
jacency matrix [9]. Another example is the automatic text classification [10], where
a weighted graph is applied for statistical learning purposes. Graph signal filtering,
signal denoising, and graph signal compression and representation are some of the
other tasks in these graph signal processing applications.

Some of the general concerns of GSP include, but are not limited to

• The data processing in an irregular domain like an arbitrary graph,
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• Extracting information from high dimensional multivariate signal to store,
communicate, and analyze the data,

• Adapting the existing algorithm in classical signal processing framework for
GSP, like graph Fourier transform (GFT),

• Learning the underlying topology from the given data set,

• Spectral analysis of high dimensional signals by leveraging the underlying
graph structure.

The research works in this thesis mainly deal with two subjects of GSP; graph topol-
ogy learning and graph signal representation.

1.1.2 Graph Topology Learning

The graph topology simply means how the vertices are connected. These connec-
tions are represented by a set of edges. In many applications, we know the graph
topology in advance, e.g. classification of online blogs, damage identification in the
bridge, structural health monitoring [11], signal inpainting on graphs via total vari-
ation minimization [12], sampling theory for graph signals [13] , and so on [14–26].
However, in some applications, we do not know the underlying structure and thus
it is required to estimate it via the given measurements. Finding the flow of tem-
perature in a thermal sensor network is one such application [27, 28]. Thus, we are
interested in learning the underlying topology from the data at hand.

On one hand, some research works concentrated on directed topology estima-
tion [27, 29–37], where specific process models have been assumed. On the other
hand, many works have investigated undirected structures, such as [38–51, 51–53].
Following this research problem, in this Ph.D. thesis, we discuss the graph learning
procedures and propose new methods for different scenarios and applications. We
cover both the directed and undirected topology inference problems.

1.1.3 Signal Representation

One of the central topics in the classical signal processing framework is to represent
the existing signal in another domain. A simple and widely used example of this
domain is the Fourier transform (FT). In other words, we investigate a new domain
for the signal to show it efficiently in some perspectives. A monotone sinusoidal
signal is represented in the frequency domain by a pair of coefficients which is a
sparse representation and suits compression applications.
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Sometimes in the GSP framework, graph signals are represented in a new do-
main that fits the application. For example, [54] investigated a set of dictionary
atoms to represent the graph signal with sparse coefficients. In this thesis, we try
to represent the graph signals by different approaches, e.g. factor analysis model,
dictionary learning, and auto-regressive processes generation. Moreover, the signal
representation concept is used to recover the original signal from noisy measure-
ments.

1.2 Research Questions

The objective of this research is to solve the following problem:

How can we infer the underlying graph topology from the given data, update it
with the upcoming data, and estimate the true signals from noisy measurements?

To approach this question, we try to illuminate and hopefully answer the fol-
lowing sub-questions:

• Question 1 (Q1) Is it possible to extend the conventional adaptive filters for
graph signals? If yes, how?

Answering this question helps to provide adaptive connectivity between graph
signals and the underlying structure and thus a graph topology can be learned
out of it.

• Question 2 (Q2) How can we approach online graph topology inference for
specific processes, e.g. Gaussian processes, Multivariate Auto-Regressive
Processes (MAR), and Causal Graph Processes (CGP)?

This question approaches the main question of the thesis by modeling the
graph signals based on their generative processes. Therefore, the given mul-
tivariate data is modeled based on a known process and by finding the corre-
sponding parameters, we can estimate the underlying structure.

• Question 3 (Q3) How to extend the concept of dictionary learning for the
GSP framework?

This is an instance of the general transform learning framework. Since we are
interested in representing the graph signal in another domain, this question is
important. Here, by representing the graph signals in the dictionary domain,
we try to connect the topology inference problem to the dictionary atoms
where the graph signals can be efficiently represented.
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• Question 4 (Q4) How to relate the concept of atom coherence in dictionary
learning with the underlying structure of the data?

This question is close to Q3 and it is important once we tackle Q3. Both of Q3
and Q4 helps us finding an optimum topology which can be underlying the
input graph signals represented on a set of approximately incoherent atoms.

• Question 5 (Q5) What kind of multivariate signal processes model can be
connected to the underlying topology?

In response to this question, we look after some processes that can provide
a fit to the input data. Since the data is usually given by time sequentially,
the investigated model adapts to the upcoming data and hence an adaptive
topology can also be inferred as a by-product.

• Question 6 (Q6) How do we deal with noise which exists in graph signal
measurements?

This question concerns the graph signal recovery from contaminated mea-
surements by noise. In the real-world data set, the data is not usually clean
and hence we have to provide a solution for our main problem in the presence
of noise.

• Question 7 (Q7) When the measurements are contaminated with a highly
powerful sparse outlier, how can we modify the topology learning problem
formulation?

The answer to this question helps the solution of Q6, while here we should
consider outlier instead of noise. Sometimes, both Q6 and Q7 are important
at the same time and should be tackled simultaneously.

• Question 8 (Q8) To learn the topology and recovery of the graph signal, what
kind of optimization problems may be formulated and how are the solution
methods?

This question is necessary to be asked when dealing with optimizing vari-
ables. For example, in this thesis’s main question, we want to find the opti-
mum graph Laplacian matrix and graph signals.

• Question 9 (Q9) How to implement a fast algorithm for graph topology learn-
ing and signal recovery for different kinds of multivariate data processes?

Since we work with the big data, due to a network of several nodes which
have lots of data samples over time, there is a concern about the complexity
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Table 1.1: An overview of the identified research questions in different chapters.

Ch. 3 Ch. 4 Ch. 5 Ch. 6
Q1 ×
Q2 ×
Q3 ×
Q4 ×
Q5 × × × ×
Q6 × × × ×
Q7 ×
Q8 × × × ×
Q9 × ×

of the algorithms when running in batch mode. Thus, when investigating the
main question of this thesis, we also try to reduce the complexity.

Table 1.1 indicates the venues in this dissertation where the above-mentioned
research questions are discussed and solutions proposed.

1.3 Research Directions

To answer the above question, the following directions should be followed in the
research

• Laplacian/adjacency matrix learning: Based on the given processes and knowl-
edge about the physics of the system, we propose methods for graph topology
inference. The topology can be directed or undirected, depending on the ap-
plication, for example, a directed graph for temperature sensor network or an
undirected one that suits the stock market data,

• Online graph topology inference: By applying the traditional concept of adap-
tive filters to the graph signals, some methods will be proposed for online
topology inference when new observation exists,

• Graph signal denoising: We also propose some methods to remove the noise
from the given measurements over a graph.

• Dictionary learning for graph signals: We transfer signal and graph into an-
other domain and define dictionary atoms, atom coherence, and sparse coef-
ficients over a graph,
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Considering the main problem discussed in this thesis which is to provide adap-
tive GSP algorithms for graph topology inference and signal recovery, it is required
to include a research direction for topology inference offline and online which is
followed by the first and second directions, respectively. The third item directs us
to recover the signal out of noisy measurements or observations contaminated by
outliers. The research done in the direction of dictionary learning for graph signals
helps us representing the graph signal in another domain and is helpful in signal rep-
resentation efficiently. In other words, these four items cover the entire goals of the
thesis where we concentrate on the problem of adaptive graphs topology inference
and signal representation.

1.4 Research Methodology

1.4.1 Literature Review

A solid literature review is the foundation of research and can help to uncover un-
solved problems, important directions as well as problem-solving concepts. For this
interdisciplinary work, the literature has to cover many different subjects. The re-
search topic is directly at the intersection of graph theory and signal processing and
hence the backgrounds of these two frameworks are required to be reviewed in the
existing books and other teaching materials. Moreover, literature in the direction
of graph signal processing has to be covered, including but not limited to the graph
topology inference as well as the graph signal representation. The main sources
for this literature are the recently published papers and keynote lectures of the sig-
nal processing society conferences. To be more specific, the following subject’s
literature are reviewed

• graph theory and its applications,

• directed and undirected topology learning,

• signal representation for multivariate signals,

• sparse signal processing,

• dictionary learning, sparse coding, atoms coherence and graph regularized
dictionary learning,

• comprehensive studies of different processes for signal generations such as
Gaussian processes, Causal Graph Processes, and Vector Auto-Regressive
processes,
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• adaptive filters, including recursive least square filter and Kalman filter,

1.4.2 Mathematical Analysis

The main line of research deals with graph theory and its application to network
data analysis. The graph theory requires linear algebra, discrete mathematics, and
solving optimization problems. Thus, one stage in every research direction of this
thesis is to involve mathematical formulation and quantitative analysis. Besides,
the signal processing framework needs some mathematical tools such as transforms
and representation on some bases, adaptive filtering, and signal/noise modeling.

1.4.3 Design Algorithms

Solving the mathematical problem requires a practical implementation to approach
the solution. Here, we have to propose some algorithms to implement the proposed
solution. Besides the batch mode of algorithms, we try to make them adaptive to
the upcoming data, i.e. we assume that the underlying graph structure is already
estimated, and a new set of observations arrives and then we want to update our
previous graph estimate.

1.4.4 Experiments

At the last stage, we examine the proposed algorithms on some data sets. Besides,
we investigate the appropriate performance measures to evaluate the results.

1.4.4.1 Simulations with Synthetic Data

In the simulation, first, we want to apply the algorithms on some synthetic data sets
which are generated based on the assumed process models.

1.4.4.2 Simulations with Real-World Data

To evaluate the proposed methods in practical conditions, we collect some real-
world data sets from different sources. These data sets help us realizing which
algorithm has a better performance for a specific signal process and application.
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1.5 Research Contributions

The contributions of this dissertation are within the broad graph signal processing
(GSP) field: Topology learning, graph signal recovery, and multivariate signal rep-
resentation over the underlying structure. Even there are many methods in the liter-
ature that focus on these lines of research, in our proposed approaches, we consider
different scenarios which are applicable in more realistic situations. The general
contributions are outlined as follows.

In this dissertation, several methods are proposed for learning topology repre-
sented as a graph structure. In general, we can categorize all these learning methods
as directed and undirected topology learning. The directed topology includes the
topology of graphs inferring from CGP and MAR processes and undirected graphs
can be extracted from Gaussian Markov Random Field (GMRF) processes. The
CGP model captures the cause-effect relationships between the entities and by fol-
lowing this causality, we keep tracking the graph topology. Our main contribution
for this scenario is to make the topology learning in an online fashion. We propose
an RLS filter to process the received data sequentially. When the given data is from
GMRF processes, we try to connect the data to the underlying structure, or in other
words, the data input matrix is written as a function of the graph topology. Using
the data fidelity term as well as signal smoothness property on the underlying topol-
ogy and the edge sparsity, an optimization problem is formulated. Depending on the
application, some constraints are applied. After solving the corresponding problem,
an appropriate algorithm is suggested and efficiently implemented. The other con-
tribution is applying the dictionary learning definition and atom coherence concepts
to the GSP framework. In this respect, we formulate a problem to represent the
graph signals in a transform domain. Some real-world assumptions are considered,
e.g. reducing the average atom coherence, signal smoothness, and minimizing the
data representation error.

Regarding the signal representation perspective, the function explained above,
plays the main role. By using some statistical modeling tools, we propose a relevant
function to connect the data to the underlying structure. A factor analysis model is
used to represent GMRF processes with respect to the graph topology. For a directed
topology, the CGP and MAR processes models connect each graph signal to the
filtered version of others, where the filter is a function of the underlying topology.
Finally, for all of the proposed methods, it is assumed that the signal measurements
are contaminated by noise and thus it is more applicable in real engineering network
problems.
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1.6 Dissertation Outline

In general terms, this dissertation deals with the learning connectivities and graph
signal recovery in widely used synthetic data models and real-world scenarios.
These scenarios include temperature propagation in a geographical area and stock
market data analysis.

Chapter 2 introduces the graph signal processing framework and its widely used
concepts. The theoretical definitions from graph theory and the connection to classi-
cal signal processing are reviewed. Chapter 3 focuses on the GMRF process model
which is highly applicable in undirected topology inference methods. The proposed
method in this chapter uses the Bayesian inference concepts to filter signals and es-
timate the topology with higher performance with respect to the existing methods.
Also, a fast algorithm is proposed to implement the algorithm. In Chapter 4, it is as-
sumed that the graph measurements are contaminated by some outliers. A method is
proposed to alternatively remove the outliers, learn the graph topology, and denoise
the graph measurements. In Chapter 5, the dictionary learning concepts are adapted
for the GSP framework. We represent graph signals with multivariate coefficients
which are sparse and the transformed signals in the dictionary domain are smooth
on the underlying graph. In Chapter 6, we consider some scenarios in which the
data is received sequentially and hence propose a method based on adaptive filters
which are relatively fast compared to the batch algorithms. Chapter 7 concludes the
dissertation and points out a few potential extensions of the proposed schemes and
models.

1.7 Historical Notes

The city of Königsberg was located on both sides of the Pregel River and included
two islands connected to each other by seven bridges. The problem has been to
design a walk through the city that would cross each of the bridges once and only
once (Figure 1.3). There were two implicit conditions; it is not possible to reach
an island without crossing a bridge, and both sides of a bridge must be met. The
problem with these two conditions is called ”The Seven Bridges of Königsberg”
and it is a historically notable problem in mathematics. Leonhard Euler in 1736
proved that this problem has no solution and he paved the foundations of graph
theory [55]. Euler’s formula connects the number of edges, vertices, and faces of
a convex polyhedron, and then it has been studied and manipulated by Cauchy and
L’Huilier and formed the branch of mathematics known as topology.
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Figure 1.3: The seven bridges of the Königsberg problem [1].

However, later on, James Joseph Sylvester coined the term ”graph” formally
and in a scientific manner [56]. ”... I give a rule for the geometrical multiplication
of graphs, i.e. for constructing a graph to the product of in- or co-variants whose
separate graphs are given...”. This is one of the first sentences that Sylvester has
said in a paper published in Nature in 1878.

13



Introduction

14



Chapter 2

Graph Signal Processing

The graphs are utilized to model several types of relationships among
entities in real-world applications. Some examples include, but are not
limited to, information systems, customer consumption data in utility
companies, biological and physical systems, different social networks,
gene networks, financial data, and regional temperature data. In these
examples, the system of interest has some entities or objects and there
exist connections or relationships among them. From an abstract math-
ematical perspective, these entities are represented by ”graph nodes”
and the connections may be modeled by ”graph edges”. In this chapter,
we connect the concept of multivariate signal processing to the graph
theory and introduce the framework of graph signal processing. Dif-
ferent types of graphs along with some graph representation matrices
are introduced. Some definitions and theorems from graph theory that
apply to the rest of this dissertation will also be reviewed.

The emerging field of Graph Signal Processing (GSP) [3,8] simplifies the analy-
sis of large data volumes by applying the graph theory. In applications such as social
networks, energy consumption user data, transportation networks, and neuronal net-
works, high dimensional data can be considered as values over nodes in weighted
graphs. The framework of signal processing on graphs merges algebraic and spec-
tral graph-theoretical perspectives with computational harmonic analysis to process
these multivariate signals. In this chapter, we outline some aspects of graph the-
ory which is necessary to understand network topology and signal processing over
graphs. Two important concepts of GSP will be introduced and explained: ”graph”,
and the paradigm of signal over graph or ”graph signal”. In the rest, some mathe-
matical definitions, properties, and theorems are presented which are important for
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the main technical discussions and ideas of the next sections.

Throughout this dissertation, lowercase normal (e.g., a and θ), lowercase bold
(e.g., a and θ) and uppercase bold (e.g., A and Θ) letters denote scalars, vectors,
and matrices, respectively. The rest of the notation is presented in Table 2.1.

Table 2.1: Table of Notations

G graph
W | L weight matrix| Laplacian matrix
D | A degree matrix|adjacency matrix
V | E vertex set|edge set
N number of vertices or number of nodes in the graph

0N | 1N column vector of zeros with size N |column vector of ones with size N
Λ | χ eigenvalue matrix of L |eigenvector matrix of L

Θ−1 | Θ† | ΘT inverse of Θ|psudo-inverse of Θ | transpose of Θ
det(Θ)| |Θ| determinant of Θ|psudo-determinant of Θ

θij | θi entry of Θ at the ith row and the jth column| the i’th element of θ
Θ(m) | Θm the m’th matrix | the matrix Θ to the power of m
Θi: | Θ:j i’th row of Θ | j’th column of Θ
SN | SN

+ the set of symmetric | positive semi-definite matrices
Tr | logdet(Θ) trace operator|natural logarithm of det(Θ)

N (0,Σ) zero mean multivariate Gaussian with covariance Σ

∥Θ∥2F sum of squared values of all elements
|θij| | ∥Θ∥1 the absolute value of θij | sum of absolute values of all elements

∥Θ∥0 counts the number of non-zero entries
diag(θ) diagonal matrix formed by elements of θ
diag(Θ) vector of the diagonal elements of the input matrix
⊗ | ⊙ Kronecker product|Hadamard (element-wise) product
E expectation operator

p(a | b) conditional probability density function of a given b

θ̂ | θ estimate of θ | mean of θ
sign(θ) sign of each element of θ
∇ | ∇2 difference or gradient operator|hessian operator
proxf proximal operator of function f
L Lagrangian function
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Figure 2.1: A graph with 6 vertices, 5 edges, and two self-loops.

2.1 Basics of the Graph Theory

2.1.1 Definition of Graph

The graph is a structure used for modeling the pairwise relationships among dif-
ferent entities. Therefore, the ”entities” and ”pairwise connections” play the most
important roles in graph definitions. Let G = (V , E) be a graph with vertices vi ∈ V
and the edge set E , where each edge (vi, vj), 1 ≤ i, j ≤ N shows a connection be-
tween two nodes. Sometimes, a vertex is also called a node or a point and an edge
is called a link or a line. The ”order” of a graph is |V|, i.e. the number of vertices.
The ”size” of a graph is |E|. If we consider two distinct vertices vi, vj ∈ V , then the
edge set can mathematically be represented as follows

E = {{vi, vj} | (vi, vj) ∈ V2} (2.1)

where the vertices vi and vj are also called the end points. If an edge connects a
node to itself, that edge is called a loop or self-loop. Figure 2.1 shows a graph with
six nodes, five edges, and two self-loops.

2.1.2 Graph Types

There are many types of a graph and in what follows, we only review some of them
which are useful for the next chapters. The interested reader can refer to [57,58] for
more details.
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Figure 2.2: A directed graph

2.1.2.1 Directed graph

In this type of graph, each edge is directed from one vertex to another. This graph
is also called ”digraph” (Figure 2.2). A simple example of this type of graph is the
graph of connections in the Twitter network. The person vi may follow the person
vj but the opposite is not necessarily true.

The set of edges are sometimes called ”directed edges”, ”arrows”, ”directed
links”, ”arcs”, and ”directed lines” and they are ordered pairs of vertices. In a
sample edge such as (vi, vj), directed from vi to vj , both vi and vj are called the
endpoints where vi is the tail and vj is the head. Following this example, the inverted
edge is called by (vj, vi). Directed graphs are very useful to model the cause effect
relationships among entities.

2.1.2.2 Undirected graph

If all edges are bi-directional, the graph is called undirected (Figure 2.3). The edge
is said to join vi and vj or to be incident on vi and on vj . The endpoints vi and vj are
said to be adjacent to each other, which is denoted as vi ∼ vj . A simple example
of this type of graph is the ”friendship” in the Facebook network. If person vi is a
friend of person vj , the opposite is also held.

2.1.2.3 Weighted graph

In this type of graph, each edge (vi, vj), 1 ≤ i, j ≤ N carries a weight. This weight
can be zero, i.e. no edge, or any number that represents the strength of the con-
nection between two nodes. In other words, a weighted graph is a special type of
labeled graph in which the labels are numbers and here we consider only positive
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Figure 2.3: An undirected Graph

Figure 2.4: A weighted graph with numerical labels on the edges. An integer on each node
illustrates its number and is used when the graph is represented by a matrix.

numbers. Figure 2.4 illustrates a weighted graph and also Figure 2.3 can be consid-
ered as a weighted graph with all weights equal to one. Such weights, for example,
may represent costs of delivery between two endpoints or distance of two points de-
pending on the problem at hand. To give a real-world example of a weighted graph,
let us assume that we want to create a distance map of different cities and we show
the distance of two cities by an edge with the weight in kilometers.

2.1.2.4 Complete graph

If each pair of vertices is connected by an edge, the graph is called complete (Figure
2.5). A complete graph is called KN where N is the number of vertices. A KN has
N(N−1)

2
edges. In network topology, this type of graph is also called a ”fully con-
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Figure 2.5: K5: A complete graph of order 5.

nected network”. One application of this graph is to initialize a topology inference
algorithm when we have no a priori information about the underlying topology and
thus we start with a complete graph and remove some of the edges in each iteration.

2.1.2.5 Connected graph

A graph is connected when it has exactly one connected component. In a connected
graph, there is a path between every pair of vertices. Equivalently, there are no
unreachable vertices in a connected graph. All examples of Figure 2.3 to Figure 2.5
are connected, but the one in Figure 2.1 is disconnected. An example of this type
of graph can be the current coronavirus (Covid-19) contagion among people. If the
entire contaminated population by this virus is depicted by a graph, each person
must have contact with at least another one. In the bigger picture, in the beginning,
each country should have at least one incoming traveler from another contaminated
country. Therefore it is not possible to have a contaminated area where there is no
connection with other places in the world. For another example, if we are interested
in finding the shortest path between two nodes such as the shortest route between
two points in the city for a cab driver, the map must be illustrated as a connected
graph.

2.1.2.6 Simple graph

It is an unweighted, undirected graph containing no self-loops or multiple edges.
Figure 2.3 and Figure 2.5 are examples of a simple graph. Another name for a
simple graph is strict graph [59] and usually, when the term ”graph” is called, it
means a simple graph unless otherwise stated.
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2.1.3 Matrix Representations

The node connectivities can be mathematically represented by a graph matrix, de-
pending on the type of graph. Some of these matrices are as follows.

2.1.3.1 Adjacency matrix

This matrix shows the graph connectivities or links among nodes. The adjacency
matrix A stores only the presence/absence of edges, regardless of their weights.
In other words, this matrix indicates whether pairs of vertices are adjacent or not.
If there is a connection or edge between the vertices vi and vj , the corresponding
entity aij is one and otherwise it is zero. The adjacency matrix for an undirected
graph is symmetric, but it is not necessarily symmetric for a digraph. The diagonal
elements of the matrix are all zeros if the graph has no self-loop.

For some examples, the adjacency matrix of a complete graph includes all ones
except the diagonal entries which are zeros. The adjacency matrix of an empty
graph is a zero matrix. The adjacency matrix for the graph shown in Figure 2.4 is
given as below

A =


0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

0 0 0 1 0

 (2.2)

Since the adjacency matrix for an undirected graph is symmetric, it has a set
of real eigenvalues and an orthogonal eigenvector basis. By applying the Per-
ron–Frobenius theorem, the greatest eigenvalue of the adjacency matrix is bounded
above by the maximum degree of the graph. There are more details about the graph
spectral analysis in 2.4.

2.1.3.2 Weight matrix

This matrix stores the edge weights of a weighted graph. Each edge weight wij

is stored in the corresponding entry of W ∈ RN×N . Thus, wij = 0 shows no
connection and wij quantifies strength of the connection between the node vi and
the node vj . In this dissertation, we consider non-negative weights and hence W ∈
RN×N

+ (Figure 2.4). The diagonal entries of the weigh matrix show the weight of
the self-loops and thus for a graph with no self-loop, the diagonal elements of W
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are zeros. The weight matrix for the graph shown in Figure 2.4 is as follows

W =


0 0.5 1.5 0.3 0

0.5 0 0 0 0

1.5 0 0 2 0

0.3 0 2 0 12

0 0 0 12 0

 (2.3)

2.1.3.3 Degree matrix

The degree matrix is defined as D = diag(di), 1 ≤ i ≤ N . For an unweighted
graph, di simply counts the number of edges connected to the node i, and for a
weighted graph, di is the sum of all edge weights connecting node i to its neighbors.
Then, it can be rewritten as D = diag(W · 1N). The degree matrix of the graph
shown in Figure 2.4 is given as below

D =


2.3 0 0 0 0

0 0.5 0 0 0

0 0 3.5 0 0

0 0 0 14.3 0

0 0 0 0 12



2.1.3.4 Laplacian matrix

The combinatorial graph Laplacian matrix is defined as

L = V +D−W, (2.4)

where V stores the self-loops in its diagonal. Thus, if there is no self-loop in the
graph, the graph Laplacian is reduced to

L = D−W. (2.5)

The Laplacian matrix is also called the graph Laplacian, admittance matrix,
Kirchhoff matrix, or discrete Laplacian. The Laplacian matrix for the graph in
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Figure 2.4 is as follows

L =


2.3 −0.5 −1.5 −0.3 0

−0.5 0.5 0 0 0

−1.5 0 3.5 −2 0

−0.3 0 −2 14.3 −12

0 0 0 −12 12

 (2.6)

In this dissertation, we mainly focus on graphs without self-loops and non-
negative edges. Thus, the normalized graph Laplacian is defined as

Lnorm =D
−1
2 LD

−1
2

=IN −D− 1
2WD− 1

2

(2.7)

and thus, the elements of the normalized Laplacian is given as follows

Lij =


1, i = j and deg(vi) ̸= 0

− 1√(
deg(vi)deg(vj)

) i ̸= j and vi is adjacent to vj

0 Otherwise

(2.8)

The Laplacian matrix is symmetric, positive semi-definite (PSD), diagonally
dominant, and singular. Always, the first eigenvalue is zero since the eigenvector
v0 = (1, 1, . . . , 1) satisfies Lv0 = 0. If the graph is disconnected, the number
of zero eigenvalues is equal to the number of components. Thus, the number of
connected components is the dimension of the null space of the Laplacian and the
algebraic multiplicity of the zero eigenvalues. Thus, in a graph with multiple con-
nected components, the Laplacian matrix is block diagonal, where each block is the
respective Laplacian matrix for each component.

2.1.3.5 Incidence matrix

This matrix has a row for each vertex and a column for each edge and hence its size
is |V| by |E|. If a vertex is connected to an edge, the corresponding element in the
incident matrix is one. A nice property of the incidence matrix is that multiplying it
by its transpose results in the Laplacian matrix. The incidence matrix for graph of
the Figure 2.6 is as follows
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Figure 2.6: The edges are labeled to be used for incidence matrix.

B =


1 1 0 1 0

1 0 0 0 0

0 1 1 0 0

0 0 1 1 1

0 0 0 0 1


If the graph is not weighted, the sum of each column is equal to two since

each edge has a vertex connected to each end. If the graph is directed, the usual
convention is as follows

Bij =


1 the edge ej enters vertex vi,

−1 the edge ej leaves vertex vi,

0 Otherwise.

(2.9)

2.2 Graph Topology

A graph can represent a network topology in an abstract form. The ”Topology” is
the form in which the nodes and links/connections reside within a network. Usu-
ally, vertex-edge nomenclature is used to refer to the abstract mathematical graph
concept and node-link to denote the topology of a real-world network. Regardless
of this notation, depending on the regularity of placing vertices and edges, there are
two general categories of known and unknown graph topologies.
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Figure 2.7: The Manhattan grid pattern [2].

2.2.1 Regular Structures

In some applications, we have a priori information about the underlying topology
which is one of the well-known structures. Since the structures are known here,
we can compute any matrix representation for future use. In what follows, some of
these structures are introduced.

• Grid: This topology has a regular grid pattern. One of the examples in
the real-world application is graph signal extraction for New York City taxi
data [2]. Figure 2.7 illustrates Manhattan traffic activity patterns where each
junction is considered as a node and the street between them is a link.

• Tree: It is a simple connected graph without any cycle. Thus, for a tree with
N nodes, there exist N−1 links. One of the most useful examples is a central-
ized cellular network topology when the core system is the root of the network
which communicates with the wireless endpoints with communication links
(see Figure 2.8).

• Star: A tree becomes a star if only one node has a degree larger than one.
For example, in Figure 2.8, consider only one hexagonal cell in which a base
station communicates separately with all mobile users, but mobile users can
not directly talk to each other.

• Chain: A chain is a tree with no nodes of a degree greater than two. For
example, assume the Manhattan grid pattern of Figure 2.7 where a taxi has a
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Figure 2.8: A wireless mobile network with a tree structure.
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Figure 2.9: The route of a taxi as the chain topology.

pick-up location at one point and drop-off at another point. The route makes
a chain as Figure 2.9.

• Ring: Given a set of N nodes, a tour or a ring is a set of N links such that the
graph is connected and each node has degree two. This topology is famous
due to the well-known ”traveling salesman problem” which is as follows:
given a set of cities and all the distances, it is desired to find the shortest route
visiting each city exactly once and returns to the origin.

2.2.2 Irregular Structures

The simplest and widely used methods to find some types of structure or topology
are based on a similarity or correlation, and some functions of them. These methods
are mainly focused on pairwise relationships of data. In contrast, the GSP frame-
work proposes to investigate a direct relationship between data sets and the data
structure in general which we will discuss at the end of this subsection shortly (and
then the next chapters of this thesis mainly focus on some graph learning proce-
dures based on it). In general, a graph topology can take any structure that is not
among the well-known ones. Depending on the criteria of the problem at hand and a
priori information, the underlying structure can be estimated via some simple algo-
rithms. In this subsection, some of these estimation methods are introduced. Here,
the appropriate matrix representation is computed first and then the graph topology
is built. Before introducing those methods, let us review some examples.

When the relationship between two nodes is of interest, but it is not important
whether the connection is weak or strong, it is possible to find and represent the
topology by a graph adjacency matrix, such as Twitter followers/following rela-
tionships example in Sec. 2.1.3. On the other hand, if the problem involves the
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Figure 2.10: A directed graph that has a similar topology to the one in Figure 2.4.

importance of the strengths of each connection, we have to be more specific and
solve a more complex and harder problem in which the weight matrix is estimated.
For an undirected graph, the Laplacian matrix can also uniquely characterize the
graph structure. To clarify more these statements and conditions, an example of
weighted and directed graph is given in Figure 2.10 and its corresponding matrices
is computed in (2.10) which can be compared with 2.2, 2.3, and 2.6.

A =


0 0 1 1 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 1 0

 W =


0 0 1.5 0.3 0

0.5 0 0 0 0

0 0 0 2 0

0 0 0 0 0

0 0 0 12 0



L =


1.8 0 −1.5 −0.3 0

−0.5 0.5 0 0 0

0 0 2 −2 0

0 0 0 0 0

0 0 0 −12 12



(2.10)

2.2.2.1 Neighborhood graph

After setting a pre-defined threshold, the distance between each pair of the nodes
is computed. If this distance is less than a threshold, we connect two nodes by an
edge. To compute the distance, a function based on the application is selected. The
radial basis function (RBF) and Gaussian RBF are widely used functions to find the

28



Learning Dynamic Connectivities and Signal Recovery over Graphs

distance. This procedure leads to an undirected graph topology since the distance
of the node i to the node j is the same as the distance of the node j to the node i.

2.2.2.2 K-Nearest Neighbor

If the vertex i is among the K nearest neighbors of vertex j, there is an incident edge
from node i to node j. In this way, we have a directed topology, since this definition
of neighborhood relationship is not symmetric. There is a simple undirected version
for the K-NN similarity graph in which we form the graph and then remove the
direction. In other words, either vi is in the neighborhood of vj or vice versa, these
two vertices are connected by an edge. There is also another approach to make
an undirected K-NN called ”mutual K-NN” [60]. In this case, vi is among the K

nearest neighbors of vj and also vj is among the K nearest neighbors of vi. After
finding the adjacency matrix by any of these definitions, the edges are weighted by
a distance function or a similarity function, e.g. the inner product of the vertices
coordinates.

2.2.2.3 Correlation

The correlation is used to define the distance between two vectors of data and cap-
tures the similarity of two data variables. It shows how the data vectors are close
to each other and to what extent they can be related to each other. To define the
correlation mathematically, first, the sample covariance is defined as follows

S =
1

K − 1

K∑
k=1

(
x[k]− x

)(
x[k]− x

)T
, (2.11)

and the ij’th element of the correlation matrix is the normalization of sample co-
variance entities as below

cij =
sij√
siisjj

. (2.12)

The correlation coefficient takes on a value on the interval [−1, 1], where –1
shows a perfect negative correlation, i.e. an exact linear relationship when a higher
value of one variable corresponds to a lower value of the other. Similarly, the value
one conveys an exact positive linear relationship. When the correlation coefficient
is zero, there is no linear relationship.

If cij ̸= 0, an edge is considered between vi and vj . Sometimes when it is
above a threshold, the corresponding two nodes are connected by an edge with the
weight cij [61]. Figure 2.11 illustrates a perspective for the correlation concept
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Figure 2.11: A geometrical intuition behind correlation in three-dimensional space.

where we can consider two data points as the multidimensional points in the space.
The similarity of these two points is equivalent to how much they are correlated. If
they have a correlation of one, they should be completely similar and hence point
toward the same location. If they have a bit of deviation, there is a small angle
between them and hence the correlation is less than one.

However, the correlation method has the following limitations

• Correlation can only track the undirected relationship. For example, in Figure
2.12a, there are directed connections from node 1 to nods 2, 3, and 4. How-
ever, the correlation captures all these connections as bi-directed (see Figure
2.12b),

• It can not distinguish mediated vs. un-mediated dependencies. For example in
Figure 2.12, there is no connection between nodes 1 and 5 in the true topology,
while the learned topology shows that there is an edge between them. This is
due to the fact that when node 1 is correlated with node 2, and node 2 is also
correlated with node 5, a correlation between nodes 1 and 5 is not avoidable,

• The correlation method is very sensitive to the noise. In noisy conditions, the
performance of the edge recovery is low [41].

• The correlation concerns only about the linear relationships. In some appli-
cations, we want to capture any kind of relationship and connectivities.

2.2.2.4 Partial Correlation

To solve the problem of mediated dependency in correlation method, the partial
correlation can be applied. Actually, it measures the degree of relationship between
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(a) The real topology (b) The estimated topology by correlation

Figure 2.12: Wrong network topology learning by correlation approach.

two random variables when the effect of a third random variable is removed. As is
shown in Figure 2.12, the use of the correlation concept gives misleading results if
there is another variable, numerically related to both variables. For example, if we
have a data-set of consumption, income, and wealth of people and want to capture
how the consumption is correlated with the wealth, the partial correlation works
better than the correlation. Actually, the partial correlation measures the strength
of the linear relationship between consumption and income after “adjusting” for
the relationship involving wealth. As an illustration, if the interest is in the blue
rectangular in Figure 2.13, the partial correlation is a good candidate.

Figure 2.13: The correlations among consumption, wealth, and income. The partial corre-
lation captures the blue rectangular.

The partial correlation is found simply from the inverse covariance or precision
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matrix as follows [62]

ρij = −
s−1
ij√

s−1
ii s

−1
jj

. (2.13)

The partial correlation is able to solve the issue of mediated or un-mediated
dependency, but it has all the other issues of the correlation method.

2.2.2.5 Learning Dynamic Connectivities

The main intention of this approach is to focus on the global behavior of signals
residing on nodes instead of focusing on pairwise relationships of two nodes. To
do so, some methods have been investigated in the GSP framework to relate the
multivariate signal to the underlying structure, e.g. [19, 41, 49, 50, 63–66] and so
on. In other words, here, we are interested in representing the graph signals as a
function of the underlying topology. This is the main topic of this thesis and thus in
the next chapters, we discuss this approach for different scenarios and conditions.

2.3 Random Graph Models

There are several ways to generate a graph at random where we need to model
different types of networks. Also, if a random graph is required to generate some
graph signals for algorithm evaluations, this is a useful tool. Here, we represent the
most important types of random graph generation.

2.3.1 Erdős-Rényi

Most of the time, this type of graph is the default random graph generator and hence
it is sometimes called ”the random graph”. The Erdős-Rényi graph is denoted by
G(N, p0) where N is the number of nodes and 0 ≤ p0 ≤ 1 denotes the probability
of connecting any two nodes in the graph. To generate an Erdős-Rényi, N nodes is
considered, i.e. vi, i = 1, . . . , N , and then for each unique pair of vi and vj ,
a biased coin is flipped where the probability of head is p0. If it hits the head, an
edge is created between vi and vj , and for the tail event, we let these two nodes be
disconnected. Thus, every time we generate this graph, we get a different one due
to the random nature of tossing coins, and hence G(N, p0) is a family of graphs. For
example, assume that N = 3 and hence there are 8 possibilities of tossing a coin
and hence 8 graphs as depicted in Figure 2.14.

The maximum number of possible edges is
(
N
2

)
and hence it is most probable to

have those graphs with the number of edges about p0 ·
(
N
2

)
, i.e. average number of
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Figure 2.14: The Erdős-Rényi family graphs with N = 3 vertices.

edges. The probability of generating a specific graph in Figure 2.14 is as follows

P (G) = pm0 (1− p0)
(N2 )−m, (2.14)

where m is the number of edges in the graph. In other words, this is the probability
of having a specific sequence of heads and tails in coin flips. For example, the
probability of having a graph with 3 edges when N = 3, equals p30. This is a
simple Bernoulli probability density function. In the same way, the probability of
generating a graph with m edges follows a Binomial distribution given as below

P (m) =

(
N

2

)
pm0 (1− p0)

(N2 )−m. (2.15)

2.3.2 Barabási–Albert

An aphorism states that ”rich get richer” which can be assumed the cornerstone
of the preferential attachment process in network science. A preferential attach-
ment is a class of processes in which some quantities are divided among different
objects based on how much they already have. As an example, if some kinds of
wealth are distributed among people, those who are already wealthier receive more
than those who are poorer. In network sciences, the main motivation for interest in
preferential attachment is its ability to generate power law distributions. The first
application of preferential attachment belongs to Udny Yule in 1925 [67] where the
power-law distribution of the number of species per genus of flowering plants has
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been explained. Thus, this process is sometimes called a ”Yule process” instead of
preferential attachment.

The Barabási–Albert graph model is based on a preferential attachment process
and generates an scale-free network. There are many applications for this type of
network, e.g. the world wide web, social networks, and citation networks. In a
social network, a famous actor or politician can get more and more followers com-
pared to a typical individual. In the same way, in the citation network, a scientist
with higher citations and a larger number of papers gets easily more citations over a
specific time interval. Therefore, this graph model contains few nodes with unusu-
ally high degrees. In simple words, the preferential attachment means that a more
connected node is more likely to receive new links. In addition to this property,
the BA model has another main property which is called growth, meaning that the
number of nodes in the network increases over time.

To sample a BA graph model, an initial network is generated. A new node is
linked to the existing node i with the probability of pi = ni∑

j nj
, where ni is the

degree of node vi and the summation is over all existing nodes vj . This probability
is proportional to the number of connections that the existing nodes already have
and a new node has a ”preference” to attach itself to the already highly connected
nodes.

2.4 Graph Spectral Analysis

For undirected graphs with non-negative edges and no self-loops, the Laplacian
matrix is real and symmetric and then its eigendecomposition is as follows

L = χΛχT , (2.16)

where in the diagonal entries of Λ, eigenvalues is always ordered increasingly, re-
specting their multiplicities. By referring to the first n1 eigenvalues, the n1 smallest
eigenvalues are aimed. The graph Laplacian matrix has a complete set of eigen-
vectors, which are the columns of χ defined in (2.16). Moreover, the eigenvalues
are real and non-negative, denoted here by 0 = λ0 ≤ λ2 ≤ · · · ≤ λN−1. The first
eigenvalue, i.e. λ0 is zero since each row (or each column) of L sums to zero. For
a connected graph, there is at least one zero eigenvalue. In general, a graph has at
least n0 zeros eigenvalues if it has n0 separate components. The eigenvector corre-
sponding to the zero eigenvalue is constant and equal to 1/

√
N at each vertex. Thus

λ0 is analogous to the zero frequency in the classical signal processing.
Similar to the Fourier transform (FT) which helps to represent complex signals
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by their fundamental frequencies, the spectral graph synthesis and analysis decom-
pose graph signals with respect to the underlying graph and spectral characteristics
of the signals. The Graph spectral analysis is done not only based on the signal it-
self but also considering the connection among the signal vector entities. Thus, the
graph Fourier transform (GFT) is defined with the help of eigendecomposition of
the graph Laplacian. The main difference between FT with GFT is the importance
of the underlying topology for the GFT. In other words, not only the graph signal
characteristics are important for GFT computation, but the graph topology is also
involved.

A graph signal is a multivariate signal, residing on vertices of the graph. When
the graph has N vertices, the graph signal is an N -dimensional vector. A graph
signal x at time instant k is given as below

x[k] : V → RN , vi 7→ xi [k ]

x[k] =
(
x1 [k ], x2 [k ], ..., xN [k ]

)T ∈ RN ,
(2.17)

where xi[k] is the signal value at node i and time k. The GFT of the graph signal x
is defined as follows [3]

GFTx(λl) := ⟨x,χ:l⟩ =
N∑
i=1

xiχil. (2.18)

Thus, the inverse GFT is given by

xi =
N−1∑
l=0

GFTx(λl)χil. (2.19)

The eigenvectors associated with low frequencies change slowly within the
graph. In other words, if there is a very strong edge connecting two vertices, the
values of the eigenvector at those vertices are close [3]. This property is also called
”signal smoothness” over the underlying graph. In opposite, an eigenvector associ-
ated with a large eigenvalue changes sharply and it has dissimilar values on strongly
connected nodes. This phenomenon are illustrated in Figure 2.15 for a sample sen-
sor network graph in [3]. As is shown, the first eigenvector has no zero-crossing
and all the values are above zero and similar. Thus, it is a kind of DC component
and completely smooth over the graph. The second eigenvector of the graph called
Fiedler eigenvector changes smoothly from zeros to ones, in a limited area in the
middle of the graph. The last graph in Figure 2.15 shows the 50’th eigenvector cor-
responding to a large eigenvalue and changes sharply from one node to another and
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oscillating from one to zero and vice versa. For a graph signal x[k], we have

(Lx[k])i =
∑
j∈Ni

wij

[
xi[k]− xj[k]

]
, (2.20)

where Ni is the neighborhood of node i, i.e. the set of vertices connecting to node i
by the existing edges. The local smoothness around vertex i is computed as [3]

∥∇ix[k]∥2 :=
[ ∑
j∈Ni

wij

[
xi[k]− xj[k]

]2] 1
2
, (2.21)

and the global smoothness is defined as follows [68]

S2(x[k]) =
∑
j∈Ni

wij

[
xi[k]−xj[k]

]2
=

∑
(i,j)∈E

∑
j∈Ni

wij

[
xi[k]−xj[k]

]2
= x[k]TLx[k].

(2.22)

In Figure 2.16, the signal x = [−3,−1, 1, 3, 5] is shown on three different
graph structures to compare smoothness visually. Assuming all existed edges have
a weight equal to one, the measure of 2.22 for the signal over these three graphs are
computed as 16, 80, 120, respectively. From the numerical point of view, the graph
signal is smoother with respect to G1 when compared to G2 and also smoother with
respect to G2 when compared to G3.
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(a) The DC component, i.e. χ:0, corresponding to λ0

(b) The Fiedler eigenvector, i.e. χ:1, corresponding to λ1

(c) The 50’th eigenvector, i.e. χ:50, corresponding to λ50

Figure 2.15: Different eigenvectors of a sample graph which illustrate visually how they
are changing on nodes [3]. The blue and black bars show positive and negative values,
respectively. The graph edges are shown by red connections.
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(a) x over G1 (b) x over G2 (c) x over G3

Figure 2.16: A unique graph signal resided on three different graph topologies (The figures
are taken from [4]). The signal is smooth with respect to G1, less smooth with respect to
G2 and likely to be non-smooth with respect to G3. The edge weights are all ones. These
figures are generated by GSPBOX [5].

2.5 Graph Filters

A graph filter is a system taking a graph signal as an input and making another
graph signal in the output indexed by the same graph vertices. In the classical signal
processing, the basic block for filters is a shift operator S , represented as [16, 69]

xshifted = Sx, (2.23)

and the general form of the linear shift invariant (LSI) filter is

xfiltered = S1x[k] + S2x[k] + · · ·+ SNSx[k]. (2.24)

In the simplest case, S is the adjacency matrix, the weight matrix, or the graph
Laplacian. However, in general, it can be any function of the graph topology matri-
ces. If we let the shift operator be the weight adjacency matrix and H denotes the
filter, the graph LSI filter is defined as follows

xfiltered = H(W)x[k] = (h0I+ h1W + ...+ hNW−1W
NW−1)x[k] (2.25)

where h0, h1, ..., hNW
are the filter coefficients and NW is the number of filter taps

(filter order). If there are two graph filters H1 and H2, the following is held by
linearity

(a1H1 + a2H2)x = a1H1x+ a2H2x, (2.26)

for some constants a1 and a2. By the shift invariance property,

S
(
Hx

)
= H

(
Sx

)
(2.27)
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2.6 Chapter Summary

This chapter reviews some definitions and concepts of graph theory and connects
them to the area of graph signal processing. The GSP framework mainly focuses on
multivariate signals residing on a graph topology. We also discussed the network
topology and graph signals so as the simple existing methods for learning the graph
topology from the data. Also, the concept of Fourier analysis is introduced to the
graph signals, enabling the spectral analysis of multivariate signals based on the
underlying data structure.
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Chapter 3

Undirected Topology Learning via
Bayesian Inference

The focus of this chapter is on one of the most important graph pro-
cess models, called Gaussian Markov Random Field (GMRF) processes
where the estimated topology is undirected. A graph topology learning
algorithm is proposed to estimate the underlying structure of the given
set of noisy multivariate observations generated from a GMRF process.
A factor analysis model is applied to represent the graph signals in a
latent space where the basis is related to the graph topology. Thus,
the given data is connected and related to the underlying topology. A
minimum mean square error estimator is used for designing an opti-
mum graph filter to recover the signal from noisy observations. In the
final step, an optimization problem is proposed to learn the underlying
graph topology from the recovered signals. A fast algorithm to solve the
optimization problem is also proposed via the proximal point method.

3.1 Introduction

The Gaussian process model is a general signal model applied to a broad range of
applications. By applying a data set generated from Gaussian processes, the solu-
tion of a topology inference problem usually leads to a graph with an undirected
structure. One of the pioneering works to find the connectivity among the Gaussian
measurements is ”covariance selection” by Dempster [38]. Banerjee et. al. [39]
proposed an ℓ1 regularized optimization problem to find the sparse precision matrix.
The precision matrix is the inverse of the covariance matrix and carries information
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about the partial correlations of random variables. Friedman and his colleagues have
proposed ”graphical Lasso” to estimate the inverse of covariance [42]. Also, some
research problems and solutions are investigating the inverse covariance matrix esti-
mation with different rates of convergence [45,46]. However, all of these works can
not fully connect the signal model to the underlying graph topology. Their proposed
approaches have focused on pairwise relationships instead of the global signals and
graphs connections and were very sensitive to noise.

A state-of-the-art machine learning approach to estimate the graph topology
from the given Gaussian Markov Random Field (GMRF) processes measurements
was proposed in [40]. The main limitations were high-cost implementation for a
large number of nodes and the availability of noise-free measurements. In another
approach, an efficient and scalable algorithm graph learning from noise-free ob-
servations has been proposed for positive node degrees topologies (they can not
be zero) [43]. A generalization of these methods for different Laplacian and con-
straints has been proposed in [53]. In [44], by applying graph signal frequency
domain analysis, the network topology has been inferred from spectral templates. It
was assumed that a diffusion process in the graph shift operator (GSO) generating
the given observations exists. By capturing the graph’s local topology, the GSO
matrix eigenvectors devise the graph Fourier transform bases. When the graph sig-
nals are generated from a white process given as the input of the GSO filter, this
method is utilized to find the topology. Other similar approaches have been pre-
sented in [47–52], There are many more papers that investigate the topology esti-
mation and graph learning methods for different perspectives [32, 64, 70–75].

However, none of these approaches has discussed graph signal recovery and
topology inference for noisy observations. Removing the noise from entries of a
corrupted data matrix is desired in many applications [76] while recovering a more
accurate learned topology. Sometimes the measurement errors in multivariate data
are modeled as noise [77]. One assumption is that the measurement noise is a zero
mean Gaussian and independent of the signal of interest. Therefore, finding the
noise variance is of interest to design a filter for signal denoising and have better
quality observations. If we investigate this problem from a mathematical perspec-
tive, to overcome the over-fitting issue in the optimization problem, the data fidelity
term is regularized by a smoothing term and an exhaustive search is applied to find
the regularization parameter. In many applications of multivariate data analysis, a
direct relationship between the noise variance and the regularization parameters is
held, e.g. image restoration [78]. In other words, finding the measurement noise’s
variance can also tackle the over-fitting problem in a noisy environment so as a bet-
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ter signal representation. The noise variance estimation is the cornerstone of a filter
design to smooth the signal and denoise the measurements 1.

Not only the noise variance estimation is useful from the signal recovery per-
spective, but also it is important from the graph learning side. Inferring the structure
from a noise-free data set is more reliable than that of noisy measurements. There-
fore, signal denoising helps to reach a more accurate graph topology estimation.
Sundeep et al. [79] investigated the graph connectivity and removed noise from ob-
servations by solving a non-convex cardinality constrained optimization problem. It
is assumed that the number of edges is known as a priori and their proposed method
scales with the desired number of edges due to the use of a sorting algorithm. An-
other approach is proposed in [41] estimating the topology and removing the noise
from measured signals in parallel. A factor analysis model has been adopted for
the multivariate signals and a Gaussian prior was imposed on the latent variables
that control the graph signals. By applying the Bayesian framework, the posterior
distribution of graph signals was achieved as Gaussian and then the latent variable
is estimated by the maximum a posteriori (MAP) approach. Considering signal
smoothness on the graph, this procedure ended in an optimization problem for the
graph topology and graph signals. However, in [41], an exhaustive search is applied
to find the regularization parameter or noise variance which can be improved by an
analytical and a more exact mathematical solution.

Our main contribution in this chapter is as follows; Given a set of noisy multi-
dimensional signal observations, a new algorithm is proposed to jointly find the
underlying topology and recover the graph signals. This graph structure models
the affinity relationship among the multivariate data vectors. From the perspective
of simultaneous graph learning and signal recovery via a Bayesian inference ap-
proach, the work most relevant to ours is the one by Dong et al. [41]. However,
we proposed a minimum mean square estimation (MMSE), leading to the topology
learning, graph signal recovery, and analytical noise variance estimation, simultane-
ously. We are not running a grid search for estimating the regularization parameter.
As we discussed above, this regularization parameter also plays the role of the filter
coefficient to denoise the graph measurements. To clarify more, the MMSE proce-
dure is utilized to estimate the optimum Laplacian matrix, whose eigenvalue matrix
is the precision matrix of the GMRF process. At the same time, the proposed al-
gorithm filters the given measurements to find the desired signal. The simulation

1Hence in our problem setup, the concepts of filter coefficient, the noise variance, and the reg-
ularization parameter of the smoothing term in the optimization problem are tightly connected and
estimating one of them leads to the others. Therefore, we may interchangeably use these three
concepts hereafter.
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results corroborate the higher performance of our proposed algorithm compared to
the state-of-the-art algorithms.

The rest of this chapter is organized as follows; Section 3.2 formulates the graph
topology learning problem via a Bayesian framework and proposes a general al-
gorithm for implementation. In section 3.3, a method is proposed to implement
Bayesian topology learning (BTL) efficiently via solving a primal proximal point
algorithm, called BTL-PPA whose convergence is also proven. Sections 3.4 and 3.5
discuss the convergence of the algorithm and the experimental results, respectively.
This chapter is an extension of the work in [4] and [83].

3.2 Bayesian Topology Learning

In the first subsection, we introduce some concepts which are necessary to follow
the contents of this section. The details of our proposed algorithm for topology
inference via the Bayesian framework come in next.

3.2.1 Backgrounds

We introduce the basics of the Bayesian inference in the signal processing frame-
work which is the main mathematical tool for this chapter. We also explain the
concept of latent variable and factor analysis model. At the end of this subsection,
we review the GMRF process which is the generative process underlying the signal
model. In the next sections, these concepts are reviewed by mathematical details
and utilized to implement our idea.

3.2.1.1 Bayesian Inference

In statistical inference, ”Bayesian” is on the opposite side of ”Frequentist”. In the
frequentist view, the underlying truth and available data are only used to do the
inference. However, in the Bayesian view, we incorporate our subjective beliefs
about the parameters of interest. These prior assumptions can be highly informative
such as ”the parameter is sparse” or with less amount of information, e.g. ”the
parameter pdf is uniformly distributed over all possible values”. In other words,
in the Frequentist method, the parameter is considered deterministic and hence we
are after finding a fixed value. However, in the Bayesian method, the parameter of
interest is considered probabilistic and thus it is treated as a random variable with
its own prior and posterior pdfs, and thus it may have its own parameters, e.g. mean
and variance, called hyperparameter.
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The Bayesian inference framework applies Bayes’s theorem to update the prior
belief about a variable. Bayes’s theorem uses recent evidence or new information
to estimate the posterior distribution. The main application of the framework is for
the time that a sequence of observations exists and we are interested in estimating
the pdf of the underlying variable. The Bayes’s rule is presented as follows

P (a | b) = P (b | a) · P (a)

P (b)
(3.1)

In simple words, Bayes’s rule says the ”posterior” is the ”likelihood” times
”prior”. In mathematical language, the prior belief about a, i.e. P (a), as well
as the likelihood P (b | a) are required. To do the Bayesian inference, we apply this
rule to update the parameters of interest based on the observations as follows

p(υ | O, ϱ) =
p(O | υ, ϱ)p(υ, ϱ)

p(O | ϱ)p(ϱ)
(3.2)

where o is a vector of values or observations and O is a set of observed data points.
Also, υ is the parameter (vector of parameters) of the data distribution, and ϱ is the
hyperparameter or the parameter of the parameter’s distribution, i.e. υ ∼ p(υ | ϱ).

So far, the posterior probability distribution based on the Bayesian approach
is reviewed, but here is the question: why is it important to estimate it? Using
a posterior distribution to predict the unknown variables has a better performance
when compared with the prior distribution since some kinds of information have
been used to reach the posterior. The posterior median or mean is one of the well-
known robust estimators [80] for the parameter estimation in this framework defined
as follows

υ̂ = E[υ] =
∫

υ · p(υ | O, ϱ)dυ. (3.3)

3.2.1.2 Latent Space Representation

Latent space denotes an abstract space containing features that we cannot explain
directly, although encoding a meaningful internal representation of the observed
data. For a simple though not an exact example, consider the English language
and a computer language in the ”machine space”. A human can understand a let-
ter like ”A” on the keyboard while a processor unit understands its binary or Ascii
code version in a computer language. Here, an external event of human language is
mapped to another space that is understandable for the computer. For a more techni-
cal example, we can think of the ”word embedding space” in the machine learning
toolboxes when running a natural language processing application. It consists of
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word vectors where similar words map to vectors that lie close to each other in the
embedding space. In mathematics, large differences in the observed space may be
due to some small variations in a latent space or there is a tool in a latent space
that helps to model the signal with a better sense. These motivate representing the
variables in the latent or hidden space. In statistics, latent or hidden variables are
not directly observed but inferred from the observed variables, and this procedure
is called latent variable models.

One of the approaches to provide the latent space is the Factor Analysis (FA)
model when a statistical method is used to explain variability among observed cor-
related variables using a lower number of unobserved/hidden variables. Here, these
latent variables are called factors, and the observed variables are modeled as lin-
ear combinations of them. FA is mathematically viewed as a generalized technique
for dimensionality reduction and it is widely used in behavioral sciences, recom-
mender systems, and social sciences. It is especially applied when a set of observed
variables shows a systematic interdependence and by helping the factors, a com-
monality among data is extracted.

3.2.1.3 Gaussian Markov Random Field

In this chapter, we assume that the observed data has been sampled from a multi-
variate Gaussian distribution, generally represented by x = N

(
µ,Σ

)
. The relation

of this distribution to the graph topology is that we assume its covariance matrix is
the inverse of the graph Laplacian matrix. Hence, a GMRF’s distribution, or equiva-
lently the relation between the observed graph signals and the underlying topology,
is defined as follows

p(x | Σ−1) =
1

(2π)
N
2 | Σ | 12

exp
(
− 1

2
xTΣ−1x

)
. (3.4)

The term xTΣ−1x in (3.4) is the smoothness measure defined in (2.22). If a
larger weight is given to the edge between vi and vj , the squared difference between
corresponding data points, i.e. xi and xj is smaller and hence the exponential term
in (3.4) is going to be reduced and thus the probability of having that data vector x
given the topology increases. This probabilistic interpretation brings a new perspec-
tive in which the ”graph topology inference problem” and signal recovery is con-
verted to the ”parameter estimation” of a Gaussian distribution and signal denoising
from measurements. This point of view shows how the GSP domain problems are
close to the classical signal processing ones. In the same way, for K independent
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measurements, the distribution can be rewritten as follows

K∏
k=1

p
(
xk | Σ−1

)
= (2π)

−KN
2 | Σ |

−K
2

K∏
k=1

exp
(
− 1

2
xT
kΣ

−1xk

)
. (3.5)

Here, a simple and naive topology estimation is via the maximum likelihood
estimation. Since it is a Gaussian distribution which has an exponential term, we
take a logarithm first, i.e. the log-likelihood estimation, as follows

ΣK
k=1log p

(
xk | Σ−1

)
= −K

2
log | Σ−1 | +1

2
ΣK

k=1Tr
(
xT
kΣ

−1xk

)
(3.6)

where ΣK
k=1 denotes the summation over k. Hence by maximization, we have the

following estimation

Σ̂ = min
Σ

Tr
(
Σ−1S

)
− log | Σ−1 | (3.7)

which is the basic optimization problem called inverse covariance estimation, dis-
cussed earlier in 3.1. The elements of the inverse covariance estimation matrix may
be illustrated by the following relations [81]

E
[
xi | x−i

]
= − 1(

Σ−1
)
ii

Σj ̸=i

(
Σ−1

)
ij
xj, (3.8)

where x−i denotes all the elements of data vector x except xi. Also, the partial
correlation is computed as follows

Corr
[
xixj | x−ij

]
= −

(
Σ−1

)
ij√(

Σ−1
)
ii

(
Σ−1

)
jj

, i ̸= j, (3.9)

where x−ij denotes all the elements of data vector x excluding xi and xj .

3.2.2 The Main Idea

Assume that the data matrix Y is given which contains noisy measurements of
graph signals in its columns. The size of Y is N × K where N is the number of
vertices and K is the number of measurements. The k’th measurement is given as
follows

y[k] = x[k] + e[k], k = 1, . . . K. (3.10)

Moreover, we adopt a multivariate Gaussian distribution for the noise e[k], given
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as follows
p(e[k];σe) ∼ N (0N , σeIN) (3.11)

To find the graph topology, we utilize factor analysis to represent the signals
via a matrix linked to the graph Laplacian matrix directly. Each measurement is
modeled by x[k] = χh[k]+u[k], ∀k, where the hidden or latent variable h[k] ∈ RN

relates to the graph signal via the eigenvector matrix χ [82] and u[k] ∈ RN is
the mean of the graph signal x[k]. It is also assumed that ∀k,u[k] = 0N . As
discussed in [41], by this model, each graph signal contributes to the underlying
graph structure estimation. Following [41], it is assumed that h[k] has a degenerate
zero mean multivariate Gaussian distribution as follows2

p
(
h[k];Λ†) ∼ N (0N ,Λ

†), (3.12)

where Λ is the precision matrix. The matrix form of the measurements is as follows

Y = χH+ E, (3.13)

where H =
[
h[1], . . . ,h[K]

]
and E =

[
e[1], . . . , e[K]

]
. By using the Kronecker

product property 3, the vector form of the given data is as follows

y = Bh+ e, (3.14)

where y = vec
(
Y
)
, B = IK ⊗ χ, h = vec

(
H
)
, and e = vec

(
E
)
. Thus, we have

p
(
h;Λ†) ∼ N (0N ,C

†
0), (3.15)

p
(
y | h;χ, σe

)
∼ N

(
Bh, σeINK

)
, (3.16)

p
(
y;Λ†,χ, σe

)
∼ N

(
0,BC†

0B
T + σeINK

)
, (3.17)

where C0 = IK ⊗ Λ. [83] tell us that by using the identity χχT = IN and the
Kronecker product property, we have

BC†
0B

T =
(
IK ⊗ χ

)(
IK ⊗Λ†)(IK ⊗ χ

)T
=

(
IK ⊗ χΛ†χT

)
,

(3.18)

2A degenerate distribution is a probability distribution in a space with specific dimension but
with a support only on a space of lower dimension. For a simple example, consider there is a dice
with three sides of ”1” and three sides of ”6” and then when it is rolled, either ”1” or ”6” shows up
with the probability of 0.5.

3If A1,A2, and A3 are three matrices with appropriate dimensions, we have vec(A1A2A3) =
(A3 ⊗A1)vec(A2).
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and thus, the covariance matrix of p(y) is as follows

BC†
0B

T + σeINK =
(
IK ⊗

(
L† + σeIN

))
, (3.19)

where by using (2.16)
L† = χΛ†χT . (3.20)

By applying the Bayes rule, we have

p
(
h | y;Λ†,χ, σe

)
=

p
(
y | h;χ, σe

)
p
(
h;Λ†)

p
(
y;Λ†,χ, σe

) , (3.21)

and the MMSE estimator of the latent variable is given as follows

ĥ = E
[
h | y

]
= µh, (3.22)

By substituting (3.15)-(3.17) in (3.21) and some manipulations, [83] tells us that
we have a Gaussian posterior distribution function as follows

p
(
h | y;Λ†,χ, σe

)
∼ N

(
µh,Ch

)
(3.23)

with the mean vector
µh =

1

σe

ChB
Ty, (3.24)

and the covariance matrix

Ch =
(
C0 +

1

σe

BTB
)−1

=
(
C0 +

1

σe

INK

)−1

= IK ⊗
(
Λ+

1

σe

IN
)−1

(3.25)

Since x has a linear relationship with h, i.e. x = Bh, we have x̂ = Bµh and

x̂ =
(
IK ⊗

(
IN + σeL

)−1
)
y, (3.26)

where σe and L are estimated in the next. Also, it can be represented by the matrix
form as follows [4]

X̂ =
(
IN + σeL

)−1
Y (3.27)

where it is similar to the one in [41], if the filter coefficient σe is replaced by α (see
more details about this optimization problem in (3.82)). In one hand, if σe = 0,
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the filtered graph signal is exactly equivalent to the observation since there is no
noise corruption. On the other hand, if the variance of the noise distribution is too
large, X = 0 which shows that the observations are not important as long as the
noise power is large enough. In [41], the coefficient α came from the smoothness
prior term of graph signals over the topology which also exists in the minimization
problem to find the optimum value of the graph Laplacian as a regularization term.
However, α was not investigated analytically in [41] and it was estimated by a grid
exhaustive search. Here, to estimate σe and Λ†, an expectation maximization (EM)
algorithm is implemented which maximizes

Q
(
Λ†,χ, σe

)
= E

h|y;σ̂e,χ̂,Λ̂
†
[
log p

(
y,h;σe,χ,Λ

†)], (3.28)

where Λ̂
†
, χ̂, and σ̂e are the estimations of Λ†, χ, and σe in the previous iteration.

Hereafter, according to [4], to simplify the notation, we define Ξ :=
(
σe,χ,Λ

†).
The function Q in (3.28) can be separated as follows

Q(Ξ) = Q1

(
χ, σe

)
+Q2

(
Λ†), (3.29)

Q1

(
χ, σe

)
= Eh|y;Ξ̂

[
log p

(
y | h;χ, σe

)]
, (3.30)

Q2

(
Λ†) = Eh|y;Ξ̂

[
log p

(
h;Λ†)]. (3.31)

In mathematics, an EM algorithm is an iterative approach to determine the max-
imum a posteriori estimates of parameters where the model depends on the latent
variable. This algorithm alternates between the expectation step (E-step) and the
maximization step (M-step). The former computing the expected value of the log-
likelihood of the current estimate for the parameters, and the latter maximizes the
former. These estimates are finally applied to find the distribution of the latent
variables in the next iteration of the E-step. In the same way, find the optimum
parameters here, Q must be maximized for each argument iteratively. To maximize
with respect to σe, the Q2 is not relevant and thus Q1 is simplified as follows4

Q1(χ, σe) =Eh|y;Ξ̂
[
log p

(
y | h;χ, σe

)]
=− 1

2
log 2π − NK

2
log σe −

1

2σe

Eh|y;Ξ̂
[
∥y −Bh∥22

]
(a)
∝ − NK

2
log σe −

1

2σe

Tr
(
Ch

)
,

(3.32)

4the ∝ notation indicates that if a term is not contributing to the σe optimization, it is dropped.
In other words, the expression on the right side of ∝ is proportional to the one on the left side, and
thus maximization over one expression is equal to the maximization over the other expression.
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where
(a)
= is valid since the first term is constant in the maximization problem. Set-

ting the derivative of (3.32) with respect to σe equal to zero, we adopted the follow-
ing equation from [4]

−N

σe

+ Tr
((

σeL+ I
)−1 · L ·

(
σeL+ I

)−1
)
= 0, (3.33)

and then σe is found by a numerical algorithm.

In the second step of EM procedure, we should maximize Q1(·) with respect to
χ. Since we are not interested in the eigenvector matrix and the goal is to estimate
the Laplacian matrix, we try to change the variable in Q2. By using L = χΛχT

and applying the eigenvector matrix identity χχT = χTχ = IN and maximizing
Q2(Λ) with respect to Λ, the Laplacian matrix is estimated. According to [4], (3.15)
is used to find Q2 as follows

Q2

(
Λ†) ∝ Eh|y;Ξ̂

[
log |C0| − hTC0h

]
= K · log |Λ| − Eh|y;Ξ̂

[
xT

(
IK ⊗ L

)
x
]

= K · log |L| − Tr
(
X̂TLX̂

)
= K · log |L| −K · Tr

(
SL

)
,

(3.34)

where S = 1
K
X̂X̂T is the empirical covariance matrix of measurements and | · |

notation is used to denote the pseudo-determinant due to the singularity of Λ and
C0. As a simple definition, the pseudo-determinant is the product of all non-zero
eigenvalues. Then, the last step of EM algorithm is to maximize (3.29) with respect
to the Laplacian matrix as follows [83]

argmax
L

log |L| − Tr
(
SL

)
− Tr

(
(σeL+ I)−1

)
s.t. Lij = Lji,

Lij ≤ 0 if i ̸= j,

L · 1N = 0N ,

Tr(L) = c,

(3.35)

where the first three constraints guarantee a valid Laplacian, according to the defini-
tion in Sec. 2.1.3.4. The last constraint avoids the trivial solution. These constraints
are applied for most of the graph Laplacian inference problem. The first and third
terms in (3.35) makes it difficult to be solved. To relax the third term and have a
lower computational complexity problem, the upper and lower bounds for the ma-
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trix inverse term are computed by using the Theorem 1 of [84] as follows

Tr
((

σeL+ I
)−1

)
≤ N − c2σe

σe ∥L∥2F − c
, (3.36)

Tr
((

σeL+ I
)−1

)
≥ N

2σe + 1
−

c2σe−2cNσe+2N2σe

2σe+1

σe ∥L∥2F − c− 2N − 2cσe

, (3.37)

and for a constant σe, minimizing σe ∥L∥2F leads to minimization of Tr
((

σeL +

I
)−1

)
. To prevent the trivial solution and control the sparsity, the following opti-

mization problem has been proposed in [4]

argmin
L

− logdet |L|+ Tr
(
SL

)
+ σe ∥L∥2F

s.t. Lij = Lji,

Lij ≤ 0 if i ̸= j,

L · 1N = 0N ,

Tr(L) = c.

(3.38)

To solve the pseudo determinant term issue, a change of variable is applied. We
replace L by L + J, where J = 1

N
1N1

T
N to remove the effect of zero eigenvalue

and hence singularity of the Laplacian matrix. Finally, the optimization problem is
rewritten as follows

argmin
L

− logdet (L+ J) + Tr
(
SL

)
+ σe ∥L∥2F

s.t. Lij = Lji,

Lij ≤ 0 if i ̸= j,

L · 1N = 0N ,

Tr(L) = c.

(3.39)

Since (3.39) is convex, any available solver can be used, e.g. YALMIP [85].
In the next, we propose an efficient solver via the proximal point algorithm. To
sum up, our proposed method called Bayesian Topology Learning (BTL), iterates
between three steps as shown in Algorithm 3.1.
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Algorithm 3.1: Bayesian Topology Learning (BTL), taken from [83].
Input: The Measurements Y
Initialize: X̂ = Y, σ̂e = σ0, and c
while Not Converged do

Laplacian matrix learning by solving (3.39),
Noise variance estimation via (3.33),
Signal recovery: X̂ =

(
IN + σ̂eL̂

)−1
Y.

end
Output: L̂ and X̂.

3.3 Bayesian Topology Learning via Proximal Point
Algorithm

A fast algorithm to solve (3.39) is investigated. Using Proposition 2, the last three
constraints are reshaped in the form of the inner product of two matrices, resulting
in a simpler Lagrangian function. Then, the Lagrangian function is respectively
maximized and minimized with respect to the dual and primal variables (graph
Laplacian matrix). A proximal point algorithm is proposed for the minimization
step. The maximization is done via the Newton or quasi-Newton methods. Theo-
rem 1 computes a condition guaranteeing the convergence of iteration between the
maximization and minimization problems.

Proposition 3.3.1. [4]: The Laplacian matrix is a symmetric matrix and hence the
summation over all entries of the i’th row (or the i’th column) is rewritten as follows

N∑
j=1

Lij =
1

2
Tr
(
L
(
Ui +UT

i

))
(3.40)

where Ui is an N ×N zero matrix in which the i’th column is only ones.

Proposition 3.3.2. [4]: The constraint Lij ≤ 0 if i ̸= j in the problem (3.39) can
be replaced by ∥L∥1 = 2 · Tr(L), since L is a positive semi-definite matrix and
L · 1 = 0.

Proof. Since there is no self-loop, the graph weight matrix’s diagonal has zero en-

53



Undirected Topology Learning via Bayesian Inference

tries. Having Lij ≤ 0 if i ̸= j is equivalent to ∥D∥1 = ∥W∥1 and thus

∥L∥1 = ∥D−W∥1
= ∥D∥1 + ∥W∥1
= 2 ∥D∥1
= 2 · Tr(D)

= 2 · Tr(L)

(3.41)

Here, the graph Laplacian matrix is a positive semi-definite matrix ensuring Lii ≥ 0

so as Lij ≤ 0 if i ̸= j.

By some simple manipulations, the minimization problem of (3.39) can be
rewritten in general form as follows5

argmin
L

− logdet (L+ J) + Tr
(
LS

)
+ σe ∥L∥2F

s.t. B(L) = a,
(3.42)

where a = [0; c; 2c/N ]T , and B(·) : RN×N → R(N+2)×1 is an operator defined as
follows [4]

B(L) =

[
1

2
Tr
(
L
(
U1+UT

1

))
, . . . ,

1

2
Tr
(
L
(
UN +UT

N

))
,Tr(L), ∥L∥1

]T

, (3.43)

We assume that the feasible set F = {L ∈ SN
+ , B(L) = a} is not an empty set

and since (3.42) is convex, there exists a global solution. The Lagrangian function
for the primal variable L and the dual variable ν = [ν1, . . . , νN , νN+1, νN+2] is as
follows

L
(
L;ν

)
= −logdet (L+ J) + Tr

(
LS

)
+ σe ∥L∥2F + νT (a− B(L)), (3.44)

and L can be estimated via the following optimization problem

L̂ = argmin
L

g(L), (3.45)

where
g(L) = max

ν
L
(
L;ν

)
. (3.46)

Since it is difficult to implement (3.45) directly, the proximal algorithm is pro-

5This minimization problem is reduced to the one proposed in [41] for α1 = 0.
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posed in [4], which is a standard tool to solve a constrained and nonsmooth opti-
mization problem [86]. The proximal operator of a closed proper convex function
f : Rn → R∪ {+∞} is denoted proxf : Rn → Rn and defined as follows

proxηf (v) = argmin
y

(
f(y) +

1

2η
∥y − v∥22

)
. (3.47)

where η is a scale parameter. To solve the optimization problem ŷ = argmin
y

f(y),

the proximal point algorithm, also called proximal iteration iterates as follows

y(t+1) := proxηf

(
y(t)

)
(3.48)

until the error between two consecutive y is less than a threshold. By some iterations
over t, yt and f

(
yt
)

converge to the minimum of f and its optimal value [87]. The
proximal operator makes a smooth version of the function using the regularization.
Another approach to compute the proximal operator is as follows [86]

proxηf

(
y
)
= y − η∇Mηf (y), (3.49)

where ∇ and Mηf (y) are the gradient operator and the Moreau-Yosida regular-
ization, respectively. The Moreau-Yosida regularization with parameter η > 0 is
defined as follows [86, 88, 89]

Mηg(L) = min
L′

{
g
(
L′)+ 1

2η
∥L− L′∥2F

}
(a)
= max

ν
min
L′

{
L
(
L′;ν

)
+

1

2η
∥L− L′∥2F

}
= max

ν
Pη

(
L;ν

)
,

(3.50)

where
(a)
= is based on the Von Neumann-Fan minimax theorem. Similar to the prox-

imal operator, the Moreau-Yosida regularization generates a smooth version of the
function. Besides, Mηg(L) and g

(
L
)

have the same minimizers and thus we are af-
ter (3.50) instead of (3.45), equivalently. All things considered, we try to minimize
Mηg(L) (instead of g(L)), by implementing the proximal point algorithm proposed
in (3.48).
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3.3.1 Derivation of Pη

(
L;ν

)
The operator Ba which is the adjoint of B is computed as follows

Ba(ν) =
∂⟨L,Ba(ν)⟩

∂L
(a)
=

∂⟨B(L),ν⟩
∂L

,

(3.51)

where ∂
∂L

denotes the partial derivative and (a) uses the inner product property. By
applying (3.43) and some manipulations,

Ba(ν) =
1

2
ν1
(
U1+UT

1

)
+· · ·+1

2
νN

(
UN+UT

N

)
+νN+1I+νN+2

(
2I−NJ

)
. (3.52)

We introduce Tη as

Tη

(
L;ν

)
≜

1

1 + 2ησe

(
L− η

(
S− Ba(ν)

))
, (3.53)

and Pη

(
L;ν

)
is therefor given as below

Pη

(
L;ν

)
= νTa+

1

2η
∥L∥2F−

1 + 2ησe

2η

∥∥Tη

(
L;ν

)∥∥2

F
+min

L′
Jη

(
L′,L;ν

)
(3.54)

and

Jη

(
L′,L;ν

)
= −logdet (L′) +

1 + 2ησe

2η

∥∥L′ −Tη

(
L;ν

)∥∥2

F
. (3.55)

The following Lemma helps finding the minimizer of Jη

(
L′,L;ν

)
and simpli-

fying (3.54).

Lemma 3.3.3. [90]: Let us assume Z ∈ SN has the eigenvalue decomposition Z =

PΨPT and γ > 0 are given, and Ψ = diag(ψ) is the eigenvalue matrix. Assume
there are two functions ϕ+

γ (x) ≜
1
2

(√
x2 + 4γ+x

)
and ϕ−

γ (x) ≜
1
2

(√
x2 + 4γ−x

)
for all x ∈ R and Z1,Z2 are defined as follows

Z1 := ϕ+
γ (Z) = Pdiag(ϕ+

γ (ψ))P
T

Z2 := ϕ−
γ (Z) = Pdiag(ϕ−

γ (ψ))P
T

(3.56)

Then,

1. Z = Z1 − Z2 and Z1 · Z2 = γIN ,

2. ϕ+
γ is continuously differentiable and its derivative for every H ∈ SN is given
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as below
∂ϕ+

γ

∂x

∣∣∣∣
x=Z

· [H] = P
(
Ω⊙ (PTHP)

)
PT , (3.57)

where ⊙ is the Hadamard product notation and Ω is a symmetric matrix
defined as follows

Ωij =
ϕ+
γ (Ψi) + ϕ+

γ (Ψj)√
Ψ2

i + 4γ +
√

Ψ2
j + 4γ

, 1 < i, j < N. (3.58)

3.
∂ϕ+

γ

∂x

∣∣∣∣
x=Z

· [Z1 + Z2] = ϕ+
γ (Z). (3.59)

The first derivative of Jη

(
L′,L;ν

)
with respect to L′ must be set to zero as

given below

−
(
L′)−1

+
1 + 2ησe

η

(
L′ −Tη

(
L;ν

))
= 0N , (3.60)

and then we have
L′ = ϕ+

γ′

(
Tη(L;ν)

)
, (3.61)

where γ′ = η
1+2ησe

. This L′ minimizes Jη

(
L′,L;ν

)
and then (3.54) is simplified as

follows

Pη

(
L;ν

)
= νTa+

1

2η
∥L∥2F − 1

2γ′

∥∥Tη

(
L;ν

)∥∥2

F

− logdet
(
ϕ+
γ′

(
Tη(L;ν)

))
+

1

2γ′

∥∥ϕ−
γ′

(
Tη(L;ν)

)∥∥2

F

= νTa+
1

2η
∥L∥2F − logdet

(
ϕ+
γ′

(
Tη(L;ν)

))
+

1

2γ′

∥∥ϕ−
γ′

(
Tη(L;ν)

)∥∥2

F

− 1

2γ′

∥∥Tη

(
L;ν

)∥∥2

F

(a)
= νTa+

1

2η
∥L∥2F − logdet

(
ϕ+
γ′

(
Tη(L;ν)

))
− 1

2γ′

∥∥ϕ+
γ′

(
Tη(L;ν)

)∥∥2

F
+N,

(3.62)
where

(a)
= follows Lemma 3.3.3.
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3.3.2 Derivation of Mηg(L)

Lemma 3.3.4. [4]: Let us define the following three notations

Φ+ := ϕ+
γ′

(
Tη(L;ν)

)
,

Φ− := ϕ−
γ′

(
Tη(L;ν)

)
,(

Φ+
)′
:=

∂ϕ+
γ′

∂Tη

(3.63)

Then, the derivative of Pη

(
L;ν

)
with respect to ν is as follows

∇νPη

(
L;ν

)
= a− B

(
Φ+

)
. (3.64)

Proof.

∇νPη

(
L;ν

)
= a− γ′B

((
Φ+

)′(
Φ+

)−1
)
− B

((
Φ+

)′
Φ+

)
= a− B

((
Φ+

)′[
Φ− +Φ+

])
(a)
= a− B

(
Φ+

) , (3.65)

where
(a)
= follows from Lemma 3.3.3, part 3.

By applying (3.57), we have readily the following corollary.

Corollary 3.3.4.1. [4]: The Hessian of Pη

(
L;ν

)
with respect to ν is readily avail-

able from 3.3.4 as follows

∇2
ννPη = −γ′

[
B
((

Φ+
)′ · [1

2

(
U1 +UT

1

)
]
)
, . . . ,B

((
Φ+

)′ · [1
2

(
UN +UT

N

)
]
)
,

B
((

Φ+
)′ · [I]),B((Φ+

)′ · [2I− 11T ]
)]

,

(3.66)

Now, the unconstrained maximization problem of (3.50) is solved by a quasi-
Newton method, e.g. L-BFGS. Hereafter, it is assumed that

νopt = argmax
ν

Pη

(
L;ν

)
, (3.67)

and by using (3.50), we have

Mηg(L) = Pη

(
L;νopt

)
. (3.68)
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Algorithm 3.2: Bayesian Topology Learning Using Proximal Point Algo-
rithm (BTL-PPA), taken from [4]

Input: X̂, a, and the error threshold ethr > 0
Initialize: L(0) ∈ SN

+ and ν(0) = 1

while
∥∥L(t+1) − L(t)

∥∥2

F
/ηt ≥ ethr do

1: ν
(t+1)
opt = argmax

ν
Pη

(
L(t);ν

)
,

2: L(t+1) = ϕ+
γ′

(
Tη(L

(t);ν
(t+1)
opt )

)
,

end
Output: The graph Laplacian matrix L.

Lemma 3.3.5. [4]: The derivative of Mηg(L) with respect to L is as follows

∇LMηg(L) =
1

η

(
L− ϕ+

γ′

(
Tη(L;νopt)

))
. (3.69)

Proof. We take the derivative of (3.62) with respect to the graph Laplacian matrix

∇LMηg(L) =
1

η
L− 1

1 + 2ησe

((
Φ+

)′(
Φ+

)−1
)
− 1

γ′(1 + 2ησe)

((
Φ+

)′
Φ+

)
=

1

η

(
L− γ′(Φ+

)′(
Φ+

)−1 −
(
Φ+

)′
Φ+

)
=

1

η

(
L−

(
Φ+

)′(
Φ− +Φ+

))
(a)
=

1

η

(
L− ϕ+

γ′

(
Tη(L;νopt)

))
(3.70)

where (a) follows (3.59).

Substituting (3.69) in (3.49), the graph Laplacian is updated iteratively as fol-
lows

L(t+1) = ϕ+
γ′

(
Tη(L

(t);ν
(t+1)
opt )

)
, (3.71)

All steps to update the Laplacian matrix are summarized in Algorithm 3.2. We
used ηt to adjust with the iteration index and have a faster convergence. To find ηt,
one way is to use the backtracking line search [86, 91].
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3.4 Convergence Analysis

Since in this section, the concept of Lipschitz continuity is used, we review it first.
In simple words, a Lipschitz continuous function is constrained in the speed of
changing with respect to the change of its variable(s). For a Lipschitz continuous
function, there is a real number, called the Lipschitz constant, such that the absolute
value of the slop of any lines connecting two points on the function’s graph is less
than or equal to this constant. To define it mathematically, let the function f : X →
Y be defined on the domain X and the range set Y . If we have two metrics for these
metric spaces, respectively as dX and dY , to hold Lipschitz continuity

dY
(
f(x), f(x′)

)
≤ lc · dX (x, x′), (3.72)

for two points x and x′ in the domain set of the function and a Lipschitz constant lc.
The smallest possible constant is also called the ”best Lipschitz constant”. Since in
this thesis the real-valued functions is of interest, the Lipschitz continuous function
can also be defined simply as follows

| f(x)− f(x′) |≤ lc | x− x′ | (3.73)

and thus for the real-valued functions, the Lipschitz constant can be computed sim-
ply by finding the upper bound of all the possible slops.

Theorem 3.4.1. [92]: If f is a convex function on the open convex set ι in a
normed linear space and bounded above of one point of ι, it is Lipschitz on any
compact subset of ι.

Theorem 3.4.2. [92]: If f is a convex function on the open convex set ι for | f |≤ z

in a normed linear space and ι includes a ϵ0-neighborhood of a subset ι1, it is
Lipchitz on ι1 with the constant 2z

ϵ0
.

To start discussing the convergence of the proposed algorithm in the previous
section, we represent the eigendecomposition of Tη

(
L;ν

)
as follows

Tη = PΨPT (3.74)

and thus
ϕ+
γ (Tη) = Pdiag(ϕ+

γ (Ψ))PT . (3.75)

The scalar function ϕ+
γ (·) is a convex bounded function as long as the input

eigenvalues are bounded. By using the above theorems, ϕ+
γ (Ψ) is proved to be
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Lipschitz continuous, and we can write the following inequality∥∥ϕ+
γ′

(
T(t)

η

)
− ϕ+

γ′

(
T(t−1)

η

)∥∥2

F
≤ lc

∥∥T(t)
η −T(t−1)

η

∥∥2

F
, T(t)

η = Tη

(
L(t);ν

(t)
opt

)
(3.76)

Lemma 3.4.3. [4]: The function ϕ+
γ (x) is Lipschitz continues with the constant 3

2
.

Proof. The domain of ϕ+
γ (x) is R and hence the function is everywhere differen-

tiable, and the derivative is bounded. Therefore, the Lipschitz constant is as follows

sup
x

|
∂ϕ+

γ (x)

∂x
| = sup

x
| x√

x2 + 4γ
+ 0.5|

=
3

2
, x ∈ R, γ > 0.

(3.77)

Lemma 3.4.4. [4]: Let Z be a real symmetric matrix with the eigenvalue matrix
ΨZ . Then, ∥Z∥2F = ∥ΨZ∥2F .

Proof. If Ψii is an eigenvalue of Z, then Ψ2
ii the eigenvalue of Z2. Therefore,

∥Z∥2F = Tr
(
ZZT

)
= Tr

(
Z2

)
=

∑
i

[
ΨZ2

]
ii

=
∑
i

[
ΨZ

]2
ii

= ∥ΨZ∥2F .

(3.78)

Corollary 3.4.4.1. [4]: The function ϕ+
γ (Z) is a Lipschitz continues matrix valued

function with the Lipschitz constant lc = 9
4
.

Proof. Considering (3.56), Lemma 3.4.3, and Lemma 3.4.4, the proof reads as fol-
lows ∥∥ϕ+

γ (Z1)− ϕ+
γ (Z2)

∥∥2

F
=

∥∥Pϕ+
γ (Ψ1)P

T −Pϕ+
γ (Ψ2)P

T
∥∥2

F

=
∥∥Pϕ+

γ

(
Ψ1 −Ψ2

)
PT

∥∥2

F

≤ (
3

2
)2
∥∥PΨ1P

T −PTΨ2P
T
∥∥2

F

=
9

4
∥Z1 − Z2∥2F

(3.79)
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Theorem 3.4.5. [4]: The proposed BTL-PPA is convergent when the following
condition is met ∥∥ν(t) − ν(t∗)

∥∥2

2
≤ 1

η2N2

∥∥L(t) − L(t∗)
∥∥2

F
, (3.80)

where L(t∗) and ν(t∗) are respectively, the optimum primal and dual variables.

Proof.∥∥L(t+1) − L(t∗)
∥∥2

F
=

∥∥ϕ+
γ′

(
T(t)

η

)
− ϕ+

γ′

(
T(t∗)

η

)∥∥2

F

≤ lc
∥∥T(t)

η −T(t∗)
η

∥∥2

F

=
lc

(1 + 2ησe)2
∥∥(L(t) − L(t∗)

)
+ η · Ba

(
ν(t) − ν(t∗)

)∥∥2

F

≤ lc
(1 + 2ησe)2

(∥∥L(t) − L(t∗)
∥∥2

F
+ η2N2

∥∥ν(t) − ν(t∗)
∥∥2

F

)
(a)

≤ 2lc
(1 + 2ησe)2

∥∥L(t) − L(t∗)
∥∥2

F
,

(3.81)

where Ba is the adjoint operator defined in (3.51) and
(a)

≤ holds when (3.80) is met.

According to (3.81), it is required to satisfy 2lc
(1+2ησe)2

< 1 for the convergence

which can be guaranteed by using Corollary 3.4.4.1 and having η ≥ 3
√
2−2

4σe
.

3.5 Experimental Results

Some of the most important state-of-the-art algorithms as well as our proposed al-
gorithm are evaluated for synthetic and real data sets. For the topology learning sce-
narios, the performance of BTL-PPA is compared against three existing algorithms
which are GL-SigRep [41], CGL [53], and learning sparse graph (LSG) [40]. These
three methods have already been reviewed in Sec. 3.1. For the signal recovery per-
formance comparison, BTL-PPA is only compared with GL-SigRep, since the other
methods have no signal recovery approach. To clarify more about the state-of-the-
art algorithms, here we briefly note the optimization problem that each of them is
solving.
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• GL-SigRep:

argmin
L,X

∥Y −X∥2F − αTr
(
XTLX

)
+ β ∥L∥2F

s.t. Lij = Lji,

Lij ≤ 0 if i ̸= j,

L · 1N = 0N ,

Tr(L) = c,

(3.82)

where α and β are two positive regularization parameters that have been opti-
mized by a grid search. The algorithm to implement this minimization prob-
lem is proposed in [41].

• CGL:

argmin
L

− logdet (L+ J) + Tr
(
L
(
S+ J+ α(2I− 11T )

))
, (3.83)

where α is the ℓ1-regularization parameter to control the sparsity.

• LSG:

argmin
∆̃≻0, W, ς2

logdet ∆̃− Tr(∆̃S)− α

K
∥W∥1 ,

s.t. ∆̃ = diag(W · 1N)−W +
I

ς2
,

Wij ≥ 0, i = 1, . . . , N, j = 1, . . . , N

Wii = 0, i = 1, . . . , N,

ς2 > 0,

(3.84)

There are several performance metrics used in this thesis to compare different
algorithms. One of these metrics applies for signal recovery performance compar-
ison and the rest are used to evaluate how the graph topology learning has been
successful. To check the signal recovery performance, the normalized mean square
error (NMSE) is used which is defined as follows

NMSE =
1

N ·K
·

∥∥∥Y − Ŷ
∥∥∥2

2

∥Y∥22
(3.85)

To evaluate the graph recovery performance, three metrics have been applied
usually in the literature as follows [41, 93–96]
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• F-measure = 2·Precision·Recall
Precision+Recall , where ”precision” is the number of truly recov-

ered edges to the number of reconstructed edges in the estimated graph, and
”recall” is the number of truly recovered edges to the number of edges in the
ground-truth graph. In the machine learning framework, the truly recovered
edges are also called true positive (TP) and if an edge is recovered while it is
not available in the ground-truth graph, it is called false positive (FP). Using
this terminology, the F-measure can also be defined as follows

F-measure =
2TP

2TP+FP+FN
(3.86)

where FN denotes ”False Negative”. The F-measure only considers the sup-
port set of the edges, but not the weights.

• Normalized mean square deviation (NMSD) for graph edge estimation. This
performance measure considers the weights of edges and is defined as follows

NMSD =
1

N2
·

∥∥∥L− L̂
∥∥∥2

2

∥L∥22
(3.87)

• Mutual information (MI) between the ground-truth and the estimated graph.
This measure evaluates how much information about the edges has been re-
covered by the estimated graph. The normalized MI is defined as below

NMI(L− L̂) =
2MI(L− L̂)

H(L) +H(L̂)
, (3.88)

where H(·) is the entropy of the input matrix.

3.5.1 Synthetic Data

First, the coordinates of N = 50 vertices are generated uniformly at random in the
unit square. The edge weight between vertices i and j is extracted from the Gaussian
radial basis function (RBF), i.e. exp

(
− d(i, j)2/2σ2

)
where d(i, j) is the distance

between the vertices. We set σ = 0.5 and threshold edges with weights smaller than
0.75. The weight matrix and then the graph Laplacian matrix are computed and
normalized by its trace. Each data vector is sampled from x[k] ∼ N (0N ,L

†) and
added with an i.i.d. Gaussian noise. The measurements are y[k] = x[k]+e[k], k =

1, . . . , 300, where the signal to noise ratio varies between −5dB to 5dB. These
measurements are the given input to the Algorithm 3.1.
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Figure 3.1: Top: The normalized mean square deviation of graph topology estimation;
Bottom: The normalized mean square error of signal recovery (N = 50 and K = 150).

Figure 3.1 shows that BTL-PPA outperforms GL-SigRep for very low SNR’s
and its signal and topology learning errors are better than those of GL-SigRep.
Considering NMSD comparison in Figure 3.1, in low SNR regimes, the BTL-PPA
topology learning algorithm works very well. Still, it has a good performance for
high SNR. Figure 3.2 supports the high performance of the proposed algorithm from
the perspective that how many edges are captured correctly in the learned graph.

In the second simulation based on synthetic data, we run algorithms against
different ratios of K/N . The SNR is kept fixed and the experiments are run for
different numbers of samples, K = {50, 100, 150, 200, 250, 300}. In other words,
a subset of samples is fed to the algorithms. As shown in Figure 3.3 and Figure
3.4, for large K/N ratios, the recovery algorithms provides a better performance.
The intuition is that by using a larger number of samples, a better graph topology
and signal recovery performance are expected. When the given samples are not
sufficient, there is not enough information for learning procedures. However, the
GL-SigRep’s performances are reduced by utilizing more graph samples. It may be
due to the noise accumulations in alternating between signal recovery and topology
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Figure 3.2: Top: F-measure; Bottom: Normalized Mutual Information (To compute the mu-
tual information, 8-bit resolutions or 256 bins are considered to quantize the edge weights).
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Figure 3.3: Top: The normalized mean square deviation of graph topology estimation;
Bottom: The normalized mean square error of signal recovery (N = 50 and SNR = −1).
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Figure 3.4: Top: F-measure; Bottom: Normalized Mutual Information (To compute the mu-
tual information, 8-bit resolutions or 256 bins are considered to quantize the edge weights).

learning steps.

3.5.2 Temperature Data

The daily temperatures of N = 48 states in the USA are stored for 2011 to 2014,
totally K = 1461 measurements [97]. The graph signals yn[k], k = 1, . . . 365 are de-
trended by a fourth order polynomial for each n = 1, . . . 48 and then they are given
to different learning algorithms. The graph measurements are average daily temper-
atures and the underlying graph topology is the propagation flow among states. The
ground-truth topology is not known, but there are a couple of ways to propose it.
One approach which relies on the physics of the problem is a geographically based
ground-truth graph where the nodes are the states and an edge weight between two
states is assumed to be the Gaussian RBF of the terrestrial distance. Following this
approach to propose the ground-truth graph, Figure 3.5 compares different graph
learning algorithms with respect to their ability to capture the underlying connec-
tions. The proposed BTL-PPA detects most of the edges with a good recall and
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Table 3.1: Performance comparisons for different algorithms applied onto the USA temper-
ature data. The ground-truth graph is proposed based on the physical distances.

NMSD NMI F-measure
BTLPPA 10−4 0.78 0.79

GL-SigRep 10−4 0.72 0.69
CGL 10−3 0.44 0.36
LSG 10−4 0.44 0.35

Table 3.2: Performance comparisons for different algorithms applied onto the USA temper-
ature data. The ground-truth graph is proposed based on the cross-validation.

NMSD NMI F-measure
BTLPPA 10−8 0.93 0.93

GL-SigRep 10−5 0.90 0.88
CGL 10−4 0.66 0.62
LSG 10−5 0.87 0.83

precision.
Figure 3.6 shows the topology learned by our proposed method on the real map

of the USA. It can be inferred that state weather flows to the neighboring states,
which is also corroborated by the physics of the temperature propagation. There
are more edges on the right side of the map due to the dense regions and close-by
cities when compared to the left. The less number of connections in the middle of
the figure can also be due to the Rocky mountains, similarly stated in [27]. The
numerical results to compare different algorithms are given in Table 3.1.

In the second experiment, we used the cross-validation approach to form a
ground-truth graph. Here, a portion of the dataset is used to form the ground-truth
graph and the rest is used for testing purposes. The dataset is divided into two sets,
training and testing data. The daily temperature of 2011 and 2012 k = 1, . . . , 7316

is used as the training data to learn the underlying topology. Then, this topology is
assumed as the ground-truth graph. Now, we go for testing and use the remaining
data, i.e. the data from years 2013 and 2014, is applied to estimate the topology
and compare it to the first one to evaluate the consistency of the learning procedure.
By consistency, it checks whether the learned topology from the training data is
different from the one learned by the test data. Table 3.2 shows the results when the
cross-validation is applied to propose the underlying graph.

6the year 2012 was a leap year
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Ground-Truth
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(b)

GL-SigRep
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Figure 3.5: (a) the Ground-truth, and the adjacency matrix learned by (b) BTL-PPA, (c)
GL-SigRep, (d) CGL, and (e) LSG. Here, blue squares show the connections between two
nodes (These figures are taken from [4]).

Figure 3.6: The learned topology by BTL-PPA for temperature data of 2011, mapped on
the USA mainland, taken from [4].
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3.6 Discussion

In this chapter, the GMRF signal model is connected to the underlying network
structure and it is assumed that the observations are contaminated with an indepen-
dent noise. Thus Q5 and Q6 of Sec. 1.2 have been targeted. The main optimization
problem (3.39) and its fast implementation in Sec. 3.3 are respectively aimed at Q8
and Q9. Since the Gaussian signal is a widely used model in real-world scenarios,
the content of this chapter can be utilized for many applications. Although some of
these applications were investigated throughout the chapter, many more can be ap-
proached by the proposed algorithm and its efficient and fast implementation. The
proposed online implemented algorithm is usable when we continuously receive
more data over time. Moreover, the main optimization problem (3.39) is somewhat
general in the sense that it can be reduced to some of the state-of-the-art algorithms.

3.7 Chapter Summary

We investigated an algorithm to explore the link between the Gaussian graph signals
and the graph topology. A factor analysis model is used for signal representation
in the graph domain and posterior probabilities for the signals and coefficients were
computed. To formulate the problem, we used a Bayesian framework and proposed
a minimum mean square estimation approach to denoise the measurements. Then,
the noise variance is estimated via EM algorithm and a convex optimization problem
with respect to the graph Laplacian matrix was proposed and solved via a proximal
point method to estimate the topology from denoised versions of graph signals.
Among the defined research questions in the first chapter, here, we approached the
connection of a kind of multivariate signal processes to the graph topology (Q5),
noise removal from the measurements (Q6), an optimization problem formulation
for graph signal recovery (Q8), and proposing a fast algorithm to implement the
solution (Q9).
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Chapter 4

Robust Topology Learning for
Undirected Graphs

In many applications, not only the signal is contaminated with noise,
but also it is mixed with outliers. In this chapter, a method is proposed
inferring the graph topology from such measurements. It is assumed
that there is no information about the space graph topology, while the
graph signal is sampled consecutively in the time domain and hence the
graph in the time domain is given. Due to the nature of the stock mar-
ket data in which noise and outliers are present, the proposed method
is a good candidate to find some relations among selected ticker prices.
Thus, we applied the proposed method to learn the space graph topology
from some of large companies in the USA market.

One of the pioneering works in the area of undirected topology estimation is the
Graphical Lasso [42], where an ℓ1 penalty is applied to the inverse covariance ma-
trix. The inverse covariance, so-called precision matrix, can represent the structure
of the multivariate Gaussian variables. By applying a Lasso penalty to the preci-
sion matrix, it is possible to learn a network of sparse connections between some
entities. However, this approach is only applicable when the underlying processes
are Gaussian. Besides, the inverse covariance matrix entries can be positive or neg-
ative and do not sum to zero. In other words, this method can not satisfy the basic
properties of the Laplacian matrix which can represent a graph topology. Lake and
Tenenbaum [40] proposed a similar objective function applying some constraints to
extract the Laplacian matrix. They applied their algorithm to learn the connection
between different categories of mammals based on their features. In [41], an opti-
mization problem is proposed to minimize the signal reconstruction error, while it
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also learns a sparse graph in which the graph signals are represented smoothly on
the underlying graph. The proposed method in [41] is used to estimate the connec-
tion between the altitude of a region with temperature propagation to its neighbors.

Many works are investigating the undirected topology learning from real-world
data, e.g. [38, 39, 42–51, 51–53]. However, in all of them, the effect of ”outliers”
is not considered. In the signal processing nomenclature, the observations which
significantly differ from the regular samples, are considered as outliers. There have
been many works in the detection and removal of outliers, e.g. [98, 99].

In GSP, a few research projects have considered outliers estimation, but they
did not learn the topology. For example, an algorithm for graph signal recovery
from noisy, corrupted, and incomplete measurements is proposed in [14], but it
is assumed that the graph structure is known. However, in some applications, the
time-space data are highly exposed to outliers, where the underlying structure is also
unknown. As an example, the stock market trades are usually dealing with insider
trading, market manipulations, and other fraudulent activities which are modeled
as outliers or anomalies. Insider trades refer to buy or sell shares according to
some information that is not available to the public. Market manipulation means
some types of oriented actions leading to decrease or increase the price for specific
purposes. This is not considered as noise since ”noise trading” is much about ”buy”
or ”sell” transactions done randomly by nonprofessional traders who trade based on
chances 1. There are some research works, focusing on outliers in the stock market,
e.g. [101] and [102], but they concentrated only on specific types of outliers for a
given share. The price of a share may be different from time to time and hence
it is possible to consider each share price by a time series of data. Moreover, the
share prices affect each other in some ways. Therefore, it is possible to model the
market as a network of shares and investigate the underlying topology which exists
among them. The statistics also show that there are rapid and high level fluctuations
modeled by outliers.

This chapter is based on the results in [6] and its main contribution is as fol-
lows; given a set of time-series measurements corrupted by noise and outliers, the
main goal is to infer the underlying topology and estimate anomalies. As a real ex-
periment, the proposed method is applied to estimate the connections among some
stock market shares in the USA market.

1For a complete discussion about the noise in the market, the interested reader may refer to [100].
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Figure 4.1: A regular time domain graph, taken from [6].

4.1 The Main Idea

It is assumed that the measurements are given as below

Y = X+ Z+ E, (4.1)

where X, Z, and E are pure signals, noises, and outliers, respectively. The noise
z[k] is independent of the signals and generated from an independent and identically
distributed (i.i.d.) Gaussian process. We also know that E is sparse. The sparsity
means that in each outlier vector at a specific time k, i.e. e[k], most of the entries
are zero.

In DSP, it is assumed that samples are provided one for each time instance.
Figure 4.1 shows this concept by a simple graph, connecting two consecutive time
samples by an edge (the interested reader may refer to [15] for more discussions).
Hereafter, we call this graph the ”time graph”, since it is a topology among time
samples. The other graph that we used so far is called a ”space graph” since it
shows the topology of vertices. The time graph Laplacian is a K × K tridiagonal
matrix as follows when only non-zero entries are shown [6]

L̃ =



1 −1

−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 2 −1

−1 1


. (4.2)

where for simplicity and without loss of generality, the edge weights are given as
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follows

W̃kk′ =

1, |k − k′| = 1

0, |k − k′| ≠ 1
(4.3)

Similar to [6], the main goal of this chapter is to solve the following minimiza-
tion problem

argmin
X,L,E

∥Y −X− E∥2F + λ1Tr(XTLX) + λ2Tr
(
XL̃XT

)
+ λ3 ∥L∥2F

s.t. Lij = Lji,

Lij ≤ 0 if i ̸= j,

L · 1N = 0N ,

Tr(L) = c0,

∥E∥0 ≤ c1,

(4.4)

where the first term encourages data fidelity. The second term controls the signal
smoothness over the space while the third term promotes smoothness over time.
The fourth term adjusts the off-diagonal entries of the Laplacian where Tr(L) = c0

avoids the trivial solution for some constant c0. The first three constraints guarantee
that the learned L is a Laplacian matrix and the last constraint leads to a sparse
outliers matrix.

Since both noise and outlier are considered in this algorithm, we call it Robust
Graph Topology Learning or RGTL. It is a general algorithm for undirected graph
topology inference and signal recovery due to no assumption about the process
model, like Gaussianity or causality. If E = 0 and L̃ = 0, RGTL is equivalent to
GL-SigRep [41].

The minimization problem in (4.4) is convex for X and L separately and it is not
convex over E. An alternation among these three variables is used to solve (4.4).
To implement the proposed algorithm, it fixes two variables in each step and solves
the minimization problem for the third one. Then, it iterates over these steps up to
a convergence.

Fixing X and L leads to the ℓ2 − ℓ0 problem as follows [6]

argmin
E

∥Y −X− E∥2F

s.t. ∥E∥0 ≤ c1,
(4.5)

There are several methods to solve (4.5) in the sparse signal processing frame-
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work. A simple one is to set E = Y −X and keep the largest entries, in absolute
value sense, and set the remaining ones to zero. Thus, some columns of E can con-
tain multiple non-zeros while others are just zeros. Following the procedure given
in [6], by fixing L and E, (4.4) reduces as follows

argmin
X

∥Y −X− E∥2F + λ1Tr(XTLX) + λ2Tr
(
XL̃XT

)
(4.6)

and taking its derivative and setting it to zero gives(
IN + λ1L

)
X+ λ2XL̃ = Y − E, (4.7)

To find a closed form solution, the Kronecker product property helps rewriting
(4.7) as the following vector form(

IK ⊗
(
IN + λ1L

))
vec(X) + λ2

(
L̃⊗ IN

)
vec(X) = vec

(
Y − E

)
, (4.8)

and then

vec(X) =
(
IK ⊗

(
IN + λ1L

)
+ λ2L̃⊗ IN

)−1

· vec
(
Y − E

)
. (4.9)

Then X and E are kept fixed and (4.4) is solved by the following optimization
problem

argmin
L

λ1Tr(XTLX) + λ3 ∥L∥2F

s.t. Lij = Lji

Lij ≤ 0 if i ̸= j,

L · 1N = 0N ,

Tr(L) = c0.

(4.10)

The Laplacian L is a symmetric matrix and thus this problem is solved only for
entries on the lower triangular matrix. Vectorizing the lower triangular part of L
and applying the duplication matrix Mdup [103] gives

Mdup · vech(L) = vec(L), (4.11)

where vech(L) ∈ R
N(N+1)

2 and vec(L) ∈ RN2 denote the half-vectorization and
vectorization of L, respectively. The following identities are applicable to rewrite
the objective function in the vector form as below

Tr(XTLX) = vec(XXT )T · vec(L), (4.12)
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∥L∥2F = vec(L)T · vec(L). (4.13)

By substituting (4.11), (4.12), and (4.13) in (4.10), we have

argmin
vech(L)

λ1vec(XXT )T · Mdup · vech(L) + λ3vech(L)T · MT
dup · Mdup · vech(L)

s.t. B · vech(L) ≤ 0N(N−1)
2

,(
1T
N ⊗ IN

)
· Mdup · vech(L) = 0N(

vec(IN)
)T · Mdup · vech(L) = c0.

(4.14)
where B manages the inequality constraint in (4.10). The problem (4.14) is a
quadratic convex problem and is solved efficiently by some off-the-shelf meth-
ods [91, 104]. Here, we used CVX, a package for specifying and solving convex
programs [105].

4.2 Experimental Results

The RGTL algorithm is tested numerically and compared with the state-of-the-art
algorithm in [41].

4.2.1 Synthetic Data

An Erdős Rényi graph is generated with different number of vertices N ∈ {20, 25,
30, 35, 40} and an edge probability of 0.2. The graph Laplacian is normalized by its
trace. A set of graph signals based on multivariate Gaussian processes is generated
where its mean is a zero vector and its covariance is the pseudo inverse of the graph
Laplacian. Each x[k], k = 1, . . . , 1000 is a graph signal where the data matrix X

stacks them in columns. The signal to noise ratio for measurements is 10dB. The
outliers matrix E is sampled from uniformly distributed random entries with around
pnonZero ∗N ∗K nonzero elements, where the probability of nonzero element is one
percent. The regularization parameters λ1, λ2, λ3 and constants c0, c1 are selected
by grid searches over different sets of values. The simulation is run for 100 trials
and the results are averaged.

Figure 4.2 shows that RGTL outperforms in several graph orders. A higher
graph order leads to a lower NMSD. When the dimension of graph signals is higher,
the outlier vectors are estimated easier and with more accuracy. Table 4.1 shows
performance comparisons by averaging the results over different graph orders. The
RGTL algorithm has a better performance numerically when compared to GL-
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Figure 4.2: NMSD comparisons for several network orders (K = 1000), taken from [6].

SigRep, even for the explained scenario in which the synthetic data generation setup
is what was proposed in [41] designed for GL-SigRep.

Table 4.1: The performance measures for different numbers of vertices (K = 1000 and
SNR = 10dB). adopted from [6].

NMSE Precision Recall F-measure
RGTL 0.0016 0.75 0.78 0.76

GL-SigRep 0.0075 0.21 0.22 0.22

4.2.2 Real Stock Market Data

The 30 largest companies from the USA market are selected and their prices from
November 2013 for K = 1250 days2 are taken from NASDAQ database3. The
market price data includes four different values as open, close, low, and high. Here,

2for simplicity and without loss of generality, it is assumed that each year has 250 working days
and hence the entire data set is for 5 years

3https://www.nasdaq.com/quotes/historical-quotes.aspx
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Figure 4.3: The Laplacian matrix of market data, learned by RGTL and given in [6].
The electronic based tickers: MSFT (Microsoft Corporation), INTC (Intel Corporation),
and TSM (Taiwan Semiconductor Manufacturing Company),
The health-based tickers: JNJ (Johnson & Johnson), NVS (Novartis), and UNH (United-
Health Group).

it is only focused on the highest price of each share per day to include the highest
fluctuations.

After normalizing by ℓ2-norm, we evaluate how the learned topology from a
train data set is consistent with the one from the test data set, applying cross-
validation. The first half of the data is served for the graph learning stage and
the remaining data is utilized for the test. In other words, first, a graph is learned
from the shares and then we evaluate whether this graph can be applied for a future
prediction. The performance measures values are shown in Table 4.2. Due to the
robustness of RGTL with respect to the market’s shocking fluctuations, it provides
a better NMSD and F-measure. The results support RGTL consistency for learning
the structure of the network.

Table 4.2: Performance comparisons for the stock market shares data, adopted from [6].

NMSD F-measure
RGTL 3.57× 10−6 0.80

GL-SigRep 6.63× 10−4 0.59

In the next simulation, three companies from the electronic industry and three
ones from the health-related category are selected. Figure 4.3 shows how these six
shares are linked to each other. It is shown that Microsoft is related to Intel and
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Taiwan Semiconductor, but not the other ones. This is probably because of the
different nature of ”Electronic” and ”health” categories in the reality, reflected also
in the market shares.

4.3 Discussion

In the same way as Chapter 3, this chapter also answers research questions Q5, Q6,
and Q8 of Sec. 1.2. Following the main question of the thesis, the graph topology
learning is investigated for a general signal model which targets Q5. Not only the
observation has been contaminated by noise (Q6), but also the main focus of this
chapter was on the outliers, discussed in Q7. By solving the main optimization
problem of (4.4), we estimated the graph signals, the space graph Laplacian matrix,
and outliers when we have a priori knowledge about the time order graph.

4.4 Chapter Summary

We investigated an approach to learn the underlying topology when the given data
set is contaminated with noise and outliers. One of the applications for the pro-
posed algorithm is the market shares dependencies, where each share is modeled as
an entity in the information network and its daily prices as a time-series over that
entity. Because of the sparsity of the outliers, an ℓ0-norm constraint is added to the
optimization problem, where data fidelity and signal smoothness are also consid-
ered. The proposed algorithm iteratively solves the problem as given in eq. (4.4).
It learns the Lapacian matrix L using eq. (4.14), estimates the outliers E using eq.
(4.5), and recovers the signal X using eq. (4.9). Regarding the defined research
questions in the first chapter, we approached the connection of a specific type of
multivariate signal processes to the underlying topology (Q5), noise contamination
in the measurements (Q6), outlier removal from graph measurements (Q7), and an
optimization problem formulation for graph prediction (Q8).
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Chapter 5

Undirected Topology Inference via
Dictionary Learning

In this chapter, we investigate dictionary learning concepts in the graph
signal processing framework. A Joint Graph Learning and Signal Rep-
resentation algorithm is proposed for simultaneous topology learning
and graph signal representation. This approach is done via a learned
over-complete dictionary on the underlying graph structure. The pro-
posed algorithm alternates among three main phases: sparse coding,
dictionary learning, and graph topology learning. We also introduce
the ”transformed graph”, a projected graph into the transform space
consisting of dictionary atoms as bases. The experimental results with
the synthetic data set confirm the superiority of the proposed method to
sparsely represent the graph signals by a dictionary. Besides, by test-
ing the proposed method on real temperature data set, we realize that it
is a good candidate to model weather propagation flow from one region
to its neighbors.

Many problems in signal processing and machine learning are dealing with the
high dimensional data, i.e. y ∈ RN for large N . A bunch of K signals is repre-
sented as an N × K data matrix Y and then the matrix factorization gives a sig-
nificant contribution in the data analysis such as data compression, dimensionality
reduction, and information retrieval [106–109]. The above methods can not capture
the possible nonlinearity or structure underlined the input data. As we discussed
in the previous chapters, for such scenarios, a standard way to represent pairwise
connections between entities is by using affinity graphs.

In [110], an affinity graph is applied to encode the geometrical structure of the
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data and a graph regularized non-negative matrix factorization algorithm is pro-
posed. Shahid and his colleagues utilized the Laplacian matrix and applied the
principal component analysis (PCA) approach to recover the low-rank data repre-
sentation [111]. In [112], an approach is investigated to learn the sparse represen-
tation of the data when the local structure is considered. There have been many
more research works following geometrical structure for the data representation,
e.g. [113–118]. However, these approaches assume that the underlying topology is
known. In [54], a graph Dictionary Learning approach is proposed for graph topol-
ogy inference, dictionary learning, and sparse coding at the same time. In [66], a
general framework for graph topology inference via transform learning is proposed,
satisfying the dictionary completeness and the orthonormality of atoms criteria.

The main contribution of this chapter is to propose a new algorithm for Joint
Graph Learning and Signal Representation (JGLSR) which has the following capa-
bilities (This chapter is based on the results in [120]):

• Estimating the set of dictionary atoms,

• Finding the sparse coefficients which represent the signals in the transform
domain,

• Learning the graph topology of the data space, revealing the underlying ge-
ometry of the data domain.

The important features and main assumptions of JGLSR are as follows

• There is no assumption of the a priori knowledge for the dictionary,

• Contrary to [41], our proposed approach does not assume that the data is
Gaussian,

• JGLSR minimizes the average of atom coherence, while the existing method
in [54] uses some empirical regularization parameters to have a dictionary
with reasonable coherence,

• In JGLSR, the dictionary is not the eigenvector matrix of the Laplacian ma-
trix. Thus, the graph signals may not share a common support. In this respect,
it is different from the transform learning method proposed in [66].

5.1 Dictionary Learning Introduction

In simple words, dictionary learning is the process of learning a matrix called ”dic-
tionary” in a way that we can represent a signal by a linear combination of the
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Figure 5.1: A simple illustration for the computational framework of dictionary learning
and sparse coding.

matrix columns, called atoms. The aim of this framework is to find a sparse repre-
sentation of the signal of interest. In other words, we try to find a dictionary in a
way that the given signal can be represented by just a few of its atoms. Hence, the
process of finding the sparse coefficient vector in the dictionary domain is called
”sparse coding” (see Figure 5.1).

For example, any image can be shown by a linear combination of only a few
basic features and if these features are stored in the columns of a matrix, we can
sparsely represent the image of interest. If the number of atoms is greater than the
dimension of each atom, the dictionary is called over-complete (and vice versa). An
over-complete dictionary permits a signal to be sparsely represented by its atoms.
To illustrate this process by a practical application, the example of whole-brain
rsfMRI signals for identification of functional brain networks [7] is given in Figure
5.2.

To find the dictionary and coefficients, an optimization problem is usually for-
mulated in which the objective function includes the data fidelity term, the sparsity
condition over the coefficient vector, and some constraints on the set of atoms. As
usual, the data fidelity term concerns the error between the original signal and its
representation in the dictionary domain. Also, the constraints on atoms should sat-
isfy their incoherence with each other, i.e. each atom can reflect a portion of signal
information when the others can not. In other words, the amount of common infor-
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Figure 5.2: Dictionary learning application in functional brain network identification; (a)
The rsfMRI data matrix for one subject, (b) The computed dictionary matrix whose each
column is a temporal pattern, and (c) The sparse codes whose each entity denotes the func-
tional activity value (for more details on this example, please refer to [7]).

mation that two atoms represented for a signal must be as low as possible.

5.2 The Main Idea

The data matrix Y is given as below:

Y = UX+ E, (5.1)

where X ∈ RMD×K and E are the sparse coefficient and error matrices, respec-
tively, and N < MD < K which makes U ∈ RN×MD to be an over-complete
dictionary. The proposed algorithm, adopted from [120], solves the following opti-
mization problem

argmin
U,X,L

∥Y −UX∥2F + α1Tr
(
(UX)TLUX

)
+ α2

K∑
k=1

∥x[k]∥1 + α3 ∥L∥2F

+ α4r(U)

s.t. Lij = Lji,

Lij ≤ 0 if i ̸= j,

L · 1N = 0N ,

Tr(L) = c0,

diag(UTU) = 1M ,

(5.2)
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where αi ∈ R+, i = 1, ..., 4 are regularization parameters. The first term of the ob-
jective function promotes the data fidelity and the second term encourages smooth-
ness of the represented signals in the dictionary domain on the underlying graph.
The third term promotes coefficient sparsity. When the constraint Tr(L) = c0 for
some constant c0 controls the diagonal elements and avoids the trivial solution, the
fourth term of the objective function controls the off-diagonal entries of the Lapla-
cian matrix. The first three constraints guarantee the validity of learned L as a
graph Laplacian. Moreover, these constraints prevent the identifiability issue. The
last constraint normalizes the dictionary atoms and the last term of the objective
function encourages low coherence of atoms, given as below [119, 120]

r(U) := −
∑

1≤m<m′≤MD

log(1− (u[m]Tu[m′])2). (5.3)

In the proposed approach, to have a better performance, the importance of dic-
tionary coherence and represented signal smoothness (instead of observed signal
smoothness) are considered. The objective function of (5.2) is convex for each
variable separately. In other words, if any two of U, L, and X are kept fixed, the
objective function in (5.2) is convex with respect to the third one. Thus, a local
minimum can be achieved via an alternating method.

In 5.2.1, L and U are fixed and the sparse coding problem is solved. Then, L
and X are kept fixed in 5.2.2 and the dictionary is estimated. Finally, (5.2) is solved
with respect to L in 5.2.3 to learn the graph topology.

5.2.1 Sparse Coefficients Estimation

The goal is to solve the following problem, taken from [120]

argmin
X

∥Y −UX∥2F + α1Tr(XT L̃X) + α2

K∑
k=1

∥x[k]∥1 . (5.4)

where L̃ = UTLU is the transformed graph Laplacian into the dictionary space.
The signal smoothness in the measurement domain is considered as the coefficients
smoothness in the dictionary domain. Following (2.16) gives

L̃ = UTχΛχTU = ÛΛÛT , (5.5)

where Û = UTχ is the GFT of dictionary atoms. For an orthonormal complete
dictionary U ∈ RN×N , the eigenvalues of the Laplacian and the transformed matri-
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ces are identical and the eigenvectors of the transformed Laplacian are the GFTs of
the dictionary atoms. It is not possible to apply this simplification here as long as
the dictionary is over-complete, unlike in [66].

The objective function of (5.4) is convex but it is not differentiable due to the ℓ1-
norm. Hence, a standard unconstrained minimization approach has not been used
to find a closed form solution. Following the algorithm in [120], the Alternating
Direction Method of Multipliers (ADMM) [104] is applied to propose a solution.
Thus, the problem is rewritten as follows,

argmin
x[1],...,x[K]

K∑
k=1

∥y[k]−Ux[k]∥22 + α1

K∑
k=1

xT [k]L̃x[k] + α2

K∑
k=1

∥x[k]∥1 . (5.6)

where the objective is separable over x[k]’s. To solve (5.6) for the k’th variable, we
have the following vector optimization problem,

argmin
x[k]

∥y[k]−Ux[k]∥22 + α1x
T [k]L̃x[k] + α2 ∥x[k]∥1 . (5.7)

In the ADMM algorithm, the non-differentiable term is removed and (5.7) is
rewritten as follows

argmin
x[k],z[k]

l(x[k]) + g(z[k])

s.t. x[k]− z[k] = 0MD
,

(5.8)

where
l(x[k]) = ∥y[k]−Ux[k]∥22 + α1x

T [k]L̃x[k], (5.9)

and
g(z[k]) = α2 ∥z[k]∥1 . (5.10)

Adopted from [120], the scaled form of the ADMM algorithm follows these
steps:

xτ+1[k] :=argmin
x[k]

(
l(x[k]) +

ρ

2
∥x[k]− zτ [k] + vτ [k]∥22

)
, (5.11a)

zτ+1[k] :=argmin
z[k]

(
g(z[k]) +

ρ

2

∥∥z[k]− xτ+1[k]− vτ [k]
∥∥2

2

)
, (5.11b)

vτ+1[k] :=xτ+1[k] + vτ [k]− zτ+1[k], (5.11c)

where ρ > 0, τ and v[k] denote the penalty parameter, the ADMM iteration index,
and the scaled dual variable, respectively [104]. To solve (5.11a), the following
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system of equation is obtained by a simple derivation,(
UTU+

ρ

2
IM + α1L̃

)
x[k] = UTy[k] +

ρ

2
(zτ [k]− vτ [k]). (5.12)

Due to the positive definiteness of the left-hand side matrix, the Cholesky fac-
torization solves it efficiently. For (5.11b), a closed form solution is achieved by
applying subdifferential calculus [121] as below

zτ+1[k] = Sα2
ρ
(xτ+1[k] + vτ [k]), (5.13)

where the element-wise soft thresholding Sκ(a) is the proximal operator of the ℓ1-
norm which is given as follows

Sκ(a) =


a− κ, a > κ

0, |a| ≤ κ

a+ κ a < −κ.

(5.14)

5.2.2 Dictionary Learning

To find U, [120] proposed to rewrite (5.2) as follows

argmin
U

∥Y −UX∥2F + α1Tr(XTUTLUX) + α4r(U),

s.t. diag(UTU) = 1MD
.

(5.15)

where the constraint forces atoms to be normalized. This minimization problem can
be solved by usual optimization toolboxes. In our implementation and simulations,
it is solved by the L-BFGS algorithm [122]. First, we can find the minimizer of
the objective function using L-BFGS and then normalize each column to have unit
ℓ2-norm.
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5.2.3 Graph Topology Learning

With respect to L, we have the following optimization problem [120]

argmin
L

α1Tr(XTUTLUX) + α3 ∥L∥2F

s.t. Lij = Lji,

Lij ≤ 0 if i ̸= j,

L · 1N = 0N ,

Tr(L) = c0.

(5.16)

This minimization problem is similar to (4.10) and can be solved in the same
way presented in 4.1.

5.3 Experimental Results

The proposed method is tested on a synthetic data set and also a real temperature
data set from the USA mainland [97].

5.3.1 Synthetic Data

The data is constructed using a Gaussian RBF following the approach discussed in
[54]. The coordinates of N = 25 vertices are generated uniformly at random in the
square [0,

√
5]×[0,

√
5] and the edge weights are determined by exp

(
−d(i, j)2/2σ2

)
where d(i, j) is the distance of vertices i and j. The width of the RBF is set σ = 0.5

and the edges with weights less than 0.5 are removed to keep around 17% of edges.
Thus, we have a fairly sparse graph. The graph Laplacian is normalized by its trace.
To have a smooth dictionary on this topology, an initial random dictionary U0 is
generated and then it is filtered by a first order LSI as follows

U =
(
IN + λL

)−1
U0, (5.17)

where λ = 5 [54]. A random coefficient matrix X ∈ RN×K for K = 1000 is drawn
and its product by the dictionary is contaminated with an independent noise. By
changing SNR, we have Y of (5.1). Given Y, the goal is to learn the underlying
topology via JGLSR, graphDL [54], and GL-SigRep [41]. The results are compared
by using the five performance measures presented in 4.2. The results are averaged
over 100 trials. Figure 5.3 shows the higher performance of JGLSR for different
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Table 5.1: Performance comparisons for synthetic data simulation, taken from [120].

Recall Precision F-measure
JGLSR 0.90 0.87 0.89

graphDL 0.61 0.32 0.42
GL-SigRep 0.36 0.99 0.52

SNR. Table 5.1 also compares three performance measures by averaging the results
over different SNRs.
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Figure 5.3: NMSD and NMSE for synthetic data. The number of vertices is 25 and a
Gaussian RBF is used to weigh the edges. The figures are adopted from [120].

5.3.2 Temperature Data

The average temperatures of N = 48 states for 2011, 2012, and 2013 are stored
daily, hence K = 1096 samples. Contrary to the first simulation, there is no access
to the ground-truth graph, but we can consider a geographical-based graph as a true
one. In this respect, a graph whose node set includes states is constructed. Also,
the edge weights are computed by the Gaussian RBF of the distance between every
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Figure 5.4: The learned Laplacian of real temperature data depicted on the USA map, taken
from [120].

two states. The parameters for the proposed algorithm are set to α1 = 0.001, α2 =

0.1, α3 = 5, α4 = 100, and σ = 0.001. The F-measure for GL-SigRep, graphDL,
and JGLSR are 0.51, 0.59, and 0.64, respectively. The NMSD of all methods is in
the order of 10−4.

Figure 5.4 shows the learned graph, projected on the map of the USA main-
land. Considering the learned graph, it is inferred that a state’s weather affects the
neighboring states, which is also intuitive from the physical point of view. In other
words, the closer the two states are, the stronger connection exists between them.
The concentration of edges is on the right side of the map, explaining that there
are more cities in the neighborhood, which is contrary to the west coast. The few
edges in the middle of the map are probably because of the Rocky mountain which
prevents an easy temperature flow.

5.4 Discussion

In this chapter, we use the product of the dictionary and coefficient matrices to
model the graph signals. By connecting the concept of learning a dictionary to the
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graph topology inference, Q3 of Sec. 1.2 is targeted. Besides, by elaborating on the
atom coherence and using the last term of the optimization problem (5.2), the fourth
question of Sec. 1.2, i.e. Q4 is answered. Similar to the previous chapters, we also
mention Q5, Q6, and Q8 as other sub-problems which were the main concerns of
this chapter. The role of the noise is considered and an optimization problem for
the proposed signal model connecting to the underlying topology is proposed and
solved.

5.5 Chapter Summary

We approached the main problem of this dissertation from the dictionary learning
perspective. An algorithm is proposed to represent a set of multivariate measure-
ments by a learned dictionary linked to a graph. As usual, it is also assumed that the
graph signals are smooth with respect to the unknown underlying graph. The trans-
formed graph in the dictionary domain, its relation to the signal smoothness and
GFT have been discussed. Compared to the existing off-the-shelf algorithms, the
proposed approach has a better performance, corroborated with some experimental
results. Besides, the numerical results confirm that JGLSR is a practical algorithm
to investigate temperature sensor readings and find how the weather propagates in
different regions. Among the defined research questions in the first chapter, here, we
approached the dictionary learning perspective in graph topology inference (Q3),
the usage of atom coherence (Q4), connection of a kind of multivariate signal to the
topology (Q5), dealing with denoising in the measurements (Q6), and formulation
of a new optimization problem for graph topology inference (Q8).
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Chapter 6

Adaptive Topology Learning

In this chapter, the concept of adaptive graph filters is introduced for
online topology inference in data networks that are modeled as causal
graph processes (CGP) or multivariate auto-regressive (MAR) pro-
cesses. These models are time series associated with different variables,
whose coefficients are the so-called graph filters. Given the data time
series at different variables, we are interested in estimating these graph
filters as well as learning the underlying graph weight matrix. The ex-
isting approaches focused on batch methods, assuming implicitly sta-
tionarity of the processes. Here, an adaptive method is proposed, based
on the sequential arrival of new data. In addition to advantages in
terms of complexity when compared to batch methods, these approaches
also capture the dynamics of the topology. The experimental results
support the performance of the proposed graphical adaptive filter algo-
rithms in terms of signal recovery error and graph edge learning rate.

The huge amount of information collected anywhere and anytime in different
environments has raised challenging issues of data storage, statistical processing,
and information inferences. One possible way to cope with some of these issues is to
leverage the underlying structure of data. Since the traditional approaches reviewed
in sections 2.2.2.3 and 2.2.2.4 have limitations, the GSP framework motivated the
topic of dynamic connectivity learning with data-driven approaches.

The focus of this chapter is on learning the directed topology from the given data
set and it is an extension of the work in [138]. The directed structures are usually
more specific and application-dependent. Some examples of the research works
are [29, 30, 32–37, 123, 124]. Regarding the graph signal perspective, many of the
directed graph signal processes are based on the cause-effect relationship. One of
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the pioneering works in capturing such a relationship is Granger causality [125,126]
which has been utilized in several applications [30, 127–134]. A time series yi[k]

Granger-causes the time series yj[k] when knowledge about the past of yi[k] highly
improves yj[k] prediction when compared to applying only the past of yj[k] for
predicting itself. The definition of Granger causality is general and some research
works have proposed more specific definitions. Two of them are by Mei and Moura
[27,28] and Bolstad et al. [31]. The former proposed the causal graph process (CGP)
model and the latter focused on the multivariate auto-regressive (MAR) process
model, also called vector auto-regressive (VAR). We review these signal models in
section 6.1. The main problem is how to find the graph topology and recover the
signal when the signal process follows these models.

In [27] and [31] the directed network topology estimation have been investi-
gated, respectively, for CGP and MAR processes. They proposed batch algorithms
that are not applicable for large/increasing data volume. Moreover, when the order
of the underlying graph or the dimension of the graph signal is high, these algo-
rithms are computationally expensive. The other limitation of the batch algorithm
is when the processes are non-stationary. In this chapter, to overcome these issues,
we propose an online learning method using the adaptive filter concept. Adaptive
filters have self-adjusting capabilities. In other words, they are able to adjust their
coefficients adapting to the input signal. One of the main applications of such filters
is for signal-changing environments.

6.1 Graph Auto-Regressive Processes

The causal signal models assume that the current value of a time series at a given
node is related to the previous values of both itself and other time series at other
nodes. In what follows, two processes models are reviewed which investigate this
concept for different scenarios.

6.1.1 Vector Auto-Regressive Signal Model

The Multivariate Auto-Regressive process is able to model the directed space-time
dependencies as a specific implementation of the Granger causality. In the multi-
ple time series analysis framework, MAR is sometimes equivalent to vector auto-
regressive processes (VAR) and these two terms are used interchangeably. The
MAR model has been used in many application, e.g. functional MRI analysis [135],
classification of electroencephalographic signal [136], and so on [137].
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In a MAR process of order M , an N -dimensional signal is a weighted superpo-
sition of M previous multivariate vectors added to an innovation noise. Mathemati-
cally speaking, a MAR process of order M is an LSI filter. It generates the signal at
time instant k via a weighted combination of the previous M signals at all N nodes
and adds an innovation noise z[k] as follows

x[k] =
M∑

m=1

W(m)x[k −m] + z[k], (6.1)

where matrices W(m) ∈ RN×N for m = 1, . . . ,M are shift operators, like the one
defined in 2.23. It can also be rewritten as the following element-wise expression

xn[k] =
∑

l:(n,l)∈E

M∑
m=1

w
(m)
nl xl[k −m] + zn[k], n = 1, . . . , N (6.2)

In many real-world applications, each time series is only affected by a subset of
other time series. In other words, a node can not cause all the others. If xl[k] does
not cause xn[k + m] for all m ∈ {1, . . . ,M}, it follows w

(m)
nl = 0, ∀m. Thus, a

Sparse MAR Time series (SMART) is defined in [31] by considering a sparse set of
edges.

6.1.2 Causal Graph Processes Model

Mei and Moura have applied the CGP concept to explain temperature propagation
from one region to its neighborhoods [27, 28]. Thus, the current value of tempera-
ture at a given node is assumed to be related to the previous temperature values of
the node itself and other neighboring nodes. Here, contrary to 6.1, a single weight
matrix is utilized instead of multiple weight matrices which have the same sparse
structure.

Let us assume that x[k] := [x0[k], x1[k], ... xN−1[k]]
T is a random graph signal

residing on G at time k. This graph process is a CGP if it is expressed as follows

x[k] = z[k] +
M∑

m=1

( m∑
j=0

hmjW
j
)
x[k −m], (6.3)

where hmj ∈ C and z[k] is an i.i.d. noise vector. Here, h = [h10, h11, ...hmj,

..., hMM ]T stores all of the filter coefficients hmj, 1 ≤ m ≤ M, 0 ≤ j ≤ m and
thus we have

∑m
j=0 hmjW

j ≜ Pm(W,h). By applying this model, the data is
propagated in the rate of one graph shift per sampling period. According to the

95



Adaptive Topology Learning

definition 2.25, Pm(W,h) is an LSI filter of order M . Since the weight matrix is
not an identity matrix, we have P1(W,h) ̸= cIN , for any constant c ∈ R.

6.2 Learning Topology from AR Processes

In what follows, we are given a set of noisy observations from AR processes. In sec-
tion 6.2.1, the batch approach for graph learning from MAR processes is reviewed
which has been introduced in [31]. In section 6.2.2, a batch approach to learn the
underlying graph from CGP [27] is reviewed. These two methods require all data
in advance. However, in the last subsection 6.2.3, we propose to jointly recover the
topology and graph signals online. We only investigate this adaptive method for
CGP here, since a similar procedure can be applied for the MAR process.

6.2.1 Batch Mode for MAR Processes

Suppose that a set of noisy observations from a MAR process is given. Considering
6.1, the problem of graph topology inference is estimating W(m), m = 1, . . . ,M .
If wnl ≜

[
w

(1)
nl , w

(2)
nl , . . . , w

(M)
nl

]T , the weight matrices can be estimated as follows
[31]

{Ŵ(m)}Mm=1 = argmin
{W(m)}Mm=1

K∑
k=M+1

∥∥∥∥∥x[k]−
M∑

m=1

W(m)x[k −m]

∥∥∥∥∥
2

2

+ λ
N∑

n=1

N∑
l=1

1

(
∥wnl∥1

)
,

(6.4)

where λ > 0 is a regularization parameter and 1(.) is the indicator function which
outputs 0 and 1 for zero and non-zero inputs, respectively. The first term of (6.4)
encourages data fidelity and the ℓ1-norm promotes sparse solutions. The indicator
function enforces the group sparsity. The group sparsity means that if all the ele-
ments of wnl are zero, the node l does not cause the node n for all the filter taps m
which causes a more sparse solution. When there is even one non-zero edge w

(m)
nl

between the node n and the node l, it confirms that the node n is affected by the
node l. Thus, the indicator function outputs one, adding to the cost due to an addi-
tional non-zero element in the filter weight matrices. Since (6.4) is non-convex, by
following the group Lasso minimization [31], it is rewritten as follows

{ŵn}Nn=1 = argmin
{wn}Nn=1

N∑
n=1

( K∑
k=M+1

(
xn[k]− gT [k]wn

)2
+ λ

N∑
l=1

∥wnl∥2
)
, (6.5)
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where
wn =

[
wT

n,1, w
T
n,2, . . . ,w

T
n,N

]T
, (6.6)

g[k − 1] ≜ vec
( [

x[k − 1],x[k − 2], . . . ,x[k −M ]
]T )

. (6.7)

Due to the separability of the cost function across wn, (6.5) is solved for each n

as below [31]

ŵn = argmin
wn

K∑
k=M+1

(
xn[k]− gT [k]wn

)2
+ λ

N∑
l=1

∥wnl∥2 . (6.8)

6.2.2 Batch Mode for CGP

Suppose that a set of graph signals from a CGP is given and the weight matrix is
desired. Thus, the aim is to estimate W or Pm(W,h) for m = 1, . . . ,M when the
signal model is represented by 6.3. To estimate W and h, a minimization problem
is proposed in [27] assuming that z[k] is Gaussian and both W and h are sparse.
This minimization problem is as follows

(Ŵ, ĥ) = argmin
W,h

1

2

K∑
k=M+1

∥∥∥∥∥x[k]−
M∑

m=1

Pm(W,h)x[k −m]

∥∥∥∥∥
2

2

+ λ1 ∥vec(W)∥1 + λ2 ∥h∥1 .

(6.9)

where λ1, λ2 are regularization parameters. This problem is non-convex due to Wj

for j > 1. In [27], it is proposed to reformulate this problem based on a matrix
variable R = [R1 | R2 | ... | RM ] as below

R̂ = argmin
R

1

2

K∑
k=M+1

∥∥∥∥∥x[k]−
M∑

m=1

Rmx[k −m]

∥∥∥∥∥
2

2

+ λ1 ∥vec(R)∥1 + λ3

∑
m̸=j

∥[Rm, Rj]∥2F ,

(6.10)

where
[Rm, Rj] = RmRj −RjRm, ∀m, j. (6.11)

Since Rm ≜ Pm(W,h) is polynomial and shift-invariant, it satisfies the mutual
commutativity, i.e. (6.11). To solve (6.10), a Block Coordinate Descent (BCD)
method is proposed in [27]. In the iteration τ , each sub-problem of BCD algorithm
aims to estimate R̂τ

m while the other R̂l, l ̸= m are kept fixed with their latest
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updates

R̂τ
m = argmin

Rm

1

2

K∑
k=M+1

∥b−m[k]−Rmx[k −m]∥22

+ λRm ∥vec(Rm)∥1 + λ3

∑
l ̸=m

∥∥∥[Rm, R̂l]
∥∥∥2

F
.

(6.12)

where R̂l = R̂τ
l for l < i and R̂l = R̂τ−1

l for l > i. The i’th polynomial filter
and the commutativity regularization parameters are λRi

and λ3, respectively. Also,
b−m[k] is given as follows

b−m[k] = x[k]−
(m−1∑

l=1

R̂τ
l x[k − l] +

M∑
l=m+1

R̂τ−1
l x[k − l]

)
. (6.13)

The weight matrix is either estimated by Ŵ = R̂1 or as follows

Ŵ = min
W

∥∥∥R̂1 −W
∥∥∥2

2
+ λ1 ∥vec(W)∥1 + λ3

M∑
m=2

∥∥∥[W, R̂m]
∥∥∥2

F
(6.14)

and then we have

ĥm = argmin
hm

1

2

∥∥∥vec(R̂1)−Υmhm

∥∥∥2

2
+ λ2 ∥hm∥1 , (6.15)

where Υm =
[
vec(IN) | vec(Ŵ) | ... | vec(Ŵm)

]
and hm =

[
hm0, hm1, ... hmm

]T .

For a graph with a relatively high order, the matrix of the graph filter polynomial
is large, which causes the batch algorithm to have high computational complexity.
Besides, for non-stationary processes, it is necessary to design an algorithm to be
able to re-estimate the graph filter multiple times, adapted to the input signal. In
real-time applications, the new set of signal samples are received sequentially over
time and hence all the data is not at hand in advance. For such cases, there is a need
to have an online algorithm to extract data structure recursively.

6.2.3 Adaptive Graph Filtering

We investigate a recursive algorithm to adapt the graph filters continuously once a
new sample is provided. This adaptive filter is not only capable of graph weight
matrix learning based on more recent observations, but also it recovers the graph
signals from noisy measurements.
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6.2.3.1 Mathematical Analysis

Considering Kronecker product properties, it is known that if A1,A2, andA3 are
three matrices with appropriate dimensions,

vec(A1A2A3) = (A3 ⊗A1)vec(A2). (6.16)

By some manipulations given in [138], (6.10) can be rewritten in the following
vector form

r̂τm = argmin
rm

1

2

K∑
k=M+1

∥∥b−m[k]−
(
x[k −m]T ⊗ IN

)
rm

∥∥2

2

+ λrm ∥rm∥1 + λ3

∑
l ̸=m

∥∥∥[Rm, R̂l]
∥∥∥2

F
,

(6.17)

where rm = vec(Rm). We also have

vec(RmRl −RlRm) =
((

Rl ⊗ IN
)
−
(
IN ⊗Rl

))
vec(Rm). (6.18)

∑
l ̸=m

∥[Rm, Rl]∥2F =
∑
l ̸=i

∥∥∥((Rl ⊗ IN
)
−
(
IN ⊗Rl

))
rm

∥∥∥2

2
. (6.19)

Substituting (6.19) in (6.17) and applying the forgetting factor β1, the objective
function is adopted from [138] as below

JK(r
τ
m) =

1

2

K∑
k=M+1

βK−k
∥∥b−m[k]−

(
x[k −m]T ⊗ IN

)
rτm

∥∥2

2

+ λrm ∥rτm∥1 + λ3

∑
l ̸=m

∥Γlr
τ
m∥

2
2 .

(6.20)

where
Γl =

(
RT

l ⊗ IN
)
−

(
IN ⊗Rl

)
. (6.21)

Defining V[k] := x[k − m]T ⊗ IN and applying some simple manipulations

1in designing recursive filters, we can consider the more recent signal values as more important
than that of the previous ones. In this respect, sometimes a forgetting factor 0 < β < 1 is defined to
reduce the effect of the older data.
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leads to the following recursion

JK
(
rτm

)
=
1

2
(rτm)

T
(
λ3

∑
l ̸=m

ΓT
l Γl +

K∑
k=M+1

βK−kV[k]TV[k]
)
rτm

−(rτm)
T

K∑
k=M+1

βK−kV[k]Tb−m[k] +
1

2

K∑
k=M+1

βK−kxT
kb−m[k] + λrm ∥rτm∥1 ,

(6.22)

The ℓ1-norm term is convex but not differentiable. Therefore, solving this prob-
lem by the standard gradient descent is not straightforward. However, it is possible
to apply a subgradient instead. The vector u is a subgradient of g : Rn → R at
y ∈ dom g when g(y′) ≥ g(y) +uT (y′ − y),∀y′ ∈ dom g. The set of all subgradi-
ents of g at y is called the subdifferential. A function g is called subdifferentiable at
y if there exists at least one subgradient at y. A point y∗ ∈ RN minimizes the non
differentiable convex function g if and only if 0 is a subgradient of g at y [139].

A subgradient of the objective function in (6.22) is given in [138]

∇sJK
(
rτi
)
=

(
Q[K] + λ3

∑
l ̸=m

ΓT
l Γl

)
rτm − q[K] + λrmsign

(
rτm

)
, (6.23)

where

Q[K] =
K∑

k=M+1

βK−kV[k]TV[k], (6.24)

and

q[K] =
K∑

k=M+1

βK−kV[k]Tb−m[k] (6.25)

By some simple manipulations, we have

Q[K] = βQ[K − 1] +V[K]TV[K] (6.26)

q[K] = βq[K − 1] +V[K]Tb−m[K]. (6.27)

Applying the standard gradient descent leads to

(rτm)t = (rτm)t−1 − αt∇sJK
(
(rτm)t−1

)
. (6.28)

where αt is a step-size that guarantees the convergence and t is the iteration index.

Algorithm 6.1 summarizes all steps for the adaptive graph filter for CGP.
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6.2.3.2 Computational Complexity Analysis

As we discussed in [138], finding the solution of (6.12) for any newly provided set
of time series x[k] is highly time consuming due to the worst-case complexity of
O(M2N3 +KMN2) [27]. Usually we have K ≫ N ≫ M and thus the computa-
tional cost may be approximated as O

(
KMN2 min(K,MN2)

)
. Besides, K grows

linearly while M are kept constant and N are fixed by the nature of the graph signal
dimension, so we have min(K,MN2) ≃ MN2 in reality. Therefore, the computa-
tional complexity may be approximated by O(KM2N4). Since this cost is directly
proportional to K and hence increases with time, solving (6.12) in batch mode is
prohibitive in terms of computational complexity and storage demands. Roughly
speaking, the sample size K increases by time, and for each time the batch mode
must run which is computationally expensive.

The computational cost of the proposed algorithm is dominated by the process-
ing of (6.23), upper bounded by O(M2N4) due to the matrix-vector multiplication
of the first term. Hence, it is identical to the batch mode for K = 1, which is sup-
porting the concept of the recursive method. Intuitively, the GRLS only runs for the
recently given set of observations.

6.2.3.3 Experimental Results

An Erdős Rényi graph is generated with N = 25 and edges weights are extracted
from a Gaussian pdf N (0, 1). After deleting all the edges excepts the ones with a

Algorithm 6.1: Topology learning via adaptive graph filtering, adopted
from [138].

Input: {x[k]}Kk=1, λrm , λ2, λ3, tmax, {αt}tmax
t=1, τmax,M

Initialize: R̂m = IN for m = 1 : M
while x[k], k > M do

Update the polynomial filters
for τ = 1 : τmax do

for m=1:M do
for t = 1 : tmax do

a) find ∇sJK
(
rτi
)

via (6.23)
b) update (rτi )t via (6.28)

end
end

end
Find the weight matrix Ŵ = R̂1 and filter coefficients.

end
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Table 6.1: Performance of GRLS filter for different number of time series, taken from [138].

K = 75 K = 100 K = 125 K = 150

NMSD 0.0035 0.0033 0.0032 0.0031
Recall 0.66 0.76 0.78 0.82

weight in the interval [1.6, 1.8], the edge probability is 0.04. The edges are soft
thresholded by 1.5 and normalized by 1.5 times of the largest eigenvalue of the
weight matrix. Then, by setting M = 3 and generating the coefficients hmj for
m = {2, 3}, 0 ≤ j ≤ m sparsely from 2m+j+1hmj ∼ U(−1,−0.45) + U(0.45, 1),
a stable system is guaranteed [27]. The first graph signals x[k], k = 1, . . . ,M are
generated from a random Gaussian distribution with zero mean and unit variance
and for M + 1 < k ≤ K, K = 150, all the rest is generated according to (6.3).

Here, we define the normalized mean square deviation (NMSD) as follows

NMSD =

∥∥∥W − Ŵ
∥∥∥2

F

N2
(6.29)

which is 0.0029 for the batch mode and it varies for GRLS implementation depend-
ing on the number of observations, noted in Table 6.1. When the number of time
samples is increasing, the reconstruction error decreases, and then the NMSD of the
GRLS filter converges to the NMSD of the batch method. The other performance
measure is the ”Recall” factor which is the ratio of the number of correct recovered
edges to the number of true edges in the ground-truth graph. Here, we have the re-
call factor of 87 percent for the batch mode while it varies between 66 to 82 percent
for GRLS.

In the next simulation, we examined GRLS for a large number of measure-
ments. The results are averaged over 50 trials and the maximum K is set to 1000.
The NMSD and recall for batch mode have been 0.0039 and 91 percent, respec-
tively. Figure 6.1 shows the performance measures for the proposed adaptive graph
learning algorithm.
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Figure 6.1: NMSD and Recall for N = 25 and M = 2, taken from [138].

6.3 Discussion

The main difference between this chapter and the previous three ones was its con-
centration on the directed topology and linked signal processes. Since some im-
portant multivariate signal models like MAR and CGP have been investigated in
this chapter, the results can answer Q2 and Q9 of Sec. 1.2. Also, the first question
among the research questions of this thesis which concerns the usage of conven-
tional adaptive filters to the graph signal processing framework was investigated in
this chapter. Besides, like the previous chapters, the general Q5, Q6, and Q8 which
directly aimed at answering the main question of this thesis, was approached in this
chapter for the directed topology learning.

6.4 Chapter Summary

In this chapter, it is assumed that a set of multivariate signals over graph is given and
the desired goal is to learn the underlying topology and recover the graph signals
from the noisy measurements. Since the graph signals are generated from a CGP
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or a MAR process, the estimated topology is directed and captures the cause-effect
relationships among entities of the network. The proposed recursive least square
filter is capable of graph topology learning in an online manner while the classi-
cal batch mode algorithm works when we have all the data in advance. Since the
proposed method is recursive and updates estimates online, it is able to keep track
of changes in the topology by feeding the sequential arrival of new data. Thus, it
also suits the non-stationary processes and has low computational complexity. Re-
garding the defined research questions in the first chapter, here, we showed how the
conventional adaptive filter can be applied for the graph topology inference (Q1)
and online structure recovery (Q2). Besides, we discussed the connection of a kind
of multivariate causal process to the topology (Q5), the contaminated measurements
with noise (Q6), the formulation of an optimization problem for graph topology in-
ference (Q8), and its fast implementation (Q9).
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Chapter 7

Conclusions and Future Works

This chapter is organized into two sections. In the first section, we
summarize the dissertation work and the main contributions. The sec-
ond section points out a few potential research directions relevant to
the topics addressed in this dissertation.

7.1 Conclusion

The real-world applications generate rapidly growing volumes of structured data,
e.g. brain-computer interface measurements, social networks activities, gene net-
work data, patient records of healthcare systems, and financial data. Storing and
analyzing these data sets are easier when the underlying data structure is consid-
ered. The emerging field of graph signal processing (GSP) provides the analysis of
large data sets via graph theory tools, where each graph vertex represents an entity
of the system. A sequence of data is generated by each entity and hence a data
matrix including the information over time and space is provided. If the underlying
graph is known, the system can be analyzed from different perspectives. For ex-
ample, the spectral analysis or the Fourier transform can be done and some signal
characteristics are investigated in this way.

Sometimes the graph topology is not known in advance. In such cases, the
desired goal is to estimate the underlying topology using a set of graph signals. This
was the main focus of this dissertation. In the non-GSP-based methods, the graph
topology learning has been limited to find the connections among high dimensional
signals. However, in this thesis, following the GSP framework, we focused on the
global behavior of signals over graphs instead of pairwise relationships.

For applications dealing with cause-effect relationships among nodes, the topol-
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ogy is directed and for some others, especially the ones corresponding to the Gaus-
sian graph signals, the learned topology is undirected. We reviewed three main sig-
nal processes here as multivariate auto-regressive (MAR), causal graph processes
(CGP), and Gaussian Markov random field (GMRF) processes. For the first two
ones, there have been some approaches in the literature of graph topology learning,
but they were in the batch mode and thus they are slow. We proposed an adaptive
filter specifically designed for graph signals. The main advantages of such filters are
that they can be implemented online and are capable of adapting to the newly ar-
rived signals. Therefore, the re-estimation of the learned topology is possible based
on the recently provided measurements.

For the GMRF signal models, we proposed a topology learning algorithm based
on the Bayesian inference framework. A factor analysis model was used to decom-
pose the graph signals based on the eigenvectors of the graph Laplacian matrix.
In this way, we fully connected the given data set to the underlying topology. A
fast implementation method was also proposed which outperforms the conventional
approaches.

Moreover, for the general graph signal model, we designed a dictionary learn-
ing algorithm to learn the atoms based on the graph topology. In this respect, we
jointly recovered the dictionary atoms, the sparse codes, and the underlying topol-
ogy. Another contribution of this dissertation for general graph signal models is to
learn the graph topology from a data set that is noisy and contaminated with out-
liers. We showed that the proposed method is applicable in a real-world scenario,
e.g. learning an information network from stock market share prices data.

7.2 Future Works

Based on the research results achieved in this thesis work, a few potential topics can
be identified. In brief, the following research directions are foreseen.

• Among the adaptive filters, the easiest to implement with the least compu-
tational resources needed is the least mean square (LMS) filter. The LMS
works on the current data and the one which comes in. The RLS, which is
more computationally intensive, works on all data gathered till now and is
a sequential way to solve the Wiener filter. Thus, if a very simple and fast
online solution is required, we can think of designing an LMS filter for graph
signals. Especially for non-stationary data, the LMS filter is a good candidate.

• In the CGP model discussed in chapter 6 and also in [27], the adjacency
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matrix is used. This whole framework can be more general and any valid
graph shift operator can be used to construct the polynomials. For example,
the polynomials can be constructed by the graph Laplacian and hence capture
an undirected graph.

• The subgradient descent method used to solve (6.22) may be a bit slow when
compared to other off-the-shelf solvers for ℓ1-ℓ2 problems. One of the future
works is to focus on solving this problem with different methods and find
the convergence rate and implementation complexity for different kinds of
graph structures. For example, the iterative shrinkage-thresholding algorithm
(ISTA) (or similar ones [140–142]) is an extension of the gradient algorithms
and is attractive here due to its simplicity and also it is a good candidate to
solve large-scale problems. Another method for further investigation is Fast
ISTA (FISTA) [143], which has the same simplicity as ISTA, while its global
rate of convergence is significantly better.

• About the approach discussed in chapter 4, the followings are of future re-
search interest.

– we would like to see more discussions on the selection of the regulariza-
tion parameters and constants. Especially, c1 is of interest. For example,
if it is infinity, the solution is not meaningful. What is the intuition for
other values?

– Although the simulation results show that the RTLG converges, the an-
alytical proof of convergence is not presented here and left for future
research work.

– A very interesting topic is to design a robust method for non-stationary
processes. This can be helpful for brain activity signal analysis. In
that application, we have a changing topology for a subject in different
conditions where the external outliers are playing an important role.

• In chapter 5, the proposed method focuses on topology learning and signal
representation. An interesting area of research is to investigate the trans-
formed graph properties. How the relation between graph signals and the
underlying structure can be projected to the relation of sparse codes and the
transformed graph in the dictionary domain. For example, what happens to
the smoothness concept in the dictionary domain, or is it possible to propose
a smoothness concept in the dictionary domain directly instead of using the
same measure of Tr(XT L̃X) in (5.4)?
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• In chapter 3, it is assumed that the graph topology is fixed and does not depend
on k. Extending the problem to the one that estimates a changing graph is left
for future work. In this respect, we can investigate an online method to update
the dictionary atoms based on the recently provided signals.
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