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Abstract—In this paper, we propose a convolution neural
network for classifying grayscale images of hand gestures. For
classification, we look at ten different hand gestures collected
from various people using a thermal camera. We then compare
the proposed model’s performance in terms of classification
accuracy and inference time to that of other benchmark models.
We demonstrate through extensive results that the proposed
model achieves higher classification accuracy while using a
smaller model size. Furthermore, we show that the proposed
model outperforms benchmark models in terms of inference time.

Index Terms—Convolution neural network, image classifica-
tion, hand gesture, classification accuracy, and inference time.

I. INTRODUCTION

Image classification has attracted the remote-sensing com-
munity due to its application in environmental and socioe-
conomic applications [1], [2]. It helps in taking a decision
based on the outcome. The need for classification arises when
we place the image of an object in a group or class based
on the attributes of the object [3]–[5]. In order to improve
the classification accuracy, the scientists and practitioners
have made enormous efforts in developing novel classification
models [6], [7].

In [8], the authors have considered binary Bayesian classi-
fier to classify the images based on whether they captured
in indoor or outdoor. Further, the the images captured in
outdoor are classified based on city or landscape. Finally,
the landscape images are classified into sunset, forest, and
mountain [8]. A probabilistic model has been proposed in
[9] for supervised topic models in order to jointly recognize,
classify, and annotate the images. It has been concluded in [9]
that the proposed model has resulted in improved classification
accuracy in comparison to the state-of-the-art models. A novel
between-class learning method has been proposed in [10] to
classify the images from between-class. Here, between-class
images have been obtained by mixing the images of two
different classes in different ratios. The concept of mixing of
images is motivated from mixing of sound signals. Then, the
authors in [10] have considered a mixing method that considers
each image as a waveform in order to improve the performance
in terms of classification accuracy. In [11], the authors have
proposed Fisher Vector representation as an alternative for Bag
of Visual words encoding technique which is commonly used
in image classification. In the proposed work, a set of low-level

patch descriptors are extracted from each image as a first step.
Thereafter, the images are classified based on the deviation of
the extracting set from the universal generative model [11]. In
[12], a feature mining paradigm has been proposed for image
classification. Further, several feature mining strategies have
been examined on the proposed paradigm for image classifica-
tion. A Hierarchical Gaussianization (HG) model based image
representation has been proposed in [13] that will incorporate
both appearance and spatial information in the hierarchical
structure. Further, a supervised dimension reduction technique
has been proposed to enhance the discriminating power of
HG representation. Finally, a nearest centroid classifier has
been considered which has shown to be achieved higher
classification accuracy [13]. In [14], the authors have surveyed
the techniques to train the deep convolution neural network
model in order to improve the accuracy. It has shown that
the minor modifications made in model architecture, data
preprocessing, loss function, and learning rate schedule has
significantly improved the image classification accuracy of
ResNet-50, Inception-V3, and MobileNet [14]. Motivated by
this, in this work, we propose a convolution neural network
for grayscale image classification of the hand gestures. The
key contributions of this work are as follow:

• We consider ten different hand gestures collected from
different people for classification.

• We then compare the performance of the proposed model
with other benchmark models in terms of classification
accuracy and inference time.

• Through extensive results, we show that the proposed
model results higher classification accuracy with lower
model size.

• Finally, we have implemented the proposed algorithm on
the Raspberry Pi 4 Model B hardware.

• We show that the proposed model outperforms bench-
mark models in terms of inference time.

The complete data set and the algorithms can be accessed
https://github.com/aveen-d/Radarclassificationhere
1001[15].

The remainder of this paper is organized as follows. Section
II provides the dataset details. The proposed CNN model is
described in III. Section IV provides the numerical results in
terms of classification accuracy and inference time. Finally,
concluding remarks and possible future works are discussed



Fig. 1: The FILR LEPTON 3.5 camera module and Purether-
mal 2 breakout board.

TABLE I: Number of samples per class in the Dataset.

Class Name Number of Images
a 360
b 360
c 360
d 360
e 360
f 360
g 360
h 360
i 360
j 360

Total 3600

in Section V.

II. DATASET DETAILS

In this section, we describe the dataset in brief. We start
with the hardware setup used for collecting the images and
then we describe the details of the dataset.

A. Dataset Details

The dataset is created from the images captured from the
FLIR Lepton 3.5 thermal camera. This thermal camera is a
Long Wavelength Infra Red (LWIR) micro camera from FLIR.
It has a 160×120 pixel resolution and a radiometric calibrated
array of 19200 pixels [16]. The camera module is interfaced to
the Purethermal 2 breakout board. It is a FLIR Lepton smart
I/O module with pre-configured plug-and-play functionality
via a USB port. The Purethermal 2 breakout board and FLIR
LEPTON 3.5 camera module can be seen in Fig. 1. The
camera is interfaced to the edge computing system, Raspberry
pi model 4.

The dataset contains the 10 class grayscale image hand
gestures (160 × 120 pixel size). Classes 1 through 10 are
denoted by the letters ‘a’, ‘b’, · · · , ‘j’. With this, a total of
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Fig. 2: A complete set of 10 different Gray hand Gestures.

3600 grayscale image hand gestures were created as shown
Table I. Males and females between the ages of 20 and 60
are used to create grayscale hand gestures. Fig. 2 shows a
complete set of 10 grayscale hand gestures of a person.

Usually color images have three channels and gray scale
images are of single channel. Thus, the collected dataset
contains gray scale images of single channel. However, all pre-
trained models are designed to train with three channel images
and cannot train with one channel. Thus, we have distributed
the one dimensional image over three channels for a better fit.



Next, we describe the proposed CNN model architecture.

III. PROPOSED CNN MODEL

The architecture of the proposed deep CNN model for
the classification of gray scale hand postures is shown in
Fig. 6. It consists of 10 layers such as input layer, Batch
normalization layer, convolution 1 layer with tanh activation
function, Max pooling 1 layer, convolution 2 layer with tanh
activation function, Max pooling 2 layer, convolution 3 layer
with tanh activation function, Max pooling 3 layer, flatten
layer, dense layer with softmax activation function, and output
layer. The original image of the dataset is 120 × 160 with 1
channel. However, the input image is converted into a gray
scale image of 128 × 128 with 3 channel i.e, 128 × 128 × 3
3-dimensional matrix and the output layer size is 10 which
represent the classes of gray hand gestures as shown in Fig.
2. The role of the convolution layer is to learn image features
from the input later. It applies the filter on input layer to extract
the feature maps in CNN model and the pooling layer is used
to reduce the dimensionality of the input layer and helps the
CNN to train faster. When the input layer passes through the
convolution layer or pooling layer, the size of the output layer
is calculated by

Output Size =
n− f + 2p

s
+ 1 , (1)

where, n represents the input size, f represents the filter or
kernel size or pooling size, p denotes the padding size, and
s is stride size. The output of a convolutional layer of the
consecutive feature map value can be computed as

V (x, y) = (i ∗ k)[x, y] =
∑
a

∑
b

k[a, b]i[x− a, y − b] , (2)

where, ‘i ‘ represents the input image, k denotes the kennel
size of (a ∗ b) matrix, x and y represent the indexes of the
output matrix.

The max pooling layer and average pooling layer are the
most commonly used pooling layers. The output of the max
pooling layer can be obtained as

M(i, j) = max(I(i, j)) (3)

In CNN classification model, the final layer is a fully con-
nected layer or dense layer with softmax activation function,
collecting the information for final feature maps. The output
of the dense layer and activation function softmax is computed
by

Fi =
1

1 + e−(wixi−1+bi)
(4)

The output of the softmax layer is computed as

ai =
eai

N∑
n=1

ean

, (5)

where, Wi represents the weights and bi represents the bias in
the dense layer. In softmax, N denotes the number of output

TABLE II: CNN architecture

Model: ”sequential”
Layer (type) Output Shape Param #
batch normalization (BatchNo (None, 128, 128, 3) 12
conv2d (Conv2D) (None, 128, 128, 8) 1952
max pooling2d (MaxPooling2D) (None, 42, 42, 8) 0
conv2d 1 (Conv2D) (None, 42, 42, 16) 10384
max pooling2d 1 (MaxPooling2 (None, 14, 14, 16) 0
conv2d 2 (Conv2D) (None, 14, 14, 32) 41504
max pooling2d 2 (MaxPooling2 (None, 4, 4, 32) 0
flatten (Flatten) (None, 512) 0
dense (Dense) (None, 10) 5130
Total params: 58,982
Trainable params: 58,976
Non-trainable params: 6

Fig. 3: The training and validation accuracy of the proposed
deep CNN model.

classes. In this work, the cross-entropy loss for multi class
classification is calculated as

Cross entropy loss =
−1

k∑
i=1

(yi log(gi) + (1− yi) log(1− yi))

,

(6)

where, k is the number of classes, yi is the actual output
of the CNN, gi is the predicted probability of the output
class. In this work, we have used a total 3600 samples
which makes 360 samples for each class. With a partition
rate of 0.1, these samples are divided for training and testing
i.e., out of 3600 samples 90% (3240 samples) are used for
training and 10% (360 samples) are used for validation and
testing. We have applied adam solver algorithm which is a
combination of MSprop and Stochastic Gradient Descent with
momentum. Adam solver algorithm used to update weights
and bias parameters in convolution layer and dense layer.

IV. NUMERICAL RESULTS

In this section, we present the results corresponding to the
accuracy, loss, and confusion matrix of the proposed model.
We then provide the comparison results in terms of accuracy



TABLE III: Performance comparison of the proposed model with other benchmark models in terms of validation accuracy,
total number of parameters, number of trainable and non-trainable parameters, and size of the model.

Model Validation
Accuracy (10-fold)

validation
Accuracy

Total
Parameters

Trainable
Parameters

Non-trainable
Parameters Size

OurModel 99.52 (+- 0.37) 99.72 58,982 58,976 6 744 KB
DenseNet121 99.41(+-0.40) 99.44 7,048,779 11,275 7,037,504 27.7 MB
DenseNet169 99.69(+-0.23) 99.72 12,659,530 16,650 12,642,880 49.4 MB
DenseNet201 99.61(+-0.37) 100 18,343,115 21,131 18,321,984 71.3 MB

InceptionResNetV2 98.80(+-0.63) 99.16 54,352,106 15,370 54,336,736 208.6 MB
InceptionV3 99.13(+-0.43) 99.16 21,825,323 22,539 21,802,784 83.9 MB

MobileNetV2 99.66(+-0.27) 100 2,272,075 14,091 2,257,984 9.1 MB
MobileNetV3Large 99.38(+- 0.36) 99.16 4,239,242 12,810 4,226,432 16.6 MB
MobileNetV3Small 99.16 (+- 0.62) 99.16 1,540,218 10,250 1,529,968 6.2 MB

NASNetMobile 98.61(+-0.755) 97.77 4,280,286 10,570 4,269,716 17.6 MB
ResNet50V2 99.30(+-0.28) 99.72 23,585,290 20,490 23,564,800 90.4 MB
ResNet101V2 99.36(+-0.17) 99.16 42,649,099 22,539 42,626,560 163.5 MB
ResNet152V2 99.17(+-0.41) 98.88 58,352,138 20,490 58,331,648 223.6 MB

VGG16 99.72 (+- 0.27) 99.44 14,719,818 5,130 14,714,688 56.2 MB
VGG19 99.55 (+- 0.46) 100 20,029,514 5,130 20,024,384 76.5 MB

Xception 99.16(+-0.56) 99.44 20,884,019 22,539 20,861,480 80.1 MB
EfficientNetB0 99.66 (+- 0.24) 99.72 4,062,381 12,810 4,049,571 16 MB
EfficientNetB1 99.69 (+- 0.31) 100 6,588,049 12,810 6,575,239 25.8 MB
EfficientNetB2 99.47(+- 0.47) 98.89 7,782,659 14,090 7,768,569 30.3 MB
EfficientNetB3 99.55 (+- 0.28) 99.72 10,798,905 15,370 10,783,535 41.9 MB
EfficientNetB4 99.3 (+- 0.50) 99.16 17,691,753 17,930 17,673,823 68.3 MB
EfficientNetB5 99.44 (+- 0.48) 99.44 28,534,017 20,490 28,513,527 109.9 MB
EfficientNetB6 99.25(+- 0.44) 98.88 40,983,193 23,050 40,960,143 157.5 MB
EfficientNetB7 99.33 (+- 0.39) 99.72 64,123,297 25,610 64,097,687 246 MB

Fig. 4: The training and validation loss of the proposed deep
CNN model.

and inference time to validate the performance of the the
proposed model and other benchmark models.

The summary in terms of output shape and number of
parameters for the proposed model is listed in Table II. The
variation of the accuracy and loss for the proposed model for
training and validation of the dataset is shown in Figs. 3 and
4. From Fig. 3, it is observed that the accuracy increases
exponentially with epoch and saturates at a maximum of

Fig. 5: Confusion matrix of the proposed deep CNN.

99.72% after 10th epoch. From Fig. 4, it is observed that the
value of loss decreases exponentially with epoch and saturates
at a minimum at 13th epoch. The confusion matrix of the
proposed CNN model on the dataset is shown in Fig. 5. It
is observed from Fig. 5 that the proposed model classifies
the classes “a”, “c”, “d”, “e”, “f”, “g”, “h”, “i”, and “j”
with an accuracy of 100% of their respective class’s test
dataset. However, the images corresponding to class “b” can be
identified with an accuracy of 97% of their respective class’s
test dataset.



Fig. 6: The architecture of the proposed CNN model.

Fig. 7: Performance comparison of the proposed model with
Pre-trained models in terms of achievable accuracy in each
fold.

In addition to the proposed model, we also trained and
validated some of the pre-trained models such as MobileNet,
VGG,ResNet, DenseNet, Xception, Inception, NASNetMobile,
and EfficientNet with the considered dataset. We have evalu-
ated the 10-fold validation and holdout validation with 10%
split as shown in Table III. The accuracy values at each fold
for the proposed model and 23 pre-trained models is shown in
Fig 7. We compare the proposed model with the considered
pre-trained models in terms of accuracy, size, and number of
parameters of the dataset as given in Table III. From Table.
III, it is observed that the proposed model and considered
pre-trained models result in the similar classification accuracy

in the range of 97%-100%. Further it is observed that even
though considered pre-trained models achieve comparable
classification accuracy of the proposed model, the number of
parameters and size of the proposed model is very less as
compared to other benchmark models. The pre-trained models
which preform better in terms of classification accuracy has
large model size in range of 6MB – 224MB. However, the
proposed model size is 774 KB which is comparably very
less. Thus, we conclude that the proposed model delivers better
classification accuracy with a model size of less than 1MB.

The performance comparison of the proposed model to other
pre-trained models in terms of inference time on different
GPUs such as Tesla T4, Tesla P4, Tesla K80, and GTX 1050,
CPUs like Intel i5 8th gen and Intel(R) Xeon(R) Platinum,
and hardware like Raspberry Pi 4 and AGX Jetson Xavier is
listed in Table IV. It can be observed from Table IV that the
inference time is very less for the proposed model as compared
to other pre-trained models.It is also noticed that the proposed
model takes 0.2 milliseconds (ms) inference using GPU Tesla
T4. From Table IV, it can be observed that the proposed
model inference time is in the range of 0.2 ms to 0.75 ms
on GPUs. While using raspberry Pi 4 and AGX Jetson xavier
the time taken for proposed model is 26.41 ms and 39.04 ms,
respectively.

V. CONCLUSION

In this paper, we have proposed a convolution neural
network for classification of grayscale images of the hand
gestures. We considered ten different hand gestures collected
from different people for classification. We compared the



TABLE IV: Inference time comparison of the proposed model with other benchmark models.

2*Models Inference Time

Tesla T4 Tesla P4 Tesla K80
NVIDIA
GeForce

GTX 1050

Intel core
i5 8th gen

Intel(R) Xeon(R)
Platinum 8175M
CPU @ 2.50GHz

Raspberry
pi 4 AGX

Our Model 0.2 0.58 0.71 0.74 2.68 9.11 26.41 39.04
DenseNet121 3.52 6.51 9.46 10.31 65.62 116.78 565.7 226.26
DenseNet169 4.14 7.19 12.81 12.36 83.34 142.84 592.47 204.77
DenseNet201 5.53 8.69 14.42 15.16 119.32 183.93 739.44 219.18

InceptionResNetV2 6.93 8.38 16.25 - - 142.99 762.17 181.1
InceptionV3 3.03 4.84 7.88 8.32 39.64 66.62 306 113.92

MobileNetV2 1.74 2.72 4.04 5.32 24.16 34.92 122.63 70.19
MobileNetV3Large 1.59 2.42 4.85 3.77 21.98 27.35 121.53 82.26
MobileNetV3Small 0.51 1.41 2.03 2.3 9.57 11.05 56.71 71.37

NASNetMobile 3.02 4.9 7.38 8.55 40.88 67.56 202.83 145.58
ResNet152V2 7.71 15.49 22.78 21.35 148.88 248.69 1291.68 161.48
ResNet101V2 6.5 7.81 13.51 14.96 107.6 172.11 865.79 135.69
ResNet50V2 3.15 4.6 7.84 9.23 58.03 92.92 453.89 103.38

VGG16 5.91 7.65 11 14.91 126.49 307.66 1471.72 1398.78
VGG19 6.05 8.99 14.62 16.94 164.51 378.87 1734.32 1584.31

Xception 6.39 7.15 14.47 12.76 75.2 135.47 524.72 117.72
EfficientNetB0 1.82 3.95 4.35 5.64 44.16 61.29 213.29 88.26
EfficientNetB1 2.71 4.52 7.38 7.51 54.8 81.62 292.7 110.78
EfficientNetB2 2.78 6.39 7.27 7.9 58.99 85.78 320.35 114.7
EfficientNetB3 3.41 7.31 8.16 10.18 78.63 121.54 428.4 128.84
EfficientNetB4 6.37 8.06 12.33 13.39 106.97 158.87 607.59 151.12
EfficientNetB5 6.55 12.66 15.59 18.34 131.55 221.79 862.88 180.56
EfficientNetB6 10.55 14.6 24.77 23.5 172.3 295.85 1161.29 196.3
EfficientNetB7 13.62 23.99 27.9 31.74 236.41 399.51 1655.14 239.97

proposed model’s performance to that of other benchmark
models. We demonstrated through extensive results that the
proposed model resulted in higher classification accuracy with
a smaller model size. Furthermore, when deployed on different
CPUs and GPUs, the proposed model outperforms benchmark
models in terms of inference time.
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