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Abstract

Recent advances in intrusion detection systems based on machine learning have indeed outperformed other
techniques, but struggle with detecting multiple classes of attacks with high accuracy. We propose a method that
works in three stages. First, the ExtraTrees classifier is used to select relevant features for each type of attack
individually for each (ELM). Then, an ensemble of ELMs is used to detect each type of attack separately. Finally, the
results of all ELMs are combined using a softmax layer to refine the results and increase the accuracy further. The
intuition behind our system is that multi-class classification is quite difficult compared to binary classification. So, we
divide the multi-class problem into multiple binary classifications. We test our method on the UNSW and KDDcup99
datasets. The results clearly show that our proposed method is able to outperform all the other methods, with a high
margin. Our system is able to achieve 98.24% and 99.76% accuracy for multi-class classification on the UNSW and
KDDcup99 datasets, respectively. Additionally, we use the weighted extreme learning machine to alleviate the
problem of imbalance in classification of attacks, which further boosts performance. Lastly, we implement the
ensemble of ELMs in parallel using GPUs to perform intrusion detection in real time.

Keywords: Intrusion detection system, Machine learning, Artificial intelligence, Extreme learning machine, Ensemble
methods, Feature selection, ExtraTrees, Softmax aggregation

1 Introduction
With the advancement of Internet technologies, the day-
to-day life has become much easier and simpler. The
emerging need of Internet has not only led to the rapid
growth of web applications, data transfer devices, proto-
cols, computer networks, and cloud computing but has
also given rise to complex security threat environments,
whether it be data security, identity theft, or social and
engineering attacks. The complex nature and exponential
growth of cyberattacks and their ability to deal with the
current network security system highlight the necessity of
more accurate and efficient security systems.
Network intrusion detection systems (abbreviated as

IDS) have been developed over time to detect any unau-
thorized or suspicious action which can lead to data theft,
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breach in discretion, availability, and integrity of informa-
tion resources. While IDS are good at monitoring traffic
for malicious activities, they are prone to false positives,
can lead to chasing ghosts because the attackers can fake
the IP address, and encrypted packets which go unpro-
cessed by IDS and could release malicious content when
activated later. It results in high involvement and depen-
dency on human analysts. Hence, the efficiency and accu-
racy of IDS have been a major concern in both research
and industry.
The complexity in modern day attacks, and their highly
intelligent and adaptive nature, has raised questions on
the present adopted traditional network security mea-
sures. Signature-based IDS have attack signature database
of known attacks. They can only detect attacks which
matches with the stored signature and are unable to detect
any other novel attack. Anomaly-based IDS create amodel
of the normal traffic by monitoring it and classify any
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other activity as abnormal or anomaly. Anomaly-based
IDS can more effectively detect an unknown type of
attack. One issue with anomaly detection is how to clas-
sify normal traffic from anomalies in efficient way. Several
researches have been made, and various approaches have
been proposed for the development of accurate and real-
time IDS which can outperform the current intrusion
detection system.
Machine learning has caught the attention of a lot of

researchers to provide solutions for especially wide rang-
ing big data problems. It can handle multi-dimensional
data in dynamic environments giving real-time predic-
tions. Presently, the advances in machine learning has
extended its application for implementation of effective
IDS. Learning-based approaches like neural networks
have been outperforming traditional approaches in var-
ious applications. Machine learning-based IDS can keep
up with varying types of attacks due to their learning and
adaptive nature.
Intrusion detection can fall under various application-

based categories using neural networks and statistical
methods. In [1], probability features and fast parallel pro-
cessing with Hadoop, consisting of a cluster of 19 nodes,
were used to detect the authenticity of images. Also, in [2],
false data injection attacks were detected in power sys-
tem state estimation using the non-linear autoregressive
exogenous (NARX) configuration of the neural network.
In this paper, we propose a novel approach based on

neural networks for the problem of general purpose net-
work intrusion detection. All previous approaches for
intrusion detection either distinguish between normal
traffic and attacks or can only detect one type of attack at
a time. We propose to use an ensemble of ELMs [3] for
detecting all types of attacks simultaneously. Each ELM
is trained for a specific type of attack, and each ELM is
fed a different feature set consisting of features selected by
an ExtraTree classifier [4] for that specific attack. Train-
ing these ELMs on each and every type of attack takes
less than 18 s. Our system is tested on the UNSW [5]
and NSL-KDD [6] datasets and is able to outperform
all previous machine learning-based intrusion detection
systems.
To the best of our knowledge, the following novel tech-

niques have never been applied to the intrusion detection
problem:

1 This paper proposes to use attack-based feature
selection. This decreases the number of features
significantly.

2 Also, in this paper, an ensemble of extreme learning
machine (ELM) is used for multi-class classification.

3 Each ELM distinguishes between one type of attack
and all the rest of the categories. This is similar to
one vs all SVM, but this is the first time it has been

applied to a neural network-based ensemble for
intrusion detection.

4 For such a unique kind of ensemble technique,
voting-based aggregation cannot be applied. So we
use softmax aggregation.

5 We report new state-of-the-art accuracy for
multi-class intrusion detection on two of the
benchmark datasets: UNSW and NSL-KDD.

6 Even better performance is achieved by replacing
ELM with WELM at the cost of negligible
computational overhead.

7 We implement the ensemble of ELMs in parallel
using GPUs and map-reduce type of implementation
to perform real-time intrusion detection.

The rest of the paper is laid out in the following man-
ner: Section 2 enlists and briefly explains some key papers
on intrusion detection systems that have used machine
learning, Section 3 and its subsections give a detailed
explanation of our proposed system, Section 4 shows our
findings and results of experiments on the two datasets,
and finally, the paper is concluded in Section 5.

2 Related work
There have been some innovative techniques proposed in
the past and key research ideas implemented for intru-
sion detection using machine learning models that have
transcended previous networking-based techniques and
opened new avenues for future researchers to build their
work on. Some of these ideas have been briefly described
here.
In [7], the main contribution is to propose a traffic

monitoring functionality for network intrusion detection
and process monitoring functionality to detect modern
malware attacks. The main novelty lies in the improve-
ment over existing results benchmarked in [5]. In this
paper, random forest (abbreviated as RF) is used to detect
network attacks at cloud networking server (CNS) and vir-
tual machine monitor (VMM) of cloud compute server
(CCoS). Then, logistic regression (abbreviated as LR) is
used as meta-classifier to reduce its overfitting problem.
The dataset used is UNSW-NB and CAIDA for intrusion
detection. The accuracy on UNSW-NB dataset is 94.54%,
and false-positive rate is 2.81% and 98.90% on CAIDA
dataset for DoS attack detection only. In contrast, our
proposed method is able to deal with 10 types of attacks
including DoS attacks. Also, the random forest requires
hundreds of decision trees and is not as powerful as neu-
ral networks. That is why we use the ExtraTrees classifier
(an updated version of random forest) for feature selection
purposes only and leave the classification task to ELMs.
The paper [8] has proposed a new fitness function

for genetic algorithm which uses three parameters: true-
positive rate, false-positive rate, and number of selected
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features to evaluate each subset of features. This is used
for feature selection. Then, combination of genetic algo-
rithm and SVM is used to detect intrusion. The method
has been applied to classify each type of attack separately
on KDD CUP 99 and UNSW-NB15 datasets with mostly
achieving accuracy of above 90%. However, our method
is able to classify each type of attack separately, as well as
together in a multi-class fashion with a higher accuracy.
Also, the ExtraTrees classifier used for feature selection in
our model is able to prune more features than the method
proposed in [8]. Performance numbers of these systems
are shown in Table 1.
Developing a single neural network to discover DoS traffic

in various network protocols is proposed by [9]. Feature
selection is done by correlation-based feature selection.
The accuracy of the network on UNSW-NB dataset is
97.1% with a false-positive rate of 0.06% and 99.2% on
NSL-KDD with false-positive rate of 0.02%. Again, our
proposed method detects many other types of attacks
other than DoS. Also, correlation-based feature selection
works only to reduce redundancy and is not data efficient
as correlation between large feature matrices needs to be
calculated. On the other hand, the decision tree-based
ExtraTrees classifier, that we use for feature selection, is
faster andmuchmore data efficient andmore importantly
calculates feature importance score rather than evaluat-
ing features for redundancy. Our proposed model deploys
feature selection in a novel way by selecting important
features for detecting each type of attack separately.
This paper [10] proposes an intrusion detection model

which is based on two stages and on a reduced error prun-
ing tree algorithm for classification and identification of
intrusion. In the first stage, the traffic is classified on the
basis of its protocol. Then, a binary classification is done
to define the traffic as normal or as an attack. In the sec-
ond stage, a pre-trained multi-class classifier is launched
which classifies the type of attack whenever an attack is
identified. Even though our method has three stages, they
are still less complex than the two stage method in [10].
Firstly, reduced error pruning tree adds more overhead to
a decision tree by repeatedly building the tree and pruning
it. The model is divided into two stages: attack detection
and type of attack classification, while we do it in a sin-
gle stage. Also, their method achieves 81.28% and 83.59%
accuracy on UNSW-NB15 and NSL-KDD, respectively,
which is much lower compared to the accuracies achieved
by our proposed system.
The paper [11] proposes a hybrid model by combin-

ing SVM and simulated annealing for intrusion detec-
tion. Random unique combinations of three features
were created by simulated annealing at a time, and
SVM was applied on those feature combination. This is
repeated until low false-positive and false-negative rates
and highest detection accuracy are achieved by the model.

Accuracy achieved by the model is 98.76% for binary
classification. The random selection of three features
and repeating the process until highest performance is
achieved takes a lot of computational power and time.
The authors in [12] performed random forest binary

classification on various stages to classify eight kinds of
attacks. They compared logistic regression and random
forest for anomaly detection and showed that RF outper-
formed LR. They proposed that by reducing the number
of features using best first feature selection technique on
the criterion of minimizing the testing error resulted in
reduced model complexity and enhanced the accuracy.
The results showed that overall accuracy achieved was
99% for anomaly detection (binary classification) but cat-
egorization accuracy is 93.35% which is comparatively
lower than our method. Also, best first feature selection
is a naive feature selection technique and takes a lot of
time to select the relevant features. On the other hand, we
employ the ExtraTrees classifier as a feature selection algo-
rithm which is more sophisticated and applied in a novel
individual attack detection way.
In [13], a standard neural network (abbreviated as NN)

has been used to classify attacks and genetic algorithm
for feature selection. The similar features are classified
into feature sets, and accuracy of each set is measured
by multi-modal neural network (abbreviated as MNN).
The genetic algorithm is applied to each feature set in
ascending order of accuracy, eliminating the irrelevant
features from overall feature set and evaluating remaining
features with MNN. The accuracy achieved by the ANN
on UNSW-NB15 and NSL-KDD is 91.98% and 95.46%,
respectively, for binary classification between normal and
attack traffic. We use ExtraTrees classifier for feature
selection which is much faster and less complex than
genetic algorithms (slow execution is the main problem of
GA). Also, we perform ensemble ELM and softmax aggre-
gation learning for the multi-class problem to detect all
types of attacks.
In [14], a multi-scale Hebbian NN for threat detection

is introduced. The learning algorithm follows Hebbian
rule in which weights are updated as a function of nearby
neuronal activity. The paper uses four features for detec-
tion and has shown improved true negative rate as 95%
and true positive rate as 73%. Improvement is shown in
comparison between multi-scale Hebbian-based NN and
gradient descent-based NN. The mean accuracy of the
proposed method is 93.56% for detecting attacks (binary
classification). The Hebbian rule makes the learningmuch
slower for neural networks, and introducing multi-scale
approach makes it even slower. On the other hand, we
deploy parallel ELMs which are many times faster than
backpropagation.
The paper [15] employs a multi-agent-based cognitive

approach to detect network intrusion and feature detection
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Table 1 Previous state-of-the-art ML based intrusion detection systems and the proposed method

Models UNSW (in %) KDD (in %) Binary
classification

Detecting
single type
of attack

Multi-class
classification

NvCloudIDS [7] 94.54 - � - -

ADDM [9] 97.1 99.2 � - -

GF+SVM [8] Normal 97.45

Generic 91.51 Normal 99.05

Exploits 79.19 DoS 99.95

DoS 91.24 Probe 99.06 - � -

Fuzzers 96.39 R2L 98.25

Reconnaissance 91.51 U2R 100

Shellcode 99.45

RepTree [10] 88.95(Binary) 89.85(Binary) � - �
81.28(Multi-class) 83.59(Multi-class)

Simulated annealing+SVM
[11]

98.76 - � - -

Step-wise RF [12] Normal 99.50

Exploits 99.50

DoS 20.00

Analysis 2.00 - � -

Backdoor 5.00

Reconnaissance 86.00

Shellcode 80.00

Worm 70.00

ANN+GF [13] 91.98 95.46 � - -

Multi-scale Hebbian [14] 93.56 � - -

Unsupervised
FE+classification [15]

89.00 - � - -

Semi-supervised ML [16] 93.74 98.23 � - -

MLP [17] 93.29 - � - -

ICVAE-DNN [18] 89.08 85.97 - - �
BMM+outlier detection
[19]

Normal 93.40

Generic 80.50

Exploits 79.40

DoS 89.60

Analysis 83.40

Backdoor 63.80 - - � �
Reconnaissance 55.60

Shellcode 48.70

Worm 47.80

Overall 92.70

GRU-RNN [20] - 89.00 - - �
Proposedmethod:
ExtraTrees+ELM
ensemble+softmax

98.24 99.76 - � �

Proposedmethod:
ExtraTrees+WELM
ensemble+softmax

98.69 99.83 - � �
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through unsupervised learning. The authors modified the
UNSW-NB15 dataset for the unsupervised problem. The
paper proposed to divide datasets into time steps and
then finding features from their statistical analysis result-
ing in a reduced dataset, hence reducing computation
time for learning and then deploying agents with each
host to compute and analyze the traffic flow. This tech-
nique yields accuracy of 89%. The accuracy with basic
unsupervised k-means is 29% on AWIDR dataset, and
with this approach, it is increased by 60%. Even though
computation time for learning by the multi-agent system
is reduced, the total time is increase due to the statis-
tical analysis of the dataset since the dataset is quite
large.
In this paper [16], the authors have proposed a semi-

supervised learning approach to detect DDoS attack. The
unsupervised part reduces the irrelevant and noisy data
through entropy estimation, co-clustering, and informa-
tion gain ratio, resulting in reduced false-positive rate.
The supervised part uses ExtraTrees ensemble classifiers
to classify the traffic. The best accuracy achieved on
NSL-KDD, UNB ISCX 12, and UNSW-NB15 datasets are
98.23%, 99.88%, and 93.74%, respectively, for binary clas-
sification. Again, the unsupervised overhead of the system
is too complex and requires lots of data and time. Our
method is much less complex and can detect intrusions in
real time.
Amulti-layer perceptron-based feedforward neural net-

work for detecting intrusion with sigmoid activation func-
tion and backpropagation learning algorithm has been
proposed in [17]. The approach has achieved on the
93.29% UNSW-NB15 dataset. The approach is compared
to J48 decision tree, and it turned out that J48 has compar-
atively lower accuracy of 88.53% for binary classification.
The approach is too simple, and the backpropagation
algorithm takes a lot of training time. Also, the accu-
racy reported on the UNSW-NB15 dataset for binary
classification is on the lower side.
One of the most recently proposed methods to improve

multi-class classification performance of intrusion detec-
tion [18] proposed to use a combination of improved
conditional variational autoencoder with a deep neural
network. Their approach is abbreviated as ICVAE-DNN.
The autoencoder is used as a generative model to provide
more attack samples according to the specified categories
in the datasets, to the DNN classifier. This innovative
approach was able to achieve 89.08% and 85.97% accuracy
on the UNSW and NSL-KDD datasets, respectively. How-
ever, the model complexity is quite high since it uses two
deep neural networks trained by backpropagation.
Another recent intrusion detection method that used

machine learning and statistical techniques such as beta
mixture models (BMM) and outlier detection was pro-
posed in [19]. The method was tested on the UNSW

dataset achieving an overall score of 92.7%. Individual
attack detection accuracies were also reported.
In [20], a recurrent neural network (RNN) with gated

recurrent unit (GRU) was proposed for intrusion detec-
tion. The model was specifically built for SDN networks
(software-defined networking). The most striking feature
of the model is that it uses only six features to achieve 89%
classification accuracy on the NSL-KDD dataset.
In our approach, we use the extreme learning machine

(ELM) [3, 21] for intrusion detection. The ELM algorithm
has been used in a diverse set of applications includ-
ing water quality forecasting [22], optimization of indus-
trial chemical productions [23], big data processing [24],
speech enhancement [25], heart disease diagnosis [26],
medical image segmentation [27], and fault detection [28,
29].
The ELM has also been used before in IDS [30–33].

In [30], ELM is tested on the KDcup99 dataset [6] in a
big data environment using a MapReduce-based variant
(MR-ELM). This is completely different from our work,
because [30] use MR-ELM specifically for big data envi-
ronments and achieve maximum accuracy around 97% on
the KDDcup99 dataset [6] whereas our proposed model
achieves 99.6% accuracy on the same dataset with some
modifications and fine-tuning.
Another paper that used ELM for intrusion detection

is [31]. In this paper, a simple implementation of ELM
and Kernel ELM is used to detect four types of attacks
on a relatively simpler dataset, DARPA 1998. The Kernel
ELM model is compared with SVM for intrusion detec-
tion and achieves nearly 98% accuracy for multiple attack
detection.
A variant of ELM called the online sequential ELM (OS-

ELM), which is used for online learning, is employed in
[32] for intrusion detection. It is tested on the KDDcup99
dataset. Although it is not able to achieve very high accu-
racy, 90%, it is amore realistic approach towards intrusion
detection, because learning online, especially in the field
of computer networks and communication, is extremely
important since the byte patterns can change over time.
A sample selected, lightweight, ELM intrusion detection

system for fog computing and mobile edge computing is
proposed in [33]. The main contributions of the paper lie
in the fast training and accurate detection (99%) of attacks
on the KDDcup99 dataset. Our model is entirely different
from the abovementioned techniques, as explained in the
next section.
The difference between our ELM-based IDS and the

previous ELM-based IDS is that our approach is a gen-
eral purpose intrusion detection system that consists of
an ensemble of ELMs, where each ELM is dedicated to
detect a single type of attack. Also, we introduce a novel
type of aggregating ensemble results by using a softmax
layer which proves to improve accuracy of the system.
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Furthermore, the ExtraTrees classifier is used to select
relevant features for each type of attack separately to
improve data efficiency and speed of the system. Over-
all, this general purpose IDS can be implemented in a
parallel processing or distributed manner due to its multi-
threaded structure as shown in Fig. 1, where each thread
is independent of the other.
All the abovementioned papers and more have greatly

improved intrusion detection systems in the past. How-
ever, almost all of them have their own shortcomings
which we try to overcome in this paper. Some of the draw-
backs that we try to solve are as follows: computation and
training time, efficiency, accuracy, feature selection, clas-
sification between all types of attacks (not just binary or
detecting a specific type of attack only), etc. Most of the
previous state-of-the-art methods deal with binary clas-
sification, i.e., distinguishing between normal traffic and
attacks.
Table 1 displays the results of the previous state-of-the-

art methods on the NSL-KDD and UNSW benchmark
datasets. The table also shows the type of classification
performed. We propose a system that can achieve the

highest accuracy for the multi-class problem of detecting
all types of attacks on which the system is trained on. We
explain our IDS and the intuition behind it in the next
section.

3 Themulti-layer intrusion detection system
The main contributions of this paper lie in the follow-
ing: using ELM [3, 21] for classification of attacks, even
though ELM has been used for intrusion detection sys-
tems before [30–33], but not quite in this manner and not
on the UNSW dataset which is the most realistic and dif-
ficult dataset for intrusion detection; using the ExtraTrees
classifier [4] to calculate feature importance and select rel-
evant features for detecting each specific type of attack;
and using an ensemble of ELMs (one for each type of
attack) and combining their results using a softmax layer
to fabricate an interpretable probabilistic output of very
high accuracy. The flowchart of our deep multi-layered
model is shown in Fig. 1.
We breakdown the problem of multi-class classification

into a set of binary classifications. This is done in order to
decrease the load on the classifiers in the ensemble. Since,

Fig. 1Multi-layer intrusion detection system flowchart
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multi-class classification is more complex than binary
classification. This is because binary classification consists
of two decision variables, i.e., the two classes, whereas
the multi-class problem can consist of n decision vari-
ables representing the n classes. So, it is easier to learn
a function that can map the set of input features to two
decision variables rather than n decision variables. Also,
the complexity of the function would be less for binary
classification compared tomulti-class classification, as the
complexity of a function is directly proportional to the
number of decision variables.
Each thread shown in Fig. 1 runs in parallel using

GPUs and map-reduce type of implementation which
enables real-time intrusion detection. New attacks can be
detected by the system, since one ELM in the ensem-
ble distinguishes normal network traffic from potential
attacks. However, the type of the new attack cannot be
determined if it does not fall under any of the attack
categories on which the system is trained.

3.1 Layer 1: Feature selection with ExtraTrees classifier
The extremely randomized trees, abbreviated as Extra-
Trees [4] are a variant of the random forests with
more randomization at each step for picking an opti-
mal cut/split or decision boundary. Unlike random forests
where features are split based on a score (like entropy) and
instances of the training set are bootstrapped, the split cri-
teria of the ExtraTrees are random and the entire training
set is considered. The resulting trees have more leaf nodes
and are more computationally efficient. It also alleviates
the problem of high variance in random forests due to its
randomization and hence provides a better bias-variance
trade-off.
Also, one of the advantages of using tree-based clas-

sifiers is their ability to perform feature selection. The
advantage of using tree-based classifiers as a feature selec-
tion mechanism is that they require much less memory
(as tree structures are more memory efficient), they are
faster, and they give the most important features at the
beginning itself starting from the root node and the first
split. At each split, the most important feature is selected
at that stage. As the tree grows and reaches the leaf nodes
that give the end result, the path from the root node
to the leaf node gives the most important features. An
additional characteristic of tree-basedmethods is that fea-
tures are given a score during each split which enables
them to perform feature ranking. This characteristic is
used in our model for feature selection. Features are
ranked according to split score by the ExtraTrees classi-
fier. The split score for sample S, split s, and class c is
given by [4]:

Scorec(s, S) = 2Isc(S)
Hs(S) + Hc(S)

(1)

where, Hc(S) is the (log) entropy of the class c in sam-
ple S, Hs(S) is the split entropy, and Ics (S) is the mutual
information of the split outcome and the class c. We select
all the features above a threshold score. This is done for
distinguishing each attack versus the rest. So, we get a dif-
ferent optimal feature subset for detecting each type of
attack. Feature selection reduces redundancy, and empha-
sis is given to important features which leads to higher
accuracy and faster training.
Most of the previous research applies feature selection

for detecting all attacks. We use the ExtraTrees classifier
for feature selection to detect each type of attack sepa-
rately (as shown in Fig. 1) because a particular feature
could be important for detecting a specific type of attack
and it could be considered redundant for another type of
attack. Each feature used for intrusion detection receives
a score. We use a threshold score to discard irrelevant or
redundant features that do not contribute enough to the
benefit the performance of the intrusion detection system.
This approach of individual class feature selection works
better as shown in the Section 4.
The main motivation behind using a feature selection

technique is to reduce the dimensionality of the problem
in order to improve execution time, memory usage, and
data efficiency, especially when redundant features are
removed which helps to deal with overfitting and improve
performance. Feature selection with decision tree-based
methods is much simpler and faster compared to other
techniques such as Fisher’s score and F-score. The major
disadvantage of using Fisher’s score and F-score is that
they calculate feature scores independently of other fea-
tures, i.e., they do not include mutual information. On
the other hand, ExtraTrees classifier uses all features
together to categorize data. Some feature combinations
might be better than high scoring independent features,
which is why we employ ExtraTrees classifier as the feature
selector.

3.2 Layer 2: Extreme learning machine ensemble
The extreme learning machine is a supervised learning
algorithm originally for a single hidden layer feedforward
neural network [3, 21]. But after extensive research in the
past few years, it has been modified and updated to work
for deep neural networks as well, details can be found here
[34–37]. We use the original form of the ELM, to keep
things simple and fast.
The inputs to the ELM, in this case, are the features

selected by the ExtraTrees classifier [4]. Let it be repre-
sented as xi, ti , where xi is the input feature instance
and ti is the corresponding label. The input features are
fed to the hidden layer neurons by randomly weighted
connections w. The sum of the product of the inputs
and their corresponding weights act as inputs to the hid-
den layer activation function. The hidden layer activation
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function is a non-linear non-constant bounded continu-
ous infinitely differentiable function that maps the input
data to the feature space. There is a catalog of activa-
tion functions from which we can choose according to
the problem at hand. We ran experiments for all activa-
tion functions, and the best performance was achieved
with the smooth approximation of the ReLU function [38],
which is called the SoftPlus function [39]:
ReLU:

f (x) = max(0, x) (2)

SoftPlus:

f (x) = log(1 + ex) (3)

The hidden layer and the output layer are connected by
weights β , which are to be analytically determined. The
mapping from the feature space to the output space is lin-
ear. Now, with the inputs, hidden neurons, their activation
functions, the weights connecting the inputs to the hid-
den layer, and the output weights produce the final output
function:

L∑

i=1
βig(wi.xj + bi) = oj (4)

The output in matrix form is:

Hβ = T (5)

The error function used in extreme learning machine is
the mean squared error function, written as:

E = 1
2

N∑

j=1

( L∑

i=1
βig(wi.xj + bi) − tj

)2

(6)

The MSE with L2 regularization and C as regularization
parameter is:

E = 1
2

N∑

j=1

( L∑

i=1
βig(wi.xj + bi) − tj

)2

+ C
1
2
||β||2 (7)

To minimize the error, we need to get the least-squares
solution of the above linear system:

‖Hβ∗ − T‖ = minβ‖Hβ − T‖ (8)

The minimum norm least-squares solution to the above
linear system is given by:

β̂ = H†T (9)

where, H† is the Moore-Penrose pseudo inverse of H,
which is given by [40, 41]:

H† =
(
I
C

+ HTH
)−1

HT (10)

However, the product of HTH may not always be a non-
singular matrix or it may tend to be singular under cer-
tain conditions, and thus, this method of computing the

pseudo inverse may not work for all cases. The singular
value decomposition (SVD) can be used to calculate the
Moore–Penrose pseudo inverse of H in all cases.
Properties of the above solution are as follows:

1 Minimum training error: The following equation
provides the least-squares solution, which means the
solution for ‖Hβ − T‖, i.e., the error is minimum:
‖Hβ∗ − T‖ = minβ‖Hβ − T‖.

2 Smallest norm of weights: The minimum norm of
least-squares solution is given by the Moore-Penrose
pseudo inverse of the hidden layer output matrix, H:
β̂ = H†T .

3 Unique solution: The minimum norm least-squares
solution of Hβ = T is unique, which is β̂ = H†T .

Detailed mathematical proofs of these properties and the
ELM algorithm can be found in [3]. We use an ensemble
ofN +1 ELMs, whereN is the number of types of attacks.
One additional ELM, apart from N ELMs, is for detect-
ing normal traffic. Each ELM is trained with an X vs all
strategy, where X is the type of attack/normal traffic. Each
ELM outputs a “1” when it detects a type of attack for
which it is trained, or “0” otherwise. This approach breaks
down the multi-class problem to a two-class problem with
several ELM classifiers, each having to detect only one
type of attack instead of several.
Even though this ensembling approach requires many

ELMs, it gives a much better performance in terms of
accuracy and training time and is much less computation-
ally complex compared to single deep and wide neural
networks that have a much more demanding multi-class
problem at hand. This is because as the number of deci-
sion variables increases (number of classes), the network
size has to be increased as well. Additionally, deep neu-
ral networks require backpropagation for training which
is more computationally complex than ELM. Since each
ELM in the ensemble has to detect one type of attack, they
have a perspective of the data unique to that particular
type of attack which makes them more efficient, accurate,
and faster. This unique perspective of data with selected
features is provided by the ExtraTrees classifier.
Also, convergence is guaranteed by the solution to the

Moore-Penrose pseudo inverse of H, as long as sufficient
number of hidden neurons are provided. We use 512
neurons for guaranteed convergence.

3.3 Layer 3: The softmax layer
The output of an ensemble of classifiers can be combined
in several ways like averaging, voting, and max opera-
tion. But that is when all the classifiers have the same
goal and the same perspective of the problem. Such tech-
niques cannot work when the global view of the problem
is multi-class and the local view of the classifiers is binary
class.
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The ELMs in the ensemble return a single output which
is either “0” or “1.” To amalgamate these outputs to
get the final actual output becomes a challenge because
the abovementioned techniques for combining ensemble
results do not work here. If only one of the ELMs output
is “1,” then there is no problem. But let us assume that we
get a difficult input stream to classify. For instance, let us
consider that two ELMs output a “1,” in this case which
one should we consider? We cannot apply averaging or
voting or max operation here for obvious reasons. To alle-
viate this ambiguity, we use a softmax layer at the end to
integrate the outputs of the ELM ensemble and produce a
probability vector which displays the probabilities of each
type of attack.
The softmax layer employs the softmax function [42]

which is a generalized form of the logistic function:

f (y)j = eyj
∑N

k=1 eyk
(11)

In order to further increase performance and accuracy
of the system, the softmax layer is fine-tuned using the
Adam optimizer [43]. The true classes encoded as one-
hot vectors are fed as labels, and the input is the output
of the ELM ensemble. This behaves as a single layer soft-
max classifier. The categorical cross-entropy loss works
best with softmax layer which is used here as well [44]:

H(t, y) = −
∑

i
ti log yi (12)

The fine-tuning is run for 10 epochs only which is enough
since a large portion of the classification task is done
in the ELM ensemble stage. The softmax layer acts as a
module that dispenses ambiguity and makes the output
interpretable. Also, it adds an additional layer of abstrac-
tion to the model. The output of the final stage is a refined
probability vector that displays the probabilities of each
type of attack and normal traffic associated with each
input instance stream.

4 Experimental setup and results
We test our proposed intrusion detection model on the
well-known benchmark datasets: UNSW-NB15 dataset
[5] and KDDcup99 dataset [6]. A comparison of ourmeth-
ods with previous state-of-the-art machine learning tech-
niques for intrusion detection can be seen in Table 1. The
system is implemented to perform in real time. Hence, we
implement the ensemble of ELMs in parallel. Each ELM
is provided with a set of all features. The training and
testing of the ELMs are performed in parallel using a map-
reduce type of implementation [45]. Finally, the results are
aggregated by a softmax layer.
Table 1 shows the results and type of classification for

the recently proposed state-of-the-art machine learning-
based intrusion detection systems on the UNSW and

NSL-KDD datasets. Most of these methods perform
binary classification, i.e., either distinguishing between
normal traffic and malicious traffic or distinguishing
between a single type of attack and normal traffic. Some
other methods like [8, 12] classify between attacks indi-
vidually, which is a similar strategy that we use, but are not
able to classify all attacks simultaneously as proved in [12].
Our proposed method outperforms the rest as explained
empirically in the next few subsections. All the results dis-
played in Table 1 are the results as stated in the respective
papers of the state-of-the-art methods for the benchmark
datasets of UNSW and NSL-KDD, hence making for an
unbiased and credible comparison.
We use the basic extreme learning machine for all our

experiments. This is because, with the basic ELM, we
achieve state-of-the-art performance as well as real-time
intrusion detection. There are many other variants of the
ELM, but all of them are more complex versions of the
basic ELM. We stick to the basic version due to the fol-
lowing reasons: to avoid unnecessary overhead of other
versions, to keep the system simple and fast, and lastly,
since the performance of our system is able to outper-
form previous intrusion detection systems and achieve
very high accuracies (98.24% and 99.76% on the UNSW
and NSL-KDD, respectively), we believe that using a more
complex version of the ELM would have a negligible
increase in performance while increasing the complexity
of the system.
However, for some types of attacks, both UNSW and

NSL-KDD datasets are highly imbalanced. This means
that using the extreme learning machine version for
imbalanced classification, called the weighted extreme
learning machine (WELM) [46], could prove to be advan-
tageous. Thus, we test our method by using an ensemble
of WELM, replacing the basic ELM.

4.1 UNSW dataset
The UNSW dataset [5] consists of 49 features and 10
classes (9 attacks and 1 normal traffic). The UNSW
dataset is by far the most realistic and difficult dataset for
the problem of intrusion detection. It is one of the more
difficult datasets for intrusion detection as it consists of
10 classes of attacks and the accuracies reported on this
dataset are generally lower than on other datasets. It is the
most widely used dataset by researchers, and we use it to
empirically prove the capabilities of our system.
The individual attack detection accuracies are obtained

from each ELM specifically trained to detect that partic-
ular type of attack by a one vs all strategy (one ELM for
each class). All ELMs consist of a single hidden layer of 512
neurons with the ReLU activation function [38]. We also
tried several other activations such as multi-quadratics,
soft limit, hard limit, hyperbolic tangent, sigmoid, and
linear, but we achieved best performance with ReLU.
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Only one iteration of training is required to train the
ELM since it is a one-shot learning algorithm. The train-
ing time for ELMs on the UNSW dataset was 18 s on
each type of attack. After training the ELMs, the results
are combined using the softmax layer which is trained for
10 epochs using the ADAM optimizer [43] with default
settings. The softmax layer is as wide as the number of
classes.
Training is performed on 175,342 instances, and the

model is tested on 82,332 instances. To avoid overfit-
ting, a small portion of the training set (20%) is used for
validation.
Table 2 shows the results achieved by our model. The

reason behind using the softmax layer is quite clear from
Table 2 and Fig. 2 which shows the difference between
the average accuracy and accuracy with the softmax layer.
Figure 2 displays a bar graph representation of the results,
highlighting the difference between average accuracy and
softmax accuracy.

4.2 KDDcup99 dataset
The KDDcup99 dataset [6] presents with 41 features and
4 broad categories into which the attacks can be classified
and 1 normal traffic category. It is one of the oldest bench-
mark datasets available for intrusion detection and has
been widely used for the past decade. We test our system
on this dataset to show that our model is generalizable to
different datasets and does not overfit on a single dataset.
We train and test on the KDDcup99 dataset to show that

our model is a general purpose intrusion detection system
that has not been tailored for a single dataset. It works on
the general problem of intrusion detection and not on a
single dataset.
The system configuration used for KDDcup99 dataset is

the same as the UNSW dataset (single hidden layer, 512

Table 2 Proposed system performance on the UNSW dataset

Attacks Accuracy (in %) No. of features

Normal 91.26 13

Generic 98.16 14

Exploits 89.13 25

Fuzzers 91.30 24

DoS 94.75 25

Reconnaissance 94.60 17

Analysis 98.96 16

Backdoor 99.11 18

Shellcode 99.40 12

Worms 99.92 15

Average 95.66 18

Softmax 98.24 -

No feature selection 92.95 49

ReLU neurons, ensemble ELM with 1 ELM for each class,
1 training iteration, softmax layer as wide as the number of
classes, trained for 10 epochs with ADAM optimizer with
default settings).
Training was performed on 296,412 instances, and the

model was tested on 197,608 instances. To avoid overfit-
ting, a small portion of the training set (20%) is used for
validation. Table 3 tabulates the results on this dataset,
showing individual accuracies for each class of attack and
the average accuracy. The softmax layer increases the
accuracy slightly. The difference can be seen clearly in the
bar graph in Fig. 3.

4.3 Feature selection
We perform feature selection using the ExtraTrees classi-
fier [4] on all features for each type of attack separately.
Each feature is given a score and ranked on the basis
of this score. An example of feature importance ranking
is given in Fig. 4 (y-axis is the feature score and x-axis
is the features), which displays the scores of all features
in the UNSW dataset according to their importance in
detecting the DoS attack (the features with blue bars are
discarded and red ones are selected). The most important
feature at the top has the highest score, and the score and
importance decrease as wemove down. To select the most
relevant feature, instead of selecting a predefined number
of features, we set a threshold on the importance score to
0.02. All features having scored below this are discarded as
irrelevant for detecting a particular type of attack. So, we
get different number of features for classifying different
types of attacks.
From Tables 2 and 3, we can see that feature selection

boosts performance of the system by ∼ 4 − 6%. When
using all 49 features in UNSW and 41 features in NSL-
KDD datasets, the accuracy is reduced. This means that
there are some redundant features present in both the
datasets, which the ExtraTrees classifier is able to remove.
Table 4 tabulates the feature scores generated by the

ExtraTrees classifier for the DoS type of attack in the
UNSW dataset, in ascending order. The most important
characteristic of using an ensemble-based approach to
feature selection is that the most important features for
each attack are considered separately. This is an indis-
pensable property because for detecting a particular type
of attack, some features might be considered irrelevant
and, as a result, will be discarded. But, for another type
of attack, some of those discarded features might be con-
sidered important. So, it is highly desirable to have an
ensemble approach to feature selection as well, so that fea-
tures can be selected for the detection of different kinds of
attacks separately.
Tables 2 and 3 have a column for the number of fea-

tures selected for each type of attack. The number of
features is decreased significantly, and at the same time,
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Fig. 2 Results on the UNSW dataset

detection problem for each attack gets its own feature set.
The threshold limit which selects the number of features
versus overall accuracy of the system is shown in Fig. 5.
It is basically comparing the performance of the model
with respect to the number of features, since increasing
the threshold score means considering less features and
vice versa.
As we can see from Fig. 5, the optimal feature selection

threshold is 0.02, at which the accuracy reaches its maxi-
mum, but after which the accuracy starts to decrease. The
feature selection threshold is a hyperparameter whose
optimal was found by running experiments with different
thresholds.

4.4 Weighted extreme learningmachine
We apply the WELM algorithm in place of the ELM in
our multi-layer intrusion detection system. The intuition
behind using WELM is that UNSW and NSL-KDD have
imbalanced class instances for some of the attack classes.
Adding the class weights on top of ELM is a small over-
head. The only change made to the ELM to get WELM is
that Eq. 9 is changed to:

H† =
(
I
C

+ HTWH
)−1

HT (13)

And the MSE loss is calculated as:

E = 1
2

N∑

j=1

( L∑

i=1
βig(wi.xj + bi) − tj

)2

+ CW
1
2
||β||2 (14)

where W is a n × n diagonal matrix, where each diag-
onal element is associated with the corresponding train-
ing sample. Each training instance is assigned a weight
according to the class it belongs to and the number of
instances belonging to that class. We use the weighting
scheme W2 as used in [46]. We show the results of using
WELM on the UNSW and NSL-KDD datasets and com-
pare the results with ELM in Tables 5 and 6, respectively.
As shown in the tables, we get a very small performance

boost by using WELM in place of ELM. Also, WELM
plays its critical role in the imbalance classification prob-
lem by increasing the detection accuracy of attacks with
comparatively fewer number of instances. But, there is
no increase in performance for detecting backdoor, shell-
code, and worms in Table 5. This might be because their

Table 3 Proposed system performance on the KDDcup99
dataset

Attacks Accuracy (in %) No. of features

Normal 100 13

DoS 100 14

Probe 99.25 15

R2L 98.50 14

U2R 100 14

Average 99.55 14

Softmax 99.76 -

No feature selection 95.43 41
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Fig. 3 Results on the KDDcup99 dataset

detection accuracy is already close to 100%, and since the
dataset is quite large, some instances are bound to be mis-
classified. Also, note that the rest of system remains the
same. So, the number of features selected by the Extra-
Trees classifier is the same for both the systems (with ELM
or WELM).
Overall, there is a small noticeable boost in performance

of the multi-layer intrusion detection systemwithWELM.

Furthermore, the increase in overhead is negligible since
the class instance weight matrixW is easy to calculate and
can be determined before training begins.

5 Discussion
The proposed method performs very well on the stan-
dard benchmark intrusion detection datasets. One advan-
tage of the method lies in reducing the number of

Fig. 4 Feature scores by ExtraTrees for DoS attack in the UNSW dataset
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Table 4 Feature scores by ExtraTrees classifier for DoS attack in
the UNSW dataset

Features Scores

is_ftp_login 0.000429706

ct_ftp_cmd 0.000555861

trans_depth 0.003995418

is_sm_ips_sport 0.004405755

ct_flw_fttp_mthd 0.004472606

swin 0.005013446

state 0.007730736

ct_state_ttl 0.009660607

response_body_len 0.011350468

sloss 0.012895271

dloss 0.013546359

dpkts 0.014662184

dtcpb 0.014982101

synack 0.016172927

dinpkt 0.016299402

spkts 0.016379687

tcprtt 0.016397195

djit 0.016837784

sjit 0.017782288

ct_src_dport_ltm 0.020360274

stcpb 0.021925168

sttl 0.021994751

ackdat 0.02219905

ct_src_ltm 0.023103935

dmean 0.0231134

ct_dst_ltm 0.02347893

sinpkt 0.02396061

dbytes 0.024039132

service 0.024705258

dur 0.02809861

dload 0.029781236

rate 0.030608379

dwin 0.031516652

sttl 0.034695868

sload 0.040628565

ct_dst_sport_ltm 0.043927692

ct_dst_src_ltm 0.049993128

ct_srv_dst 0.055067287

ct_svr_src 0.055864165

sbytes 0.073172393

smean 0.094195716

features required to train a model by using a suit-
able feature selection technique such as the ExtraTrees
classifier. To train a DL model, a lot of features are
required since the number of parameters to be trained
is more. However, in the case of ELM, a single hid-
den layer has fewer parameters which requires less
features. Hence, feature selection can be beneficial in
this case.
Also, DL methods require large amounts of data for

training. But, our model is more data and memory effi-
cient and makes use of less training data due to parallel
processing and using single layer feedforward neural net-
works. However, if given enough data to train, some DL
methods could give better performance.
Furthermore, DL methods are not able to generalize

well to change in datasets. They need to be modified and
trained differently if another dataset does not belong to
the same distribution as the dataset it has been trained on.
On the other hand, our model can be applied to another
dataset without any modifications as shown above.
Overall, the proposed model uses considerably less

number of features, with real-time detection due to
parallel implementation, and gives state-of-the-art per-
formance for intrusion detection on the UNSW and
NSL-KDD benchmark datasets with an ensemble of
ELM/WELM aggregated by a softmax layer.

6 Conclusion
Our proposed intrusion detection system is able to
outperform all recent machine learning-based intrusion
detection systems in terms of detection accuracy. We
tested our model exhaustively on two of the most widely
used datasets, UNSW and KDDcup99. We also compare
our method with machine learning-based intrusion detec-
tion systems. The comparisons are fair and unbiased since
all models have been compared on the same benchmark
datasets. The three stage pipeline of the model can be
summarized as follows: ExtraTrees classifier for feature
selection (for feature scores and ranking) for each type of
attack separately, ensemble of ELMs (for fast and accu-
rate training) where each ELM detects one type of attack
with its own feature set, and finally, the softmax layer
for combining and fine tuning the results (for dispens-
ing with ambiguity and increasing precision) for achieving
greater accuracy and generating a interpretable proba-
bilistic output. Our system attains accuracies of 98.24%
and 99.76% on the UNSW and KDDcup99 datasets,
respectively. Performance is increased even further by
using WELM in place of ELM for imbalance classifica-
tion, by incurring a small overhead. Also, the ELM that
distinguishes between normal traffic and potential attacks
enables the system to detect new attacks, but the sys-
tem cannot determine the new type of attack if it is not
trained on it.
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Fig. 5 Performance based on feature score threshold selection

Table 5 Proposed system based on WELM performance on the
UNSW dataset

Attacks Accuracy with ELM Accuracy with WELM

Normal 91.26 93.54

Generic 98.16 98.23

Exploits 89.13 90.12

Fuzzers 91.30 91.47

DoS 94.75 94.90

Reconnaissance 94.60 95.33

Analysis 98.96 99.26

Backdoor 99.11 99.11

Shellcode 99.40 99.40

Worms 99.92 99.92

Average 95.66 96.12

Softmax 98.24 98.69

Table 6 Proposed system based on WELM performance on the
KDDcup99 dataset

Attacks Accuracy with ELM Accuracy with WELM

Normal 100 100

DoS 100 100

Probe 99.25 99.25

R2L 98.50 99.33

U2R 100 100

Average 99.55 99.71

Softmax 99.76 99.83
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