
Massively Parallel and Asynchronous Tsetlin Machine
Architecture Supporting Almost Constant-Time Scaling

Kuruge Darshana Abeyrathna * 1 Bimal Bhattarai * 1 Morten Goodwin * 1 Saeed Rahimi Gorji * 1

Ole-Christoffer Granmo * 1 Lei Jiao * 1 Rupsa Saha * 1 Rohan Yadav * 1

Abstract
Using logical clauses to represent patterns, Tsetlin
machines (TMs) have recently obtained compet-
itive performance in terms of accuracy, memory
footprint, energy, and learning speed on several
benchmarks. Each TM clause votes for or against
a particular class, with classification resolved us-
ing a majority vote. While the evaluation of
clauses is fast, being based on binary operators,
the voting makes it necessary to synchronize the
clause evaluation, impeding parallelization. In
this paper, we propose a novel scheme for desyn-
chronizing the evaluation of clauses, eliminating
the voting bottleneck. In brief, every clause runs
in its own thread for massive native parallelism.
For each training example, we keep track of the
class votes obtained from the clauses in local vot-
ing tallies. The local voting tallies allow us to
detach the processing of each clause from the rest
of the clauses, supporting decentralized learning.
This means that the TM most of the time will op-
erate on outdated voting tallies. We evaluated the
proposed parallelization across diverse learning
tasks and it turns out that our decentralized TM
learning algorithm copes well with working on
outdated data, resulting in no significant loss in
learning accuracy. Furthermore, we show that the
proposed approach provides up to 50 times faster
learning. Finally, learning time is almost constant
for reasonable clause amounts (employing from
20 to 7 000 clauses on a Tesla V100 GPU). For
sufficiently large clause numbers, computation
time increases approximately proportionally. Our
parallel and asynchronous architecture thus allows
processing of massive datasets and operating with
more clauses for higher accuracy.

*Equal contribution (The authors are ordered alphabetically by
last name.) 1Department of information and communication tech-
nology, Unviersity of Agder, Grimstad, Norway. Correspondence
to: Ole-Christoffer Granmo <ole.granmo@uia.no>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1. Introduction
Tsetlin machines (TMs) (Granmo, 2018) have recently
demonstrated competitive results in terms of accuracy, mem-
ory footprint, energy, and learning speed on diverse bench-
marks (image classification, regression, natural language
understanding, and speech processing) (Berge et al., 2019;
Yadav et al., 2021a; Abeyrathna et al., 2020; Granmo et al.,
2019; Wheeldon et al., 2020; Abeyrathna et al., 2021; Lei
et al., 2021). They use frequent pattern mining and resource
allocation principles to extract common patterns in the data,
rather than relying on minimizing output error, which is
prone to overfitting. Unlike the intertwined nature of pat-
tern representation in neural networks, a TM decomposes
problems into self-contained patterns, expressed as conjunc-
tive clauses in propositional logic (i.e., in the form if input
X satisfies condition A and not condition B then output
y = 1). The clause outputs, in turn, are combined into a
classification decision through summation and thresholding,
akin to a logistic regression function, however, with binary
weights and a unit step output function. Being based on
the human-interpretable disjunctive normal form (Valiant,
1984), like Karnaugh maps (Karnaugh, 1953), a TM can
map an exponential number of input feature value combina-
tions to an appropriate output (Granmo, 2018).

Recent progress on TMs Recent research reports several
distinct TM properties. The TM can be used in convolution,
providing competitive performance on MNIST, Fashion-
MNIST, and Kuzushiji-MNIST, in comparison with CNNs,
K-Nearest Neighbor, Support Vector Machines, Random
Forests, Gradient Boosting, BinaryConnect, Logistic Cir-
cuits and ResNet (Granmo et al., 2019). The TM has also
achieved promising results in text classification (Berge et al.,
2019), word sense disambiguation (Yadav et al., 2021b),
novelty detection Bhattarai et al. (2021c;b), fake news de-
tection (Bhattarai et al., 2021a), semantic relation analysis
(Saha et al., 2020), and aspect-based sentiment analysis (Ya-
dav et al., 2021a) using the conjunctive clauses to capture
textual patterns. Recently, regression TMs compared favor-
ably with Regression Trees, Random Forest Regression, and
Support Vector Regression (Abeyrathna et al., 2020). The
above TM approaches have further been enhanced by vari-



Massively Parallel and Asynchronous Tsetlin Machine Architecture

ous techniques. By introducing real-valued clause weights,
it turns out that the number of clauses can be reduced by
up to 50× without loss of accuracy (Phoulady et al., 2020).
Also, the logical inference structure of TMs makes it pos-
sible to index the clauses on the features that falsify them,
increasing inference- and learning speed by up to an order of
magnitude (Gorji et al., 2020). Multi-granular clauses sim-
plify the hyper-parameter search by eliminating the pattern
specificity parameter (Gorji et al., 2019). In Abeyrathna et al.
(2021), stochastic searching on the line automata (Oommen,
1997) learn integer clause weights, performing on-par or
better than Random Forest, Gradient Boosting, Neural Ad-
ditive Models, StructureBoost and Explainable Boosting
Machines. Closed form formulas for both local and global
TM interpretation, akin to SHAP, was proposed in Blakely
& Granmo (2020). From a hardware perspective, energy
usage can be traded off against accuracy by making infer-
ence deterministic (Abeyrathna et al., 2020). Additionally,
Shafik et al. (2020) show that TMs can be fault-tolerant,
completely masking stuck-at faults. Recent theoretical work
proves convergence to the correct operator for “identity” and
“not”. It is further shown that arbitrarily rare patterns can
be recognized, using a quasi-stationary Markov chain-based
analysis. The work finally proves that when two patterns are
incompatible, the most accurate pattern is selected (Zhang
et al., 2020). Convergence for the “XOR” operator has also
recently been proven in Jiao et al. (2021).

Paper Contributions In all of the above mentioned TM
schemes, the clauses are learnt using Tsetlin automaton
(TA)-teams (Tsetlin, 1961) that interact to build and in-
tegrate conjunctive clauses for decision-making. While
producing accurate learning, this interaction creates a bottle-
neck that hinders parallelization. That is, the clauses must
be evaluated and compared before feedback can be provided
to the TAs.

In this paper, we first cover the basics of TMs in Section 2.
Then, we propose a novel parallel and asynchronous archi-
tecture in Section 3, where every clause runs in its own
thread for massive parallelism. We eliminate the above
interaction bottleneck by introducing local voting tallies
that keep track of the clause outputs, per training exam-
ple. The local voting tallies detach the processing of each
clause from the rest of the clauses, supporting decentralized
learning. Thus, rather than processing training examples
one-by-one as in the original TM, the clauses access the
training examples simultaneously, updating themselves and
the local voting tallies in parallel. In Section 4, we investi-
gate the properties of the new architecture empirically on
regression, novelty detection, semantic relation analysis and
word sense disambiguation. We show that our decentralized
TM architecture copes well with working on outdated data,
with no measurable loss in learning accuracy. We further

investigate how processing time scales with the number of
clauses, uncovering almost constant-time processing over
reasonable clause amounts. Finally, in Section 5, we con-
clude with pointers to future work, including architectures
for grid-computing and heterogeneous systems spanning the
cloud and the edge.

The main contributions of the proposed architecture can be
summarized as follows:

• Learning time is made almost constant for reasonable
clause amounts (employing from 20 to 7 000 clauses
on a Tesla V100 GPU).

• For sufficiently large clause numbers, computation
time increases approximately proportionally to the in-
crease in number of clauses.

• The architecture copes remarkably with working on
outdated data, resulting in no significant loss in learn-
ing accuracy across diverse learning tasks (regression,
novelty detection, semantic relation analysis, and word
sense disambiguation).

Our parallel and asynchronous architecture thus allows pro-
cessing of more massive data sets and operating with more
clauses for higher accuracy, significantly increasing the im-
pact of logic-based machine learning.

2. Tsetlin Machine Basics
2.1. Classification

A TM takes a vector X = [x1, . . . , xo] of o Boolean features
as input, to be classified into one of two classes, y = 0 or
y = 1. These features are then converted into a set of literals
that consists of the features themselves as well as their
negated counterparts: L = {x1, . . . , xo,¬x1, . . . ,¬xo}.

If there are m classes and n sub-patterns per class, a TM
employs m × n conjunctive clauses to represent the sub-
patterns. For a given class1, we index its clauses by j,
1 ≤ j ≤ n, each clause being a conjunction of literals:

Cj(X) =
(∧

lk∈Lj
lk

)∧(∧
lk∈L̄j

lk

)
. (1)

Here, lk, 1 ≤ k ≤ 2o, is a feature or its negation. Further,
Lj is a subset of the unnegated features from the literal set
L, whereas L̄j is a subset of the negated features in L. For
example, the particular clause Cj(X) = x1 ∧ x2 consists
of the literals Lj = {x1, x2}, L̄j = ∅, and outputs 1 if
x1 = x2 = 1.

1Without loss of generality, we consider only one of the classes,
thus simplifying notation. Any TM class is modelled and processed
in the same way.



Massively Parallel and Asynchronous Tsetlin Machine Architecture

The number of clauses n assigned to each class is user-
configurable. The clauses with odd indexes are assigned pos-
itive polarity and the clauses with even indexes are assigned
negative polarity. The clause outputs are combined into a
classification decision through summation and thresholding
using the unit step function u(v) = 1 if v ≥ 0 else 0:

ŷ = u
(
Σn−1

j=1,3,...Cj(X)− Σn
i=2,4,...Cj(X)

)
(2)

Namely, classification is performed based on a majority
vote, with the positive clauses voting for y = 1 and the
negative for y = 0.

Input

 

 

Type I feedback Type I feedback

include exclude include exclude

1 N N+1 2N 1 N N+1 2N

TAs

tra
ns

iti
on

Step 1

Step t

Figure 1. TM learning dynamics for an XOR-gate training sample,
with input (x1 = 0, x2 = 1) and output target y = 1.

2.2. Learning

TM learning is illustrated in Fig. 1. As shown, a clause
Cj(X) is composed by a team of TAs. Each TA has 2N
states and decides to Include (from state 1 to N ) or Exclude
(from state N+1 to 2N ) a specific literal lk in the clause. In
the figure, TA refers to the TAs that control the original form
of a feature (x1 and x2) while TA’ refers to those controlling
negated features (¬x1 and ¬x2). A TA updates its state
based on the feedback it receives in the form of Reward,
Inaction, and Penalty (illustrated by the features moving in
a given direction in the TA-part of the figure). There are
two types of feedback associated with TM learning: Type I
feedback and Type II feedback, which are shown in Table 1
and Table 2, respectively.

Type I feedback is given stochastically to clauses with odd
indexes when y = 1 and to clauses with even indexes when
y = 0. Each clause, in turn, reinforces its TAs based on:
(1) its output Cj(X); (2) the action of the TA – Include or
Exclude; and (3) the value of the literal lk assigned to the
TA. As shown in Table 1, two rules govern Type I feedback:

• Include is rewarded and Exclude is penalized with prob-
ability s−1

s if Cj(X) = 1 and lk = 1. This reinforce-

INPUT
CLAUSE 1 0
LITERAL 1 0 1 0

INCLUDE LITERAL
P(REWARD) s−1

s
NA 0 0

P(INACTION) 1
s

NA s−1
s

s−1
s

P(PENALTY) 0 NA 1
s

1
s

EXCLUDE LITERAL
P(REWARD) 0 1

s
1
s

1
s

P(INACTION) 1
s

s−1
s

s−1
s

s−1
s

P(PENALTY) s−1
s

0 0 0

Table 1. Type I Feedback

INPUT
CLAUSE 1 0
LITERAL 1 0 1 0

INCLUDE LITERAL
P(REWARD) 0 NA 0 0
P(INACTION) 1.0 NA 1.0 1.0
P(PENALTY) 0 NA 0 0

EXCLUDE LITERAL
P(REWARD) 0 0 0 0
P(INACTION) 1.0 0 1.0 1.0
P(PENALTY) 0 1.0 0 0

Table 2. Type II Feedback

ment is strong2 (triggered with high probability) and
makes the clause remember and refine the pattern it
recognizes in X .

• Include is penalized and Exclude is rewarded with prob-
ability 1

s if Cj(X) = 0 or lk = 0. This reinforcement
is weak (triggered with low probability) and coarsens
infrequent patterns, making them frequent.

Above, parameter s controls pattern frequency.

Type II feedback is given stochastically to clauses with
odd indexes when y = 0 and to clauses with even indexes
when y = 1. As captured by Table 2, it penalizes Exclude
with probability 1 if Cj(X) = 1 and lk = 0. Thus, this
feedback produces literals for discriminating between y = 0
and y = 1.

The “state” is actualized in the form of a simple counter per
Tsetlin Automaton. In practice, reinforcing Include (penaliz-
ing Exclude or rewarding Include) is done by increasing the
counter, while reinforcing exclude (penalizing Include or
rewarding Exclude) is performed by decreasing the counter.

As an example of learning, let us consider a dataset with
XOR-gate sub-patterns. In particular, consider the input
(x1 = 0, x2 = 1) and target output y = 1, to visualize the
learning process (cf. Fig. 1). We further assume that we have
n = 4 clauses per class. Among the 4 clauses, the clauses

2Note that the probability s−1
s

is replaced by 1 when boosting
true positives.



Massively Parallel and Asynchronous Tsetlin Machine Architecture

C1 and C3 vote for y = 1 and the clauses C0 and C2 vote for
y = 0. For clarity, let us only consider how C1 and C3 learn
a sub-pattern from the given sample of XOR-gate input and
output. At Step 1 in the figure, the clauses have not yet learnt
the pattern for the given sample. This leads to the wrong
class prediction (ŷ = 0), thereby triggering Type I feedback
for the corresponding literals. Looking up clause output
C1(X) = 0 and literal value x1 = 0 in Table 1, we note
that the TA controlling x1 receives either Inaction or Penalty
feedback for including x1 in C1, with probability s−1

s and
1
s , respectively. After receiving several penalties, with high
probability, the TA changes its state to selecting Exclude.
Accordingly, literal x1 gets removed from the clause C1. On
the other hand, the TA that has excluded literal ¬x1 from C1

also obtains penalties, and eventually switches to the Include
side of its state space. The combined outcome of these
updates are shown in Step t for C1. Similarly, the TA that
has included literal ¬x2 in clause C1 receives Inaction or
Penalty feedback with probability s−1

s and 1
s , respectively.

After obtaining multiple penalties, with high probability,
¬x2 becomes excluded from C1. Simultaneously, the TA
that controls x2 ends up in the Include state, as also shown
in Step t. At this point, both clause C1 and C3 outputs 1 for
the given input, correctly predicting the output ŷ = 1.

Resource allocation dynamics ensure that clauses dis-
tribute themselves across the frequent patterns, rather than
missing some and over-concentrating on others. That is,
for any input X , the probability of reinforcing a clause
gradually drops to zero as the clause output sum

v = Σn−1
j=1,3,...Cj(X)− Σn

i=2,4,...Cj(X) (3)

approaches a user-set target T for y = 1 (and−T for y = 0).
If a clause is not reinforced, it does not give feedback to its
TAs, and these are thus left unchanged. In the extreme, when
the voting sum v equals or exceeds the target T (the TM has
successfully recognized the input X), no clauses are rein-
forced. They are then free to learn new patterns, naturally
balancing the pattern representation resources (Granmo,
2018).

3. Parallel and Asynchronous Architecture
Even though CPUs have been traditionally geared to handle
high workloads, they are more suited for sequential process-
ing and their performance is still dependant on the limited
number of cores available. In contrast, since GPUs are pri-
marily designed for graphical applications by employing
many small processing elements, they offer a large degree
of parallelism (Owens et al., 2007). As a result, a growing
body of research has been focused on performing general
purpose GPU computation or GPGPU. For efficient use of
GPU power, it is critical for the algorithm to expose a large
amount of fine-grained parallelism (Jiang & Snir, 2005;
Satish et al., 2009).

While the voting step of the TM (cf. Eq. 3) hinders paral-
lelization, the remainder of the TM architecture is natively
parallel. In this section, we introduce our decentralized
inference scheme and the accompanying architecture that
makes it possible to have parallel asynchronous learning
and classification, resolving the voting bottleneck by using
local voting tallies.

3.1. Voting Tally

A voting tally that tracks the aggregated output of the clauses
for each training example is central to our scheme. In a
standard TM, each training example (Xi, yi), 1 ≤ i ≤M,
is processed by first evaluating the clauses on Xi and then
obtaining the majority vote v from Eq. (3). Here M is
the total number of examples. The majority vote v is then
compared with the summation target T when y = 1 and−T
when y = 0, to produce the feedback to the TAs of each
clause, explained in the previous section.

Figure 2. Parallel Tsetlin machine architecture.

As illustrated in Fig. 2, to decouple the clauses, we now
assume that the particular majority vote of example Xi has
been pre-calculated, meaning that each training example
becomes a triple (Xi, yi, vi), where vi is the pre-calculated
majority vote. With vi in place, the calculation performed
in Eq. (3) can be skipped, and we can go directly to give
Type I or Type II feedback to any clause Cj , without con-
sidering the other clauses. This opens up for decentralized
learning of the clauses, facilitating native parallelization
at all inference and learning steps. The drawback of this
scheme, however, is that any time the composition of a
clause changes after receiving feedback, all voting aggre-
gates vi, 1 ≤ i ≤ M, becomes outdated. Accordingly,
the standard learning scheme for updating clauses must be
replaced.

3.2. Decentralized Clause Learning

Our decentralized learning scheme is captured by Algo-
rithm 1. As shown, each clause is trained independently of
the other clauses. That is, each clause proceeds with training



Massively Parallel and Asynchronous Tsetlin Machine Architecture

Algorithm 1 Decentralized updating of clause
Input: Example pool P , clause Cj , positive polarity
indicator pj ∈ {0, 1}, batch size b ∈ [1,∞), voting
target T ∈ [1,∞), pattern specificity s ∈ [1,∞).
Procedure: UpdateClause : Cj , pj , P, b, T, s.
for i = 1 to b do

(Xi, yi, vi)← ObtainTrainingExample(P )
vci ← clip (vi,−T, T )
e = T − vci if yi = 1 else T + vci
if rand() ≤ e

2T then
if yi xor pj then

TypeIIFeedback(Xi, Cj)
else

TypeIFeedback(Xi, Cj , s)
end if
oij ← Cj(Xi)
o∗ij ← ObtainPreviousClauseOutput(i, j)
if oij 6= o∗ij then

AtomicAdd(vi, oij − o∗ij)
StorePreviousClauseOutput(i, j, oij)

end if
end if

end for

without taking other clauses into consideration. Algorithm 1
thus supports native parallelization because each clause now
can run independently in its own thread.

Notice further how the clause in focus first obtains a ref-
erence to the next training example (Xi, yi, vi) to process,
including the pre-recorded voting sum vi (Line 3). This
example is retrieved from an example pool P , which is the
storage of the training examples (centralized or decentral-
ized).

The error of the pre-recorded voting sum vi is then calcu-
lated based on the voting target T (Line 5). The error, in
turn, decides the probability of updating the clause. The up-
dating rule is the standard Type I and Type II TM feedback,
governed by the polarity pj of the clause and the specificity
hyper-parameter s (Lines 6-11).

The moment clause Cj is updated, all recorded voting sums
in the example pool P are potentially outdated. This is
because Cj now captures a different pattern. Thus, to keep
all of the voting sums vi in P consistent with Cj , Cj should
ideally have been re-evaluated on all of the examples in P .

To partially remedy for outdated voting aggregates, the
clause only updates the current voting sum vi. This happens
when the calculated clause output oij is different from the
previously calculated clause output o∗ij (Lines 12-17). Note
that the previously recorded output o∗ij is a single bit that
is stored locally together with the clause. In this manner,
the algorithm provides eventual consistency. That is, if

the clauses stop changing, all the voting sums eventually
become correct.

A point to note here, is that there is no way to guarantee
that the clauses in the parallel version will sum up to the
exact same number as in the sequential version. This is be-
cause the updating of clauses is asynchronous and the vote
sums are not updated immediately when a clause changes.
We use the term eventual consistency in this case, only to
refers to the fact that if the clauses stop changing, eventu-
ally, the tallied voting sums stop being outdated (i.e. they
become the exact sum of the clause outputs). Although
not analytically proven, experimental results show that the
two versions provide consistent final accuracy results, after
clause summation and thresholding.

Employing the above algorithm, the clauses access the train-
ing examples simultaneously, updating themselves and the
local voting tallies in parallel. There is no synchronization
among the clause threads, apart from atomic adds to the
local voting tallies (Line 15).

4. Empirical Results
In this section, we investigate how our new approach of
TM learning scales, including effects on training time and
accuracy. We employ seven different data sets that repre-
sent diverse learning tasks, including regression, novelty
detection, sentiment analysis, semantic relation analysis,
and word sense disambiguation. The data sets are of var-
ious sizes, spanning from 300 to 100, 000 examples, 2 to
20 classes, and 6 to 102, 176 features. We have striven to
recreate TM experiments reported by various researchers,
including their hyper-parameter settings. For comparison of
performance, we contrast with fast single-core TM imple-
mentations3 both with and without clause indexing (Gorji
et al., 2020). Our proposed architecture is implemented in
CUDA and runs on a Tesla V100 GPU (grid size 208 and
block size 128). The standard implementations run on an
Intel Xeon Platinum 8168 CPU at 2.70 GHz.

We summarize the obtained performance metrics in Table 3.
For greater reproducibility, each experiment is repeated five
times and the average accuracy and standard deviation are
reported. We also report how much faster the CUDA TM
executes compared with the indexed version.

Though the focus in this paper is to highlight the speed-ups
achieved via parallelization of the Tsetlin Machine archi-
tecture, for the sake of completeness, we compare the same
with a baseline set using ThunderSVM, which is an estab-
lished GPU implementation4 of SVM (Wen et al., 2018)

3Retrieved from https://github.com/cair/pyTsetlinMachine.
4Google’s Colab is used to run the two CUDA models in the

table for fair comparison.

https://github.com/cair/pyTsetlinMachine


Massively Parallel and Asynchronous Tsetlin Machine Architecture

DATASET TM INDEXED TM NON-INDEXED TM CUDA SPEED UP
ACC F1 ACC F1 ACC F1

BBC SPORTS 85.08 ± 1.75 85.58 ± 1.69 87.36 ± 1.91 88.02 ± 1.47 84.64 ±2.20 86.13 ± 2.24 38.9×
20 NEWSGROUP 79.37 ± 0.25 80.38 ± 0.92 82.33 ± 0.28 82.89 ± 0.34 79.00 ± 0.46 78.93 ± 0.44 49.3×
SEMEVAL 91.9 ± 0.16 75.29 ± 0.25 92.51 ± 0.03 77.48 ± 1.46 92.02 ± 0.54 76.27 ± 0.53 1.7×
IMDB 88.42 ± 2.05 88.39 ± 2.16 88.2 ± 3.14 88.13 ± 3.44 89.92 ± 0.23 88.90 ± 0.24 34.6×
JAVA (WSD) 97.03 ± 0.02 96.93 ± 0.02 97.50 ± 0.02 97.40 ± 0.02 97.53 ± 0.02 97.42 ± 0.01 6.0×
APPLE (WSD) 92.65 ± 0.02 92.20 ± 0.02 92.46 ± 0.01 91.82 ± 0.02 95.01 ± 0.01 94.68 ± 0.01 9.7×

Table 3. Performance on multiple data sets. Mean and standard deviation are calculated over 5 independent runs. Speed up is calculated as
how many times faster is average execution time on CUDA implementation than on Indexed implementation.

as shown in Fig. 4. It can be seen that parallelization in
TM is significantly faster in compared to ThunderSVM in
all selected datasets. Note that our parallelization solution
leverages novel TM properties, allowing each TM clause to
learn independently in its own thread.

4.1. Regression

We first investigate performance with regression Tsetlin
machines (RTMs) using two datasets: Bike Sharing and
BlogFeedback.

The Bike Sharing dataset contains a 2-year usage log of the
bike sharing system Captial Bike Sharing (CBS) at Wash-
ington, D.C., USA. The total number of rental bikes (casual
and registered), is predicted based on other relevant features
such as time of day, day of week, season, and weather. In
total, 16 independent features are employed to predict the
number of rental bikes. Overall, the dataset contains 17389
examples. More details of the Bike Sharing dataset can be
found in Fanaee-T & Gama (2014).

The BlogFeedback dataset considers predicting the number
of blog posts comments for the upcoming 24 hours. The
data has been gathered from January, 2010 to March, 2012.
In total, BlogFeedback contains 60021 data samples, each
with 281 features. In this study, we employ the first 20 000
data samples. For both of the datasets, we use 80% of the
samples for training and the rest for evaluation.

We first study the impact of the number of clauses on pre-
diction error, measured by Mean Absolute Error (MAE). As
illustrated in Fig. 3 for Bike Sharing, increasing the num-
ber of clauses (#clauses in x-axis) decreases the error by
allowing the RTM to capture more detailed sub-patterns.

A larger number of clauses results in increased computation
time. Fig. 4 captures how execution time increases with the
number of clauses for the three different implementations.
For the non-indexed RTM, each doubling of the number of
clauses also doubles execution time. However, the indexed
RTM is less affected, and is slightly faster than the CUDA
implementation when less than 300 clauses are utilized.
With more than 300 clauses, the CUDA implementation is

10 20 40 80 160 320 640 1280
Clauses

20

30

40

50

60

70

80

Er
ro

r (
M

AE
)

Figure 3. MAE vs. #clauses on Bike Sharing.

10 20 40 80 160 320 640 1280
Clauses

0

2000

4000

6000

8000

10000

Ex
ec

ut
io

n 
tim

e 
[s

ec
.]

Non-Indexed
Indexed
CUDA

Figure 4. Execution time vs. #clauses on Bike Sharing.

superior, with no significant increase in execution time as
the number of clauses increases. For instance, using 1280
clauses, the CUDA implementation is roughly 3.64 times
faster than the indexed version. This can be explained by
the large number of threads available to the GPU and the
asynchronous operation of the new architecture.

Looking at how MAE and execution time vary over the



Massively Parallel and Asynchronous Tsetlin Machine Architecture

CUDA MODEL BBC SPORTS 20 NG SEMEVAL IMDB JAVA(WSD) APPLE(WSD) REGR1 REGR2
THUNDERSVM 0.23S 6.95S 7.42S 3.89S 1.31S 0.39S 6.24S 59.94S

TM 0.13S 3.61S 4.27S 3.36S 0.74S 0.28S 0.52S 4.92S

Table 4. Comparison of training time between ThunderSVM and TM. The run time is an average of 5 experiments.

0 20 40 60 80 100
Epochs

20

30

40

50

60

70

Er
ro

r (
M

AE
)

Non-Indexed
Indexed
CUDA

Figure 5. MAE over epochs on Bike Sharing.

0 20 40 60 80 100
Epochs

0

20

40

60

80

100

Ex
ec

ut
io

n 
Ti

m
e 

[s
ec

.]

Non-Indexed
Indexed
CUDA

Figure 6. Per Epoch Execution time over epochs on Bike Sharing.

training epochs for Bike Sharing (Fig. 5 and Fig. 6, respec-
tively), we observe that MAE falls systematically across the
epochs, while the execution time remains stable (employing
T = 1280, s = 1.5, n = 1280). Execution on BlogFeed-
back exhibits similar behavior. Finally, the mean value of
the MAEs for each method is similar (Table 5) across 5 inde-
pendent runs, indicating no significant difference in learning
accuracy.

MAE for Regression analysis using comparable contempo-
rary methods are as follows: Bike Sharing (Regr1): TM:
23.9; ANN: 27.4; SVR: 22.6. BlockFeedback (Regr2): TM:
3.88; ANN: 7.2; SVR: 6.0.

4.2. Novelty Detection

Novelty detection is another important machine learning
task. Most supervised classification approaches assume a
closed world, counting on all classes being present in the
data at training time. This assumption can lead to unpre-
dictable behaviour during operation, whenever novel, previ-
ously unseen, classes appear. We here investigate TM-based
novelty detection, as proposed in Bhattarai et al. (2021c;b),
using two datasets: 20 Newsgroup and BBC Sports. In brief,
we use the class voting sums (Section 2) as features measur-
ing novelty. We then employ a Multilayer perceptron (MLP)
for novelty detection that adopts the class voting sums as
input.

The BBC sports dataset contains 737 documents from the
BBC sport website, organized in five sports article categories
and collected from 2004 to 2005. Overall, the dataset en-
compasses a total of 4, 613 terms. For novelty classification,
we designate the classes “Cricket” and “Football” as known
and “Rugby” as novel. We train on the known classes, which
runs for 100 epochs with 5, 000 clauses, threshold T of 100,
and sensitivity s of 15.0. The training times for both in-
dexed and non-indexed TMs are high compared with that of
CUDA TM, which is around 39 times faster. The 20 News-
group dataset contains 18 828 documents with 20 classes.
The classes “comp.graphics” and “talk.politics.guns” are
designated as known, and “rec.sport.baseball” is considered
novel. We train the TM for 100 epochs with a target T of
500, 10 000 clauses and sensitivity s = 25.0. The CUDA
TM implementation is here about 49 times faster than the
other versions.

To assess scalability, we record the execution time of both
the indexed and the CUDA TM while increasing the number
of clauses (Fig. 7). For the indexed TM, the execution time
increases almost proportionally with the number of clauses,
but no such effect is noticeable for the CUDA TM.

The novelty scores generated by the TM are passed to a
Multilayer Perceptron with hidden layer sizes (100, 30) and
RELU activation functions, trained using stochastic gradient
descent. As shown in Table 3, for both datasets, the non-
indexed TM slightly outperforms the other TM versions,
while the indexed and CUDA TMs have similar accuracy.
These differences can be explained by the random variation
of TM learning (i.e., the high standard deviations reported
in Table 3).

Bhattarai et al. (2021c) also illustrates the following compar-



Massively Parallel and Asynchronous Tsetlin Machine Architecture

DATASETS
TM

INDEXED
TM

NON-INDEXED
TM

CUDA SPEED UP

BIKE SHARING 23.5±0.04 22.5±0.12 23.9±0.08 156.4×
BLOGFEEDBACK. 3.91±0.00 3.74±0.03 3.88±0.02 211.6×

Table 5. MAE with confidence interval, and Speed up on two regression datasets, calculated over 5 independent runs

Figure 7. Execution time vs. #clauses on BBC Sports.

ison in terms of accuracy with other relevant works: BBC
Sports, TM: 89.47%; One-class SVM: 83.53%; Average
KNN: 55.54%. For 20Newsgroup, TM: 82.51%; One-class
SVM: 83.70%; Average KNN: 81%.

4.3. Sentiment and Semantic Analysis

We adopt the SemEval 2010 Semantic Relations (Hendrickx
et al., 2009) and the ACL Internet Movie Database (IMDb)
(Maas et al., 2011) datasets to explore the performance of the
TM implementations for a large number of sparse features,
as proposed in Saha et al. (2020).

The SEMEVAL dataset focuses on identifying semantic
relations in text. The dataset has 10 717 examples, and we
consider each to be annotated to contain either the relation
Cause-Effect or not. The presence of an unambiguous causal
connective is indicative of a sentence being a causal sentence
(Xuelan & Kennedy, 1992). For each TM, we use 40 clauses
per class to identify this characteristic of causal texts. The
IMDb dataset contains 50 000 highly polar movie reviews,
which are either positive or negative. Due to the large variety
and combination of possibly distinguishing features, we
assign 7 000 clauses to each class. For both datasets we use
unigrams and bigrams as features.

As noted in Table 3, the accuracy obtained by the CPU (non-
indexed) and the CUDA implementations are comparable
on the SEMEVAL dataset, while the indexed TM performs
slightly poorer. However, the execution time is much lower
for the CUDA version than the other two (Fig. 8). This is

Figure 8. Per Epoch Execution time over epochs on SEMEVAL.

Figure 9. Execution time vs. #clauses on SEMEVAL.

further shown in Fig. 9. Clearly, the CPU-based TM with
indexing takes an increasing amount of time to execute as
the number of clauses grows, but no such effect is observed
with CUDA TM. More specifically, the execution time
increases only by 40% when the number of clauses goes
from 20 to 2 560.

With the IMDB dataset, the CUDA version performs better
in terms of accuracy, with less variance compared to the
CPU versions (Table 3). It exhibits similar behaviour as in
the SEMEVAL dataset with respect to execution time over
increasing number of epochs.

The following provides a comparison of accuracy, compiled



Massively Parallel and Asynchronous Tsetlin Machine Architecture

from related literature: Semantic Relation Classification.
(SemEval). TM: 92.6%; RandomForest: 88.76%; Naive-
Bayes: 87.57%; SVM: 92.3%; CNN-LSTM: 90.73%.
IMDB Sentiment Analysis. TM: 90.5%; NBOW: 83.62%;
CNN-BiLSTM: 89.54%; Tree-LSTM: 90.1%; Self-AT-
LSTM: 90.34%; DistilBERT: 92.82%.

4.4. Word Sense Disambiguation

Word Sense Disambiguation (WSD) is a vital task in
NLP (Navigli, 2009) that consists of distinguishing the
meaning of homonyms – identically spelled words whose
sense depends on the surrounding context words. We here
perform a quantitative evaluation of the three TM implemen-
tations using a recent WSD evaluation framework (Loureiro
et al., 2020) based on WordNet. We use a balanced dataset
for coarse grained classification, focusing on two specific
domains. The first dataset concerns the meaning of the word
“Apple”, which here has two senses: “apple inc.” (company)
and “apple apple” (fruit). The other dataset covers the word
“JAVA”, which has the two senses: “java java” (geographi-
cal location) and “java comp.” (computer language). The
Apple dataset has 2 984 samples split into training and test-
ing samples of 1 784 and 1 200, respectively. The JAVA
dataset has 5 655 samples split into 3 726 and 1 929 sam-
ples, for training and testing. For preprocessing, we filter
the stop words and stem the words using the Porter Stemmer
to reduce the effect of spelling mistakes or non-important
variations of the same word. To build a vocabulary (the
feature space), we select the 3 000 most frequent terms. The
number of clauses, threshold, and specificity used are 300,
50, 5 respectively, for both datasets.

The accuracy and F1 score of non-indexed and indexed TMs
is quite similar for the Apple dataset (Table 3). However,
the CUDA TM outperforms both of them by a significant
margin. In the case of JAVA dataset, the performance is
comparable for all three, and CUDA TM is slightly better.
The reader is requested to refer to Yadav et al. (2021b) for
further details on TM-based WSD.

The following is a comparison of accuracy with respect
to related literature in Loureiro et al. (2020) TM(Apple):
95.1%; ThunderSVM(Apple): 80.32%; FastTextBase-
1NN(Apple): 96.3%; FastTextCommonCrawl-1NN(Apple):
97.8%; BERTbase(Apple): 99.0%. TM(JAVA): 97.53%;
ThunderSVM(JAVA): 93.62%; FastTextBase-1NN(JAVA):
98.7%; FastTextCommonCrawl-1NN(JAVA): 99.6%;
BERTbase(JAVA): 99.0%. These TM results are from
our current paper. Another recent paper, however, shows
that better hyperparameters can make the TM outperform
FastTextBase-1NN with TM reaching 97.58% and 99.38%
for Apple and JAVA, respectively (Yadav et al., 2021b).

4.5. Analysis of Results obtained from Experiments

The above results support our initial claims that the proposed
Tsetlin Machine architecture results in learning times that
are nearly constant for a reasonable number of clauses, and
beyond a sufficiently large number, the computation time
increases at approximately the same rate as the increase in
number of clauses. The number of clauses to use highly
depends on the dataset. In our case, using 7000 clauses
provides high accuracy for all the datasets, simultaneously
demonstrating almost constant training time overall. A fur-
ther increase does not significantly improve accuracy. I.e.,
the number of clauses was decided empirically to provide
a general benchmark. Employing 7000 clauses also allows
us evaluate the capability of leveraging the 5120 cores on
the GPU. Hence, considering both datasets and available
cores, 7000 clauses are enough to demonstrate the almost
constant time scaling, until exhausting the cores. However,
we also extended the clauses to 15000 as shown in Fig. 7,
and the execution time remained almost the same, thereby
validating excellent exploitation of the available cores. TMs
are further reported to use less memory than ANNs (Lei
et al., 2020). Our scheme adds 1 bit per example per clause
for tallying, enabling desynchronization.

5. Conclusions and Future Work
In this paper, we proposed a new approach to TM learning,
to open up for massively parallel processing. Rather than
processing training examples one-by-one as in the original
TM, the clauses access the training examples simultane-
ously, updating themselves and local voting tallies in paral-
lel. The local voting tallies allow us to detach the processing
of each clause from the rest of the clauses, supporting de-
centralized learning. There is no synchronization among the
clause threads, apart from atomic adds to the local voting
tallies. Operating asynchronously, each team of TAs most of
the time executes on partially calculated or outdated voting
tallies.

Based on the numerical results, our main conclusion is
that TM learning is very robust towards relatively severe
distortions of communication and coordination among the
clauses. Our results are thus compatible with the findings in
Shafik et al. (2020), where it is shown that TM learning is
inherently fault tolerant, completely masking stuck-at faults.

In our future work, we will investigate the robustness of TM
learning further, which includes developing mechanisms
for heterogeneous architectures and more loosely coupled
systems, such as grid-computing.



Massively Parallel and Asynchronous Tsetlin Machine Architecture

References
Abeyrathna, K. D., Granmo, O.-C., Shafik, R., Yakovlev, A.,

Wheeldon, A., Lei, J., and Goodwin, M. A Novel Multi-
Step Finite-State Automaton for Arbitrarily Deterministic
Tsetlin Machine Learning. In Proceedings of the 40th
International Conference on Innovative Techniques and
Applications of Artificial Intelligence (SGAI), Cambridge,
UK. Springer International Publishing, 2020.

Abeyrathna, K. D., Granmo, O.-C., Zhang, X., Jiao, L.,
and Goodwin, M. The Regression Tsetlin Machine - A
Novel Approach to Interpretable Non-Linear Regression.
Philosophical Transactions of the Royal Society A, 378,
2020.

Abeyrathna, K. D., Granmo, O.-C., and Goodwin, M.
Extending the Tsetlin Machine With Integer-Weighted
Clauses for Increased Interpretability. IEEE Access, 9:
8233 – 8248, 2021.

Berge, G. T., Granmo, O.-C., Tveit, T., Goodwin, M., Jiao,
L., and Matheussen, B. Using the tsetlin machine to
learn human-interpretable rules for high-accuracy text
categorization with medical applications. IEEE Access,
7:115134–115146, 2019.

Bhattarai, B., Granmo, O.-C., and Jiao, L. Explainable
tsetlin machine framework for fake news detection with
credibility score assessment, 2021a.

Bhattarai, B., Granmo, O.-C., and Jiao, L. Word-level
human interpretable scoring mechanism for novel text
detection using tsetlin machines, 2021b.

Bhattarai, B., Jiao, L., and Granmo, O.-C. Measuring the
Novelty of Natural Language Text Using the Conjunctive
Clauses of a Tsetlin Machine Text Classifier. In 13th Inter-
national Conference on Agents and Artificial Intelligence
(ICAART), Vienna , Austria. INSTICC, 2021c.

Blakely, C. D. and Granmo, O.-C. Closed-Form Expressions
for Global and Local Interpretation of Tsetlin Machines
with Applications to Explaining High-Dimensional Data.
arXiv preprint arXiv:2007.13885, 2020.

Fanaee-T, H. and Gama, J. Event labeling combining en-
semble detectors and background knowledge. Progress
in Artificial Intelligence, 2(2-3):113–127, 2014.

Gorji, S., Granmo, O. C., Glimsdal, S., Edwards, J., and
Goodwin, M. Increasing the Inference and Learning
Speed of Tsetlin Machines with Clause Indexing. In
International Conference on Industrial, Engineering
and Other Applications of Applied Intelligent Systems
(IEA/AIE), kitakyushu, Japan. Springer, 2020.

Gorji, S. R., Granmo, O.-C., Phoulady, A., and Goodwin, M.
A Tsetlin Machine with Multigranular Clauses. In Pro-
ceedings of the Thirty-ninth International Conference on
Innovative Techniques and Applications of Artificial Intel-
ligence (SGAI), Cambridge, UK, volume 11927. Springer
International Publishing, 2019.

Granmo, O.-C. The Tsetlin Machine - A Game The-
oretic Bandit Driven Approach to Optimal Pattern
Recognition with Propositional Logic. arXiv preprint
arXiv:1804.01508, 2018.

Granmo, O.-C., Glimsdal, S., Jiao, L., Goodwin, M., Om-
lin, C. W., and Berge, G. T. The Convolutional Tsetlin
Machine. arXiv preprint arXiv:1905.09688, 2019.

Hendrickx, I., Kim, S. N., Kozareva, Z., Nakov, P.,
Ó Séaghdha, D., Padó, S., Pennacchiotti, M., Romano,
L., and Szpakowicz, S. Semeval-2010 task 8: Multi-
way classification of semantic relations between pairs of
nominals. In Proceedings of the Workshop on Semantic
Evaluations: Recent Achievements and Future Directions,
Boulder, Colorado, pp. 94–99. ACL, 2009.

Jiang, C. and Snir, M. Automatic tuning matrix multi-
plication performance on graphics hardware. In 14th
International Conference on Parallel Architectures and
Compilation Techniques (PACT’05), Krasnoyarsk, Russia,
pp. 185–194. IEEE, 2005.

Jiao, L., Zhang, X., Granmo, O.-C., and Abeyrathna, K. D.
On the Convergence of Tsetlin Machines for the XOR
Operator. arXiv preprint arXiv:2101.02547, 2021.

Karnaugh, M. The map method for synthesis of combi-
national logic circuits. Transactions of the American
Institute of Electrical Engineers, Part I: Communication
and Electronics, 72(5):593–599, 1953.

Lei, J., Wheeldon, A., Shafik, R., Yakovlev, A., and Granmo,
O.-C. From arithmetic to logic based ai: A comparative
analysis of neural networks and tsetlin machine. In 2020
27th IEEE International Conference on Electronics, Cir-
cuits and Systems (ICECS), pp. 1–4. IEEE, 2020.

Lei, J., Rahman, T., Shafik, R., Wheeldon, A., Yakovlev, A.,
Granmo, O.-C., Kawsar, F., and Mathur, A. Low-Power
Audio Keyword Spotting using Tsetlin Machines. arXiv
preprint arXiv:2101.11336, 2021.

Loureiro, D., Rezaee, K., Pilehvar, M. T., and Camacho-
Collados, J. Language models and word sense disam-
biguation: An overview and analysis, 2020.

Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and
Potts, C. Learning word vectors for sentiment analysis.
In Proceedings of the 49th annual meeting of the asso-
ciation for computational linguistics: Human language



Massively Parallel and Asynchronous Tsetlin Machine Architecture

technologies, Portland, Oregon, USA, pp. 142–150. ACL,
2011.

Navigli, R. Word sense disambiguation: A survey. ACM
Computing Surveys, 41:10:1–10:69, 2009.

Oommen, B. J. Stochastic searching on the line and its ap-
plications to parameter learning in nonlinear optimization.
IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 27(4):733–739, 1997.

Owens, J. D., Luebke, D., Govindaraju, N., Harris, M.,
Krüger, J., Lefohn, A. E., and Purcell, T. J. A survey of
general-purpose computation on graphics hardware. In
Computer graphics forum, volume 26, pp. 80–113. Wiley
Online Library, 2007.

Phoulady, A., Granmo, O.-C., Gorji, S. R., and Phoulady,
H. A. The Weighted Tsetlin Machine: Compressed Repre-
sentations with Clause Weighting. In Proceedings of the
Ninth International Workshop on Statistical Relational
AI (StarAI), New York, USA, 2020.

Saha, R., Granmo, O.-C., and Goodwin, M. Mining In-
terpretable Rules for Sentiment and Semantic Relation
Analysis using Tsetlin Machines. In Proceedings of the
40th International Conference on Innovative Techniques
and Applications of Artificial Intelligence (SGAI), Cam-
bridge, UK. Springer International Publishing, 2020.

Satish, N., Harris, M., and Garland, M. Designing efficient
sorting algorithms for manycore gpus. In 2009 IEEE
International Symposium on Parallel & Distributed Pro-
cessing, Rome, Italy, pp. 1–10. IEEE, 2009.

Shafik, R., Wheeldon, A., and Yakovlev, A. Explainability
and Dependability Analysis of Learning Automata based
AI Hardware. In IEEE 26th International Symposium
on On-Line Testing and Robust System Design (IOLTS),
Naples, Italy. IEEE, 2020.

Tsetlin, M. L. On behaviour of finite automata in random
medium. Avtomat. i Telemekh, 22(10):1345–1354, 1961.

Valiant, L. G. A Theory of the Learnable. Communications
of the ACM, 27(11):1134–1142, 1984.

Wen, Z., Shi, J., Li, Q., He, B., and Chen, J. Thundersvm:
A fast svm library on gpus and cpus. The Journal of
Machine Learning Research, 19(1):797–801, 2018.

Wheeldon, A., Shafik, R., Rahman, T., Lei, J., Yakovlev, A.,
and Granmo, O.-C. Learning Automata based Energy-
efficient AI Hardware Design for IoT. Philosophical
Transactions of the Royal Society A, 2020.

Xuelan, F. and Kennedy, G. Expressing causation in written
english. RELC Journal, 23(1):62–80, 1992.

Yadav, R. K., Jiao, L., Granmo, O.-C., and Goodwin, M.
Human-Level Interpretable Learning for Aspect-Based
Sentiment Analysis. In Proceedings of AAAI, Vancouver,
Canada. AAAI, 2021a.

Yadav, R. K., Jiao, L., Granmo, O.-C., and Goodwin, M.
Interpretability in Word Sense Disambiguation using
Tsetlin Machine. In 13th International Conference on
Agents and Artificial Intelligence (ICAART), Vienna, Aus-
tria. INSTICC, 2021b.

Zhang, X., Jiao, L., Granmo, O.-C., and Goodwin, M. On
the Convergence of Tsetlin Machines for the IDENTITY-
and NOT Operators. arXiv preprint arXiv:2007.14268,
2020.


