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Abstract
We investigate existence, uniqueness and regularity for solutions of rough parabolic equa-
tions of the form ∂tu−Atu−f = (Ẋt (x)·∇+Ẏt (x))u on [0, T ]×Rd . To do so, we introduce
a concept of “differential rough driver”, which comes with a counterpart of the usual con-
trolled paths spaces in rough paths theory, built on the Sobolev spacesWk,p . We also define
a natural notion of geometricity in this context, and show how it relates to a product formula
for controlled paths. In the case of transport noise (i.e. when Y = 0), we use this frame-
work to prove an Itô Formula (in the sense of a chain rule) for Nemytskii operations of the
form u �→ F(u), where F is C2 and vanishes at the origin. Our method is based on energy
estimates, and a generalization of the Moser Iteration argument to prove boundedness of a
dense class of solutions of parabolic problems as above. In particular, we avoid the use of
flow transformations and work directly at the level of the original equation. We also show
the corresponding chain rule for F(u) = |u|p with p ≥ 2, but also when Y �= 0 and p ≥ 4.
As an application of these results, we prove existence and uniqueness of a suitable class of
Lp-solutions of parabolic equations with multiplicative noise. Another related development
is the homogeneous Dirichlet boundary problem on a smooth domain, for which a weak
maximum principle is shown under appropriate assumptions on the coefficients.
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1 Introduction

Motivations Consider a stochastic partial differential equation with multiplicative noise of
the form

dut −�utdt = ∂iutdXit (x)+ utdX0
t (x) , on (0, T ] × R

d (1.1)

where ∂i = ∂
∂xi
, T ∈ (0,∞) denotes a fixed time horizon, (Xi)i=0,...,d denotes some

Q-Wiener process (sufficiently smooth in x), and throughout the paper we use Ein-
stein’s summation convention over repeated indices. For now the product with the above
differentials is subject to different possible meanings (for instance Stratonovitch or Itô).

Equations such as (1.1) arise in a number of different stochastic models. To name a few,
this s filtering theory [34], McKean-Vlasov equations [41], or pathwise stochastic control
problems (see for instance [11, Example 2] and references therein). In the more general
context of a degenerate left hand side, this type of noise appears in stochastic transport
equations (with X0 = 0), where a regularization by noise phenomenon is observed [12, 22,
52, 54], or in stochastic conservation laws, see [33] for an overview. We also mention the
works [9, 15] where the authors solve an equation similar to (1.1), with the difference that
they consider a vector field Xit (x) which is rough with respect to the space-like variable.

The way (1.1) is usually dealt with is by definition of an appropriate functional setting,
in which standard Itô calculus tools can be used. We refer for instance to the classical works
of Pardoux, Krylov and Rozovskii [45, 56]. Although these approaches are quite sucessful,
it is well-known that the solution map X �→ u is not continuous in general. This constitutes
an important motivation for introducing a rough paths formulation of (1.1) (in particular
because the examples given above display a need for stability results, see [26]). Rough
parabolic differential equations such as (1.1) have been investigated in [10, 11, 24, 26]
where a viscosity formulation is proposed, based on ideas of Lions and Souganidis [48,
49]. Despite their success, these papers appeal to an extensive use of flow transformation
techniques, which has some conceptual disadvantages. In particular, they have to make the
assumption that the solutions are obtained as limits of approximations. To the best of our
knowledge, the Feynmann-Kac representation technique used in [17], constitutes the first
attempt to deal with (1.1) directly (there is also the semigroup approach of Gubinelli, Deya
and Tindel [18, 31], but their results do not seem to cover the case of a gradient noise as
above).

One of our main purposes in this paper is to pursue the variational approach initiated by
Deya, Gubinelli, Hofmanová and Tindel in [19], by defining, among other things, a suit-
able functional setting for generalized versions of (1.1). In this sense, we will particularly
emphasize the topological aspects associated with (1.1), for instance by introducing the con-
trolled paths spaces Dα,pB , as well as their parabolic counterpart H

α,p
B (see sections 3 and

4). Working with classical PDE techniques such as energy estimates and maximum princi-
ples, our contribution can be seen as an attempt to extend Krylov’s analytic approach [42] to
the RPDE context. One of the key concepts we will use here is that of an unbounded rough
driver, as introduced by Bailleul and Gubinelli in [4]. More specifically, we will introduce
a notion of differential rough driver, which is a particular case of the former (see Definition
2.1). We will also provide a natural, intrinsic notion of geometricity for differential rough
drivers. As shown in Lemma 2.1, geometric differential rough drivers display remarkable
algebraic properties. In particular, they are simultaneously symmetric, closed and renormal-
izable in the sense of [4, definitions 5.3, 5.4 & 5.7]. In contrast with the previous works
[19, 38, 39], we will be able to consider these objects “as such”, in the sense that we will
not refer to any (geometric) finite-dimensional rough path. This observation, which can be
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seen as one of our main contributions, allows us to gain generality in the statements and,
hopefully, to improve the clarity of the presentation.

The importance of geometricity and its relation to stochastic parabolicity In contrast
with the recent developments on rough parabolic equations [3, 30, 31, 35–37, 55] (for results
related to Itô Formula in this case, see [6, 60]), the noise term in (1.1) is not singular with
respect to the space-variable, so that in appearance (1.1) does not fall into the category of
“singular PDEs”. However, difficulties arise from the fact that for all times t the operation
u �→ Xt · ∇u is unbounded. A side effect of this property is that the low time-regularity
of solutions implies in turn low space-regularity, as can be seen by the scaling properties
of the equation. In the case of X = W being a Brownian motion and X0 = 0, it is easily
seen that for ε > 0 the transform (t, x)→ (ε2t, εx) leaves the equation invariant (using the
scaling properties ofW ). Leaving aside mathematical rigor, this type of invariance indicates
that (1.1) cannot be considered as a perturbation of a heat equation at small scales. In this
sense, the (1.1) is not really parabolic and the use of semigroups and variation of constants
formulae is inoperative (we nevertheless refer to the recent works [28, 29] in a similar but
“subcritical” context). The situation can go even worse ifX = WH is a fractional Brownian
motion with hurst index 1/3 < H < 1/2, a case that is covered by our results. In this

case, the transport term ∂t − ẆHt · ∇ dominates, even though the drift term has two spatial
derivatives. This might be a loose explanation why some of the arguments below seem to
have a transport flavour (the bounds (4.18) which are needed in the tensorization argument
of Section 4 can be understood as a “commutator lemma” à la Di Perna Lions [20]; see
Appendix A.2). As a matter of fact, the fractional Brownian case enters the category of
“supercritical” equations in the sense of [36, Section 8], and this is so regardless of the space
dimension d.

In this context, the assumption that X is geometric turns out to be essential. To illustrate
why, let us go back to the standard Brownian motion case, more precisely let d = 1, con-
sider Xt = bWt , b ∈ R being a constant, and for simplicity take X0 = 0. Assume for a
moment that (1.1) is understood in the sense of Itô, so that the corresponding rough path
formulation would violate geometricity. Computing formally the Itô Formula for the square
of the L2-norm of the solution, one sees that the correction term is given by

∫
Rd
b2(∂xu)

2,

which dangerously competes with the conservative term −2 ∫
Rd
(∂xu)

2 brought by the
Laplacian. In particular, the usual technique to obtain an a priori estimate for u fails unless
1/2b2 < 1, which is a condition known as strong parabolicity. This assumption is in
fact necessary to ensure well-posedness as can be seen by taking the spatial Fourier trans-
form in the equation (we refer the reader to [45, Section III.3]). If on the other hand (1.1)
is understood in the Stratonovitch sense, the latter problem disappears, and this is to be
related to the fact that a Stratonovitch equation satisfies a “standard” chain rule of the
form

d(F (u)) = F ′(u) ◦ du (1.2)

(meaning in particular that no correction term of the previous form appears). Besides
introducing a new functional framework for (1.1), our main objective in this paper is to
investigate the chain rule (1.2), which will be systematically addressed in the transport-noise
case, assuming “geometricity of the driving noise” (understood at the level of the differen-
tial rough driver, see Definition 2.2). In the stochastic setting, the geometricity assumption
essentially means that the iterated integrals which define the second level Lt of Xt should
be understood in the Stratonovitch sense. Nevertheless, we point out that (1.1) can always
be translated in terms of an equivalent Stratonovitch equation. If strong parabolicity is
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assumed, it is straightforward to check that the corrected equation has still the parabolic
form (1.3), and hence our main results still apply in this practical case.

Settings and summary of the results In this paper, we interpret (1.1) as the rough equation{
dut − (Atu+ ft (x))dt = dBt ut , on (0, T ] × R

d

u0 given in Lp(Rd) ,
(1.3)

where the unknown ut (x) is seen as a path with values in the Lebesgue space Lp(Rd), for
some p ∈ [1,∞]. Here

B = (B1, B2)

denotes some kind of two-step “enhancement” of the time-dependent family of differential
operators

Bt = B1
0t := Xit (x)∂i +X0

t (x) , t ∈ [0, T ], (1.4)

for (Xit (x))0≤i≤d sufficiently regular in space. From the point of view of the coefficient
path, it will be seen that (t �→ Xt(x)) must be accompanied with an additional object

L
i
st (x), i = 0, . . . d, 0 ≤ s ≤ t ≤ T , x ∈ R

d ,

akin to the usual Lévy area for two-step geometric rough paths with real-valued coordinates.
The knowledge of Li is necessary (and sufficient) to give a proper meaning for (1.3). As
will be seen in the manuscript, it is heuristically filling the gaps in order to make sense of
the (a priori ill-defined) iterated integral

B2
st =

∫∫
s<r1<r2<t

dBr2 ◦ dBr1

:= 1

2
XistX

j
st ∂ij + (List +XistX0

st )∂i + L
0
st +

1

2
(X0
st )

2 ,

for 0 ≤ s ≤ t ≤ T and x ∈ R
d ,

(1.5)

where ’◦’ denotes the composition of linear operators. In particular, there is a one-to-one
correspondence between B and the enhancement (X,L) of its coefficient path. Throughout
the paper, the pairX = (X,L) is therefore considered as part of the data, and so is B through
(1.5). For simplicity, the path X will be assumed to have bounded q-variation with q = 1

α

(including the α-Hölder case), for some α > 1/3. It will be sometimes more convenient to
rewrite (1.3) under the following form{

du− (Atu+ ft )dt = (dX · ∇ + dX0)ut on (0, T ] × R
d

u0 ∈ Lp ,
which has the advantage of being more explicit.

In keeping with Gubinelli’s approach [32], the integration map which is implicitly asso-
ciated with the right hand side of (1.3), only makes sense on a set of paths u : [0, T ] → Lp
that are controlled by B, a notion that will be introduced in Section 2.3. Concerning the left
hand side of (2.19), we will assume throughout the paper that At is a time-dependent family
of elliptic operators on divergence form

Atu(x) = ∂i(aij (t, x)∂ju(x)), (1.6)

whith coefficients aij being possibly discontinuous but bounded above and below (see
assumption 2.1). Correspondingly, the free term f will be an element of the Sobolev space
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L2(0, T ;H−1). Our first main achievement is to prove well-posedness for (1.3), for a class
of controlled paths u : [0, T ] → L2(Rd) having finite energy

sup
t∈[0,T ]

|ut |2L2 +
∫ T
0
|∇ut |2L2dt <∞ ,

in the case where B is geometric. This will be stated in Theorem 2.1, completing the results
of [38].

Next, we will address the problem of writing an Itô formula for solutions of (1.3), where
in addition of geometricity, we will assume that B is “transport-like”, that is:

X0 = 0 in (1.4). (1.7)

The problem of writing a chain rule for (1.3) arises in a very natural way when studying the
well-posedness of (1.1), as illustrated by the previous paragraph and the search for an energy
estimate (this corresponds to the choice F(z) = z2 in (1.2)). The justification of the chain
rule is also useful to establish comparison principles, where the corresponding choice of
function would be for instance F(z) = z±, or a suitable regularized version thereof. Under
the assumption (1.7), we will prove that a chain rule like (1.2) holds for any F ∈ C2(R,R)

with F(0) = F ′(0) = 0 and |F ′′|L∞ <∞. Concretely, we will see that

d(F (u))− F ′(u)(Atu+ f )dt = dX · ∇(F (u)) (1.8)

(see Theorem 2.2 for a precise statement). The formula (1.8) will be applied in particular to
obtain a weak maximum principle for an appropriate subclass of problems of the form (1.3),
as will be stated in Theorem 2.5. We insist on the fact that, because of the lack of space-
regularity of solutions, (1.8) is not a trivial statement. In particular, the solution u fails in
general to satisfy the hypotheses of [23, Proposition 7.6], see Remark 2.4. Note that in some
sense, (1.8) can be seen as a parabolic analogue to the renormalization property for transport
equations in Sobolev spaces [2, 16, 20]. Roughly speaking, renormalized solutions could be
defined as elements u of the controlled path space so that (1.8) holds for any F as above;
hence (1.8) shows that solutions of finite energy are renormalized. On the other hand, if u
is renormalized, taking F = (·)2 will show that u is itself an L2-solution, and hence (1.8)
can be understood as the statement that the two notions are equivalent.

Regarding applications, the chain rule for the Lp-norm of solutions u : [0, T ] → Lp

(that is (1.8) with F(z) = |z|p) is of particular interest for SPDE purposes. In the stochastic
setting, this echoes the works of Krylov and Kim for stochastic equations in Lp spaces [40,
43, 44], where the corresponding Itô Formula is an essential tool. In this paper, we will
investigate the analogue for rough paths, that is for every Lp-solution u of (1.3), and under
some mild assumptions on f and u0, we will see that

d|u|p − pu|u|p−2(Atu+ f )dt = (dX · ∇ + pX0)|u|p (1.9)

as long as p ≥ 4 (this can be relaxed to p ≥ 2 when X0 = 0). We note that, since F ′′
is not bounded, (1.9) is not a simple consequence of (1.8), even when the multiplicative
part is zero. Nevertheless, using rough paths stability results that come for free with our
formulation, it will be seen that (1.9) admits a relatively simple proof. In our way to prove
this formula, we shall also address existence and uniqueness for a suitable class of Lp-
solutions of parabolic equations with multiplicative noise.

Due to the relative length of this paper, and since this drastically complicates the algebra,
we chose to postpone the treatment of a more general Itô Formula (taking for instanceX0 �=
0 in (1.4), or even a non-geometric B) in a future work. Similarly, we could have considered
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an additional rough input of additive form. More general operators A (for instance adding a
perturbation bi(t, x)∂iu+ c(t, x)u with integrability conditions on b, c, see [38]) and more
general boundary problems, could also be investigated following the same ideas, but for the
sake of simplicity we restrain from doing so.

Organization of the paper Our main results concerning existence, uniqueness, stability
and the chain rule for (1.3), will be given in Section 2, where we also introduce notations
and definitions. In particular, we introduce an intrinsic formulation of (1.3), in the spirit
of [19]. We will complete our results by a criterion for boundedness of solutions, a chain
rule for the Lp-norm of solutions, and a weak maximum principle for the Dirichlet prob-
lem on a bounded domain. In Section 3 we state some facts that will be used throughout the
paper, such as the Sewing Lemma or the so-called “Rough Gronwall” argument (as stated in
[19]). The main novelty of this section is that we introduce a notion of controlled path space
Dα,pB , with respect to a differential rough driver B. We then state and re-prove the so-called
“remainder estimates” as given by Deya, Gubinelli, Hofmanová and Tindel in [19, Theorem
2.5]. We provide an alternative formulation of this result, which has the conceptual advan-
tage of being understood as an a priori estimate in Dα,pB (as in the usual finite-dimensional
controlled path picture). In Section 4, we define a suitable functional setting for rough
parabolic equations by introducing the parabolic spacesHα,pB . We will then state one of the
core arguments of this paper, which is the “product formula” (Proposition 4.1). By reiter-
ation of the product, we will obtain the chain rule on monomials of any bounded solution,
and on polynomials by linearity.

In Section 5, we use this result to solve a class of rough, non-degenerate parabolic equa-
tion with free terms in the space L2(H−1). This is done via energy estimates, and the use
of the Rough Gronwall Lemma. In Section 6 we show, using a Moser Iteration, that a “rel-
atively large” class of solutions to rough parabolic problems of the form (1.3) is made of
elements which are locally bounded. This observation, together with the fact that a chain
rule holds for polynomials of a bounded solution, will then allow us to prove the claimed
Itô formula in Section 7. The corresponding proof for the Lp-norm, as well as the solvabil-
ity for an appropriate class of Lp-solutions, will be dealt with at the end of Section 7. It
is based on a different argument using approximation and stability results for rough partial
differential equations.

Section 8 is devoted to the proof of Theorem 2.5. After proving the solvability of the
homogeneous Dirichlet problem on a smooth, bounded domain, we show, using our Itô
Formula, that the solutions satisfy a weak maximum principle.

In Appendix A, we shall give the proof of some technical facts verified by any geo-
metric differential rough driver, generalizing [19, Section 3.2]. Finally, Appendix B will
be devoted to a quick discussion on the uniqueness of the Gubinelli derivative, and on the
“non-commutative brackets” [B]st = B2

st − 1
2B

1
st ◦ B1

st .

2 Preliminaries andmain results

2.1 Notation

Throughout the paper, the notation K ⊂⊂ R
d stands for “K is a compact set in R

d”. The
symbol T > 0 refers to a finite, fixed time-horizon.

By N, we denote the set of natural integers 1, 2, . . . , and we let N0 := N ∪ {0}, while
Z := N0 ∪ (−N). Real numbers are denoted by R, and we let moreover R+ := [0,∞).
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Given Banach spaces X, Y, we will denote by L (X, Y ) the space of linear, continuous
maps from X to Y, endowed with the operator norm. For f in X∗ := L (X,R), we denote
the dual pairing by

X∗
〈
f, g

〉
X

(i.e. the evaluation of f at g ∈ X). When they are clear from the context, we will simply
omit the underlying spaces and write 〈f, g〉 instead.

Sobolev spaces and scales For an open smooth domain U ⊂ R
d , we will consider

the usual Lebesgue and Sobolev spaces in the space-like variable: Lp(U), Wk,p(U), for
(k, p) ∈ Z × (1,∞] or p = 1 and k ∈ N0, and we distinguish the case p = 2
by writing Hk(U) := W 2,k(U); the corresponding norms will be simply denoted by
| · |Lp(U), | · |Wk,p(U), | · |Hk(U). With the exception of Section 3.2, the notations Lp, Wk,p

and Hk refer to the whole space scenario U = R
d . These spaces have local (resp. weak)

analogues Lploc,W
k,p

loc , H
k
loc (resp. Lpw,W

k,p
w , H

k
w) which are defined as usual. When k is

negative, we adopt the convention thatWk,1 is the range of the linear operator

(fγ ) ∈ Lp(Rd ;R∑
|γ |≤−k |γ |) �→ (∂γ fγ )|γ |≤−k

where |γ | := γ1 + · · · + γd, and the derivatives are understood in distributional sense.
Correspondingly, the norm of f ∈ Wk,1 is defined as the infimum of the L1-norms of any
possible antiderivative fγ of f . Note that with this convention, Wk,1 identifies only with a
proper subspace of the dual (W |k|,∞0 )∗, however this is coherent with the case p > 1 (see
for instance [8]). If U ⊂ R

d is a domain whose boundary is smooth and if p ∈ [1,∞], we
define the spacesWk,p0 as

W
k,p

0 (U) :=
{
f ∈ Wk,p s.t. (ν · ∇)j f = 0 for j ∈ N0, j < k − 1/p

}
.

where ν denotes the outward unit vector associated to ∂U .
In the sequel, we call a scale any graded family of topological vector spaces of the form

(Ek, | · |k)k∈I with I ⊂ Z such that Ek is continuously embedded into Ek−1, for each
k ∈ I . Note that, in the paper the set I := {−3,−2,−1, 0, 1, 2, 3} will be sufficient for our
purposes.

For 0 ≤ s ≤ t ≤ T and f = fr(x) we use the notation

‖f ‖Lr (s,t;Lq) :=
(∫ t
s

(∫
Rd

|fτ (x)|qdx
)r/q

dτ

)1/r

,

and for simplicity we will sometimes write ‖f ‖Lr(Lq) as a shorthand for ‖f ‖Lr(0,T ;Lq).
Furthermore, the space of continuous functions with values in a Fréchet space E will be
denoted by C(0, T ;E). It is itself a Fréchet space, equipped with the family of semi-norms
‖f ‖C(0,T ;E),γ := supr∈I γ (fr), for any semi-norm γ of E.

Controls and p-variation spaces We will denote by �,�2 the simplices

� := {(s, t) ∈ [0, T ]2 , s ≤ t} ,
�2 := {(s, θ, t) ∈ [0, T ]3 , s ≤ θ ≤ t} .

(2.1)

If E is a vector space and g : [0, T ] → E, we define a two-parameter element δg as

δgst := gt − gs, for (s, t) ∈ �.
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Similarly, we define another operation δ̃ by letting, for any g : �→ E, δ̃g be the quantity
δ̃gsθt := gst − gsθ − gθt , for (s, θ, t) ∈ �2,

and we recall that Kerδ̃ = Imδ. As usual in the framework of controlled paths, we will omit
the symbol ˜ on the second operation, and write δ instead of δ̃.

We call control on [0, T ] any continuous, superadditive map ω : �→ R+, namely ω is
such that for all (s, θ, t) ∈ �2

ω(s, θ)+ ω(θ, t) ≤ ω(s, t) (2.2)

(this implies in particular that ω(t, t) = 0 for any t ∈ [0, T ]).
If E is equipped with a family of semi-norms, and α > 0, we denote by Vα1 (0, T ;E)

the set of continuous paths g : [0, T ] → E, such that for each semi-norm γ , there exist a
control ωγ : �→ R+ with

γ
(
δgst

) ≤ ωγ (s, t)α , (2.3)

for every (s, t) ∈ �. Similarly, we denote by Vα2 (0, T ;E) the set of 2-index maps g : �→
E such that gtt = 0 for every t ∈ [0, T ] and

γ
(
gst

) ≤ ωγ (s, t)α , (2.4)

for all (s, t) ∈ �, and some family of controls ωγ . If E is a Banach space and γ = | · |E ,
one defines a norm �·�Vα2 on Vα2 (0, T ;E) by taking the infimum of ω(0, T )α over every
possible control ω such that (2.4) holds. This quantity is in fact equal to the usual q-variation
norm where q := 1

α
, as seen for instance in [38, Lemma 3.2].

By Vα2,loc(0, T ;E) we denote the space of maps g : � → E such that there exists a
countable covering {Ik}k of I satisfying g ∈ Vα2 (Ik;E) for any k. We also define the set
V1+
2 (0, T ;E) of “negligible remainders” as

V1+
2 (0, T ;E) :=

⋃
α>1

Vα2 (0, T ;E),

and similarly for V1+
2,loc(0, T ;E).

2.2 Rough drivers

Before giving definitions, let us quickly explain our approach. For simplicity, let A = 0,
assume that f is smooth and consider a family Bt := (Xt (x) · ∇ + X0

t (x)) of first-order
differential operators, where for each i = 0 . . . d, Xit (x) is smooth with respect to x (for
fixed t), and α-Hölder in t for each x, while α > 1/3. Integrating formally (1.3) in time, we
have

ut − us −
∫ t
s

frdr = (Bt − Bs)us +
∫ t
s

dBr(ur − us)

= δBstus +
∫∫
s<r1<r<t

dBr [dBr1ur1 + dr1fr1 ] .

= B1
st us +

(∫∫
s<r1<r<t

dBr ◦ dBr1
)
us

+
(∫∫

s<r1<r<t

dBr ◦ dBr1
)
[ur1 − us] + o(t − s) .
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An Itô Formula for rough partial differential equations and some...

One expects any “reasonable” solution to satisfy an estimate of the form |ut − us |W−1,p �
(t − s)α , so that in particular∣∣∣( ∫∫

s<r1<r<t

dBr ◦ dBr1
)
(ur1 − us)

∣∣∣
W−3,p

� (t − s)3α = o(t − s) .

Combined with the above, we thus find the Euler-Taylor type expansion

u
�
st := δust −

∫ t
s

frdr −
(
B1
st + B2

st

)
us ∈ o(t − s), (2.5)

where we introduce the two-index map B = (B1, B2) defined as⎧⎪⎨⎪⎩
B1
st := Bt − Bs,
B2
st :=

∫∫
s<r1<r<t

dBr ◦ dBr1 ,
0 ≤ s ≤ t ≤ T . (2.6)

When α > 1/2, the operators B2
st are canonically defined via an immediate non-

commutative generalization of Young Theorem [59]. This is in contrast with the case
α ≤ 1/2, where (2.6) does not make sense in general. Indeed, while the definition of
B1
st seems not problematic for B continuous (just let B1

st := δBst ), this is not the case
of the second component in general. If B(n) → B uniformly on [0, T ], a limit point
of {∫∫

s<r1<r2<t
dBr2(n) ◦ dBr1(n), n ∈ N}, if it exists, will depend on the choice of the

approximating sequence. On the other hand, any limit ought to satisfy the constraint

B2
st − B2

sθ − B2
θt = B1

θt ◦ B1
sθ , for any 0 ≤ s ≤ θ ≤ t ≤ T , (2.7)

which reflects the linearity of the integral, and its additivity with respect to the domain of
integration. An essential insight of rough paths theory is that, assuming thatB2

st is given with
(2.14) together with suitable analytic conditions, then one can simply define the solution
u to (1.3) by the Euler-Taylor expansion (2.5). Following Davie’s interpretation of rough
differential equations [14], we will therefore say that u is a solution to (2.19) if (2.5) holds.
The fact that such expansion is sufficient to fully caracterize the solution u is not obvious,
and is in fact a consequence of the so-called “Sewing Lemma”, which for convenience will
be stated in Proposition 3.1.

The previous discussion depicts a non-commutative generalization of the usual rough
paths theory, which has been already discussed e.g. in [4, 5, 13, 21]. In this picture, real
numbers – in which the coordinates of a path Z : [0, T ] → R

m live – are substituted by
elements of an algebra (here a space of differential operators), and the constraint (2.7) corre-
sponds to Chen’s relations. What plays here the role of the driving rough path for controlled
differential equations is the pair B = (B1, B2). It is called an unbounded rough driver
(URD), and was first considered by Bailleul and Gubinelli [4] (see also [19, 38, 39]). In
the present work, we chose to restrict our attention to a subclass of URDs that are given
by differential operators. Such objects will be referred to as differential URDs (or simply
“differential rough drivers”). In the sequel we will denote by Di , i = 1, 2, the space of
differential operators of order i, that is:⎡⎢⎢⎢⎢⎣

D1 :=
{
Xi(x)∂i + Y (x), such that (X, Y ) ∈ W 3,∞ ×W 2,∞}

,

D2 :=
{
X
ij (x)∂ij + Y

i (x)∂i + Z(x),

such that (X,Y,Z) ∈ W 3,∞ ×W 2,∞ ×W 1,∞}
.

(2.8)
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The space-regularity of the above coefficients is precisely enough to make sense of (1.3) and
obtain energy estimates for it. It is indeed easily seen that the composition of two elements
of D1 is an element of D2, while we also have the property that

Di ⊂
3⋂

k=−3+i
L (Wk,p,Wk−i,p) for i = 1, 2 and p ∈ [1,∞] .

These properties which will be extensively used in the sequel.
We have the following definition.

Definition 2.1 (unbounded rough driver) Let α > 1/3.
A 2-index family Bst ≡ (B1

st , B
2
st )(s,t)∈� of linear operators in L2(Rd) is called a Vα-

unbounded rough driver if and only if:

(URD1) Bi takes values in ∩3k=−3+iL (Hk,Hk−i ) for i = 1, 2, and there exists a control
ωB : �→ R+ such that

|Bist |L (Hk,Hk−i ) ≤ ωB(s, t)iα , (2.9)

for every (s, t) ∈ �, any i ∈ {1, 2} and k = −3+ i, . . . , 3.
(URD2) Chen’s relations hold true, namely, for every (s, θ, t) ∈ �2, we have in the sense

of linear operators:

δB1
sθt = 0 , δB2

sθt = B1
θt ◦ B1

sθ . (2.10)

Moreover, we will say that

(URD) B is differential if B is an unbounded rough driver such that

Bist ∈ Di , for i = 1, 2 and (s, t) ∈ �.
Finally, let (Ek)k∈I be a scale such that there exists p ∈ [1,∞]with the property
that Ek ↪→ Wk,p for each k ∈ I .We will say that

(URD) B acts on the scale (Ek)−3≤k≤3 if

BistEk ⊂ Ek−i , −3 ≤ k − i ≤ k ≤ 3, (s, t) ∈ �,
and if the estimate (2.9) is satisfied with (Hk) being replaced by (Ek).

Remark 2.1 Regarding the definition of Di for i = 1, 2, any differential, unbounded rough
driver can in fact be extended to a family of differential operators acting on the Sobolev
scale (Wk,p)−3≤k≤3, for each p ∈ [1,∞]. For simplicity, in the following we will use the
same symbol B for every such extension.

Note that, if B : [0, T ] → D1 is a continuous path with finite variation (with respect to
the operator-norm of ∩3k=−2L (Hk,Hk−1)), one can always define the canonical lift S2(B)
as the differential rough driver B ≡ (B1, B2) given by

S2(B) := B with

⎧⎪⎨⎪⎩
B1
st := Bt − Bs ∈ D1 and

B2
st :=

∫ t
s

dBr ◦ (Br − Bs) ∈ D2 .
(2.11)

The above integral is well-defined in the sense of Riemann-Stieltjes, in the space D2
endowed with the natural operator-norm topology.

This basic observation leads us to the following definition.
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Definition 2.2 (Geometric differential rough driver) Let p ∈ [1,∞]. Given a differential
rough driver B with regularity α > 1/3, we will say that B is geometric if there exists a
sequence of paths B(n) ∈ C1(0, T ;D1), n ≥ 0, such that letting

B(n) := S2(B(n)) ,
it holds

ρα(B(n),B) :=
∑3

k=−2 ‖B(n)− B‖L∞(0,T ;L (Hk,Hk−1))
+

∑2

i=1
∑3

k=−3+i�B
i(n)− Bi�V iα(0,T ;L (Hk,Hk−i )) −→

n→∞ 0. (2.12)

Example 2.1 Recall that a continuous, m-dimensional, q-rough path with q = 1
α
, is a pair

Z ≡ (Z1,μst , Z2,μνst )1≤μ,ν≤m
(s,t)∈�

in Vα2 (0, T ;Rm)× V2α
2 (0, T ;Rm×m), (2.13)

such that Chen’s relations hold, namely:

δZ
1,μ
sθt = 0 , δZ2,μνsθt = Z1,μsθ Z1,νθt , for (s, θ, t) ∈ �2 , 1 ≤ μ, ν ≤ m. (2.14)

Roughy speaking, the relations (2.14) indicate that Z1,μst has the form Zμt − Zμs ≡
∫ t
s
dZμr

for some path Z : [0, T ] → R
m while Z2,μνst should be thought of as a prescribed value for∫∫

s<r2<r1<t
dZνr1dZ

μ
r2 . If Z is smooth, we can define a canonical lift Z via (2.11), replacing

the operation ◦ by the tensor product. By definition, the set of geometric rough paths corre-
sponds to the closure of such canonical lifts, with respect to the natural q-variation metric.
We refer the reader to the monographs [23, 27, 51] for a thorough introduction to geometric
rough paths.

Now, consider a rough path Z, and let σ ∈ W 3,∞(Rd ;Rm×d), ρ ∈ W 2,∞(Rd ,Rm), and
for (s, t) ∈ �, i = 1, 2, define B ≡ (B1, B2) as:⎧⎨⎩B

1
st := Z1,μst (σμj ∂j + ρμ),
B2
st := Z2,μνst (σ

μ
j ∂j + ρμ)(σ νi ∂i + ρν),

for every (s, t) ∈ �. It is straighforward to check that B satisfies (URD1)-(URD2). Hence
it is a differential rough driver. Moreover, it is geometric if Z is geometric.

Given B ∈ Vα(0, T ;D1), by definition of D1 it is always possible to write Bt in terms
of some family of bounded and measurable coefficients Xit (x), i = 0, . . . d so that

Bt := Xit (x)∂i +X0
t (x) . (2.15)

In Appendix A.1, we shall see that there is a one-to-one correspondence between coef-
ficients and elements of D1, and that it yields a continuous isomorphism, see (A.1). In
particular, we can assume without any loss of generality that Xi ∈ Vα(0, T ;W 3,∞), i =
1, . . . , d, while X0 ∈ Vα(0, T ;W 2,∞). For notational convenience, in the remainder of
the paper we shall assume that B has the form (2.15) . Moreover, we will make use of the
shorthand notation

Xst := Xt −Xs ,
hence blurring the difference between the value Xt(x) of the coefficient path associated
with Bt and that of its increments δXst (x).

It turns out that, for geometric differential rough drivers, there is an ensemble of very
convenient algebraic rules, as illustrated in the following result. We insist on the fact that

341



A. Hocquet, T. Nilssen

these rules are a consequence of the geometricity assumption: no further assumption is
required on B. The proof of the following lemma is rather simple and merely algebraic,
hence we postpone it until Appendix A.1.

Lemma 2.1 Let B be a geometric differential rough driver such that B1
st = δBst where Bt

is as before. The following assertions are true:

(1) (Weak geometricity I) There exist coefficients Li ∈ V2α
2 (W

2,∞), i = 0, . . . d such that

B2
st =

1

2
XistX

j
st ∂ij +

(
L
i
st +X0

stX
i
st

)
∂i + L

0
st +

1

2
(X0
st )

2 . (2.16)

(2) (Generalized Chen’s relations) For each (s, θ, t) ∈ �2, a.e. in R
d , it holds

δLisθt = Xjθt ∂j (Xisθ ) , i = 0, . . . d . (2.17)

(3) (Weak geometricity II) We have

B2
st =

1

2
B1
st ◦ B1

st + [B]st
where the “bracket” [B] is a family of first-order differential operators, explicitly given
by:

[B]st :=
(
L
i
st −

1

2
X
j
st ∂jX

i
st

)
∂i + L

0
st −

1

2
X
j
st ∂jX

0
st .

Notation 2.1 For convenience, we will summarize the above properties by using the
shorthand notation

B ∼ X = (Xi,Li )i=0,...,d . (2.18)

Remark 2.2 If (t �→ Xt ∈ W 3,∞) has finite variation, L is explicitly given as

L
i
st :=

∫ t
s

dXr · ∇(Xisr ), i = 0, . . . d .

Roughly speaking, L can be thought of as a differential rough driver analogue of the usual
Lévy area for rough paths, in the sense that the knowledge of L is enough to compute the
second level B2 of B, as is the case for a geometric rough path (see [27, Definition 13.2]).

In fact, if B is the pair defined in Example 2.1 with Z geometric and ρ = 0, a routine
calculation shows the identity

Lst · ∇ = 1

2
Z
μ
stZ
ν
st (σ

μ · ∇σν) · ∇ + 1

2
A
μν
st [σμ · ∇, σ ν · ∇]

where we denote by σμ · ∇ := σμi∂i, while Ast is the Lévy area of Z, and [·, ·] denotes the
usual Lie bracket of vector fields.

Remark 2.3 As for the usual geometric rough paths, the question may arise whether the
algebraic constraints (2.1) and (2.1) imply the geometricity of B (see [27, Chapter 9]). We
conjecture that, upon taking α slighlty smaller, and under “reasonable” conditions on the
regularity of the coefficients, the answer should be positive. However, we prefer to leave
this issue for future investigations.
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2.3 Notions of solution

In the whole paper, we consider an ansatz of the form

dv = (∂if i + f 0)dt + dBg, on [0, T ] × R
d ,

v0 = v0 ∈ Lp ,
(2.19)

with B ∼ (Xi,Li )i=0,...,d being geometric. The drift term f i, i = 0, . . . d is p-integrable
as a mapping from [0, T ] into Lp for some p ∈ [1,∞), and the derivation ∂i = ∂

∂xi
is

understood in distribution sense. By assumption, g will be controlled by Bt , and so the
solution v should be. This means the following.

Definition 2.3 Given g ∈ L∞(0, T ;Lp)∩Vα(0, T ;W−1,p) we will say that g is controlled
by B, if there exists g′ ∈ L∞(0, T ;Lp) ∩ Vα(0, T ;W−1,p) such that the element Rg of
Vα2 (0, T ;W−1,p) defined as

R
g
st := δgst − B1

st g
′
s , for every (s, t) ∈ �, (2.20)

verifies
‖Rg‖V2α

2 (0,T ;W−2,p) <∞ (2.21)

(notice the loss of a space-derivative in the above). Abusively, we call g′ “the Gubinelli
derivative” of g, though g′ could be non-unique in principle (at least without any further
assumption on B, see Section B.1).

That the unknown v should be controlled by B implies in particular boundedness for the
path v : [0, T ] → Lp and also weak-star continuity (hence allowing to give a meaning to
the initial condition). In a large part of the sequel we will encounter the situation where
v = g = g′ but this fact is not needed in the definition of a solution, so we will keep things
on the more general form (2.19) for the moment.

The following notion of solution was introduced in [4], see also [19].

Definition 2.4 (weak-solution) Let T > 0, α ∈ (1/3, 1/2] and fix p ∈ [1,∞]. Assume that
we are given f i ∈ L1(0, T ;Lp), i = 0, . . . d, and that g is controlled by B with Gubinelli
derivative g′, with g, g′ both belonging to L∞(0, T ;Lp). A mapping v : [0, T ] → Lp is
called an Lp-weak solution to the rough PDE (2.19) if it fulfills the following conditions

(1) v : [0, T ] → Lp is bounded as a path taking values in Lp; moreover, v belongs to
Vα(0, T ;W−1,p);

(2) for every φ ∈ Lp′ with 1/p + 1/p′ = 1, limt→0
∫
Rd
(vt − v0)φdx = 0;

(3) for every φ ∈ W 2,p′ with 1/p + 1/p′ = 1, and every (s, t) ∈ � :∫
Rd

δvstφdx =
∫∫
[s,t]×Rd

(−f i∂iφ + f 0φ)dxdr

+
∫
Rd

(
gsB

1,∗
st φ + g′sB2,∗

st φ
)
dx + 〈v�st , φ〉 , (2.22)

for some v� ∈ V1+
2,loc(0, T ;W−3,p).

The notion of weak solution fulfills the minimal requirements under which remainder
estimates (and thus estimates on rough integrals) can be obtained, see Proposition 3.3. In
the sequel however, we will mostly work in a parabolic context, where solutions happen to

343



A. Hocquet, T. Nilssen

live in a “better space” than the one described above. This motivates the introduction of the
following.

Definition 2.5 (Energy solution) Letting p, p′ ∈ [1,∞] so that 1/p + 1/p′ = 1, we will
say that v is an Lp-energy solution of (2.19) if it is a weak solution such that additionally

v ∈ Lp(0, T ;W 1,p). (2.23)

Similarly, we will say that v is a Lploc-energy solution (or Lp(U)-energy solution if U ⊂
R
d ) if it fulfills the above properties, where each occurence of the Sobolev spaces in the

space-like variable is replaced by its local counterpart.

2.4 Rough parabolic equations

In this section, we consider the rough parabolic equation⎧⎨⎩ dut − (Atu+ ft (x))dt =
(
dXit ∂i + dX0

t

)
ut , on (0, T ] × R

d ,

u0 = u0 ∈ Lp(Rd) ,
(2.24)

where
At = ∂i(aij (t, ·)∂j · ) (2.25)

is given, and we assume the following on a.

Assumption 2.1 The coefficients a = (aij )1≤i,j≤d are measurable, symmetric in i and j
and moreover there exists a constant λ > 0 such that for a.e. (t, x) ∈ [0, T ] × R

d :
λ
∑d

i=1 ξ
2
i ≤

∑
1≤i,j≤d a

ij (t, x)ξiξj ≤ λ−1
∑d

i=1 ξ
2
i , for all ξ ∈ R

d . (2.26)

Concerning the rough part, the following hypotheses will be assumed throughout the
paper.

Assumption 2.2 For some fixed α > 1/3, we are given a coefficient path(
t �→ (Xit )i=0,...,d

) ∈ Vα
(
0, T ;W 2,∞ × (W 3,∞)d

)
,

while (t �→ X0) ∈ Vα(0, T ;W 2,∞). These coefficients are given together with a two
parameter family(

(s, t) �→ (List )i=0,...,d )
) ∈ V2α

2

(
0, T ;W 1,∞ × (W 2,∞)d

)
which satisfies the generalized Chen’s relation

δLisθt = Xjθt ∂j (Xisθ )
for each 0 ≤ s ≤ θ ≤ t ≤ T and i = 0, . . . , d .

We then let Bt := Xt · ∇ +X0
t and define a differential rough driver B ∼ X = (X,L) as

in Lemma 2.1. Hence, it corresponds to the pair (B1, B2) where⎡⎣B1
st = Bt − Bs = Xist ∂i +X0

st ,

B2
st =

1

2
XistX

j
st ∂ij + (List +X0

stX
i
st )∂i + L

0
st +

1

2
(X0
st )

2 (s, t) ∈ �,
where we recall that Xst := Xt −Xs .

Furthermore, we assume that B is geometric, in the sense of Definition 2.2.
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Our first result is about the solvability of (2.24), and completes the results obtained in
the previous work [38]. The proof will be given in Section 5.

Theorem 2.1 Let f ∈ L2(0, T ;H−1), fix u0 ∈ L2 and consider a geometric, differential
rough driver B ∼ (Xi,Li )i=0,...,d as in Assumption 2.2. There exists a unique L2-energy
solution u = u(u0, f ;B) to (2.24).

In addition, the solution map is continuous in the following sense

(1) for every (u0, f ) ∈ L2 × L2(H−1), the map B �→ u(u0, f ;B) ∈ L∞(L2) ∩ L2(H 1)

is weakly-star continuous with respect to the rough driver distance ρα introduced in
(2.12).

(2) for B fixed the map u(·, ·;B) : L2 × L2(H−1) → L∞(L2) ∩ L2(H 1) is continuous,
with respect to the strong topologies.

Before we state our second main result, we shall first define a set of admissible functions
F : R→ R for which right-composition with a solution is possible. We let

C2
adm := {F ∈ C2(R;R), s.t. F(0) = F ′(0) = 0 and |F ′′|L∞ <∞}. (2.27)

With this definition, we have the following result.

Theorem 2.2 (Itô Formula) Let A satisfying Assumption 2.1, let B ∼ (X,L) such that
Assumption 2.2 holds with X0 = 0. Let u be an L2-energy solution of (2.24). The following
assertions are true.

(i) For every F ∈ C2
adm it holds the chain rule

dF(u) = F ′(u)(Au+ f )dt + dB[F(u)], (2.28)

in the sense that the path [0, T ] → L1, t �→ F(ut ) is controlled by B with Gubinelli
derivative (F (ut ))′ = F(ut ) and is anL1-energy solution to the above equation. More
explicitly, we have for any φ ∈ W 3,∞ and 0 ≤ s ≤ t ≤ T :∫

Rd

δF (u)stφdx +
∫∫
[s,t]×Rd

[F ′′(u)aij ∂iu∂juφ + F ′(u)aij ∂iu∂jφ]dxdr

=
∫
Rd

F (us)(B
2,∗
st + B2,∗

st )φdx + 〈F�st , φ〉 (2.29)

for a uniquely determined remainder term F� ∈ V1+
2,loc(0, T ;W−3,1).

(ii) If F ∈ C2, then (2.28) holds locally. Namely, t �→ F(ut ) is controlled by B
in the L1loc-sense while (2.29) is true for any φ ∈ W 2,∞

loc and a remainder F� in

V1+
2,loc(0, T ;W−3,1loc ).

Remark 2.4 The formula (2.28) is by no means trivial, no matter how smooth F : R→ R

is as a function. In fact, the rough integral∫ t
s

DF(ur)[dur ] (2.30)

is not even well-defined a priori for an L2-energy solution u of (2.24), and this is so
regardless of the regularity of F .

To wit, note that the expression (2.30) implicitly assumes that u : [0, T ] → L2 is
enhanced to a rough path u = (u1, u2). In particular, one aims to find a topological vector
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spaceK such that L2 is continuously embedded inK and such that ui : [0, T ]2 → K⊗i , for
i = 1, 2. Leaving aside the question of the choice of tensor product for K⊗2 (and whether
a sense can be given to the rough integral u2st≡

∫ t
s
δusr ⊗ dur in K⊗2), we see that K must

be chosen such that

u1 ≡ δu ∈ Vα2 (0, T ;K) . (2.31)

For an L2-energy solution u, we only expect that δu ∈ Vα2 (0, T ;H−1) (see Section 3), and
hence the condition (2.31) imposes that H−1 ↪→ K . In particular, this requires that the
nonlinear operator

F̄ : H−1 → L1, u �→ F̄ (u) := F(u(·))
be of class C1, which is cleary not the case of any smooth function F .

A core argument in the proof of Theorem 2.2 is the fact that for an appropriate subclass
of free terms f, the solutions of (2.24) are bounded. This is stated in the following result.

Theorem 2.3 Let
f ∈ Lr(0, T ;Lq) ,

where the exponents r ∈ (1,∞] and q ∈ (1 ∨ d2 ,∞) are subject to the conditions

1

r
+ d

2q
< 1. (2.32)

Then, the solution u obtained from Theorem 2.1 is locally bounded, away from t = 0.
Precisely, for any τ > 0, and any compact set K ⊂⊂ R

d , it holds the estimate

‖u‖L∞([τ,T ]×K) ≤ C
(
τ,K, |u0|L2 , λ, ‖f ‖Lr (Lq), ωB, α, r, q

)
,

where the above constant only depends on the indicated quantities.

Note that the chain rule given in Theorem 2.2 does not apply directly for the Lp-norm
case since F = | · |p is not admissible. Fortunately, we can show the following.

Corollary 2.1 Let p ≥ 2, B ∼ X = (X,L) be as in Theorem 2.2, and take f ∈
Lp(0, T ;W−1,p). Assume that u is an Lp-energy solution of (2.24).

Then, |u|p is an L1-energy solution of

d(|u|p) = pu|u|p−2(Au+ f )dt + dX · ∇(|u|p). (2.33)

In general, when B is geometric and such that X0 �= 0, we can write a similar chain rule
for the Lp-norm of u, assuming that p ≥ 4. This is stated in the next result.

Theorem 2.4 Fix p ≥ 4, and assume that B ∼ (X,L) satisfies Assumption 2.2. For every
f ∈ L1(0, T ;W−1,p) ∩ L2(0, T ;H−1) and u0 ∈ Lp, there exists a unique L2-energy
solution u to (2.24) such that

∫∫
[0,T ]×Rd |u|p−2|∇u|2dxdt <∞.

Moreover, it holds in the L1-sense:

d(|u|p) = pu|u|p−2(Au+ f )dt + dB(p)(|u|p). (2.34)

where B(p) is given by⎧⎪⎨⎪⎩
B
(p),1
st := Xist ∂i + pX0

st

B
(p),2
st := 1

2
XistX

j
st ∂ij + (List + pX0

stX
i
st )∂i + pL0

st +
p2

2
(X0
st )

2.
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Remark 2.5 The previous theorem implies in particular that Lp-energy solutions are
unique, since in that case, Hölder Inequality yields

‖|u|p−2|∇u|2‖L1(0,T ;L1) ≤
(

sup
t∈[0,T ]

|ut |p−2Lp
)∫ T

0
|∇ut |2Lpdt ,

and the above right hand side is finite by assumption. However the existence of Lp-energy
solutions is not guaranteed without any additional assumption.

We now give a by-product of our results concerning the following homogeneous
Dirichlet problem with transport noise⎧⎪⎨⎪⎩

dut − Atudt = dZμt σ
μ(x) · ∇ut , on R+ ×D ,

u(0) = u0 ,
ut |∂D = 0 (trace sense), for all t ≥ 0 ,

(2.35)

where Zμσμ is given the enhancement of Example 2.1 with ρ = 0 and where Z is geomet-
ric. Moreover, we assume that the coefficients σμ,μ = 1, . . . , d, have compact support in
D. With this assumption, it is easily seen that B acts on the scales (Wk,p0 (D))−3≤k≤3 for
any p ∈ [1,∞], in the sense of Definition 2.1-(URD).

We have the following result.

Theorem 2.5 (weak maximum principle for (2.35)) Assume that D ⊂ R
d is an open

domain which is smooth and bounded. Let A be as in Assumption 2.1 and define Zσ · ∇ as
above. Assume furthermore that

σ ∈ W 3,∞
0 (D;Rm×d). (2.36)

There exists a unique solution u of the Dirichlet problem (2.35), by which we mean that u is
an L2(D)-energy solution with the following additional property

u ∈ L2(0, T ;W 1,2
0 (D)). (2.37)

Moreover, u belongs to ∈ L∞([0, T ] × D) and we have the following maximum principle
for u:

min (0, ess infD u0) ≤ u(t, x) ≤ max
(
0, ess supD u0

)
a.e. for (t, x) ∈ [0, T ] ×D.

(2.38)

3 Controlled paths

3.1 Some useful facts

For pedagogical purposes, we first recall some elements of Rough Path Theory from the
point of view adopted in [32]. The main problem addressed by this theory is, roughly
speaking, to give a meaning to incremental equations of the form

ut − us =
∫ t
s

H, for (s, t) ∈ �, (u0 given), (3.1)

where � � (s, t) �→ Hst is a “jet” associated to the quantity one wishes to integrate. A
concrete example is given by the Riemmann-Stieljes integral

∫ t
s
H≡ ∫ t

s
frdZr where f and
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Z are α-Hölder with α > 1/2, an associated first order approximation of which is provided
by the jet

Hst := fsδZst . (3.2)
The value of

∫ t
s
f dZ is obtained by taking the limit of the Riemann sums

∑n
i=1Hti ti+1 as

n → ∞ and max |ti+1 − ti | → 0. Suppose now that the integrand f is itself expressed as
an integral against Z, say δfst :=

∫ t
s
gdZ for some g ∈ C1. Then, a better approximation of

the former integral is given by the Milstein-type jet

H̃st := fsδZst + gs
∫ t
s

δZsrdZr, (3.3)

as easily seen by Taylor formula. When α ≤ 1/2, the first choice (3.2) may generate diver-
gent Riemann sums, which leads us to investigate generalizations of (3.3). If Z is endowed
with an enhancement to a rough path Z ≡ (Z1, Z2), and if we replace the iterated integral
in (3.3) by its postulated value Z2st , the expression (3.3) is still meaningful.

The so-called Sewing Lemma [32] asserts that if α > 1/3, then there is a unique couple
(u, u�) such that ut − us = H̃st + u�st and

|u�st | � (t − s)3α[δH̃ ]3α , (3.4)

where [δH̃ ]3α is the generalized 3α-Hölder seminorm of the 3-parameter quantity

δH̃sθt ≡ H̃st − H̃sθ − H̃θt , (s, θ, t) ∈ �2 .

The quantity
∫ t
s
H := Hst + u�st is called the rough integral of H, and it is consistent with

usual Riemann-Stieljes integration when Hst = fsδZst .
The following result, which is of fundamental importance in this paper, summarizes what

we discussed above. In the statement below, we assume for simplicity that E is a Banach
space, but it could easily be replaced by a Fréchet space (e.g. the Sobolev spaces Wk,ploc , or
the Schwartz distributions), with ω being dependent on the semi-norm considered.

Proposition 3.1 (Sewing Lemma) Let H : �→ E and C > 0 be such that

|δHsθt | ≤ Cω(s, t)a , 0 ≤ s ≤ θ ≤ t ≤ T (3.5)

for some a > 1, and some control function ω, and denote by [δH ]a,ω the smallest possible
constant C in the above bound.

There exists a unique pair I : [0, T ] → E and I � : �→ E satisfying

δIst = Hst + I �st
where for 0 ≤ s ≤ t ≤ T ,

|I �st | ≤ Ca[δH ]a,ωω(s, t)a ,
for some constantCa only depending on a. In fact, I is defined via the Riemann type integral
approximation

It = lim
n∑
i=1
Htni t

n
i+1 , (3.6)

the above limit being taken along any sequence of partitions {tn, n ≥ 0} of [0, t] whose
mesh-size converges to 0.

Besides rough integration, one of the main tools that we shall use in the sequel is a
Gronwall-type argument which is well-adapted to incremental equations of the form (3.1),
but in a more general, q-variation context. We will extensively make use of the following
version of this result, whose proof is due to [19].
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Lemma 3.1 (Rough Gronwall) Let G : [0, T ] → R+ be a path such that there exist
constants κ, L > 0, a control ω, and a superadditive map ϕ with:

δGst ≤
(

sup
s≤r≤t

Gr

)
ω(s, t)κ + ϕ(s, t), (3.7)

for every (s, t) ∈ � under the smallness condition ω(s, t) ≤ L.
Then, there exists a constant τκ,L > 0 such that

sup
0≤t≤T

Gt ≤ exp

(
ω(0, T )

τκ,L

)[
G0 + sup

0≤t≤T
|ϕ(0, t)|

]
. (3.8)

3.2 Integration inDα,p
B

In this paragraph we consider a smooth domain U ⊂ R
d and we fix p, p′ ∈ [1,∞] so that

1/p + 1/p′ = 1. For notational simplicity, we will omit the domain of integrability and
denote by Lp = Lp(U), Wk,p = Wk,p(U), and so on. In the remainder of the section, we
will assume that

B ≡ (B1, B2) is a Vα-unbounded rough driver acting on the scale (Wk,p)3k=−3 ,(3.9)

under the assumption that α > 1/3.
For k ≥ 0, and y ∈ Vkα2 (0, T ;W−k,p), we shall use the notations

�y�[kα]−k (s, t) := ‖y‖Vkα2 (s,t;W−k,p), for (s, t) ∈ �,
and

�y�[kα]−k := �y�[kα]−k (0, T ) .
These are motivated by the (tautological) fact that for y as above the quantity ω(s, t) :=
�y�[kα]−k (s, t)

1
kα defines a control which is larger than |δyst |W−k,p for each (s, t) ∈ � (it is in

fact the smallest one).
We now introduce what in the context of unbounded rough drivers plays the role of the

usual controlled path space. Note that the definition below only makes use of the first level
B = B1

0· of B, which is why we write Dα,pB instead of Dα,pB .

Definition 3.1 (Controlled path space) Given α ∈ (1/3, 1/2], we define the controlled path
space Dα,pB ≡ Dα,pB ([0, T ] × U) as the linear space of couples

(g, g′) ∈
(
L∞(0, T ;Lp) ∩ Vα(0, T ;W−1,p)

)2
such that g is controlled by B with Gubinelli derivative g′ (in the sense of Definition 2.3).

Furthermore, equipped with the norm

‖(g, g′)‖Dα,pB ([0,T ]×U) := ‖(g, g
′)‖L∞(0,T ;Lp(U)) + �Rg�[2α]−2 + �δg′�[α]−1, (3.10)

the space Dα,pB ([0, T ] × U) forms a Banach space.

Consider (g, g′) ∈ Dα,pB and let f ∈ L1(0, T ;W−3,p). Applying Proposition 3.1 with
the choices

E := W−3,p , Hst :=
∫ t
s

frdr + B1
st gs + B2

st g
′
s ,
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it is easily seen that there exists a unique couple (u, u�) ∈ C(0, T ;W−3,p) ×
V1+
2 (0, T ;W−3,p) such that for any (s, t) ∈ � :

ut − us =
∫ t
s

frdr + B1
st gs + B2

st g
′
s + u�st . (3.11)

Indeed, we have using Chen’s relations

−δHsθt = B1
θtR
g
sθ + B2

θt δg
′
sθ , (s, θ, t) ∈ �2 ,

and therefore

|δHsθt |W−3,p � ωB(s, t)α�Rg�[2α]−2 (s, t)+ ωB(s, t)2α�δg′�[α]−1(s, t) ,
which is finite by definition of the controlled path space. Hence, the sewing lemma (Propo-
sition 3.1) applies, which shows existence and uniqueness of (u, u�) satisfying (3.11), as an
equality inW−3,p.

In the sequel, the following suggestive notation will be adopted

du = f dt + dB(g, g′) . (3.12)

or simply

du = f dt + dBg (3.13)

if g = g′. We point out that (3.13) does not necessarily mean that u is a weak solution,
because Definition 2.4 involves some assumptions on the regularity of u. The remainder of
this section will address these regularity issues.

3.3 Remainder estimates

Conversely, starting from the relation (3.13) for some g ∈ L∞(0, T ;Lp), one would like to
know under which conditions on f and g does the solution u belong to the controlled paths
space Dα,pB . A first observation in this direction is the following.

Proposition 3.2 Consider f ∈ L1(0, T ;W−2,p) let (g, g) ∈ Dα,pB , and assume that v
satisfies

dv = f dt + dBg ,

(see (3.11)). Then, v is controlled by B with Gubinelli derivative v′ = g. Moreover, the
following estimate holds on Rvst ≡ δvst − B1

st gs:

�Rv�[2α]−2 (s, t) ≤ C
[∫ t
s

|fr |W−2,pdr + ωB(s, t)2α‖v, g‖L∞(s,t;Lp)
]

+ 1

2

(
�Rg�[2α]−2 (s, t)+ ωB(s, t)α�δg�[α]−1(s, t)

)
.

In particular, if one assumes v = g, this yields the bound
�Rv�[2α]−2 (s, t) ≤ 2C

[∫ t
s

|fr |W−2,pdr + ωB(s, t)2α‖v‖L∞(s,t;Lp) + ωB(s, t)α�δv�[α]−1(s, t)
]
. (3.14)

Before we proceed to the proof of Proposition 3.2, let us observe the following. There
exists a family (Jη)η∈(0,1) of bounded linear maps Jη ∈ L

(
Wk,p,Wk,p

)
, η ∈ (0, 1), k ∈ Z

being arbitrary, such that:

• Jη maps Wk,p into C∞, for every η ∈ (0, 1) . (3.15)
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For some constant CJ > 0, for any � ∈ N0 with |k − �| ≤ 2 : if 0 ≤ k ≤ � ≤ 3, then

• |Jη|L (Wk,p,W�,p) ≤
CJ

η�−k
, for all η ∈ (0, 1) . (3.16)

Finally, if 0 ≤ � ≤ k ≤ 3, then

• | id−Jη|L (Wk,p,W�,p) ≤ CJ ηk−� , for all η ∈ (0, 1) . (3.17)

In the case when U ≡ R
d and p ∈ [1,∞] it suffices to consider Jηf := η−dρ( ·η ) ∗ f,

where ρ is a radially symmetric, smooth function integrating to one. For the general case,
we refer for instance to [38, Appendix A.3])

From now on, we shall refer to (Jη)η∈(0,1) as a family of smoothing operators.
With this observation at hand, we can now proceed to the proof of the above result.

Proof of Proposition 3.2 Note that

Rvst := δvst − B1
st gs ≡

∫ t
s

frdr + B2
st gs + v�st .

Using (3.16)–(3.17), we can interpolate these two different expressions for Rg, by writing

|Rvst |W−2,p ≤ |Jη(
∫ t
s

f dr + B2
st gs + v�st )|W−2,p + |(id−Jη)[δvst − B1

st gs]|W−2,p

� |
∫ t
s

frdr|W−2,p + |B2
st g|W−2,p +

|v�st |W−3,p
η

+η22‖v‖L∞(Lp) + ηωB(s, t)α‖g‖L∞(Lp). (3.18)

In order to estimate v�, note that Chen’s relations (2.10) imply

−δ(B1g+B2g)sθt=B1
θt (δgsθ−B1

sθ gs)+B2
θt δgsθ =B1

θtR
g
sθ+B2

θt δgsθ , for (s, θ, t)∈�2 .

From this and the Sewing Lemma, we infer that

|v�st |W−3,p ≤ C(α)
(
ωB(s, t)

α�Rv�[2α]−2 (s, t)+ ωB(s, t)2α�δv�[α]−1(s, t)
)
. (3.19)

Now, since (3.18) is true for arbitrary η ∈ (0, 1), we can choose η := ζωB(s, t)α for some
ζ > 0 big enough. We obtain from (3.19):

|Rvst |W−2,p ≤
(∫ t
s

|fr |W−2,pdr
)
+ ωB(s, t)2α‖v, g‖L∞(s,t;Lp) +

�v��[3α]−3 (s, t)
ζωB(s, t)α

≤
(∫ t
s

|fr |W−2,pdr
)
+ ωB(s, t)2α‖v, g‖L∞(s,t;Lp)

+1

2

(
�Rg�[2α]−2 (s, t)+ ωB(s, t)α�δg�[α]−1(s, t)

)
,

provided that ωB(s, t) ≤ L(α).
This shows the claimed property.

Consider an equation of the form dv = f dt + dBv , with f ∈ L1(0, T ;W−2,p), and
define the remainder u� ∈ V1+

2 (0, T ;W−3,p) as in (3.11), namely

v
�
st := δvst −

∫ t
s

frdr − (B1
st + B2

st )vs, (s, t) ∈ � . (3.20)

351



A. Hocquet, T. Nilssen

As was observed in [19], it is possible in this case to obtain a priori estimates on v� in
V3α(W−3,p), explicitly in terms of ‖f ‖L1(0,T ;W−2,p) and ‖v‖L∞(Lp) only. This is the content
of the following result, which will be an essential tool in the sequel.

Proposition 3.3 (Remainder estimates) Fix α ∈ (1/3, 1/2], p ∈ [1,∞] and let v ∈
L∞(0, T ;Lp) such that

dv = f dt + dBv, (3.21)

for some f ∈ Lp(0, T ;W−2,p).
Then, the remainder v� defined by (3.20) has locally finite 1

3α -variation. Moreover, there
are constants C,L > 0 depending only on α, such that for each (s, t) ∈ � satisfying

ωB(s, t) ≤ L,
it holds

�v��[3α]−3 (s, t) ≤ C
(
ωB(s, t)

3α‖v‖L∞(s,t;Lp) + ωB(s, t)α
∫ t
s

|fr |W−2,pdr
)
. (3.22)

As a consequence, any v satisfying the Euler-Taylor expansion (3.20) is controlled by B
with Gubinelli derivative v′ = v, that is ‖(v, v)‖Dα,pB <∞. In addition, it holds the a priori
estimates

�δvst�
[α]
−1(s, t) ≤ C

[(∫ t
s

|fr |W−2,pdr
)α
+ ωB(s, t)α‖v‖L∞(s,t;Lp)

]
(3.23)

�Rvst�
[2α]
−2 (s, t) ≤ C

[∫ t
s

|fr |W−2,pdr + ωB(s, t)2α‖v‖L∞(s,t;Lp)
]

(3.24)

for any (s, t) ∈ � such that ωB(s, t)+
∫ t
s
|fr |W−2,pdr ≤ L, where L(α) > 0.

Note that (3.22) is implicitly contained in [19]. Since our notations and settings are
different, we provide a full proof.

Proof of Proposition 3.3. Proof of (3.22). By definition of a weak solution, there exists
some z ∈ (1, 3α] such that v� has finite 1/z-variation, namely:

ωz(s, t) := �v��1/zVz2 (s,t;W−3,p)
<∞.

Furthermore, we recall the following property (see [38]): for any (s, t) ∈ �,
ωz(s, t) = inf

{
ω(s, t), ω : �[s,t] → R+ control such that (ω)z ≥ |v�|W−3,p

}
. (3.25)

Applying δ to both sides of (3.20) and making use of Chen’s relations (2.10), we have for
(s, θ, t) ∈ �2,

δv
�
sθt = B1

θt (δvsθ − B1
sθ vs)+ B2

θt δvsθ ≡ B1
θtR
v
sθ + B2

θt δvsθ ,

by definition of Rv in (2.20). Taking theW−3,p-norm and then using (3.14), we obtain

|δv�sθt |W−3,p ≤ ωB(s, t)α�Rv�[2α]−2 (s, t)+ ωB(s, t)2α�δv�[α]−1(s, t)

� ωB(s, t)α
∫ t
s

|f |W−2,pdr + ωB(s, t)3α‖v‖L∞(s,t;Lp) + ωB(s, t)2α�δv�[α]−1(s, t) (3.26)

352
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so that the problem boils down to estimating the term �δv�[α]−1(s, t). To obtain such an
estimate, we proceed as in the proof of Proposition 3.3, writing

δvst = (id−Jη)δvst + Jηδvst
= (id−Jη)δvst + Jη(

∫ t
s

frdr + B1
st vs + B2

st vs + v�st )
(3.27)

where Jη, η ∈ (0, 1), denotes a family of smoothing operators. Making use of the properties
(3.15)–(3.17) we obtain

|δvst |W−1,p � η‖v‖L∞(s,t;Lp) +
1

η

∫ t
s

|fr |W−2,pdr + ωB(s, t)α‖vs‖L∞;Lp

+ωB(s, t)
2α

η
‖vs‖L∞(s,t;Lp) + ωz(s, t)

z

η2

by definition of the control ωz. Going back to (3.26) and making the choice

η := ζωB(s, t)α, (3.28)

for some parameter ζ > 0 (to be fixed later), we obtain the inequality

|δv�sθt |W−3,p ≤ CJ
(
ωB(s, t)

α

∫ t
s

|fr |W−2,pdr(1+ ζ−1)

+ωB(s, t)3α‖v‖L∞(Lp)(1+ ζ + ζ−1)+ ωz(s, t)zζ−2
)
. (3.29)

Observe further that in (3.28), η must belong to the interval (0, 1) by definition of a family
of smoothing operators, which will always be true if (s, t) ∈ � is chosen so that ωB(s, t) <
L := ζ−1/α . If we fix ζ > 0 sufficiently large so that

Csewing(z)CJ

ζ 2
≤ 1

2
(3.30)

Csewing(z) being the constant of the Sewing Lemma, this leads to the smallness assumption:

ωB(s, t) ≤ L := (Csewing(z)CJ )−1/(2α) . (3.31)

Now, applying Proposition 3.1 and using (3.30), we see that for any (s, t) ∈ � with
ωB(s, t) ≤ L, it holds

|v�st |W−3,p ≤ Cz
(
ωB(s, t)

3α‖v‖L∞(Lp) + ωB(s, t)α
∫ t
s

|fr |W−2,pdr
)
+ 1

2
ωz(s, t)

z,

for some universal constant Cz > 0. By the inequality (a + b)ε ≤ aε + bε for a, b ≥ 0 and
ε ∈ [0, 1], we have

|v�st |1/zW−3,p ≤ (Cz)1/z
[
ωB(s, t)

3α/z‖v‖1/zL∞(Lp)
+ωB(s, t)α/z

(∫ t
s

|fr |W−2,pdr
)1/z]+ 1

21/z
ωz(s, t)

By [27, p.22], the above right hand side is a control, hence we infer from the property (3.25)
that

ωz(s, t) ≤ (Cz)1/z
[
ωB(s, t)

3α/z‖v‖1/zL∞(Lp)
+ωB(s, t)α/z

(∫ t
s

|fr |W−2,pdr
)1/z]+ 1

21/z
ωz(s, t),
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which shows that for any z ∈ (1, 3α]

|v�st |1/zW−3,p ≤ ωz(s, t) ≤ (Cz)1/z
(
1− 1

21/z

)−1 [
ωB(s, t)

3α/z‖v‖1/zL∞(Lp)

+ωB(s, t)α/z
(∫ t
s

|fr |W−2,pdr
)1/z]

. (3.32)

Letting now z = 3α yields the inequality (3.22).

Proof of (3.23) Writing as before that δv = (id−Jη)δv + Jη(
∫
f dr + B1v + B2v + v�),

and then using (3.15)–(3.17), we have

�δv�[α]−1(s, t) �
(
η + ωB(s, t)α + ωB(s, t)

2α

η

)
‖v‖L∞(s,t;Lp) + 1

η

∫ t
s

|fr |W−2,pdr +
�v��[3α]−3 (s, t)

η2
.

Combining with Proposition 3.3, this gives

�δv�[α]−1(s, t) �
(
η + ωB(s, t)α + ωB(s, t)

2α

η
+ ωB(s, t)

3α

η2

)
‖v‖L∞(s,t;Lp)

+ ( 1
η
+ ωB(s, t)

α

η2
)

∫ t
s

|fr |W−2,pdr . (3.33)

Upon choosing

η := ωB(s, t)α + (
∫ t
s

|fr |W−2,pdr)α,
in (3.33), we obtain the estimate

|δvst |W−1,p �
(∫ t
s

|fr |W−2,pdr)α + ωB(s, t)α
)
‖v‖L∞(s,t;Lp)

+(
∫ t
s

|fr |W−2,pdr)1−α + ωB(s, t)α(
∫ t
s

|fr |W−2,pdr)1−2α

and the conclusion follows by the observation that 1− α ≥ α.

4 The parabolic classHα,p
B

This section is devoted to the definition of a natural functional setting for rough partial
differential equations of the form (2.24). In a second part, we will address the problem
of obtaining an explicit equation for the product of two elements u ∈ L∞(Lp) and v ∈
L∞(Lp′), where 1/p + 1/p′ = 1 and such that

du = f dt + dBu

while
dv = gdt + dBv

on [0, T ]×R
d , where B is a geometric, differential rough driver (here we consider f and g

as given distributions). If B is “built over” a derivation-valued path, by which we mean that
B1
st = Bt − Bs for some Bt = Xt · ∇, one expects that uv solves the problem

d(uv) = (ug + f v)dt + dB(uv) . (4.1)

This indeed appears as a consequence of the Leibnitz-type identity Bt(uv) = (Btu)v +
u(Btv), the geometricity of B and a formal application of [23, Proposition 7.6] (apply first
the Itô formula on the square map, and then use polarization identities). For a more general
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geometric B ∼ (X,L) (i.e. with a non-zero multiplicative term X0
st ), a similar relation is

expected, with the difference that B has to be “shifted” to a new object B(2) of the same
nature, but this time built over Xt · ∇ + 2X0

t . This fact will be made clear in the following
paragraphs.

4.1 A natural Banach space setting

Let p ∈ [1,∞], fix a domain U ⊂ R
d , and consider a Vα-differential rough driver B with

α > 1/3. We define a spaceHα,pB ([0, T ] × U) as follows:
Hα,pB ([0, T ] × U)

:=
{
u ∈ L∞(Lp), such that (u, u) ∈ Dα,pB , and there is f ∈ Lp(W−1,p(U)),

satisfying du = f dt + dB(u, u), and with the property that

‖u‖Hα,pB ([0,T ]×U) := ‖u‖L∞(Lp(U)) + ‖∇u‖Lp(Lp(U)) + ‖f ‖Lp(W−1,p(U))
+ ‖δu‖Vα2 (0,T ;W−1,p(U)) + ‖R

u‖V2α
2 (0,T ;W−2,p(U)) <∞

}
,

(4.2)
where we recall notation (3.12). As before, in the case when U = R

d we omit to indicate
the domain, and we define local versionsHα,pB,loc of these spaces by the property

u ∈ Hα,pB,loc ⇔ u|[0,T ]×K ∈ Hα,pB ([0, T ] ×K) for every K ⊂⊂ R
d .

One of the main interests in defining the above spaces is the next compactness-type result,
which will be fundamental in the sequel.

Lemma 4.1 (Hα,pB -weak stability) Fix an open set U ⊂ R
d , let p ∈ [1,∞] and consider a

family {B(n), n ∈ N} ∪ {B} of differential rough drivers such that ρα(B(n),B)→ 0 where
ρα is the distance introduced in (2.12). For each n ≥ 0 consider v(n) ∈ Hα,pB(n)(U) and
f i(n) ∈ Lp(Lp(U)), i = 0, . . . d, such that

dv(n) = (∂if i(n)+ f 0(n))dt + dB(n)v(n) ,

weakly in Lp . Assume that the corresponding family is uniformly bounded in the sense that
for every n ≥ 0:

‖v(n)‖Hα,p
B(n)
(U) ≤ C , (4.3)

for some constant C > 0.
The following assertions are true.

(1) If p > 1, there exists nk ↗ ∞, k → ∞, some f i ∈ Lp(Lp), i = 0, . . . d, and
v ∈ Hα,pB so that

v(nk)→ v weakly-∗ in L∞(0, T ;Lp(U)) ∩ L2(0, T ;W 1,p(U)) ,

f (nk)→ f weakly-∗ in Lp(0, T ;W−1,p(U)) , (4.4)

while for any α′ < α:

(δv(nk), R
v(nk))→ (δv, Rv) in Vα′2 (0, T ;W−1,pw (U))× Vα′2 (0, T ;W−2,pw (U)) .

(4.5)
Moreover, v satisfies

dv = (∂if i + f 0)dt + dBv , (4.6)

in the L1-sense.
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(2) A similar conclusion holds for p = 1 if the family {(v(n), f (n)), n ∈ N} is equi-
integrable. Recall that f (n) is said to be equi-integrable if it is bounded in L1 and
such that for any ε > 0, there exists δε > 0 and �ε ⊂ U with |�ε | < ∞ so that
uniformly in n ≥ 0: ∫∫

[s,t]×A
|f (n)|dxdr ≤ ε

for every A ⊂ U measurable and (s, t) ∈ � such that (t − s)|A| ≤ δε , and∫∫
[0,T ]×(U\�)

|f (n)|dxdr ≤ ε .

Proof We first address the case p > 1. In that case, the two first properties of (4.4) are
just a consequence of Banach-Alaoglu Theorem, together with the definition of the spaces
Hα,pB . Concerning the last one, it relies on the following Aubin-Lions-type compactness
result. The proof follows exactly the same steps as [39, Lemma A.2 & Lemma A.3], and is
therefore omitted.

Claim Let ω : �→ R+ be a control function, let p ∈ (1,∞] and fix L > 0. For κ > 0,
introduce the Banach space

Xκ (ω) := L∞(0, T ;Lp)
⋂
Lp(0, T ;Lp)

⋂{
u ∈ Vα(0, T ;W−1,p), |δust | ≤ ω(s, t)κ ,

∀(s, t) ∈ � with ω(s, t) ≤ L
}
,

endowed with the norm

�u�κ,ω := ‖u‖L∞(Lp) + ‖u‖Lp(W 1,p) + sup
(s,t)∈�

|δust |W−1,p
ω(s, t)κ

.

Then,

Xκ(ω) is compactly embedded into

Lp(0, T ;Lploc) ∩ L∞(0, T ;W−1,ploc ) ∩ Vκ ′(0, T ;W−2,ploc ) for any 0 < κ ′ < κ .(4.7)

By definition of Hα,pB , the norm of v(n) in the controlled path space forms a uniformly
bounded sequence. But thanks to Proposition 3.3, we also have the precise estimate

|δvst (n)|W−1,p ≤ C
[(∫ t

s

|f (n)|W−2,pdr
)α
+ ωB(n)(s, t)α

]
≤ C′(α)ωn(s, t)α (4.8)

for any (s, t) ∈ � such that ωn(s, t) := ωB(n)(s, t)+
∫ t
s
|f (n)|W−2,p ≤ L, where L = L(α)

is independent of n ∈ N0. Though the estimate (4.8) suffers the fact that the control ωn
depends on n ∈ N0, we note that proceeding as in [47, Lemma 2.3], it is always possible to
build a control� (depending on the whole sequence {ωn, n ∈ N0}) so that (4.8) holds with
� for all n ∈ N0. For such �, by definition of the space Xα(�), we therefore obtain the
uniform estimate:

�δvst (n)�α,� ≤ C‖v(n)‖L∞(Lp) ≤ C̃ ,
Hence property in (4.5) follows by the compact embedding (4.7), and the obvious inclusion
Xα(�) ⊂ Vα(0, T ;W−1,p).
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Now, let f (n) ∈ Lp(W−1,p) such that dv(n) = f (n)dt+dBv(n) for each n ∈ N. Testing
the equation against φ ∈ W 3,p′(U) then yields for every (s, t) ∈ � :

〈δvst (n), φ〉 − 〈[B1
st (n)+ B2

st (n)]vs(n), φ〉 −
∫ t
s

〈fr(n), φ〉dr = 〈v�st (n), φ〉, (4.9)

where v�st (n) ∈ V1+
2 (0, T ;W−3,p(U)) denotes the remainder term.

We now show that v belongs to Hα,pB and satisfies (4.6). In (4.9), the left hand side
converges towards

〈δvst , φ〉 − 〈[B1
st + B2

st ]vs, φ〉 −
∫ t
s

〈fr , φ〉dr,
for any (s, t) ∈ �, as an obvious consequence of (4.4). Concerning the remainder term,
it converges to some element 〈v�, φ〉 ∈ V3α′

2 (0, T ;R) for any α′ < α, as a consequence
of (4.5) and the continuity part of the Sewing Lemma. Using the convergence of B(n) and
Proposition 3.3, we see that v� defined above is actually an element of V3α

2 (0, T ;W−3,p).
By (3.23) and (3.24), one also obtains that (δv, Rv) belongs to Vα2 (W−1,p)×V2α

2 (W
−2,p),

showing that v is indeed an element ofHα,pB . This proves the first part.
Now, concerning the case p = 1, as is well-known the Dunford-Pettis Theorem (see e.g.

[1]) implies that a bounded family of L1 is relatively weakly compact if and only if it is
equi-integrable. Hence, the second assertion follows by the same argument as before, using
a slight modification of the above compactness claim. We omit the details.

4.2 Main result: product formula

Let u ∈ Hα,pB , and v ∈ Hα,p
′

B with 1/p + 1/p′ = 1. If B is geometric, it seems natural to

expect that the pointwise product uv belongs to Hα,1
B̃

for some (possibly new) differential

rough driver B̃. The main result of this section gives a justification of this intuition, by
showing a product formula for uv (it could be alternatively thought of an “integration by
parts” formula). By reiteration of the argument, a similar product formula will be shown on
mononomials of bounded paths u ∈ Hα,2B , see Corollary 4.1.

In what follows, we consider a fixed open set U ⊂ R
d .

Proposition 4.1 (Product formula, general case) Let B be a geometric, Vα-differential
rough driver with α ∈ (1/3, 1/2], fix p, p′ ∈ [1,∞] with 1/p + 1/p′ = 1, and consider
two elements u, v ∈ Hα,1B (U) such that

u ∈ L∞(0, T ;Lp(U)) ∩ Lp(0, T ;W 1,p(U))

while

v ∈ L∞(0, T ;Lp′(U)) ∩ Lp′(0, T ;W 1,p′(U)).

Let f i, gi ∈ L1(0, T ;L1(U)), 0 ≤ i ≤ d, such that on [0, T ] × U ,[
du = (∂if i + f 0)dt + dBu, strongly in Lp(U) ,

dv = (∂igi + g0)dt + dBv, strongly in Lp
′
(U) ,

in the sense of Definition 2.4. Assume furthermore that for i = 0, . . . , d, the pointwise
products ∂iu(·)gi(· − a) and f i(· − a)∂iv(·) are in L1(0, T ;L1(U)), for any a ∈ R

d with
|a| ≤ 1.

Then, the following holds:
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(i) The two-parameter mapping B(2) ≡ (B(2),1, B(2),2), whose components are defined
for (s, t) ∈ � as the differential operators⎧⎨⎩B

(2),1
st := B1

st +X0
st ,

B
(2),2
st := B2

st +X0
stX
i
st ∂i + L

0
st +

3

2
(X0
st )

2,
(4.10)

is itself a geometric differential rough driver.
(ii) The pointwise product uv belongs toHα,1

B(2)
(U) and is an L1(U)-energy solution of

d(uv) = [
u(∂ig

i + g0)+ (∂if i + f 0)v
]
dt + dB(2)(uv) . (4.11)

Regarding the definition of the spaces Hα,pB,loc, we have the following immediate
consequence of Proposition 4.1.

Corollary 4.1 (Product formula, transport case) Let B ∼ (X,L) be as in Proposition 4.1
with X0 = 0. Fix p, p′ ∈ [1,∞] so that 1/p + 1/p′ = 1, and let u ∈ Hα,pB,loc be such that

du = f dt + dBu , on [0, T ] × R
d , (4.12)

in the Lploc, strong sense, for some f ∈ Lp(W−1,p).
The following holds.

(I) Let v ∈ Hα,p
′

B,loc be an L
p′
loc-energy solution of

dv = gdt + dBv on [0, T ] × R
d ,

with g ∈ Lp′(W−1,p′). Then, the product uv belongs toHα,1B,loc and moreover uv is an
L1loc-energy solution of

d(uv) = (ug + f v)dt + dB(uv) . (4.13)

(II) In the case where p = 2 and u belongs to L∞loc, then for each n ∈ N0 we have

un ∈ Hα,1B,loc, and moreover:

d(un) = nun−1f dt + dB(un) , on [0, T ] × R
d (4.14)

(L1loc sense).

Remark 4.1 A similar conclusion as that of Corollary 4.1 holds when B ∼ (X,L) with
X0 �= 0. In this case, it is easily seen by induction that for every n ∈ N :

d(un) = nun−1f dt + dB(n)[un]
in L1loc, where using the notation of Lemma 2.1, B(n) is the geometric differential rough
driver defined as⎧⎪⎨⎪⎩

B
(n),1
st := Xist ∂i + nX0

st ,

B(n),2 := 1

2
XistX

j
st ∂ij +

(
L
i
st + nX0

stX
i
st

)
∂i + nL0

st +
n2

2
(X0
st )

2 ,

or making use of notation 2.1:

B(n) ∼
(
(nX0, X1, . . . , Xd); (nL0,L1, . . . ,Ld)

)
.
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Before we proceed to the proof of Proposition 4.1, we need to introduce some additional
notation. In what follows, we fix a bounded, open set D ⊂ U, such that

γ := 1 ∧ dist(D, ∂U) > 0 .

Notation 4.1 For ε ∈ (0, 1] we will denote by Dε the εγ -fattening of D, namely

Dε := {x + εh ∈ R
d , x ∈ D and h ∈ Bγ }.

For such D, we further define a set �Dε ⊂ R
d × R

d as follows:

�Dε :=
{
(x, y) ∈ U × U, x + y

2
∈ D , x − y

2
∈ Bε

}
. (4.15)

Notation 4.2 For k ∈ I ⊂ Z we define a linear, one-to-one transform Tε , by the formula

Tε�(x, y) := 1

(2ε)d
�

(
x + y
2

+ x − y
2ε
,
x + y
2

− x − y
2ε

)
, (4.16)

for all � ∈ Wk,∞0 (Rd × R
d). In particular, identifying � ∈ Wk,∞0 (�D1 ) with its extension

by 0 outside its support, we have an isomorphism Tε : Wk,p0 (�
D
1 )→ Wk,p0 (�

D
ε ).

According to the terminology introduced in [19], any geometric differential rough driver
is “renormalizable”. This is the statement of the following Theorem, whose proof is rather
technical and, for that reason, postponed in Appendix A.2.

Theorem 4.1 Let B be a geometric, differential rough driver with regularity α > 1/3.
Introduce the differential rough driver �(B) ≡ (�1(B), �2(B)) given for every (s, t) ∈

� by {
�1st (B) := B1

st ⊗ id+ id⊗B1
st ,

�2st (B) := B2
st ⊗ id+B1

st ⊗ B1
st + id⊗B2

st

(4.17)

(the fact that this is indeed a differential rough driver is elementary and hence left to the
reader).

Then, for each i = 1, 2 and k = −3+ i, . . . , 0, the following uniform bound holds∣∣T −1,∗ε �ist (B)T
∗
ε

∣∣
L (W 1,k(�D1 ),W

1,k−i (�D1 ))
≤ CωB(s, t)iα (4.18)

where C > 0 denotes a constant which is independent of ε ∈ (0, 1], while ωB is the control
introduced in Definition 2.1.

Before we proceed to the proof of the main result, let us observe that if a ∈ W−k,p′ and
b ∈ Wk,p, then the product ab has a well-defined meaning as an element of ab ∈ W−1,1
(it suffices to write a in terms of its antiderivatives, and to integrate by parts). Moreover, if
a, b are measurable functions (i.e. not distributions), then the adjoint of Tε is given by the
formula

T ∗ε [a(x)b(y)] = 2−da
(x + y

2
+ ε x − y

2

)
b
(x + y

2
− ε x − y

2

)
. (4.19)

Testing against � ∈ Wk,∞0 (�D1 ), and doing the change of variables (x+, x−) := χ(x, y) ≡
(
x+y
2 ,

x−y
2 ), this gives the formula

〈T ∗ε v,�〉 =
∫
B1 W

−k,1(D)

〈
a
( · +εx−)b( · −εx−),� ◦ χ−1(·, x−)〉

W
k,∞
0 (D)

dx− . (4.20)
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Now, in the general case where a ∈ W−k,p′ is a distribution, it is easily seen that (4.20) is
still meaningful. This formula will be useful in the sequel.

We can now turn to the proof of the main result.

Proof of Proposition 4.1. Step 0: doubling of variables. In the sequel, we let for simplicity

f := ∂if i + f 0, g := ∂igi + g0 ,

and denote by u⊗ v the function of two variables

(u⊗ v)t (x, y) := ut (x)vt (y), for every (x, y) in �D1 .

For any ε ∈ (0, 1) and (s, t) ∈ �, we further introduce
⎡⎢⎢⎢⎢⎢⎣
(u⊗ v)εs := T ∗ε

(
(us ⊗ vs)

∣∣
�Dε

)
, (4.21)

(f ⊗ v + u⊗ g)εs := T ∗ε
(
(fs ⊗ vs + us ⊗ gs)

∣∣
�Dε

)
, (4.22)

�ε(B) = (�1,ε(B), �2ε(B)) where
{
�
1,ε
st (B) := T ∗ε �1st (B)(T ∗ε )−1,
�
2,ε
st (B) := T ∗ε �2st (B)(T ∗ε )−1 .

(4.23)

Then, the following assertions are true.

(1) (u⊗ v)ε belongs toHα,1�(B)(�D1 ).
(2) the mapping t �→ (ft⊗vt +ut⊗gt )ε, is Bochner integrable in the spaceW−1,1(�D1 ),
(3) (u⊗ v)ε is an L1(�D1 )-energy solution of the equation

d(u⊗ v)ε = (
f ⊗ v + u⊗ g)εdt + d�ε(B)(u⊗ v)ε . (4.24)

The proof of the above properties is rather technical, but follows exactly the same pattern
as that of [38, Section 5], hence we leave the details to the reader.

Step 1: uniform bound on the drift. If � ∈ W 1,∞
0 (�D1 ) and (s, t) ∈ �, we have by

definition

〈∫ t
s

(ur ⊗ gr + fr ⊗ vr)εdr,�
〉
=

∫ t
s

〈
ur ⊗ gr + fr ⊗ vr , Tε�

〉
dr . (4.25)

Fix r ∈ [s, t] such that u ≡ ur belongs toW 1,p, and let �̌(x+, x−) := � ◦ χ−1(x+, x−) =
�(x+ + x−, x+ − x−). Making use of (4.20), we have for the first term in (4.25):

〈u⊗ g, Tε�〉 =
∫
B1 W

−1,p′ (D)

〈
g(· − εx−), u(· + εx−)�̌(·, x−)

〉
W 1,p(D)

dx−

=
∫∫
B1×D

{
gi(x+ + εx−)(−1)i ∂

∂xi+

[
u(x+ + εx−)�̌(x+, x−)

]
+ g0(x+ + εx−)u(x+ + εx−)�̌(x+, x−)

}
dx+dx− .
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Hence, we have

〈u⊗ g, Tε�〉 ≤
∫∫
B1×D

{
|gi(x+ − εx−)||∂iu(x+ + εx−))|

+|g0(x+ − εx−)||u(x+ + εx−))|
}
(|�̌| + |∇+�̌|)dx+dx− (4.26)

≤ |�|W 1,∞

∫
B1

dx−
∫
D+εx−

{
|gi(x+ − 2εx−)||∂iu(x+)|

+|g0(x+ − 2εx−)||u(x+))|
}
dx+

≤ |�|W 1,∞

∫
B1

(
|gi(εx−)∂iu|L1(Dε) + |g0(εx−)u|L1(Dε)

)
dx− , (4.27)

where for simplicity for i = 0, . . . , d, we denote by

gi(εx−)(x+) :=
{
gi(x+ − 2εx−) if x+ − 2εx− ∈ Dε
0 otherwise .

(Note that, by assumption, the right hand side in (4.27) is finite.) Doing similar computations
for the second term, and then integrating in time, we end up with the estimate∣∣∣∫ t

s

(ur ⊗ gr + fr ⊗ vr)εdr
∣∣∣
W−1,1(�D1 )

≤
∫
B1

(
‖∂iugi(εx−), ug0(εx−)‖L1(s,t;L1(Dε)) + ‖f i(−εx−)∂iv, f 0(−εx−)v‖L1(s,t;L1(Dε))

)
dx−

=: ωD,Dε (s, t) , (4.28)

where we further observe that ωD,Dε is a control since positive linear combinations of
controls are controls.

Step 2: convergence of the remainder term. For a.e. r ∈ [s, t], it is straightforward to
check the inequality

|(u⊗ v)εr |L1(�D1 ) ≤ |Dε ||ur |Lp(Dε)|vr |Lp′ (Dε).
Therefore, by Theorem 4.1 together with Proposition 3.3 we obtain the following bound on
the remainder (u⊗ v)ε,� associated to (4.24):

|(u⊗ v)ε,�st |W−3,1(�D1 ) ≤ C
(
|Dε |‖ur‖L∞(Lp(Dε))‖vr‖L∞(Lp′ (Dε))ωB(s, t)3α

+ωD,Dε (s, t)ωB(s, t)
α
)
, (4.29)

for every (s, t) ∈ � such that ωB(s, t) ≤ L for some L(α) > 0, and every ε ∈ (0, 1).
Fix

ψ ∈ W 3,∞
0 (B1), with

∫
B1

ψ(x−)dx− = 1 , (4.30)

and for (s, t) as above, denote by �εst the element ofW−3,1(D) defined as

〈�εst , φ〉 := 〈(u⊗ v)ε,�st , (φ ⊗ ψ) ◦ χ〉, for φ ∈ W 3,∞
0 (D).

By definition of �ε and the estimate (4.29), we deduce that �ε is uniformly bounded in
V3α
2,loc(0, T ;W−3,1w (D)). Proceeding as in the proof of Lemma 4.1, we infer the existence
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of � ∈ V3α
2,loc(0, T ; (W 3,∞

0 (D))∗) and εn ↘ 0 such that for any α′ < α and every φ ∈
W

3,∞
0 (D)

〈�εn , φ〉 → 〈�, φ〉 in V3α′
2,loc(0, T ;R) (4.31)

which in particular implies convergence in the C(�;R)-sense.
It remains to show that �st belongs toW−3,1(D) for any (s, t) ∈ �. In (4.29), substitute

D with any K ⊂ D and then take the limit as ε → 0. This yields

|�st |(W 3,∞
0 (K))∗ ≤ C

[
|K|‖u‖L∞(Lp(K))‖v‖L∞(Lp′ (K))ωB(s, t)3α

+(‖∂iugi, ug0‖L1(s,t;L1(K)) + ‖f i∂iv, f 0v‖L1(s,t;L1(K)))ωB(s, t)α]. (4.32)

This implies that |�st |(W 3,∞
0 (K))∗ goes to 0, as |K| → 0. As is well-known (see e.g. [7,

Proposition 4.4.2 p. 263 & Proposition 1.3.3 p. 9]) this implies that � is an element of the
subspaceW−3,1(D). This proves the claimed property.

Step 3: passage to the limit in the equation Fix any φ ∈ W 3,∞(U) with compact support
in D, and test (4.24) against

�(x, y) := φ(x + y
2
)ψ(
x − y
2
), (x, y)∈ �D1 ,

which is indeed an element of W 3,∞(�D1 ). Observe furthermore that Tε�(x, y) =
φ(
x+y
2 )ψε(x − y) where

ψε(·) = ψε(·/2)(2ε)−d
approximates the identity.

Hence, using Theorem 4.1 and dominated convergence, we find that

W−1,1(�D1 )

〈∫ t
s

(u⊗ g + f ⊗ v)ε,�
〉
W

1,∞
0 (�D1 )

−→
ε→0

∫ t
s W

−1,1(D)

〈
urgr + frvr , φ

〉
W

1,∞
0 (D)

dr .

For the terms involving �(B), we first note that by Lemma 2.1, the following Leibniz-type
formulas are satisfied: for every a, b ∈ C∞ it holds⎧⎨⎩
B1
st (ab) = (B1

st a)b + a(B1
st b)−X0

st ab ,

B2
st (ab) = (B2

st a)b + (B1
st a)(B

1
st b)+ a(B2

st b)−XistX0
st ∂i(ab)−

(
L
0
st +

3

2
(X0
st )

2)ab .
(4.33)

Now, using dominated convergence and (4.33) yields for the first term

W−1,1(�D1 )

〈
�
1,ε
st (B)(u⊗ v)εs ,�

〉
W

1,∞
0 (�D1 )

−→
ε→0 W−1,1(D)

〈
(B1
stus)vs + vsB1

st us, φ
〉
W

1,∞
0 (D)

= 〈(B1
st +X0

st )(uv), φ〉 = 〈B(2),1st (uv), φ〉,
by definition of B(2),1. Similarly, using the second equation in (4.33), it is easily seen that

W−2,1(�D1 )

〈
�
2,ε
st (B)(u⊗ v)εs ,�

〉
W

2,∞
0 (�D1 )

−→
ε→0

〈
(B2
st us)vs + (B1

stus)(B
1
st vs)+ us(B2

st vs), φ
〉

=
〈
(B2
st +X0

stX
i
st ∂i + L

0
st +

3

2
(X0
st )

2)(uv), φ

〉
=

〈
B
(2),2
st (uv), φ

〉
. (4.34)
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Finally, we have 〈δ(u⊗ v)εst , �〉 →ε→0 〈δ(uv)st , φ〉, and hence using the previous step:

〈δ(uv)st , φ〉 =
∫ t
s

〈
ug + f v, φ〉dr + 〈

(B
(2),1
st + B(2),2st )(uv), φ

〉
+ 〈
�st , φ

〉
, (4.35)

for every (s, t) ∈ such that ωB(s, t) ≤ L. The (4.35) holds for any open and bounded
D ⊂ U with positive distance from U . Thus, it remains true for U itself, which shows that
uv is an L1(U)-weak solution of (4.11).

It remains to show that B(2) is a differential rough driver, for which it suffices to check
that Chen’s relations (2.10) hold. But these are an immediate consequence of Lemma 2.1
and the linearity of δ, since:

δB
(2),2
sθt ≡ δ

(
B2 +X0Xi∂i + L

0 + 3

2
(X0)2

)
sθt

= B1
θt ◦ B1

sθ +
(
X0
θtX
i
sθ +X0

sθX
i
θt

)
∂i +Xiθt ∂iX0

sθ + 3X0
θtX

0
sθ

= (B1
θt +X0

θt ) ◦ (B1
sθ +X0

sθ ) = B(2),1θt ◦ B(2),1sθ ,

for (s, θ, t) ∈ �2. This shows that B(2) is a differential rough driver. Moreover, B(2) is
obviously geometric since B is.

Finally, thanks to Proposition 3.3, we further see that uv is controlled by B(2), and thus
it belongs toHα,1

B(2),loc
. This achieves the proof of (ii) and the proposition.

5 Parabolic equations with free terms: proof of Theorem 2.1

In this section we investigate existence, uniqueness and stability for parabolic rough partial
differential equations of the form

du = (Au+ f )dt + dBu, on [0, T ] × R
d

u0 ∈ L2(Rd),
(5.1)

where f belongs to the space L2(0, T ;H−1). This completes the case treated in [38], where
a more general elliptic operator A was considered, but where the assumptions on B were
more restrictive. For the reader’s convenience, we now restate Theorem 2.1.

Theorem 5.1 Let f ∈ L2(0, T ;H−1), fix u0 ∈ L2 and consider a geometric, differential
rough driver B with regularity α > 1/3. There exists a unique L2-energy solution u =
u(u0, f ;B) to (5.1), and it belongs to the spaceHα,2B (Rd).

Moreover, the solution map is continuous in the following sense

(C1) for every (u0, f ) ∈ L2 × L2(H−1), the map B �→ u(u0, f ;B) is continuous in the
following sense: for any sequence {B(n), n ∈ N0} of geometric differential rough
drivers such that ρα(B(n),B)→ 0, denoting by u(n) the solution of (5.1) obtained
with B being replaced by B(n), it holds

u(n)→ u weakly-∗ in L∞(0, T ;Lp(U)) ∩ L2(0, T ;W 1,p(U)) ,

and for any α′ < α:

(δu(n), Ru(n))→ (δu, Ru) in Vα′2 (0, T ;W−1,pw (U))× Vα′2 (0, T ;W−2,pw (U)) .

(C2) for B fixed the map u(·, ·;B) : L2 × L2(H−1) → Hα,2B is continuous, with respect
to the strong topologies.
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Note that the above result obviously implies Theorem 2.1. Its proof essentially follows
the lines of [38] but since our assumptions on B are more general, we provide a complete
proof.

Proof of Theorem 5.1 Consider an L2-energy solution u ∈ Hα,2B of the (5.1). Applying

Proposition 4.1 with u = v, we have that u2 ∈ Hα,1
B(2)

where B(2) is the shifted differential

rough driver defined in (4.10). Moreover, u2 solves in the L1-sense:

du2 = 2u(Au+ f )dt + dB(2)(u2). (5.2)

We want to test against φ = 1, and then apply Rough Gronwall, but for this we need first
an estimate on u2,�, which itself follows from Proposition 3.3, together with the estimate on
the drift. The analysis of the linear part of the drift leads to the estimate:∣∣∣∫ t

s

(uAu)dr
∣∣∣
W−1,1

≤ λ−1(‖∇u‖2
L2(s,t;L2) + ‖u∇u‖L1(s,t;L1)) (5.3)

whereas for the free term, considering anti-derivatives, we find∫ t
s

|uf |W−1,1dr ≤
(‖u‖L2(s,t;L2) + ‖∇u‖L2(s,t;L2)) ‖f ‖L2(s,t;H−1). (5.4)

The proof is then divided into 3 steps.

Step 1: Energy inequality and application to uniqueness. Letting ωD(s, t) be the sum of
the right hand sides in (5.3) and (5.4), one can then apply Proposition 3.3 to obtain

|u2,�st |W−3,1 ≤ C
(
ωB(s, t)

αωD(s, t)+ ‖u‖2L∞(s,t;L2)ωB(s, t)3α
)
. (5.5)

for every (s, t) ∈ � with ωB(s, t) ≤ L for some absolute constant L > 0.
Next, consider f = ∂ifi + f0 where fi ∈ L2, i = 0, . . . , d . One can take

φ = 1 ∈ W 3,∞ in (5.2), so that by Assumption 2.1 it holds for every s, t as above:

δEst := δ(|u|2L2)st +
∫ t
s

|∇ur |2L2dr

�λ
∫∫
[s,t]×Rd

−∂iur (x)fir (x)dxdr +
〈
(B
(2),1
st + B(2),2st )u

2
s + u2,�st , 1

〉
�λ ‖∇u‖L2(s,t;L2)‖f‖L2(s,t;L2) + |us |2L2(ωB(s, t)α
+ωB(s, t)2α)+ |u2,�st |W−3,1 ,
�λ ‖∇u‖L2(s,t;L2)‖f‖L2(s,t;L2) + (ωB(s, t)α
+ωB(s, t)α + ωB(s, t)3α) sup

r∈[s,t]
Er

+ωB(s, t)α‖f ‖L2(s,t;H−1)(‖∇u‖L2(s,t;L2) + ‖u‖L2(s,t;L2))
Making use of Young Inequality

‖∇u‖L2(s,t;L2)‖f‖L2(s,t;L2) ≤
ε

2
‖∇u‖2

L2(s,t;L2) +
1

2ε
‖f‖2
L2(s,t;L2)

for ε(λ) > 0 sufficiently small, the first term in the right hand side can be absorbed
to the left. Hence, taking L smaller if necessary, we infer that for any (s, t) ∈ �
with ωB(s, t) ≤ L, it holds the incremental inequality

δEst ≤ ωB(s, t)α(supr∈[s,t] Er)+ ‖f ‖2L2(s,t;H−1).
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By Lemma 3.1, we deduce the estimate

‖u‖2
L∞(0,T ;L2) + ‖∇u‖2L2(0,T ;L2)

≤ C(λ) exp
{
ωB(0, T )

τα,L

} [
|u0|2L2+‖f ‖2L2(0,T ;H−1)

]
. (5.6)

The uniqueness is now straightforward, because the difference v ≡ u1−u2 of two
L2-energy solutions to (5.1) ought to be itself an L2-energy solution of (5.1), with
f = 0 and v0 = 0, hence yielding from (5.6) that v = 0.

Step 2: Existence. Existence and continuity rely mostly on the stability result shown in
Lemma 4.1, together with the fact that B is geometric.

Consider a sequence B(n) → B as in Definition 2.2. By standard results on
parabolic equations, there exists a unique u(n) in the energy space L∞(L2) ∩
L2(H 1), solving (5.1) in the sense of distributions. Using moreover the fact that
B(n) = S2(B(n)), it is easily deduced from (5.1) that u(n) is an L2-energy solu-
tion of (5.1), in the sense of Definition 2.5. Consequently, the previous analysis
shows that we have a uniform bound

‖u(n)‖2
L∞(0,T ;L2) + ‖∇u(n)‖2L2(0,T ;H 1)

≤ C (
λ, ‖f ‖L2(0,T ;H−1), |u0|L2 , T

)
.

As a consequence of this bound and Proposition 3.3, we also obtain the uniform
estimate

‖u(n)‖Hα,2
B(n)

≤ C′,
for another such constant C′. By Lemma 4.1 we see that {u(n), n ∈ N} has a
(possibly non-unique) limit point u ∈ Hα,2B such that the weak-type convergences
of (4.4)–(4.5) hold, up to some subsequence u(nk) nk ↗∞. In particular, each of
the terms in the equation on u(nk) converges to the expected quantities associated
to the limit u. This shows the claimed existence.

Step 3: Stability . We can now repeat the argument of Step 3 with any sequence B(n) of
geometric, differential rough drivers (not necessarily defined as canonical lifts).
This will imply the convergence of a subsequence u(nk) ⇀ u, in the sense of (4.4)
and (4.5). From the uniqueness part, there can be at most one such limit u, and
therefore every subsequence of u(n) converges to u. This implies the convergence
of the full sequence, and the claimed continuity (C1).

To show (C2), note that if u and v are L2-energy solutions of

du = (Au+ f )dt + dBu, u0 = u0,
dv = (Av + g)dt + dBv, v0 = v0,

where u0, v0 ∈ L2, and f, g ∈ L2(H−1), then w := u− v solves the problem
dw = (Aw + f − g)dt + dBw, w0 = u0 − v0 .

Therefore, the strong continuity of the solution map with respect to (u0, f ) follows from
the estimate (5.6), together with Proposition 3.3.

6 Local boundedness of solutions

In this section, we take a step further by investigating the boundedness, away from t = 0
and on any compact set of the space variable, for solutions of parabolic RPDEs of previous
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form, namely

du = (Au+ f )dt + dBu, in [0, T ] × R
d ,

u0 ∈ L2(Rd),
(6.1)

where the free term f will be subject to additional conditions, see Assumption 6.1, and A
fulfills Assumption 2.1.

First, let us recall a classical interpolation inequality, the proof of which can be found in
[46].

Proposition 6.1 For each f in the space L∞(0, T ;L2) ∩ L2(0, T ;W 1,2), f belongs to
Lρ(0, T ;Lσ ) for every ρ, σ such that

1

ρ
+ d

2σ
≥ d

4
and

⎧⎪⎨⎪⎩
ρ ∈ [2,∞] , σ ∈ [2, 2d

d−2 ] for d > 2

ρ ∈ (2,∞] , σ ∈ [2,∞) for d = 2

ρ ∈ [4,∞] , σ ∈ [2,∞] for d = 1 .

(6.2)

In addition, there exists a constant Cρ,σ > 0 (not depending on f in the above space) such
that

‖f ‖Lρ(0,T ;Lσ ) ≤ Cρ,σ
(
‖∇f ‖L2(0,T ;L2) + ess sup

r∈[0,T ]
|fr |L2

)
. (6.3)

As an immediate consequence of (6.3), it can be checked that whenever r, q ∈ [1,∞]
are numbers satisfying

1

r
+ d

2q
≤ 1, (6.4)

then it holds the inequality

‖u‖
L

2r
r−1 (L

2q
q−1 )

≤ Cr,q‖u‖L∞(L2)∩L2(H 1). (6.5)

6.1 Moser Iteration

Recall the basic idea of Moser’s iteration. If u ∈ L∞(0, T ;L2) ∩ L2(0, T ;H 1) solves a
parabolic equation of the form (6.1) where the coefficients are smooth enough, the new
unknown |u|κ for κ ≥ 2 is, roughly speaking, solution of a similar equation. By a slight
modification of the arguments of the Section 5, it is possible thanks to the above inter-
polation inequality to find suitable moment bounds for v := |u|κ/2, the value of which
depend on similar moments, but for a lower exponent. Thanks to (6.3), we will then obtain
a recursive relation between these quantities, which will take the form of the following
inequality

�n+1 ≤ γ τn�1+ε
n , for any n ≥ 0 , (6.6)

where ε, γ, τ > 0 are constants. It is worth noting that the above inequality is non-linear,
and that the coefficent τn will blow up unless τ is smaller than one. Hence, an upper bound
of �n may blow-up as well when n→ ∞. However, the next result shows that this explo-
sion is “not too strong” for our purposes. The proof is immediate by induction, and therefore
omitted.

Lemma 6.1 (Recursive estimate) Assume that we are given a sequence of non-negative
numbers �n, n ≥ 0, and constants ε, γ, τ > 0 such that (6.6) holds. Then, the following
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estimate is true: for any n ≥ 0 we have

�n ≤ γ (1+ε)
n−1
ε τ

(1+ε)n−1
ε2

− n
ε �
(1+ε)n
0 . (6.7)

Now, a classical result states that

|f |Lκ (X,M,μ) →
κ→∞ |f |L∞(X,M,μ),

for any σ -finite measure space (X,M, μ) and every f ∈ L∞ such that f ∈ Lq for some
q ∈ [1,∞). Using that result and the fact that �n will be taken below to be an appropri-
ate sequence of moments with diverging exponents, we will be able to obtain an a priori
estimate for the L∞-norm of u. This will prove the boundedness of solutions.

We need now to specify our conditions on f .

Assumption 6.1 We assume that

f ∈M := Lr(0, T ;W−1,q ) ∩ L2r (0, T ;W−1,2q) ∩ L1(0, T ;W−1,1) ∩ L2(0, T ;H−1),
where the exponents r ∈ (1,∞] and q ∈ (1 ∨ d2 ,∞) are subject to the conditions

1

r
+ d

2q
< 1. (6.8)

Using Sobolev embeddings, it is easily checked that Assumption 6.1 is fulfilled for f
satisfying the assumptions of Theorem 2.3, i.e. f ∈ Lr(0, T ;Lq), where r and q verify the
condition (6.8). Hence, the following result implies Theorem 2.3.

Proposition 6.2 Let Assumption 6.1 hold, suppose that u0 ∈ L2, and assume that u is the
solution of (6.1) given by Theorem 5.1. Then, the essential supremum of u is bounded on
each compact subset of (0, T ] × R

d .
In addition, for anyQ ⊂⊂ (0, T ] × R

d , it holds the estimate

‖u‖L∞(Q) ≤ C(Q, |u0|L2 , λ, ‖f ‖M , ωB, α, r, q),
for a constant depending only on the indicated quantities.

6.2 The recursive estimate

Our purpose in the present paragraph is to show that a suitable sequence {�n, n ∈ N0} can
be defined, so that Lemma 6.1 will be applicable and provide the claimed L∞loc estimate.

Consider u ∈ Hα,2B ∩ L∞, L2-energy solution of (2.24), and let κ ≥ 2. Assuming for the
moment that the conclusions of Theorem 2.4 are true, we have in the L1-sense:

δ|u|κst =
∫ t
s

κur |ur |κ−2(Arur + fr)dr + (B1
st + B2

st )|us |κ + uκ,�st . (6.9)

Defining

vt (x) := |ut (x)|κ/2,
we have the identities:

v∂iv = κ

2
(∂iu)|u|κ−1 ∂iv∂j v = κ

2

4
(∂iu)(∂ju)|u|κ−2. (6.10)
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Hence denoting by (fi ) any antiderivative of f, and by v2,� := |u|κ,�, it holds for every
φ ∈ W 3,∞:

〈δ(v2)st , φ〉 −
〈
(B1
st + B2

st )(v
2
s )+ v2,�st , φ

〉
=

∫∫
[s,t]×Rd

[
− 4

(κ − 1

κ

)
aij (∂iv)(∂j v)φ − 2aij v(∂iv)(∂jφ)

]
dxdr

+
∫∫
[s,t]×Rd

[
− 2(κ − 1)fi (∂iv)v1−

2
κ φ − κfiv2−

2
κ ∂iφ

]
dxdr =: 〈δD (κ)st , φ〉.(6.11)

Next, define two cylindersQ,Q′ as follows: let R, τ > 0, and introduce

Q′ := {(t, x) : 2τ ≤ t ≤ T and |x| ≤ R/2}
Q := {(t, x) : τ ≤ t ≤ T and |x| ≤ R} .

Since τ ′ > 0 and R > 0 are arbitrary, is is obviously sufficient to show the local L∞
estimate inQ′ instead of any compact set of (0, T ] × R

d .
To this end, let for each n ≥ 0

Rn := R
2
(1+ 2−n) ↘

n→∞
R

2

τn := τ(2− 2−n) ↗
n→∞

2τ

and define the cylindersQn accordingly. With this definition, observe that τ0 = τ, R0 = R
and that for each n ≥ 0

Q′ = ∩∞k=0Qk ⊂ Qn+1 ⊂ Qn ⊂ Q = Q0 .

Now, choose any sequence of smooth test functions ψ·(n; ·) such that
ψt(n; x) =

{
1 for (t, x) ∈ Qn+1
0 for (t, x) ∈ ([0, T ] × R

n) \Qn ,
and such that

sup
(t,x)∈[0,T ]×Rd

(
|∂tψt (n; x)| +

∑3

i=0 |∇
iψt (n; x)|

)
≤ C8n ,

where the constant C > 0 is independent of n ≥ 0 (it is easy to see that such sequence
exists).

Since ψ(n) is smooth in time, thanks to the identity δ(v2ψ(n))st = δv2stψs + v2t δψst (n),
we have for any s, t ≥ 0 such that τn ≤ s ≤ t ≤ T :

δ(

∫
Rd

v2ψ(n)dx)st +
∫∫
[s,t]×Rd

|∇v|2ψs(n)dxdr

�λ
∫∫
[s,t]×Rd

[
|vt |2|∂tψ(n)| + |v||∇v||∇ψs(n)| + κ|f||∇v||v|1− 2

κ ψs(n)

+κ|f||v|2− 2
κ |∇ψs(n)|

]
dxdr

+
(
|ψs(n)|W 1,∞ωB(s, t)

α + |ψs(n)|W 2,∞ωB(s, t)
2α
) ∫

Rd

v2s dx

+|v2,�st |W−3,1 |ψs(n)|W 3,∞ . (6.12)

Making use of the following estimates for κ ≥ 2:

v1−2/κ ≤ 1+ v, v2−2/κ ≤ 1+ v2,
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and then letting

ρ := 2r

r − 1
and σ := 2q

q − 1
,

we infer thanks to Hölder Inequality that

|δD (κ)st |W−1,1 � ‖∇v‖22,2 + ‖v∇v‖1,1
+κ

(
‖f‖2r,2q‖∇v‖2,2‖v‖ρ,σ + ‖f‖r,q‖v‖2ρ,σ + ‖f‖2,2‖∇v‖2,2 + ‖f‖1,1

)
. (6.13)

where for notational ease we now use the shorthand notation:

‖ · ‖a,b := ‖ · ‖La(s,t;Lb) .
Going back to (6.12) and applying Proposition 3.3 and Hölder Inequality, we obtain the
inequality

EQn+1 := sup
τn+1<t<T

∫
|x|<Rn+1

|vt |2dx +
∫∫
τn+1<t<T, |x|<Rn+1

|∇vt |2dxdt

≤ C(r, q, λ)8nκ2
(
EQn+‖f‖22,2 + ‖f‖1,1 + (‖f‖22r,2q + ‖f‖r,q )‖v1Qn‖2ρ,σ

)
. (6.14)

where 1Qn(x) is the indicator function ofQn, and where the above constant depends on the
indicated quantities but not on κ ≥ 2.

We now want to apply Lemma 6.1. To this end, observe first that thanks to (6.8), there
exists ε > 0 such that

1

r
+ d(1+ εq)

2q
≤ 1 . (6.15)

For such ε > 0, is is easily seen that

1

ρ(1+ ε) +
d

2(1+ ε)σ ≥
d

4
,

which means in particular that the exponents

ρ(1+ ε), σ (1+ ε)
still satisfy the condition (6.2).

Let n ≥ 0. In (6.14), making the substitution κ := κn = 2(1+ ε)n, we obtain thanks to
Proposition 6.1

‖|u|(1+ε)n1Qn+1‖ρ(1+ε),σ (1+ε)
≤ C(EQn+1)1/2

≤ C̃8n(1+ ε)n
(
1+ (EQn)1/2 + ‖|u|(1+ε)

n

1Qn‖ρ,σ
)
.

from which it follows that

‖u1Qn+1‖(1+ε)
n

ρ(1+ε)n+1,σ (1+ε)n+1 ≤ C̃8n(1+ ε)n
(
1+ (EQn)1/2 + ‖u1Qn‖(1+ε)

n

ρ(1+ε)n,σ (1+ε)n
)
,

(6.16)
where to obtain the first estimate we have used the interpolation inequality (6.5) on |u|(1+ε)n .
Otherwise stated, if one defines the sequence

�n := 1+ E1/2
Qn
+ ‖u1Qn‖(1+ε)

n

ρ(1+ε)n+1,σ (1+ε)n+1 , n ≥ 0,

one sees that for every n ≥ 0:

�n+1 ≤ γ [8(1+ ε)]n�1+ε
n
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for some constant γ = γ (λ, r, q, ‖f ‖M , ωB, α) > 0. Applying now (6.7), this yields for
every n ∈ N0 :

�n ≤ γ (1+ε)
n−1
ε [8(1+ ε)] (1+ε)

n−1
ε2

− n
ε ‖u1Q‖(1+ε)n2r

r−1 ,
2q
q−1
, (6.17)

and it follows that

‖u‖L∞(Q′) ≤ lim
n→∞(�n)

(1+ε)−n ≤ C‖u‖
L

2r
r−1

(
L

2q
q−1

), (6.18)

for another constant C > 0 as above. By estimating the right hand side thanks to another
application of the interpolation inequality, Proposition 6.1, we obtain the following L∞
bound

‖u‖L∞(Q′) ≤ C′
(‖u‖L∞(L2) + ‖u‖L2(H 1)

)
, (6.19)

but using the same Gronwall argument as in Section 5, this quantity is in turn bounded in
terms of λ, α, ωB, |u0|L2 and ‖f ‖L2(H−1).

Having this apriori estimate at hand, we can now proceed to the proof of Proposition 6.2.

6.3 Proof of Proposition 6.2

Consider an approximating sequence B(n) = S2(B(n)) as in Definition 2.2. By the clas-
sical PDE theory, if we denote by u(n) the corresponding weak solution (in the sense of
distributions) of

∂u(n)

∂t
− Au(n) = f + Ḃ(n)u(n) on [0, T ] × R

d ,

u0(n) = u0 .
(6.20)

then u(n) is well defined and unique in the class L∞(L2)∩L2(H 1). It is easily seen that in
fact, u(n) ∈ Hα,2B and is an L2-energy solution of

du(n) = (Au(n)+ f )dt + dB(n)u(n) .

Moreover, for f as in (6.1), it is known that u(n) is continuous as a mapping from [0, T ] ×
R
d to R (it is even γ -Hölder for some γ (λ) > 0 [53]). For such level of regularity, it is

shown by classical arguments (see for instance [46, Chapter 3]) that v(n) := |u(n)|κ/2
satisfies the chain rule (6.9), where B is replaced by B(n). Consequently, the analysis made
in the above paragraph ensures that for any compact set

Q ⊂⊂ (0, T ] × R
d

there is a constant CQ > 0 which is independent of n ≥ 0 such that

‖u(n)‖L∞(Q) ≤ CQ,
Using Banach Alaoglu Theorem, the weak-∗ lower-semicontinuity of the essential supre-
mum, and also the uniqueness of the limit u in L∞(L2) ∩ L2(H 1), we see that u satisfies
the same estimate. This proves the proposition.

7 Proof of Itô Formulas

In order to prove Theorem 2.2, we first demonstrate that the Itô Formula holds when u
is locally bounded and F is admissible. The proof of this fact is based on a reiteration
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of the product formula obtained in Section 4, allowing to show the claimed property on
polynomials of a solution. The fact that polynomials are dense in C2 is then used together
with the remainder estimates of Section 4 (it should be noted that this approach is similar
to that of [58, Theorem (3.3)]). Approximating our solution by a sequence of such locally
bounded elements, we will then show that the latter formula is preserved at the limit, proving
the result in the general case.

7.1 Case when u is locally bounded

Let u be an L2-energy solution of

du = (Au+ f )dt + dBu

u0 ∈ L2,
(7.1)

where f belongs to L2(H−1), and such that moreover ‖u‖L∞(Q) < ∞, for any Q ⊂⊂
(0, T ] × R

d .
Fix a compact set of the form Q := [τ, T ] ×K, where K is compact and τ > 0. If P is

a polynomial we infer by linearity and Corollary 4.1 that P ◦ u ∈ Hα,1B (Q) and that
dP(u) = P ′(u)(Au+ f )dt + dBP(u) , on [τ, T ] ×K ,

in the L1(K)-sense.
Since P is admissible, i.e., P ′(0) = P ′′(0) = 0 and |P ′′|L∞ <∞, then the inequalities

|P(z)| ≤ |z|2|P ′′|L∞ ,
|P ′(z)| ≤ |z||P ′′|L∞ , ∀z ∈ R,

ensure that P ◦u belongs to L∞(0, T ;L1(Rd)) and similarly that |∇u||P ′(u)| is an element
of L1(0, T ;L1(Rd)). Hence, a direct evaluation shows that for P as above, it holds

‖P(u)‖L∞(L1)∩L1(W 1,1) ≤ C(|P ′′|L∞(R))‖u‖L∞(L2)∩L2(H 1) . (7.2)

Similarly, the drift term D := ∫ ·
0 P

′(u)(Au+f )dr belongs to V1
1 (0, T ;W−1,1(Rd)) as can

be seen by the estimate

|δDst |W−1,1 ≤
∫ t
s

∣∣P ′(u)(Au+ f )∣∣
W−1,1dr =: ωD(s, t)

≤ C (
λ, ‖u‖L∞(L2)∩L2(H 1), ‖f ‖L2(H−1), |P ′′|L∞

)
. (7.3)

Hence, from Proposition 3.3, we obtain the following estimate inHα,1B (Q) :
‖P(u)‖Hα,1B (Q) ≤ C

(
λ, ‖u‖L∞(L2)∩L2(H 1), ‖f ‖L2(H−1), |P ′′|L∞(R)

)
. (7.4)

Denote by Padm the set of admissible polynomials as above, equipped with the norm

|P |C2adm := |P
′′|L∞(R).

The estimate (7.4) shows that we have constructed a map

ϕu : Padm −→ Hα,1B,loc((0, T ] × R
d) ,

P �−→ ϕu(P ) := P ◦ u ,
which is linear and bounded. By a classical result of functional analysis, it can therefore be
uniquely extended to a mapping

u∗ : C2
adm −→ Hα,1B,loc((0, T ] × R

d) (7.5)
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which satisfies the same estimates as ϕu, namely (7.4) holds with F ∈ C2
adm instead of P .

Considering any converging sequence Pn → F in C2
adm, and then making use of Lemma

4.1, it is easily checked that (u∗(F ))t (x) = F(ut (x)), for every t ∈ [0, T ] and almost
every x ∈ R

d . This demonstrates in particular that F ◦ u is a well-defined element of
Hα,1B,loc((0, T ] × R

d) and that in the L1-sense:

d(F (u)) = F ′(u)(Au+ f )dt + dB(F (u)) on [τ, T ] ×K . (7.6)

Since by assumption, u belongs to the classHα,2B ([0, T ] ×R
d) and F is admissible, neither

of the terms in the right hand side of (7.4), with P replaced by F , depend on the choice of
Q ⊂⊂ R

d . It is therefore easy exercise left to the reader that the localization (with respect
to both variables) can be removed. Hence (7.6) holds in fact on [0, T ] × R

d , which shows
the claimed Itô formula when u is locally bounded.

We can now turn to the proof of the general case.

7.2 Proof of Theorem 2.2

By density one can consider sequences (f (n)) and (u0(n)) such that for every n ∈ N0, f (n)

satisfies Assumption 6.1, and such that as n→∞ :
f (n)→ f strongly in L2(H−1) . (7.7)

By Proposition 6.2, the corresponding solution u(n) ∈ Hα,2B is locally bounded away from
t = 0, and moreover, by the continuity shown in Theorem 5.1 we have

u(n)→ u strongly in L∞(L2) ∩ L2(H 1). (7.8)

Moreover, from (7.8), there exists a subsequence (still denoted by u(n) in the sequel) such
that

u(n)→ u almost everywhere on [0, T ] × R
d . (7.9)

By the intermediate result shown in the above paragraph, if F ∈ C2
adm, we have F(u(n)) ≡

u(n)∗(F ) ∈ Hα,1B , and moreover, for every φ ∈ W 3,∞ :
〈δF (u(n)), φ〉 −

〈
(B1
st + B2

st ) [F(us(n))]+ F(u(n))�st , φ
〉

= −
∫∫
[s,t]×Rd

[
aijF ′(u(n))∂ju(n)∂iφ + aijF ′′(u(n))∂ju(n)∂iu(n)φ

+fi (n)∂iu(n)F ′′(u(n))φ + fi (n)F ′(u(n))∂iφ + f0(n)F ′(u(n))φ
]
dxdr, (7.10)

where (fi (n))i=0,...,d , denotes any anti-derivative associated with f (n).
As mentioned before, for each n ∈ N, the operator norm of the extended linear map

u(n)∗, which is defined in (7.5), is the same as that of ϕu. As a consequence, the estimate
(7.4) remains true if the polynomial P is replaced by F . In particular, there is a constant C
such that for any n ∈ N :

‖F(u(n))‖Hα,1B ≤ C. (7.11)

By Lemma 4.1, the conclusion will follow by (7.9) and identification of the weak limits,
provided one can show that

(v(n); g0(n), gi(n)) :=
(
F(u(n)); aij ∂iu(n)∂ju(n), aij ∂jF ′(u(n))

)
, n ∈ N0 ,

is uniformly integrable.

372
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But using the pointwise estimates |v(n)| � u(n)2, |g0(n)| � |∇u(n)|2 and |gi(n)| �
|∇u(n)|2+|u(n)|2, this property is an obvious consequence of the strong convergence (7.8).
This finishes the proof of Theorem 2.2-(i). The proof of the second item is similar and
therefore omitted.

7.3 The Lp-norm of Lp solutions: proof of Corollary 2.1

ForR > 0 we define an admissible truncation FR of |·|p as follows. Let θ ∈ C∞c , supported
in [0, 2) such that θ = 1 on [0, 1] while 0 ≤ θ ≤ 1. Define

FR(z) :=
∫ |z|

0
dy

∫ y
0
θ

( |τ |
R

)
p(p − 1)|τ |p−2dτ, z ∈ R.

Clearly, |F ′′R|L∞ < ∞, and FR(0) = F ′R(0) = 0, so FR is admissible. Moreover, as R →
∞, FR ↗ | · |p almost everywhere and locally uniformly.

We have by Theorem 2.2:〈
δFR(u)st − (B1

st + B2
st )[FR(u)] − FR(u)�st , φ

〉
= −

∫∫
[s,t]×Rd

[
aijF ′R(u)∂ju∂iφ + aijF ′′R(u)∂ju∂iuφ

+fi∂iuF ′′R(u)φ + fiF ′R(u)∂iφ
]
dxdr

�λ,p,θ |φ|W 1,∞

(∫∫
[s,t]×Rd

|u|p−1|∇u| + |u|p−2|∇u|2 + |f||∇u||u|p−2 + |f||u|p−1
)

�λ,p,θ ‖u‖p−1Lp(Lp)
(‖∇u‖Lp(Lp) + ‖f ‖Lp(W−1,p))

+‖u‖p−2Lp(Lp)
(
‖∇u‖Lp(Lp) + ‖∇u‖2Lp(Lp)‖f ‖Lp(W−1,p)

)
. (7.12)

The above drift term is therefore uniformly bounded in R > 0, and so is ‖FR(u)‖Hα,1B by

Proposition 3.3.
By Lemma 4.1, this implies that one can take limits as R → ∞, in the above weak

formulation. But this means that (2.33) holds, which finishes the proof.

7.4 The Lp-norm in the general case: proof of Theorem 2.4

Uniqueness is easy and therefore we only sketch the proof. If u1 and u2 are two such solu-
tions, then v := u1 − u2 is also a solution of the same equation with 0 instead of f .
Using the Itô formula on |v|p, and testing against φ = 1, we find thanks to Proposition 3.3
that the L∞(s, t;L1)-norm of v satisfies an incremental inequality of the form (3.7) with
ϕ(s, t) = 0. The conclusion then follows by the rough Gronwall argument, Lemma 3.1, and
the fact that v0 = 0.

To show existence, we first adapt the compactness argument used in Section 5 for the
L2-theory.

Step 1: compactness argument Let us first consider the case when B = X · ∇ + X0 ∈
C∞(0, T ;D1), and let u be the unique distributional solution of

∂tu− Au = f +
(
Ẋ · ∇ + Ẋ0

)
u on (0, T ] × R

d ,

u0 := u0 ∈ Lp .
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From the classical PDE theory and our definition of the spacesHα,pB it is straighforward to

check that u ∈ Hα,2B . Moreover, it is standard that in the distributional sense

∂t (|u|p) = pu|u|p−2(Au+ ∂ifi + f0)+ Ẋ · ∇(|u|p)+ pẊ0|u|p
and, by the consistence of rough integration with Lebesgue/Stieljes integration, it holds in
that case

d|u|p − pu|u|p−2(Au+ f )dt = dB(p)|u|p , (7.13)
in the sense of Definition 2.4 in L1, and where B(p) := S2(X · ∇ + pX0). Let fi ∈
L1(Lp) ∩ L2(L2), i = 0, . . . , d be any antiderivative of f . Integrating, we have using
Hölder Inequality

δ
(|u|pLp )st +

∫∫
[s,t]×Rd

|u|p−2|∇u|2dxdt

�λ,p δ
(|u|pLp )st + ∫∫

[s,t]×Rd
p(p − 1)aij |u|p−2∂iu∂judxdt

=
∫∫
[s,t]×Rd

[
pu|u|p−2f0 − p(p − 1)|u|p−2∂iufi

]
dxdt

+
∫
Rd

|us |p(B(p),1,∗st + B(p),2,∗st )1dx + 〈|ust |p,�, 1〉

�λ,p ‖u‖p−1∞,p‖f0‖1,p + ‖|u|p−2|∇u|2‖1/21,1 ‖u‖
p−2
2∞,p‖fi‖2,p

+‖u‖p∞,p
(
ωB(s, t)

α + ωB(s, t)2α
)
+ �|u|p,��[3α]−3 (s, t) (7.14)

where we recall the shorthand notation ‖ ·‖a,b := ‖ ·‖La(s,t;Lb). But thanks to the remainder
estimates, Proposition 3.3, we find for |t − s| ≤ L(ρα(B)) small enough:

δ
(|u|pLp )st + ∫∫

[s,t]×Rd
|u|p−2|∇u|2dxdt

�λ,p
(
‖u‖p−1∞,p‖f0‖p,p(t − s)

p−1
p + ‖|u|p−2|∇u|2‖1/21,1 ‖u‖

p−2
2∞,p‖fi‖2,p

)
(1+ ωB(s, t)α)

ωB(s, t)
α

(
‖u‖p−1∞,p‖fi‖p,p(t − s)

p−1
p + ‖|u|p−2|∇u|2‖1/21,1 ‖u‖p/2∞,p(t − s)1/2

)
+ ‖u‖p∞,p

(
ωB(s, t)

α + ωB(s, t)2α + ωB(s, t)α
)

Using Young Inequality, taking L(ρα(B), λ) smaller if necessary and then absorbing to the
left, we end up with the inequality

δ
(|u|pLp )st + ∫∫

[s,t]×Rd
|u|p−2|∇u|2dxdt �λ,p ‖u‖p∞,p[ωB(s, t)α + (t − s)] + ‖f0, fi‖pp,p

By the rough Gronwall Lemma, Lemma 3.1, we obtain the estimate on

‖u‖pL∞(Lp) +
∫∫
[0,T ]×Rd

|u|p−2|∇u|2 dxdt ≤ C (
λ, p, ρα(B), ‖f ‖Lp(W−1,p)

)
. (7.15)

Now, consider a sequence of canonical lifts B(n) = S2(X(n) · ∇ + X0(n)) such that X(n)
is smooth in time, B(n)→ B, and define the differential rough driver B(p)(n) correspond-
ingly. Note that for each n ≥ 0, the map v(n) := |u(n)|p belongs to Hα,1

B(p)(n)
, since the

smoothness of X(n) in time makes trivial the statement about the remainder

R
v(n)
st = δvst (n)− B(p),1st (n)vs(n) ,
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in the definition of the controlled path spaceDα,1B(n). Thanks to the convergence of B(n), it is
immediately checked that ρα(B(p)(n),B(p)) → 0 (the ρα-convergence sense is equivalent
to the convergence of the coefficients, see Appendix A.1).

Moreover, thanks to the identities (6.10) and the remainder estimates (Proposition 3.3),
the estimate (7.15) implies the following uniform estimate on v(n) = |u(n)|p/2

‖|u(n)|p/2‖Hα,2
B(p/2)(n)

≤ C (
λ, p, ‖f ‖Lp(W−1,p)

)
.

Applying Lemma 4.1, one infers the existence of v ∈ Hα,2
B(p/2)

such that v(n)→ v weakly-∗
in L∞(L2) ∩ L2(H 1). Interpolating the L2(H 1)-estimate with the Vα(H−1) estimate, it is
easily seen that the convergence of v(n) holds strongly in L2(L2loc) and thus, upon taking a
subsequence we can assume that

|u(n)|p/2 → |u|p/2 , in L2(0, T ;L2loc) strong, and
u(n)→ u almost everywhere in [0, T ] × R

d .

Using again the remainder estimates, Proposition 3.3, it follows from the equation on
|u(n)|p that

‖|u(n)|p‖Dα,1
B(n)

≤ C .

Therefore, by the same compactness argument as in the proof of Lemma 4.1, there exists w
and gi, i = 0 . . . , d in (L∞)∗ so that for any � ∈ L∞([0, T ] × R

d),∫∫
[0,T ]×Rd

|u(n)|p�dxdt → 〈w,�〉(L∞)∗,L∞ (7.16)

p(p − 1)
∫∫
[0,T ]×Rd

aij |u(n)|p−2∂iu(n)∂ju(n)�dxdt → 〈g0,�〉(L∞)∗,L∞ (7.17)

p

∫∫
[0,T ]×Rd

u(n)|u(n)|p−2∂ju(n)�dxdt→〈gi,�〉(L∞)∗,L∞ , i=1, . . . , d .(7.18)
It remains to show that the above limits are the expected ones (thereby proving that the
above convergences hold in L1-weak).

Identification of the limits and conclusion Using the strong convergence of v(n) =
|u(n)|p/2, we also find∫∫

[0,T ]×Rd
|u(n)|p�dxdt =

∫∫
[0,T ]×Rd

|u(n)|p/2(|u(n)|p/2�)dxdt

→
∫∫
[0,T ]×Rd

|u|p�dtdx ,
and therefore we see that w = |u|p. To conclude, it remains to show that

g0 = aij |u|p−2∂iu∂ju (7.19)

gj = u|u|p−2∂ju . (7.20)

We content ourselves to show the first assertion since the other one is similar.
In order to prove (7.19), observe first that since p ≥ 4, it is also larger than 2 and

thus the sequences {u(n), n ∈ N0} and {u2(n), n ∈ N0} are also uniformly bounded in the
Hα,2B(n),loc (respectivelyH

α,1
B(2)(n)

)-sense. The Banach Alaoglu Theorem implies the existence

of μ ∈ (L∞)∗ so that aij ∂iu(n)∂ju(n) ⇀ μ weakly-∗. On the other hand ∇u(n) ⇀ ∇u in
L2w, and thus applying the local product formula of u with itself, we find that necessarily

μ = aij ∂iu∂ju . (7.21)

375



A. Hocquet, T. Nilssen

But since p ≥ 4, replacing p by p − 2 in the previous step, we see that there exists h0 in
(L∞)∗ so that (7.17) holds with (p − 2, h0) instead of (p, g0), and it is easily seen that

p(p − 1)u2h0 = (p − 2)(p − 3)g0 .

Applying the product formula, Proposition 4.1, to |u|p−2 with u2, we see thanks to (7.21)
that g0 = u2h0+2μ|u|p−2 = (p−2)(p−3)

p(p−1) g
0+2aij ∂iu∂ju|u|p−2,which after simplification

provides the relation (7.19).
Hence the chain rule (7.13) remains true for u which we recall is the unique solution in

the class described by the hypotheses of the theorem. This finishes the proof.

8 Proof of Theorem 2.5

We start with the following elementary observation. For a domain D ⊂ R
d with smooth

boundary, elements of Wk,p0 (D) for 0 ≤ k ≤ 3 and p ∈ [1,∞] are naturally identified in
Wk,p(Rd) through the embedding map

ιD : W 3,p
0 (D) ↪→ W 3,p(Rd),

where for any φ inW 3,p
0 (D), we define

ιDφ(x) :=
{
φ(x) if x ∈ D
0 if x /∈ D .

This operation is of course linear and continuous. In particular, by duality, for every dis-
tribution g ∈ W−3,p′(Rd), the restriction g|D ≡ ι∗Dg to a smooth domain D is well
defined.

8.1 Proof of the solvability

Identify the test functions Wk,p0 (D) as elements of Wk,p(Rd) as in the above discussion,
and then define

σ̃ := ιD(σ ), B̃ := (B̃1, B̃2) := (Z1σ̃ · ∇, Z2(σ̃ · ∇)2).
Moreover, let ũ0 := ιD(u0). Concerning the elliptic part, we define

ãij (t, x) :=
{
aij (t, x) if (t, x) ∈ [0, T ] ×D
1i=j otherwise,

and we let Ã := ∂i(ãij ∂j ·). With these definitions, Ã, B̃, fulfill the hypotheses of Theorem
5.1 so that there exists a unique L2-energy solution u ∈ Hα,2B ([0, T ] × R

d) to

du = Ãudt + dB̃u, on [0, T ] × R
d . (8.1)

The restriction v := u|[0,T ]×D is the natural candidate to solve the Dirichlet problem (2.35).
In order to check that this is indeed the case, let us remark that w := u|[0,T ]×(Rd\D) is a
classical solution to

∂tw = �w on [0, T ] × (Rd \D), w0 = 0,

and hence w = 0. This shows that u is supported in [0, T ] ×D. Since on the other hand u
belongs to L2(H 1(Rd)), this implies that its trace onto [0, T ] × ∂D is well defined, so that
v ∈ L2(H 1

0 (D)). This shows that v solves the Dirichlet problem (2.35).
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8.2 Proof of themaximum principle

The proof uses the so-called Stampacchia truncatures approach. We first assume that

a ∈ L1(0, T ;W 1,∞
0 (D)). (8.2)

Namely, let us fix a map G ∈ C1(R) such that the following properties are satisfied:⎡⎢⎣ |G
′|L∞(R) <∞,

G is increasing on (0,∞),
G(x) = 0 whenever x ≤ 0.

Let F ∈ C2(R) be defined by

F(x) :=
∫ x−M
0

G(y)dy, x ∈ R,

where we denote by
M = max(0, ess supD u0) <∞.

By Theorem 2.2 applied to F (note that u has compact support) the following equation
holds:

〈δF (u)st , φ〉 =
∫ t
s

〈G(ur −M)Aur, φ〉dr + 〈(B1 + B2)stF (us), φ〉 + 〈F�st , φ〉,

for some remainder F� ∈ V1+(0, T ;W−3,1). Next, we arrange the drift term as follows:

〈G(u−M)Au, φ〉 + 〈aijG′(u−M)∂iu∂ju, φ〉 = 〈−aijG(u−M)∂ju, ∂iφ〉
= 〈F(u), ∂j (aij ∂iφ)〉 .

Hence, denoting by D := ∫ ·
0 G(ur −M)Arurdr, we have for each (s, t) ∈ � :

|δDst |W−2,1 ≤ λ−1
∫∫
[s,t]×D

G′(u−M)|∇u|2dxdr + ‖a‖L1(s,t;W 1,∞)‖F(u)‖L∞(s,t;L1) .

Therefore, testing the equation against φ = 1 and then using Assumption 2.1 gives

δ(|F(u)|L1)st +
∫∫
[s,t]×D

G′(u−M)|∇u|2dxdr

�λ λ−1‖F(u)‖L∞(s,t;L1)ωB(s, t)α + ‖F(u)‖L∞(s,t;L1)‖a‖L1(s,t;W 1,∞), (8.3)

for any (s, t) such that ωB(s, t) ≤ L(λ). Applying Lemma 3.1, we obtain that

‖F(u)‖L∞(L1) ≤ C
(
λ, ‖a‖L1(W 1,∞), ωB, α

) |F(u0)|L1 ≡ 0,

from which we conclude that u ≤ M a.e. The proof of the estimate below is similar, hence
omitted. This proves the desired inequality, when (8.2) holds.

For general coefficients aij , we consider an approximating sequence aij (n), n ∈ N,

which converges almost everywhere and in L1 to aij , and such that for each n, Assumption
2.1 is satisfied (with a uniform λ) and (8.2) holds. By Lemma 4.1, we can assume without
loss of generality that the corresponding solution u(n) converges almost everywhere to that
associated with aij . Taking the limit in (2.38) then proves the result. This finishes the proof
of Theorem 2.5.
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Appendix A: some technical proofs

A.1 Proof of Lemma 2.1

It is well-known that a multiplication operator Mf of the form Mfh := x �→ f (x)h(x)

for h ∈ L2, is bounded if and only if |f |L∞ < ∞, and that the map f ∈ L∞ �→ Mf ∈
L (L2, L2) is an isometry (see for instance [57]). By an immediate generalization, for i =
1, 2, we see that the couple (j1, j2) defined as

j1 : (W 3,∞)d ×W 2,∞ → D1 (X, Y ) �→ Xi∂i + Y ,
j2 : (W 3,∞)d×d × (W 2,∞)d ×W 1,∞ → D2 (X,Y,Z) �→X

ij ∂ij + Y
i∂i+Z ,(A.1)

is a continuous isomorphism, where Di , i = 1, 2, are equipped with the operator-norm
topologies as in Definition 2.1.

Let t �→ Bt = Xt · ∇ +X0
t be in C

1(0, T ;D1) and, as in (2.11), define the canonical lift

(B1, B2) := S2(B) .
By definition of B2

st , we have for 0 ≤ s ≤ t ≤ T :

B2
st :=

∫ t
s

dBr ◦ δBsr

=
∫ t
s

(dXir∂i + dX0
r ) ◦ (Xjsr∂j +X0

sr )

= X
ij
st ∂ij + (List + 2S0ist )∂i + L

0
st + S

00
st , (A.2)

where we recall the notation Xst := Xt −Xs, and where we introduce⎡⎢⎣X
ij
st =

∫ t
s
XisrdX

j
r ,

L
i
st =

∫ t
s
dXμr ∂μXisr ,

S
ij
st = symX

ij
st := 1

2

(∫ t
s
XisrdX

j
r +

∫ t
s
X
j
srdXir

)
, for all 0 ≤ i, j ≤ d .

(A.3)

The above integrals are understood in the sense of Bochner, inW 3,∞, W 2,∞,W 1,∞. As seen
through immediate algebraic computations, the generalized Chen’s relations (2.17) hold in
this case, since

δXsθt = L
i
st − L

i
sθ − L

i
θ t

=
(∫ t
s

−
∫ θ
s

)
(dXμr ∂μX

i
sr )dr −

∫ t
θ

(dXμr ∂μX
μ
θr )dr

= Xμθt ∂μXisθ . (A.4)
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An Itô Formula for rough partial differential equations and some...

Next, for almost every x ∈ R
d , an integration by parts in the time variable yields the identity

S
ij
st (x) =

1

2
Xist (x)X

j
st (x) , i = 0, . . . d. (A.5)

Denoting by Aijst := X
ij
st − S

ij
st , we further observe that Schwarz Theorem implies

X
ij
st ∂ij = S

ij
st ∂ij + A

ij
st ∂ij = S

ij
st ∂ij ,

since Ast is antisymmetric. Hence, only the symmetric part of X contributes to the second
order part of B2

st in (A.2). This yields the desired expression, namely

B2
st =

1

2
XistX

j
st ∂ij +

(
L
i
st +X0

stX
i
st

)
∂i + L

0
st +

1

2
(X0
st )

2 . (A.6)

To show (2.1), note that

B1
st ◦ B1

st = (Xist ∂i +X0
st ) ◦ (Xjst ∂j +X0

st )

= XistXjst ∂ij +
(
X
j
st ∂jX

i
st + 2X0

stX
i
st

)
∂i +Xjst ∂jX0

st + (X0
st )

2 .

This yields, by definition of [B]:
[B]st ≡ B2

st −
1

2
B1
st ◦ B1

st

=
(
L
i
st −

1

2
X
j
st ∂jX

i
st

)
∂i + L

0
st −Xjst ∂jX0

st (A.7)

which is the claimed equality.
Now, pick any geometric differential rough driver B, and let B(n) ∈ C1(0, T ;D1), n ∈

N0, be such that B(n) ≡ S2(B(n)) →ρα B. Making use of the isomorphisms (j1, j2) we
see that the coefficients

(X(n), Y (n);X(n),Y(n),Z(n)) ≡ (j−11 B
1(n); j−12 B

2(n))

converge to (j−11 B
1; j−12 B

2), in the space(
(W 3,∞)d ×W 2,∞)

×
(
(W 3,∞)d×d × (W 2,∞)d ×W 1,∞)

.

In particular, one can take the limits in the identities (A.4), (A.6), (A.7), proving the
corresponding relations for the limit B.

A.2 Renormalization property for geometric differential rough drivers

In what follows, we fix D ⊂ U ⊂ R
d as in Section 4 and, recalling Notation 4.15, we will

further denote by � := �D while �ε := �Dε .
Given �(·, ·), we have for (x, y) ∈ �, by definition of Tε :

Tε�(x, y) := 1

(2ε)d
�

(
x+ + x−

ε
, x+ − x−

ε

)
,

where we introduce the new coordinates

x+ := x + y
2
, , x− := x − y

2
. (A.8)

Note that the Jacobian determinant of the map χ : � → R
d × B1, (x, y) �→ (x+, x−) is

equal to 2−d (in fact
√
2χ is a rotation). By a common abuse of notation, we will denote

by ∇± the gradient with respect to the new coodinates x+(x, y) and x−(x, y). Formally, we
have the relation ∇± = ∇x ± ∇y .
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The proof of Theorem 4.1 is based on the following result, whose proof is implicitly
contained in [19], and therefore omitted.

Lemma A.1 Let V = σ i(·)∂i be in D1. For a generic function ψ : Rd → R, denote by
"(x, y) := ψ((x − y)/2), and let Vx (resp. Vy) be a shorthand for V ⊗ id, (resp. id⊗ V ).
For each k = 1, 2, 3 and ψ ∈ W 3,∞ with compact support in the unit ball B1 ⊂ R

d , it
holds uniformly in ε ∈ (0, 1]:∣∣∣(∇±)k−1 ◦ T −1ε ◦ (Vx + Vy) ◦ Tε["(x, y)]

∣∣∣ ≤ |σ |Wk,∞|ψ |Wk,∞ .

for a.e. (x, y) ∈ R
d × R

d .

Proof of the Theorem Step 1: the key estimate. We first show that for� ∈ Wk,∞0 (�), and
with V as in Lemma A.1:

|(∇±)k−1(Tε)−1(Vx + Vy)Tε�|L∞(�) ≤ C|σ |Wk,∞|�|Wk,∞0 (�)
. (A.9)

By density, it will be enough to show (A.9) on functions of the form �(x, y) =
φ(
x+y
2 )ψ(

x−y
2 ), with ψ compactly supported in B1. For such �, we have

T −1ε (Vx + Vy)Tε�(x, y) = T −1ε (Vx + Vy)
[
φ(
x + y
2
)

]
ψ(
x − y
2ε
)

+φ(x + y
2
)T −1ε (Vx + Vy)

[
ψ(
x − y
2ε
)

]
= Iε + IIε .

Using the new coordinates, we have the following expression for the first term:

Iε = 1

2
(σ (x+ + εx−)+ σ(x+ − εx−)) · ∇φ(x+)ψ(x−) .

By the commutation relations

∇+Tε = Tε∇+, and ∇−Tε = ε−1Tε∇−. (A.10)

it is then easily seen (see [38, Proposition 6.1] for details) that for k = 1, 2, 3 :
ess supx+,x−|(∇±)k−1Iε | ≤ |σ |Wk,∞|�|Wk,∞ ≤ CωB(s, t)iα|�|Wk,∞

For the second term, we can use Lemma A.1, since by assumption ψ is supported
on the unit ball of Rd . We have

ess supx+,x−|(∇±)k−1[IIε]| ≤ |σ |Wk |�|Wk,∞ . (A.11)

Step 2: uniform estimates on the first component. For V ∈ D1 define

and further let

(A.12)
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Particularizing (A.9) with V = B1
st ∈ D1 for fixed s, t, we see by definition of

�
1,ε
st (B) that

for any k ∈ {1, 2, 3}. This yields the first part of the claimed estimate.
Note that, since the bracket [B]st has order one (B is geometric), we can let

V = [B]st in the previous computations in order to obtain

(A.13)

Step 3: uniform estimates on the second component.Recalling that [B] := B2−B1◦B1/2,
we have by definition of �2st (B):

�
2,ε
st (B) = T −1ε

(
B2
x + B1

xB
1
y + B2

y

)
st
Tε

≡ T −1ε
(
1

2
B1
xB

1
x + [B]x + B1

xB
1
y +

1

2
B1
yB

1
y + [B]y

)
st

Tε

= T −1ε
(
1

2
(B1
x + B1

y )
2 + [B]x + [B]y

)
st

Tε .

Otherwise said, we have the algebraic identity

�
2,ε
st (B) =

1

2
�
1,ε
st (B) ◦ �1,εst (B)+Bεst , where Bεst := T −1ε ([B]x + [B]y)stTε .

(A.14)
But if k ∈ {−1, 0}, the estimate (A.13) shows that

|Bεst |L (Wk,1,Wk−1,1) ≤ CωB(s, t)2α . (A.15)

We can now conclude thanks to (A.15) and Step 2, since for k = 0,−1 :

|�2,εst (B)|L (Wk,1,Wk−2,1) ≤
1

2
|�1,εst (B)|L (Wk,1,Wk−1,1)|�1,εst (B)|L (Wk−1,1,Wk−2,1)
+|Bεst |L (Wk,1,Wk−2,1) ≤ CωB(s, t)2α ,

which finishes the proof of Theorem 4.1.

Appendix B: Further remarks and comments

B.1 Uniqueness of the Gubinelli derivative

Let u be such that

du = f dt + dB(g, g′) ,
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where f ∈ L(0, T ;W−1,p) while (g, g′) ∈ Dα,pB , and write
u ! (f ; g, g′) .

It is natural to ask under which condition one can have uniqueness of the triple (f ; g, g′)
such that u ! (f ; g, g′), a question that relates the Doob-Meyer decomposition for semi-
martingales. Such uniqueness is certainly not true in general because our definition of a
differential rough driver could accomodate that of Ḃ := Ż∂x, where Z ∈ C∞(0, T ;R).
Indeed, in this case one can arbitrarily choose g′ = 0 for any u and alternatively represent
the element u ! (f ; g, 0) by writing instead u ! (f + Ż∂xg; 0, 0).

In the finite-dimensional case however (for instance replacing B by a path Z of 1
α
-finite

variation with values in R), the decomposition (3.12) is indeed unique in the case where Z
is truly rough [25], i.e. when there exists a dense set of times t ∈ [0, T ] such that

lim sup
s→t

|Zst |
ωZ(s, t)2α

= ∞. (B.1)

The situation here is different in the sense that assuming B = Zσ · ∇ with Z as in (B.1)
does not guarantee uniqueness of the couple (f, g) in (3.12). To wit, assume that d = 2,
and let B as above with σ = (0, 1). If (f, g) satisfy (3.12), then it is immediately seen that
any path of the form t �→ gt (x, y)+ g̃t (x) where g̃ ∈ Vα1 (0, T ;L2(R)) is a function of the
first variable only, will also satisfy (3.12). In this counterexample, one sees that the space
variable plays an important role in the discussion, and that if one aims at the uniqueness
of the above decomposition, then some “non-degeneracy” assumptions on the differential
operator σ · ∇ are in order. Let us now formulate a natural sufficient condition under which
uniqueness of the Gubinelli derivative holds.

Assume that we are given a family Bt of (non-necessarily differential) operators such
that the mapping [0, T ] → ∩−2≤k≤0L (Hk,Hk−1), t �→ Bt is α-Hölder continuous, where
as before α > 1/3. For notational simplicity, we denote in the sequel Bst := δBst .

Theorem B.1 Assume the existence of γ ∈ [α, 32α), such that the following ellipticity con-
dition is satisfied: there is a constant # > 0, such that for every ϕ in H−1, and for each
(s, t) ∈ � ∩D2,

|Bstϕ|H−2 ≥ #(t − s)γ |ϕ|H−1 (B.2)
where we are given some dense subset D of [0, T ].

Let u ∈ L∞(0, T ;L2) ∩ Cα(0, T ;H−1) and suppose that g, g̃ ∈ Cα(0, T ;H−1) are
both Gubinelli derivatives for u in the Hölder sense, by which we mean that

sup
0≤s<t≤T

|Rgst |H−2
(t − s)2α = sup

0≤s<t≤T
|δust − Bstgs |H−2
(t − s)2α <∞ ,

and similar for g̃. Then, g = g̃.

Proof Fix (s, t) ∈ � ∩D2. The assumption (B.2) implies that the bilinear form

ast : H−1 ×H−1 → R, ast (u, v) := (Bstu, Bst v)H−2
is H−1-coercive. Therefore, if F : H−1 → R is linear and continuous, the variational
problem {

Find u ∈ V := H−1 such that
∀v ∈ V , ast (u, v) = F(v) . (B.3)

admits a unique solution
u = TstF ∈ H−1 .
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Moreover, it is easily seen that the Riesz isomorphism between H−2 and its dual identifies
the dual of H−1 with H−3, hence the operator norm of Tst : (H−1)∗ ! H−3 → H−1 is
estimated above as

|Tst |L (H−3,H−1) ≤ #−2(t − s)−2γ .
Furthermore, if B†

st denotes the adjoint of Bst with respect to the H−2-inner product,
observe thanks to (B.3) that Tst is the inverse transform of

B
†
st ◦ Bst : H−1 → H−3.

Let g be a Gubinelli derivative for u. From the above discussion, one infers the relation

gs = TstB
†
st δust − TstB

†
stR
u
st =: I + II .

By assumption on Rust := δust − Bstgs, it holds
|II |H−1 ≤ #−2(t − s)−2γ |B†

stR
u
st |H−3 ≤ #−2(t − s)3α−2γ ‖Ru‖Cα2 (H−2).

Hence, letting tn ↘ s, tn ∈ D, one sees that
|II |L2 ≤ C(tn − s)3(α−

2
3 γ ) → 0 as n→∞.

This implies that gt is uniquely determined by the relation

gt = lim
s→t,s∈DTstB

†
st δust in H−1,

thus proving our claim.

Example B.1 Let d = 1, and consider a 1-dimensional, α-Hölder rough path (Z1, Z2) ∈
C α(0, T ;R) such that for some D as above it holds

|Zst | ≥ c(t − s)γ , for every (s, t) ∈ � ∩D2,

where we are given some constant γ ∈ [α, 2α) (this implies in particular true roughness
for Z, in the sense of (B.1)). Moreover, let σ ∈ W 3,∞ be bounded below, namely such that
there exist constants σ > 0 with the property that σ(x) ≥ σ , for almost every x ∈ R

d .
Then, it is easily seen that (B.2) holds with the differential rough driver B given by

Example 2.1 with ρ = 0, where # = #(c, σ ) > 0.

B.2 Brackets

For a geometric rough path (Z1,μ, Z2,μν)1≤μ,ν≤m it is well-known that the symmetric part
of Z2 is expressed in terms of Z1, as follows

symZ2,μνst ≡ Z
2,μν
st + Z2,νμst

2
= Z

1,ν
st Z

1,μ
st

2
, for all 1 ≤ μ, ν ≤ m, (B.4)

and every (s, t) ∈ � (see [50]). Alternatively, this means that the bracket [Z]st := symZ2st−
1
2 (Z

1
st )

2 vanishes for geometric rough paths. By analogy, in the case of an differential rough
driver B, we introduced the bracket as the following family of differential operators:

[B]st := B2
st −

1

2
B1
st ◦ B1

st , (s, t) ∈ �, (B.5)

(see Lemma 2.1). In contrast with what is encountered in the classical theory, note that
the bracket does not vanish in general for B geometric, which is a side effect of the non-
commutativity of the algebra of differential operators. Nevertheless, we saw in Lemma 2.1
that, as a consequence of geometricity, [B] takes values in the space of D1. In particular,
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unless B1
st ∈ D0, we see that a a cancellation occurs, since in that case [B]st has stricly

lower order than B2
st . This can be seen as a non-commutative counterpart of the fact that the

bracket of geometric rough paths is zero.

Remark B.1 If B denotes a differential rough driver, then by definition of the bracket [B]
in (B.5), we have

B2
st (φψ) = (B2

stφ)ψ + (B1
stφ)(B

1
stψ)+ φ(B2

stψ)− lst (φ, ψ)

where lst denotes the (generally unbounded) bilinear operator

φ,ψ �→ lst (φ, ψ) = [B]st (φψ)− ([B]stφ)ψ − φ([B]stψ) . (B.6)

To give a concrete example, consider a filtered probability space (�,A,P, {Ft }t∈[0,T ]), let
W : � × [0, T ] → R be a Brownian motion, and fix V ∈ D1 \ D0. Define the (ran-
dom) differential rough driver BItô(ω) by BItô,1

st := (Wt −Ws)V and, observing that P-a.s.,∫ t
s
(Wr −Ws)dWr = 1

2 [(Wt −Ws)2 − (t − s)] (Itô sense), let

B
Itô,2
st := 1

2
[(Wt −Ws)2 − (t − s)]V 2.

With this definition, we have

[BItô]st = − (t − s)
2
V 2 ,

showing that [B] ∈ D2 \ D1, almost surely.

Remark B.2 As seen in the above remark, if B is not geometric, its bracket [B] (see (B.5))
is generally not first order. In the stochastic context, this has to do with the violation of
stochastic parabolicity assumption, as can be seen as follows. Using the notations of Remark
(B.1), we see that in the proof of the product formula, the (4.34) must be changed to

lim
ε→0

〈
�
2,ε
st (B)(u⊗ v)εs ,�

〉 = 〈
(B2
stus)vs + (B1

stus)(B
1
st vs)+ us(B2

st vs), φ
〉

≡ 〈B2
st (usvs), φ〉 + 〈lst (us, vs), φ〉 .

If we let furthermore u = v where u is an L2-energy solution of (2.24), B = BItô, and
φ = 1, we have

〈lst (us, us), 1〉 = (t − s)
∫
U

(V us)
2dx .

The latter competes with the term−2λ ∫∫[s,t]×U |∇u|2dxdr, which is brought by the elliptic
part of the equation. In particular, the usual technique to obtain the energy estimate on u
fails, unless the coefficients of V are taken small with respect to λ. This illustrates the
importance of the geometricity assumption in our results.
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Rugueuses Perturbées]. Annales Mathématiques Blaise Pascal 21, 103–150 (2014)

14. Davie, A.M.: Differential Equations Driven by Rough Paths: an Approach via Discrete Approximation.
In: Applied Mathematical Research Express. Citeseer (2007)

15. Delarue, F., Diel, R.: Rough paths and 1d SDE with a time dependent distributional drift: application to
polymers. Probab. Theory Relat. Fields 165(1-2), 1–63 (2016)

16. De Lellis, C.: Ordinary differential equations with rough coefficients and the renormalization theorem
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43. Krylov, N.V.: On the itô-Wentzell formula for distribution-valued processes and related topics. Probab.
Theory Relat. Fields 150(1-2), 295–319 (2011)
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