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ABSTRACT
Many indefinite integrals are derived for Bessel functions and asso-
ciated Legendre functions from particular transformations of their
differential equations which are closely linked toWronskians. A large
portion of the results for Bessel functions is known, but all the results
for associated Legendre functions appear to be new. The method
can be applied tomany other special functions. All results have been
checked by differentiation using Mathematica.
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1. Introduction

Many special functions ȳ(x) obey a second-order linear homogeneous differential equation
of the form

ȳ′′ (x) + p̄ (x) ȳ′ (x) + q̄ (x) ȳ (x) = 0, (1.1)

and in [1,2], the integration formula∫
f̄ (x)

(
h′′ (x) + p̄ (x) h′ (x) + q̄ (x) h (x)

)
ȳ (x) dx = f̄ (x)

(
h′ (x) ȳ (x) − h (x) ȳ′ (x)

)
(1.2)

was derived, where ȳ(x) is any solution of Equation (1.1) and h(x) is an arbitrary twice
differentiable complex-valued function of x. The function f̄ (x) in Equation (1.2) obeys the
differential equation (

f̄ (x)
)′ = p̄ (x) f̄ (x) (1.3)

and hence

f̄ (x) = exp
(∫

p̄ (x) dx
)
. (1.4)

Themultiplicative constant in the definition of f̄ (x) can be arbitrarily chosen, as any choice
cancels in Equation (1.2). The general solution of Equation (1.1) is of course given in terms
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of any two independent solutions of the equation as

ȳ (x) = C1ȳ1 (x) + C2ȳ2x (1.5)

and choosing h(x) = ȳ2(x) and y(x) = ȳ1(x) in Equation (1.2) gives immediately

ȳ1 (x) y′
2 (x) − ȳ′

1 (x) ȳ2 = A
f̄ (x)

, (1.6)

whereA is a constant, which is Abel’s identity [3,4], with the constantA determined by the
chosen normalizations for ȳ1(x), ȳ2(x) and f̄ (x).

In [1,2], various transformations of the form ȳ(x) = g(x)y(x) were applied to
Equation (1.1) and themethod of fragmentswas applied to the resulting equations to derive
many integrals of ȳ1(x)and ȳ2(x) for specific special functions. The equation obeyed by y(x)
is [1,2]

y′′ (x) +
(
2
g′ (x)
g (x)

+ p̄ (x)
)
y′ (x) +

(
g′′ (x)
g (x)

+ p̄ (x)
g′ (x)
g (x)

)
y (x) = 0 (1.7)

and defining

p (x) = 2
g′ (x)
g (x)

+ p̄ (x) , (1.8)

then

g (x) =
√
f (x)
f̄ (x)

(1.9)

y (x) =
√
f̄ (x)
f (x)

ȳ (x) (1.10)

and Equation (1.7) can be alternatively expressed as [1]

y′′ (x) + p (x) y′ (x) +
[
1
2
(
p (x) − p̄ (x)

)′ + 1
4
(
p2 (x) − p̄2 (x)

)+ q̄ (x)
]
y (x) = 0.

(1.11)
One particular transformed equation which was not examined in [1,2] is

y′′ (x) + p (x) y′ (x) = 0, (1.12)

where

1
2
(
p (x) − p̄ (x)

)′ + 1
4
(
p2 (x) − p̄2 (x)

)+ q̄ (x) = 0. (1.13)

The explicit form of p(x) in Equation (1.12) could be constructed by solving
Equation (1.13) as a Riccati equation using Euler’s method [5], but this is not necessary.
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Equation (1.12) has a constant C1 as a solution, so its general solution is necessarily of the
form

y (x) = C1 + C2r (x) . (1.14)

The general solution of Equation (1.12) is also given by Equations (1.5) and (1.10) as

y (x) =
√
f̄ (x)
f (x)

(
C1ȳ1 (x) + C2ȳ2 (x)

)
, (1.15)

and there are only two ways Equation (1.15) can match the form of Equation (1.14). These
are the choices √

f̄ (x)
f (x)

= 1
ȳ1 (x)

⇒ f (x) = f̄ (x) ȳ21 (x) (1.16)

so that Equation (1.15) becomes

y (x) = C1 + C2
ȳ2 (x)
ȳ1 (x)

(1.17)

and the choice √
f̄ (x)
f (x)

= 1
ȳ2 (x)

⇒ f (x) = f̄ (x) ȳ22 (x) (1.18)

which gives

y (x) = C1
ȳ1 (x)
ȳ2 (x)

+ C2. (1.19)

The two choices for p(x) in Equation (1.12) are given directly by Equation (1.3) and
Equations (1.16) and (1.18) as

p (x) = p̄ (x) + 2
ȳ′
1 (x)
ȳ1 (x)

, (1.20)

p (x) = p̄ (x) + 2
ȳ′
2 (x)
ȳ2 (x)

(1.21)

resulting in the transformed differential equations

y′′ (x) +
(
p̄ (x) + 2

ȳ′
1 (x)
ȳ1 (x)

)
y′ (x) = 0, (1.22)

y′′ (x) +
(
p̄ (x) + 2

ȳ′
2 (x)
ȳ2 (x)

)
y′ (x) = 0 (1.23)

with the respective solutions

y1 (x) = C1 + C2
ȳ2 (x)
ȳ1 (x)

, (1.24)

y2 (x) = C1
ȳ1 (x)
ȳ2 (x)

+ C2. (1.25)
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The results above can also be proven very simply usingAbel’s identity (1.6) forWronskians.

Theorem 1.1: The differential equation

y′′ (x) +
(
p̄ (x) + 2

ȳ′
1 (x)
ȳ1 (x)

)
y′ (x) = 0 (1.26)

has the general solution

y (x) = C1 + C2
ȳ2 (x) ,
ȳ1 (x)

(1.27)

where ȳ1(x) and ȳ2(x) are any two solutions of Equation (1.1).

Proof: From elementary principles y′(x) is given by

y′ (x) = C2
ȳ1 (x) ȳ′

2 − ȳ′
1 (x) ȳ2

ȳ21 (x)
(1.28)

and from Abel’s identity equation (1.28) becomes

y′ (x) = C2A
f̄ (x) ȳ21 (x)

. (1.29)

Differentiating Equation (1.29) gives

y′′ (x) = −C2A
(
f̄ ′ (x) ȳ21 (x) + 2f̄ (x) ȳ′

1 (x) ȳ′
1 (x)

)
(
f̄ (x) ȳ21 (x)

)2 (1.30)

and substituting Equation (1.3) into Equation (1.30) gives

y′′ (x) = −
(
p̄ (x) + 2

ȳ′
1 (x)
ȳ1 (x)

)
y′ (x) (1.31)

and hence y(x) is a solution of Equation (1.26). As Equation (1.27) contains two inde-
pendent functions, it is the general solution of Equation (1.26) and the theorem is
proven. �

The results presented above involvingWronskians can be applied to many special func-
tions. In addition, themethod of fragments [1,2] can be applied to Equations (1.22)– (1.23)
to obtain new integrals. Many useful fragments can be obtained by employing recurrence
relations for ȳ′

1(x) and ȳ′
2(x) in these equations. These include conventional recurrence

relations and the recurrences introduced in [6], which give more exotic integrals. Section 2
provides integrals for Bessel functions obtained with the equations above. Some of these
integrals are given in the literature and can be obtained with Mathematica [7]. However,
Bessel functions seem to provide the only example where this is the case. Section 3 gives
analogous results for associated Legendre functions and these results seem to be completely
new, with Mathematica being unable to obtain them directly. All results presented have
been checked by differentiation using Mathematica.
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2. Bessel functions

The baseline Bessel equation is

ȳ′′ (x) + 1
x
ȳ′ (x) +

(
1 − ν2

x2

)
ȳ (x) = 0 (2.1)

for which f̄ (x) = x. The usual two independent solutions selected for this equation are the
Bessel function of first kind Jν(x) and the Neumann function Yν(x), with a Wronskian
given by [8]

W (Jν (x) , Yν (x)) ≡ Jν (x)Y ′
ν (x) − J′ν (x)Yν (x) = 2

πx
. (2.2)

However, as Equation (2.1) contains ν2, the functions J−ν(x) and Y−ν(x) are also solutions
of Equation (2.1). The four Wronskians linking Jν(x) and Yν(x) with J−ν(x) and Y−ν(x)
are [8]

W (Jν (x) , J−ν (x)) = −2 sin (νπ)

πx
for ν /∈ Z, (2.3)

W (Yν (x) ,Y−ν (x)) = −2 sin (νπ)

πx
for ν /∈ Z, (2.4)

W (Jν (x) ,Y−ν (x)) = 2 cos (νπ)

πx
for ν + 1

2
/∈ Z, (2.5)

W (Yν (x) , J−ν (x)) = −2 cos (νπ)

πx
for ν + 1

2
/∈ Z. (2.6)

The functions in Equations (2.3)–(2.4) are independent provided ν /∈ Z and the functions
in Equations (2.5)– (2.6) are independent provided ν + 1

2 /∈ Z.
Applying Equation (2.2) in Equations (1.28) and (1.29) gives the two integrals∫

dx
xJ2ν (x)

= π

2
Yν (x)
Jν (x)

, (2.7)

∫
dx

xY2
ν (x)

= −π

2
Jν (x)
Yν (x)

. (2.8)

A closely related integral is obtained by noting that fromWronskian relation (2.2) we have

(Yν (x) /Jν (x))′

Yν (x) /Jν (x)
= 2

πxJν (x)Yν (x)
(2.9)

and hence ∫
dx

xJν (x)Yν (x)
= π

2
ln
(
Yν (x)
Jν (x)

)
. (2.10)

Equations (2.7)–(2.8) and (2.10) are tabulated in [9]. Equations (2.3)–(2.6) give the
additional integrals:∫

dx
xJ2ν (x)

= − π

2 sin (νπ)

J−ν (x)
Jν (x)

for ν /∈ Z, (2.11)



346 J. T. CONWAY

∫
dx

xJ2−ν (x)
= π

2 sin (νπ)

Jν (x)
J−ν (x)

for ν /∈ Z, (2.12)

∫
dx

xY2
ν (x)

= − π

2 sin (νπ)

Y−ν (x)
Yν (x)

for ν /∈ Z, (2.13)

∫
dx

xY2−ν (x)
= π

2 sin (νπ)

Yν (x)
Y−ν (x)

for ν /∈ Z, (2.14)

∫
dx

xJ2ν (x)
= π

2 cos (νπ)

Y−ν (x)
Jν (x)

for ν + 1
2

/∈ Z, (2.15)

∫
dx

xY2−ν (x)
= − π

2 cos (νπ)

Jν (x)
Y−ν (x)

for ν + 1
2

/∈ Z, (2.16)

∫
dx

xY2
ν (x)

= − π

2 cos (νπ)

J−ν (x)
Yν (x)

for ν + 1
2

/∈ Z, (2.17)

∫
dx

xJ2−ν (x)
= π

2 cos (νπ)

Yν (x)
J−ν (x)

for ν + 1
2

/∈ Z, (2.18)

∫
dx

xJν (x) J−ν (x)
= π

2 sin (νπ)
ln
(

Jν (x)
J−ν (x)

)
for ν /∈ Z, (2.19)

∫
dx

xYν (x)Y−ν (x)
= π

2 sin (νπ)
ln
(

Yν (x)
Y−ν (x)

)
for ν /∈ Z, (2.20)

∫
dx

xJν (x)Y−ν (x)
= π

2 cos (νπ)
ln
(
Y−ν (x)
Jν (x)

)
for ν + 1

2
/∈ Z, (2.21)

∫
dx

xYν (x) J−ν (x)
= π

2 cos (νπ)

Yν (x)
J−ν (x)

for ν + 1
2

/∈ Z. (2.22)

Equation (2.19) is tabulated in [9].
For the Bessel equation, Equations (1.22)–(1.23) become

y′′ (x) +
(
1
x

+ 2
J′ν (x)
Jν (x)

)
y′ (x) = 0 (2.23)

with a solution

y (x) = Yν (x)
Jν (x)

(2.24)

and

y′′ (x) +
(
1
x

+ 2
Y ′

ν (x)
Yν (x)

)
y′ (x) = 0 (2.25)

with a solution

y (x) = Jν (x)
Yν (x)

. (2.26)

Employing Equations (2.23)– (2.24) in Equation (1.2) gives for arbitrary h(x)∫
xJν (x)

(
h′′ (x) +

(
1
x

+ 2
J′ν (x)
Jν (x)

)
h′ (x)

)
Yν (x) dx
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= h′ (x) Jν (x)Yν (x) − 2h (x)
π

(2.27)

and employing Equations (2.25)–(2.26) in Equation (1.2) gives∫
xYν (x)

(
h′′ (x) +

(
1
x

+ 2
Y ′

ν (x)
Yν (x)

)
h′ (x)

)
Jν (x) dx

= h′ (x) xJν (x)Yν (x) + 2h (x)
π

. (2.28)

Choosing the fragment

h′′ (x) + 1
x
h′ (x) = 0 (2.29)

with solution y(x) = ln(x) in Equations (2.27)– (2.28) gives the integrals∫
J′ν (x)Yν (x) dx = Jν (x)Yν (x)

2
− ln (x)

π
, (2.30)∫

Y ′
ν (x) Jν (x) dx = Yν (x) Jν (x)

2
+ ln (x)

π
. (2.31)

Perhaps the most interesting special cases of these integrals are∫
J1 (x)Y0 (x) dx = − J0 (x)Y0 (x)

2
+ ln (x)

π
, (2.32)∫

Y1 (x) J0 (x) dx = − J0 (x)Y0 (x)
2

− ln (x)
π

(2.33)

and these results appear to be new. Mathematica is able to evaluate the integrals in Equa-
tions (2.32)–(2.33) in terms of the Meijer G function, but is unable to reduce these
expressions.

Employing the conventional recurrences in Equation (1.2)

J′ν (x) = ±
(
Jν∓1 (x) − ν

x
Jν (x)

)
, (2.34)

Y ′
ν (x) = ±

(
Yν∓1 (x) − ν

x
Yν (x)

)
, (2.35)

and the fragment

h′′ (x) + 1 ∓ 2ν
x

h′ (x) = 0 ⇒ h (x) = x±2ν (2.36)

in Equation (1.2) for ν �= 0 gives the integrals∫
x2νJν−1 (x)Yν (x) dx = x2ν

2

(
Jν (x)Yν (x) − 1

νπ

)
, (2.37)

∫
x−2νJν+1 (x)Yν (x) dx = −x−2ν

2

(
Jν (x)Yν (x) + 1

νπ

)
, (2.38)

∫
x2νJν (x)Yν−1 (x) dx = x2ν

2

(
Jν (x)Yν (x) + 1

νπ

)
, (2.39)
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∫
x−2νJν (x)Yν+1 (x) dx = −x−2ν

2

(
Jν (x)Yν (x) − 1

νπ

)
. (2.40)

Equations (2.32)–(2.33) can be considered to provide integrals (2.37)–(2.40) for the for-
bidden value ν = 0. Results equivalent to Equations (2.40)–(2.43) can be obtained by a
formula given in [9].

The sequence of recurrence relations given in [6] for general cylinder functions Zν(x)
can be used to obtain many different integrals. The simplest of these are

Z′
ν (x) +

(
ν

x
− x

2 (ν − 1)

)
Zν (x) = x

2 (ν − 1)
Zν−2 (x) , (2.41)

Z′
ν (x) +

(
x

2 (ν + 1)
− ν

x

)
Zν (x) = − x

2 (ν + 1)
Zν+2 (x) . (2.42)

Substituting Equation (2.41) into Equation (2.28) with Zν(x) = Jν(x) gives∫
xJν (x)

(
h′′ (x) +

(
1 − 2ν

x
+ x

ν − 1

(
1 + Jν−2 (x)

Jν (x)

))
h′ (x)

)
Yν (x) dx

= h′ (x) xJν (x)Yν (x) − 2h (x)
π

. (2.43)

Choosing the fragment

h′′ (x) +
(
1 − 2ν

x
+ x

ν − 1

)
h′ (x) = 0 (2.44)

gives immediately

h′ (x) = x2ν−1 exp
(

− x2

2 (ν − 1)

)
(2.45)

and h(x) can be expressed in terms of the incomplete Gamma function with definition [10]

� (α, x) =
∫ ∞

x
tα−1e−t dt (2.46)

as

h (x) = −2ν−1 (ν − 1)ν �

(
ν,

x2

2 (ν − 1)

)
. (2.47)

These results give the integral∫
x1+2ν exp

(
− x2

2 (ν − 1)

)
Jν−2 (x)Yν (x) dx

= (ν − 1) x2ν exp
(

− x2

2 (ν − 1)

)
Jν (x)Yν (x) + 2ν (ν − 1)ν+1

π
�

(
ν,

x2

2 (ν − 1)

)
.

(2.48)

A similar integral can be derived using recurrence (2.42), which is∫
x1−2ν exp

(
x2

2 (ν + 1)

)
Jν+2 (x)Yν (x) dx = − (ν + 1) x−2ν
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× exp
(

x2

2 (ν + 1)

)
Jν (x)Yν (x) + (−1)ν+1 2

−ν (ν + 1)−ν+1

π
�

(
−ν,− x2

2 (ν + 1)

)
.

(2.49)

The corresponding integrals obtained using Equations (2.26) and (2.28) with Zν(x) =
Yν(x) are∫

x1+2ν exp
(

− x2

2 (ν − 1)

)
Jν (x)Yν−2 (x) dx

= (ν − 1) x2ν exp
(

− x2

2 (ν − 1)

)
Jν (x)Yν (x) − 2ν (ν − 1)ν+1

π
�

(
ν,

x2

2 (ν − 1)

)
,

(2.50)∫
x1−2ν exp

(
x2

2 (ν + 1)

)
Jν (x)Yν+2 (x) dx = − (ν + 1) x−2ν

× exp
(

x2

2 (ν + 1)

)
Jν (x)Yν (x) + (−1)ν

2−ν (ν + 1)−ν+1

π
�

(
−ν,− x2

2 (ν + 1)

)
.

(2.51)

3. Associated Legendre functions

The associated Legendre functions obey the baseline differential equation

ȳ′′ (x) − 2x
1 − x2

ȳ′ (x) +
(

ν (ν + 1)
1 − x2

− μ2(
1 − x2

)2
)
ȳ (x) = 0 (3.1)

with

f̄ (x) = 1 − x2, (3.2)

and the conventional general solution is

ȳ (x) = C1Pμ
ν (x) + C2Qμ

ν (x) , (3.3)

where Pμ
ν (x) is the associated Legendre function of the first kind and Qμ

ν (x) is the asso-
ciated Legendre function of the second kind. Here it is assumed that these functions are
those defined with the real axis cut outside the interval −1 < x < 1, which is the default
in Mathematica [7]. The results presented here apply on the real axis within this interval.

From symmetry the six additional functions P−μ

ν (x), Q−μ
ν (x), P

μ

−ν−1(x), Q
μ
−ν−1(x)

P
−μ

−ν−1(x) and Q−μ
−ν−1(x) are also solutions of Equation (3.1), but the identity [10]

P
−μ

−ν−1 (x) = Pμ
ν (x) (3.4)

eliminates P
−μ

−ν−1(x) as an additional independent solution. The function Qμ
−ν−1(x) is

given in terms of P−μ

ν (x) and Q−μ
ν (x) as [10]

Qμ
−ν−1 (x) = sin [(ν + μ) π]

sin [(ν − μ) π]
Qμ

ν (x) − π cos (νπ) cos (μπ)

sin [(ν − μ) π]
Pμ

ν (x) , (3.5)
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and on the grounds of space, this function will also not be explicitly considered here.
With this restriction, the results presented here largely mirror the corresponding results
for Bessel functions.

From Abel’s identity, the Wronskian of any two independent solutions is of the form

W
(
ȳ1 (x) , ȳ2 (x)

) = A
1 − x2

. (3.6)

As f̄ (0) = 1, the constant A in all of these Wronskians can easily be determined from the
values of Pμ

ν (x), Qμ
ν (0), P′μ

ν (x) and Q′μ
ν (0), within the interval (−1 < x < 1) enclosed by

the singularities of the Wronskian at x = ±1. These values are given in [10] as

Pμ
ν (0) = 2μ

√
π

�

(
ν − μ

2
+ 1

)
�

(−ν − μ + 1
2

) , (3.7)

P′μ
ν (0) =

2μ+1 sin
(
1
2

(ν + μ) π

)
�

(
ν + μ

2
+ 1

)
√

π�

(
ν − μ + 1

2

) , (3.8)

Qμ
ν (0) = −2μ−1√π sin

(
1
2

(ν + μ) π

) �

(
ν + μ + 1

2

)

�

(
ν − μ

2
+ 1

) , (3.9)

Q′μ
ν (0) = 2μ

√
π cos

(
1
2

(ν + μ) π

) �

(
ν + μ

2
+ 1

)

�

(
ν − μ + 1

2

) , (3.10)

and these results give the Wronskian

W
(
Pμ

ν (x) ,Qμ
ν (x)

) = � (ν + μ + 1)(
1 − x2

)
� (ν − μ + 1)

. (3.11)

Hence, in a manner closely analogous to the Bessel function case, we have

(
Qμ

ν (x)
Pμ

ν (x)

)′
= � (ν + μ + 1)(

1 − x2
)
� (ν − μ + 1)

(
Pμ

ν (x)
)2 , (3.12)

(
Pμ

ν (x)
Qμ

ν (x)

)′
= − � (ν + μ + 1)(

1 − x2
)
� (ν − μ + 1)

(
Qμ

ν (x)
)2 (3.13)

which give the integrals

∫
dx(

1 − x2
) (
Pμ

ν (x)
)2 = � (ν − μ + 1)

� (ν + μ + 1)
Qμ

ν (x)
Pμ

ν (x)
, (3.14)
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∫
dx(

1 − x2
) (
Qμ

ν (x)
)2 = −� (ν − μ + 1)

� (ν + μ + 1)
Pμ

ν (x)
Qμ

ν (x)
, (3.15)

∫
dx(

1 − x2
)
Pμ

ν (x)Qμ
ν (x)

= � (ν − μ + 1)
� (ν + μ + 1)

ln
(
Qμ

ν (x)
Pμ

ν (x)

)
. (3.16)

These results appear to be new, and Mathematica cannot obtain them directly. The Wron-
skians for any other pairs of the independent solutions given above can be obtained by
switching the sign ofμ as necessary in Equations (3.7)–(3.10), which gives theWronskians

W
(
Pμ

ν (x) , P−μ
ν (x)

) = − 2 sin (μπ)

π
(
1 − x2

) for μ /∈ Z, (3.17)

W
(
Qμ

ν (x) ,Q−μ
ν (x)

) = −π sin (μπ)

2
(
1 − x2

) for μ /∈ Z, (3.18)

W
(
Pμ

ν (x) ,Q−μ
ν (x)

) = cos (μπ)

1 − x2
forμ + 1

2
/∈ Z, (3.19)

W
(
Qμ

ν (x) ,P−μ
ν (x)

) = −cos (μπ)

1 − x2
for μ + 1

2
/∈ Z. (3.20)

Equations (3.17)–(3.20) immediately give the integrals

∫
dx(

1 − x2
) (
Pμ

ν (x)
)2 = − πP−μ

ν (x)
2 sin (μπ) Pμ

ν (x)
for μ /∈ Z, (3.21)

∫
dx(

1 − x2
) (

P−μ
ν (x)

)2 = πPμ
ν (x)

2 sin (μπ)P−μ
ν (x)

for μ /∈ Z, (3.22)

∫
dx(

1 − x2
) (
Qμ

ν (x)
)2 = − 2Q−μ

ν (x)
π sin (μπ)Qμ

ν (x)
for μ /∈ Z, (3.23)

∫
dx(

1 − x2
) (

Q−μ
ν (x)

)2 = 2Qμ
ν (x)

π sin (μπ)Q−μ
ν (x)

for μ /∈ Z, (3.24)

∫
dx(

1 − x2
) (
Pμ

ν (x)
)2 = Q−μ

ν (x)
cos (μπ)Pμ

ν (x)
for μ + 1

2
/∈ Z, (3.25)

∫
dx(

1 − x2
) (

Q−μ
ν (x)

)2 = − Pμ
ν (x)

cos (μπ)Q−μ
ν (x)

for μ + 1
2

/∈ Z, (3.26)

∫
dx(

1 − x2
) (

P−μ
ν (x)

)2 = Qμ
ν (x)

cos (μπ) P−μ
ν (x)

for μ + 1
2

/∈ Z, (3.27)

∫
dx(

1 − x2
) (
Qμ

ν (x)
)2 = − P−μ

ν (x)
cos (μπ)Qμ

ν (x)
for μ + 1

2
/∈ Z, (3.28)
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∫
dx(

1 − x2
)
Pμ

ν (x) P−μ
ν (x)

= π

2 sin (μπ)
ln
(

Pμ
ν (x)

P−μ
ν (x)

)
for μ /∈ Z, (3.29)

∫
dx(

1 − x2
)
Qμ

ν (x)Q−μ
ν (x)

= 2
π sin (μπ)

ln
(

Qμ
ν (x)

Q−μ
ν (x)

)
for μ /∈ Z, (3.30)

∫
dx(

1 − x2
)
Pμ

ν (x)Q−μ
ν (x)

= 1
cos (μπ)

ln

(
Q−μ

ν (x)
Pμ

ν (x)

)
for μ + 1

2
/∈ Z, (3.31)

∫
dx(

1 − x2
)
Qμ

ν (x) P−μ
ν (x)

= 1
cos (μπ)

ln
(

Qμ
ν (x)

P−μ
ν (x)

)
for μ + 1

2
/∈ Z. (3.32)

For the associated Legendre functions, Equations (1.22)–(1.23) and their principal solu-
tions become

y′′ (x) +
(
2
P′μ

ν (x)
Pμ

ν (x)
− 2x

1 − x2

)
y′ (x) = 0 ⇒ y (x) = Qμ

ν (x)
Pμ

ν (x)
, (3.33)

y′′ (x) +
(
2
Q′μ

ν (x)
Qμ

ν (x)
− 2x

1 − x2

)
y′ (x) = 0 ⇒ y (x) = Pμ

ν (x)
Qμ

ν (x)
. (3.34)

Applying these equations in Equation (1.2) gives∫ (
1 − x2

) (
h′′ (x) +

(
2
P′μ

ν (x)
Pμ

ν (x)
− 2x

1 − x2

)
h′ (x)

)
Pμ

ν (x)Qμ
ν (x) dx

= (
1 − x2

)
h′ (x) Pμ

ν (x)Qμ
ν (x) − h (x) � (ν + μ + 1)

� (ν − μ + 1)
, (3.35)

∫ (
1 − x2

) (
h′′ (x) +

(
2
Q′μ

ν (x)
Qμ

ν (x)
− 2x

1 − x2

)
h′ (x)

)
Pμ

ν (x)Qμ
ν (x) dx

= (
1 − x2

)
h′ (x) Pμ

ν (x)Qμ
ν (x) + h (x) � (ν + μ + 1)

� (ν − μ + 1)
. (3.36)

Choosing the fragment

h′′ (x) − 2x
1 − x2

h′ (x) = 0 ⇒ h′ (x) = 1
1 − x2

; h (x) = arctanh (x) (3.37)

in Equations (3.35)–(3.36) gives the integrals∫
P′μ

ν (x)Qμ
ν (x) dx = Pμ

ν (x)Qμ
ν (x)

2
− � (ν + μ + 1) arctanh (x)

2� (ν − μ + 1)
, (3.38)

∫
Q′μ

ν (x) Pμ
ν (x) dx = Pμ

ν (x)Qμ
ν (x)

2
+ � (ν + μ + 1) arctanh (x)

2� (ν − μ + 1)
(3.39)

which are closely analogous to Equations (2.32)–(2.33).
The four conventional recurrence relations for associated Legendre functions are [5,10]

R′μ
ν (x) = − νx

1 − x2
Rμ

ν (x) + ν + μ

1 − x2
Rμ

ν−1 (x) , (3.40)
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R′μ
ν (x) = (ν + 1) x

1 − x2
Rμ

ν (x) − ν − μ + 1
1 − x2

Rμ
ν+1 (x) , (3.41)

R′μ
ν (x) = μx

1 − x2
Rμ

ν (x) + (ν − μ + 1) (ν + μ)
Rμ−1

ν (x)√
1 − x2

, (3.42)

R′μ
ν (x) = − μx

1 − x2
Rμ

ν (x) − Rμ+1
ν (x)√
1 − x2

, (3.43)

where here Rμ
ν (x) = Pμ

ν (x) or Rμ
ν (x) = Qμ

ν (x). Substituting Equation (3.40) into
Equation (3.35) for Rμ

ν (x) = Pμ
ν (x) gives the integration formula

∫ (
1 − x2

) (
h′′ (x) +

(
2 (ν + μ)

1 − x2
Pμ

ν−1 (x)
Pμ

ν (x)
− 2 (ν + 1) x

1 − x2

)
h′ (x)

)
Pμ

ν (x)Qμ
ν (x) dx

= (
1 − x2

)
h′ (x) Pμ

ν (x)Qμ
ν (x) − h (x) � (ν + μ + 1)

� (ν − μ + 1)
(3.44)

and choosing the fragment

h′′ (x) − 2 (ν + 1) x
1 − x2

h′ = 0 (3.45)

for which the solution is

h′ (x) = (
1 − x2

)−ν−1 ;h (x) = x 2F1
(
1
2
, ν + 1;

3
2
; x2
)

(3.46)

gives the integral

∫ Pμ
ν−1 (x)Qμ

ν (x)(
1 − x2

)ν+1 dx = Pμ
ν (x)Qμ

ν (x)
2 (ν + μ)

(
1 − x2

)ν − x 2F1
( 1
2 , ν + 1; 32 ; x

2)� (ν + μ + 1)
2 (ν + μ) � (ν − μ + 1)

.

(3.47)
Substituting recurrences (3.41)–(3.43) with Rμ

ν (x) = Pμ
ν (x) into Equation (3.35) and

choosing h(x) in a similar manner gives the integrals∫ (
1 − x2

)ν Pμ
ν+1 (x)Qμ

ν (x) dx

= x 2F1
( 1
2 ,−ν; 32 ; x

2)� (ν + μ + 1)
2 (ν − μ + 1) � (ν − μ + 1)

−
(
1 − x2

)ν+1 Pμ
ν (x)Qμ

ν (x)
2 (ν − μ + 1)

, (3.48)∫ (
1 − x2

)−μ− 1
2 Pμ−1

ν (x)Qμ
ν (x) dx

=
(
1 − x2

)−μ Pμ
ν (x)Qμ

ν (x)
2 (ν − μ + 1) (ν + μ)

− x 2F1
( 1
2 , 1 − μ; 32 ; x

2)� (ν + μ + 1)
2 (ν − μ + 1) (ν + μ) � (ν − μ + 1)

, (3.49)

∫
Pμ+1

ν (x)Qμ
ν (x)(

1 − x2
)μ+ 1

2
dx = x 2F1

( 1
2 ,μ + 1; 32 ; x

2)� (ν + μ + 1)
2� (ν − μ + 1)

− Pμ
ν (x)Qμ

ν (x)
2
(
1 − x2

)μ . (3.50)
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The corresponding integrals obtained from Equation (3.37) with Rμ
ν (x) = Qμ

ν (x) in the
four recurrences (3.40)–(3.43) are, respectively,
∫ Qμ

ν−1 (x) Pμ
ν (x)(

1 − x2
)ν+1 dx = Qμ

ν (x) Pμ
ν (x)

2 (ν + μ)
(
1 − x2

)ν + x 2F1
( 1
2 , ν + 1; 32 ; x

2)� (ν + μ + 1)
2 (ν + μ) � (ν − μ + 1)

,

(3.51)∫ (
1 − x2

)ν Qμ
ν+1 (x) Pμ

ν (x) dx =

− x 2F1
( 1
2 ,−ν; 32 ; x

2)� (ν + μ + 1)
2 (ν − μ + 1) � (ν − μ + 1)

−
(
1 − x2

)ν+1 Qμ
ν (x) Pμ

ν (x)
2 (ν − μ + 1)

, (3.52)∫ (
1 − x2

)−μ− 1
2 Qμ−1

ν (x) Pμ
ν (x) dx

=
(
1 − x2

)−μ Qμ
ν (x) Pμ

ν (x)
2 (ν − μ + 1) (ν + μ)

+ x 2F1
( 1
2 , 1 − μ; 32 ; x

2)� (ν + μ + 1)
2 (ν − μ + 1) (ν + μ) � (ν − μ + 1)

, (3.53)

∫
Qμ+1

ν (x) Pμ
ν (x)(

1 − x2
)μ+ 1

2
dx = −x 2F1

( 1
2 ,μ + 1; 32 ; x

2)� (ν + μ + 1)
2� (ν − μ + 1)

− Qμ
ν (x) Pμ

ν (x)
2
(
1 − x2

)μ .

(3.54)

Equations (3.51)–(3.54) can be obtained from Equations (3.47)–(3.50) by exchanging the
two kinds of associated Legendre functions in the formulas and reversing the signs of the
terms containing hypergeometric functions. The sign reversals are necessary because these
terms are derived fromWronskians, which are antisymmetric on the exchange of the two
independent functions.

All of the integrals for associated Legendre functions presented here appear to be new.
They are not tabulated in the standard literature [9–11] andMathematica [7] cannot derive
them. Two clearly related results for Airy functions are given in [12].

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

[1] Conway JT. A Lagrangian method for deriving new indefinite integrals of special functions.
Integral Transforms Spec Funct. 2015;26(10):812–824.

[2] Conway JT. Indefinite integrals of some special functions from a new method. Integral
Transforms Spec Funct. 2015;26(11):845–858.

[3] Abel NH. Oeuvres complètes. Vol. 1, Christiania: Gröndahl; 1839.
[4] King AC, Billingham J, Otto SR. Differential equations, linear, nonlinear, partial. Cambridge:

Cambridge University Press; 2003.
[5] Euler L. Institutionum calculi integralis. Vol. 2, St. Petersburg: Imperial Academy of Science;

1769.
[6] Conway JT. New special function recurrences giving new indefinite integrals. Integral Trans-

forms Spec Funct. 2018;29(10):805–819.
[7] Wolfram S. The mathematica book. 5th ed. Champaign: Wolfram Media; 2003.



INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 355

[8] Watson GN. A treatise on the theory of Bessel functions. 2nd ed. Cambridge: Cambridge
University Press; 1944.

[9] Prudnikov AP, Brychkov YuA,Marichev OI. Integrals and series, Vol. 2, special functions. New
York (NY): Gordon and Breach; 1986.

[10] Gradshteyn IS, Ryzhik IM. Table of integrals, series and products. New York (NY): Academic;
2007.

[11] PrudnikovAP, BrychkovYuA,MarichevOI. Integrals and series, Vol. 3,more special functions.
New York (NY): Gordon and Breach; 1990.

[12] BrychkovYuA.Handbook of special functions: derivatives, integrals, series and other formulas.
Boca Raton (FL): Chapman & Hall/CRC; 2008.


	1. Introduction
	2. Bessel functions
	3. Associated Legendre functions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


