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Cyber-Physical Systems for Smart Water Networks:
A Review

Jyotirmoy Bhardwaj, Joshin P. Krishnan, Diego F. Larios Marin, Baltasar B. Lozano, Linga R. Cenkeramaddi,
and Christopher Harman

Abstract—There is a growing demand to equip Smart Water
Networks (SWN) with advanced sensing and computation
capabilities in order to detect anomalies and apply autonomous
event-triggered control. Cyber-Physical Systems (CPSs) have
emerged as an important research area capable of intelligently
sensing the state of SWN and reacting autonomously in scenarios
of unexpected crisis development. Through computational
algorithms, CPSs can integrate physical components of SWN,
such as sensors and actuators, and provide technological
frameworks for data analytics, pertinent decision making,
and control. The development of CPSs in SWN requires
the collaboration of diverse scientific disciplines such as
civil, hydraulics, electronics, environment, computer science,
optimization, communication, and control theory. For efficient
and successful deployment of CPS in SWN, there is a need
for a common methodology in terms of design approaches
that can involve various scientific disciplines. This paper
reviews the state of the art, challenges, and opportunities for
CPSs, that could be explored to design the intelligent sensing,
communication, and control capabilities of CPS for SWN. In
addition, we look at the challenges and solutions in developing
a computational framework from the perspectives of machine
learning, optimization, and control theory for SWN.

Index Terms —Cyber-Physical Systems, Smart Water Networks,
Internet-of-Things, Machine Learning, Water Quality, and
Optimal Control.

I. INTRODUCTION

Water is an essential resource for both the natural
environment and human life. Protecting water from
contamination and ensuring the availability of high-quality
pure water are widely recognized as critical societal goals
around the world. Furthermore, the right to safe water is one
of the United Nations’ top priorities, as reaffirmed in several
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official reports [1]. Traditional methods and techniques for
monitoring and controlling water networks are being replaced
by new methods and techniques. Sensors installed at pumping
stations or water treatment plants collect data on a variety
of chemical, biological, physical, and hydraulic parameters.
However, once water enters the network, it becomes difficult to
perform water quality assessment and event-triggered control
in an online manner over distributed locations. Real-world
applications such as urban, industrial, and household water
networks highlight this issue. Some of the realistic challenges
of water networks include water demand management,
online contamination detection, autonomous control, pressure
and flow management, and real-time leakage detection. To
address these issues, several experimental studies suggest that
intelligent monitoring and control capabilities be implemented
in Smart Water Networks (SWN)1 such as water distribution
network (WDN), wastewater networks, Aquaponics, fish
farms, Recirculating Aquaculture, etc. These studies also
demonstrated that traditional offline methods are out of date
and incapable of meeting the current challenges of SWN.
As a result, it is critical to develop a system of various
components capable of integrating sensing, computing, and
communication in order to address the challenges of SWN [2].
With the ever-increasing expansion of water infrastructure,
these systems are also expected to be re-configurable and
adaptive.

Cyber Physical Systems (CPSs) have recently received a
great deal of attention due to their application in a wide
range of real-time networks such as smart-grid networks,
water/gas distribution networks, etc [3]. CPSs are an extended
version of embedded systems with feedback capabilities
that can integrate sensing, communication, and control
capabilities to observe and control the physical process
state. Furthermore, CPSs are designed in such a way that
they can react autonomously in the event of an unexpected
crisis development while keeping users informed. CPS, in
conjunction with multiple sensors (electronic, voltammetry,
optical) and transducers, can sense and interact with the
physical environment in an online fashion [4]. CPSs can
also learn from the SWN in order to extract observations
and inference patterns. CPSs offer scalable and reconfigurable
properties, which can be modified based on the volume of

1Henceforth, throughout the paper, whenever we refer to term SWN, we
refer to the Industrial and Urban water networks, such as water distribution
network (WDN), wastewater networks, Aquaponics, fish farms, Recirculating
Aquaculture, etc.
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Fig. 1: Cyber-physical systems for WDN

TABLE I: List of Abbreviations

Abbreviation Description
ANN Artificial Neural Network

CPS Cyber Physical System

DP Dynamic Programming

DNN Deep Neural Networks

DRL Deep Reinforcement Learning

DO Dissolved Oxygen

EPA Environmental Protection Agency

GSM Global System for Mobile

IoT Internet of Things

kNN k Nearest Neighbours

LPWAN Low Power Wide Area Network

LTE Long-Term Evolution

MEC Mobile Edge Computing

MI Mixed Integer

ML Machine Learning

MPC Model Predictive Control

PCA Principal Component Analysis

RL Reinforcement Learning

RF Random Forest

SQL Structured Query Language

SoS System of Systems

SVM Support Vector Machine

LoRa Long Range

LPWAN Low Power Wide Area Networks

WDN Water Distribution Network

SWN Smart Water Networks

WSN Wireless Sensor Network

data, available bandwidth, power, and sensing requirements.
CPS for WDN is depicted in Fig. 1.

The majority of the existing review studies in the
literature focus on the methods of design and development
of CPS for SWN [5]-[6]. For example, [5] presents a

theoretical framework of CPS development for SWN and
[6] presents the CPS challenges and roadmaps for WDN
management. Similarly, in [7], a comprehensive review of
communication technologies, such as Internet-of-Things for
SWN management is provided. However, in the event of
unexpected anomaly detection, the CPSs are expected to
take control of the SWN autonomously. To the best of our
knowledge, no comprehensive survey has been conducted that
addresses the fundamental issue of integrating computation
and autonomous control capabilities in such CPSs. Because
of the various nonlinear, non-convex, and integer constraints
posed by flow, pump, and tank operations, integrating
autonomous control in such SWN is a complex task. The non-
convex constraints imposed by the flow and pump operations
make this problem NP-Hard. Solving NP-Hard problems is
computationally expensive, both in terms of memory and time
[8]. Therefore, in addition to covering the data observation
and acquisition framework for SWN, we discuss how we
can integrate challenging computation and control capabilities
via the Internet of Things (IoT). Furthermore, we present
how data-driven Machine Learning (ML) techniques can be
used to address the challenges posed by complex problems in
SWN. The structure of this paper is given in Fig. 2 and the
main contributions of this survey paper can be enumerated as
follows:
• A review of the literature on how to perform data

acquisition in water CPSs via IoT (Section III).
• We present a comprehensive review of ML techniques

aimed at SWN (Section IV).
• We present a detailed overview of the algorithmic

challenges posed by the NP hydraulic constraints to
control algorithms. We also look at how machine learning
(ML) techniques like Deep Learning(DL), Reinforcement
Learning (RL), and Deep Reinforcement Learning (RL)
can be used to address the challenges posed by such

2



I. Introduction

II. Background

Survey

A. CPS Component 

III. IoT

A. Sensing B. Architecture C. Communication

IV. Machine Learning

A. Motivation B. Supervised C. Unsupervised

V. Control

A. Model Predictive B. Data Driven

Fig. 2: Structure of this paper

constraints (Section V).

II. BACKGROUND

Water quality monitoring is the first step in the management
of any SWN because it provides the necessary evidence
to make intelligent decisions. With the introduction of
glass electrodes in the early 1920s, scientific efforts to
develop water quality monitoring began. Such electrodes
used voltammetry or amperometry measurement techniques
to determine an individiual water quality parameter such as
pH [9]. Overall, water quality monitoring, however, remains
a complex task because water can contain a wide range
of chemical and biological parameters that can indicate the
presence of contamination in the SWN. The main limitation
of individual sensing instruments is that they cannot detect
a wide range of chemical and biological parameters. As
a result, a more cooperative integrated approach has been
followed to detect multiple parameters of water simultaneously
by integrating heterogeneous water quality sensors. This
combination of heterogeneous sensors in a single system is
expected to provide superior sensitivity and selectivity, as
well as the ability to analyze data in real-time [10]. The
spatial coverage of SWN presents another challenge in water
quality monitoring. Since SWN has extensive spatial coverage,
wired systems are incapable of providing an adequate flow
of information transmission between user and source. As
a result, Wireless Sensor Networks (WSN) emerged as a
potential tool for the online transfer of relevant water quality
information. Online monitoring of WDN in Singapore, for
example, proposes an end-to-end solution using WSN for
monitoring, analyzing, and modeling urban water distribution
networks [11].

However, such advancements were limited to observing
the state of the SWN using distributed sensor nodes linked
by WSN, with control issues left to the discretion of the
controlling authorities. Manual control is a cumbersome task
in such a complex SWN because the SWN may be distributed
over a large geographical region. As a result, autonomous
and event-triggered control strategies for the operational
management of such SWN are required. CPS is important
in this case because it can monitor the state of the SWN
using sensors and apply desired autonomous control. CPSs-
based monitoring and control approaches have already been
tested for the management of oil pipelines and autonomous
cars [12], and they are gaining popularity for the operational
management of SWN. The most recent developments in CPSs
for SWN can be found in Table II.

A. CPS Components

CPS are designed to achieve autonomous end-to-end
control, i.e from sensing to control. We can classify the key
components of CPS as follows:
• Advanced sensing and networking technologies, such

as the Internet of Things (IoT), to capture and store data
of physical, chemical, and hydraulic parameters.

• Computing Technologies to perform several (centralized
or decentralized) tasks such as data pre-processing or
filtering, as well as various data-driven ML techniques, in
order to address the challenges posed by several SWN-
related application use cases, such as anomaly detection
and prediction of relevant events.

• Control, that is, autonomous real-time event-triggered
control capabilities to achieve tightly coordinated control
actions [18] towards maintaining desirable properties or
behavior in the SWN.
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TABLE II: Studies proposing Cyber physical systems for SWN

References SWN Overview Implementation method

Drinking
Water

Waste
water

Aqua-
ponics

[6], 2020 X X Multi-layer CPS framework. Barcelona water supply system.

[5], 2015 X X Proposed theoretical architecture of
water CPSs.

-

[13], 2019 X Use IoT and CPS for Aquaponics
system management.

Authors integrated sensor units, networking units,
and computational units using microcontrollers.

[14], 2019 X CPS designed for real-time sensing
and actuation for urine diversion.

Testbed using sensors, actuators and pumps.

[15], 2014 X CPS using mobile sensors in WDN
infrastructure.

Envision a CPS with mobile sensors.

[16], 2015 X Connectivity in CPS subsystems. Virtual Shanghai water distribution network.

[17], 2016 X Five-layer CPS architecture. The study proposed a CPS framework using data
mining, data fusion, hydraulics, and modelling.

[4], 2018 X CPS architecture. Developed a testbed, and decision support
system.

Through its interaction with SWN, sensing generates time-
series data. Because the sensors may be distributed in
geographically dispersed locations, intelligent communication
techniques that provide a common data acquisition framework
are required. Through nodes, storage servers, and intelligent
algorithms, IoT provides an intelligent framework for data
communication, data storage, and data analytics [19]. Once
the time-series data is collected via IoT, we need intelligent
algorithms to detect patterns in the data set and assist the
user with predictive analytics and decision making. As a
result, we require intelligent computing techniques such as
machine learning (ML) to detect inferences from patterns and
identify anomalies in the high volume of complex data streams
[20]. These inferences are required for the development
of advanced control capabilities in SWN. In the following
sections (Section III-Section V), we look at IoT, ML, and
Control techniques for the design of CPS in the context of
overall SWN management.

III. INTERNET OF THINGS

With the advancements in communication technologies, we
are moving towards an era of ubiquitous connectivity, where
a wide range of applications are connected to the Internet.
Internet of Things (IoT) is a new technology paradigm, where
the sensors, embedded processors, and actuators are deeply
intertwined through advanced communication technologies to
monitor the state of a physical process in real-time. According
to Vermesen et al. [21], IoT is an interaction between the
physical and digital worlds, where the digital world interacts
with the physical world through a plethora of sensors and
actuators. We would like to emphasize that IoT is not a
single and stand-alone technology, but it is a collection of
different technologies, which work together to monitor the
state of a physical environment such as SWN. In addition,

IoT can be seen as an enabling technology for CPS, as
IoT is expected to link the diverse elements (Sensing, ML,
and Control) of CPS to the internet [22]. IoT can be used
for various applications such as healthcare, education, energy
management, home automation, and smart city management.
In the context of SWN, some of the use cases for IoT are water
quality monitoring, WDN Management [23], Aquaponics [24],
and Hydroponics [25]. IoT is necessary to construct the data
management and communication infrastructure of CPSs as
emphasized in [26]. Therefore, in this section, we present the
major components of IoT, mainly Sensing, Architecture, and
Communication in the context of SWN.

A. Sensing
Sensing is an important component of SWN and

IoT architecture. Sensors interact with the SWN and
monitor various physical, chemical, and hydraulic parameters.
In addition, these sensors provide valuable data from
aforementioned parameters. For instance, a pH sensor
determines the acidity and alkalinity of the water. Total
Dissolved Solid measurement determines the presence of
organic salt and inorganic matter. A dissolved oxygen sensor
determines the presence of oxygen in water, which is
an important criterion for drinking purposes and aquatic
life. However, monitoring various physical, chemical, and
hydraulic parameters requires a diverse range of measurements
from heterogeneous sensors, and therefore water utilities
install heterogeneous sensors to monitor the overall state of
SWN.

The selection of the type of heterogeneous sensors are
application-specific in SWN, which is based on empirical
evidences and on the recommendation of environmental
monitoring agencies such as the United States Environmental
Protection Agency (EPA) [30]. For instance, Hall et al.
recommend WDN water quality monitoring by measuring
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TABLE III: Heterogeneous sensor for different SWN

References SWN Heterogeneous sensors

Drinking
Water

Waste
Water

Aqua-
ponics

[27], 2007 X pH, Free Chlorine, ORP, DO, EC, Turbidity, Total Organic Carbon, Chloride,
Ammonia, and Nitrate.

[28], 2019 X pH, Temperature, DO, Nitrate, Ammonia, and EC.

[10], 2014 X Turbidity, Free Residual Chlorine, ORP, Nitrates, Temperature, pH, EC, and
DO.

[29], 2006 X Total Organic Carbon, Chemical Oxygen Demand, Biological Oxygen
Demand, Total Suspended Solids, Nitrogenous, and Phosphorous compounds.

heterogeneous parameters such as pH, dissolved oxygen
(DO), electrical conductivity (EC), and oxygen reduction
potential (ORP) [27], whereas [28] recommends measuring
pH, Temperature, DO, Nitrate, Ammonia, and EC for
Aquaponics application. Table III summarizes the important
research studies, which integrated heterogeneous sensors for
different SWNs. These evidences also suggest that some
specific water parameters, mainly pH, EC, DO and ORP, are
the most sensitive indicators of contaminants such as nicotine,
arsenic trioxide and Escherichia coli [27]. Therefore, instead
of direct detection of any specific contaminant, monitoring
these specific parameters through selected heterogeneous
sensors is a feasible and low-cost alternative for overall
water quality monitoring. This approach of integrating
heterogeneous sensors offers a broad contamination coverage
and is sometimes also termed as sensor fusion [31].

These heterogeneous sensors have distinct manufacturing
properties, different throughput and, distinct measurement
cycles. The Low-level layer of IoT architecture plays a crucial
role in data acquisition from such heterogeneous sensors by
synchronizing different throughput and measurement cycles.
In the next subsection (III-B), we review the IoT architectures
for smooth and efficient data acquisition from heterogeneous
sensors.

B. IoT Architecture

IoT Architecture can be described as an environment that
supports data acquisition, data storage, data visualization,
and computing in a distributed fashion over the Internet.
Recently, IoT architectures have received great attention
for smooth data acquisition and analysis; see, e.g., [32].
In the context of SWN, IoT architecture facilitates smooth
data acquisition from heterogeneous sensors in an online
fashion. We can classify the IoT architectures as Layered
Architecture or Cloud/Fog based Architecture [33]. In the
following subsections, we present different IoT architectures
in the context of SWN.

1) Layered Architectures
This class of architecture consists of multiple layers for

smooth data acquisition and processing. Although, there

is no universally agreed consensus over the number of
layers, different researchers propose Three-, Four-, Five- or
even Seven-Layer IoT architectures. For instance, Three- and
Five- layered IoT architectures are presented in [34]. For
smooth data acquisition in SWN, we present a Four-layered
architecture as shown in Fig. 3a, and the function of each layer
is described as follows:

• The Low-level layer, also known as the perception layer,
is composed of distributed and heterogeneous sensors to
collect the data from SWN. This layer senses physical and
chemical parameters to obtain observations representing
the state of the environment.

• The Medium-level layer, also termed as Network layer,
directs the data from the Low-Level layer to the Platform
layer. The Medium-Level layer determines the path of
data transfer using devices (such as gateways, routing
devices, hubs, etc), which are connected through various
networks (such as wireless, 3G, LAN, Bluetooth, RFID,
and NFC) [35].

• The Platform layer consists of mainly databases, data,
and data pre-processing modules. This layer accumulates
and processes the data streams acquired from the Low-
Level layer. Generally, this layer is composed of two
major stages: (i) the Data accumulation stage and (ii)
the Data abstraction stage. The data accumulation stage
captures the real-time data from various sources (such as
an Application Programming Interface) in a structured
manner. SQL and NoSQL are the most popular and
powerful data accumulation servers. Whereas, the Data
abstraction stage performs data pre-processing.

• The High-level layer, also known as the Application layer,
is responsible for data visualization and analytics. This
layer consists of (i) User Interface and (ii) Data analytics
section. The User Interface displays the time-series
information of sensor data and subsequently presents an
analysis in a user-friendly way. Grafana is one such
User Interface platform commonly used in IoT. The
Data Analytics section performs computing over dataset
and may consist of an advance statistical algorithm
(such as ML, discussed in Section IV) for data analysis
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and anomaly detection. It is expected that this layer
should have high computational capabilities to address
the challenges posed by the high volume of dataset [36].

In layered architectures, data from the sensors are usually
sent to a fusion center, which may be, e.g., a storage
server over the cloud or some other secure server in a
control center supervising operations. Such architectures are
mostly designed in a way that one could store, process, and
perform computation over the entire dataset in a centralized
manner. In addition, the layers of IoT infrastructure are to be
designed in an ad-hoc manner and need careful planning for
future restructuring as per the expected requirements of SWN.

2) Cloud/Fog-based Architectures
Cloud and Fog based architectures are system-based

architectures [33], composed by integrating different elements,
which work together to achieve a specific goal. Cloud-
based architectures are scalable and flexible system-based
architecture, where the Cloud refers to the host server over
the internet. The elements of a cloud server are data storage,
software tools, ML, and user interfaces. In Cloud-based
architectures, the sensor communicates to the cloud, and the
cloud performs the data processing and analytics tasks in
a centralized fashion. Unfortunately, such an approach may
be slow and time-inefficient for large-scale SWN, as the
sensors even transfer the redundant and repetitive data to the
central server. Instead, one can process the dataset locally and
transfer only the relevant sensor data to the central server.
Fog-based architectures are designed to process the dataset
locally, where the sensors and gateways can be used to perform
part of the data processing and communicate only relevant
sensor data to the cloud [38]. The Fog-based architecture
is composed of multiple layers and is depicted in Fig. 3b.

Such architectures are constructed by inserting four additional
layers between the Low-Level layer and Medium-Level layers
(discussed in Section III-B1). The four layers can be classified
as; Monitoring layer - to monitors the resources and power
consumption; Preprocessing layer- for filtering and analytics
of data; Storage layer- for the temporary storage of data, and
Security layer-to ensure privacy and data integrity.

Edge computing can be seen as an extension of Fog-
based architectures. Edge computing envisions that users
can improve the performance of IoT by introducing smart
data preprocessing capabilities. This technology pushes cloud
services to the end-user, and is often deployed at the gateways
to perform analytics, and minimize the power and bandwidth
consumption of the network. In brief, this approach discards
the redundant data, and transfer only the selective and essential
data to the host server over the cloud; which results in
better energy management, improved data transfer rates, and
improved data processing capacity in an IoT Network [39].
Reference [37] presented the advantages of Edge computing
in terms of energy management as shown in Fig. 4, where
Fig. 4a depicts the assembled and deployed heterogeneous
sensor node in the Doñana National Park (Spain), and Fig. 4b
demonstrate the advantages of Edge Computing for improved
battery lifetime.

C. Communication

Since heterogeneous sensors are geographically distributed,
the wired data acquisition is an infeasible and not preferred
choice. In such a scenario, data acquisition through wireless
communication technologies emerges as a natural choice.
Bluetooth, WiFi, ZigBee, LoRA, Narrow Band-IoT, and
Sigfox are the leading wireless communication technologies
for efficient IoT deployment. The selection of deployed
technology depends on the factors such as communication
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(a) (b)

Fig. 4: Work by Garcia et al. [37], where (a) depicts assembled and deployed wireless sensor node in the Doñana National Park
(Spain), and (b) demonstrate the advantages of edge computing over continuous data streaming for environment monitoring.
Approved to be used by the original authors.

coverage, power consumption, data transmission latency, and
bandwidth offered. We cover some of the major wireless
communication technologies for IoT as follows:

• Short Range Communication: RFID and NFC (Near
field communication) are some of the short-range
communication technologies, which can communicate to
the devices located in close proximity.

• Wireless Sensor Networks (WSN): The use of short-
range communication is constrained for applications
that cover a large geographical area. WSN consists
of distributed senor nodes, deployed over a small
or vast geographical region and are connected in a
wireless fashion through gateways. WSN can be deployed
through diverse topologies such as star, delta, or mesh
[40]. Communication through WSN is based on several
standards, the most popular one being IEEE 801.15.4.
WSN is an efficient and robust technology and has been
utilized in a diverse range of applications in SWN such
as water quality monitoring [41], Aquaponics, and WDN.

• Low Power WiFi: Traditional WiFi provides a substantial
data rate (up to 9.6 Gbps); however, it consumes a
significant amount of power. The WiFi Alliance has
developed WiFi HaLow, which is a low-power long-
range alternative to WiFi. This technology offers a
communication range nearly double of traditional WiFi
and relies on standard IEEE 802.11a.

• Wireless Personal Area Network (WPAN): WPAN is a
low power, short-distance, and low data rate wireless
communication technology. The coverage of such
technology ranges from a few centimeters to a few
meters. Bluetooth, ZigBee, and Helium are some of the
examples of WPAN. This technology is based on standard

IEEE 802.15.
• Low Power Wide Area Networks (LPWAN): Power-

hungry short-range wireless communication technologies
(such as WiFi) is not suitable for long-range
communication. LPWAN is a low-bit long-range
communication technology, which is useful for power-
constrained long-range IoT environments. Some of the
examples of LPWAN are Narrow Band IoT, Sigfox,
Neul, and LoRaWAN. In SWN, one of the use cases of
LPWAN is WDN monitoring [42].

Table IV presents a comparison of various wireless
communication technologies in terms of coverage, bandwidth,
power consumption, etc. From comparative analysis,
Bluetooth, Zig-Bee and WiFi are intended for short-range;
whereas, LPWAN technologies are useful for long-range
applications. Zig-Bee and WiFi offer better robustness as
they support higher channel bandwidth compared to LoRA.
Readers can refer to [43] for a comprehensive study of
Wireless technologies, mainly, Bluetooth, UWB, ZigBee, and
WiFi. The selection of proper wireless technology ensures a
timely response with high reliability. Therefore, it is essential
to deploy a suitable wireless technology for data acquisition,
as per the application requirements to address the challenges
posed by the voluminous data matrices of heterogeneous
sensors.

D. Challenges

1) Heterogeneity
Major challenge of sensing unit in IoT arises due to

heterogeneity of sensors. In SWN, sensor measurements
methods are based on different approaches such as
Voltammetry, Amperometry, Electro-optical, Biosensing, UV
Spectrometry [44], etc. In brief, voltammetry is suitable for pH
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TABLE IV: Comparison of Selected Wireless Communication Technologies∗

Technology Bluetooth ZigBee WiFi LoRa
IEEE Spec 802.15.1 802.15.4 802.11a/b/g/n/ac/ax 802.11ah
Frequency Band 2.4 GHz 868/915 MHz;

2.4 GHz
2.4 GHz; 5 GHz 423 MHz, 868 MHz,

915 MHz, 923 MHz
Max Signal Rate 1 Mb/s 250 kb/s 9.6 Gb/s 50 kb/s
Nominal Range 50-80 m 10-100 m 100 m 10-12 km LOS
Nominal Tx power (-)20 to (+)20 dBm (-25)-0 dBm 15-20 dBm 0-13 dBm
Channel Bandwidth 1 MHz 0.3/0.6 MHz; 2MHz 22 MHz 125 kHz; 500 kHz

* Information in Table IV is subjected to change over time with improvements in technology. We advise readers to follow state-of-the-art specifications from relevant sources.

measurements, Electro-optical method is efficient for turbidity
measurements, and biosensing is suitable to detect bacterial
contaminants such as E.Coli [45]. Due to heterogeneous
measurement methods, water quality sensors have different
measurement cycles and time stamps, which makes the data
acquisition process a challenging task. Such challenges can
be addressed by introducing advanced microcontrollers. For
example, in [46], authors introduce Arduino Mega 2560
microcontroller for integrating heterogeneous water quality
sensors, mainly, pH, Temperature, Turbidity, EC, Light, and
ORP. Similarly, in [47], heterogeneous water quality sensors
are integrated using Raspberry Pi microcontroller.

2) Sensor Calibration
SWN requires multiple heterogeneous sensors and involves

a geographically distributed set of dense sensors. The sensors
in such systems tend to deviate from the actual measurements
over time and require maintenance and periodic calibration.
In general, calibration process is an offline method and
may require physical interaction with the sensors. Physical
interaction is a time-consuming and cost-inefficient process to
resolve calibration issues. Therefore, the scientific community
is exploring various ways to develop remote and online auto-
calibration approaches. Auto-calibration can be defined as a
method of online calibration without physical intervention,
while leaving the sensors deployed in the field. Reference
[48] proposes an ML-based method ML4CREST for the
auto-calibration of the water flow sensor. Similarly, in [49],
authors propose a method of auto-calibration for a Turbidity
sensor.

3) Interoperability
Interoperability can be considered as a key for efficient

management of SWN [50]. The heterogeneous IoT devices
may operate over diverse protocols; having different data
formats and structures, which require smooth cooperation and
coordination. Interoperability facilitates smooth cooperation
and coordination between heterogeneous devices of an IoT
environment. However, Interoperability is a challenge for
such IoT application, which is preventing the wide acceptance
of IoT ecosystem.

4) Edge Intelligence
In a water CPS, ML performs analytics over data obtained

from heterogeneous sensors. This analytics is performed in
a High-level layer (as described in Section III-B) over the

cloud; however, uploading such data over the cloud using IoT
is inefficient in terms of bandwidth and resources. In contrast,
Edge Intelligence process and analyze the data locally, and
provide a platform to train and deploy an ML model in
a local environment rather than cloud through embedded
systems. For instance, embedded devices such as NVIDIA
Jetson TX2 can be used to deploy an ML algorithm locally
[51]. This approach may save important resources; however,
it is still a major challenge for such embedded devices to
run a large-scale complex ML model over the edge. Data
scarcity, bad adaptability, and security issues are other major
challenges of such devices.

5) Scalability and Reconfigurability
With ever-increasing expansion of SWN due to factors such

as population growth, industrial demand, and environmental
challenges, It is expected that IoT networks are scalable and
reconfigurable. Here, we refer to scalable and reconfigurable
as the adaptive ability of the network to evolve as per the
changes in the SWN. The growth in industrial and urban
water infrastructure goes through progressive stages, and
therefore the IoT architecture is expected to be scalable and
reconfigurable to address the challenges.

6) Limitations of wireless communication modules
Water CPSs are essentially data-driven systems. For timely

operation, we require an efficient wireless communication
module; however, wireless communication is constrained by
power uses and data transmission capabilities.

7) Security
With the proliferation of communication networks, the

IoT/CPS coverage is expanding to a wide geographical
area. Such an IoT ecosystem frequently connects critical
infrastructure such as WDN and Wastewater networks.
Reference [77] points out the possible areas of CPS (Sensing,
Communication, and Control), which are prone to attacks.
Therefore, CPS is expected to have built-in mechanisms to
tackle security challenges.

Summary:
The IoT can be seen as an enabling technology for CPS for
the management of efficient data acquisition, and the merging
of IoT with CPS into closed-loop is an important future
challenge [18]. In this section, we reviewed the layers of
IoT infrastructure and covered the IoT use cases for SWN.
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TABLE V: Some of the use cases of supervised and unsupervised ML in SWN

ML Algorithm Applications

Supervised

k-NN Water quality [52], pipe leakage [53], nutrient control in Aquaponics [54]
SVM Water demand forecasting [55], water quality [56], Aquaponics [57]
Naïve Bayes DO in Aquaculture [58], toxic compounds [59]
Logistic Regression Water contamination [60], pipeline failure [61]
Decision Trees Water quality prediction [62]

Random Forest Leak detection [63], water consumption monitoring [64], contamination
detection [65]

Bayesian Ridge Regression Pipeline burst detection [66]
Gradient Boosting Water demand forecasting [67], Biological oxygen demand prediction [68],

and flood level detection [69]
Artificial Neural Networks Water quality forecasting [70], water pollution estimation [71], DO prediction

in aquaponics [72], water demand forecasting[73]

Unsupervised
k-means Water quality analysis [74], wastewater treatment plant [75]
Fuzzy C-means DO control in a wastewater treatment plant [76]

Once, the CPS acquires data from IoT Infrastructure, it is
expected to perform data analytics through advanced statistical
techniques such as ML. In the next section, we review various
ML techniques in the context of water CPS.

IV. MACHINE LEARNING

One of CPS’s goals is to interact with the SWN via
heterogeneous sensors and detect the presence of anomalies
(such as contamination or leakages) in the system. The CPS
observes real-time heterogeneous SWN parameters (such as
water quality, physical, and chemical parameters) and detects
unexpected changes in the parameters. Such unexpected
changes may indicate the presence of an anomaly. The
benefits of such observations include improved water quality
monitoring, better control over nutrient presence, timely leak
detection, improved pressure/flow management, and secure
infrastructure. Despite significant advancements in online
anomaly detection systems [10], controlling authorities require
improved prediction models [78] to obtain inferences from the
high volume of heterogeneous sensor data.

A. Motivation

According to Hawkins, "an anomaly is an observation
that deviates so much from other observations as to arouse
suspicion that a different mechanism generated it" [79].
Formally, given a sequence of observed data points xt ∈ Rn,
the objective of anomaly detection is to differentiate between
normal and abnormal states, which can be denoted as yt ∈
{0, 1}, where t ∈ {1, · · · , T} is the sample index in the time
domain. Traditionally, the anomaly detection process was done
in a lab. A user collects water samples from bodies of water
and processes them using traditional lab-based techniques.
The work presented in [80] summarizes these traditional lab-
based techniques. These techniques are, however, not very
effective for monitoring dynamic SWN, such as geographically
distributed WDN, Aquaponics, and industrial water networks.
An anomaly in such networks can occur for a variety of
reasons, including contamination incidents, leakage incidents,

and so on. There is a need to develop appropriate inference
methods that can detect anomalies in such dynamic networks
in real-time and then learn models from the data to explain
why an anomaly exists.

Machine learning (ML) techniques are specialized
computing methods that can be used to predict and detect
anomalies in such SWNs. ML works by utilizing the
statistical properties of data from heterogeneous sensors to
generate intelligent inferences. Anomalies can be predicted
and detected using such inferences. ML could also capture
the nonlinear dynamics of the water environment, which are
posed by flow, and pump constraints. Some of the recent
applications of ML algorithms in SWN are contamination
detection, water quality analysis, identifying the correlation of
physical and chemical parameters, development of a decision
support system, detecting pressure-flow inconsistencies,
real-time leakage detection, dissolved oxygen control, and
nutrient monitoring. In addition, ML can also be used to
develop predictive and autonomous event-triggered pressure
and flow control algorithms. ML algorithm can be classified
as supervised, unsupervised, or reinforcement learning [81].
In the following section, we provide an overview of various
ML algorithms that can be used in the context of a water
CPS.

B. Supervised ML

Supervised ML is the most common ML methodology to
detect anomalies by using a set of labeled data. In supervised
ML, the objective of the algorithm is to learn a mapping
function between input variables x ∈ X and output variable
y ∈ Y such that f :X → Y , where the output variable y
can be predicted. Classification and Regression are two main
subcategories of supervised ML techniques. In Classification
the output variable y is categorical (discrete), whereas in
Regression the output variable is continuous. There are various
supervised ML algorithms available in the literature, and
readers can refer to [82]. The following are the most important
supervised ML algorithms in the context of water CPS:
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• k-nearest neighbours (kNN) - The k-nearest neighbor
algorithm is a well-known class of ML algorithms for
classification and regression. The underlying assumption
of kNN is that similar data points occur adjacent to each
other. For each unlabelled query sample, the algorithm
finds k number of nearest training samples, which are
labeled. The most frequent label from these k neighbors is
assigned as the label of the query sample in classification
problems, whereas the average of the neighbor labels
is assigned to the query point in regression problems.
The optimal value of k can be specified by the user or
learned. For example, [83] proposes a tenfold approach
for cross-validation to obtain optimal k values. The
applications of kNN in SWN are to classify drinking
water quality, predict water pollution index [52], detect
water pipe leakage [53], and so on. Reference [54]
uses kNN to control nutrient levels in aquaponics.
One of the limitations of a traditional kNN algorithm
is the time-consuming process of manually setting k
values. Furthermore, as the volume of data increases, this
algorithm becomes computationally expensive in terms of
time and memory.

• Support Vector Machine (SVM) - SVM is a
robust supervised ML algorithm for classification and
regression, developed based on Vapnik–Chervonenkis
(VC) theory. SVM is commonly known as a large-
margin classifier as it relies on the decision boundaries,
which are hyperplanes having the largest distance to
the support vector (the nearest training sample) of any
class (see Fig. 5), resulting in low generalization error.
Although the original algorithm is proposed to develop
linear classifiers, the key attractiveness of SVM is that
the idea of the maximum-margin hyperplane can be
extended to construct nonlinear decision boundaries by
invoking kernels. The typical procedure involves mapping
the original finite-dimensional space of data points to a
higher-dimensional feature space using a suitable kernel
function such that the nonlinear classification can be
performed by constructing a hyperplane-based linear
classifier in the transformed feature space.

Some of the typical SVM kernel functions are linear,
polynomial, sigmoid and radial basis function (RBF).
RBF is the most commonly used kernel, given by
k(x,xi) = exp(−γ||x − xj ||2) where x is the data
vector that belongs to a binary class y and the parameter
γ controls the over-fitting or under-fitting [84].
SVM is a leading pattern classification and function
approximation technique because it reduces estimation
error, and is less prone to overfitting. SVM is used in [55]
for hourly water demand forecasting. In [56], authors use
SVM to classify water quality, and in [57], it is used to
evaluate observation sensors in an Aquaponics plant.

• Naive Bayes - kNN and SVM are discriminative ML
models, whereas Naive Bayes is a generative ML model
[85]. For a given input x and the corresponding label
y, the discriminative models are designed to learn the

Fig. 5: Binary SVM Classification

probability distribution Pr(y|x). Whereas the generative
ML model estimates the joint probability Pr(x,y), and
applies the Bayes theorem to obtain Pr(y|x). This
algorithm is based on the assumption that features are
independent of one another. Reference [58] predicts the
DO in an aquaculture plant using Naive Bayes. In [59],
authors predict the presence of lead components using
Naive Bayes.

• Logistic Regression - Logistic regression is a supervised
ML technique based on logistic function. This ML
technique indicates the presence of anomaly through
binary decision variables such as 0/1 or yes/no. Detection
contamination [60], pipeline failure [61], etc., are some
of the WDN applications of logistic regression.

• Decision Trees - Due to its efficiency in addressing
large scale regression tasks, the decision tree is one
of the most widely used class of supervised ML.
Decision tree consists of two main elements: nodes,
representing features and branches, representing division
rules. Typically in a decision tree, starting with the first
node i, features of the training data {di} is evaluated to
split the observation into two branches, which ends at
child nodes. This process is followed recursively [86]. In
[62], authors used hybrid decision tree for water quality
prediction. .

• Random Forest - Random forest (RF) is an extension of
the decision tree supervised ML approach. Decision trees
are sensitive to minor changes in data sets, which can
result in an inaccurate prediction. RF compensates for
this shortcoming by combining multiple decision trees
and producing an average of involved decision trees.
RF addresses the issue of missing data [87], overfitting,
and is noise immune [62]. Paper [88] evaluates the
performance of 179 classifiers and concludes that by
parallelizing RF implementation, users can achieve
significantly higher classification accuracy than their
counterparts. RF applications include leak detection [63]
and contamination detection [65].

• Bayesian Ridge Regression - Bayesian ridge regression
merges the foundation of Bayesian probabilistic
method with ridge L2 regularization. This approach
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is particularly suitable to address challenges that arise
from multicollinearity issues. Multicollinearity refers to
a situation in which explanatory variables are linearly
dependent. The author of [66] present a use case of
Bayesian Ridge regression in order to detect bursts in a
pipeline. Also, the authors estimate the short-term water
demand using this approach.

• Gradient Boosting - Gradient boosting is a ML
technique for classification and regression. Boosting
in this context refers to a method of combining a
group of weak learners (e.g., decision trees). The
underlying assumption is that weak learner performance
is marginally better than random guess and that an
ensemble of weak learners can significantly improve ML
model performance for classification and regression tasks.
Gradient Boosting algorithms are greedy, and they tend to
overfit the training dataset. To avoid overfitting, various
regularization methods can be used to penalize the parts
of the algorithm that perform poorly. Water demand
forecasting [67], Biological Oxygen Demand prediction
[68], and flood detection [69] are some of the applications
of Gradient Boosting.

• Artificial Neural Networks - ANN models are highly
flexible function approximators that can be used to solve
a wide range of classification and regression problems.
ANN is inspired by the human brain’s structure, and
its processing and learning abilities. The mathematical
model of an artificial neuron is presented in Fig. 6a. As
shown in Fig. 6a, the synapses provide weights wi to
the inputs xi for i = 1, 2, · · · ,m. Adder generates v =
w0 +

∑m
i=1 wixi. At the output, g(v) maps (typically,

using a nonlinear function) the sum of weighted inputs v
to the output of the neuron.

Water quality forecasting [70], water pollution
estimation [71], dissolved oxygen prediction in
aquaponics [72], etc., are some applications of ANN.
Authors of [73] use ANN to model the short-term
water demand. The authors conclude that the proposed
ANN-based method outperformes the other short-term
demand forecasting methods such as regression and time
series models. Author of [89] performed a comparative
analysis of ANN against SVM for predicting time-series
of water demand and concluded that the ANN has
significantly better generalization capability compared
to SVM. For a detailed review of ANNs for SWN
applications, readers can refer to [90].

C. Unsupervised Learning

Supervised ML methods are efficient and robust, but
they require 'labeled' data for training. However, data
labeling is a time-consuming and laborious process. For
example, labeling the presence of e.coli is a time-consuming
analytical measurement process because e.coli detection is
only possible based on bacterial growth. Furthermore, as
the network’s dimensions and the number of distributed
heterogeneous sensors grow, the various sensor data matrices

grow voluminous, making the labeling process prohibitively
inconvenient. Unsupervised ML is an alternative choice to
learn the underlying structure in a dataset.

Clustering is the most important type of unsupervised
learning, with the goal of classifying data using a finite set
of clusters [91]. Clustering is based on the assumption that
normal data instances belong to a large or dense cluster,
whereas anomalies do not belong to any cluster. Clustering
has been extensively tested in the evaluation of water quality
analysis [92]. In the following subsection, we discuss some of
the most common clustering algorithms and their applications
in industrial and urban water environments such as WDN and
Aquaponics.

• K-means - K-means algorithm is used to partition
n data samples into K clusters such that the inter-
cluster variance is high and intra-cluster variance is low.
The algorithm iteratively computes K centroids (means)
corresponding to K clusters, and in each iteration, the
samples are clustered by computing the closest centroids.
Figure 6b shows a graphical representation of K-Means
clustering. When the clusters in the dataset are distinct
or well separated, K-means clustering performs well.
Furthermore, in terms of computational complexity, K-
means is efficient. This method is useful for applications
such as enhanced water quality analysis [74] and decision
support for wastewater treatment plant development [75].

• Fuzzy C-means - The K-means algorithm performs
well when the dataset is distinct; however, the K-means
algorithm fails to find overlapping clusters. This issue
can be addressed by modifying the K-means algorithm
by adopting a ‘soft’ strategy for the cluster membership,
which is referred to as fuzzy C-means or soft K-means.
If a data object is associated with overlapping clusters,
a fuzzy parameter is assigned to determine the degree
of associativity to a cluster. Since the water quality
parameters are correlated, this approach provides the
degree of data point associativity to a cluster. In [93],
authors use this approach for water quality analysis in
the Niharu dam reservoir. Another application of fuzzy
C-means can be found in the predictive control of the
dissolved oxygen model in wastewater treatment plants
[76].

• Manifold Learning - Dataset from geographically
distributed SWN may contain irrelevant and correlated
features. Dimensionality reduction improves the
performance of an ML model by extracting relevant
features from the dataset and discarding the irrelevant
and correlated features. Traditionally, linear approaches
(such as principal component analysis) were used for the
dimensionality reduction; however linear dimensionality
reduction approaches are inefficient, and can not extract
the relevant features adequately from complex and
nonlinear data. Manifold learning is an unsupervised
ML approach to extract features from complex nonlinear
datasets. Semidefinite Embedding, Isomap, Laplacian
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Fig. 6: (a) depicts the schematic representation of a single ANN neuron, and (b) presents the clustering through K Means
algorithm.

Eigenmap, and Local linear Embedding are the major
techniques of Manifold learning. More recently, Manifold
learning is recommended to use along with K means
clustering to improve the overall model accuracy [94].
The challenge associated with Manifold Learning is that
it is prohibitively expensive in terms of computational
time for large-scale problems.

Unsupervised learning provides valuable insights into data
by identifying potential clusters or groups to which data points
may belong. One significant disadvantage of this approach
is that, while the algorithms are trained to detect clusters,
they are not trained to detect anomalies. Furthermore, because
unsupervised learning is prone to suboptimal solutions, it
necessitates careful hyperparameter tuning. To avoid the
challenges of unsupervised learning, researchers in some
applications use a 'unlabeled' data set in conjunction with a
small amount of 'labeled' data to improve the overall ML
model accuracy. This method is referred to as the semi-
supervised ML approach. In [95], authors used a semi-
supervised ML approach to develop a risk warning system
for chemical hazards in drinking water applications.

1) Performance Matrices

The accuracy of an ML model can be calculated using
various performance matrices such as Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), and Mean Arctangent Absolute
Percentage Error (MAAPE). The RMSE measures how well a
regression model fits a data point. Furthermore, using RMSE,
the user can examine the similarity of estimated values to
actual data. MAE can be used to calculate the difference in
predicted and observed data points. MAE is scale-dependent
and does not provide information about the direction of error.
MAPE is an alternative to MAE that provides an intuitive
interpretation of the error between observed and estimated data
points. The observed data xt and estimated data x̂t can be
compared in terms of MAPE as follows:

MAPE = 100%× 1

n

n∑
t=1

∣∣∣(xt − x̂t)/ xt∣∣∣ (1)

When time series have zero or near-zero values, it is
preferable to use other metrics, such as Mean Arctangent
Absolute Percentage Error (MAAPE) [96].

D. Challenges

1) Real-Time Adaptive Reconfigurability
Successful real-time implementation of ML methods and

real-time adaptive reconfigurability for such CPS are still
open challenges. Nowadays, the acquired data from sensor
arrays are processed mostly offline, since the training of such
ML models relies on data sets that are obtained offline, hence
can be termed as offline methods. However, to represent a
holistic development of water CPS, CPS are expected to be
adaptive, and reconfigurable in real-time [5].

2) Online contamination detection
The existing ML algorithms provide an adequate framework

of contamination detection in an offline fashion. Such ML
algorithms process the data in batches. However, Water CPS
are envisioned to exercise real-time control in application
scenarios that require online detection of contamination,
and therefore, ML algorithms are expected to acquire and
process real-time data streams of water quality parameters.
Acquiring the real-time data set from all the possible water
quality parameters is complex [27], as not all the sensors
provide real-time observation of targeted parameters (e.g.
E.Coli sensors). Therefore, integrating online contamination
detection capabilities in such water CPS requires real-time
observation, and further research is required to develop state-
of-the-art methods, which could observe the state of the
targeted parameter in real-time.

Summary: CPSs are expected to be designed in such a way
that they can detect anomalies and then apply control actions
via actuators. This section discusses the various supervised
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Fig. 7: (a) depicts the DL-RL Model for Autonomous Control in an Aquaponics system (b) presents the application of SVM-
DRL model for autonomous water pressure management in a WDN.

and unsupervised ML algorithms that can be used to detect
anomalies in industrial and urban water CPS applications
scenarios. In the following section, we cover the challenges
that must be addressed in the design of CPS in order to
introduce autonomous control capabilities.

V. CONTROL

Control is an integral component of any SWN, and
coordinated control of pumps, valves, water quality
parameters, etc., are highly desirable in SWN in order
to prevent the unexpected occurrence of anomalies. For
instance, due to accidental water pipe leakages in a WDN, it
is estimated that water authorities lose a significant amount
of water globally [97]. The authorities require an Intelligent
control method to systematically detect an anomaly (such as
leakages and contamination) in a WDN, and autonomously
control the various elements of a WDN (such as valve states,
water flow, pump speed, etc.), without human intervention.
Figure 7a and Fig. 7b depict the use cases of control
applications derived from ML in an Aquaponics and WDN,
respectively.

However, integrating autonomous and intelligent control
capabilities in a CPS is an important design challenge, as
it requires close interaction between sensors, actuators, and
parameters of the physical world [98]. The main contribution
of this section is to capture the control aspect for such CPS
by answering the questions: how the problem of control can
be defined and how the autonomous control formulations
can be integrated into targeted water CPS. In Section V-A,
we cover the traditional offline model-predictive control
formulations and the challenges posed by such formulations.
In Section V-B, we cover the data-driven control methods; a
promising approach to integrate autonomous control capability
in SWN. We also intend to cover the existing works addressing
the autonomous control approaches in order to optimize the
hydraulic, physical, and chemical parameters of SWN.

A. Model-Predictive Control

MPC is one of the leading approaches for the operational
management of water ecosystems for diverse applications,
such as flow management, pipeline pressure management,
chlorine management, nutrients management in Aquaponics,
etc. MPC is a model-driven control approach, which relies on a
system model, where the system model presents a mathematical
and logic-based representation of the physical components of
SWN. Some of the frequently used benchmarks of system
model in a WDN are Anytown, New york city tunnel, and
Two reservoir model; whereas, in Waste water networks,
the commonly used system model benchmarks are Mays
and Wenzel, and Li and Matthew [99]. In such SWN, the
primary objectives of MPC are to (i) identify a set of optimal
operating points for operational management, and (ii) compute
a time-series control trajectory for pump and valve control
through suitable optimization formulations. Constructing a
suitable optimization formulation requires prior information
of water flow distribution, physical dimensions, properties of
various components, uncertainties caused by the parameters,
optimization objectives, and network constraints.

1) Optimization Formulation
The goal of providing an optimization formulation is to

identify an optimal set of points for a given Objective (e.g.
minimization of different types of costs) of interest, under a
given set of hydraulic constraints. A typical SWN optimization
framework is given by:

maximize/minimize f(x)

s.t x ∈ X ,
(2)

where f(x) is an objective function and X is a constraint set.
The SWN objective function f(x) is usually formulated for
(a) minimizing the pipe cost in a network, (b) minimizing
or maximizing the flow and pressure in the network, (c)
optimizing the consumer water demand, (d) scheduling
optimal water dispatch, (e) minimizing the cost incurred
due to dynamic energy pricing, (f) managing water quality
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TABLE VI: Head loss equations∗

Formula Head loss (hi − h
′
i) Coefficient

Hazen-Williams CHWsign(f`)(f`)1.852 CHW = 4.727K1
−1.852d`

−4.871l`

Darcy-Weisbach CDWsign(f`)(f`)2 CDW = 0.02K2d`
−5l`

Chezy-Manning CCMsign(f`)(f`)2 CCM = 4.66K2
3d`
−5.33l`

*Here, i and i
′

are the consecutive nodes in water distribution networks and ` is the physical connection (pipes) between consecutive nodes. CHW , CDW , CCM are the coefficients
of Hazen-Williams, Darcy-Weisbach and Chezy-Manning. d` (ft) is the pipe diameter, l` (ft) is the pipe length. f` is the flow rate. K1, K2, and K3 are the friction factor of
Hazen-Williams, Darcy-Weisbach and Chezy-Manning respectively.

parameters, etc. Readers can refer to [100], which covers a
diverse range of SWN objective functions.

In the existing literature, optimization formulations have
been proposed and solved to address different control
objectives, such as pump scheduling [101], valve operations
[102], chlorine dispatch [103] and operational management
[104]. In order to solve such optimization formulations,
which happen to be usually highly non-convex problems,
heuristics-based solvers are a popular choice of methods,
which search for an optimal solution by considering an
initial guess over a set of control points. Genetic algorithms
(GA), Simulated annealing (SA), Branch-and-bound, and
Tabu search (TS) are examples of heuristic-based methods
and have been experimented with in large-scale WDN
[105]. However, the constraints posed by the components
of SWN bring a significant challenge for such solvers. In
the next subsection, we cover the major constraints in SWN
optimization formulations.

2) Constraints
The water flow in a typical SWN is governed by the

hydraulic constraints. Such hydraulic constraints are imposed
by the integral components of SWN such as tank dynamics,
head loss equations (Hazen-Williams, Darcy-Weisbach, and
Chezy-Manning), valves state, variable and fixed speed pumps,
etc. Often, the constraints imposed by the model components
makes the control formulation non-convex and in most cases,
NP-Hard [8]. Finding an optimal solution or close-to-optimal
solutions to these problems is computationally expensive in
terms of memory and time. The challenges posed by the
constraints are discussed below:

a) Non-convexity of head loss equations
Empirical head loss equations, presented in Table VI, are the

commonly used equations to model the water flow rate with
the physical dimensions (e.g., pipe capacity, tank capacity,
etc.) of the circuit. However, solving an optimization problem
involving empirical head loss constraints is challenging due
to its non-convex nature. The non-convexity is attributed
due to presence of the non-convex sign function. Some of
the techniques to address the non-convexity of head loss
equations are linearization [106], Big-M [101] and Geometric
Programming [107].

b) Computing the water flow distribution
Water flow management is a major control objective in

SWN. Computing flow distribution is a necessary step for
efficient pressure management in a network, which requires
prior information of the network type. The network types
can be characterized as Branch or Loop networks. In a

branched network, the optimal water flow distribution can be
computed uniquely, given the availability of water outflow at
nodes, whereas, in loop network, the flow can take multiple
paths to reach from source to destination [108]. In such
loop networks, computing flow distribution requires iterative
methods as described in [109]. Another parameter to compute
flow distribution is based on whether the flow in the water
network is assisted by gravity or by the pumps. In a gravity-
fed SWN, the MPC control objective is to manage the optimal
water flow and maintain the necessary pressure in the nodes
given the constraints posed by the pipes, tanks, valves, etc.
Whereas, in a pump-fed SWN, the control objective is to
solve the flow distribution and identify the optimal trajectory
of the pump and valve scheduling under network constraints.
However, computing the flow distribution in a pump-fed SWN
is more challenging than in the gravity-fed SWN, as the
constraints posed by pump and valves are integers [101].

c) Network Layout
The control formulations require also precise information

of additional model components, mainly dimensions of tanks
and pipes, pump capacity, valve states, head (geographical
elevation), flow rate, etc. The interconnection between these
components is often modelled using a state-space model.
Given a large sized network with numerous components, the
major challenge is to develop a suitable state-space model,
which reflects the complexity of the original physical process
and could estimate the parameters of interest as realistic as
possible.

d) Demand and supply stochasticity
The water demand poses an important constraint in a

SWN optimization formulation. The water demand forecasting
adds stochasticity in the optimization formulation, which is
challenging to tackle for existing solvers. Considering the
above aspects, various scientific efforts have proposed methods
for water demand forecasting. Traditionally, water demand
forecasting relies on regression and time series analysis. In
[127], an optimization formulation is proposed to minimize
the chlorine dispatch in a WDN, where the water demand is
computed every six hours. Similarly, in [128], authors propose
an optimization formulation to minimize the operational cost
of pump switching, where the water demand forecasting is
computed every twenty-four hours using a hybrid dynamic
neural network.

e) Integer constraints imposed by the pumps and valves
In SWN, pump and valve management is crucial for optimal

control. In such application scenarios, it is expected that the
decision variable of a pump and valves’ states are constrained
to hold binary or integer values. For instance, valve states can
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TABLE VII: Use cases of Data-Driven ML for control in SWN

ML Reference Architectures Applications Case Study

DL

[110], 2020 Hybrid CNN-LSTM Short Term Water quality
prediction

Prespa Basin, Europe

[111], 2018 Hybrid CNN-SVM Pipe leakage detection Testbed, Seoul, South Korea
[112], 2019 DenseNET (CNN) Pipe Burst detection Anytown Network, EPANET
[113], 2021 - Aquaponics Review
[114], 2018 Autoencoder-LSTM Water Quality Prediction -
[115], 2021 LSTM Optimal Pump control Simulation
[116], 2020 RBM Dissolved Oxygen Prediction Recirculating Aquaculture
[117], 2020 CNN Streamflow Projection California, USA
[118], 2017 Hybrid DNN-SVM Anomaly Detection Testbed (Water Treatment Plant),

Singapore

RL

[119], 2020 Multi Critic Control of Water Tanks Simulation
[120], 2007 Q Learning Water demand management,

and optimizing hydropower
Geum River Basin, South Korea

[121], 2002 Q Learning Operational Management of a
Water System

Lake Como, Italy

[122], 2017 SARSA Irrigation Management Multiple locations, USA, India and
Australia

DRL

[123], 2020 Deep Q Network Pump Speed Control Anytown and D-Town, EPANET
[124], 2012 RL Dissolved Oxygen control Wastewater Treatment Plant
[125], 2020 Deep Q Network Online control of storm SWN Simulation

[126], 2020 Soft Actor-Critic
Hydropower Production
Scheduling

Simulation, Norwegian Power Stations

be formulated through binary variables on/off or 0/1 [129].
The optimization formulation having decision variables that
are constrained to be integers are termed as Mixed-Integer
Optimization (MIO) formulation. However, introducing integer
decision variables in optimization problems makes the
problem non-convex and usually it is an NP-hard problem.
Solving such NP-hard non-convex optimization problems
are computationally expansive in terms of time and memory
requirements [130]. Mixed-integer (MI) solvers, such as
GUROBI, CPLEX, and LPSOLVE [131] can be used to solve
MIO formulations. However, the computational complexity of
such MI solvers grows exponentially as the number of network
components, such as pumps and the valves, grow as the
size of network expands. Therefore, to address the challenges
posed by the integer constraints, studies recommend various
approximations, linearization, and relaxation techniques. For
instance, in [132], a piece-wise linear approximation technique
is used to relax the constraints and compute the optimal
solution of MIO formulation. Another work that address the
NP-hard MIO formulation in SWN is provided in [133].

Formulating an MPC-driven approach for the operational
control of SWN is a challenging task. The linearization and
the relaxation techniques, which are often used to tackle the
non-convexity of the SWN constraints, usually results in a sub-
optimal performance. In addition, some of the optimization
formulations are inefficient in terms of computation time and
memory, which may lead to interoperability challenges among
various components of a CPS. Therefore, the recent focus

shifts nowadays to integrate data-driven control techniques for
the operational control of SWN. In the next section, we review
the Data-driven control techniques in SWN and discuss how
such techniques can be integrated in a water CPS.

B. Data-Driven Control
Data-driven control (DDC) is an alternative technique for

introducing control in SWN. In DDC, the controller’s objective
is to learn to apply a coordinated sequence of control actions
from the acquired dataset of the targeted system. ML is
an important element of DDC to detect the presence of
an anomaly (discussed in Section IV) and introduce control
capabilities in a given SWN. From the perspective of control,
ML can be introduced in SWN to (a) detect the presence of
an anomaly, (b) reduce the computational complexity, and (c)
compute a sequence of optimal control actions from the input
and output dataset [134]. State-of-the-art ML techniques such
as Deep Learning (DL), Reinforcement Learning (RL), and
Deep Reinforcement Learning (DRL) have been successfully
applied to integrate the process from anomaly detection to
compute optimal control actions for real-life applications such
as Robotics, Finance, and Self-driving cars. Table VII presents
the use cases of DL, RL, and DRL in different SWNs,
and we describe the aforementioned techniques in the next
subsections.

1) Deep Learning
DL is an ML technique based on ANN (described

in Section IV). DL can be supervised, unsupervised or
semisupervised. In the application scenarios of water CPS,
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Fig. 8: Feedforward architecture

the most important DL networks are Feedforward Neural
Networks and Recurrent Neural Networks. In the next
subsections, we cover the description and use cases of such
important DL networks:

a) Feedforward Neural Networks
Feedforward Neural Networks are one of the most

commonly used DL network. Given the input-output training
pairs {(x(k),y(k))}mk=1, the network learns a function that
maps the inputs to the outputs. Feedforward Neural Network
is made up of several fully connected layers termed as an
input layer, hidden layers, and an output layer. Each layer
is made up of multiple nodes, and the output of one layer’s
nodes is connected to the input of the next layer’s nodes. There
are no feedbacks or loops in such networks, and information
flows in only one direction through hidden nodes. Fig 8
shows the architecture of a Feedforward Neural Network,
having L = 4 layers with n[l] number of neurons (nodes)
in layer-l. In a typical neural network, each node in a layer
receives inputs from the previous layer, computes a nonlinear
activation, and then passes the activation to the next layer.
Let a[l] = (a

[l]
1 , a

[l]
2 , . . . , a

[l]

n[l])
> ∈ Rn[l]×1 be the activation of

layer-l, where a[l]i represents the activation of node-i of layer-l,
given by

a
[l]
i = σ(w

[l]
i
>a[l−1] + b

[l]
i ). (3)

In (3), the parameters w
[l]
i ∈ Rn[l−1]×1 and b

[l]
i ∈ R are

respectively the weight and the bias of the node-i of layer-
l, and σ is a non-linear activation function. Some of the
commonly used activation functions are rectified linear unit
(ReLU), sigmoid, and tan hyperbolic.

The neural network training, i.e., the learning of w
[l]
i

and b
[l]
i , are accomplished through forward and backward

propagation steps. In forward propagation, given a training
pair (x,y), the activations of all the nodes of the network
are calculated using (3) with a[0] = x, yielding an estimate
of the output a[L] = ŷ. During backward propagation, a
loss function

∑m
k=1 L(y(k), ŷ(k)) is formulated by considering

all the m training pairs and is optimized for the parameters

w
[l]
i and b

[l]
i . The forward and the backward propagations

are done iteratively until convergence by updating the
parameter values with the optimized values in each iteration.
Feedforward network architectures can be constructed in a
diverse predefined methods such as Convolutional Neural
Networks (CNN), Residual Networks, and Radial Boltzmann
Machine (RBM). Next, we focus on the CNN and RBM
architectures, which have been employed in the context of
SWN.

CNN is an extension of feedforward neural networks. This
architecture is particularly useful to extract the underlying
special features from the datasets. CNN architecture consists
of a sequence of layers, mainly, Input layer- to hold the data
points, Convolutional layer- to extract the features, Pooling
layer- to reduce the amount the parameters and computations
in a network, and Fully connected layer- to assign dataset to
the relevant class. CNN has a wide range of applications in
scientific domains mainly image classification and computer
vision. In SWN, the CNN has applications in water quality
prediction [110], pipe leakages detection [111], streamflow
projections [117], etc.

RBM is a generative ML model and is particularly useful
to learn the probability distribution over the set of inputs.
A key difference of RBM with its counterparts is that
input nodes have connections among themselves. RBM
has important applications in Aquaculture and Aquaponics.
One such application can be found in [116], where the
authors propose a prediction model of dissolved oxygen in
aquaculture. Authors of [135] use a continuous deep belief
network (a variant of RBM) to predict the hourly demand of
water consumption.

b) Recurrent Neural Networks
Recurrent Neural Networks (RNN) architectures are

typically designed to process sequential datasets. In contrast
with Feedforward Neural Networks, RNN are trained to
process a sequence of values such as x(1),x(2), · · · ,x(T ). Fig
9 shows the architecture of a RNN, xt is the input at time
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Fig. 9: RNN and its unrolling

t, S(t) is the state, < U, V, W > are the learned parameters,
and o(t) is the output. To process such sequential information,
RNN updates the current state based on past state and current
input data. Long short term memory (LSTM) is a major
architecture of RNN. LSTM is expected to improve the time-
series water demand forecasting as compared to supervised
ML techniques such as SVM and Random Forest. LSTM
is used in [96] in conjunction with IoT to derive a time-
series trajectory of water demand forecasting. Similarly, in
[115], LSTM is used for water demand forecasting in order
to develop a computational framework of pump scheduling.

DL have the capability to address a huge volume of dataset
as compared to techniques addressed in Section IV. One
such comparative study can be refereed from [118], which
compares DL with one-class SVM over time-series data
obtained from water CPS. The overall performance analysis
evaluated using F-measures, and findings concludes that DL
has better performance metrics as compared to one class SVM.

2) Reinforcement Learning
Reinforcement learning (RL) is a class of ML algorithms,

primarily designed to integrate control capabilities in real-
time applications (e.g., driverless cars, autonomous robotic
control, etc.) [136], where there is an intelligent agent that
learns from experience to take actions optimally to maximize
some long-term objective function (optimal policy), called
usually expected return. RL is distinct from supervised and
unsupervised ML, as it does operate neither with 'labeled'
nor 'unlabeled' data pairs, but only receiving only partial
feedback signals from the environment. One of the motivating
applications of RL in SWN is the management and control of
a large-scale WDN in real-time, which may comprise several
components such as tanks, reservoirs, pumps, valves, etc. For a
given WDN, the controlling authorities aim to achieve optimal
control of active hydraulic elements (pumps, valves) satisfying
water demand and maximizing some utility function. For
instance, the frequent switching of pumps is not desirable for
water networks and active hydraulics. RL provides a control
framework for such networks [119].

Previously to the recent wave of modern reinforcement
learning, dynamic programming (DP) was exploited by

the researchers to apply control over SWN [137]. DP
is a model-based approach and requires exact knowledge
of the environment to generate a sequence of optimal
control actions. One of the essential aspects of DP is
the requirement of discretization of continuous space. This
discretization is feasible for uni-dimensional spaces (e.g.
single reservoir operation); however, discretization is labour-
som and computationally expensive for multidimensional
continuous spaces (e.g. multiple interconnected tanks). This
phenomenon is famously known as Bellman’s "curse of
dimensionality", which means that the volume of the
computations increases exponentially by adding the extra
dimensions to euclidean space [138]. This is an unrealistic
requirement in the scenario of SWN given that such systems
involve various interconnected tanks, pumps, valves, sensors,
etc. Hence, research focus shifted to explore alternative model-
free optimal control approaches for SWN, and RL promises
to address such challenges.

The theory of RL is developed under the Markov decision
process (MDP) assumption, which is a classical formulation
for sequential decision making. MDPs can be considered as
mathematically idealized form of RL. A typical MPD (or RL)
cycle is depicted in Fig. 10a. The agent is the element of
the RL formulation that interacts with the environment and
learns to control the input components of the environment.
An agent is “anything that can be viewed as perceiving its
environment through sensors and acting upon that environment
through actuators” [139]. The agent learns the control actions
by maximizing a reward function through an optimization
formulation. In general, the objective of such formulations is
to find a time-series sequence of control actions or optimal
control policy, which produce an optimal action [140].

At each time step t, given that the agent is at a certain
state St ∈ S, it applies a certain action At ∈ A, and
as a consequence, it evolves to another state St+1 ∈ S
receiving a reward signal Rt+1 ⊂ R. In a finite MDP, the
sets S, A, and R have finite number of elements. In a typical
MDP framework, the random variable St has a well defined
probability distribution (non necessarily known a-priori by the
agent), which depends only on the preceding state and actions
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Fig. 10: (a) Agent–Environment interaction in RL (b) DRL Architecture.

(Markov property):

p(s′|s, a) = Pr {St+1 = s′|St = s,At = a} , (4)

where p : S × S × A −→ [0, 1] is known as state-transition
probabilities. Further, the policy followed by the agent is
determined by the probability of taking an action in a specific
state, which is defined as:

π(a|s) = Pr {At = a|St = s} , (5)

where π : S×A −→ [0, 1] is known as policy of the MDP. RL
formulation typically involves two important functions: state-
value function vπ(s) and state-action-value function qπ(s, a).
The function vπ(s) is the expected return when starting in a
state s and following a policy π thereafter, whereas, qπ(s, a)
is the expected return when starting in a state s, taking an
action a, and following a policy π thereafter:

vπ(s) := Eπ

{ ∞∑
k=0

γk Rt+k+1|St = s

}
, (6)

qπ(s, a) := Eπ

{ ∞∑
k=0

γk Rt+k+1|St = s,At = a

}
, (7)

where, γ ∈ [0, 1] is a parameter called discount factor, which
decides how much weight is to be given to the future rewards.
In RL formulations, the objective is to find an optimal policy
π? that maximizes (6) or (7), i.e.,

π? = argmax
π

vπ(s), ∀s ∈ S, (8)

or equivalently,

π? = argmax
π

qπ(s, a), ∀s ∈ S, a ∈ A (9)

It is to be remarked that in most of the real-world
problems, the model dynamics p(s′|s, a) of the environment
is not known or difficult to estimate; however, RL-based
algorithms can find optimal policies without knowing p, by
performing exploration and optimizing the policy iteratively.
RL algorithms can be broadly classified as Value-based,
Policy-Gradient, and Actor-Critic. We present these RL
categories and their use cases in SWN below:

• Value-based methods - The value-based method
estimates the expected return from each state for a
given sequence of actions taken from the state thereafter.
The value function (given in (6)) and action-value
function (given in (7)) are estimated from observation
data obtained through several trials of state-action pairs,
learning and converging to the optimal state-action pairs
given the availability of sufficient data samples. Q-
learning is the most commonly used technique to learn the
optimal action-value function. Agents update the action-
value function as per the following update rule:

Q(St, At)← Q(St, At)+

α

[
Rt+1 +max

a∈A
Q(St+1, a)−Q(St, At)

]
. (10)

In (10), with a proper choice of the step-size parameter
α ∈ (0, 1], the learned state-action-value function Q
converges to its optimal value q∗. In the context of
SWN, such value-based methods have applications in
water demand management, optimization of reservoir
operations, operational management, and control of
chemical and physical parameters. For instance, Q-
learning has been applied to solve the stochastic
optimization formulation for multi reservoir system in
[120]. In addition, [120] computes optimal hydraulic
water outflow from the reservoirs using Q-learning and it
has been demonstrated that Q-learning outperforms other
reservoir control formulations such as stochastic dynamic
programming. Authors of [121] study Q-learning for
the operational management of lake Como, Italy, which
concludes that the control policies generated by Q-
learning are more efficient as compared to that of
stochastic dynamic programming.

• Policy Gradient Methods - The primary focus of value-
based methods is to estimate cumulative rewards and
devise a recommendation for the policy π to follow, based
on those estimated values; however, in policy-gradient
methods, the agent estimates the optimal policy directly
by using tools from stochastic optimization. In general,
in most practical applications, the number of states is
large and the policy function is parameterized (πθ) where
θ are typically the weights of a neural network, with
respect to which, the optimization takes place. In Policy
Gradient Methods, actions are taken without consulting
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the value-functions but using suitable optimizers (e.g.,
Gradient Descent) that ensure monotonic improvement
of the policy, the most popular being Trust Region
Policy Optimization and Proximal Policy Optimization.
Although Policy Gradients are a popular class of RL
algorithms for control formulations, the use cases of such
methods are limited in SWN.

• Actor-critic methods - Actor-critic methods can be
termed as a hybrid of value-based and policy-gradient
methods. In such methods, the role of critic is to
estimate the value function after each action selection
and influence the next iteration of the policy gradient
step, while the actor is the one applying the actions of
the policy. Such methods have been found to be useful
for the operational management, scheduling, and control
in SWN. For instance, in [119], a multi-critic method
(a variant of Actor-critic) for operational control of
interconnected water storage tanks. Another use case
of such methods is Hydropower production scheduling
[126].

3) Deep Reinforcement Learning
DRL is an extension of RL and has been successful in

addressing the challenges of various real-life applications
(such as IoT, smart grid, and autonomous cars [141]), where
the number of states and actions is very large. In particular,
SWNs have various interconnected components, constituting
a high-dimensional state and action space. As discussed in
(Section V-A2), in addition, SWN have integer and non-convex
constraints, and computing optimal solutions is expensive in
terms of time and memory. Such high-dimensional state and
action spaces are difficult to handle efficiently and sometimes
intractable. For simplification, one may discretize the action
space; however, a naive discretization leads to information
loss. One of the approaches to avoid discretization of state
or action space is to use function approximation which
generalises the state and/or action spaces through model-free
approaches. DRL, as shown in Fig. 10b, is a model-free
method, which can be used to fit both the value function and
the state-action Q function to perform the control.

DRL does not require either prior information of the
targeted environment and has been successfully tested to
various applications in real-time. Deep Q-Networks (DQN,
a variant of DRL) is able to learn control policies without
any prior information of the application environment. In Deep
Q networks, the agent relies over a replay memory (a.k.a
experience memory) matrix. Such reply memory stores the
past experiences of agent, and it enables the agent to remember
and reuse its experiences from past events. In [123], DRL
is used to identify the optimal pump speed for given water
demand in a WDN. In this method, an agent is proposed that
relies over the dueling Deep Q-network concept (a variant
of DQN) to control the pump operation. In [125], a control
strategy is proposed as a real-time control strategy for the
stormwater management, using DRL. Readers can refer to
[142] for additional details of DRL and Deep Q-Networks.

4) Performance Metric
We have discuss the performance matrices of evaluating

an ML model in section (Section IV-C1). On the other
hand, in general, the control formulations and the various
stochastic and non-convex constraints, makes it not possible
for the algorithms to achieve exactly the optimal solution.
Therefore, in general, to evaluate the accuracy of data-driven
control models, sub-optimality metrics provids a satisfactory
performance for model evaluation. By computing or estimating
the sub-optimality of a solution obtained by a certain
algorithm, we can measure the overall performance of a data-
driven model in certain applications [130]. We can conclude
that if the sub-optimality gap (i.e. deviation between obtained
solution and optimal solution) is small, the proposed data-
driven control approach is near-optimal and there is little room
for further improvement. Let fo(z?) denote the optimal value
of a control formulation, and fo(ẑ) denote the estimated value
of the control solution computed through a data-driven control
algorithm. We can define the suboptimality Υo as:

Υo =
|fo(z?)− fo(ẑ)|

fo(z?)
(11)

In addition, we can consider that the estimated solution is
accurate if the sub-optimality Υo ≤ ε, where ε is the error
tolerance.

C. Challenges

1) Real-time event-triggered control
In most of the available literature, mainly two of the

components of CPS are integrated, namely, communication
and computation. Integration of real-time event-triggered
control (e.g. autonomous pressure control, autonomous
pump scheduling, autonomous valve control, etc.) and real-
time anomaly (chemical hazard, toxicity, etc.) detection
mechanisms is one of the main challenges of water CPS.
Essentially, we are interested to design near real-time control
formulations which are triggered by undesirable events. To
achieve this objective, one needs to make a proper problem
formulation with the various necessary constraints. However,
in water CPS, the constraints which correlate the flow,
pressure, pipe dimensions are in general non-convex. In
addition, the fact that such formulations involve integer
constraints make the problem even more challenging. In
this paper, we discuss some of the techniques to address
non-convexity in Section V-A2; however, in general, such
techniques provide a near-optimal solution which is not
possible to obtain typically in real-time. Further research
efforts are required to improve and integrate computationally
efficient and time-bounded techniques with real-time water
CPS solving the necessary complex problems to achieve the
next level of intelligent control.

2) Exploration and Choice of Appropriate Reward function
In RL formulations, optimal policies followed by an agent

rely on a suitable reward trajectory and an appropriate
exploration approach. In real-world formulations such as
water CPS, devising an optimal exploration strategy and the
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appropriate reward function is a challenging task. Some of
the approaches are reward-shaping, curiosity, and experience
replay [141]. Reward shaping is the most common approach,
which relies on providing additional reward points if the
agent moves in the direction towards the optimal policy. In
curiosity, the agent evaluates its own actions and predicts
the consequences from the self-organized procedure. In
experience replay, the agent relies on an experience memory
and determines the future course of action. Although such
approaches are useful to design a RL control formulation,
further research is required to test the validity of such
approaches in the context of water CPS.

3) Incorporating Safety
Water CPS are networked systems that are composed of

diverse critical components. It is expected that proposed
control formulations perform safe actions under pre-defined
constraints. One of the approaches to ensure safe actions is
to maintain the satisfaction of several hard safety constraints
Alternatively, control formulations can also rely on constrained
MDP and negative avoidance systems to integrate safe
actions[143]. Readers can refer to [143] for comprehensive
survey on safe RL.

Summary: In this section, we have covered the major
control formulations, mainly MPC and DDC, for water CPS.
DDC formulations are motivated by the fact that MPC is
usually inefficient for large-scale systems which have various
stochastic and non-convex constraints, and the fact that it is
less capable to adapt to changing environments. We envision
that water CPS should evolve in such a way that they
could integrate autonomous control actions without human
interventions and further improve the overall operational
efficiency with minimum resource consumption, while being
able to adapt to changing conditions in the environment where
control is taking place. We have reviewed the challenges of
control formulations for SWN, and have presented relatively
new control approaches inspired by ML to introduce real-time
control actions in SWN.

VI. CONCLUSION

Real-time end-to-end management of SWN is a major
challenge. CPS are intelligent networked systems that can
potentially manage SWN, preferably in an autonomous
fashion, while keeping users in the loop. In SWN, CPS
can integrate diverse physical components, through intelligent
sensing and communication, and can apply event-triggered
control in different types of scenarios, including crisis
development. In this survey paper, we cover major components
of CPS, mainly Internet of Things, Machine Learning, and
Control formulations with the diverse applications of SWN.
Along with presenting the challenges of SWN, we cover also
the integration of the major components of CPS in a unified
framework, and how the real-time computational challenges
of control formulations can be addressed by using different
state-of-the-art Machine Learning techniques such as DL, RL,
and DRL. Given the various SWN challenges, and in order
to develop fully-fledged water CPS, competent authorities,

water public utilities and agencies are expected to adapt their
future strategies with the best available technologies of data
acquisition, data analytics, machine learning and autonomous
control.
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