
Novel Tsetlin Machine Mechanisms

for Logic-based Regression and

Classification with Support for

Continuous Input, Clause Weighting,

Confidence Assessment,

Deterministic Learning, and

Convolution

K. Darshana Abeyrathna

Novel Tsetlin Machine Mechanisms for Logic-based

Regression and Classification with Support for

Continuous Input, Clause Weighting, Confidence

Assessment, Deterministic Learning, and Convolution

Doctoral Dissertation for the Degree Philosophiae Doctor (PhD) at

the Faculty of Engineering and Science, Specialisation in Information and

Communication Technology

University of Agder

Faculty of Engineering and Science

2022

Doctoral Dissertations at the University of Agder 359

ISSN: 1504-9272

ISBN: 978-82-8427-068-5

©K. Darshana Abeyrathna, 2022

Printed by 07 Media

Oslo

Preface

To explain my philosophy of productivity in life, imagine a plot of a person’s achievements

in the life with his/her average effort vs the time. Another two series can be drawn which

are the imaginary achievements of the same person when the effort is worst (below the line

of the average effort) and the best (above the line of the average effort). Once a person

dies, if we plot the true achievements of his/her life and get the area under the curve,

we measure something related to productivity of that person in life. But it’s unfair to

compare it with someone else as we all born with different abilities and raised in different

family setups (e.g., poor and rich if we just discretize it). However, someone who born

with worse abilities can still be more productive in life than another person who born with

better abilities if the first person gives his/her best effort while the second person gives

his/her worst. Further, it’s fair to compare your true productivity with your imaginary

best and the worst. So you are the one who decide where you stand in these scales.

During the years between 1997 and roughly 2002, the school books were washed away

for the every single rain, no matter how mild or strong it was. The school teachers started

not believing it when I came that as the reason to not to complete the homework. From

those days to today, all the obstacles were overcome and now I can’t imagine I am going

to start writing my Ph.D. dissertation. According to my measure of productivity in life

above, I proudly believe that I have given my best effort to get the maximum productivity

in my life so far.

I believe that the life experience have helped me to battle against the Ph.D. stress.

However, it is nothing without the help, guidance, and motivations of my Ph.D. supervisor

Professor Ole-Christoffer Granmo and the co-supervisor Professor Morten Goodwin.

Together with them, I carried out my Ph.D. research at the Department of Information

Communication Technology, Faculty of Engineering and Science, University of Agder,

Norway. The research goal was to develop and expand the Tsetlin Machine so that it is

applicable to solve problems from a wide range of application domains.

I believe that the outcome of my Ph.D research would serve the Artificial Intelligence

and Machine Learning communities to conduct further, enhanced research in this area of

research in the future.

v

Acknowledgments

This dissertation is based on research activities carried out at the University of Agder

during the period January 2018 to September 2021. Here, I want to express my gratitude

to all who supported me during my PhD studies.

Foremost, I would like to express my sincere gratitude to my supervisors Professor

Ole-Christoffer Granmo and Professor Morten Goodwin for their invaluable guidance and

support throughout my PhD research activities. Special thank to my main supervisor

Professor Ole-Christoffer Granmo for providing research directions, facilities, motivation

and guidance to complete the research. I’m extremely grateful to co-supervisor Professor

Morten Goodwin for his great support, motivation and guidance for improving technical

content and publications of the research by allocating plentiful time from his schedule.

I would also like to mention the co-authors - Associate Professor Lei Jiao, researcher

Xuan Zhang, Associate Professor Harsha Sandaruwan, Professor Vladimir A. Oleshchuk,

researcher Sasanka N. Ranasinghe, researcher Sinziana Rasca, researhcer Karin Markvica,

Professor Rishad Shafik, Professor Alex Yakovlev, researcher Adrian Wheeldon, and re-

searcher Jie Lei in my publications. Your support, contribution, and guidance helped me

to publish a number of research articles during my PhD studies.

I am thankful to the Head of the Department, Folke Haugland and PhD coordina-

tor, Emma E. Horneman for providing me the necessary facilities and pleasant working

environment for research activities. I should also thank the rest of the administration

staff at the ICT department of the university and the fellow researchers at the Center for

Artificial Intelligence Research (CAIR) for all the help I received from you.

The fellow Srilankans helped me, supported me, and encouraged me from the first

day in Norway until I finish this adventures journey. Thank you Dr. Indika Anuradha

Mendis, Associate Professor Harsha Sandaruwa, Sasanka Ranasinghe, Madhawa Jayathi-

laka, Kalpani Mendis, Dr. Jagath Sri Lal, Dr. Thilina Weerasinghe, Sandun Konara,

Wajira Senanayaka, and Pabasara.

Last but not least, I would like to thank my family in Sri Lanka - parents Kuruge.

Abeyrathna and Jayanthi Edirisinghe and sister Nirmani Abeyrathna for their continued

love, encouragement, and understanding.

K. Darshana Abeyrathna

Grimstad, Norway

December 2021

vi

Abstract

The recently introduced Tsetlin Machine (TM) is built on Tsetlin Automata (TAs), devel-

oped by M. L. Tsetlin in the early 1960s. Relying only on a single integer as memory, a TA

learns the optimal action on-line, embedded in a random environment. Used in teams,

TAs have previously solved a number of machine learning and stochastic optimization

problems. The TM uses TAs to learn patterns for pattern recognition. The TAs then

represent literals – input features and their negations. The literals, in turn, form con-

junctive clauses in propositional logic, as decided by the TAs. The final TM output can

be seen as a disjunction of all the specified clauses. In this manner, the pattern composi-

tion and learning procedure of the TM is transparent, facilitating human interpretation.

In addition, the TM has an inherent computational advantage. That is, the inputs and

outputs of the TM can naturally be represented as bits, and recognition and learning is

performed by manipulating those bits. The operation of the TM thus demands relatively

small computational resources and supports hardware-near and parallel computation e.g.

on GPUs.

The TM has provided competitive results in comparison with traditional machine

learning techniques on various classification tasks. However, the original TM architecture

is limited by its propositional foundation in several ways. Firstly, while many applications

require continuous input and output, TMs process propositional input with propositional

operators, producing propositional output. As such, TMs are not natively suited for deal-

ing with continuous values, for instance in regression problems. Further, it is unclear how

to go from propositional output to measuring output confidence, which can be essential

in decision-making. Finally, learning requires extensive random number generation to

compensate for lack of continuous representations. Random number generation increases

computation time and makes hardware implementation more costly energy-wise.

In this thesis, we address the above challenges by designing, analysing and evaluating

several new mechanisms for TM learning. The purpose of the mechanisms is to deal

with continuous input and output. To this end, we propose several strategies for dealing

with continuous features, including adaptive thresholding with Stochastic Searching on

the Line automata. We further propose an architecture for mapping clauses to a real-

valued output for regression problems, also supporting regression with convolution on 2D

input. We also introduce pattern weighing by attaching integer weights to the TM clauses,

facilitating more compact and interpretable representation of models by reducing pattern

duplication. Further, we assess classification confidence instead of merely classifying a

sample into a class. Finally, we introduce deterministic learning automata that replaces

random number generation with multi-step state-changes, providing a foundation for more

vii

viii

energy efficient TM micro-controller implementations.

Overall, the above mechanisms have improved the performance of the TM in terms

of accuracy, interpretability, inference speed, energy usage, and memory consumption.

Apart from introducing the mechanisms, the thesis provides comparisons with selected

state-of-the-art machine learning models, reporting comparable or better performance.

Summary

Menneskehjernen (og dyrehjernen) lærer blant annet fra syns-, smaks-, og hørselsinntrykk,

gjennom erfaring. Maskinlæring (ML) er denne læringens kunstige tvilling. ML er en gren

innenfor kunstig intelligens som fokuserer p̊a læring fra samhandling med et miljø, hvor

erfaringene oversettes til numeriske verdier.

Det finnes mange ML-algoritmer. Ulike algoritmer gir ulike fordeler og ulemper. Det

er miljøtypen og brukerkravene som bestemmer hvilken ML-algoritme som er best egnet.

Tsetlin-maskinen (TM) er en slik ML-algoritme, som er relativt ny innenfor ML-

forskningen. TMen har unike egenskaper og fordeler. Den kan imidlertid ikke brukes n̊ar

læringsmiljøet representerer erfaring som kontinuerlige verdier. TMen er binær og kan

derfor ikke enkelt h̊andtere kontinuerlig innverdier eller produsere kontinuerlige utverdier.

Videre blir den binære mønsterrepresentasjonen og læringen mindre økonomisk. Dermed

reduseres tolkbarheten og beslutningshastighet, mens energiforbruk og minneavtrykket

øker. En binær utverdi forteller heller ikke noe om hvor sikker TMen er n̊ar brukeren

ønsker å estimere treffsikkerheten bak en utverdi.

I dette Ph.D.-arbeidet adresserer vi TM-begrensningene beskrevet ovenfor ved å endre

TM-arkitekturen og læringsprosedyren p̊a fire måter:

• Vi foresl̊ar hvordan kontinuerlige verdier kan h̊andteres ved å (1) representere kon-

tinuerlige innverdier statisk ved hjelp av binære terskler, (2) innføre adaptiv læring

av kontinuerlige verdier direkte i TM-arkitekturen, og (3) omforme TM-arkitekturen

slik at den støtter regresjon: en Regresjons-TM (RTM) som produserer kontinuerlige

utverdier.

• Vi har laget en ny TM-arkitektur som knytter vekter til de logiske mønstrene TMen

lærer og viktigheten av disse i dataene. Vektene gjør den innlærte modellen mer

kompakt, øker tolkbarheten og resonneringshastigheten, samtidig som minnefor-

bruket reduseres.

• Inkludering og ekskludering av inn-verdier i de logiske mønstrene bestemmes av

s̊akalte Tsetlin-automater (TAer). Vi reduserer energiforbruket i læringsfasen ved

å introdusere en ny type læringsautomat som vi kaller en flertrinns variabel-struktur

endelig tilstandsautomat. Denne automaten gjør deterministiske tilstandshopp mens

TAene i den originale TM er avhengig av energikostbar generering av tilfeldige tall.

• Til slutt foresl̊ar vi en metode for å erstatte den harde beslutningsfunksjonen som

brukes av TMen for å produsere utverdier. Beslutningsfunksjonen erstattes av en

ix

x

logistisk funksjon. Denne tilnærmingen gjør det mulig å måle treffsikkerheten til

TMen n̊ar den predikerer uverdier.

Ved å overvinne begrensningene over ser vi at TMen yter sammenlignbart eller bedre

enn en rekke populære maskinlæringsalgoritmer.

Publications

The following list of publications consists of fourteen published papers and two submitted

papers. All the papers in the list contribute to the goals of the thesis, with the research

carried out during the Ph.D. study. Only the first eleven papers, the most central ones,

are included in the dissertation.

Papers Contributing to the Dissertation.

Paper 1: Abeyrathna, K. Darshana, Ole-Christoffer Granmo, Xuan Zhang, and Morten

Goodwin. “A Scheme for Continuous Input to the Tsetlin Machine with Applica-

tions to Forecasting Disease Outbreaks.” In International Conference on Industrial,

Engineering and Other Applications of Applied Intelligent Systems, pp. 564-578.

Springer, Cham, 2019.

Paper 2: Abeyrathna, K. Darshana, Ole-Christoffer Granmo, Xuan Zhang, Lei Jiao, and

Morten Goodwin. “The Regression Tsetlin Machine: A Novel Approach to Inter-

pretable Nonlinear Regression.” Philosophical Transactions of the Royal Society A

378, no. 2164, 2020.

Paper 3: Abeyrathna, K. Darshana, Ole-Christoffer Granmo, Xuan Zhang, and Morten

Goodwin. “Adaptive Continuous Feature Binarization for Tsetlin Machines Applied

to Forecasting Dengue Incidences in the Philippines.” In 2020 IEEE Symposium

Series on Computational Intelligence (SSCI), pp. 2084-2092. IEEE, 2020.

Paper 4: Abeyrathna, K. Darshana, Ole-Christoffer Granmo, and Morten Goodwin.

“Integer Weighted Regression Tsetlin Machines.” In International Conference on

Industrial, Engineering and Other Applications of Applied Intelligent Systems, pp.

686-694. Springer, Cham, 2020.

Paper 5: Abeyrathna, K. Darshana, Ole-Christoffer Granmo, and Morten Goodwin.

“On Obtaining Classification Confidence, Ranked Predictions and AUC with Tsetlin

Machines.” In 2020 IEEE Symposium Series on Computational Intelligence (SSCI),

pp. 662-669. IEEE, 2020.

Paper 6: Abeyrathna, K. Darshana, Harsha S. Gardiyawasam Pussewalage, Sasanka N.

Ranasinghe, Vladimir A. Oleshchuk, and Ole-Christoffer Granmo. “Intrusion Detec-

tion with Interpretable Rules Generated Using the Tsetlin Machine.” In 2020 IEEE

Symposium Series on Computational Intelligence (SSCI), pp. 1121-1130. IEEE,

2020.

xi

xii

Paper 7: Abeyrathna, K. Darshana, Ole-Christoffer Granmo, and Morten Goodwin.

“Extending the Tsetlin Machine with Integer-Weighted Clauses for Increased In-

terpretability.” IEEE Access 9: 8233-8248, 2021.

Paper 8: Abeyrathna, K. Darshana, Ole-Christoffer Granmo, and Morten Goodwin. “A

multi-step finite-state automaton for arbitrarily deterministic Tsetlin Machine learn-

ing.” Accepted at Expert Systems, September, 2021.

Paper 9: Abeyrathna, K. Darshana, Ole-Christoffer Granmo, and Morten Goodwin.

“Adaptive Sparse Representation of Continuous Input for Tsetlin Machines Based

on Stochastic Searching on the Line.” Electronics 10, no. 17: 2107, 2021.

Paper 10: Abeyrathna, K. Darshana, Ole-Christoffer Granmo, and Morten Goodwin.

“Convolutional Regression Tsetlin Machine: An Interpretable Approach to Con-

volutional Regression.” Submitted to IEEE Transactions on Pattern Analysis and

Machine Intelligence, September, 2021.

Paper 11: Abeyrathna, K. Darshana, Sinziana Rasca, Karin Markvica, and Ole-Christoffer

Granmo “Public Transport Passenger Count Forecasting in Pandemic Scenarios Us-

ing Regression Tsetlin Machine. Case Study of Agder, Norway.” In Smart Trans-

portation Systems (pp. 27-37). Springer, Singapore, 2021.

Other Related Publications Not Included in the Dissertation.

Paper 12: Abeyrathna, K. Darshana, Ole-Christoffer Granmo, Lei Jiao, and Morten

Goodwin. “The regression Tsetlin machine: a Tsetlin machine for continuous output

problems.” In EPIA Conference on Artificial Intelligence, pp. 268-280. Springer,

Cham, 2019.

Paper 13: Abeyrathna, K. Darshana, Ole-Christoffer Granmo, Rishad Shafik, Alex Yakovlev,

Adrian Wheeldon, Jie Lei, and Morten Goodwin. “A Novel Multi-step Finite-State

Automaton for Arbitrarily Deterministic Tsetlin Machine Learning.” In Interna-

tional Conference on Innovative Techniques and Applications of Artificial Intelli-

gence, pp. 108-122. Springer, Cham, 2020.

Paper 14: Jiao, Lei, Xuan Zhang, Ole-Christoffer Granmo, and Abeyrathna, K. Dar-

shana.“On the Convergence of Tsetlin Machines for the XOR Operator.” Submitted

to IEEE Transactions on Pattern Analysis and Machine Intelligence, Jan, 2021.

Paper 15: Abeyrathna, K. Darshana, Ole-Christoffer Granmo, and Morten Goodwin.

”Convolutional Regression Tsetlin Machine: An Interpretable Approach to Con-

volutional Regression.” In 2021 6th International Conference on Machine Learning

Technologies, pp. 65-73. 2021.

Paper 16: Abeyrathna, K. Darshana, Bimal Bhattarai, Morten Goodwin, Saeed Rahimi

Gorji, Ole-Christoffer Granmo, Lei Jiao, Rupsa Saha, and Rohan K. Yadav. “Mas-

sively parallel and asynchronous Tsetlin Machine architecture supporting almost

constant-time scaling.” In International Conference on Machine Learning, pp. 10-

20. ICML, 2021.

Contents

I Chapters 1

1 Introduction 3

1.1 Learning Automata . 3

1.1.1 The Tsetlin Automaton (TA) . 3

1.1.2 Other Variants of Learning Automata 4

1.2 Learning Automata in Pattern Recognition 5

1.3 Selected Related Approaches not Based on Learning Automata 6

1.4 Research Questions, Motivations and Main Objectives 7

1.5 Overall Research Approach . 10

1.6 Dissertation Outline . 11

2 Background on Tsetlin Machines 13

2.1 The Tsetlin Machine Architecture . 13

2.1.1 Layer 1: The Input Layer . 13

2.1.2 Layer 2: The Clause Construction 14

2.1.3 Layer 3: Storing States of TAs of Clauses in the Memory 14

2.1.4 Layer 4: Clause Output . 15

2.1.5 Layer 5: Classification . 15

2.2 The Learning Procedure . 16

2.2.1 Type I Feedback . 17

2.2.2 Type II Feedback . 18

2.3 Walk-through of Learning Using Type I and Type II Feedback to Learn

Sub-Patterns . 19

3 Thesis Contributions 27

3.1 Continuous Input to the Tsetlin Machine 27

3.2 Continuous Output from the Tsetlin Machine 28

3.3 Integer-Weighted Clauses for Compact Pattern Representation in the Tsetlin

Machine . 28

3.4 Classification Confidence, Ranked Predictions and AUC with Tsetlin Ma-

chines . 29

3.5 Identifying Patterns in Images Using the Convolutional Tsetlin Machine

and Use Them to Produce Continuous output 29

3.6 A Multi-Step Finite-State Automaton for Arbitrarily Deterministic Tsetlin

Machine Learning . 30

xiii

CONTENTS xiv

3.7 Applications . 30

4 Publications 33

5 Conclusion 39

II Papers Contributing to the Dissertation 47

A A Scheme for Continuous Input to the Tsetlin Machine with Applica-

tions to Forecasting Disease Outbreaks 49

B Adaptive Continuous Feature Binarization for Tsetlin Machines Applied

to Forecasting Dengue Incidences in the Philippines 67

C Adaptive Sparse Representation of Continuous Input for Tsetlin Ma-

chines Based on Stochastic Searching on the Line 83

D The Regression Tsetlin Machine - A Novel Approach to Interpretable

Non-Linear Regression 121

E Integer Weighted Regression Tsetlin Machines 139

F Extending the Tsetlin Machine With Integer-Weighted Clauses for In-

creased Interpretability 149

G On Obtaining Classification Confidence, Ranked Predictions and AUC

with Tsetlin Machines 185

H Convolutional Regression Tsetlin Machine: An Interpretable Approach

to Convolutional Regression 203

I A Multi-Step Finite-State Automaton for Arbitrarily Deterministic Tsetlin

Machine Learning 225

J Intrusion Detection with Interpretable Rules Generated Using the Tsetlin

Machine 249

K Public Transport Passenger Count Forecasting in Pandemic Scenarios

Using Regression Tsetlin Machine. Case Study of Agder, Norway 271

List of Figures

1.1 Transition graph of a two-action Tsetlin Automaton. 4

1.2 The overall research approach, blending theory, modelling, and design. . . 11

2.1 The TM structure. 14

2.2 The complete learning process of the TM in a flowchart. 16

2.3 Illustration of the single lane crossing issue of a car and a bus. 19

2.4 TA states of two positive clauses in the TM. They here receive the first

training sample (input) and are ready to update the states for the next

round. 20

2.5 TA states of two positive clauses in the TM. They here receive a second

sample and are ready to update the states for the next round. 22

2.6 TA states of two positive clauses in the TM, taking third training sample

and ready to update the states for the next round. 23

2.7 TA states of two positive clauses in the TM, taking forth training sample

and ready to update the states for the next round. 24

2.8 TA states of two positive clauses in the TM, taking fifth training sample

and ready to update the states for the next round. 25

2.9 TA states of two positive clauses in the TM, taking sixth training sample

and ready to update the states for the next round. 26

A.1 Transition graph of a two-action Tsetlin Automaton. 50

A.2 (a) A TA team forms the clause Cj
i , 1 ≤ j ≤ q, 1 ≤ i ≤ m. (b) A TM. (c)

A multiclass TM. 53

A.3 The training work-flow. 55

A.4 Variation of actions of TA to classify artificial data. 58

B.1 The TM structure. 70

B.2 Selecting thresholds from the set of unique values using the “stratified”

method. 74

B.3 Selecting thresholds from the set of unique values using the “gap” method. 75

B.4 (a) Original input features drawn from a Normal distribution and corre-

sponding continuous outputs. (b) Standardized input features drawn from

a Normal distribution and corresponding continuous outputs. (c) Original

input features drawn from a Gamma distribution and corresponding con-

tinuous outputs. (d) Standardized input features drawn from a Gamma

distribution and corresponding continuous outputs. 76

xv

LIST OF FIGURES xvi

B.5 (a) Sampling unique values as thresholds when features are from the Normal

distribution. (b) Sampling unique values as thresholds when features are

from the Gamma distribution. 78

C.1 Transition graph of a two-action Tsetlin Automaton with 2N memory states. 87

C.2 The TM structure. 88

C.3 The number of literals included in TM clauses to work with Bankruptcy

dataset. 102

C.4 The number of literals included in TM clauses to work with Balance Scale

dataset. 105

C.5 The number of literals included in TM clauses to work with Breast Cancer

dataset. 107

C.6 The number of literals included in TM clauses to work with the Liver

Disorders dataset. 108

C.7 The number of literals included in TM clauses to work with Heart Disease

dataset. 112

D.1 Forming a clause using input features and the actions of the TAs. 124

D.2 (a) The basic TM for two class problems. (b) Multi-class version of the TM.125

D.3 The RTM structure. 129

D.4 The training work-flow of the RTM. 130

D.5 Training error per epoch for Dataset I. The dataset is processed with dif-

ferent T . 131

D.6 Training error per epoch for Dataset II. The dataset is processed with

different T . 131

D.7 Pattern distribution for the 3-bits input datasets. 133

E.1 The training error variation per training epoch for different RTM schemes. 144

F.1 Transition graph of a two-action Tsetlin Automaton. 152

F.2 The Integer Weighted Tsetlin Machine structure. 154

F.3 The complete learning process of the IWTM in a flowchart. 157

F.4 TM classification process for the Bankruptcy dataset. 162

F.5 The number of literals included in different TM setups to work with Bankruptcy

dataset. 164

F.6 Sample complexity analysis for the Bankruptcy dataset. 164

F.7 The number of literals included in different TM setups to work with Balance

Scale dataset. 168

F.8 Sample complexity analysis for the Balance Scale dataset. 168

F.9 The number of literals included in different TM setups to work with Breast

Cancer dataset. 171

F.10 Sample complexity analysis for the Breast Cancer dataset. 171

F.11 The number of literals included in different TM setups to work with the

Liver Disorders dataset. 172

F.12 Sample complexity analysis for the Liver Disorders dataset. 174

LIST OF FIGURES xvii

F.13 The number of literals included in different TM setups to work with Heart

Disease dataset. 175

F.14 Sample complexity analysis for the Heart Disease dataset. 178

G.1 The TM structure. 187

G.2 The process of making predictions from the trained Tsetlin Machine. . . . 190

H.1 The TM structure. 206

H.2 A filter of size Wx ×Wy × Z on an image of size X × Y × Z. 209

H.3 Generating artificial data for C-RTM. 211

H.4 C-RTM training and testing accuracy variation over epochs when different

sizes of images are used. 216

I.1 Transition graph of a two-action Tsetlin Automaton with 2N memory states.228

I.2 Transition graph of the Multi-Step Variable Structure Finite-State Learn-

ing Automaton. 228

I.3 The steady state probabilities of an MVF-LA with different penalty prob-

abilities when N = 10. 232

I.4 The increase of the probability of selecting the correct action with N 233

I.5 The variation of the Pr[Action 1] against the number of training iterations,

n for different penalty probabilities. 233

I.6 The variation of average penalty M(n) against the number of training

iterations, n for different penalty probabilities. 234

I.7 The variation of the Pr[Action 1] against the number of training iterations,

n for different number of states per action, N 235

I.8 The ADTM structure. 236

I.9 Training and testing accuracy per epoch on Bankruptcy 238

I.10 Training and testing accuracy per epoch on the Balance Scale 239

I.11 Training and testing accuracy per epoch on Breast Cancer 240

I.12 Training and testing accuracy per epoch on Liver Disorders 241

I.13 Training and testing accuracy per epoch on Heart Disease 241

I.14 PRNG strategies for a) software TM; and b) hardware TM. 242

I.15 Number of randomisation events per epoch for the Heart Disease dataset. . 243

J.1 Transition graph of a two-action TA. 252

J.3 The learning process of the TM. 255

J.4 Variation of the prediction accuracy and the number of literals against the

number of clauses . 264

K.1 Method concept. 274

K.2 Actual vs Predicted passenger count for the testing in Case 1. 277

K.3 Actual vs Predicted passenger count for the testing in Case 2. 277

List of Tables

2.1 Driving control scenarios: Car and Bus columns say if they drive (Yes)

or not (No) while Crossing column says if it’s possible to pass each other

(Yes) or not (No). 20

A.1 Type I and Type II feedback to battle against false negatives and false

positives. 56

A.2 Conversion of original input features into bits. 57

A.3 Converting integer training samples to bits. 58

A.4 Regions that provide their data to forecast dengue incidences of their neigh-

bors . 59

A.5 Summary of the forecasting outcomes by different models. 60

B.1 Binarization of two continuous features. 73

B.2 Training and testing accuracies when original and standardized features

are from the Normal distribution . 77

B.3 Training and testing accuracies when original and standardized features

are from the Gamma distribution . 77

B.4 Summary of forecasting accuracies on Dengue data by different forecasting

models with different data preprocessing techniques. 80

C.1 Parameters and symbols used in Section C.3 89

C.2 Preprocessing of two continuous features. 93

C.3 Parameters and symbols used in Section C.4 94

C.4 Binarizing categorical features in the Bankruptcy dataset. 98

C.5 Binarizing categorical features in the Bankruptcy dataset. 98

C.6 Clauses produced by TM with Booleanization and SSLs schemes for m = 10. 99

C.7 Clauses produced by TM with Booleanization and SSLs schemes for m = 2. 99

C.8 Performance of TM with Booleanized continuous features on Bankruptcy

dataset. 100

C.9 Performance of TM with SSLs continuous feature scheme on Bankruptcy

dataset. 100

C.10 Performance comparison for Bankruptcy dataset. 101

C.11 Performance of TM with Booleanized continuous features on Balance Scale

dataset. 103

C.12 Performance of TM with SSLs continuous feature scheme on Balance Scale

dataset. 103

xviii

LIST OF TABLES xix

C.13 Performance comparison for Balance Scale dataset. 104

C.14 Performance of TM with Booleanized continuous features on Breast Cancer

dataset. 105

C.15 Performance of TM with SSLs continuous feature scheme on Breast Cancer

dataset. 105

C.16 Performance comparison for Breast Cancer dataset. 106

C.17 Performance of TM with Booleanized continuous features on Liver Disor-

ders dataset. 107

C.18 Performance of TM with SSLs continuous feature scheme on Liver Disorders

dataset. 108

C.19 Performance comparison for Liver Disorders dataset. 109

C.20 Performance of TM with Booleanized continuous features on Heart Disease

dataset. 110

C.21 Performance of TM with SSLs continuous feature scheme on Heart Disease

dataset. 110

C.22 Performance comparison for Heart Disease dataset. 111

C.23 Performance (in AUC) comparison against recent state-of-the-art machine

learning models. 113

D.1 Preprocessing of two continuous features. 128

D.2 Computing outputs for different 3 bit inputs. 132

D.3 Mean MAE with 95% confidence intervals for selected models on five datasets.135

E.1 Behavior comparison of different RTM schemes on Dataset III. 144

E.2 Training and testing MAE after 200 training epochs by various methods

with different m and T . 146

F.1 Binarizing categorical features in the Bankruptcy dataset. 160

F.2 Clauses produced by TM, RWTM, and IWTM for m = 10. 161

F.3 Clauses produced by TM, RWTM, and IWTM for m = 2. 161

F.4 Performance of TM on Bankruptcy dataset. 163

F.5 Performance of RWTM on Bankruptcy dataset. 163

F.6 Performance of IWTM on Bankruptcy dataset. 164

F.7 Performance comparison for Bankruptcy dataset. 165

F.8 Performance of TM on Balance Scale dataset. 166

F.9 Performance of RWTM on Balance Scale dataset. 166

F.10 Performance of IWTM on Balance Scale dataset. 166

F.11 Performance comparison for Balance Scale dataset. 167

F.12 Performance of TM on Breast Cancer dataset. 169

F.13 Performance of RWTM on Breast Cancer dataset. 169

F.14 Performance of IWTM on Breast Cancer dataset. 169

F.15 Performance comparison for Breast Cancer dataset. 170

F.16 Performance comparison for Liver Disorders dataset. 173

F.17 Performance of TM on Liver Disorders dataset. 174

F.18 Performance of RWTM on Liver Disorders dataset. 174

LIST OF TABLES xx

F.19 Performance of IWTM on Liver Disorders dataset. 175

F.20 Performance comparison for Heart Disease dataset. 176

F.21 Performance of TM on Heart Disease dataset. 177

F.22 Performance of RWTM on Heart Disease dataset. 177

F.23 Performance of IWTM on Heart Disease dataset. 177

F.24 Performance (in AUC) comparison against recent state-of-the-art machine

learning models. 179

G.1 Consistency of AUC and Accuracy. 194

G.2 Discriminance power of AUC vs. Accuracy. 194

G.3 Clause outputs at end of TM training on Bankruptcy dataset when m = 10.196

G.4 The number of reliable samples (out of 6000) according to different confi-

dence thresholds. 197

G.5 Performance of various machine learning algorithms in terms of AUC on

four datasets. 198

H.1 Summary of the artificial images generated to measure the performance of

RTM . 212

H.2 Four patterns recognized by filters (clauses) in the C-RTM to correctly

predict the regression outputs associated with weighted-mask in Figure H.3.213

H.3 Placing filters on different image locations where they recognized those

patterns. 213

H.4 Binary representation of filter locations in the image 214

H.5 Computing output for different images when having different number of

important pixels by activating different clauses. 215

H.6 Average Training MAEs on noisy data by CNNs and C-RTM. 216

H.7 Average Testing MAEs on noisy data by CNNs and C-RTM. 216

H.8 Detailed comparison of performance between CNN-1000 and C-RTM on

artificial data. 218

H.9 Detailed comparison of performance between CNN and C-RTM on y-coordinate

dataset. 219

H.10 Detailed comparison of performance between CNN and C-RTM on MNIST-

regression dataset. 220

I.1 Performance of TM and ADTM with different d on Bankruptcy 238

I.2 Performance of TM and ADTM with different d on Balance Scale 239

I.3 Performance of TM and ADTM with different d on Breast Cancer 239

I.4 Performance of TM and ADTM with different d on Liver Disorders 240

I.5 Performance of TM and ADTM with different d on Heart Disease 241

I.6 Classification accuracy of selected machine learning models 242

I.7 Comparative power per datapoint with two different d values. 244

J.1 Tabulation of Reward, Inaction and Penalty probabilities associated with

Type I Feedback and Type II Feedback. 256

J.2 Binarizing the feature protocol type in the KDD’99 dataset. 259

LIST OF TABLES xxi

J.3 Features before and after binarization. 259

J.4 Performance of different TM Setups. 260

J.5 Performance Comparison between TM and other Machine Learning Algo-

rithms. 261

J.6 Lower and upper bounds of each feature in each clause when the TM is

configured with 2 clauses. 262

J.7 Lower and upper bounds of each feature in each clause when the TM is

configured with 10 clauses. 263

K.1 MAE between actual and predicted passenger counts (testing for Case 1). . 276

K.2 MAE between actual and predicted passenger counts (testing for Case 2). . 277

List of Abbreviations

ANNs multi-layered Artificial Neural Networks.

ASIC Application-Specific Integrated Circuit.

AUC area under the characteristic curve.

C-RTM Convolutional Regression Tsetlin Machine.

CNF Conjunctive Normal Form.

CNNs Convolutional Neural Networks.

CTM Convolutional Tsetlin Machine.

DNF Disjunctive Normal Form.

DTs Decision Trees.

EBMs Explainable Boosting Machines.

IWTM Integer weighted Tsetlin Machine.

LAs Learning Automata.

LR Logistic Regression.

MAE mean absolute error.

MPs Multilayer Perceptrons.

NB Naıve Bayes.

NE Nash equilibria.

PAC Probably Approximately Correct.

RF Random Forest.

RTM Regression Tsetlin Machine.

xxii

List of Abbreviations xxiii

RTs Regression Trees.

SSL stochastic searching on the line automata.

SVMs Support Vector Machines.

SVR Support Vector Regression.

TAs Tsetlin Automata.

TM Tsetlin Machine.

WTM Weighted Tsetlin Machine.

XGBoost Gradient Boosted Trees.

Part I

Chapters

1

Chapter 1

Introduction

This provides necessary background knowledge required to conduct the entire research.

The chapter starts by giving an introduction to Learning Automata (LAs), the foundation

of the Tsetlin Machine (TM), in Section 1.1. The principles of so-called Tsetlin Automata

(TAs) and other selected LAs are further explained in detail. We then summarize their

contributions to the pattern recognition field. There after selected related propositional

logic based pattern recognition algorithms are discussed. On this foundation, we establish

the Research Questions, Motivations and Main Objectives of the research. Research

approach and the dissertation outline is presented towards the end of the chapter.

1.1 Learning Automata

The origins of LAs can be traced back to the work of M. L. Tsetlin in the early 1960s [1].

The objective of an LA is to learn the optimal action through trial and error in a stochastic

environment. Various types of LAs are available depending on the nature of the appli-

cation [2]. The family of two-action finite-state LAs caught significant attention and

effort in the early stages of LA research due to their simplicity, reliability, flexibility, and

applicability [3]. A two-action finite-state LA interacts with its environment iteratively.

In each iteration, the action that it performs next is decided by its present state (the

memory). The environment, in turn, randomly produces a reward or a penalty according

to an unknown probability distribution, responding to the action selected by the LA. If

the LA receives a reward, it reinforces the selected action. A penalty, on the other hand,

weakens it. Across as few iterations as possible, the goal is to identify the action with the

highest reward probability [3].

The transitions between states can be deterministic or stochastic. Deterministic tran-

sitions occur with probability 1.0, while stochastic transitions are randomly performed

based on a preset probability. If the transition probabilities are changing, we have a

variable structure automaton, otherwise, we end up with a fixed structure.

1.1.1 The Tsetlin Automaton (TA)

TA is one particular kind of finite-state, fixed-structure and deterministic LA. Figure 1.1

shows a two-action TA with 2N states. As illustrated in the figure, the next action

3

 1 2 … N-1 N N+1 N+2 ……. 2N-1 2N

Action 1 Action 2

Reward

Penalty

Figure 1.1: Transition graph of a two-action Tsetlin Automaton.

that the TA performs is decided by its present state. States numbered from 1 to N

map to Action 1, while states from N + 1 to 2N map to Action 2. The TA interacts

with its environment iteratively. In each iteration, the TA performs the action associated

with its current state. This, in turn, randomly triggers a reward or a penalty from the

environment, according to an unknown probability distribution. If the TA receives a

reward, it reinforces the action performed by moving to a “deeper” state, meaning that

the TA state is one step closer to one of the ends (left or right side). If the action results

in a penalty, the TA moves one step towards the middle state to weaken the performed

action, ultimately jumping to the middle state of the other action. In this manner, with

a sufficient number of states, a TA converges to performing the action with the highest

probability of producing rewards – the optimal action – with probability arbitrarily close

to unity, merely by interacting with the environment (as long as the reward probability

of the optimal action is larger than 0.5) [3].

1.1.2 Other Variants of Learning Automata

While the TA changes its state in single steps, the deterministic Krinsky Automaton

introduces multi-step state transitions when it is rewarded [3]. The purpose of the multi-

step state transitions is to reinforce an action more strongly when it is rewarded, and more

weakly when penalized. The Krinsky Automaton behaves as a TA when the response

from the environment is a penalty. However, when it is a reward, any state from 2 to N

transitions to state 1, and any state from N + 1 to 2N − 1 transitions to state 2N . In

effect, N consecutive penalties are needed to offset a single reward.

Another variant of LA is the Krylov Automaton. A Krylov Automaton makes both

deterministic and stochastic single-step transitions [3]. The state transitions of the Krylov

Automaton is identical to those of a TA for rewards. However, when it receives a penalty,

it performs the corresponding TA state change randomly, with probability 0.5.

The G2N,2 automata scheme [1] is somewhat similar to TA (TA is typically expressed

as L2N,2 where the subscripts 2N and 2 in both G2N,2 and L2N,2 indicate the number of

memory states and the number of actions, respectively). However, in the G2N,2 scheme,

when the current state is N and the environment feedback is a penalty, the state moves

from N to 2N (instead of to N + 1 as in TA). Similarly, if the current state is N + 1 and

the environment feedback is a penalty, the state moves from N + 1 to 1 (instead of to N

4

as in TA). Hence, in the G2N,2 scheme, at least N penalties are needed to change action

again after a switch.

All the automata discussed so far, and also the Ponomarev Automaton [4] and the

Cover-Hellman Automaton [5], are fixed-structure automata whose state transition proba-

bilities are fixed and do not vary with the training iterations. On the contrary, there exist

another kind of automata, called variable-structure automata, whose transition proba-

bilities are updated over the training iterations. The linear reward-penalty scheme [6],

referred to as the LR−P scheme, is a popular variable-structure automaton. The reward

parameter λR (0 ≤ λR < 1) and the penalty parameter λP (0 ≤ λP < 1) update the

probability of selecting each action after every training iteration. In other words, if the

feedback is a reward, the probability of selecting the other action is multiplied by λR.

Hence, the update reduces the probability of selecting the other action. Similarly, if the

feedback is a penalty, the probability of selecting the same action is multiplied by λP .

Accordingly, the update reduces the probability of selecting the same action. The linear

reward-inaction (LR−I) scheme [7] behaves the same as LR−P for rewards, but its penalty

parameter λP is 0.

1.2 Learning Automata in Pattern Recognition

Learning Automata have also been used for pattern recognition over more than four

decades due to their ability of learning the optimal action when operating in unknown

stochastic environments [8]. One example of such approaches is the automata-based

pattern classifier introduced by Zahiri [9]. This classifier is able to approximate the deci-

sion hyper-planes in the feature space without knowing the priori probabilities and class

distributions. The performance of the proposed classifier tested on datasets containing

nonlinear and overlapping class boundaries is on par or better than the selected set of

typical machine learning classifiers. Further, Sastry et al., have also proposed a team

of continuous-action-set learning automata based algorithm for noise-tolerant learning of

linear hyper-plane classifiers [10]. Sastry and Thathachar [11] also conducted a study on

learning automata-based algorithms which are capable of learning optimal discriminant

functions for pattern classification under both pattern noise and classification noise. They

explore how different algorithms have different advantages and disadvantages when they

are utilized. Further, when it comes to optimization, they also find similarities between

the automata approaches they study and so-called genetic algorithms. The robust discrim-

inant function built based on LA in [12] and the LA-based pattern classification algorithm

in [13] for multi-class classification problem are other relatively recent approaches from

the LA field.

In addition to classification tasks, LA have also been applied in image segmentation

[14, 15], motion estimation [16], person identification (by eye gaze detection) [17], object

detection [18], optimization [19], classification as deterministic optimization [20], online

tracking of event patterns [21], as well as solving the string taxonomy problem [22].

The performance of LA might be further enhanced by hybridizing them with other

algorithms. Motieghader et al., propose such an algorithm for gene selection in cancer

5

classification [23]. The proposed algorithm is an integration of Genetic Algorithm and

Learning Automata (GALA) and is able to perform comparably against other cancer clas-

sification algorithms. In [20], LAs are used to mix constituent prediction models. The

LAs then assign and update a suitable weight per model. The whole system as one unit

is used to predict resource usage in cloud computing environments. A similar approach is

presented in [24]. In the latter work, the influence of each individual method on the final

ensemble output is controlled by the LA. A coefficient attached to each single model is

updated online during the training phase using LA-based learning. Finally, the LA-based

classifier by Barto and Anandan [25] combines stochastic LA with a pattern-classification

algorithm based on stochastic approximation. They claim that the capabilities of LAs

allow the classifier to learn from less informative training data. However, a closer ex-

amination of the above LA-based approaches shows that they address relatively simple

pattern recognition tasks with some exception.

Although the original TA shown in Figure 1.1 is rather simple, it forms the basis

for more advanced algorithm designs.These extensions include the Hierarchy of Twofold

Resource Allocation Automata (H-TRAA) for resource allocation [26] and the stochastic

searching on the line automata (SSL) algorithm by Oommen et al. [27]. Furthermore,

teams of TAs have been used to create a distributed coordination system [28], to solve

the graph coloring problem [29], and to forecast dengue outbreaks in the Philippines [30].

The TM is a recent addition to the field of TA, addressing complex pattern recognition.

The TM uses the TA as a building block to solve complex pattern recognition tasks. The

TM operates as follows. Firstly, propositional formulas in disjunctive normal form are used

to represent patterns. The TM is thus a general function approximator. The propositional

formulas are learned through training on labelled data by employing a collective of TAs,

organized in a game. The payoff matrix of the game has been designed so that the Nash

equilibria (NE) correspond to the optimal configurations of the TM. As a result, the

architecture of the TM is relatively simple, facilitating transparency and interpretation of

both learning and classification. Additionally, the TM is designed for bit-wise operation.

That is, it takes bits as input and uses fast bit-wise operators for both learning and

classification. This gives the TM an inherent computational advantage.

1.3 Selected Related Approaches not Based on Learn-

ing Automata

While this thesis seeks to advance the field of LA in rule-based pattern recognition, other

areas of research also address rule-based pattern recognition. We here give an overview

of selected work for the sake of completeness.

Propositional logic is a well-explored framework for knowledge-based pattern classifi-

cation. Here, data is represented in propositional form based on experimentation or on

expert knowledge. There also exists approaches where classifiers are built directly from

a truth table, for instance expressed in Disjunctive Normal Form (DNF) or Conjunctive

Normal Form (CNF). One such example can be found in [31]. Here, continuous features in

clinical and genomic data are converted to truth values by thresholding. Experts’ knowl-

6

edge is used to find the effective thresholds for each continuous feature. Then, DNF is

used to represent the patterns among them. In this manner, logical functions are created

for predicting recurrence and non-recurrence of liver cancer, without relying on training

data.

However, in machine learning applications, when large number of input features and

data samples are available, building classifiers through a truth table is not necessarily

feasible. In such cases, data-driven techniques to learn the propositional formulas from

data are more commonly used. This family of techniques is typically called rule induc-

tion techniques. Learning propositional formulas to represent patterns in data has a long

history [32]. Feldman investigated the hardness of learning DNF [33], Klivans used Poly-

nomial Threshold Functions to build logical expressions [34], while Feldman leveraged

Fourier analysis [35]. Furthermore, so-called Probably Approximately Correct (PAC)

learning has provided fundamental insight into machine learning, as well as providing a

framework for learning formulas in DNF [36]. An integer programming approach is pro-

posed in [37] to learn CNF formulas, providing promising results based on a Bayesian

method. In addition to the above techniques, association rule mining models have also

been extensively applied in [38, 39] to predict sequential events using a set of rules. Fur-

thermore, recent approaches combine Bayesian reasoning with propositional formulas in

DNF for robust learning of formulas from data [32]. Overviews and comparisons of other

rule induction algorithms can be found in [40, 41, 42, 43], while example applications are

provided in [44, 45, 46, 47].

One special case of rule induction is building the classifiers when features are unknown

and must be learnt from data. As an example, Santa Cruz et al. use Boolean expressions

to capture visual primitives for visual recognition (e.g., IF the image contains “(NOT

large wingspan) AND hooked beak” THEN a gull bird is predicted). The important

visual concepts (e.g., wingspan, beak) were not explicitly specified [48]. Instead, they

used neural network models both to extract features and to learn the classifier.

The TM can be seen as a rule induction method. The class patterns are recognized

by clauses, with a clause being a conjunction of selected relevant input features. As

mentioned earlier, the team of TA of each clause decides the composition of the clause

— which features should be included and which features should be excluded. At the end

of training, the reasoning behind the classification of future samples can be expressed as

human-interpretable IF-THEN rules (e.g., IF white AND wheels AND (NOT wings)

THEN a car).

1.4 Research Questions, Motivations and Main Ob-

jectives

Despite its simplicity, the TM has provided competitive results in comparison with tra-

ditional machine learning techniques, including Multilayer Perceptrons (MPs), Support

Vector Machines (SVMs), Logistic Regression (LR), and Naıve Bayes (NB), in well-known

benchmarks such as hand written digits classification (MNIST), Iris data classification,

and classification of Noisy XOR data with non-informative features.

7

However, the original TM architecture is limited by its propositional foundation in

several ways. Firstly, while many applications require continuous input and output, TMs

process propositional input with propositional operators, producing propositional output.

As such, TMs are not inherently suited for dealing with continuous values, for instance

in regression problems. Further, it is unclear how to go from propositional output to

measuring output confidence, which can be essential in decision-making. Finally, learning

requires extensive random number generation to compensate for lack of continuous repre-

sentations. Random number generation increases computation time and makes hardware

implementation more costly energy-wise. The above challenges motivate the following

research questions and objectives:

Research Question 1: How can the TM process continuous input

features?

Motivation: The original TM operates inherently only on propositional features. These

features and their negations are directly fed into the clauses without any further modifi-

cation. However, continuous features are arguably more common than propositional ones

in real-world machine learning applications. Hence, to broaden the application areas of

TMs, it is important to find methods that allow the TM to operate on continuous features.

Objective: Our first objective is thus to find effective ways of turning continuous fea-

tures into propositional ones by means of pre-processing the data. Then we intend to

modify the learning mechanisms of the TM to allow it to operate directly on continuous

features, without any pre-processing.

Research Question 2: How can the TM predict continuous out-

put?

Motivation: The TM has been designed for classification, not for producing continuous

output. However, many machine learning problems require regression.

Objective: Hence, our objective is to recast the TM architecture for regression rather

than classification. This requires also discovering an appropriate learning procedure that

minimizes the regression error instead of the classification error.

Research Question 3: How can the TM pattern duplication be

reduced by means of clause weighing, to improve memory usage

and interpretability?

Motivation: Although TMs are capable of achieving competitive performance, they

often require a large number of clauses to do so, which impedes interpretability and in-

creases memory consumption. To overcome this issue, there is a need to represent patterns

more compactly. While Phoulady et al. introduced continuous clause weights [49], these

require multiplication for updating and an additional hyper-parameter.

8

Objective: Building upon the Weighted Tsetlin Machine (WTM) by Phoulady et al. [49],

we intend to introduce weights to TM regression. While the WTM uses real-valued weights

for classification, we instead intend to use integer weights. In addition to the computa-

tional benefits, we also argue that the integer weighted clauses are more interpretable

than the real-valued ones because they can be seen as multiple copies of the same clause.

Finally, our aim is to avoid additional hyper-parameters, which WTM relies on. This

objective also entails developing an accompanying weight learning mechanism using in-

crement/decrement operations rather than multiplication.

Research Question 4: How can one measure TM classification

confidence, rank its predictions, and thus compute area under

the characteristic curve (AUC)?

Motivation: The TM decisions are binary (hard), making them less suitable for appli-

cations that require trading off precision against recall. Indeed, Huang et al. [50] and

Bradley [51] stress the importance of receiver operating characteristic (ROC) curves and

area under ROC (AUC) for assessing machine learning techniques, as they capture the

relationship between sensitivity and specificity. Further, getting access to the confidence

of classifications can be important in many applications. One example is direct marketing,

where it may be advantageous to approach the most likely buyers first, given limited time

and resources. Accordingly, the ranking of predictions based on confidence, opens up for

additional applications than mere classification [52].

Objective: Our next objective is thus to modify the output layer of the TM so that it is

able to measure prediction confidence. We further intend to investigate how our proposed

confidence measure can be used to calculate AUC and rank predictions.

Research Question 5: How can the Convolutional Tsetlin Ma-

chine (CTM) be modified to predict continuous image properties

rather than classifying images into distinct classes?

Motivation: Convolutional regression applications are ample in the machine learning

field. A few of them are near infrared (NIR) calibration [53], Spectrum analysis [54],

depth prediction in digital holography [55], and vehicle detection and counting in aerial

images [56]. To natively handle such applications, the CTM architecture for classification

needs to be replaced by an architecture that supports regression.

Objective: We aim to expand upon the second research question, so that it is also

possible to support convolutional regression. This will entail discovering how we can

combine sub-patterns in images to produce regression output.

9

Research Question 6: How can the TM learning be improved

by reducing the energy-costly random number generation that

stochastically guide the TA clause composition?

Motivation: TMs rely on energy-costly random number generation to stochastically

guide a team of TAs to a NE of the TM game. This is a serious issue for TM Application-

Specific Integrated Circuit (ASIC) implementations aimed at low energy on-chip learning.

Hence, there is a need to find ways to reduce the need for random number generation

during TM learning.

Objective: Our objective is thus to reduce the need for random number generation

by designing a new kind of LA that replaces the stochastic reward probability-guided

learning with deterministic multi-step state transitions.

Research Question 7: To what degree can the TM solve real-

life problems with competitive accuracy, while maintaining in-

terpretability?

Motivation: Being a new machine learning technique, it is important to investigate

how well the TM can solve real-life problems.

Objective: We intend to explore two applications to this end, network intrusion detec-

tion and public transport passenger count forecasting.

1.5 Overall Research Approach

To achieve our research objectives, this thesis blends the three main paradigms of com-

puting research: theory, abstraction/modelling, and design [57]. Theory concerns prov-

ing properties and relationships among the objects of study. Abstraction investigates

such relationships and properties by modeling them. If the predictions of the models

match empirical observations from experiments, the belief in the validity of the models is

strengthened. Theory and abstraction inform design of systems, which are tested against

system requirements in the engineering paradigm.

Our overall research approach is visualized in Figure 1.2. As seen in the figure, we base

our modelling of TM learning mechanisms on probability theory, LAs, Markov chains, and

game theory. The resulting models then provide the basis for design and implementation

of prototypes that are explored empirically. This exploration, in turn, leads to new insight

that informs further theoretical analysis and modelling.

We have evaluated the effectiveness of our new designs not only on artificial data

produced through simulation, but also on well-established public benchmark datasets.

Further, performance has been compared against state-of-the-art methods.

We have pursued the above iterative research approach throughout the thesis work,

with an emphasis on design and empirical exploration. This process has allowed us to

10

Theory

Design Modelling

Probability theory,

learning automata,

Markov chains, and

game theory.

Advancements to the

TM architecture and test

them on both artificial

and real-world data.

Real implementation

and usage which opens

up new research

directions.

Figure 1.2: The overall research approach, blending theory, modelling, and design.

discover new effective TM learning mechanisms, which has advanced state-of-the-art in

TMs along several directions.

1.6 Dissertation Outline

The rest of the dissertation is organized as follows. In Chapter 2, we introduce the TM.

We organize the introduction according to five conceptual TM layers, explaining the task

of each layer. The chapter concludes with demonstrating the entire learning procedure on

a toy dataset. We then present the contribution of this research in Chapter 3, organized

according to the corresponding research questions. Chapter 4 provides a summary of

the thesis publications, relating them to the thesis contributions presented in Chapter 3.

Finally, we conclude and summarize the thesis findings in Chapter 5.

11

Chapter 2

Background on Tsetlin Machines

The TM uses the TAs as building blocks to solve complex pattern recognition tasks. The

TM operates as follows. Firstly, propositional formulas in disjunctive normal form are used

to represent patterns. The TM is thus a general function approximator. The propositional

formulas are learned through training on labelled data by employing a collective of TAs

organized in a game. The payoff matrix of the game has been designed so that the NE

correspond to the optimal configurations of the TM. As a result, the architecture of the

TM is relatively simple, facilitating transparency and interpretation of both learning and

classification. Additionally, the TM is designed for bit-wise operation. That is, it takes

bits as input and uses fast bit manipulation operators for both learning and classification.

This gives the TM an inherent computational advantage.

This chapter introduces the architecture of the TM, which contains (conceptually) five

layers. The function of each of these layers are discussed in more detail. Thereafter, we

continue with presenting the learning procedure of the TM. At end of the chapter, we

provide a walk-through of the learning steps by using a simple dataset, namely, XOR-data.

2.1 The Tsetlin Machine Architecture

As shown in Figure 2.1, TM can be decomposed conceptually into five layers for recog-

nizing sub-patterns in the data and categorizing them into classes. In this section, we

explain the function of each of these layers in the pattern recognition and learning phases

of the TM.

2.1.1 Layer 1: The Input Layer

In the input layer, the TM receives a vector of o propositional variables: X = [x1, x2, . . . , xo],

xk ∈ {0, 1}. The objective of the TM is to classify this feature vector into one of the two

classes, y ∈ {0, 1}. However, as shown in Figure 2.1, the input layer also includes the

negations of the original features, ¬xk, in the feature vector to capture more sophisticated

patterns. Collectively, the elements in the augmented feature vector are called as literals:

L = [x1, x2, . . . , xo, ¬x1,¬x2, . . . ,¬xo] = [l1, l2, . . . , l2o].

13

𝑳 = [𝑥1, 𝑥2, 𝑥3 … 𝑥𝑜 , ¬𝑥1, ¬𝑥2, ¬𝑥3 … ¬𝑥𝑜]

……….

 (𝑚 × 2𝑜)

𝑘

𝑗 𝑎𝑗,𝑘
𝑨 = 𝑎𝑗,𝑘

Clause-2

𝑎2,𝑘 ∈ {1, … 2𝑁}

Clause-m

𝑎𝑚,𝑘 ∈ {1, … 2𝑁}

1/0 1/0 1/0 ……….

𝑣 = ∑ 𝑐𝑗
+ − ∑ 𝑐𝑗

−
𝑗𝑗

- - +

Layer 3

1 2 k 2o

Clause-1

Layer 1

Layer 2

Layer 4

Layer 5

Figure 2.1: The TM structure.

2.1.2 Layer 2: The Clause Construction

The sub-patterns associated with class 1 and class 0 are captured by m conjunctive

clauses. The value m is set by the user. Accordingly, given that more complex problems

might require larger m. All of the clauses receive the same augmented feature vector L,

assembled at the input layer. However, to perform the conjunction, only a fraction of the

literals are selected, with the conjunction performed as follows:

cj =
∧
k∈Ij

lk. (2.1)

Notice how the composition of a clause varies from another clause depending on the

indexes of the included literals in the set Ij ⊆ {1, . . . , 2o}. For the special case of Ij = ∅,
i.e., an empty clause, we have:

cj =

{
1 during learning

0 otherwise.
(2.2)

That is, during learning, empty clauses output 1 and during classification they output 0.

2.1.3 Layer 3: Storing States of TAs of Clauses in the Memory

The TM employs two-action TAs as illustrated in Figure 1.1, to decide which literals

are included in which clauses. Since we have 2 × o number of literals in L, the same

14

number of TAs, one per literal k, is needed by a clause to decide the included literals

in the clause. This is visualized in Clause-1 of Figure 2.1. The states on the left hand

side of the automaton (states from 1 to N) ask to Exclude the corresponding literal from

the clause while the states on the right hand side of the automation (states from N + 1

to 2N) ask to Include the literal in the clause. The systematic storage of states of TAs

in the matrix, A: A = (aj,k) ∈ {1, . . . , 2N}m×2o, with j referring to the clause and k

to the literal, allows us to find the index set of the included literals in clause j, Ij as

Ij = {k|aj,k > N, 1 ≤ k ≤ 2o}.

2.1.4 Layer 4: Clause Output

Once the TA decisions are available, the clause output can be easily computed. Since

the clauses are conjunctive, a single literal of value 0 is enough to turn the clause output

to 0, if its corresponding TA has decided to Include it in the clause. For the ease of

understanding, we introduce the set I1
X , which contains the indexes of the literals of value

1. Then, the output of clause j can be expressed as:

cj =

{
1 if Ij ⊆ I1

X ,

0 otherwise.
(2.3)

The clause outputs, computed as above, are now stored in the vector C, i.e., C = (cj) ∈
{0, 1}m.

2.1.5 Layer 5: Classification

The TM structure shown in Figure 2.1 classifies data into two classes. Hence, sub-patterns

associated with each class have to be separately learned. For this purpose, the clauses are

divided into two groups, where one group learns the sub-pattern of class 1 while the other

learns the sub-patterns of class 0. For simplicity, clauses with odd index are assigned with

positive polarity (c+
j), and they are supposed to capture sub-patterns of output y = 1.

Clauses with even index, on the other hand, are assigned with negative polarity (c−j) and

they supposed to capture the sub-patterns of output y = 0.

The clauses which recognize sub-patterns output 1. This makes the classification

process easier as we just need to sum the clause outputs of each class and assign the

sample into the class which has the highest sum. A higher sum simply means that more

sub-patterns have been identified from the designated class, and the input sample has a

higher chance of being of that class. Hence, with v being the difference in clause output,

v =
∑

j c
+
j −

∑
j c
−
j , the output of the TM is decided as follows:

ŷ =

{
1 if v ≥ 0

0 if v < 0 .
(2.4)

15

for clause 𝑗 = 1, … . . , 𝑚

if 𝑐𝑗 = 1 then

 for feature 𝑘 = 1, … ,2𝑜 do

 if 𝑙𝑘 = 1 then

 Type Ia

 else

 Type Ib

 end for

else

 Type Ib

𝑐𝑗
−

 𝑦 = 0

𝑐𝑗
+

Output

Class

Clause

Type

Clause

Type

𝑝𝑗(𝑛) = 1

𝑐𝑗
−

𝑐𝑗
+

 𝑦 = 1

No

Yes

if 𝑐𝑗 = 1 then

 for feature 𝑘 = 1, … ,2𝑜 do

 if 𝑙𝑘 = 0 then

 Type II

 else

 Inaction

 end for

else

 Inaction

Start Tsetlin Machine with:

Clauses m, Precision s, Target T

Random Initialization of TAs:

2 × 0 TAs per Clause

Training Data:

Training Sample X, y

Figure 2.2: The complete learning process of the TM in a flowchart.

2.2 The Learning Procedure

As shown in Figure 2.2, a TM learns online, updating its internal parameters according

to one training sample (X, y) at a time. As we discussed in Layer 4, a TA team decides

the clause output, and, collectively, the output of all the clauses decide the TM output.

Hence, to maximize the accuracy of the TM output, it is important to sensibly guide the

individual TAs in the clauses. We achieve this with two kinds of reinforcement: Type I

and Type II feedback. Type I and Type II feedback decide if the TAs in clauses receive a

reward, a penalty, or inaction feedback, depending on the context of their actions. How

the type of feedback is decided and how the TAs are updated according to the selected

feedback type are discussed below in more detail.

16

2.2.1 Type I Feedback

Type I feedback has been designed to reinforce the true positive outputs of the clauses and

to combat the false negative outputs. To reinforce the true positive output of a clause

(clause output is 1 when it has to be 1), Include actions of TAs whose corresponding

literal value is 1 are strengthened. Simultaneously, Type I Feedback strengthens the

Exclude actions of TAs in the same clause whose corresponding literal value is 0. To

combat false negative clause output (clause output is 0 when it has to be 1), we gradually

erase the currently identified pattern. To do so, the Exclude actions of TAs, regardless

of their corresponding literal values, are strengthened. We now sub-divide the Type I

feedback into Type Ia and Ib, where Type Ia handles reinforcement of the Include action

while Type Ib reinforces the Exclude action. Together, Type Ia and Type Ib feedback

force clauses to output 1. Hence, clauses with positive polarity need Type I feedback

when y = 1 and clauses with negative polarity need Type I feedback when y = 0. To

diversify the clauses, they are targeted for Type I feedback stochastically as follows:

pj =

{
1 with probability T−max(−T,min(T,v))

2T
,

0 otherwise.
(2.5)

All clauses in each class should not learn the same sub-pattern, nor only a few. Hence,

clauses should be smartly allocated among the sub-patterns. The user set target T in (2.5)

does this while deciding the probability of receiving a Type I feedback. In effect, T num-

ber of clauses are available to learn each sub-pattern in each class. Higher T increases the

robustness of learning by allocating more clauses to learn each sub-pattern. Now, T to-

gether with v decide the probability of clause j receiving Type I feedback and accordingly

the decision pj is made. The decisions for the complete set of clauses to receive Type I

feedback are organized in the vector, P = (pj) ∈ {0, 1}m.

Once the clauses to receive Type I feedback are singled out as per (2.5), the prob-

ability of updating individual TAs in selected clauses is calculated using the user-set

parameter s (s ≥ 1), separately for Type Ia and Type Ib. According to the above proba-

bilities, the decision whether the kth TA of the jth clause is to receive Type Ia feedback,

rj,k, and Type Ib feedback, qj,k, are stochastically computed as follows:

rj,k =

{
1 with probability s−1

s
,

0 otherwise.
(2.6)

qj,k =

{
1 with probability 1

s
,

0 otherwise.
(2.7)

The above decisions are respectively stored in the two matrices R and Q, i.e., R =

(rj,k) ∈ {0, 1}m×2o and Q = (qj,k) ∈ {0, 1}m×2o. Using the complete set of conditions, TA

indexes selected for Type Ia are I Ia = {(j, k)|lk = 1∧ cj = 1∧ pj = 1∧ rj,k = 1}. Similarly

TA indexes selected for Type Ib are I Ib = {(j, k)|(lk = 0 ∨ cj = 0) ∧ pj,y = 1 ∧ qj,k = 1} .
The states of the identified TAs are now ready to be updated. Since Type Ia strength-

ens the Include action of TAs, the current state should move more towards the Include

action direction. We denote this as ⊕ and here ⊕ adds 1 to the current state value of

17

Algorithm 1 The complete TM learning process

1: Input: Training data (X, y), m, T , s

2: Initialize: Random initialization of TAs

3: Begin: nth training round

4: for j = 1, ...,m do

5: if pj = 1 then . Eq. (2.5) and (2.8)

6: if (y = 1 and j is odd) or (y = 0 and j is even) then

7: if cj = 1 then . Eq. (2.3)

8: for feature k = 1, ..., 2o do

9: if lk = 1 then

10: Type Ia Feedback

11: else:

12: Type Ib Feedback

13: end if

14: end for

15: else:

16: Type Ib Feedback

17: end if

18: else: (y = 1 and j is even) or (y = 0 and j is odd)

19: if cj = 1 then . Eq. (2.3)

20: for feature k = 1, ..., 2o do

21: if lk = 0 then

22: Type II Feedback

23: else:

24: Inaction

25: end if

26: end for

27: else:

28: Inaction

29: end if

30: end if

31: end if

32: end for

the TA. The Type Ib feedback, on the other hand, moves the state of the selected TA

towards Exclude action direction to strengthen the Exclude action of TAs. We denote

this by 	 and here ⊕ subtracts 1 from the current state value of the TA. Accordingly,

the states of TAs in A are updated as: A←
(
A⊕ I Ia

)
	 I Ib.

2.2.2 Type II Feedback

Type II feedback has been designed to combat false positive clause output (clause output

is 1 when it has to be 0). To turn this clause output from 1 to 0, a literal of value of 0 can

simply be included in the clause. Clauses with positive polarity need Type II feedback

18

when y = 0 and clauses with negative polarity need this when y = 1 since they do not

want to vote for the opposite class. Again using the user-set target T , the decision for

the jth clause is made as follows:

pj =

{
1 with probability T+max(−T,min(T,v))

2T
,

0 otherwise.
(2.8)

The states of the TAs whose corresponding literal is of value 0 for the clauses select

according to (2.8) are now moved in the Include action direction with probability one.

Hence, the index set of this kind can be identified as: I II = {(j, k)|lk = 0 ∧ cj = 1∧pj = 1}.
Accordingly, the states of TAs in A are updated as: A← A⊕ I II.

The complete training procedure of the TM has also been summarized in Algorithm 1.

When training has been completed, the final decisions of the TAs are recorded, and the

resulting clauses can be deployed for operation.

2.3 Walk-through of Learning Using Type I and Type II

Feedback to Learn Sub-Patterns

Dataset: In this section, we demonstrate how Type I and Type II feedback in the TM

guide TA teams in clauses to learn sub-patterns in classes for classification. The practical

example we consider here is training a traffic control system for a single lane road. We

make it more specific by considering the case of guiding a car and a bus driving in opposite

directions, as illustrated in Figure 2.3.

Theory

Design Modelling

Learning automata,

Markov chains, and

games, etc.

Advancements to the

TM architecture and test

them on both artificial

and real-world data.

Real implementation

and usage which opens

up new research

directions.

Figure 2.3: Illustration of the single lane crossing issue of a car and a bus.

Setting up the TM: Here, the bus and the car can drive past each other only if one of

them wait on the side and let the other one drive. If both wait or both try to drive, they

19

Table 2.1: Driving control scenarios: Car and Bus columns say if they drive (Yes) or not

(No) while Crossing column says if it’s possible to pass each other (Yes) or not (No).

Scenario Index Car Bus Crossing

1 Yes Yes No

2 Yes No Yes

3 No Yes Yes

4 No No No

do not succeed in passing each other. The possible scenarios of this driving control are

summarized in Table 2.11.

Now we are going to see how a TM can be trained to learn this small practical example

with the help of Type I and Type II feedback. Then, the learned rules can be used to

build the traffic control system of such situations. As we can see in the above table, each

class (crossing: Yes or No) has only two sub-patterns (e.g., one sub-pattern for class ‘Yes’

is (Car AND NOT Bus)). In this tutorial, we show how patterns of only one class can

be learned. Learning of the patterns in the other class follows the same procedure.

Since each class has only two sub-patterns, they can be learned merely with two

clauses. We select the case of learning sub-patterns of the ‘Yes’ class using two positive

clauses: c+
1 and c+

2 . They are both open to learn any sub-pattern in the ‘Yes’ class, but a

1‘Yes’ and ‘No’ can be coded as 1 and 0 for the TM.

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

Yes No No Yes

()

1

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

Yes No No Yes

()

1

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

Yes No No Yes

(Car)

1

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

Yes No No Yes

 (Car AND NOT Bus)

1

𝑐1
+ 𝑐2

+
Clause

States in the

‘Include’

action side

States in the

‘Exclude’

action side

TA decision

New Input: 1

Pattern

Clause output

𝑐1
+ 𝑐2

+
Clause

States in the

‘Include’

action side

States in the

‘Exclude’

action side

TA decision

New Input: 2

Pattern

Clause output

Figure 2.4: TA states of two positive clauses in the TM. They here receive the first training

sample (input) and are ready to update the states for the next round.

20

threshold T = 1 makes sure that the two clauses are optimally utilized. Each clause needs

four TAs to represent the input literals (Car, Bus, Not Car, and Not Bus). As we can see

in Figure 2.4, the TA states of all the TAs in both clauses initiate from the weakest state

of the Exclude action. Since all literals are excluded from both clauses, they still have not

learned any pattern. According to (2.2), each clause outputs 1. Now, we feed different

scenarios in Table 2.1 randomly at each training iteration and see how the states of TAs

move.

Processing of first training sample with updating of the TA states: We first

feed the second scenario in Table 2.1 (IF Car AND NOT Bus THEN Crossing: Yes) to

the TM clauses. Since the training sample is from the same class as the class which the

clauses represent, they are eligible to receive Type I feedback (Flowchart in Figure 2.2).

We assume that both the clauses satisfy the activation condition in (2.5). Since the

clauses output 1, the literals which do not change the clause output (from 1 to 0) when

they are included in the clause, have a higher probability (s−1
s

) to be included in the

clause (Type Ia feedback: (2.6). In the TM, since AND of 1s is 1, every TA which

represent literals whose literal value is 1 receives Type Ia feedback. In this example, 1

is ‘Yes’). Hence, the states of the TAs which appear for literal ‘Car’ and ‘Not Bus’ have

a higher probability to change their states from N to N + 1. This has been marked by

long arrows in Figure 2.4. However, due to the stochastic nature of state transitions, TA

which represents the literal ‘Car’ in the first clause and TAs which appear for the literal

‘Car’ and ‘Not Bus’ in the second clause change their states. These TAs are marked with

dark long arrows.

The Type Ib feedback, on the other hand, is applied on the TAs which represent the

literal of value 0. Including a 0-valued literal in the clause makes the claue evaluate to 0,

so every TA which represents literals whose literal value is 0 receives Type Ib feedback.

In this example, 0 is ‘No’). These are Bus and Not Car. Since the state transition

probability of Type Ib feedback is relatively small, the chance of the above TAs changing

state, strengthening the exclude action, is relatively small (1
s
). This has been indicated

by small arrows in Figure 2.4.

Studying the learned patterns in the updated clauses after first round of train-

ing: The new states of the TAs in the clauses are shown in Figure 2.5. After the above

changes to the states of the TAs in first clause, the recognized sub-pattern by the clause

is (Car) (evaluation of clause output: (2.1)). This means, regardless of the action of the

Bus, whenever the car drives, the clause outputs 1. Since the clause outputs 1 when the

Car drives, we can say that the clause has recognized a sub-pattern, however, obviously

an incomplete one. The TM expect clauses to identify more fine-tuned sub-patterns.

How? We are going to see it soon. The second clause after the first training round has

recognized the pattern (Car AND NOT Bus). This means, the clause activates only

when the second scenario appears in the training: (Car AND NOT Bus).

Processing the second training sample with corresponding TA state updates:

We assume that the randomly selected next training sample is again the same. Accord-

ingly, we are ready to update the states of the TAs of each clause in a second round of

training. In the second round of training, we suppose only c+
1 is eligible to receive feedback

21

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

Yes No No Yes

()

1

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

Yes No No Yes

()

1

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

Yes No No Yes

(Car)

1

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

Yes No No Yes

 (Car AND NOT Bus)

1

𝑐1
+ 𝑐2

+
Clause

States in the

‘Include’

action side

States in the

‘Exclude’

action side

TA decision

New Input: 1

Pattern

Clause output

𝑐1
+ 𝑐2

+
Clause

States in the

‘Include’

action side

States in the

‘Exclude’

action side

TA decision

New Input: 2

Pattern

Clause output

Figure 2.5: TA states of two positive clauses in the TM. They here receive a second sample

and are ready to update the states for the next round.

(due to the stochasticity in (2.5)). Since the recognized pattern by the first clause is (Car)

and that is also part of the training sample scenario, for the new training round, c+
1 again

outputs 1. Since this clause receives Type I feedback, TA states of literal Car and Not

Bus have a higher chance to move further towards Include action while the TA states of

literal Bus and Not Car have a smaller chance of moving further towards Exclude action.

Due to the stochasticity, TA states of only literal Bus and Not Car are updated (which

has been indicated by dark small arrow in Figure 2.5).

Studying the learned patterns in the updated clauses after second round of

training: As one can see (Figure 2.6), the changes made to the TA states at the second

training round do not make any difference to the pattern recognized by any of the clauses:

c+
1 still recognizes (Car) while c+

2 recognizes (Car AND NOT Bus).

Processing a third training sample with TA state updating: Now, the training

sample is the third scenario in Table 2.1. If we again assume that both the clauses are

eligible to receive feedback, clause evaluation should be done on both of them (clause

output calculation: (2.1)). Literals of value 0 makes clauses that include them evaluate

to 0. For instance, c+
1 wants the car to move (includes Car). However, when the pattern

in the training sample says that the car does not move (Not Car), the clause identifies

that it is not the pattern it learned and outputs 0. If we take the binary version of the

considered example to calculate the clause output using (2.1), inclusion of 0 (the literal

value of car is ‘No’ and 0 appears for ‘No’ in the binary version of the example) in the

clause makes the clause outputs 0. Similarly, clause c+
1 also outputs 0.

22

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

No Yes Yes No

(Car)

0

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

No Yes Yes No

(Car AND NOT Bus)

0

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

No Yes Yes No

(Car)

0

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

No Yes Yes No

()

1

𝑐1
+ 𝑐2

+
Clause

States in the

‘Include’

action side

States in the

‘Exclude’

action side

TA decision

New Input: 3

Pattern

Clause output

𝑐1
+ 𝑐2

+
Clause

States in the

‘Include’

action side

States in the

‘Exclude’

action side

TA decision

New Input: 4

Pattern

Clause output

Figure 2.6: TA states of two positive clauses in the TM, taking third training sample and

ready to update the states for the next round.

Even though the training sample is from class ‘Yes’ and the clauses were assigned to

identify the sub-patterns of the same class, both clauses output 0. This is the situation

of false negative outputs of clauses. Hence, the Type Ib feedback is applied on the TAs

to erase what the clauses learned and make them ready for learning new sub-patterns.

As we can observer from Figure 2.6, the TA states of all literals in both clauses have a

chance to move towards the Exclude action of the TA, however, with a small probability.

Due to the randomization in learning, only the TAs which represent literal Car and Not

Bus in the second clause succeed.

Studying the learned patterns in the updated clauses after third round of

training: Since there were no changes to the states of the TAs in the first clause, the

pattern it recognized stays the same: (Car). Yet, the changes made on the states of the

TAs in the second clause have erased the pattern it learned completely. The states of all

the TAs in the second clause are now at the starting states (weakest Exclude) and ready

to learn a new pattern. These new updated clauses after the third training round can be

found in Figure 2.7.

Processing of the fourth training sample and updating TA states accordingly:

The randomly selected next training sample is again the third scenario in Table 2.1. This

makes the first clause output 0: the pattern identified by c+
1 is (Car), but the input

scenario says that the car is not moving. The c+
2 has been reset to its initial state. Hence,

according to (2.1), it automatically outputs 1.

Now, if we assume that both clauses receive the feedback after (2.5), both the clauses

23

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

No Yes Yes No

(Car)

0

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

No Yes Yes No

(Car AND NOT Bus)

0

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

No Yes Yes No

(Car)

0

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

No Yes Yes No

()

1

𝑐1
+ 𝑐2

+
Clause

States in the

‘Include’

action side

States in the

‘Exclude’

action side

TA decision

New Input: 3

Pattern

Clause output

𝑐1
+ 𝑐2

+
Clause

States in the

‘Include’

action side

States in the

‘Exclude’

action side

TA decision

New Input: 4

Pattern

Clause output

Figure 2.7: TA states of two positive clauses in the TM, taking forth training sample and

ready to update the states for the next round.

still receive Type I feedback, since they are positive clauses and they are there to recognize

pattern of the class ‘Yes’. Next, the TAs which receive Type Ia and Type Ib in them should

be decided. Once we have Type I feedback and the clause output is 0, all TAs in that

clause receive Type Ib feedback. Thus, in this training round, TAs in clause c+
1 receive

Type Ia feedback. This has been marked with arrows in the first clause in Figure 2.7. The

TA with the dark arrow, however, is the only TA makes actual changes to its states due

to randomness. The TAs which appears for literal Car and Not Bus in the second clauses

also receive Type Ib feedback (since inclusion of them in the clause makes the clause

outputs 0). Nevertheless, the TA which represents only Not Bus literal is able to make

changes to its states. Now, the clause c+
2 has the opportunity to learn the pattern (Bus

AND NOT Car). To do so, those literals should be included in the clause. In TM, this

is done by giving the TAs which represent those literals Type Ia feedback. Even though

the chance of moving towards Include action in those TAs is high, TA which appears for

Bus succeed. This has been marked with long arrows in Figure 2.7.

Studying the learned patterns in the updated clauses after fourth round of

training: As we can see from Figure 2.8, the changes made on states of TAs in the first

clause at the fourth training round have not changed the pattern it recognized. Hence,

it still activates only for training samples containing ‘Car driving’ scenario, regardless of

the action of the bus. Contrarily, the second clause recognizes a new pattern after the

updates of its TA states during the fourth training round. This new pattern recognized

by c+
2 is (Bus).

24

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

Yes Yes No No

(Car)

1

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

Yes Yes No No

(Bus)

1

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

- - - -

(Car AND NOT Bus)

-

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

- - - -

(NOT Car AND Bus)

-

𝑐1
+ 𝑐2

+
Clause

States in the

‘Include’

action side

States in the

‘Exclude’

action side

TA decision

New Input: 5

Pattern

Clause output

𝑐1
+ 𝑐2

+
Clause

States in the

‘Include’

action side

States in the

‘Exclude’

action side

TA decision

New Input: 6

Pattern

Clause output

Figure 2.8: TA states of two positive clauses in the TM, taking fifth training sample and

ready to update the states for the next round.

Processing the fifth training sample and updating TA states accordingly: The

last training sample we consider in this demonstration is the first scenario in Table 2.1:

(IF Car AND Bus THEN Crossing: No). Even though, the training sample is not from

the class which the clause represent, the clauses output 1. We thus have clauses that

produce false positive output (they recognize the wrong class). To combat this, Type II is

applied. As we already know, the job of Type II feedback is to change the clause output

of the selected clauses from 1 to 0. Type II feedback does this by simply including literals

which evaluate the clause output to 0 in the clause. In a TM with binary literals, these

are the literals with value 0 (‘No’ in this example). The equivalent literals in this training

sample are the Not Car and Not Bus. Hence, the states of the TAs which represent these

literals are pushed towards Include action with probability equal to unity, assuming that

both clauses are eligible to receive feedback after the assessment in (2.8). This is displayed

by long dark arrows in Figure 2.8.

Studying the learned patterns in the updated clauses after fifth round of train-

ing: The state transitions made during the fifth training round has now included literal

Not Bus in clause c+
1 in addition to the previous literal Car it had in the previous training

round. Similarly, these updates have also included Not Car literal in the second clause in

addition to the literal Bus it had previously. Together with these newly included literals,

c+
1 now recognizes the pattern (Car AND NOT Bus) while c+

2 recognizes the pattern

(NOT Car AND Bus). The new states of TAs and the patterns recognized by the clauses

are shown in Figure 2.9.

Now the two clauses studied have recognized both the sub-patterns of the class ‘Yes’.

25

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

Yes Yes No No

(Car)

1

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

Yes Yes No No

(Bus)

1

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

- - - -

(Car AND NOT Bus)

-

2N 2N 2N 2N

N+3 N+3 N+3 N+3

N+2 N+2 N+2 N+2

N+1 N+1 N+1 N+1

N N N N

N-1 N-1

N-1

N-1

N-2 N-2 N-2 N-2

1 1 1 1

Car

Bus
Not

Car

Not

Bus

- - - -

(NOT Car AND Bus)

-

𝑐1
+ 𝑐2

+
Clause

States in the

‘Include’

action side

States in the

‘Exclude’

action side

TA decision

New Input: 5

Pattern

Clause output

𝑐1
+ 𝑐2

+
Clause

States in the

‘Include’

action side

States in the

‘Exclude’

action side

TA decision

New Input: 6

Pattern

Clause output

Figure 2.9: TA states of two positive clauses in the TM, taking sixth training sample and

ready to update the states for the next round.

However, the clauses are still unstable as the states of the TAs in these clauses still fluc-

tuate around the center. As soon as additional training samples are processed from each

sub-pattern, the states gradually change towards the end-states, increasing the confidence

in the actions learnt.

We have now investigated the procedure for updating the states of the TAs of the

clauses for class ‘Yes’. The updating procedure for the clauses which represent the class

‘No’ is the same. Additionally, updating of states of TAs in clauses in a complex problem

still follows the same procedure, usually with more clauses to represent more sub-patterns

in each class.

26

Chapter 3

Thesis Contributions

The TM, being based on propositional logic to form the classifier and straightforward

bitwise operations for recognition and learning, is computationally simple. This struc-

ture makes the TM interpretable, yet it achieves competitive accuracy for many pattern

recognition problems.

However, the original TM architecture is limited by its propositional foundation in

several ways. Firstly, while many applications require continuous inputs and outputs,

TMs process propositional inputs with propositional operators, producing propositional

outputs. As such, TMs are not natively suited for dealing with continuous values, for

instance in regression problems. This thesis addresses this limitation by introducing (1)

effective pre-processing and learning techniques for continuous features, (2) mechanisms

for producing continuous output, (3) integer clause weighing for more compact pattern

representation, (4) classification confidence assessment, (5) regression-based analysis of

visual imagery, and (6) deterministic multi-step learning that replaces random number

generation for guiding the TA, to increase the efficiency of micro-controller TM imple-

mentations.

In this chapter, we present the detailed overview of the research approach and contri-

butions of the thesis.

3.1 Continuous Input to the Tsetlin Machine

Approach: To address Research Question 1, we propose a data preprocessing proce-

dure that transforms the input losslessly into a binary representation that maintains the

semantic relationship between numbers. In brief, the preprocessing procedure considers

each unique data sample in each continuous feature as a potential threshold. The origi-

nal data samples are then compared with the complete set of thresholds to create a new

feature matrix only containing bits. This method is presented in Paper A.

We further enhance the above method, first by standardizing features to support scale

shifts in the transition from training data to real-world operation and then by sampling

to reduce the number of binarization thresholds, relying on stratification to minimize loss

of accuracy. The method is presented in Paper B.

In Paper C, we propose a novel approach to represent continuous TM inputs. Instead

27

of using one TA for every unique threshold found when Booleanizing continuous input,

we employ two SSL automata to learn discriminative lower and upper bounds.

Evaluation: The thresholding approach is evaluated and analyzed using an artificial

dataset. The resulting TM is further applied to forecast dengue outbreaks of all the

seventeen regions in Philippines using the spatio-temporal properties of the data. Ex-

perimental results show that the dengue outbreak forecasts made by the TM are more

accurate than those obtained by a SVM, Decision Trees (DTs), and several multi-layered

Artificial Neural Networks (ANNs), both in terms of forecasting precision and F1-score.

Results after improving the thresholding approach with standardizing and sampling

show that the loss of accuracy due to threshold sampling is insignificant.

We evaluate the performance of the third scheme empirically using five datasets, along

with a study of interpretability. On average, TMs with SSL feature representation use

4.3 times fewer literals than the TM with static threshold-based features. Furthermore,

in terms of average memory usage and F1-Score, our approach outperforms simple Multi-

Layered Artificial Neural Networks (ANNs), DTs, SVMs, K-Nearest Neighbor, Ran-

dom Forest (RF), Gradient Boosted Trees (XGBoost), Explainable Boosting Machines

(EBMs), as well as the standard and real-value weighted TMs. We further outperform

Neural Additive Models on Fraud Detection and StructureBoost on CA-58 in terms of

AUC while performing competitively on COMPAS.

3.2 Continuous Output from the Tsetlin Machine

Approach: We address Research Question 2 as follows. To produce continuous output

that leverages the natural ordering of numbers, we modify the inner learning and inference

mechanism of the TM. That is, the inputs are transformed into a single continuous output,

rather than to distinct categories. We achieve this by eliminating the polarities of the

clauses, and by summing all the non-polarized votes, mapping the sum into a continuous

output. The new variant of the TM is called Regression Tsetlin Machine (RTM). This

approach is presented in Paper D.

Evaluation: The behavior of the new algorithm was studied by applying it to both

artificial and real-world datasets. In brief, RTM demonstrated superior performance in

comparison with Regression Trees (RTs), RF, and Support Vector Regression (SVR),

when predicting Dengue incidences in the Philippines, heating load in the Energy Perfor-

mance dataset, Real Win Rate in the Stock Selection dataset, and house price per unit

area in the Real Estate Valuation dataset. The RTM also extrapolates reasonably well

outside the minimum and maximum output values found in the training data.

3.3 Integer-Weighted Clauses for Compact Pattern

Representation in the Tsetlin Machine

Approach: The challenges posed by Research Question 3 is overcome by extending each

clause with the SSL automaton [58]. We adapt this automaton so that it can learn an

effective clause weight by interacting with the corresponding TA team. As a result, the set

28

of clauses can be rendered significantly more compact, without sacrificing the accuracy.

Through the above scheme, we allow the TM to identify which clauses are inaccurate.

These clauses are given smaller weights so that they must team up to obtain higher

accuracy as a team. Furthermore, the clauses that are sufficiently accurate are assigned

larger weights so that they can operate more independently. This approach is applied on

RTM in Paper E and on the basic TM in Paper F.

Evaluation: We evaluate the potential of the integer weighted RTM empirically using

two artificial datasets. The results show that the integer weighted RTM is able to acquire

on par or better accuracy using significantly less computational resources compared to

regular RTM and an RTM with real-valued weights.

For the basic TM, we evaluate the performance of the new scheme empirically using five

datasets, along with a study of interpretability. On average, our Integer weighted Tsetlin

Machine (IWTM) uses 6.5 times fewer literals than the original TM and 120 times fewer

literals than a TM with real-valued weights. Furthermore, in terms of average memory

usage and F1-Score, IWTM outperforms simple ANNs, DTs, SVMs, K-Nearest Neighbor,

RF, XGBoost, EBMs, as well as the standard and real-value weighted TMs. IWTM finally

outperforms Neural Additive Models on Fraud Detection and Structure Boost on CA-58

in terms of AUC, while performing competitively on COMPAS.

3.4 Classification Confidence, Ranked Predictions and

AUC with Tsetlin Machines

Approach: To address Research Question 4, instead of using a hard decision function in

the TM output layer for binary classification, we propose a novel approach to measure the

classification confidence score using a logistic function. The resulting TM output layer

is able to measure classification confidence from the propositional logic expressions that

match the input. Based on the confidence score, we demonstrate how to rank predictions,

producing ROC curves and calculating AUC. The complete details of the approach can

be found in Paper G.

Evaluation: Empirically, using four real-world datasets, we show that the AUC is a more

sensitive measure of the TM performance when compared to the Accuracy. Further, the

AUC-based evaluations show that the TM performs on par or better than widely used

machine learning algorithms. We thus believe our scheme will make the TM more suitable

for use in decision support, where the user needs to inspect and validate predictions, in

particular, those being uncertain.

3.5 Identifying Patterns in Images Using the Convo-

lutional Tsetlin Machine and Use Them to Pro-

duce Continuous output

Approach: We introduce the Convolutional Regression Tsetlin Machine (C-RTM) to

address Research Question 5. C-RTM is a novel approach that combines the properties of

29

both CTM and RTM. In brief, the patterns recognized in an image by the Convolutional

TM clauses are piled together and mapped to a continuous output as in the RTM. Paper H

presents the approach in detail.

Evaluation: We evaluate the performance of C-RTM using 72 different artificial datasets,

with and without noise in the training data. Our empirical results show the competitive

performance of the C-RTM in comparision to two standard CNNs. The interpretability of

the identified sub-patterns by C-RTM clauses is also analyzed and discussed. Additionally,

the performance of the C-RTM on two real-world datasets is compared against CNN. In

addition to the competitive performance in terms of mean absolute error (MAE), C-

RTM filters perform significantly fewer calculations (only AND operations) during the

convolution. Further, the filters learn which image locations are important, and then

move directly to these lo-cations during inference. This approach helps the C-RTM to

consume significantly less memory both during training as well as testing

3.6 A Multi-Step Finite-State Automaton for Arbi-

trarily Deterministic Tsetlin Machine Learning

Approach: To deal with Research Question 6, we propose a novel finite state LA that

can replace the TAs of the TM, for increased determinism. The new automaton uses

multi-step deterministic state jumps to reinforce sub-patterns. Simultaneously, flipping

a coin to skip every d’th state update ensures diversification by randomization. The d-

parameter thus allows the degree of randomization to be finely controlled. A detailed

description of the approach can be found in Paper I.

Evaluation: Both theoretically and empirically, we establish that the proposed automa-

ton converges to the optimal action almost surely. Further, used together with the TM,

only substantial degrees of determinism reduces accuracy. Energy-wise, random number

generation constitutes switching energy consumption of the TM, saving up to 11 mW

power for larger datasets with high d values1. Our new learning automaton approach

thus facilitate low-energy machine learning.

3.7 Applications

Approach: In regards to Research Question 7, we select two applications from two do-

mains where both accuracy and interpretability are of significant importance - network

intrusion detection and public transport passenger count forecasting in pandemic scenar-

ios2. For the first application, to separate intrusions from the normal behaviors, we use

1The real implementation of the proposed algorithm on a micro-controller and energy calculations were

done by Rishad Shafik, Alex Yakovlev, and Adrian Wheeldon, co-authors of the corresponding paper.

The same authors wrote the relevant section in the paper. The rest of the co-authors contributed to the

paper mainly in the writing phase.
2Data gathering (public transport passenger count), analyzing, and preparing to apply them on TM

were done by Sinziana Rasca, one of the other authors of the paper. The same author wrote those relevant

sections in the paper. The rest of the co-authors contributed to the paper mainly in the writing phase.

30

a basic TM which classifies data into relevant classes (Paper J). For the application of

forecasting passenger counts, RTM is utilized (Paper K).

Evaluation: We evaluate the TM over the Knowledge Discovery and Data Mining 1999

(KDD’99) dataset and the experimental results demonstrate that the proposed TM based

approach is capable of achieving superior classification performance in comparison to

several ANNs, SVMs, DTs, RF, and K-Nearest Neighbor machine learning algorithms

while preserving the interpretability.

Results of the second application show that RTM obtains the lowest mean absolute

error for forecasting the variation in public transport ridership in comparison to all other

machine learning models tested (RF, RTs, SVR, Moving Average). Our evaluation also

demonstrates interpretability through the formulation of forecasting rules.

31

Chapter 4

Publications

Eleven papers from the total of 16 published papers have been incorporated in this dis-

sertation. The contributions of these papers address the research questions presented in

Section 3 as follows:

• Research question 1 is addressed in Paper A, Paper B, and Paper C.

• Research question 2 is addressed in Paper D.

• Research question 3 is addressed in Paper E and Paper F.

• Research question 4 is addressed in Paper G.

• Research question 5 is addressed in Paper H.

• Research question 6 is addressed in Paper I.

• Additionally, Paper J and Paper K present potential two applications of TMs in

more details.

The papers and their abstracts have been listed below:

Paper A: A Scheme for Continuous Input to the Tsetlin Machine with Appli-

cations to Forecasting Disease Outbreaks.

In this paper, we apply a new promising tool for pattern classification, namely, the

TM, to the field of disease forecasting. The TM is interpretable because it is based on

manipulating expressions in propositional logic, leveraging a large team of TAs. Apart

from being interpretable, this approach is attractive due to its low computational cost

and its capacity to handle noise. To attack the problem of forecasting, we introduce a

preprocessing method that extends the TM so that it can handle continuous input. Briefly

stated, we convert continuous input into a binary representation based on thresholding.

The resulting extended TM is evaluated and analyzed using an artificial dataset. The TM

is further applied to forecast dengue outbreaks of all the seventeen regions in Philippines

using the spatio-temporal properties of the data. Experimental results show that dengue

outbreak forecasts made by the TM are more accurate than those obtained by SVM, DTs,

and ANNs, both in terms of forecasting precision and F1-score.

33

Paper B: Adaptive Continuous Feature Binarization for Tsetlin Machines Ap-

plied to Forecasting Dengue Incidences in the Philippines

The TM is a recent interpretable machine learning algorithm that requires rela-

tively modest computational power, yet attains competitive accuracy in several bench-

marks. TMs are inherently binary; however, many machine learning problems are contin-

uous. While binarization of continuous data through brute-force thresholding has yielded

promising accuracy, such an approach is computationally expensive and hinders extrapola-

tion. In this paper, we address these limitations by standardizing features to support scale

shifts in the transition from training data to real-world operation, typical for e.g. forecast-

ing. For scalability, we employ sampling to reduce the number of binarization thresholds,

relying on stratification to minimize loss of accuracy. We evaluate the approach empir-

ically using two artificial datasets before we apply the resulting TM to forecast dengue

outbreaks in the Philippines using the spatio-temporal properties of the data. Our results

show that the loss of accuracy due to threshold sampling is insignificant. Furthermore,

the dengue outbreak forecasts made by the TM are more accurate than those obtained

by SVMs, DTs, and several ANNs, both in terms of forecasting precision and F1-score.

Paper C: Adaptive Sparse Representation of Continuous Input for Tsetlin

Machines Based on Stochastic Searching on the Line

This paper introduces a novel approach to representing continuous inputs in TMs.

Instead of using one TA for every unique threshold found when Booleanizing continuous

input, we employ two SSL to learn discriminative lower and upper bounds. The two

resulting Boolean features are adapted to the rest of the clause by equipping each clause

with its own team of SSLs, which update the bounds during the learning process. Two

standard TAs finally decide whether to include the resulting features as part of the clause.

In this way, only four automata altogether represent one continuous feature (instead of po-

tentially hundreds of them). We evaluate the performance of the new scheme empirically

using five datasets, along with a study of interpretability. On average, TMs with SSL fea-

ture representation use 4.3 times fewer literals than the TM with static threshold-based

features. Furthermore, in terms of average memory usage and F1-Score, our approach

outperforms simple Multi-Layered Artificial Neural Networks, Decision Trees, SVMs, K-

Nearest Neighbor, RF, XGBoost, and EBMs, as well as the standard and real-value

weighted TMs. Our approach further outperforms Neural Additive Models on Fraud De-

tection and StructureBoost on CA-58 in terms of the Area Under Curve while performing

competitively on COMPAS.

Paper D: The Regression Tsetlin Machine - A Novel Approach to Interpretable

Non-Linear Regression

Relying simply on bitwise operators, the recently introduced TM has provided compet-

itive pattern classification accuracy in several benchmarks, including text understanding.

In this paper, we introduce the RTM, a new class of TMs designed for continuous input

and output, targeting non-linear regression problems. In all brevity, we convert continuous

34

input into a binary representation based on thresholding, and transform the propositional

formula formed by the TM into an aggregated continuous output. Our empirical compar-

ison of the RTM with state-of-the-art regression techniques reveals either superior or on

par performance on five datasets.

Paper E: Integer Weighted Regression Tsetlin Machines

The RTM addresses the lack of interpretability impeding state-of-the-art nonlinear re-

gression models. It does this by using conjunctive clauses in propositional logic to capture

the underlying non-linear frequent patterns in the data. These, in turn, are combined into

a continuous output through summation, akin to a linear regression function, however,

with non-linear components and binary weights. However, the resolution of the RTM

output is proportional to the number of clauses employed. This means that computa-

tion cost increases with resolution. To address this problem, we here introduce integer

weighted RTM clauses. Our integer weighted clause is a compact representation of mul-

tiple clauses that capture the same sub-pattern — w repeating clauses are turned into

one, with an integer weight w. This reduces computation cost w times, and increases

interpretability through a sparser representation. We introduce a novel learning scheme,

based on so-called stochastic searching on the line. We evaluate the potential of the in-

teger weighted RTM empirically using two artificial datasets. The results show that the

integer weighted RTM is able to acquire on par or better accuracy using significantly less

computational resources compared to regular RTM and an RTM with real-valued weights.

Paper F: Extending the Tsetlin Machine With Integer-Weighted Clauses for

Increased Interpretability

Building models that are both interpretable and accurate is an unresolved challenge

for many pattern recognition problems. In general, rule-based and linear models lack

accuracy, while deep learning interpretability is based on rough approximations of the

underlying inference. However, recently, the rule-based TMs have obtained competi-

tive performance in terms of accuracy, memory footprint, and inference speed on diverse

benchmarks (image classification, regression, natural language understanding, and game-

playing). TMs construct rules using human-interpretable conjunctive clauses in proposi-

tional logic. These, in turn, are combined linearly to solve complex pattern recognition

tasks. This paper addresses the accuracy-interpretability challenge in machine learning

by introducing a TM with integer weighted clauses – the IWTM. The intent is to increase

TM interpretability by reducing the number of clauses required for competitive perfor-

mance. The IWTM achieves this by weighting the clauses so that a single clause can

replace multiple duplicates. Since each TM clause is formed adaptively by a TA team,

identifying effective weights becomes a challenging online learning problem. We solve this

problem by extending each team of TA with another kind of automaton: the SSL. We

evaluate the performance of the new scheme empirically using five datasets, along with a

study of interpretability. On average, IWTM uses 6.5 times fewer literals than the vanilla

TM and 120 times fewer literals than a TM with real-valued weights. Furthermore, in

terms of average memory usage and F1-Score, IWTM outperforms simple ANNs, DTs,

SVMs, K-Nearest Neighbor, RF, XGBoost, EBMs, as well as the standard and real-value

35

weighted TMs. IWTM finally outperforms Neural Additive Models on Fraud Detection

and StructureBoost on CA-58 in terms of Area Under Curve, while performing competi-

tively on COMPAS.

Paper G: On Obtaining Classification Confidence, Ranked Predictions and

AUC with Tsetlin Machines

TMs are a promising approach to machine learning that uses Tsetlin Automata to

produce patterns in propositional logic, leading to binary (hard) classifications. In many

applications, however, one needs to know the confidence of classifications, e.g. to facilitate

risk management. In this paper, we propose a novel scheme for measuring TM confidence

based on the logistic function, calculated from the propositional logic patterns that match

the input. We then use this scheme to trade off precision against recall, producing AUC for

TMs. Empirically, using four real-world datasets, we show that AUC is a more sensitive

measure of TM performance compared to Accuracy. Further, the AUC-based evaluations

show that the TM performs on par or better than widely used machine learning algo-

rithms. We thus believe our scheme will make the TM more suitable for use in decision

support, where the user needs to inspect and validate predictions, in particular, those

being uncertain.

Paper H: Convolutional Regression Tsetlin Machine: An Interpretable Ap-

proach to Convolutional Regression

The CTM, a variant of the TM, represents patterns as straightforward AND-rules,

to address the high computational complexity and the lack of interpretability of Con-

volutional Neural Networks (CNNs). The CTM has shown competitive performance on

MNIST, Fashion-MNIST, and Kuzushiji-MNIST pattern classification benchmarks, both

in terms of accuracy and memory footprint. However, the CTM has so far only been

applied to binary output. This paper proposes the C-RTM that extends the CTM to sup-

port continuous output problems in image analysis. C-RTM identifies patterns in images

using the convolution operation as in the CTM and then maps the identified patterns into

a real-valued output in the RTM. The C-RTM thus unifies the two approaches.

We evaluate the performance of C-RTM using 72 different artificial datasets, with and

without noise in the training data. Our empirical results show the competitive perfor-

mance of C-RTM compared to two standard CNNs. The interpretability of the identified

sub-patterns by C-RTM clauses is also analyzed and discussed. Additionally, the per-

formance of C-RTM on two real-world datasets is compared against CNN. In addition

to the competitive performance in terms of mean absolute error, C-RTM filters perform

significantly fewer calculations (only AND operations) during the convolution. Further,

the filters learn which image locations are important, and then move directly to these lo-

cations during inference. This approach helps C-RTM consume significantly less memory

both during training and testing.

Paper I: A Multi-Step Finite-State Automaton for Arbitrarily Deterministic

Tsetlin Machine Learning

Due to the high arithmetic complexity and scalability challenges of deep learning, there

36

is a critical need to shift research focus towards energy efficiency. TMs are a recent ap-

proach to machine learning that has demonstrated significantly reduced energy compared

to neural networks alike, while providing comparable accuracy on several benchmarks.

However, TMs rely heavily on energy-costly random number generation to stochastically

guide a team of TAs in TM learning. In this paper, we propose a novel finite-state learn-

ing automaton that can replace the TA in the TM, for increased determinism. The new

automaton uses multi-step deterministic state jumps to reinforce sub-patterns, without

resorting to randomization. A determinism parameter d finely controls trading off the

energy consumption of random number generation, against randomization for increased

accuracy. Randomization is controlled by flipping a coin before every d’th state jump, ig-

noring the state jump on tails. E.g., d = 1 makes every update random and d =∞ makes

the automaton completely deterministic. Both theoretically and empirically, we establish

that the proposed automaton converges to the optimal action almost surely. Further,

used together with the TM, only substantial degrees of determinism reduces accuracy.

Energy-wise, random number generation constitutes switching energy consumption of the

TM, saving up to 11 mW power for larger datasets with high d values. Our new learning

automaton approach thus facilitate low-energy machine learning.

Paper J: Intrusion Detection with Interpretable Rules Generated Using the

Tsetlin Machine

The rapid deployment in information and communication technologies and internet-

based services have made anomaly based network intrusion detection ever so important

for safeguarding systems from novel attack vectors. To this date, various machine learning

mechanisms have been considered to build intrusion detection systems. However, achiev-

ing an acceptable level of classification accuracy while preserving the interpretability of the

classification has always been a challenge. In this paper, we propose an efficient anomaly

based intrusion detection mechanism based on the TM. We have evaluated the proposed

mechanism over the Knowledge Discovery and Data Mining 1999 (KDD’99) dataset and

the experimental results demonstrate that the proposed TM based approach is capable

of achieving superior classification performance in comparison to several simple ANNs,

SVMs, DTs, RF, and K-Nearest Neighbor machine learning algorithms while preserving

the interpretability.

Paper K: Public Transport Passenger Count Forecasting in Pandemic Scenar-

ios Using Regression Tsetlin Machine. Case Study of Agder, Norway

Challenged by the effects of the COVID-19 pandemic, public transport is suffering

from low ridership and staggering economic losses. One of the factors which triggered such

losses was the lack of preparedness among governments and public transport providers.

The present paper explores the use of a novel machine learning algorithm, namely Re-

gression Tsetlin Machine, in using historical passenger transport data from the current

COVID-19 pandemic and pre-pandemic period to forecast pandemic-scenarios for public

transport patronage variations. Results show that the Regression Tsetlin Machine has

the best accuracy of forecasts compared to four other models usually employed in the

field.

37

Chapter 5

Conclusion

In this thesis, we addressed several fundamental TM limitations caused by the proposi-

tional nature of the TMs. As such, the TMs lack support for continuous inputs, cannot

produce numerically ordered regression outputs, lacks pattern weighing, cannot measure

classification confidence, and requires extensive random number generation in learning.

We have resolved these limitations by designing, analysing and evaluating several new

TM mechanisms.

To ensure that the TM can deal with continuous features, we proposed a data prepro-

cessing procedure that transforms the inputs losslessly into a binary representation that

maintains semantic relationship between numbers (thresholding approach). We further

enhanced the above method, first by standardizing features to support scale shifts in the

transition from training data to real-world operation. We then significantly reduced the

required number of binarization thresholds by means of sampling, relying on stratification

to minimize loss of accuracy. To avoid pre-processing altogether, we next employed two

SSL automata to learn discriminative lower and upper bounds, instead of using one TA for

every unique threshold found when Booleanizing continuous input. Our conclusion is that

the thresholding approach enables the TM to work with continuous features. Further, our

experiments with input standardizing and sampling show that the loss of accuracy due

to threshold sampling is insignificant. Furthermore, on average, the TMs with SSL fea-

ture representation use 4.3 times fewer literals than the TM with static threshold-based

features representation. As discuss further in the relevant papers, the results on real and

artificial data and the performance comparisons against the state-of-the-art approaches

support the above conclusions.

To maintain the natural order of numbers, we next proposed an approach that trans-

forms the inputs into a single continuous output, rather than to distinct categories, which

we coined as the RTM. We achieved this by eliminating the polarities of the clauses, and

by summing all the non-polarized votes, mapping the sum into a continuous output. The

RTM demonstrated superior performance in comparison with RTs, RFs, and SVR on four

real-world benchmark datasets. We also modified the CTM in a similar way to also deal

with regression for image input, giving rise to the C-RTM. The C-RTM analyzes visual

imagery and predicts additive clause output as a continuous value instead of a class. The

interpretability of the identified sub-patterns by the C-RTM clauses was also analyzed and

discussed using artificial data. Additionally, the performance of the C-RTM on two real-

39

world datasets was compared against CNN. In addition to the competitive performance

in terms of MAE, the C-RTM filters performed significantly fewer calculations (only AND

operations) during the convolution. Further, the filters learned which image locations are

important, and then moved directly to these locations during inference. This approach

helped C-RTM consume significantly less memory both during training and testing.

The proposed pattern weighing scheme, by extending each clause with an SSL automa-

ton, was able to represent class patterns in a more compact way. In the learning phase

of these weights, the clauses that are sufficiently accurate learned larger weight values so

that they could operate more independently. The inaccurate clauses, on the other hand,

obtained smaller weight values so that they had to team up to obtain high accuracy as

a team. The weighing scheme was evaluated both on the TM and the RTM using artifi-

cial and real datasets. The results showed that the proposed integer weighted RTM was

able to acquire on par or better accuracy using significantly less computational resources

compared to the regular TM and the TM with real-valued weights. Additionally, in terms

of F-1 score, the TM with the proposed weighing scheme (IWTM) outperformed simple

ANNs, DTs, SVMs, K-Nearest Neighbor, RF, XG-Boost, and EBMs.

We modified the output layer of the TM by replacing the hard decision function, used

for binary classification, with a logistic function to measuring the classification confidence

score. Based on the confidence score, we demonstrated how to rank predictions, producing

ROC curves and calculating the AUC. Using four real-world datasets, we showed that the

AUC was a more sensitive measure of the TM performance when compared to Accuracy.

Further, the AUC-based evaluations showed that the TM performed on par or better than

widely used machine learning algorithms on above real-world datasets.

Finally, to minimize the extensive random number generation during the TM learning,

we proposed a novel finite state learning automaton that can replace the TAs of the TM.

The new automaton uses multi-step deterministic state jumps to reinforce sub-patterns.

Simultaneously, flipping a coin to skip every d ’th state update ensures diversification by

randomization. The d -parameter thus allows the degree of randomization to be finely

controlled. Both theoretically and empirically, we established that the proposed automa-

ton converges to the optimal action almost surely. Further, used together with the TM,

only substantial degrees of determinism reduced accuracy. Energy-wise, random num-

ber generation constitutes switching energy consumption of the TM, saving up to 11mW

power for larger datasets with high d values. Our new learning automaton approach thus

facilitate low-energy machine learning.

Overall, the above modifications have improved the performance of the TM in terms

of accuracy, interpretability, inference speed, and memory consumption. In conclusion,

the performance on the majority of the applications addressed in our papers are on par

or better in comparison to the state-of-the-art machine learning models.

40

Bibliography

[1] Michael Lvovitch Tsetlin. “On Behaviour of Finite Automata in Random Medium”.

In: Avtomat. i Telemekh 22.10 (1961), pp. 1345–1354.

[2] M A L Thathachar and P S Sastry. Networks of Learning Automata: Techniques

for Online Stochastic Optimization. Kluwer Academic Publishers, 2004.

[3] Kumpati S Narendra and Mandayam AL Thathachar. Learning Automata: An In-

troduction. Courier corporation, 2012.

[4] V. A. Ponomarev. “A Construction of an Automaton Which Is Asymptotically

Optimal in a Stationary Random Medium”. In: Biofizika 9 (1964), pp. 104–110.

[5] T Cover and M Hellman. “The Two-Armed-Bandit Problem with Time-Invariant Fi-

nite Memory”. In: IEEE Transactions on Information Theory 16.2 (1970), pp. 185–

195.

[6] Robert R Bush and Frederick Mosteller. “Stochastic Models for Learning”. In:

(1955).

[7] M Frank Norman. “On the Linear Model With two Absorbing Barriers”. In: Journal

of Mathematical Psychology 5.2 (1968), pp. 225–241.

[8] Ole-Christoffer Granmo. “The Tsetlin Machine - A game Theoretic Bandit Driven

Approach to Optimal Pattern Recognition With Propositional Logic”. In: arXiv

preprint arXiv:1804.01508 (2018).

[9] Seyed-Hamid Zahiri. “Learning Automata Based Classifier”. In: Pattern Recognition

Letters 29.1 (2008), pp. 40–48.

[10] Pidaparthy S Sastry, G Dwarakanath Nagendra, and Naresh Manwani. “A Team of

Continuous-Action Learning Automata for Noise-Tolerant Learning of Half-Spaces”.

In: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)

40.1 (2009), pp. 19–28.

[11] PS Sastry and MAL Thathachar. “Learning Automata Algorithms for Pattern Clas-

sification”. In: Sadhana 24.4 (1999), pp. 261–292.

[12] Morten Goodwin, Anis Yazidi, and Tore Møller Jonassen. “Distributed Learning

Automata for Solving a Classification Task”. In: 2016 IEEE congress on evolutionary

computation (CEC). IEEE. 2016, pp. 3999–4006.

[13] Sorour Afshar, Mohammad Mosleh, and Mohammad Kheyrandish. “Presenting a

New Multiclass Classifier Based on Learning Automata”. In: Neurocomputing 104

(2013), pp. 97–104.

41

[14] Qian Sang, Zongli Lin, and Scott T Acton. “Learning Automata for Image Segmen-

tation”. In: Pattern Recognition Letters 74 (2016), pp. 46–52.

[15] Erik Cuevas, Daniel Zaldivar, and Marco Pérez-Cisneros. “Seeking Multi-Thresholds

for Image Segmentation with Learning Automata”. In: Machine Vision and Appli-

cations 22.5 (2011), pp. 805–818.

[16] Bahman Damerchilu, Mohammad Sadegh Norouzzadeh, and Mohammad Reza Mey-

bodi. “Motion Estimation Using Learning Automata”. In: Machine Vision and Ap-

plications 27.7 (2016), pp. 1047–1061.

[17] Hasan Farsi, Reza Nasiripour, and Sajjad Mohammadzadeh. “Eye Gaze Detection

Based on Learning Automata by Using SURF Descriptor”. In: Information Systems

& Telecommunication 6.1 (2018), pp. 41–49.

[18] Erik Cuevas, Fernando Wario, Daniel Zaldivar, and Marco Pérez-Cisneros. “Circle

Detection on Images Using Learning Automata”. In: Artificial Intelligence, Evolu-

tionary Computing and Metaheuristics. Springer, 2013, pp. 545–570.

[19] Morten Goodwin and Anis Yazidi. “Distributed Learning Automata-Based Scheme

for Classification Using Novel Pursuit Scheme”. In: Applied Intelligence 50.7 (2020),

pp. 2222–2238.

[20] Ali Asghar Rahmanian, Mostafa Ghobaei-Arani, and Sajjad Tofighy. “A Learning

Automata-Based Ensemble Resource Usage Prediction Algorithm for Cloud Com-

puting Environment”. In: Future Generation Computer Systems 79 (2018), pp. 54–

71.

[21] Wen Jiang, Cheng-Lin Zhao, Sheng-Hong Li, and Lawson Chen. “A New Learning

Automata Based Approach for Online Tracking of Event Patterns”. In: Neurocom-

puting 137 (2014), pp. 205–211.

[22] B John Oommen and EV de St Croix. “String Taxonomy Using Learning Au-

tomata”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cy-

bernetics) 27.2 (1997), pp. 354–365.

[23] Habib Motieghader, Ali Najafi, Balal Sadeghi, and Ali Masoudi-Nejad. “A Hybrid

Gene Selection Algorithm for Microarray Cancer Classification Using Genetic Al-

gorithm and Learning Automata”. In: Informatics in Medicine Unlocked 9 (2017),

pp. 246–254.

[24] Mohammad Savargiv, Behrooz Masoumi, and Mohammad Reza Keyvanpour. “A

New Ensemble Learning Method Based on Learning Automata”. In: Journal of

Ambient Intelligence and Humanized Computing (2020), pp. 1–16.

[25] Andrew G Barto and P Anandan. “Pattern-Recognizing Stochastic Learning Au-

tomata”. In: IEEE Transactions on Systems, Man, and Cybernetics 3 (1985), pp. 360–

375.

[26] Ole-Christoffer Granmo and B John Oommen. “Solving Stochastic Nonlinear Re-

source Allocation Problems Using a Hierarchy of Twofold Resource Allocation Au-

tomata.” In: IEEE Transaction on Computers (2010).

42

[27] B John Oommen, Sang-Woon Kim, Mathew T Samuel, and Ole-Christoffer Granmo.

“A Solution to the Stochastic Point Location Problem in Metalevel Nonstationary

Environments”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics) 38.2 (2008), pp. 466–476.

[28] Brian Tung and Leonard Kleinrock. “Using Finite State Automata to Produce Self-

Optimization and Self-Control”. In: IEEE transactions on parallel and distributed

systems 7.4 (1996), pp. 439–448.

[29] Noureddine Bouhmala and Ole-Christoffer Granmo. “Stochastic Learning for SAT-

Encoded Graph Coloring Problems”. In: International Journal of Applied Meta-

heuristic Computing (IJAMC) 1.3 (2010), pp. 1–19.

[30] K. Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten Goodwin. “A Novel

Tsetlin Automata Scheme to Forecast Dengue Outbreaks in the Philippines”. In:

2018 IEEE 30th International Conference on Tools with Artificial Intelligence (IC-

TAI). IEEE. 2018, pp. 680–685.

[31] Hiroyuki Ogihara, Yusuke Fujita, Yoshihiko Hamamoto, Norio Iizuka, and Masaaki

Oka. “Classification Based on Boolean Algebra and Its Application to the Prediction

of Recurrence of Liver Cancer”. In: Pattern Recognition (ACPR), 2013 2nd IAPR

Asian Conference on. IEEE. 2013, pp. 838–841.

[32] Tong Wang, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl, and

Perry MacNeille. “A Bayesian Framework for Learning Rule Sets for Interpretable

Classification”. In: The Journal of Machine Learning Research (JMLR) 18.1 (2017),

pp. 2357–2393.

[33] Vitaly Feldman. “Hardness of Approximate Two-Level Logic Minimization and PAC

Learning with Membership Queries”. In: Jrnl. of Computer and System Sciences

75.1 (2009), pp. 13–26.

[34] Adam R Klivans and Rocco A Servedio. “Learning DNF in Time 2O (n1/3)”. In:

Journal of Computer and System Sciences 68.2 (2004), pp. 303–318.

[35] Vitaly Feldman. “Learning DNF Expressions From Fourier Spectrum”. In: Confer-

ence on Learning Theory. 2012, pp. 17–1.

[36] Leslie G Valiant. “A Theory of the Learnable”. In: Communications of the ACM

27.11 (1984), pp. 1134–1142.

[37] John R Hauser, Olivier Toubia, Theodoros Evgeniou, Rene Befurt, and Daria Dzyabura.

“Disjunctions of Conjunctions, Cognitive Simplicity, and Consideration Sets”. In:

Jrnl. of Marketing Research 47.3 (2010), pp. 485–496.

[38] Cynthia Rudin, Benjamin Letham, and David Madigan. “Learning Theory Analysis

for Association Rules and Sequential Event Prediction”. In: The Journal of Machine

Learning Research 14.1 (2013), pp. 3441–3492.

[39] Tyler McCormick, Cynthia Rudin, and David Madigan. “A Hierarchical Model for

Association Rule Mining of Sequential Events: An Approach to Automated Medical

Symptom Prediction”. In: Annals of Applied Statistics (2011).

43

[40] William W Cohen. “Fast Effective Rule Induction”. In: Machine learning proceedings

1995. Elsevier, 1995, pp. 115–123.

[41] JH Donald. “Rule Induction-Machine Learning Techniques”. In: Computing & Con-

trol Engineering Journal 5.5 (1994), pp. 249–255.

[42] Alberto Fernandez, Salvador Garca, Julian Luengo, Ester Bernado-Mansilla, and

Francisco Herrera. “Genetics-Based machine Learning for Rule Induction: State of

the art, Taxonomy, and Comparative Study”. In: IEEE Transactions on Evolution-

ary Computation 14.6 (2010), pp. 913–941.

[43] J Juan Liu and J Tin-Yau Kwok. “An Extended Genetic Rule Induction Algorithm”.

In: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat.

No. 00TH8512). Vol. 1. IEEE. 2000, pp. 458–463.

[44] Pat Langley and Herbert A Simon. “Applications of Machine Learning and Rule

Induction”. In: Communications of the ACM 38.11 (1995), pp. 54–64.

[45] Wouter Verbeke, David Martens, Christophe Mues, and Bart Baesens. “Building

Comprehensible Customer Churn Prediction Models with Advanced Rule Induction

Techniques”. In: Expert systems with applications 38.3 (2011), pp. 2354–2364.

[46] Helmut Braun and John S Chandler. “Predicting Stock Market Behavior Through

Rule Induction: An Application of the Learning-From-Example Approach”. In: De-

cision Sciences 18.3 (1987), pp. 415–429.

[47] Sašo Džeroski, Jasna Grbović, William J Walley, and Boris Kompare. “Using Ma-

chine Learning Techniques in the Construction of Models. II. Data Analysis with

Rule Induction”. In: Ecological Modelling 95.1 (1997), pp. 95–111.

[48] Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, and Stephen Gould. “Neural

Algebra of Classifiers”. In: arXiv preprint arXiv:1801.08676 (2018).

[49] Adrian Phoulady, Ole-Christoffer Granmo, Saeed Rahimi Gorji, and Hady Ah-

mady Phoulady. “The Weighted Tsetlin Machine: Compressed Representations with

Clause Weighting”. In: Ninth International Workshop on Statistical Relational AI

(StarAI 2020). 2020.

[50] Jin Huang and Charles X Ling. “Using AUC and Accuracy in Evaluating Learn-

ing Algorithms”. In: IEEE Transactions on knowledge and Data Engineering 17.3

(2005), pp. 299–310.

[51] Andrew P Bradley. “The Use of the Area Under the ROC Curve in the Evaluation

of Machine Learning Algorithms”. In: Pattern recognition 30.7 (1997), pp. 1145–

1159.

[52] Charles X Ling and Chenghui Li. “Data Mining for Direct Marketing: Problems and

Solutions”. In: Kdd. Vol. 98. 1998, pp. 73–79.

[53] Chenhao Cui and Tom Fearn. “Modern Practical Convolutional Neural Networks

for Multivariate Regression: Applications to NIR Calibration”. In: Chemometrics

and Intelligent Laboratory Systems 182 (2018), pp. 9–20.

44

[54] Ine L Jernelv, Dag Roar Hjelme, Yuji Matsuura, and Astrid Aksnes. “Convolutional

Neural Networks for Classification and Regression Analysis of One-Dimensional

Spectral Data”. In: arXiv preprint arXiv:2005.07530 (2020).

[55] Tomoyoshi Shimobaba, Takashi Kakue, and Tomoyoshi Ito. “Convolutional Neural

Network-Based Regression for Depth Prediction in Digital Holography”. In: 2018

IEEE 27th International Symposium on Industrial Electronics (ISIE). IEEE. 2018,

pp. 1323–1326.

[56] Hilal Tayara, Kim Gil Soo, and Kil To Chong. “Vehicle Detection and Counting in

High-Resolution Aerial Images Using Convolutional Regression Neural Network”.

In: IEEE Access 6 (2017), pp. 2220–2230.

[57] Peter J. Denning, Douglas E Comer, David Gries, Michael C. Mulder, Allen Tucker,

A. Joe Turner, and Paul R Young. “Computing as a Discipline”. In: Computer 22.2

(1989), pp. 63–70.

[58] B John Oommen. “Stochastic Searching On the Line and Its Applications to Pa-

rameter Learning in Nonlinear Optimization”. In: IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics) 27.4 (1997), pp. 733–739.

45

Part II

Papers Contributing to the

Dissertation

47

Paper A

A Scheme for Continuous Input to

the Tsetlin Machine with

Applications to Forecasting Disease

Outbreaks

In this paper, we apply a new promising tool for pattern classification, namely, the

Tsetlin Machine (TM), to the field of disease forecasting. The TM is interpretable

because it is based on manipulating expressions in propositional logic, leveraging a

large team of Tsetlin Automata (TA). Apart from being interpretable, this approach

is attractive due to its low computational cost and its capacity to handle noise. To

attack the problem of forecasting, we introduce a preprocessing method that extends

the TM so that it can handle continuous input. Briefly stated, we convert continuous

input into a binary representation based on thresholding. The resulting extended TM

is evaluated and analyzed using an artificial dataset. The TM is further applied to

forecast dengue outbreaks of all the seventeen regions in Philippines using the spatio-

temporal properties of the data. Experimental results show that dengue outbreak

forecasts made by the TM are more accurate than those obtained by a Support Vector

Machine (SVM), Decision Trees (DTs), and several multi-layered Artificial Neural

Networks (ANNs), both in terms of forecasting precision and F1-score.

A.1 Introduction

The Tsetlin Machine (TM) is a recent pattern classification method that manipulates

expressions in propositional logic based on a team of Tsetlin Automata (TAs) [1]. A

Tsetlin Automaton (TA) is a fixed structure deterministic automaton that learns the

optimal action among the set of actions offered by an environment. Figure A.1 shows a

two-action TA with 2N states. The action that the TA performs next is decided by the

present state of the TA. States from 1 to N maps to Action 1, while states from N+1 to

2N maps to Action 2. The TA interacts with its environment in an iterative way. In each

iteration, the TA performs the action associated with its current state. This, in turn,

49

 1 2 … N-1 N N+1 N+2 ……. 2N-1 2N

Action 1 Action 2

Reward

Penalty

Figure A.1: Transition graph of a two-action Tsetlin Automaton.

randomly triggers a reward or a penalty from the environment, according to an unknown

probability distribution. If the TA receives a reward, it reinforces the action performed

by moving to a “deeper” state, one step closer to one of the ends (left or right side). If the

action results in a penalty, the TA moves one step towards the middle state, to weaken

the performed action, ultimately jumping to the middle state of the other action. In

this manner, with a sufficient number of states, a TA converges to performing the action

with the highest probability of producing rewards – the optimal action – with probability

arbitrarily close to unity, merely by interacting with the environment[2].

The TM, introduced in 2018 by Granmo [1], uses the TA as a building block to solve

complex pattern recognition tasks. The TM operates as follows. Firstly, propositional

formulas in disjunctive normal form are used to represent patterns. The TM is thus a

general function approximator. The propositional formulas are learned through training

on labelled data by employing a collective of TAs organized in a game. The payoff ma-

trix of the game has been designed so that the Nash equilibria (NE) correspond to the

optimal configurations of the TM. As a result, the architecture of the TM is relatively

simple, facilitating transparency and interpretation of both learning and classification.

Additionally, the TM is designed for bit-wise operation. That is, it takes bits as input

and uses fast bit manipulation operators for both learning and classification. This gives

the TM an inherent computational advantage. Experimental results show that TM out-

performs ANNs, Support Vector Machines (SVMs), the Näıve Bayes Classifier (NBC),

Random Forests (RF), and Logistic Regression (LR) in diverse benchmarks [1, 3]. These

promising properties and results make the TM an interesting target for further research.

In this paper, we introduce a novel scheme that improves the accuracy of the TM when

features are continuous. In Section 2, we provide an overview of related work. Then, in

Section 3, we present our scheme for handling continuous features. In all brevity, we

encode continuous features in binary form based on thresholding. The behavior of the

resulting TM is studied in Section 4 based on both an artificial dataset and real-life data,

focusing on dengue fever forecasting. Section 5 summarizes our research and provides

pointers for further work.

50

A.2 Related Work

Propositional logic is a well-explored framework for knowledge based pattern classifica-

tion. In [4], Disjunctive Normal Form (DNF) is used to represent the patterns in clinical

and genomic data to find the recurrence of liver cancer. Data is converted to bits by

setting thresholds for continuous features. Based on the input features, logical functions

for recurrence and non-recurrence are created. Another example is the use of Boolean ex-

pressions to capture visual primitives for visual recognition, rather than relying on a data

driven approach [5]. In all brevity, the advantage of propositional logic for pattern classi-

fication, and knowledge based approaches in general, as opposed to data driven statistical

models, is that patterns can be identified even without a single training sample.

Learning propositional formulas to represent patterns in data has a long history [6].

Feldman investigates the hardness of learning DNF [7], Klivans use Polynomial Threshold

Functions to build logical expressions [8], while Feldman leverages Fourier analysis[9].

Furthermore, so-called Probably Approximately Correct (PAC) learning has provided

fundamental insight into machine learning, as well as providing a framework for learning

formulas in DNF [10]. An integer programming approach is applied in [11] to learn

disjunctions of conjunctions, providing promising results based on a Bayesian method. In

addition to the above techniques, association rule mining models have been extensively

applied in [12, 13] to predict sequential events using set of rules. Recent approaches

combine Bayesian reasoning with propositional formulas in DNF for robust learning of

formulas from data [6]. However, these techniques still suffer when facing noisy non-linear

data, which may trap the learning mechanisms in local optima.

An attractive property of TA is that they support online learning in particularly noisy

environment. Over several decades the basic TA, shown in Figure A.1, has been extended

in several directions. These extensions include the Hierarchy of Twofold Resource Allo-

cation Automata (H-TRAA) for resource allocation [14] and the stochastic searching on

the line algorithm by Oommen et al. [15]. Furthermore, teams of Tsetlin Automata have

been used to create a distributed coordination system [16], to solve the graph coloring

problem [17], and to forecast dengue outbreaks in the Philippines [18]. The TM is a recent

addition to the field of TA, addressing complex pattern recognition.

In order to attack the problem of forecasting, this paper introduces a preprocessing

method that extends the TM so that it can handle continuous input. To achieve this, we

convert continuous input into a binary representation based on thresholding. We use an

artificial dataset as well as a real-life dataset to evaluate this approach, namely, forecasting

of dengue fever outbreaks in the Philippines.

Different techniques have already been applied to forecast dengue outbreaks in differ-

ent regions of the world. For instance, Seasonal Autoregressive Integrated Moving Average

model is applied to forecast future dengue incidences in Guadeloupe [19] and Bangladesh

[20]. In their research, temperature is identified as the best weather parameter to improve

the forecasting performances. Here, 1-month ahead forecasting produces the highest ac-

curacy, compared to 3-months and 1-year ahead forecasting. Similarly, dengue incidences

in Rio de Janeiro, Brazil [21], Northeastern Thailand [22], and Southern Thailand [23] are

forecasted using Auto-regressive Integrated Moving Average models. Phung et al. inves-

51

tigate the forecasting ability of three regression models on dengue fever incidences in Can

Tho city in Vietnam [24]. They find that a Standard Multiple Regression model provides

poor forecasting capability. However, the Poisson Distributed Lag model performs well

in 12-months ahead forecasting and Seasonal Autoregressive Integrated Moving Average

model performs well in 3-months ahead forecasting. The importance of utilizing data from

neighboring regions to forecast dengue incidences is identified in [25], using an Artificial

Neural Network as the forecasting model with data from the Philippines.

In contrast to the above approaches, we will here investigate whether a rule based

approach, based on the Tsetlin Machine, can forecast outbreaks surpassing a decision

threshold, across the regions of the Philippines.

A.3 Methodology

A.3.1 The Tsetlin Machine Architecture

The TM addresses pattern classification problems where a class can be represented by

a collection of sub-patterns, each fixing certain features to distinct values. The TM is

designed to uncover these sub-patterns in an effective, yet relatively simple manner. In all

brevity, the TM represents a class using a series of clauses. Each clause, in turn, captures

a sub-pattern by means of a conjunction of literals, where a literal is a propositional

variable or its negation. Each propositional variable takes the value False or True (in bit

form, 0 or 1 respectively).

Let X = [x1, x2, x3, . . . , xn] be a feature vector consisting of n propositional variables

xk with domain {0, 1}. Now suppose the pattern classification problem involves q outputs,

and m sub-patterns per output that we need to recognize. Then the resulting pattern

classification problem can be captured using q ×m conjunctive clauses Cj
i , 1 ≤ j ≤ q, 1

≤ i ≤ m. The output yj, 1 ≤ j ≤ q, of the classifier is given as:

Cj
i = 1 ∧

∧
k∈Iji

xk

 ∧
∧

k∈Īji

¬xk

 . (A.1)

yj =
∨m

i=1
Cj

i . (A.2)

Above, Iji and Īji are non-overlapping subsets of the input variable indexes, Iji , Ī
j
i ⊆

{1,n}, Iji ∩ Ī
j
i = ∅. The subsets decide which of the propositional variables take part

in the clause, and whether they are negated or not.

In the TM, the disjunction operator is replaced by a summation operator to increase

classification robustness [1]. The structure of the multiclass TM is depicted in Figure A.2b.

The sub-figures in Figure A.2 illustrate the three phases of the classification process, i.e.,

(a) how a team of TAs forms a clause that processes the input features; (b) how a TM is

composed by multiple TA teams; and (c) how a group of TMs are connected to handle

multiclass classification problems. We will now detail these phases one by one.

The TA team:

Inputs and literals. The TM takes n propositional variables x1, x2, x3, . . . , xn as input.

For each variable xk, there are two literals, the variable itself and its negation ¬xk.

52

x1

x2

 .

 .

 .

.

xn

 x1

¬x1

 .

 .

 .

 .

 xn

¬xn

 TA1

 TA2

 .

 .

 .

 TA2n-1

 TA2n

Include/Exclude x1

Include/Exclude ¬x1

 .

 .

 .

Include/Exclude xn

Include/Exclude ¬xn

In
p
u

ts

L
it

er
al

s

T
A

T
A

D
ec

is
io

n
s

C

la
u
se

𝐶𝑖
𝑗

Conjunction

Operator

TA team 1

TA team 2

TA team m

𝐶1
𝑗

𝐶2
𝑗

 .

 .

 .

𝐶𝑚
𝑗

∑𝐶𝑖
𝑗

𝑚

𝑖=1

 +

 _

 .

 .

 .

 _

 .

 .

 .

TM 1

TM q

 .

 .

 .

 .

 .

 .

TM 2

∑𝐶𝑖
1

𝑚

𝑖=1

∑𝐶𝑖
2

𝑚

𝑖=1

∑𝐶𝑖
𝑞

𝑚

𝑖=1

 .

 .

 .

y

 O

u
tp

u
t

Argmax

Operator

(a)

x1

x2

 .

 .

 .

.

xn

 x1

¬x1

 .

 .

 .

 .

 xn

¬xn

 TA1

 TA2

 .

 .

 .

 TA2n-1

 TA2n

Include/Exclude x1

Include/Exclude ¬x1

 .

 .

 .

Include/Exclude xn

Include/Exclude ¬xn

In
p
u

ts

L

it
er

al
s

T

A

T

A

D

ec
is

io
n

s

C

la
u

se

𝐶𝑗
Conjunction

Operator

TA team 1

TA team 2

TA team m

𝐶1
𝑗

𝐶2
𝑗

 .

 .

 .

𝐶𝑚
𝑗

∑𝐶𝑖
𝑗

𝑚

𝑖=1

 +

 _

 .

 .

 .

 _

 .

 .

 .

TM 1

TM q

 .

 .

 .

 .

 .

 .

TM 2

∑𝐶𝑖
1

𝑚

𝑖=1

∑𝐶𝑖
2

𝑚

𝑖=1

∑𝐶𝑖
𝑞

𝑚

𝑖=1

 .

 .

 .

y

 O
u
tp

u
t

Argmax

Operator

(b)

x1

x2

 .

 .

 .

.

xn

 x1

¬x1

 .

 .

 .

 .

 xn

¬xn

 TA1

 TA2

 .

 .

 .

 TA2n-1

 TA2n

Include/Exclude x1

Include/Exclude ¬x1

 .

 .

 .

Include/Exclude xn

Include/Exclude ¬xn

In
p
u

ts

L

it
er

al
s

T

A

T

A

D

ec
is

io
n

s

C

la
u

se

𝐶𝑗
Conjunction

Operator

TA team 1

TA team 2

TA team m

𝐶1
𝑗

𝐶2
𝑗

 .

 .

 .

𝐶𝑚
𝑗

∑𝐶𝑖
𝑗

𝑚

𝑖=1

 +

 _

 .

 .

 .

 _

 .

 .

 .

TM 1

TM q

 .

 .

 .

 .

 .

 .

TM 2

∑𝐶𝑖
1

𝑚

𝑖=1

∑𝐶𝑖
2

𝑚

𝑖=1

∑𝐶𝑖
𝑞

𝑚

𝑖=1

 .

 .

 .

y

 O
u
tp

u
t

Argmax

Operator

(c)

Figure A.2: (a) A TA team forms the clause Cj
i , 1 ≤ j ≤ q, 1 ≤ i ≤ m. (b) A TM. (c) A

multiclass TM.

Tsetlin Automata and their decisions. For each clause Cj
i , each literal is assigned a unique

TA. This TA decides whether to include or exclude its assigned literal in the given clause.

Thus, for n input variables, we need 2n TA. This collective of TA is called a team. The

TA team composes a conjunction of the literals that the team has chosen to be included.

The conjunction outputs 1 if all of the included literals evaluate to 1, otherwise, the clause

outputs 0.

The TM:

Clauses and their role in a TM. A TM consists of m clauses, each associated with a TA

team. The number of clauses needed for a particular class depends on the number of sub-

patterns associated with the class. Each clause casts a vote, so that the m clauses jointly

decide the output of the TM. Clauses with odd indexes are assigned positive polarity (+)

and clauses with even indexes are assigned negative polarity (−). The summation operator

aggregates the votes by subtracting the number of negative votes from the number of

positive votes.

Note that clauses with positive polarity cast their votes to favor the decision that the

53

input belongs to the class represented by the TM, whereas clauses with negative polarity

vote for the input belonging to one of the other classes.

The multiclass TM:

Obtaining the final output. With multiple TMs we get a multiclass TM. As shown in

Figure A.2c, the final decision is made by the argmax operator to classify the input data

to the class that obtained the highest vote sum.

A.3.2 The TA Game and Orchestration Scheme

We organize learning in the TM as a game being played among the TAs. The Nash

Equilibria of the game corresponds to the goal state of the TA, providing the final classifier.

In the worst case, the single action of any TA has the power to disrupt the whole game.

Therefore, the TAs must be guided carefully towards optimal pattern recognition.

To achieve this, the Tsetlin Machine is built around two kinds of feedback: Type I

and Type II feedback. The Reward, Inaction, and Penalty probabilities under these two

feedback types are summarized in Table A.1, and they are determined based on the clause

output (1 or 0), the literal value (1 or 0), and the current action of the TA (include or

exclude). Rewards and Penalties are fed to the TA as normal. Inaction means that the

state of the TA remains unchanged.

The training process of the TM thus contains several interacting mechanisms. To

clarify their roles, we provide a flow chart for the complete procedure, shown in Figure 3,

and explored in the following.

Type I Feedback. As seen in the flowchart, briefly stated, Type I feedback is only

activated when the actual output ŷ is 1. When the output of the target clause also is 1,

Type I Feedback has three roles:

• It reinforces true positive output by assigning a large reward probability s−1
s

to the

action of including literals that evaluate to 1, and thus contributing to the result of

the clause output being 1.

• Conversely, exclude actions are penalized with the same magnitude under these

conditions. This is to “tighten” the clause, because it would still output 1 also

when the literal considered is included instead.

• Furthermore, if the value of the literal is 0, excluding the literal is the way to go,

and exclude actions are thus rewarded with probability 1
s
.

When the output of the clause is 0 (false negative output), Type I feedback has the

following effect:

• Type I feedback systematically penalizes include actions with probability 1
s
. Indeed,

excluding literals is the only way to invert the output of a clause that outputs 0.

• When the action is exclude, this is rewarded with probability 1
s
, because reinforcing

exclude actions will sooner or later invert the output of the clause to 1.

54

 Start Tsetlin Machine with:

Clauses m, Precision s, Threshold T

Random Initialization of TAs:

2 × n TA per Clause

Evaluate Clauses: Eq. (1)

Feedbacks to

the Clauses

Conditions

to Satisfy

Conditions

to Satisfy

Type I Feedback

Type II Feedback

Stopping

Criteria

Ready to Classify Unseen Data

𝐶+

𝐶−

Yes

No

• �̂� = 1

• Satisfy Eq. (3)

• �̂� = 0

• Satisfy Eq. (4)

• �̂� = 0

• Satisfy Eq. (4) • �̂� = 1

• Satisfy Eq. (3)

Training Data:

Training Sample X, �̂�

Figure A.3: The training work-flow.

Thus, eventually, Type I feedback combats false negative output, and encourages true

positive output.

Type II Feedback. Type II feedback is activated when the actual output ŷ is 0,

as shown in the flowchart. This type of feedback is designed to eliminate false positive

output. That is, when the clause output should be 0, but the clause erroneously evaluates

to 1, Type II feedback is triggered. In brief, repeated Type II feedback forces in the end

the offending clause to evaluate to 0, simply by including a literal that has the value 0

into the clause (which makes the conjunction of literals evaluate to 0 as well). This is

achieved by penalizing, with probability 1, exclude actions for literals that evaluate to 0.

To summarize, Type I Feedback reinforces true positive output, while simultaneously

reducing false negative output. These dynamics are countered by Type II Feedback, which

systematically reduces false positive output.

The Clause Feedback Activation Function. In [1], an additional feedback mech-

anism is introduced, aiming at allocating the sparse pattern representation resources

provided by the clauses as effectively as possible. This is achieved by introducing a target

value T for the number of clauses voting from a specific pattern. The idea is to gradually

reduce the frequency of feedback for a specific pattern, as the number of votes approaches

T . In all brevity, the feedback activation function is basically an activation probability

55

Table A.1: Type I and Type II feedback to battle against false negatives and false posi-

tives.

Feedback Type I II

Clause Output 1 0 1 0

Literal Value 1 0 1 0 1 0 1 0

C
u
rr

en
t

S
ta

te Include

(Probability)

Reward (s-1)/s NA 0 0 0 NA 0 0

Inaction 1/s NA (s-1)/s (s-1)/s 1 NA 1 1

Penalty 0 NA 1/s 1/s 0 NA 0 0

Exclude

(Probability)

Reward 0 1/s 1/s 1/s 0 0 0 0

Inaction 1/s (s-1)/s (s-1)/s (s-1)/s 1 0 1 1

Penalty (s-1)/s 0 0 0 0 1 0 0

*s is the precision and controls the granularity of the sub-patterns in [1]

controlled by a Threshold T. The probability of activating Type I Feedback for a specific

clause is:
T −max(−T,min(T,

∑m
i=1C

j
i))

2T
(A.3)

For Type II Feedback, the probability is:

T +max(−T,min(T,
∑m

i=1C
j
i))

2T
(A.4)

As seen, for Eq. (A.3), the activation probability decreases as the number of votes

approaches T, and finally when T is reached, the probability becomes 0. Thus ultimately,

Type I feedback will not be activated when enough clauses are producing the correct

number of votes. This in turn “freezes” the affected clauses since TAs will no longer change

state. The crucial point here is that this frees other clauses to seek other sub-patterns,

because the “frozen” pattern is no longer attractive for the TA. The same rationale holds

for Eq. (A.4) for Type II feedback. In this way, the pattern representation resources can

be allocated more effectively.

A.3.3 Data Pre-Processing

We now come to one of the main contributions of this paper, namely a scheme that

allows the Tsetlin Machine to successfully recognize patterns consisting of continuous

features, despite being constrained to an internal binary representation. As the TM only

takes binary variables as input, we transform continuous features into binary form in a

preprocessing step, detailed in the following.

Table A.2 illustrates the transformation procedure, using one continuous feature as

an example. The same procedure is repeated for each continuous feature in turn. First

of all, all the unique values {v1, v2, . . . , vu} of the continuous feature found in the dataset

are identified. We consider each unique value vw to be a potential threshold “≤ vw”.

Thus each unique value provides a new derived binary feature: is the threshold condition

fulfilled or not fulfilled for a particular continuous value v.

56

Table A.2: Conversion of original input features into bits.

Raw Data
Thresholds

≤ 3.834 ≤ 5.779 ≤ 10.008

5.779 0 1 1

10.008 0 0 1

5.779 0 1 1

3.834 1 1 1

As an example, column 1 in Table A.2 contains the values of the continues features.

As seen, there are three unique values, and these provides three thresholds ≤ 3.834,

≤ 5.779, and ≤ 10.008. Accordingly, three new binary features are introduced, encoding

the original raw continuous values, also shown in the table. If the raw continuous value is

greater than the threshold, the corresponding bit in the binary form is assigned the value

0; and if the raw continuous value is less than or equal to the threshold, it is given the

value 1. For example, in Table A.2, for the first value 5.779, it is greater than the first

threshold 3.834, so the corresponding binary feature is assigned the value 0 (in column 2).

However, being equal to the threshold value of the second threshold 5.779, and less than

the third threshold value 10.008, both column 3 and column 4 are assigned the value 1.

Therefore, the final binary bits that represent 5.779 becomes 011. Similarly, 10.008 and

3.834 are represented by 001 and 111, respectively.

This new representation becomes particularly powerful due to the capability of the

TM to negate features, allowing a clause to specify intervals for continuous features. In

the following section, we evaluate this procedure both on an artificial dataset, as well as

for the real-life application of forecasting dengue fever outbreaks in the Philippines.

A.4 Experiments

First, the behavior of the TM is studied using an artificial dataset. Actions chosen by

TAs in clauses, clause outputs, and TM outputs, are extensively studied with this dataset.

Then, the TM is applied to forecast the dengue outbreaks in the Philippines. Data and

the TM preparation for both tasks are discussed in the following subsections.

A.4.1 Behavior in Dealing with Artificial Data

A.4.1.1 Experimental Setup

The dataset consists of two inputs (integers, 0 ≤ x1 ≤ 4 and 0 ≤ x2 ≤ 5). If the sum of

the inputs is equal to 9, they are assigned class 1 and the rest is assigned class 0. Since

the features in this process are categorical, we use one-hot-encoding to convert them into

bits instead of the procedure proposed in the previous section. Input x1 takes one of five

values (0, 1, 2, 3, 4) and input x2 takes one of six values (0, 1, 2, 3, 4, 5). Therefore, these

two features can be expressed using 5 and 6 bits, respectively. An example data sample

converted to bits can be found in Table A.3.

57

86

88

90

92

94

96

98

100

102

1

2
5
6

5
1
1

7
6
6

1
0
2

1

1
2
7

6

1
5
3

1

1
7
8

6

2
0
4

1

2
2
9

6

2
5
5

1

2
8
0

6

3
0
6

1

3
3
1

6

3
5
7

1

3
8
2

6

M
em

o
ry

 S
ta

te

Iterations

Clause 2

0

20

40

60

80

100

120

140

160

1

2
5
6

5
1
1

7
6
6

1
0
2

1

1
2
7

6

1
5
3

1

1
7
8

6

2
0
4

1

2
2
9

6

2
5
5

1

2
8
0

6

3
0
6

1

3
3
1

6

3
5
7

1

3
8
2

6

M
em

o
ry

 S
ta

te

Iterations

Clause 1

86

88

90

92

94

96

98

100

102

1

2
5
6

5
1
1

7
6
6

1
0
2

1

1
2
7

6

1
5
3

1

1
7
8

6

2
0
4

1

2
2
9

6

2
5
5

1

2
8
0

6

3
0
6

1

3
3
1

6

3
5
7

1

3
8
2

6

M
em

o
ry

 S
ta

te

Iterations

Clause 3

0

20

40

60

80

100

120

140

160

180

1

2
5
6

5
1
1

7
6
6

1
0
2

1

1
2
7

6

1
5
3

1

1
7
8

6

2
0
4

1

2
2
9

6

2
5
5

1

2
8
0

6

3
0
6

1

3
3
1

6

3
5
7

1

3
8
2

6

M
em

o
ry

 S
ta

te

Iterations

Clause 4

Figure A.4: Variation of actions of TA to classify artificial data.

A Tsetlin Machine with 4 clauses is used to classify the artificial data. Since there

are 11 input bits, 22 TAs are needed to form a clause. Each TA is given 100 states per

action. Two of those four clauses will vote in favour of class 0. The other two clauses will

vote in favour of class 1. The two remaining hyper parameters: Threshold and Precision

are set to 1 and 8, respectively.

A.4.1.2 Behavior Analysis

During the training process, the states of the TAs in each clause are recorded and plotted

in Figure A.4. Clause 1 and 3 have positive polarities and clause 2 and 4 have negative

polarities. Clause 1 and 4 vote in favour of class 0 while clause 2 and 3 vote in favour of

class 1.

The change in states of the TAs in clause 1 and 4 are more dynamic compared to the

TAs in clauses 2 and 3. This is due to the much larger number of training samples that

Table A.3: Converting integer training samples to bits.

Original Sample
x1 x2 Out

3 5 8

Bit Positions 0 1 2 3 4 0 1 2 3 4 5

Sample in Bits 0 0 0 1 0 0 0 0 0 0 1 0

58

Table A.4: Regions that provide their data to forecast dengue incidences of their neighbors

Target Selected Regions Target Selected Regions

I II,III, IVA, XIV, Total IX X, XI, XII

II I, III, IVA, XIV, Total X IX, XI, XII, XIV, XV

III I, II, IVA, XVI XI IX, X, XII, XV

IVA III, IVB, V, XVI, Total XII IX, X, XI, XV, Total

IVB II, IVA, VI, Total XIII IX, X, XII, XV, Total

V IVA,VI, Total XIV I, II, III, IVA, IVB, Total

VI IVB, V, VII, XII,Total XV IX, X, XI, XII

XII IVA, V, VI, XII,Total XVI I, III, IVA, V

VIII V, VI

belong to class 0. Since more training samples belong to class 0 (∼ 8/9 of the data) than

class 1 (∼ 1/9 of the data), clauses 1 and 4 receive feedback more frequently. As seen,

the TAs in clauses 2 and 3 move slowly towards the exclude action (memory states from

0 to 100) since they receive Type II feedback more often (from class 0 data). However,

once the TM is trained, it can classify all the 200 testing samples with 100% accuracy.

A.4.2 Predicting Disease Outbreaks

A.4.2.1 Experimental Setup

The number of patients who suffer from dengue haemorrhagic fever or dengue shock

syndrome has been increasing over the years. Therefore, dengue haemorrhagic fever is

considered as an important public health issue, especially in tropical and subtropical

countries. To control the mortality rate due to dengue fever, an early warning system,

which helps directly on emergency preparedness and resource planning, is called for [24].

The Philippines has 17 administrative regions (from I to XVI with two IV regions; IVA

and IVB). Department of Health in the Philippines has collected the number of monthly

dengue incidences separately for all these regions from 2008 to 2016.

The number of monthly dengue incidences in most of the regions has been growing from

2008 and peaked in 2013. However, from 2013, the number of incidences has dropped to

reach an average value of 9.22 patients per 100,000 population. Considering these trends,

we decided to use more than 20 monthly dengue incidences per 100,000 population as

an indication of outbreak. Using the data from 2008 to 2015, dengue outbreaks in the

months of 2016 are to be predicted for all the regions.

In addition to the dengue incidences in the previous-month and previous-year-same-

month of the same region, historical dengue incidences from the neighboring regions and

total dengue incidences are considered as input features to forecast the dengue outbreaks.

These regions and total dengue incidences are selected based on their correlation to the

target series. Dengue incidences in the previous-month of the selected regions and total

dengue incidences are used as input features. The selected regions to forecast each region

are summarized in Table A.4.

59

Table A.5: Summary of the forecasting outcomes by different models.

TM ANN-1 ANN-2 ANN-3 ANN-4 SVM DT

Precision 0.44±0.02 0.35±0.02 0.39±0.01 0.37±0.02 0.36±0.02 0.43±0.01 0.29±0.02

Recall 0.37±0.02 0.23±0.02 0.31±0.02 0.36±0.02 0.33±0.03 0.14±0.01 0.41±0.02

F1 0.40±0.01 0.28±0.02 0.34±0.02 0.36±0.02 0.34±0.03 0.21±0.01 0.34±0.01

Accuracy 0.88±0.01 0.87±0.01 0.87±0.01 0.87±0.02 0.87±0.01 0.89±0.01 0.83±0.01

Once the input features are determined, they are converted to bits using the procedure

proposed in Section 3. Then they are fed into the TM to predicts dengue outbreaks in

each region separately. Each TM has 2000 clauses and the associated TAs are given 100

states per action. The other two hyper parameters, Threshold and Precision, are set to

15 and 8, respectively.

A.4.2.2 Results

Possible dengue outbreaks in the Philippines for the year 2016 are forecasted by the

TM. Results from the TM are compared with results from three other machine learning

techniques: ANNs, a SVM, and a Decision Tree (DT). For comprehensiveness, four ANN

architectures are used to forecast the dengue outbreaks: ANN-1 – one hidden layer with

5 neurons, ANN-2 – one hidden layer with 20 neurons, ANN-3 – three hidden layers with

20, 150, and 100 neurons, respectively, and ANN-4 – five hidden layers with 20, 200,

150, 100, and 50 neurons. The SVM uses a Radial Basis Function kernel to capture the

non-linear patterns in the data. The regularization parameter (C) in this case is fixed

at 1.0 with gamma = 1/(the number of input features) to maximize prediction accuracy.

The parameters which decide the quality of the DT output, such as maximum tree depth

(=max), minimum number of samples required for split (=2), and the minimum number

of samples required for a leaf node (=1) are again all adjusted to optimize prediction

accuracy. Since there are 17 regions, all of the 204 testing samples are utilized to test

the accuracy of each technique. These samples encompass 22 outbreaks to be identified.

Each model is executed using 30-fold cross-validation to calculate precision, recall, F1-

score, and accuracy. The means and the 95% confidence intervals of these scores can be

found in Table A.5.

The TM obtains the highest mean values for precision and F1-score. The second

highest precision (0.43) is obtained by the SVM, at the sacrifice of a much lower recall.

Conversely, DT produces the highest recall, however, precision suffers. Considering overall

performance, captured by the F1 score, the TM obtains the highest mean F1-score (0.40)

while ANN-3 obtains the second highest mean F1-score (0.36). Even though mean F1

score peaks at 0.36, as a result of increasing the structural complexity of the ANNs, the

score drops again when complexity is increased further. Due to the imbalance of the

dataset (182 non-outbreaks and 22 outbreaks), the SVM produces a particularly high

accuracy (0.89) by mostly classifying instances as non-outbreaks. Finally, note that both

the mean values of precision, recall, F1-score, and accuracy of the TM are higher than

what we were able to achieve with the ANN models.

60

A.5 Conclusion

In this paper, we proposed a feature pre-processing procedure for the TM so that it can ef-

fectively handle continuous input features. This opens up for promising applications in e.g.

forecasting, where continuous features are typical. We applied the resulting TM approach

to forecast dengue outbreaks in the Philippines, after performing an empirical study on an

artificial dataset. While the experiments with the artificial dataset confirmed the desired

properties of the new scheme, the results on the real-life dataset further demonstrated

competitive performance also with respect to other machine learning approaches. Indeed,

it turned out that the TM is more accurate than the evaluated SVMs, Decision Trees,

and several multi-layered ANNs, both in terms of forecasting precision and F1-score.

In our further work, we intend to exploit this approach also in other pattern recognition

domains where continuous features are dominant. We further intend to investigate how

also the output of the TM can be rendered continuous.

61

Bibliography

[1] Ole-Christoffer Granmo. “The Tsetlin Machine - A game Theoretic Bandit Driven

Approach to Optimal Pattern Recognition With Propositional Logic”. In: arXiv

preprint arXiv:1804.01508 (2018).

[2] Kumpati S Narendra and Mandayam AL Thathachar. Learning Automata: An In-

troduction. Courier corporation, 2012.

[3] Geir Thore Berge, Ole-Christoffer Granmo, Tor Oddbjørn Tveit, Morten Good-

win, Lei Jiao, and Bernt Viggo Matheussen. “Using the Tsetlin Machine to Learn

Human-Interpretable Rules for High-Accuracy Text Categorization With Medical

Applications”. In: IEEE Access 7 (2019), pp. 115134–115146.

[4] Hiroyuki Ogihara, Yusuke Fujita, Yoshihiko Hamamoto, Norio Iizuka, and Masaaki

Oka. “Classification Based on Boolean Algebra and Its Application to the Prediction

of Recurrence of Liver Cancer”. In: Pattern Recognition (ACPR), 2013 2nd IAPR

Asian Conference on. IEEE. 2013, pp. 838–841.

[5] Rodrigo Santa Cruz, Basura Fernando, Anoop Cherian, and Stephen Gould. “Neural

Algebra of Classifiers”. In: arXiv preprint arXiv:1801.08676 (2018).

[6] Tong Wang, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl, and

Perry MacNeille. “A Bayesian Framework for Learning Rule Sets for Interpretable

Classification”. In: The Journal of Machine Learning Research (JMLR) 18.1 (2017),

pp. 2357–2393.

[7] Vitaly Feldman. “Hardness of Approximate Two-Level Logic Minimization and PAC

Learning with Membership Queries”. In: Jrnl. of Computer and System Sciences

75.1 (2009), pp. 13–26.

[8] Adam R Klivans and Rocco A Servedio. “Learning DNF in Time 2O (n1/3)”. In:

Journal of Computer and System Sciences 68.2 (2004), pp. 303–318.

[9] Vitaly Feldman. “Learning DNF Expressions From Fourier Spectrum”. In: Confer-

ence on Learning Theory. 2012, pp. 17–1.

[10] Leslie G Valiant. “A Theory of the Learnable”. In: Communications of the ACM

27.11 (1984), pp. 1134–1142.

[11] John R Hauser, Olivier Toubia, Theodoros Evgeniou, Rene Befurt, and Daria Dzyabura.

“Disjunctions of Conjunctions, Cognitive Simplicity, and Consideration Sets”. In:

Jrnl. of Marketing Research 47.3 (2010), pp. 485–496.

63

[12] Cynthia Rudin, Benjamin Letham, and David Madigan. “Learning Theory Analysis

for Association Rules and Sequential Event Prediction”. In: The Journal of Machine

Learning Research 14.1 (2013), pp. 3441–3492.

[13] Tyler McCormick, Cynthia Rudin, and David Madigan. “A Hierarchical Model for

Association Rule Mining of Sequential Events: An Approach to Automated Medical

Symptom Prediction”. In: Annals of Applied Statistics (2011).

[14] Ole-Christoffer Granmo and B John Oommen. “Solving Stochastic Nonlinear Re-

source Allocation Problems Using a Hierarchy of Twofold Resource Allocation Au-

tomata.” In: IEEE Transaction on Computers (2010).

[15] B John Oommen, Sang-Woon Kim, Mathew T Samuel, and Ole-Christoffer Granmo.

“A Solution to the Stochastic Point Location Problem in Metalevel Nonstationary

Environments”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics) 38.2 (2008), pp. 466–476.

[16] Brian Tung and Leonard Kleinrock. “Using Finite State Automata to Produce Self-

Optimization and Self-Control”. In: IEEE transactions on parallel and distributed

systems 7.4 (1996), pp. 439–448.

[17] Noureddine Bouhmala and Ole-Christoffer Granmo. “Stochastic Learning for SAT-

Encoded Graph Coloring Problems”. In: International Journal of Applied Meta-

heuristic Computing (IJAMC) 1.3 (2010), pp. 1–19.

[18] K. Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten Goodwin. “A Novel

Tsetlin Automata Scheme to Forecast Dengue Outbreaks in the Philippines”. In:

2018 IEEE 30th International Conference on Tools with Artificial Intelligence (IC-

TAI). IEEE. 2018, pp. 680–685.

[19] Myriam Gharbi, Philippe Quenel, Joël Gustave, Sylvie Cassadou, Guy La Ruche,

Laurent Girdary, and Laurence Marrama. “Time Series Analysis of Dengue Inci-

dence in Guadeloupe, French West Indies: Forecasting Models Using Climate Vari-

ables as Predictors”. In: BMC infectious diseases 11.1 (2011), p. 166.

[20] Zamil MAH Choudhury, Shahera Banu, and Amirul M Islam. “Forecasting Dengue

Incidence in Dhaka, Bangladesh: A Time Series Analysis.” In: Dengue Bulletin 32

(2008).

[21] Paula M Luz, Beatriz VM Mendes, Claudia T Codeço, Claudio J Struchiner, and

Alison P Galvani. “Time Series Analysis of Dengue Incidence in Rio de Janeiro,

Brazil”. In: The American journal of tropical medicine and hygiene 79.6 (2008),

pp. 933–939.

[22] Tassanee Silawan, Pratap Singhasivanon, Jaranit Kaewkungwal, Suchitra Nimman-

itya, and Wanapa Suwonkerd. “Temporal Patterns and Forecast of Dengue Infection

in Northeastern Thailand”. In: Southeast Asian Journal of Tropical Medicine and

Public Health 39.1 (2008), p. 90.

[23] S Promprou, M Jaroensutasinee, and K Jaroensutasinee. “Forecasting Dengue Haem-

orrhagic Fever Cases in Southern Thailand Using ARIMA Models.” In: Dengue

Bulletin 30 (2006).

64

[24] Dung Phung, Cunrui Huang, Shannon Rutherford, Cordia Chu, Xiaoming Wang,

Minh Nguyen, Nga Huy Nguyen, and Cuong Do Manh. “Identification of the Pre-

diction Model for Dengue Incidence in Can Tho City, a Mekong Delta Area in

Vietnam”. In: Acta tropica 141 (2015), pp. 88–96.

[25] K. Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten Goodwin. “Effect

of Data From Neighbouring Regions to Forecast Dengue Incidences in Different

Regions of Philippines Using Artificial Neural Networks”. In: 2018: Norsk Infor-

matikkonferanse (2018).

65

Paper B

Adaptive Continuous Feature

Binarization for Tsetlin Machines

Applied to Forecasting Dengue

Incidences in the Philippines

The Tsetlin Machine (TM) is a recent interpretable machine learning algorithm that

requires relatively modest computational power, yet attains competitive accuracy in

several benchmarks. TMs are inherently binary; however, many machine learning

problems are continuous. While binarization of continuous data through brute-force

thresholding has yielded promising accuracy, such an approach is computationally

expensive and hinders extrapolation. In this paper, we address these limitations by

standardizing features to support scale shifts in the transition from training data to

real-world operation, typical for e.g. forecasting. For scalability, we employ sampling

to reduce the number of binarization thresholds, relying on stratification to minimize

loss of accuracy. We evaluate the approach empirically using two artificial datasets

before we apply the resulting TM to forecast dengue outbreaks in the Philippines

using the spatio-temporal properties of the data. Our results show that the loss

of accuracy due to threshold sampling is insignificant. Furthermore, the dengue

outbreak forecasts made by the TM are more accurate than those obtained by Support

Vector Machines (SVMs), Decision Trees (DTs), and several multi-layered Artificial

Neural Networks (ANNs), both in terms of forecasting precision and F1-score.

B.1 Introduction

In many machine learning applications, one is mainly concerned with minimizing pre-

diction error, and tasks can be safely automated when a satisfactory accuracy can be

obtained. However, when the consequences of prediction errors are sufficiently severe, hu-

man quality assurance of the predictions can be critical. Examples of such scenarios are

credit scoring [1, 2], medical treatment [3, 4], bioinformatics [5, 6], and churn prediction

[7, 8].

67

Human quality assurance requires that the models employed are interpretable [9]. One

needs to know which factors were involved in making the prediction as well as the role

of each factor. While deep learning approaches have shown great potential in tackling

difficult non-linear pattern recognition tasks, those schemes are known to be hard to

interpret. There is thus increasing interest in developing techniques that are interpretable,

yet capable of dealing with complex non-linear problems.

There exist several well-established interpretable machine learning techniques, such

as Linear Regression, Logistic Regression, Decision Trees, Random Forest, and Decision

Rules. However, in general, these models are relatively simplistic in comparison with deep

learning approaches, leading to lower prediction accuracy.

One exception is arguably the recently introduced Tsetlin Machine (TM) [10], which

has provided competitive accuracy in several challenging pattern recognition benchmarks.

It maintains interpretability by building patterns as conjunctive clauses in propositional

logic, in a manner that produces frequent patterns with high discrimination power. By

controlling the number of conjunctive clauses employed, the TM yields a trade-off between

interpretability and accuracy.

TMs have, for instance, outperformed Multilayer Perceptron architectures, Support

Vector Machines, Logistic Regression, and Näıve Bayes on handwritten digits classifica-

tion (MNIST), Iris data classification, and classification of Noisy XOR data with non-

informative features [10]. Additionally, in natural language text classification, such as

classification of electronic health records and IMDb movie reviews, TMs are competitive

with vanilla deep learning techniques, including Convolutional Neural Networks (CNN)

and Long Short-Term Memory (LSTM) Neural Networks [11].

Brute-force thresholding: A TM requires binary input, however, by employing

thresholding one can convert continuous features into a binary feature matrix [12]. First,

the unique feature values are identified, feature by feature. These values are used as

thresholds for the respective features. Secondly, each continuous feature value, one input

at a time, is compared against each threshold, forming a binary representation. If the

continuous value is smaller than or equal to the threshold, the associated binary feature

becomes “1”. Conversely, if the continuous value is larger than the threshold, the cor-

responding binary feature becomes “0”. In this way, each continuous feature value is

converted into several binary feature values, one per threshold.

Research problem: Although the above proposed scheme accurately maps a con-

tinuous domain into a set of binary values, it has two main weaknesses:

• Limited ability to extrapolate. Accuracy drops when there is a feature scale

shift in the transition from training data to testing data (real-world operation).

That is, the static thresholds impede feature extrapolation.

• High computational cost. Some applications produce huge amounts of data,

which can lead to a large number of unique values per feature. This, in turn, trans-

lates to increased memory usage and computation time to convert the continuous

features into binary form.

Solution: To overcome the above two weaknesses, in this paper, we enrich the brute-

force binarization scheme by adding two mechanisms. In order to address the first issue,

68

we standardize the continuous training features before converting them into a binary rep-

resentation. The same procedure is repeated on operational data. The second issue is

addressed by reducing the number of thresholds in the binarization process. Instead of

considering all the unique values as thresholds, we select some of them. In all brevity, we

use a modified version of stratified sampling to sample a representative selection of thresh-

old values. We also investigate uniform sampling strategies for comparison purposes.

Evaluation: The above mechanisms are evaluated on two artificial datasets as well as

on prediction of dengue incidences in the Philippines. The latter task consists of classifying

whether the monthly dengue incidences in each administrative region is higher or lower

than a predefined threshold, based on the historical patterns in the considered region and

its neighbours. As baseline, the resulting TM performance is compared with widely used

machine learning algorithms. Despite only using a sample of the unique feature values as

thresholds, it turns out that the TM can attain competitive accuracy.

Paper organization: The rest of the paper is organized as follows. In Section 2,

we detail the basics of TMs. Then, in Section 3, we present our scheme for handling

continuous features. The performance of the scheme is studied in Section 4 based on both

artificial and real-life data. We summarise our findings in Section 5.

B.2 Tsetlin Machines

Conceptually, a TM consists of five layers, as illustrated by Figure B.1. In this section,

we first explain the role of each of these layers when performing classification. We then

go into the details of TM learning.

B.2.1 Layer 1 – Input Layer

A TM takes a feature vector X ∈ {0, 1}o of o propositional variables xk ∈ {0, 1} as input.

To increase expression power, this feature vector is extended with the negation of the

original features: X′ = [x1, x2, x3, . . . , xo, ¬x1,¬x2,¬x3, . . . ,¬xo]. Jointly, the elements of

the extended feature vector X′ are referred to as literals.

B.2.2 Layer 2 – Clause Layer

The clause layer processes literals from the input layer. To this end, the clause layer

comprises m conjunctive clauses, which are to capture sub-patterns in the data. Each

conjunctive clause j is defined by the literals it includes:

cj = 1 ∧

∧
k∈IIj

xk

 ∧
∧

k∈ĪIj

¬xk

 . (B.1)

Above, the set IIj contains the indexes of the original variables that are included in clause

j. Similarly, the set ĪIj consists of the indexes of the included negated variables. These

sets are thus subsets of the complete set of indexes IIj , Ī
I
j ⊆ {1, . . . , o}.

69

𝑿′ = [𝑥1, 𝑥2, 𝑥3 … 𝑥𝑜 , ¬𝑥1, ¬𝑥2, ¬𝑥3 … ¬𝑥𝑜]

……….

Clause-1

 (𝑚 × 2𝑜)

𝑘

𝑗 𝑎𝑗,𝑘
𝑨 = 𝑎𝑗,𝑘

𝑎1,𝑘 ∈ {1, … 2𝑁}

Clause-2

𝑎2,𝑘 ∈ {1, … 2𝑁}

Clause-m

𝑎𝑚,𝑘 ∈ {1, … 2𝑁}

1/0 1/0 1/0 ……….

𝑣 = ∑ 𝑐𝑗
+ − ∑ 𝑐𝑗

−
𝑗𝑗

- - +

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Figure B.1: The TM structure.

B.2.3 Layer 3 – Memory Layer

The decisions of including or excluding literals in clauses are made by two-action Tsetlin

Automata (TAs) [13]. That is, 2 × o TAs are attached to each clause, one per literal

x′k, k ∈ {1, . . . , 2o}. Each TA maintains a memory state aj,k ∈ {1, . . . , 2N}, with j

referring to the clause and k to the literal. States 1 to N map to the exclude action:

exclude the kth literal from the jth clause. Conversely, states N + 1 to 2N map to the

include action: include the kth literal in the jth clause.

The memory layer is responsible for keeping track of all the TA states, which can be

organized as a matrix A: A = (aj,k) ∈ {1, . . . , 2N}m×2o. Once the states of the TAs are

given, the elements in the index set IIj can be written as: IIj = {k|aj,k > N,1 ≤ k ≤ 2o}.

B.2.4 Layer 4 – Voting Layer

The input feature vector provides the literal values and the TA decisions compose the

clauses, which can then be evaluated. Since the clauses are conjunctive, a clause evaluates

to 1 if and only if all of the included literals are of value 1. Let I1
X′ contain the indexes of

the 1-valued literals from X′. The value cj of clause j can then be succinctly defined as:

cj =

{
1 if IIj ⊆ I1

X′ ,

0 otherwise.
(B.2)

70

Algorithm 2 Clause Learning

input Training example (X′, y), voting sum v, clause output cj , positive polarity indicator

pj ∈ {0, 1}, voting target T ∈ [1,∞), pattern specificity s ∈ [1.0,∞)

1: procedure UpdateClause(X′, v, cj , pj , T, s)

2: vc ← clip (v,−T, T)

3: e = T − vc if yi = 1 else T + vci
4: if rand() ≤ e

2T then

5: if yi xor pj then

6: TypeIIFeedback(X′, cj)

7: else

8: TypeIFeedback(X′, cj , s)

9: end if

10: end if

11: end procedure

We finally represent the complete collection of clause outputs in vector form: C = (cj) ∈
{0, 1}m.

A two-class TM organizes the m clauses in two groups of equal size. Clauses with

odd indexes are to capture the sub-patterns of class y = 1 and they are given positive

polarity, denoted c+
j . The clauses with even indexes, on the other hand, are to capture

sub-patterns of class y = 0. These are given negative polarity, denoted c−j .

B.2.5 Layer 5 – Output Layer

The output layer receives the polarized clause outputs from the voting layer, which are

aggregated into a majority vote: v =
∑

j c
+
j −

∑
j c
−
j . The output of the TM is finally

decided as follows:

y =

{
1 if v ≥ 0

0 if v < 0 .
(B.3)

That is, if the negative clauses of value 1 (voting for y = 0) outnumber the positive clauses

of value 1 (voting for y = 1), the final output becomes y = 0. Otherwise, it becomes y = 1.

B.2.6 Learning Procedure

Recall that a clause j is composed by its attached team of TAs and that it is TA state

aj,k that decides whether literal x′k is included in clause j. Learning which literals to

include is based on two types of reinforcement: Type I and Type II. As described in the

following, Type I feedback produces frequent patterns, while Type II feedback increases

the discrimination power of the patterns.

TMs learn on-line, processing one training example (X, y) at a time. In all brevity,

after a forward pass through the layers described above, each clause is updated according

to Algorithm 2.

The first step is to decide whether the clause is to be updated (Lines 2-4). Here,

resource allocation dynamics ensure that clauses distribute themselves across the frequent

71

patterns, rather than missing some and over-concentrating on others. That is, for any

input X′, the probability of reinforcing a clause gradually drops to zero as the voting sum

v approaches a user-set target T for y = 1 (and −T for y = 0).

As seen, if a clause is not reinforced, it does not give feedback to its TAs, and these

are thus left unchanged. In the extreme, when the voting sum v equals or exceeds the

target T (the TM has successfully recognized the input X′), no clauses are reinforced.

They are then free to learn new patterns, naturally balancing the pattern representation

resources [10].

If a clause is going to be updated, the updating is either of Type I or Type II (Lines

5-9):

Type I feedback is given to clauses with positive polarity when y = 1 and to clauses

with negative polarity when y = 0 (Line 8). Each TA of the clause is then reinforced

based on: (1) the clause output cj; (2) the action of the TA – include or exclude; and (3)

the value of the literal x′k assigned to the TA. Two rules govern Type I feedback:

• Include is rewarded and exclude is penalized with probability s−1
s

if cj = 1 and x′k =

1. If this happens, the corresponding TA state aj,k is increased by 1, up to 2N .

This reinforcement is strong (triggered with high probability) and makes the clause

remember and refine the pattern it recognizes in X′.1

• Include is penalized and exclude is rewarded with probability 1
s

if cj = 0 or x′k = 0.

If this happens, the corresponding TA state aj,k is decreased by 1, down to 1.

This reinforcement is weak (triggered with low probability) and coarsens infrequent

patterns, making them frequent.

Above, hyper-parameter s controls pattern frequency.

Type II feedback is given to clauses with positive polarity when y = 0 and to

clauses with negative polarity when y= 1 (Line 6). It penalizes exclude with probability

1 if cj = 1 and x′k = 0. If this happens, the corresponding TA state aj,k is increased by

1. Thus, this feedback introduces literals for discriminating between y = 0 and y = 1.

B.3 Adaptive Binarization of Continuous Features

In this section, we present the preprocessing scheme that allows TMs to effectively handle

continuous features. The scheme is based on a brute-force binarization approach that

employs all unique continuous values as binarization thresholds [12, 14]. The latter scheme

binarizes continuous input through five steps, examplified in Table B.1. Features are

converted into binary form, one feature at a time, as follows:

1. Identify the unique values {n1, n2, . . . , nu} of the selected feature.

2. Sort the identified unique values from smallest to largest.

3. Consider each unique value ni, i = 1, 2, ..., u, as a threshold “≤ ni”, as shown in

sorted order in the “Thresholds” row in the table.

1Note that the probability s−1
s is replaced by 1 when boosting true positives.

72

Table B.1: Binarization of two continuous features.

Raw Feature Thresholds

1 2 ≤ 3.834 ≤ 5.779 ≤ 10.008 ≤ 11.6 ≤ 25.7 ≤ 32.4 ≤ 56.1

5.779 25.7 0 1 1 0 1 1 1

10.008 56.1 0 0 1 0 0 0 1

5.779 11.6 0 1 1 1 1 1 1

3.834 32.4 1 1 1 0 0 1 1

4. Compare each original continuous value in the feature with each of the sorted thresh-

olds. If the feature value is greater than the threshold, set the corresponding binary

variable to 0, otherwise, set it to 1.

5. Repeat steps (i) to (iv) until all the continuous values have been converted into

binary form.

As an example, consider the first feature in Table B.1, which manifests the three unique

values 5.779, 10.008, and 3.834. These values are sorted, forming the thresholds ≤ 3.834,

≤ 5.779, and ≤ 10.008. Now, each original feature value in the first column is binarized

by comparing the the value with the thresholds identified for that feature. For instance,

the feature value 5.779 is greater than 3.834, equal to 5.779, and less than 10.008. Hence,

the corresponding bit representation becomes 011. Similarly, feature values 10.008 and

3.834 are presented as 001 and 111, respectively. Notice that the number of bits required

in binary form equals the number of thresholds, which leads to scalability issues when the

number of unique feature values grows.

Once all of the continuous feature values in the first feature column have been bina-

rized, conversion of the second feature column starts. As one can see in the table, the

final binarized feature matrix is obtained by concatenating the binary representation of

each original continuous feature.

As discussed in Section B.1, the above preprocessing scheme faces extrapolation chal-

lenges with scale shifts in the transition from training data to real-world operation. Hence,

we here first investigate how standardizing the training and testing data separately using

Eq. (B.4) can help accommodate such shifts:

x̄k,i =
xk,i − µXk

σXk

. (B.4)

Above, xk,i refers to the value of feature k in input vector i, while x̄k,i refers to the

feature value after it has been standardized using the mean µXk and standard deviation

σXk of the complete set of feature values.

Once the dataset is standardized, it can be binarized using the brute-force approach.

However, for better scalability in terms of memory usage and processing time, we employ

stratified sampling to select representative thresholds. For comparison, we also evaluate

uniform sampling.

73

Inedx 1 2 3 4 5 6 7 8 ……...................u

Inedx 1 2 3 4 5 6 7 8 9 # # # # # # ……...................u

S
el

ec
te

d

S
el

ec
te

d

S
el

ec
te

d

Scale

Stratum-1 Stratum-2 Stratum-3

G
ap

G
ap

G
ap

10 20 30 40 100

Figure B.2: Selecting thresholds from the set of unique values using the “stratified”

method.

B.3.1 Stratified Sampling of Thresholds

Stratified random sampling is a popular sampling technique in statistics. The technique

involves division of a population into sub-groups and samples are selected equally and

randomly from those sub-groups. These sub-groups are called “strata”. The strata are

formed based on the characteristics of the individual members of the population.

Our stratified threshold sampling procedure can be summarized as follows. First, we

sort the unique values from smallest to largest. The strata are formed by simply dividing

the range between the smallest and largest unique values into a preset number of strata.

For instance, if the smallest unique value is 10, the largest unique values is 100, and the

required number of strata is 9, then the size of a stratum is 10 [(100 − 10)/9 = 10]. As

shown in Figure B.2, unique values are partitioned so that unique values between 10 and

20 are in the first stratum, unique values between 20 and 30 are in the second stratum,

and so on. Thus, the strata may not contain the same number of values.

Once the strata are formed, we generate one threshold value from each stratum. In-

stead of selecting a random unique value, however, we compute the mean of the unique

values in each stratum separately and consider the computed mean as the threshold. If

there are empty strata, we simply discard them.

The total number of binary features in the resulting feature matrix can then be con-

trolled by varying the total number of strata. With a larger number of strata, more

thresholds are produced, potentially leading to higher accuracy at the expense of more

binary features. Conversely, fewer strata provides a sparser representation, at the poten-

tial cost of reduced accuracy.

B.3.2 Gap-based Thresholding

Once the unique values of a feature have been identified, we can select thresholds by

skipping a fixed number of unique values as an alternative to stratified sampling. Again,

the unique values are sorted from smallest to large, ni, i = 1, 2, ..., u. The indexes of the

sorted unique values are shown in the x-axis of the Figure B.3.

Here, the user sets a fixed “gap” to sample the thresholds. For instance, a gap size of

four leads to the 1st, 6th, 11th values being used as thresholds, as illustrated in Figure B.3.

With this sampling technique, it is the gap size that decides the sparseness of the

binarization. Smaller gaps result in a large number of thresholds, providing a more accu-

rate representation. Larger gap sizes, on the other hand, produces fewer thresholds and

a more granular, but sparser representation.

74

Inedx 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ……...................u

Inedx 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ……...................u

S
el

ec
te

d

S
el

ec
te

d

S
el

ec
te

d

Strata-1 Strata-2 Strata-3

G
ap

G
ap

G
ap

Figure B.3: Selecting thresholds from the set of unique values using the “gap” method.

Once the thresholds are sampled using any of the above techniques, the conversion

process continues from Step 4 in the previously described five-step conversion process.

B.4 Empirical Results

We first study the impact of the different preprocessing schemes using two artificial

datasets, before we investigate performance on forecasting dengue outbreaks in the Philip-

pines.

B.4.1 Artificial Data

B.4.1.1 Experimental Setup

Both artificial datasets consist of a single continuous feature. The feature values of the

first artificial dataset are drawn from a Normal distribution with mean 50 and standard

deviation 5. The feature values of the second artificial dataset are drawn from a Gamma

distribution with mean 50 and standard deviation of 15. We generate 8000 training

samples and 2000 testing samples. However, in order to evaluate the effect of standardizing

input features, we scale up the testing feature values by multiplying the original feature

values by 3.

The continuous output target yci is calculated as yci = 3 × xci + 5, with xci being the

input feature value of sample i. The superscript c indicates that the values are continuous

and have not been binarized yet. The resulting datasets are plotted in Figure B.4. In each

subplot, sample 1 to 8, 000 are used for training, while sample 8001 to 10, 000 are used for

testing. Figure B.4(a) depicts the original training and testing input features drawn from

a Normal distribution and the corresponding continuous outputs. Figure B.4(b) illustrates

the standardized training and testing input features, drawn from the Normal distribution

and corresponding continuous outputs. Figure B.4(c) outlines the original training and

testing input features drawn from a Gamma distribution and the corresponding continuous

outputs. Figure B.4(d) renders the standardized training and testing input features drawn

from the Gamma distribution and the corresponding continuous outputs.

In order to binarize the continuous output yci , we employ Eq. (B.5):

ŷi =

{
1 if yci ≥ P80 of yc,

0 if yci < P80 of yc.
(B.5)

75

0 2000 4000 6000 8000 10000
Samples from Normal distribution

0

100

200

300

400

500

600

M
ag

ni
tu

de

Original xc

yc

80th Percentile of yc

(a)

0 2000 4000 6000 8000 10000
Samples from Normal distribution

0

100

200

300

400

500

600

M
ag

ni
tu

de

Normalized xc

yc

80th Percentile of yc

(b)

0 2000 4000 6000 8000 10000
Samples from Gamma distribution

0

200

400

600

800

1000

M
ag

ni
tu

de

Original xc

yc

80th Percentile of yc

(c)

0 2000 4000 6000 8000 10000
Samples from Gamma distribution

0

200

400

600

800

1000

1200

M
ag

ni
tu

de

Normalized xc

yc

80th Percentile of yc

(d)

Figure B.4: (a) Original input features drawn from a Normal distribution and corre-

sponding continuous outputs. (b) Standardized input features drawn from a Normal

distribution and corresponding continuous outputs. (c) Original input features drawn

from a Gamma distribution and corresponding continuous outputs. (d) Standardized

input features drawn from a Gamma distribution and corresponding continuous outputs.

P80 in Eq. (B.5) is the 80th percentile of the output series. Note that the training and

testing outputs are binarized separately with different percentile values since their scales

are different. The percentile-based threshold for binarizing the output value is marked in

Figure B.4 by a solid red line. If the considered continuous output is higher than or equal

to P80, the categorical output ŷi becomes 1, otherwise, it becomes 0.

The training and testing input feature values of both artificial datasets are binarized

using the proposed preprocessing schemes. In order to properly examine the extrapolation

ability, we binarize the features of both datasets before and after standardizing them. We

are also interested in seeing the impact of producing thresholds from training data alone,

and from training and test data combined. We finally investigate the behaviour of the

different threshold sampling methods.

A TM with 200 clauses is used to classify the artificial data. The target T and

specificity s are set to 20 and 2, respectively. The TAs in all the clauses maintain 100

states per action.

76

B.4.1.2 Analysis of Results

Table B.2 and Table B.3 contain the training and testing accuracies produced from the

above experiment configurations when input features are from the Normal and Gamma

distributions, respectively. As seen, the difference between testing and training accuracy

caused by standardizing the feature values is the most notable result in these tables.

Table B.2: Training and testing accuracies when original and standardized features are

from the Normal distribution

Normal Distribution

Preprocessing Binarizing Sampling
Accuracy

Training Testing

Original

features

Thresholds from both

training and testing features

All unique values 1.0000 0.2000

Stratified 0.9981 0.2000

Thresholds with gap 0.9981 0.2000

Thresholds from only

training features

All unique values 1.0000 0.2000

Stratified 0.9986 0.2000

Thresholds with gap 1.0000 0.2000

Standardized

features

Thresholds from both

training and testing

All unique values 1.0000 0.9927

Stratified 0.9986 0.9920

Thresholds with gap 0.9987 0.9915

Thresholds from only

training features features

All unique values 1.0000 0.9985

Stratified 0.9986 0.9983

Thresholds with gap 0.9984 0.9984

Table B.3: Training and testing accuracies when original and standardized features are

from the Gamma distribution

Gamma Distribution

Preprocessing Binarizing Sampling
Accuracy

Training Testing

Original

features

Thresholds from both

training and testing features

All unique values 1.0000 0.2000

Stratified 0.9977 0.2000

Thresholds with gap 0.9981 0.2000

Thresholds from only

training features

All unique values 1.0000 0.2000

Stratified 0.9992 0.2000

Thresholds with gap 0.9990 0.2000

Standardized

features

Thresholds from both

training and testing

All unique values 1.0000 0.9999

Stratified 0.9986 0.9910

Thresholds with gap 0.9979 0.9895

Thresholds from only

training features features

All unique values 1.0000 0.9905

Stratified 0.9994 0.9960

Thresholds with gap 0.9993 0.9890

77

When the data is not standardized, testing accuracy is 0.2 regardless of remaining

preprocessing. This can be explained by the relatively large shift of feature values occur-

ring from the training to the test data (mean shifting from 50 to 155), highlighting the

limited extrapolation capacity of static unnormalized input feature thresholds. Indeed,

the shift makes the TM always predict y = 1, consequently, providing an accuracy of 0.2.

However, standardizing the input features, as shown in Figure B.4(b) and Figure B.4(d),

makes the following TM training more robust towards feature value shifts and scaling.

We next investigate whether it is necessary to include the testing data when producing

the binarization thresholds. As shown, it turns out that including the testing data has

limited effect, which is advantageous for real-world operation on new data.

When all unique values are considered as thresholds in the binarization process, the

TM can achieve 1.0 training accuracy for both Normal and Gamma distributed feature

values. Regardless of the sampling technique, the TM further obtains testing accuracy

surpassing 0.99 when the input features are Normally distributed and standardized. How-

ever, when the input features are Gamma-distributed and standardized, testing accuracies

greater than 0.99 are only achieved when all unique values are considered as thresholds,

or when the stratified sampling is applied.

The reason can be explained using Figure B.5, which illustrates the input feature dis-

tribution and selected thresholds when features are Normally distributed (Figure B.5(a))

and when feature are Gamma-distributed (Figure B.5(b)). Below each histogram, the

30 40 50 60 70
0.00

0.05

All thresholds
Threshold with gap
Stratified

(a)

20 40 60 80 100 120 140
0.00

0.02

All thresholds
Threshold with gap
Stratified

(b)

Figure B.5: (a) Sampling unique values as thresholds when features are from the Normal

distribution. (b) Sampling unique values as thresholds when features are from the Gamma

distribution.

thresholds selected by each binarization scheme are plotted. Blue crosses represent the

“gap”-based thresholds, while the green triangles represent the stratification-based thresh-

olds. By comparing with the complete range of unique data points (red dots) and the

corresponding histograms, the advantage of stratified sampling is apparent. Gap-based

sampling is adversely affected by the long right tail in Figure B.5(b), concentrating signifi-

cantly more binarization thresholds around the mean. This leads to poorer representation

of the tails, causing a potential loss in testing accuracy.

78

B.4.2 Real-World Data

We now study the different data preprocessing schemes using a real-world dataset, i.e.,

Dengue Incidences.

B.4.2.1 Experimental Setup

The dataset contains monthly dengue incidences of all 17 administrative regions in the

Philippines from 2008 to 2016, per 100,000 population. More than 20 monthly dengue

incidences per 100,000 population is used as an outbreak indicator. Using the data from

2008 to 2015 for training, dengue outbreaks in the months of 2016 are to be predicted

for all the regions. Dengue incidences of previous months of the same and neighboring

regions are used as input features. More details about the selection of features can be

found in [12].

Dengue incidences are predicted with a TM employing 2000 clauses. The target T

and specificity s are set to 15 and 8, respectively. Each experiment is performed 20 times,

and we report mean performance across these trials.

Results from the TM are compared with results from three other machine learning

techniques: ANNs, a SVM, and a Decision Tree (DT). For comprehensiveness, four ANN

architectures are used to forecast the dengue outbreaks: ANN-1 – one hidden layer with

5 neurons, ANN-2 – one hidden layer with 20 neurons, ANN-3 – three hidden layers with

20, 150, and 100 neurons, respectively, and ANN-4 – five hidden layers with 20, 200,

150, 100, and 50 neurons. The SVM uses a Radial Basis Function kernel to capture the

non-linear patterns in the data. The regularization parameter (C) in this case is fixed

at 1.0 with gamma = 1/(the number of input features) to maximize prediction accuracy.

The parameters which decide the quality of the DT output, such as maximum tree depth

(=max), minimum number of samples required for split (=2), and the minimum number

of samples required for a leaf node (=1) are again all adjusted to optimize prediction

accuracy.

B.4.2.2 Results

Table B.4 contains a summary of forecasting accuracies on the Dengue Incidences dataset

attained by the various forecasting models with different data preprocessing techniques.

Since there are 17 regions in Philippines, all of the 204 testing samples are utilized

to measure the accuracy of each technique. These samples encompass 22 outbreaks. For

each model, precision, recall, F1-score, and accuracy are calculated.

When the complete set of unique values are used as thresholds, the TM obtains the

highest mean values for precision and F1-score. The second highest precision (0.429) is

obtained by the SVM, with the sacrifice of a much lower recall. Conversely, DT produces

the highest recall, however, precision suffers. Considering overall performance, captured

by the F1 score, the TM obtains the highest mean score (0.400) while ANN-3 obtains

the second highest (0.364). Even though the mean F1-score peaks at 0.364, as a result of

increasing the structural complexity of the ANNs, the score drops again when complexity

is increased further. Due to the imbalance of the dataset (182 non-outbreaks and 22

79

Table B.4: Summary of forecasting accuracies on Dengue data by different forecasting

models with different data preprocessing techniques.

TM ANN-1 ANN-2 ANN-3 ANN-4 SVM DT

All

threshold

Recall 0.364 0.227 0.318 0.364 0.318 0.136 0.409

Precision 0.444 0.357 0.389 0.364 0.368 0.429 0.290

F1-score 0.400 0.278 0.350 0.364 0.341 0.207 0.340

Accuracy 0.882 0.873 0.873 0.863 0.868 0.887 0.828

Stratified

Recall 0.318 0.227 0.318 0.318 0.318 0.136 0.364

Precision 0.368 0.238 0.333 0.350 0.333 0.375 0.242

F1-score 0.341 0.233 0.326 0.333 0.326 0.200 0.291

Accuracy 0.868 0.838 0.858 0.863 0.858 0.882 0.809

Threshold

with gap

Recall 0.318 0.227 0.318 0.318 0.318 0.136 0.364

Precision 0.333 0.238 0.292 0.304 0.304 0.333 0.235

F1-score 0.326 0.233 0.304 0.311 0.311 0.194 0.286

Accuracy 0.858 0.838 0.843 0.848 0.848 0.877 0.804

outbreaks), the SVM produces a particularly high accuracy (0.887) by mostly classifying

instances as non-outbreaks. Finally, note that the precision, recall, F1-score, and accuracy

of the TM are higher than what we were able to achieve with the ANN models.

When the thresholds are selected with the two sampling techniques, recall, precision,

F1-score, and accuracy drop. Both sampling approaches attain the same recall. However,

precision, F1-score, and accuracy are better with stratified sampling. Note that despite

the drop in F1-score, both sampling techniques attain better F1-score than the other

machine learning techniques. That is, the drop in mean F1-score from using all the

unique feature values as thresholds to stratified sampling is of little significance.

B.5 Conclusion

In this paper, we extended a brute-force threshold-based binarization approach that al-

lows TMs to accurately process continuous features. Our goal was to handle feature scale

shifts and to improve scalability without loosing accuracy. We applied the resulting bi-

narization approach to forecast dengue outbreaks in the Philippines after an empirical

empirical investigation on two artificial datasets. While the experiments with the artifi-

cial datasets confirmed the advantages of data standardization, the results on the real-life

dataset further demonstrated how sampling can reduce the number of thresholds needed

for binarizing continuous features, without significant accuracy loss. Even with a sparser

representation of continuous features, the TM is competitive with other widely used ma-

chine learning approaches. Indeed, it turned out that the TM is more accurate than the

evaluated SVMs, Decision Trees, and several multi-layered ANNs.

80

Bibliography

[1] Bart Baesens, Christophe Mues, Manu De Backer, Jan Vanthienen, and Rudy Se-

tiono. “Building Intelligent Credit Scoring Systems Using Decision Tables”. In: En-

terprise Information Systems V. Springer, 2004, pp. 131–137.

[2] Johan Huysmans, Karel Dejaeger, Christophe Mues, Jan Vanthienen, and Bart Bae-

sens. “An Empirical Evaluation of the Comprehensibility of Decision Table, Tree and

Rule Based Predictive Models”. In: Decision Support Systems 51.1 (2011), pp. 141–

154.

[3] Riccardo Bellazzi and Blaz Zupan. “Predictive Data Mining in Clinical Medicine:

Current Issues and Guidelines”. In: International journal of medical informatics

77.2 (2008), pp. 81–97.

[4] Michael J Pazzani, S Mani, and William R Shankle. “Acceptance of Rules Gener-

ated by Machine Learning Among Medical Experts”. In: Methods of information in

medicine 40.05 (2001), pp. 380–385.

[5] Alex A Freitas, Daniela C Wieser, and Rolf Apweiler. “On the Importance of Com-

prehensible Classification Models for Protein Function Prediction”. In: IEEE/ACM

Transactions on Computational Biology and Bioinformatics 7.1 (2008), pp. 172–

182.

[6] Duane Szafron, Paul Lu, Russell Greiner, David S Wishart, Brett Poulin, Roman

Eisner, Zhiyong Lu, John Anvik, Cam Macdonell, Alona Fyshe, et al. “Proteome

Analyst: Custom Predictions With Explanations in a Web-Based Tool for High-

Throughput proteome Annotations”. In: Nucleic acids research 32.suppl 2 (2004),

W365–W371.

[7] Elen Lima, Christophe Mues, and Bart Baesens. “Domain Knowledge Integration in

Data Mining Using Decision Tables: Case Studies in Churn Prediction”. In: Journal

of the Operational Research Society 60.8 (2009), pp. 1096–1106.

[8] Wouter Verbeke, David Martens, Christophe Mues, and Bart Baesens. “Building

Comprehensible Customer Churn Prediction Models with Advanced Rule Induction

Techniques”. In: Expert systems with applications 38.3 (2011), pp. 2354–2364.

[9] Christoph Molnar. Interpretable Machine Learning. Lulu. com, 2019.

[10] Ole-Christoffer Granmo. “The Tsetlin Machine - A game Theoretic Bandit Driven

Approach to Optimal Pattern Recognition With Propositional Logic”. In: arXiv

preprint arXiv:1804.01508 (2018).

81

[11] Geir Thore Berge, Ole-Christoffer Granmo, Tor Oddbjørn Tveit, Morten Good-

win, Lei Jiao, and Bernt Viggo Matheussen. “Using the Tsetlin Machine to Learn

Human-Interpretable Rules for High-Accuracy Text Categorization With Medical

Applications”. In: IEEE Access 7 (2019), pp. 115134–115146.

[12] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, and Morten Good-

win. “A Scheme for Continuous Input to the Tsetlin Machine With Applications

to Forecasting Disease Outbreaks”. In: International Conference on Industrial, En-

gineering and Other Applications of Applied Intelligent Systems. Springer. 2019,

pp. 564–578.

[13] Michael Lvovitch Tsetlin. “On Behaviour of Finite Automata in Random Medium”.

In: Avtomat. i Telemekh 22.10 (1961), pp. 1345–1354.

[14] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, Lei Jiao, and

Morten Goodwin. “The Regression Tsetlin Machine - A Novel Approach to Inter-

pretable Non-Linear Regression”. In: Philosophical Transactions of the Royal Society

A 378 (2164 2019).

82

Paper C

Adaptive Sparse Representation of

Continuous Input for Tsetlin

Machines Based on Stochastic

Searching on the Line

This paper introduces a novel approach to representing continuous inputs in Tsetlin

Machines (TMs). Instead of using one Tsetlin Automaton (TA) for every unique

threshold found when Booleanizing continuous input, we employ two Stochastic

Searching on the Line (SSL) automata to learn discriminative lower and upper

bounds. The two resulting Boolean features are adapted to the rest of the clause

by equipping each clause with its own team of SSLs, which update the bounds dur-

ing the learning process. Two standard TAs finally decide whether to include the

resulting features as part of the clause. In this way, just four automata altogether

represent one continuous feature (instead of potentially hundreds of them). We eval-

uate the performance of the new scheme empirically using five datasets, along with a

study of interpretability. On average, TMs with SSL feature representation use 4.3

times fewer literals than the TM with static threshold-based features. Furthermore,

in terms of average memory usage and F1-Score, our approach outperforms simple

Multi-Layered Artificial Neural Networks, Decision Trees, Support Vector Machines,

K-Nearest Neighbor, Random Forest, Gradient Boosted Trees (XGBoost), Explain-

able Boosting Machines (EBMs), as well as the standard and real-value weighted

TMs. Our approach further outperform Neural Additive Models on Fraud Detec-

tion and StructureBoost on CA-58 in terms of Area Under Curve while performing

competitively on COMPAS.

C.1 Introduction

Deep learning (DL) has significantly advanced state-of-the-art models in Machine Learn-

ing (ML) over the last decade, attaining remarkable accuracy in many ML application

domains. One of the issues with DL, however, is that DL inference cannot easily be inter-

83

preted [1]. This limits the applicability of DL in high-stakes domains such as medicine [2,

3], credit-scoring [4, 5], churn prediction [6, 7], bioinformatics [8, 9], crises analysis [10],

and criminal justice [11]. In this regard, the simpler and more interpretable ML algorithms

like Decision Trees, Logistic Regression, Linear Regression, and Decision Rules, can be

more suitable. Yet, they are all hampered by low-accuracy when facing complex prob-

lems [12]. This limitation has urged researchers to develop machine learning algorithms

that are capable of achieving a better trade-off between interpretability and accuracy.

While some researchers focus on developing entirely new machine learning algorithms

as scoped above, other researchers try to render DL interpretable. A recent attempt

to make DL interpretable is the work of Agarwal et al. [11]. They introduce a Neural

Additive Models (NAMs), which treats each feature independently. The assumption of

independence makes NAMs interpretable but impedes accuracy compared with regular

DL [11]. Another approach is to try to explain DL inference with surrogate models.

Here, one strives to attain local interpretability, i.e., explaining individual predictions [13].

Nevertheless, these explanations are only approximate and cannot explain the complete

DL model (globally interpretability) [14].

Many prominent interpretable ML approaches are based on natively interpretable

rules, tracing back to some of the well-known learning models such as association rule

learning [15]. These have for instance been used to predict sequential events [16]. Other

examples include the work of Feldman on the hardness of learning formulae in Disjunctive

Normal Form (DNF) [17] and Probably Approximately Correct (PAC) learning, which has

provided fundamental insight into machine learning as well as a framework for learning

formulae in DNF [18]. Approximate Bayesian techniques are another set of approaches for

robust learning of rules [19, 20]. Hybrid Logistic Circuits (HLC), introduced in [21], is yet

another novel approach to interpretable machine learning. Here, layered logical operators

tranlates into a logistic regression function. HLC has demonstrated promising accuracy

in image classification. Yet, in general, rule-based machine learning scales poorly and

is prone to noise. Indeed, for data-rich problems, in particular those involving natural

language and sensory inputs, rule-based machine learning is inferior to DL.

Another recent interpretable approach to machine learning is Explainable Boosting

Machines (EBMs) [22]. EBMs are highly intelligible and explainable while accuracy is

comparable to state-of-the-art machine learning methods like Random Forest and Boost-

edTrees [23]. Indeed, EBMs is recognized as state-of-the-art within Generalized Additive

Models (GAMs) [22, 23]. The EBMs learn feature functions independently, using methods

such as gradient boosting or bagging. This allows the user to see how much each feature

contributes to the model’s prediction and is hence directly interpretable.

The recently introduced Tsetlin Machines (TMs) [24], however, have obtained

competitive accuracy while producing human-interpretable outputs in a wide range of

domains[25, 26, 27, 28, 29]. At the same time, TMs utilize comparably low computa-

tional resources [30]. Employing a team of TA [31], a TM learns a linear combination of

conjunctive clauses in propositional logic, producing decision rules similar to the branches

in a decision tree (e.g., if X satisfies condition A and not condition B then Y = 1) [26].

In other words, the TM can be said to unify logistic regression and rule-based learning in

a way that boosts accuracy, while maintaining interpretability.

84

Recent progress on TMs. The TM has recently been adopted for various appli-

cation domains such as natural language understanding [32, 33], image classification [34]

and speech processing [35]. Simultaneously, the TM architecture and learning mecha-

nism has been improved in terms of accuracy, computation speed, and energy usage.

The convolutional TM provide competitive performance on MNIST, Fashion-MNIST,

and Kuzushiji-MNIST, in comparison with CNNs, K-Nearest Neighbor, Support Vector

Machines, Random Forests, Gradient Boosting, Binary Connect, Logistic Circuits and

ResNet [36]. The regression TM [27] opens up for continuous output, achieving on par or

better performance compared to Random Forest, Regression Trees, and Support Vector

Regression. With the proposed Booleanization scheme in [37], the TM is also able to

operate with continuous features.

Furthermore, clauses are enhanced with weights in [25]. The weights reduce the num-

ber of clauses required without any loss of accuracy. Later, integer weights replaced real-

valued weights to both reduce the number of clauses and to increase the interpretability of

the TM [38] . On several benchmarks, the integer-weighted TM version outperformed sim-

ple Multi-Layered Artificial Neural Networks, Support Vector Machines, Decision Trees,

Random Forest, K-Nearest Neighbor, Random Forest, Explainable Boosting Machines

(EBMs), Gradient Boosted Trees (XGBoost), as well as the standard TM. Further, the

introduced multi-granular clauses to TM in [28] eliminating the pattern specificity pa-

rameter from the TM and which consequently simplify the hyper-parameter search. By

indexing the clauses on the features that falsify them, up to an order of magnitude faster

inference and learning has been reported [29]. Several researchers have further introduced

techniques and architectures that reduce memory footprint and energy usage [39], while

other techniques improve learning speed [40, 39] and support explainability [41, 42].

Recent theoretical work proves convergence to the correct operator for “identity” and

“not”. It is further shown that arbitrarily rare patterns can be recognized, using a quasi-

stationary Markov chain-based analysis. The work finally proves that when two patterns

are incompatible, the most accurate pattern is selected [43]. Convergence for the “XOR”

operator has also recently been proven by [44].

Paper Contributions: The approach proposed in [37] is so far the most effective

way of representing continuous features through Booleanization. However, the approach

requires a large number of TAs to represent the Booleanized continuous features. Indeed,

one needs one TA per unique continuous value. Consequently, this increases the training

time of the TM as it needs to update all the TAs in all of clauses, per training iteration.

Further, this adds more post-processing work for generating interpretable rules out of TM

outputs. To overcome this challenge in TMs, we propose a novel approach to represent

continuous features in the TM, encompassing the following contributions.

• Instead of representing each unique threshold, found in the Booleanization process,

by a TA, we use Stochastic Searching on the Line (SSL) automaton [45] to learn

the lower and upper limits of the continuous feature values. These limits decide

the Boolean representation of the continuous value inside the clause. Merely two

TAs then decide whether to include these bounds in the clause or to exclude them

from the clause. In this way, one continuous feature can be represented by just four

85

automata, instead of representing it by hundreds of TAs (decided by the number of

unique feature values within the feature).

• A new approach to calculating the clause output is introduced to match with the

above Booleanization scheme.

• We update the learning procedure of the TM accordingly, however, building upon

Type I and Type II feedback to learn the lower and upper bounds of the continuous

input.

• Empirically, we evaluate our new scheme using eight data sets: Bankruptcy, Balance

Scale, Breast Cancer, Liver Disorders, Heart Disease, Fraud Detection, COMPAS,

and CA-58. With the first five datasets, we show how our novel approach affects

memory consumption, training time, and the number of literals included in clauses,

in comparison with the threshold-based scheme [46]. Furthermore, performance

on all these datasets are compared against recent state-of-the-art machine learning

models.

Paper Organization: In Section C.2, we present the learning automata foundation

we build upon and discuss the SSL automaton in more detail. Then, in Section C.3, we

introduce the TM and how it tradtionally has dealt with continuous features. We then

propose our new SSL-based scheme. We evaluate the performance of our new scheme

empirically using five datasets in Section C.5. In this section, we use Bankruptcy dataset

to demonstrate how rules are extracted from TM clause outputs. The prediction accuracy

of the TM SSL-based continous feature representation are then compared against several

competing techniques, including ANNs, SVMs, DTs, RF, KNN, EBMs (the current state-

of-the-art of Generalized Additive Models (GAMs) [22, 23]), Gradient Boosted Trees

(XGBoost), and TM with regular continuous feature representation. Further, we contrast

the performance of the TM against reported results on recent state-of-the-art machine

learning models, namely NAMs [11] and StructureBoost [47]. Finally, we conclude our

paper in Section C.6.

C.2 Learning Automata and the Stochastic Search-

ing on the Line Automaton

The origins of Learning Automata (LA) [48] can be traced back to the work of M. L.

Tsetlin in the early 1960s [31]. In a stochastic environment, an automaton is capable of

learning the optimum action which has the lowest penalty probability through trial and

error. There exists different types of automata. Which one to use is decided by the nature

of the application [49].

Initially, the LA randomly perform an action from its available set of actions. This

action is then evaluated by its attached environment. The environment randomly pro-

duces feedback, i.e., a reward or a penalty as a response to the action selected by the

LA. Depending on the feedback, the state of the LA is adjusted. If the feedback is a

reward, the state changes towards the end state of the selected action, reinforcing the

86

 1 2 … N-1 N N+1 N+2 ……. 2N-1 2N

Action 1 Action 2

Reward

Penalty

Figure C.1: Transition graph of a two-action Tsetlin Automaton with 2N memory states.

action. When the feedback is a penalty, the state changes towards the center state of the

selected action, weakening the action and eventually switching action. The next action of

the automaton is then decided by the new state. In this manner, an LA interacts with its

environment iteratively. With a sufficiently large number of states and a reasonably large

number of interactions with the environment, an LA learn to chose the optimum action

with probability arbitrarily close to 1.0 [48].

During LA learning, the automaton can make deterministic or stochastic jumps as a

response to the environment feedback. LA make stochastic jumps by randomly changing

states according to a given probability. If this probability is 1.0, the state jumps are

deterministic. Automaton of this kind are called deterministic automata. If the transition

graph of the automaton is kept static, we refer to it as a fixed-structure automaton. The

TM employs TAs to decide which literals to include in the clauses in clauses. A TA is

deterministic and has a fixed structure, formulated as a finite-state automaton [31]. A

TA with 2N states is depicted in Figure C.1. States 1 to N map to Action 1 and states

N + 1 to 2N map to Action 2.

The stochastic searching on the line (SSL) automaton pioneered by Oommen [45] is

somewhat different from the regular automata. The SSL automaton is an optimization

scheme designed to find an unknown optimum location λ∗ on a line, seeking a value

between 0 to 1, [0, 1].

In SSL learning, λ∗ can be one of the N points. In other words, the search space is

divided into N points, {0, 1/N, 2/N, . . . , (N − 1)/N, 1}, with N being the discretization

resolution. Depending on the possibly faulty feedback from the attached environment

(E), λ moves towards the left or right from its current state on the created discrete search

space. We consider the environment feedback 1, E = 1 as an indication to move towards

right (or to increase the value of λ) by one step. The environment feedback 0, E = 0, on

the other hand, is considered as an indication to move towards the left (or to decrease the

value of λ) by one step. The next location of λ, λ(n+ 1) can thus be expressed as follows:

λ(n+ 1) =

{
λ(n) + 1/N, if E(n) = 1 and 0 6 λ(n) < 1 ,

λ(n)− 1/N, if E(n) = 0 and 0 < λ(n) 6 1 .
(C.1)

λ(n+ 1) =

{
λ(n), if λ(n) = 1 and E(n) = 1 ,

λ(n), if λ(n) = 0 and E(n) = 0 .
(C.2)

Asymptotically, the learning mechanism is able to find a value arbitrarily close to λ∗ when

N →∞ and n→∞.

87

𝑿′ = [𝑥1, 𝑥2, 𝑥3 … 𝑥𝑜 , ¬𝑥1, ¬𝑥2, ¬𝑥3 … ¬𝑥𝑜]

……….

Clause-1

 (𝑚 × 2𝑜)

𝑘

𝑗 𝑎𝑗,𝑘
𝑨 = 𝑎𝑗,𝑘

𝑎1,𝑘 ∈ {1, … 2𝑁}

Clause-2

𝑎2,𝑘 ∈ {1, … 2𝑁}

Clause-m

𝑎𝑚,𝑘 ∈ {1, … 2𝑁}

1/0 1/0 1/0 ……….

𝑣 = ∑ 𝑐𝑗
+ − ∑ 𝑐𝑗

−
𝑗𝑗

- - +

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Figure C.2: The TM structure.

C.3 Tsetlin Machine (TM) for Continuous Features

As seen in Figure C.2, conceptually, TM decomposes into five layers for recognizing sub-

patterns in the data and categorizing them into classes. In this section, we explain the

job of each of these layers in the pattern recognition and learning phases of the TM. The

parameters and symbols used in this section are explained and summarized in Table C.1.

Layer 1: the input. In the input layer, the TM receives a vector of o propositional

variables: X, xk ∈ {0, 1}o. The objective here of the TM is to classify this feature vector

into one of the two classes, y ∈ {0, 1}. However, as shown in Figure C.2, the input layer

also includes negations of the original features, ¬xk in the feature set to capture more

sophisticated patterns. Collectively, the elements in the augmented feature set are called

literals: L = [x1, x2, . . . , xo, ¬x1,¬x2, . . . ,¬xo] = [l1, l2, . . . , l2o].

Layer 2: clause construction. The sub-patterns associated with class 1 and class 0

are captured by m conjunctive clauses. The value m is set by the user where more complex

problems might demand large m. All clauses receive the same augmented features set

formulated at the input layer, L. However, to perform the conjunction, only a fraction of

literals is utilized. The TM employs two-action TAs in Figure C.1 to decide which literals

are included in which clauses. Since we found 2 × o number of literals in L, the same

number of TAs, one per literal k, is needed by a clause to decide the included literals

in the clause. When the index set of the included literals in clause j is given in Ij the

conjunction of the clause can be performed as follows:

88

Table C.1: Parameters and symbols used in Section C.3

Parameter/

Symbol
Description

Parameter/

Symbol
Description

X

Input vector

containing o

propositional variables

L

The augmented feature

set containing both

original and negated features

xk
kth propositional

variable
lk kth literal

m The number of clauses cj
jth clause and

stored in vector C

Ij

The index set

of the included

literals in clause j

N

The number of

states per action

in the TA

aj,k

State of the kth literal

in the jth clause and

stored in matrix A

I1
X

The indexes of the

literals of value 1

v

The difference between

positive and negative

clause outputs

pj

Decision on receiving

Type I or Type II feedback

and stored in vector P

T Feedback threshold s Learning sensitivity

rj,k

The decision whether

the kth TA of the jth

clause is to receive Type Ia

feedback and stored in

matrix R

qj,k

The decision whether

the kth TA of the jth

clause is to receive Type Ib

feedback and stored in

matrix Q

I Ia

Stores TA indexes

selected for

Type Ia feedback

I Ib

Stores TA indexes

selected for

Type Ib feedback

⊕
Denotes adding 1

to the current

state value of the TA

	
Denotes substracting 1

from the current

state value of the TA

I II

Stores TA indexes

selected for

Type II feedback

cj =
∧
k∈Ij

lk. (C.3)

Notice how the composition of a clause varies from another clause depending on the

indexes of the included literals in the set Ij ⊆ {1, . . . , 2o}. For the special case of Ij = ∅,
i.e., an empty clause, we have:

cj =

{
1 during learning

0 otherwise.
(C.4)

89

That is, during learning, empty clauses output 1 and during classification they output 0.

Layer 3: storing states of TAs of clauses in the memory. The TA states on

the left hand side of the automaton (states from 1 to N) ask to exclude the corresponding

literal from the clause while the states on the right hand side of the automaton (states

from N + 1 to 2N) ask to include the literal in the clause. The systematic storage of

states of TAs in the matrix, A: A = (aj,k) ∈ {1, . . . , 2N}m×2o, with j referring to the

clause and k to the literal, allows us to find the index set of the included literals in clause

j, Ij as Ij = {k|aj,k > N, 1 ≤ k ≤ 2o}.
Layer 4: clause output. Once the TA decisions are available, the clause output

can be easily computed. Since the clauses are conjunctive, a single literal of value 0 is

enough to turn the clause output to 0 if its corresponding TA has decided to include it

in the clause. To make the understanding easier, we introduce set I1
X , which contains the

indexes of the literals of value 1. Then the output of clause j can be expressed as:

cj =

{
1 if Ij ⊆ I1

X ,

0 otherwise.
(C.5)

The clause outputs, computed as above, are now stored in vector C, i.e., C = (cj) ∈
{0, 1}m.

Layer 5: classification: The TM structure given in Figure C.2 is to classify data

into two classes. Hence, sub-patterns associated with each class have to be separately

learned. For this purpose, the clauses are divided into two groups, where one group learns

the sub-pattern of class 1 while the other learn the sub-patterns of class 0. For simplicity,

clauses with odd index are assigned positive polarity (c+
j), and they are to capture sub-

patterns of output y = 1. Clauses with even index, on the other hand, are assigned

negative polarity (c−j) and they seek the sub-patterns of output y = 0.

The clauses which recognize sub-patterns output 1. This makes the classification

process easier as we just need to sum the clause outputs of each class and assign the

sample into the class which has the highest sum. Higher sum means more sub-patters

identified from the designated class and has a higher chance of being the sample in that

class. Hence, with v being the difference in clause output, v =
∑

j c
+
j −

∑
j c
−
j , the output

of the TM is decided as follows:

ŷ =

{
1 if v ≥ 0

0 if v < 0 .
(C.6)

A TM learns online, updating its internal parameters according to one training sample

(X, y) at a time. As we discussed, a TA team decide the clause output and collectively,

output of all the clauses decide the TM output. Hence, to maximize the accuracy of

the TM output, it is important to sensibly guide individual TAs in clauses. We achieve

this with two kinds of reinforcement: Type I and Type II feedback. Type I and Type II

feedback decide if the TAs in clauses receive a reward, a penalty, or inaction feedback,

depending on the context of their actions. How the type of feedback is decided and how

the TAs are updated according to the selected feedback type are discussed below in more

details.

90

Type I feedback: Type I feedback has been designed to reinforce the true positive

outputs of the clauses and to combat against the false negative outputs of the clauses.

To reinforce the true positive output of a clause (clause output is one when it has to

be one), include actions of TAs whose corresponding literal value is 1 are strengthened.

However, more fine-tuned patterns can be identified by strengthening the exclude actions

of TAs in the same clause whose corresponding literal value is 0. To combat the false

negative outputs of the clauses (clause output is zero when it has to be one), we erase

the identified patter by the clause and make it available for a new pattern. To do so, the

exclude actions of TAs, regardless of their corresponding literal values, are strengthened.

We now sub-divide the Type I feedback into Type Ia and Ib where Type Ia handle the

reinforcing of exclude action while Type Ib work on reinforcing exclude of TAs. Together,

Type Ia and Type Ib feedback force clauses to output 1. Hence, clauses with positive

polarity need Type I feedback when y = 1 and clauses with negative polarity need Type

I feedback when y = 0. To diversify the clauses, they are targeted for Type I feedback

stochastically as follows:

pj =

{
1 with probability T−max(−T,min(T,v))

2T
,

0 otherwise.
(C.7)

All clauses in each class should not learn the same sub-pattern nor only a few. Hence,

clauses should be smartly allocated among the sub-patterns. The user set target T in

(C.7) does this while deciding the probability of receiving Type I feedback, i.e., T number

of clauses are available to learn each sub-pattern in each class. Higher T increases the

robustness of learning by allocating more clauses to learn each sub-pattern. Now, T to-

gether with v decides the probability of clause j receiving Type I feedback and accordingly

the decision pj is made. The decisions for the complete set of clauses to receive Type I

feedback are organized in the vector P = (pj) ∈ {0, 1}m.

Once the clauses to receive Type I feedback are singled out as per (C.7), the probability

of updating individual TAs in selected clauses is calculated using the user-set parameter

s (s ≥ 1), separately for Type Ia and Type Ib. According to the above probabilities, the

decision whether the kth TA of the jth clause is to receive Type Ia feedback, rj,k, and

Type Ib feedback, qj,k, are stochastically made as follows:

rj,k =

{
1 with probability s−1

s
,

0 otherwise.
(C.8)

qj,k =

{
1 with probability 1

s
,

0 otherwise.
(C.9)

The above decisions are respectively stored in the two matrices R and Q, i.e., R =

(rj,k) ∈ {0, 1}m×2o and Q = (qj,k) ∈ {0, 1}m×2o. Using the complete set of conditions, TA

indexes selected for Type Ia are I Ia = {(j, k)|lk = 1∧ cj = 1∧ pj = 1∧ rj,k = 1}. Similarly

TA indexes selected for Type Ib are I Ib = {(j, k)|(lk = 0 ∨ cj = 0) ∧ pj,y = 1 ∧ qj,k = 1} .
The states of the identified TAs are now ready to be updated. Since Type Ia strength-

ens the include action of TAs, the current state should move more towards the include

91

action direction. We denote this as ⊕ and here ⊕ adds 1 to the current state value of the

TA. The Type Ib feedback, on the other hand, moves the state of the selected TA towards

exclude action direction to strengthen the exclude action of TAs. We denote this by 	
and here 	 subtracts 1 from the current state value of the TA. Accordingly, the states of

TAs in A are updated as: A←
(
A⊕ I Ia

)
	 I Ib.

Type II feedback: Type II feedback has been designed to combat the false positive

output of clauses (clause output is one when it has to be zero). To turn this clause output

from 1 to 0, a literal value of 0 can be simply included in the clause. Clauses with positive

polarity need Type II feedback when y = 0 and clauses with negative polarity need this

when y = 1 since they do not want to vote for the opposite class. Again using the user-set

target T , the decision for the jth clause is made as follows:

pj =

{
1 with probability T+max(−T,min(T,v))

2T
,

0 otherwise.
(C.10)

The states of the TAs whose corresponding literal of value 0 in selected clauses accord-

ing to (C.10) are now moved towards the include action direction with probability one.

Hence, the index set of this kind can be identified as: I II = {(j, k)|lk = 0 ∧ cj = 1∧pj = 1}.
Accordingly, the states of TAs in A are updated as: A← A⊕ I II.

When training has been completed, the final decisions of the TAs are recorded, and

the resulting clauses can be deployed for operation.

Booleanization of Continuous Features: In the TM we discussed so far, the input

layer accepted only Boolean features, i.e., X = [x1, x2, x3, . . . , xo] with xk, k = 1, 2, ..., o,

being 0 or 1. These features and their negations were directly fed into the clauses without

any further modifications. However, continuous features in machine learning applications

are more common to have than they being just 1 or 0. We, in one of our previous papers

[37], presented a systematic procedure of transforming continuous features into Boolean

ones while maintaining ranking relationships among the continuous feature values.

We here summarize the previous Booleanization scheme using the example presented

in [27]. As seen in Table C.2, we are going to Booleanize the two continuous features

listed in table column 1 and column 2.

1. First, in each feature, the unique values are identified.

2. The unique values are then sorted from smallest to largest.

3. The sorted unique values are considered as thresholds. In the table, these values

can be seen in the “Thresholds” row.

4. The original feature values are then compared with identified thresholds, only from

its own feature value set. If the feature value is greater than the threshold, set the

corresponding Boolean variable to 0, otherwise, set the bit to 1.

5. the above steps are repeated until all the features are converted into Boolean form.

The first feature in the first column of the table contains three unique values, i.e.,

5.779, 10.008, and 3.834 (step (i)). Once they are sorted as asked in step ii, we get 3.834,

92

Table C.2: Preprocessing of two continuous features.

Raw Feature Thresholds

1 2 ≤ 3.834 ≤ 5.779 ≤ 10.008 ≤ 11.6 ≤ 25.7 ≤ 32.4 ≤ 56.1

5.779 25.7 0 1 1 0 1 1 1

10.008 56.1 0 0 1 0 0 0 1

5.779 11.6 0 1 1 1 1 1 1

3.834 32.4 1 1 1 0 0 1 1

5.779, and 10.008. Now we consider them as thresholds, ≤ 3.834, ≤ 5.779, and ≤ 10.008

(step (iii)). Here we get the idea that each original feature in the column 1 is going to

represent in 3 bit values. According to step iv, we now compare the original values in

the first feature against its thresholds. The first feature value 5.779 is greater than 3.834

(resulting in 0), equal to 5.779 (resulting in 1), and less than 10.008 (resulting in 1).

Hence we replace 5.779 with 011. Similarly, 10.008 and 3.834 can be replaced with 001

and 111, respectively.

The conversion of the feature values in the second feature is stared once all the feature

values in the first feature is completed. This procedure is iterated until all the continuous

values in all the continuous features have been converted to Boolean form (step (v)).

This Boolean representation of continuous features is particularly powerful as it allows

the TM to reason about the ordering of the values, forming conjunctive clauses that specify

rules based on thresholds, and with negated features, also rules based on intervals. This

can be explained again with the following example.

The threshold ≤ 3.834 in the “Threshold” row stands for the continuous value 3.834 of

the first feature. Similarly, threshold ≤ 5.779 and ≤ 10.008 represent the continuous value

5.779 and 10.008, respectively. Consider a clause having threshold ≤ 5.779 included in the

clause and that is the only threshold included in the clause. Then for any input value less

than or equal to ≤ 5.779 from that feature, the clause outputs 1. Now consider the case

of having two thresholds, ≤ 5.779 and ≤ 10.008 included in the clause. Still the threshold

≤ 5.779 decides the clause output due to the fact that AND of ≤ 5.779 and ≤ 10.008

threshold columns in Table C.2 yields the threshold column ≤ 5.779. The inclusion of

negated thresholds effects the clause output oppose to the original thresholds. Consider

a clause having only the negation of the threshold ≤ 3.834 included in the clause. Now

the clause outputs 1 for all the values higher than ≤ 3.834 from that feature as NOT of

≤ 3.834 is equivalent to 3.834 <.

The above explanation of the threshold selection reveals that the lowest original thresh-

old included in the clause and the highest negated threshold included in the clause decide

upper and lower boundary of the feature values and these thresholds are the only impor-

tant thresholds to calculate the clause output. Hence, this motivates us to represent the

continuous features in clauses in a new way and train the clauses accordingly as follows.

93

Table C.3: Parameters and symbols used in Section C.4

Parameter/

Symbol
Description

Parameter/

Symbol
Description

X c

Input vector

containing o

continuous features

xck kth continuous feature

SSLl
j,k

Lower limit of

the continuous feature k

in clause j

SSLu
j,k

Upper limit of

the continuous feature k

in clause j

El
j,k

Feedback to the SSL

automata which represent

the lower limit of the

feature k in clause j

Eu
j,k

Feedback to the SSL

automata which represent

the upper limit of the

feature k in clause j

TAl
j,k

TA which decides

whether to include or

exclude lower limit of the

kth feature in clause j

TAu
j,k

TA which decides

whether to include or

exclude upper limit of the

kth feature in clause j

rlj,k

The decision whether

the TA of the lower limit

of kth feature in the jth

clause is to receive

Type Ia feedback

ruj,k

The decision whether

the TA of the upper limit

of kth feature in the jth

clause is to receive

Type Ia feedback

qlj,k

The decision whether

the TA of the lower limit

of kth feature in the jth

clause is to receive

Type Ib feedback

quj,k

The decision whether

the TA of the upper limit

of kth feature in the jth

clause is to receive

Type Ib feedback

lj,k
Computed literal value for the

kth feature in clause j

C.4 Sparse Representation of Continuous Features

However, the above representation of continuous values in clauses is costly as it needs

two times the total number of unique values of TAs per clause. This is more severe

when the dataset is large and when there are a large number of input features to be

considered. Hence, having the same properties of the previous Booleanization scheme,

we introduce SLL automata to represent the upper and lower limits of the continuous

features. With the new representation, a continuous feature can be then represented by

merely two automata instead of having two times the number of unique values in the

considered continuous feature. The new parameters and symbols used in this section are

explained and summarized in Table C.3.

Input Features. As we discussed earlier, the TM takes o propositional variables

as input, X = [x1, x2, x3, . . . , xo]. In this section, we discuss how TM maps X c which

94

contains o continuous features, X c = [xc1, x
c
2, x

c
3, . . . , x

c
o] into one of two classes, y = 1 or

y = 0.

Feature Representation. Each continuous feature is assigned two SSLs to represent

the upper and lower limits of the continuous value in a clause, i.e., SSLl
1, SSL

u
1 , . . . , SSL

l
k,

SSLu
k , . . . , SSL

l
o, SSL

u
o . Here, SSLl

k and SSLu
k are lower and upper limit values of the kth

continuous feature, respectively. However, step size N within an SSL in this case is not

constant. When E in (C.1) and (C.2) is 1, the SSL state moves to the higher neighboring

unique value of the attached continuous feature of the SSL. Similarly, when E is 0, SSL

state moves to the lower neighboring unique value of the considered continuous feature.

Clauses. Each conjunctive clause in the TM receives X c as an input. The inclusion

and exclusion decisions of the corresponding upper and lower bounds of xck in the clause

are made by TAs. Hence, each clause now needs 2o TAs, where half of them make the

decision related to the lower bound of the continuous features while the other half make

the decision related to the upper bound of the continuous features. The the matrix A

hence still contains m× 2o elements: A = (aj,k) ∈ {1, . . . , 2N}m×2o.

In the phase of calculating clause outputs, both limit values given by SSLs and TA

decisions on their corresponding SSLs are considered. The value of kth literal, lj,k which

represents the kth continuous feature inside the clause, j to perform the conjunction is

evaluated as follows:

• Condition 1: Both TAl
j,k and TAu

j,k which respectively make the decision on SSLl
j,k

and SSLu
j,k decide to include them in the clause. Then,

lj,k =

{
1, if SSLl

j,k < xck ≤ SSLu
j,k ,

0, if xck ≤ SSLl
j,k ∨ SSLu

j,k < xck .
(C.11)

• Condition 2: The TAl
j,k decides to include SSLl

j,k in the clause and TAu
j,k decides

to exclude SSLu
j,k from the clause. Then,

lj,k =

{
1, if SSLl

j,k < xck ,

0, if xck ≤ SSLl
j,k .

(C.12)

• Condition 3: The TAu
j,k decides to include SSLu

j,k in the clause and TAl
j,k decides

to exclude SSLl
j,k from the clause. Then,

lj,k =

{
1, if xck ≤ SSLu

j,k ,

0, if SSLu
j,k < xck .

(C.13)

• Condition 4: Both TAl
j,k and TAu

j,k decide to exclude their corresponding SSLs

from the clause. Which consequently takes the lower limit to the lowest possible

and upper limit to the highest possible values. Hence, lj,k becomes always 1, or can

be excluded when conjunction is performed.

95

Hence, when at least one of the TAs which represent lower and upper limits decides to

include its corresponding limit in the jth clause, the index of the feature is included in Ij,

Ij ⊆ {1, . . . , o}. Then, depending on the literal value according to the above conditions,

clause output in computed, cj =
∧

k∈Ij lk, j = 1, . . . ,m.

Classification. Similar to the standard TM, the vote difference v is computed as

v =
∑

j c
+
j (Xc) −

∑
j c
−
j (Xc). Once the vote difference is known, the output class is

decided using (C.6).

Learning. In the next setup, the clauses still receive Type I and Type II feedback.

However, both TAs and SSLs have to be updated as feedback is received. In other words,

Type I and Type II feedback should be able to guide SSLs to learn the optimal lower and

upper limits of the continuous features in each clause and lead TAs to correctly decide

which limits should be included or excluded in individual clauses.

As discussed earlier, Type Ia feedback reinforces true positive outputs of clauses

by rewarding the include action of TAs when the literal value is 1. In the new setting,

Type Ia feedback updates both SSLs and TAs when xck is within the lower and upper

boundaries, SSLl
j,k < xck ≤ SSLu

j,k and when the clause output is 1 when it has to be 1

(positive clauses when y = 1 and negative clauses when y = 0). Under these conditions,

the decision whether both the TAs of upper and lower bound of kth feature in the jth

clause are to receive Type Ia feedback, rlj,k and ruj,k, is stochastically made as follows:

rlj,k =

{
1 with probability s−1

s
,

0 otherwise.
(C.14)

ruj,k =

{
1 with probability s−1

s
,

0 otherwise.
(C.15)

The environment feedback El
j,k to update SSLl

j,k and Eu
j,k to update SSLu

j,k are 0 and

1, respectively. By doing so, we force SSLs to tighten up the boundary of the continuous

feature k and include them in the clause j by reinforcing the include action of TAs. Notice

that above updates are made only if the condition in (C.7) is satisfied.

Type Ib feedback activates if xck is outside any of the upper or lower boundary,

xck ≤ SSLl
j,k ∨ SSLu

j,k < xck or if the clause output is 0. For the case where xck ≤ SSLl
j,k

or clause output is 0 when it has to be 1, the decision on the TA of the lower bound of

the kth feature in the jth clause to receive Type Ib feedback, qlj,k is stochastically made as

follows:

qlj,k =

{
1 with probability 1

s
,

0 otherwise.
(C.16)

Similarly, when it violates the upper bound requirement, i.e., SSLu
j,k < xck or if the

clause output is 0 when it has to be 1, the decision to receive Type Ib feedback on the

TA which represents upper bound is made as,

quj,k =

{
1 with probability 1

s
,

0 otherwise.
(C.17)

96

The environment feedback for the SSLs when the Type Ib feedback is applied are 0

and 1 for El
j,k and Eu

j,k, respectively. In this way, SSLs are forced to expand the boundary

and TAs are discouraged the inclusion of their respective SSLs in the clause.

Once the eligible clauses (positive clauses when y = 0 and negative clauses when

y = 1) to receive Type II feedback are stochastically selected using (C.10), states of the

individual SSLs and TAs in them are updated. The original idea of the Type II feedback

is to combat false positive output of the clause. In the new updating scheme, this is

achieved by expanding the boundaries of the kth feature if xck is outside of the boundary

and including them in the clause, which then turns the clause output to 0 eventually.

Hence, if xck ≤ SSLl
j,k, the environment feedback on SSLl

j,k, El
j,k becomes 0 and the state

of the TA which appears for SSLl
j,k increases one step with probability 1. Likewise, if

SSLu
j,k < xck, the environment feedback on SSLu

j,k, Eu
j,k becomes 1 and the state of the

TA which appears for SSLu
j,k increases one step with probability 1.

The above decisions on receiving Type Ia, Type Ib, and Type II are stored respectively

in I Ia, I Ib, and I II. The processing of the training example in the new scheme ends with

the state matrix A of TAs being updated as, A ←
((

A⊕ I Ia
)
	 I Ib

)
⊕ I II and states of

SSLs being updated according to (C.1) and (C.2) with the identified environment feedback

of individual SSLs, E.

C.5 Empirical Evaluation

In this section, the impact of the new continuous input feature representation to the

TM is empirically evaluated using five real-world datasets1 . The dataset Liver Disorder

dataset, Breast Cancer dataset, and Heart Disease dataset are from the health sector. The

Balance Scale and Corporate Bankruptcy datasets are the two other remaining datasets.

The Liver Disorder dataset, Breast Cancer dataset, Heart Disease dataset, and Corporate

Bankruptcy datasets have been selected since these applications from health sector and

finance demand both interpretability and the accuracy in predictions. The Balance Scale

dataset has been added to diversify the selected applications. Taking as an example, we

use the Corporate Bankruptcy dataset to examine the interpretability of the TM using

both the previous continuous feature representation and the proposed one. A summary

of these datasets have been tabulated in Table C.4.

The performance of the TM is also contrasted against several other standard machine

learning algorithms, namely, Artificial Neural Networks (ANNs), Decision Trees (DTs),

Support Vector Machines (SVMs), Random Forest (RF), K-Nearest Neighbor (KNN),

Explainable Boosting Machines (EBMs), [22] Gradient Boosted Trees (XGBoost) [50]

along with two recent state-of-the-art machine learning approaches: StructureBoost [47]

and Neural Additive Models [11]. For comprehensiveness, three ANN architectures are

used: ANN-1 – with one hidden layer of 5 neurons; ANN-2 – with two hidden layers of

20 and 50 neurons each, and ANN-3 – with three hidden layers and 20, 150, and 100

neurons. The other hyperparameters of each of these models are decided using trial and

1The implementation of Tsetlin Machine with versions of relevant software libraries and frameworks

can be found at https://github.com/cair/TsetlinMachine.

97

https://github.com/cair/TsetlinMachine

Table C.4: Binarizing categorical features in the Bankruptcy dataset.

Dataset
Number of

Instance

Number of

Attributes

Interpretability

needed

Corporate Bankruptcy 250 7 Yes

Balance Scale 625 4 Not necessarily

Breast Cancer 286 9 Yes

Liver Disorders 345 7 Yes

Heart Disease 270 13 Yes

Table C.5: Binarizing categorical features in the Bankruptcy dataset.

Category Integer Code
Thresholds

≤0 ≤1 ≤2

A 0 1 1 1

N 1 0 1 1

P 2 0 0 1

error. The reported results in this sections are the average measure over 50 independent

experiment trials. The data are randomly divided into training (80%) and testing (20%)

at each experiment.

C.5.1 Bankruptcy

In finance, interpretable machine learning algorithms are preferred over black-box methods

to predict bankruptcy since the bankruptcy related decisions are sensitive. However, at

the same time, accuracy of the predictions are also important to mitigate financial losses

[51].

The Bankruptcy dataset 2 we consider in this experiment contains historical records

of 250 companies. The output, i.e., Bankruptcy or Non-bankruptcy is determined by

pertinent six features: 1) Industrial Risk, 2) Management Risk, 3) Financial Flexibility,

4) Credibility, 5) Competitiveness, and 6) Operation Risk. These are categorical features

where each feature can be in one of three states: Negative (N), Average (A), or Positive

(P).

The output “Bankruptcy” is considered as class 0 while the “Non-bankruptcy” is

class 1. The features are, however, ternary. Thus, the TM has to be used with the

proposed SSLs scheme to represent categorical features directly in clauses or features

should be Booleanized using the Booleanization scheme before feeding them into the TM.

If the features are Booleanized beforehand, each feature value can be represented in three

Boolean features as shown in Table C.5. Thus, the complete Booleanized dataset contains

18 Boolean features.

First, the behavior of the TM with 10 clauses is studied. The included literals in all

these 10 clauses at end training are summarized in Table C.6. In the TM with Booleanized

2Available from https://archive.ics.uci.edu/ml/datasets/qualitative bankruptcy.

98

https://archive.ics.uci.edu/ml/datasets/qualitative_bankruptcy

Table C.6: Clauses produced by TM with Booleanization and SSLs schemes for m = 10.

Clause Class
TM with

Booleanized SSLs

1 1 ¬ x11 -

2 0 ¬ x13 ∧ x14 1 < xc5 ≤ 2

3 1 ¬ x14 2 < xc5
4 0 ¬ x13 ∧ x14 1 < xc5 ≤ 2

5 1 ¬ x14 -

6 0 ¬ x13 ∧ x14 1 < xc5 ≤ 2

7 1 - -

8 0 ¬ x13 ∧ x14 1 < xc5 ≤ 2

9 1 ¬ x14 -

10 0 ¬ x13 ∧ x14 1 < xc5 ≤ 2

Accuracy (Training/Testing) 0.98/1.00 0.99/0.96

Table C.7: Clauses produced by TM with Booleanization and SSLs schemes for m = 2.

Clause Class
TM with

Booleanized SSLs

1 1 ¬ x14 2 < xc5
2 0 ¬ x13 ∧ x14 1 < xc5 ≤ 2

Accuracy (Training/Testing) 0.99/0.96 0.96/0.98

features, the TAs in clause 1 has decided to include only the negation of feature 11, ¬x11.

Feature 11 is the Negative Credibility which we can find after binarizing all features. The

TAs in clauses 2, 4, 6, 8, 10 have decided to include the negation of Average Competitive-

ness and Negative Competitiveness non-negated in clauses. The TAs in clauses 3, 5, and

9, on the other hand, have decided to include Negative Competitiveness negated. The

clause 7 is ”empty” where TAs in this clause have decided not to include any literal in

the clause.

Table C.6 also contains the clauses learnt by TM when SSLs continuous feature ap-

proach is used. The clauses 2, 4, 6, 8, and 10 which vote for Bankruptcy activate for

Negative Competitiveness. On the other hand, the clause 3, which recognizes the sub-

patterns of class 1 outputs 1 for Positive Competitiveness. There are four free votes for

class 1 from the ”empty” clauses 1, 5,7, and 9 which are again ignored during classifica-

tion. Note also that, without loss of accuracy, TM with SSLs approach simplifies the set

of rules by not including Negative Credibility in any of the clauses. With identified thresh-

olds for the continuous values (categorical in this application), TM with SSLs approach

ends up with the simple classification rule:

Outcome =

{
Bankruptcy if Negative Competitiveness

Non-bankruptcy otherwise.
(C.18)

By asking the TMs to utilize only two clauses, we can obtain the above rule more

99

Table C.8: Performance of TM with Booleanized continuous features on Bankruptcy

dataset.

m 2 10 100 500 2000 8000

Precision 0.754 0.903 0.997 0.994 0.996 0.994

Recall 1.000 1.000 1.000 0.998 1.000 1.000

F1-Score 0.859 0.948 0.984 0.996 0.998 0.997

Accuracy 0.807 0.939 0.998 0.996 0.998 0.996

Specificity 0.533 0.860 0.995 0.993 0.996 0.990

No. of Lit. 19 88 222 832 3622 15201

Table C.9: Performance of TM with SSLs continuous feature scheme on Bankruptcy

dataset.

m 2 10 100 500 2000 8000

Precision 0.622 0.777 0.975 0.995 0.994 0.996

Recall 0.978 0.944 0.994 1.000 0.997 0.995

F1-Score 0.756 0.843 0.984 0.997 0.995 0.995

Accuracy 0.640 0.787 0.982 0.997 0.995 0.994

Specificity 0.191 0.568 0.967 0.994 0.993 0.993

No. of Lit. 8 40 94 398 1534 7286

directly, as shown in Table C.7. As seen, again, TM with both feature representations

achieves similar accuracy.

The previous accuracy results represent the majority of experiment trials. Some exper-

iments fail to get this optimum accuracy. Instead of conducting the experiments multiple

time to find the optimum clause configuration in the TM, the number of clauses can

be increased to find more robust configurations of clauses. Even though this provides

stable higher accuracy for almost all the trials, large number of clauses affects the in-

terpretability. This is where we have to think of achieving a balance between accuracy

and interpretability. For the Bankruptcy dataset, how robustness increases with clauses

can be seen in Table C.8 and Table C.9. Average performance (Precision, Recall, F1-

Score, Accuracy, Specificity) has been summarized in tables for the TM with both feature

arrangements, respectively.

Table C.8 reports the results of the TM with regular Booleanization scheme. The goal

here is to maximize F1-Score, since accuracy can be misleading for imbalanced datasets.

As one can notice, the F1-Score increases with clauses and peaks at m = 2000. To obtain

this performance with the Booleanized features, the TM classifier uses 3622 (rounded to

nearest integer) number of literals (include actions).

Despite the slight reduction from F1-Score, the TM with the proposed continuous fea-

ture representation reaches its best F-Score having merely 398 literals in the TM classifier.

This reduction of literals is higher than 9 times and which is more significant compared

to the reduction of F1-Score (0.001). At this point, the number of clauses, m equals to

500.

100

T
ab

le
C

.10:
P

erform
an

ce
com

p
arison

for
B

an
k
ru

p
tcy

d
ataset.

P
rec.

R
eca.

F
1

A
cc.

S
p

ec.
N

o.
of

L
it.

M
em

ory
R

eq
u
ired

T
rain

in
g

T
im

e
(T

rain
in

g/T
estin

g)

A
N

N
-1

0.990
1.000

0.995
0.994

0.985
-

≈
942.538K

B
/
≈

26.64K
B

0.227
sec.

A
N

N
-2

0.995
0.997

0.996
0.995

0.993
-

≈
3476.76K

B
/
≈

590.76K
B

0.226
sec.

A
N

N
-3

0.997
0.998

0.997
0.997

0.995
-

≈
28862.65K

B
/
≈

1297.12K
B

0.266
sec.

D
T

0.988
1.000

0.993
0.993

0.985
-

≈
0.00K

B
/
≈

0.00K
B

0.003
sec.

S
V

M
1.000

0.989
0.994

0.994
1.000

-
≈

90.11K
B

/
≈

0.00K
B

0.001
sec.

K
N

N
0.998

0.991
0.995

0.994
0.998

-
≈

0.00K
B

/
≈

286.71K
B

0.001
sec.

R
F

0.979
0.923

0.949
0.942

0.970
-

≈
180.22K

B
/
≈

0.00K
B

0.020
sec.

X
G

B
o
ost

0.996
0.977

0.983
0.983

0.992
-

≈
4964.35K

B
/
≈

0.00K
B

0.009
sec.

E
B

M
0.987

1.000
0.993

0.992
0.980

-
≈

1425.40K
B

/
≈

0.00K
B

13.822
sec.

T
M

(B
o
olean

ized
)

0.996
1.000

0.998
0.998

0.996
3622

≈
0.00K

B
/
≈

0.00K
B

0.148
sec.

T
M

(S
S
L

s)
0.995

1.000
0.997

0.997
0.994

398
≈

0.00K
B

/
≈

0.00K
B

0.119
sec.

101

2 10 100 500 2000 8000
No. of Clauses

0

2000

4000

6000

8000

10000

12000

14000

16000

No
. o

f L
ite

ra
ls

Binarized features
SSLs scheme

Figure C.3: The number of literals included in TM clauses to work with Bankruptcy

dataset.

Figure C.3 outlines how the number of literals vary with the increase of the number of

clauses. The TM with the new continuous feature representation scheme consistently uses

fewer literals in its classifier than TM with regular feature representation. The difference

between the number of literals by both approach increases with the number of clauses.

The performance of the TM with both continuous feature arrangements is compared

against multiple standard machine learning models: namely ANN, KNN, XGBoost, DT,

RF, SVM, and EBM. The performance of these techniques along with the best perfor-

mance of the TM setups are summarized in Table C.10. The best F1-Score is obtained by

TM with regular Booleanized features. The second best F1-Score belongs to ANN-3 and

TM with SSLs scheme. Memory wise, the TM with both input feature representations

together with DT need close to zero memory at both training and testing while ANN-3

requires training memory of 28862.65KB and testing memory of 1297.12KB. More impor-

tantly, the training time per epoch and the number of literals in closes are lower with the

SSLs scheme for the TM than with the Booleanization approach.

C.5.2 Balance Scale

We then move to the Balance Scale dataset3. The Balance Scale dataset consists of three

classes: balance scale tip to the left, tip to the right, or is in balance. The above class

is decided collectively by four features: 1) size of the weight on the left-hand side, 2)

distance from the center to the weight on the left, 3) size of the weight on the right-hand

side, and 4) distance from the center to the weight on the right. However, we remove the

third class, i.e., ”balanced”, and contract the output to Boolean. The resulting dataset

ends up with 576 data samples.

Table C.11 and Table C.12 contain the results of the TM with two continuous feature

representations, with varying m. The F1-Score reaches its maximum of 0.945 at m = 100

for the TM with the Boolean feature arrangement. The average number of literals used

3Available from http://archive.ics.uci.edu/ml/datasets/balance+scale.

102

http://archive.ics.uci.edu/ml/datasets/balance+scale

to achieve the above performance is 790. TM with SSLs scheme reaches its maximum

performance when m = 500. The number of literals used in the classifier to achieve this

permanence is 668.

The variation of the number of literals over different number of clauses in the TM

with these two continuous feature arrangement is graphed in Figure C.4. The TM with

SSLs scheme uses lower number of literals for all the considered number of clauses, with

the difference increasing with number of clauses.

For the Balance Scale dataset, the performance of the other machine learning algo-

rithms are also obtained. Along with the TM performance, the prediction accuracies of

other models are abridged in Table C.13. The highest F1-Score from all the considered

models is procured by EBM. Out of the two TM approaches, TM with SSLs scheme shows

the best performance in terms of F1-Score, however, using less training time and training

memory.

C.5.3 Breast Cancer

The nine features in the reast Cancer dataset4 predicts the recurrence of breast cancer.

The nine features in the dataset are: Age, Menopause, Tumor Size, Inv Nodes, Node

Caps, Deg Malig, Side (left or right), the Position of the Breast, and Irradiation Status.

The number of samples in the ‘non-recurrence’ and ‘recurrence’ classes are 201 and 85,

respectively. However, some of these samples are removed as they content missing values

4Available from https://archive.ics.uci.edu/ml/datasets/Breast+Cancer

Table C.11: Performance of TM with Booleanized continuous features on Balance Scale

dataset.

m 2 10 100 500 2000 8000

Precision 0.647 0.820 0.966 0.949 0.926 0.871

Recall 0.986 0.965 0.930 0.934 0.884 0.746

F1-Score 0.781 0.886 0.945 0.933 0.880 0.749

Accuracy 0.728 0.875 0.948 0.936 0.889 0.780

Specificity 0.476 0.782 0.966 0.935 0.905 0.819

No. of Lit. 17 77 790 3406 15454 60310

Table C.12: Performance of TM with SSLs continuous feature scheme on Balance Scale

dataset.

m 2 10 100 500 2000 8000

Precision 0.579 0.717 0.919 0.961 0.877 0.851

Recall 0.957 0.947 0.972 0.938 0.867 0.794

F1-Score 0.717 0.812 0.944 0.946 0.854 0.781

Accuracy 0.612 0.777 0.943 0.948 0.854 0.795

Specificity 0.254 0.598 0.916 0.959 0.840 0.795

No. of Lit. 4 17 140 668 2469 9563

103

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer

T
ab

le
C

.13:
P

erform
an

ce
com

p
arison

for
B

alan
ce

S
cale

d
ataset.

P
rec.

R
eca.

F
1

A
cc.

S
p

ec.
N

o.
of

L
it.

M
em

ory
R

eq
u
ired

T
rain

in
g

T
im

e
(T

rain
in

g/T
estin

g)

A
N

N
-1

0.993
0.987

0.990
0.990

0.993
-

≈
966.57K

B
/
≈

24.56K
B

0.614
sec.

A
N

N
-2

0.995
0.995

0.995
0.995

0.994
-

≈
3612.65K

B
/
≈

589.82K
B

0.588
sec.

A
N

N
-3

0.995
0.995

0.995
0.995

0.995
-

≈
33712.82K

B
/
≈

1478.64K
B

0.678
sec.

D
T

0.984
0.988

0.986
0.986

0.985
-

≈
131.07K

B
/
≈

0.00K
B

0.007
sec.

S
V

M
0.887

0.889
0.887

0.887
0.884

-
≈

65.53K
B

/
≈

241.59K
B

0.001
sec.

K
N

N
0.968

0.939
0.953

0.953
0.969

-
≈

249.77K
B

/
≈

126.87K
B

0.001
sec.

R
F

0.872
0.851

0.859
0.860

0.871
-

≈
0.00K

B
/
≈

0.00K
B

0.021
sec.

X
G

B
o
ost

0.942
0.921

0.931
0.931

0.942
-

≈
1126.39K

B
/
≈

0.00K
B

0.030
sec.

E
B

M
1.000

1.000
1.000

1.000
1.000

-
≈

1642.49K
B

/
≈

0.00K
B

15.658
sec.

T
M

(B
o
olean

ized
)

0.966
0.930

0.945
0.948

0.966
790

≈
16.37K

B
/
≈

0.00K
B

0.011
sec.

T
M

(S
S
L

s)
0.961

0.938
0.946

0.948
0.959

668
≈

9.43K
B

/
≈

0.00K
B

0.004
sec.

104

2 10 100 500 2000 8000
No. of Clauses

0

10000

20000

30000

40000

50000

60000

No
. o

f L
ite

ra
ls

Binarized features
SSLs scheme

Figure C.4: The number of literals included in TM clauses to work with Balance Scale

dataset.

Table C.14: Performance of TM with Booleanized continuous features on Breast Cancer

dataset.

m 2 10 100 500 2000 8000

Precision 0.518 0.485 0.295 0.101 0.058 0.054

Recall 0.583 0.380 0.416 0.205 0.200 0.250

F1-Score 0.531 0.389 0.283 0.089 0.090 0.088

Accuracy 0.703 0.737 0.644 0.633 0.649 0.581

Specificity 0.742 0.864 0.731 0.800 0.800 0.750

No. of Lit. 21 73 70 407 1637 6674

Table C.15: Performance of TM with SSLs continuous feature scheme on Breast Cancer

dataset.

m 2 10 100 500 2000 8000

Precision 0.465 0.468 0.071 0.126 0.090 0.070

Recall 0.759 0.575 0.233 0.467 0.333 0.233

F1-Score 0.555 0.494 0.109 0.195 0.141 0.107

Accuracy 0.645 0.701 0.630 0.525 0.589 0.628

Specificity 0.599 0.753 0.778 0.551 0.682 0.775

No. of Lit. 4 16 101 321 997 4276

in their features.

The performance of the TMs with two feature arrangements and the number of literals

they included in their clauses to achieve this performance are summarize in Table C.14

and Table C.15, respectively for the Booleanized scheme and the SSLs scheme. In contrast

to the previous two datasets, the F1-Score for the TMs with both feature arrangements

peaks at m = 2. The performance then decreases with the increase of m. The number

of literals at this phase in TMs with Booleanized and SSLs feature arrangements are 21

105

T
ab

le
C

.16:
P

erform
an

ce
com

p
arison

for
B

reast
C

an
cer

d
ataset.

P
rec.

R
eca.

F
1

A
cc.

S
p

ec.
N

o.
of

L
it.

M
em

ory
R

eq
u
ired

T
rain

in
g

T
im

e
(T

rain
in

g/T
estin

g)

A
N

N
-1

0.489
0.455

0.458
0.719

0.822
-

≈
1001.97K

B
/
≈

35.74K
B

0.249
sec.

A
N

N
-2

0.430
0.398

0.403
0.683

0.792
-

≈
3498.47K

B
/
≈

608.71K
B

0.248
sec.

A
N

N
-3

0.469
0.406

0.422
0.685

0.808
-

≈
38645.07K

B
/
≈

1837.76K
B

0.288
sec.

D
T

0.415
0.222

0.276
0.706

0.915
-

≈
102.39K

B
/
≈

0.00K
B

0.005
sec.

S
V

M
0.428

0.364
0.384

0.678
0.805

-
≈

241.66K
B

/
≈

299.00K
B

0.001
sec.

K
N

N
0.535

0.423
0.458

0.755
0.871

-
≈

249.85K
B

/
≈

61.43K
B

0.001
sec.

R
F

0.718
0.267

0.370
0.747

0.947
-

≈
139.26K

B
/
≈

0.00K
B

0.020
sec.

X
G

B
o
ost

0.428
0.344

0.367
0.719

0.857
-

≈
1327.10K

B
/
≈

0.00K
B

0.026
sec.

E
B

M
0.713

0.281
0.389

0.745
0.944

-
≈

1724.41K
B

/
≈

0.00K
B

6.
007

sec.

T
M

(B
o
olean

ized
)

0.518
0.583

0.531
0.703

0.742
21

≈
0.00K

B
/
≈

0.00K
B

0.001
sec.

T
M

(S
S
L

s)
0.465

0.759
0.555

0.645
0.599

4
≈

0.00K
B

/
≈

0.00K
B

0.001
sec.

106

2 10 100 500 2000 8000
No. of Clauses

0

1000

2000

3000

4000

5000

6000

7000

No
. o

f L
ite

ra
ls

Binarized features
SSLs scheme

Figure C.5: The number of literals included in TM clauses to work with Breast Cancer

dataset.

and 4, respectively. Overall, TM with SSLs scheme requires the least amount of literals,

which we can seen in Figure C.5.

All the other algorithms get F1-Score of less than 0.5. Performance of DT, RF, SVM,

XGBoost, and EBM can be identified as the worst from all models as summarized in

Table C.16. The best F1-Score is obtained by TM with SSLs feature representation

procedure while TM with Booleanized features obtain the second best F1-Score. The

increase of F1-Score from 0.531 to 0.555 comes also with the advantage of having 19 less

literals in clauses for the SSLs approach. Both training and testing memory usage of TM

with these two feature arrangements are negligible. The TM also takes the lowest training

time from all algorithms, amounting to 0.001 seconds.

C.5.4 Liver Disorders

The Liver Disorders dataset5 was created in 1980s by BUPA Medical Research and Devel-

opment Ltd. (hereafter “BMRDL”) as a part of the larger health-screening database. The

dataset contains data in seven columns: Mean Corpuscular Volume, Alkaline Phosphotase,

5Available from https://archive.ics.uci.edu/ml/datasets/Liver+Disorders.

Table C.17: Performance of TM with Booleanized continuous features on Liver Disorders

dataset.

m 2 10 100 500 2000 8000

Precision 0.566 0.540 0.506 0.455 0.442 0.417

Recall 0.799 0.597 0.508 0.595 0.500 0.593

F1-Score 0.648 0.550 0.389 0.450 0.375 0.437

Accuracy 0.533 0.540 0.516 0.522 0.526 0.504

Specificity 0.204 0.436 0.497 0.395 0.500 0.396

No. of Lit. 27 51 117 509 2315 8771

107

https://archive.ics.uci.edu/ml/datasets/Liver+Disorders

2 10 100 500 2000 8000
No. of Clauses

0

2000

4000

6000

8000

No
. o

f L
ite

ra
ls

Binarized features
SSLs scheme

Figure C.6: The number of literals included in TM clauses to work with the Liver Disorders

dataset.

Alamine Aminotransferase, Aspartate Aminotransferase, Gamma-Glutamyl Transpepti-

dase, Number of Half-Pint Equivalents of Alcoholic Beverages (drunk per day), and Se-

lector. By taking the Selector attribute as class labels, some researchers have used this

dataset incorrectly [52]. However in our experiments, the ”Number of Half-Pint Equiv-

alents of Alcoholic Beverages” is used as the dependent variable, Booleanized using the

threshold ≥ 3. Further, only results of various blood tests are used as feature attributes,

i.e., Selector attribute is discarded.

Table C.17 and Table C.18 summarize the performance of TM with two feature ar-

rangements. As seen, the F1-Scores of the TM with Booleanized continuous features peak

at m = 2 while this value of TM with SSLs scheme is at m = 10. With 10 clauses, TM

with SLLs way of representing continuous features consider merely 9 literals in clauses to

acquire a better F1-Score. The increase of the number of literals included in TM clauses

with the increase of the number of clauses can be seen in Figure C.6. Again, it confirms

that TM with SSLs scheme uses considerably less number of literals overall.

From the performance of the other machine learning models, summarized in Ta-

ble C.19, we can observe that the highest F1-Score (0.729) has been produced by RF.

The performance of DT in terms of F1-Score is comparable to the performance of RF.

Table C.18: Performance of TM with SSLs continuous feature scheme on Liver Disorders

dataset.

m 2 10 100 500 2000 8000

Precision 0.619 0.591 0.546 0.420 0.414 0.522

Recall 0.905 0.924 0.605 0.700 0.700 0.407

F1-Score 0.705 0.709 0.447 0.525 0.520 0.298

Accuracy 0.587 0.574 0.526 0.546 0.543 0.461

Specificity 0.101 0.098 0.400 0.300 0.300 0.600

No. of Lit. 2 9 89 452 1806 7229

108

T
ab

le
C

.19:
P

erform
an

ce
com

p
arison

for
L

iver
D

isord
ers

d
ataset.

P
rec.

R
eca.

F
1

A
cc.

S
p

ec.
N

o.
of

L
it.

M
em

ory
R

eq
u
ired

T
rain

in
g

T
im

e
(T

rain
in

g/T
estin

g)

A
N

N
-1

0.651
0.702

0.671
0.612

0.490
-

≈
985.13K

B
/
≈

18.53K
B

0.305
sec.

A
N

N
-2

0.648
0.664

0.652
0.594

0.505
-

≈
3689.39K

B
/
≈

598.26K
B

0.305
sec.

A
N

N
-3

0.650
0.670

0.656
0.602

0.508
-

≈
38365.46K

B
/
≈

1758.23K
B

0.356
sec.

D
T

0.591
0.957

0.728
0.596

0.135
-

≈
49.15K

B
/
≈

0.00K
B

0.025
sec.

S
V

M
0.630

0.624
0.622

0.571
0.500

-
≈

1597.43K
B

/
≈

0.00K
B

0.005
sec.

K
N

N
0.629

0.651
0.638

0.566
0.440

-
≈

0.00K
B

/
≈

434.17K
B

0.001
sec.

R
F

0.618
0.901

0.729
0.607

0.192
-

≈
0.00K

B
/
≈

0.00K
B

0.017
sec.

X
G

B
o
ost

0.641
0.677

0.656
0.635

0.568
-

≈
3219.45K

B
/
≈

0.00K
B

0.081
sec.

E
B

M
0.641

0.804
0.710

0.629
0.406

-
≈

7790.59K
B

/
≈

0.00K
B

10.772
sec.

T
M

(B
o
olean

ized
)

0.566
0.799

0.648
0.533

0.204
27

≈
0.00K

B
/
≈

0.00K
B

0.003
sec.

T
M

(S
S
L

s)
0.591

0.924
0.709

0.574
0.098

9
≈

0.00K
B

/
≈

0.00K
B

0.001
sec.

109

However, DT requires training memory of 49.15 KB while RF uses negligibly small mem-

ory both on training and testing to work with the Liver Disorders dataset. The TM,

on the other hand, performs better with SSLs continuous features representation than

with the Booleanized continuous features. This performance is the fourth best among

all the other models. For training and testing, TM with both feature representation ap-

proaches require insignificantly small amount of memory. However, TM with SSLs feature

representation takes lesser time on training.

C.5.5 Heart Disease

The last dataset we use is the Heart Disease dataset6. The goal of this dataset is to predict

the future heart disease risk based on historical data. The complete dataset consists of

75 features. However in this experiment, the updated version of the dataset, containing

13 features, is used: one ordered, six real-valued, three nominal, and three Boolean.

Table C.20 and Table C.21 summarize the performance of TM with two feature ar-

rangement schemes. For the TM with Boolean features, the best F1-Score occurs with

m = 10, achieved by using 346 literals on average. The F1-Score of TM with SSLs contin-

uous features peaks again at m = 10 with just 42 literals. Even though, accuracy wise TM

with Boolean features performs better, TM with SSLs feature representation outperforms

the Boolean representation of continuous features by obtaining a higher F1-Score.

Considering the number of literals used with increasing number of clauses (Figure C.7),

6Available from https://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29.

Table C.20: Performance of TM with Booleanized continuous features on Heart Disease

dataset.

m 2 10 100 500 2000 8000

Precision 0.547 0.607 0.835 0.507 0.351 0.360

Recall 0.938 0.815 0.626 0.408 0.646 0.486

F1-Score 0.682 0.687 0.665 0.383 0.446 0.392

Accuracy 0.593 0.672 0.749 0.619 0.533 0.584

Specificity 0.306 0.566 0.848 0.803 0.460 0.665

No. of Lit. 118 346 810 1425 11399 52071

Table C.21: Performance of TM with SSLs continuous feature scheme on Heart Disease

dataset.

m 2 10 100 500 2000 8000

Precision 0.529 0.588 0.562 0.305 0.674 0.687

Recall 0.971 0.915 0.504 0.431 0.660 0.667

F1-Score 0.680 0.714 0.510 0.343 0.571 0.555

Accuracy 0.591 0.674 0.709 0.630 0.633 0.581

Specificity 0.272 0.471 0.853 0.701 0.582 0.512

No. of Lit. 10 42 151 783 3152 12365

110

https://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29

T
ab

le
C

.22:
P

erform
an

ce
com

p
arison

for
H

eart
D

isease
d
ataset.

P
rec.

R
eca.

F
1

A
cc.

S
p

ec.
N

o.
of

L
it.

M
em

ory
R

eq
u
ired

T
rain

in
g

T
im

e
(T

rain
in

g/T
estin

g)

A
N

N
-1

0.764
0.724

0.738
0.772

0.811
-

≈
973.64K

B
/
≈

16.46K
B

0.297
sec.

A
N

N
-2

0.755
0.736

0.742
0.769

0.791
-

≈
3659.59K

B
/
≈

578.11K
B

0.266
sec.

A
N

N
-3

0.661
0.662

0.650
0.734

0.784
-

≈
33952.49K

B
/
≈

1513.41K
B

0.308
sec.

D
T

0.827
0.664

0.729
0.781

0.884
-

≈
0.00K

B
/
≈

266.23K
B

0.016
sec.

S
V

M
0.693

0.674
0.679

0.710
0.740

-
≈

1363.96K
B

/
≈

262.14K
B

0.004
sec.

K
N

N
0.682

0.615
0.641

0.714
0.791

-
≈

0.00K
B

/
≈

319.48K
B

0.001
sec.

R
F

0.810
0.648

0.713
0.774

0.879
-

≈
413.69K

B
/
≈

0.00K
B

0.017
sec.

X
G

B
o
ost

0.712
0.696

0.701
0.788

0.863
-

≈
3694.58K

B
/
≈

0.00K
B

0.057
sec.

E
B

M
0.827

0.747
0.783

0.824
0.885

-
≈

4763.64K
B

/
≈

0.00K
B

11.657
sec.

T
M

(B
o
olean

ized
)

0.607
0.815

0.687
0.672

0.566
346

≈
0.00K

B
/
≈

0.00K
B

0.014
sec.

T
M

(S
S
L

s)
0.588

0.915
0.714

0.674
0.471

42
≈

0.00K
B

/
≈

0.00K
B

0.001
sec.

111

2 10 100 500 2000 8000
No. of Clauses

0

10000

20000

30000

40000

50000

No
. o

f L
ite

ra
ls

Binarized features
SSLs scheme

Figure C.7: The number of literals included in TM clauses to work with Heart Disease

dataset.

both approaches behave almost similarly untilm = 500, and then the TM with Booleanized

features include more literals in clauses than the proposed approach.

Out of the considered machine learning models, as summarized in Table C.22 EBM

obtains the best F1-Score. However, EBM needs the highest training time and uses

the second largest training memory, while both TMs use negligible memory during both

training and testing and consume much less training time than EBM.

C.5.6 Summary of Empirical Evaluation

To compare overall performance of the various techniques, we calculate average F1-Score

across the datasets. Further to evaluate overall interpretability of TMs, we also report

average number of literals used, overall.

In all brevity, the average F1-Score of ANN-1, ANN-2, ANN-3, DT, SVM, KNN,

RF, XGBoost, EBM, TM (Booleanized), and TM (SSLs) are 0.770, 0.757, 0.744, 0.742,

0.713, 0.737, 0.724, 0.728, 0.775, 0.762, and 0.782, respectively. Out of all the considered

models, TM with SSLs continuous feature representation obtains the best average F1-

Score, which is 0.782. Also notice that increasing ANN model complexity (from ANN-1

to ANN-3) reduces overall F1-Score, which can potentially be explained by the small size

of the datasets.

Indeed, the average number of literals employed are 961 for TM with Booleanized

continuous features and 224 for TM with SSLs feature scheme. That is, TM with SSLs

feature representation uses 4.3 times fewer literals than TM with Booleanized continuous

features.

The average combined memory requirement (training + testing) by TM approaches

are 3.27 KB and 1.89 KB for Booleanized features and SSLs features, respectively. The

combined memory usage of TM with SSLs feature representation is significantly less com-

pared to the other models – ANN-1: ≈ 528 times, ANN-2: ≈ 2 211 times, ANN-3: ≈
19 197 times, DT: ≈ 59 times, SVM: ≈ 441 times, KNN: ≈ 1836 times, RF: ≈ 78 times,

112

Table C.23: Performance (in AUC) comparison against recent state-of-the-art machine

learning models.

Model Fraud Detection COMPAS CA-58

Logistic Regression 0.975 0.730 -

DT 0.956 0.723 -

NAMs 0.980 0.741 -

EBM 0.976 0.740 -

XGBoost 0.981 0.742 -

DNNs 0.978 0.735 -

LightBoost - - ≈ 0.760†
CatBoost - - ≈ 0.760†

StructureBoost - - ≈ 0.764†
TM (SSLs) 0.981 0.732 0.770

†These results were extracted from graphs in [47]

XGBoost: ≈ 1 517 times, and EBM: ≈ 2 121 times.

Also note that increasing the number of clauses stabilises the Precision, Recall, FI-

score, Accuracy, and Specificity measures, rendering variance insignificant. That is, vari-

ance becomes negligible for all the datasets and feature representations.

C.5.7 Comparison against recent state-of-the-art machine learn-

ing models

In this section, we compare TM accuracy with reported results on recent state-of-the-

art machine learning models. First, we perform experiments on Fraud Detection and

COMPAS: Risk Prediction in Criminal Justice datasets to study the performance of TM

in comparison with Neural Additive Models [11]. A Neural Additive Model is a novel

member of so-called general adaptive models. In Neural Additive Models, the significance

of each input feature towards the output is learned by a dedicated neural network. During

the training phase, the complete set of neural networks are jointly trained to learn complex

interactions between inputs and outputs.

To compare the performance against StructureBoost [47], we use the CA weather

dataset [53]. For simplicity, we use only the CA-58 subset of the dataset in this study.

StructureBoost is based on gradient boosting and is capable of exploiting the structure of

categorical variables. StructureBoost outperforms established models such as CatBoost

and LightBoost on multiple classification tasks [47].

Since the performance of both of the above techniques has been measured in terms of

Area under the ROC Curve (AUC), we here use a soft TM output layer [54] to calculate

AUC. The performance characteristics are summarized in Table C.23.

Table C.23 shows that on Fraud Detection, TM with SSLs continuous feature repre-

sentation approach performs on par with XGBoost and outperforms NAMs and all the

other techniques mentioned in [11]. On the COMPAS dataset, TM with SSLs feature

arrangement exhibits competitive performance compared to NAMs, EBM, XGBoost, and

113

DNNs. TM with SSLs feature representation shows, however, superior performance com-

pared to Logistic Regression and DT on COMPAS. The performance of TM on CA-20 is

better in comparison to StructureBoost, LightBoost, and CatBoost models, reported in

[47].

C.6 Conclusion

In this paper, we proposed a novel continuous feature representation to the Tsetlin Ma-

chines (TMs) using the stochastic searching on the line (SSL) automata. The SSLs learn

the lower and upper limits of the continuous feature values inside clauses. These limits

decide the Boolean representation of the continuous value inside the clauses. We have

provided empirical evidence to show that the novel way of representing continuous fea-

tures in the TMs can reduce the number of literals included in the learned TM clauses

4.3 times compared to the Booleanization scheme without loss of performance. Further,

the new continuous feature representation is able to decrease the total training time from

0.177 sec. to 0.126 sec. per epoch and the combined total memory usage from 16.35

KB to 9.45 KB while having on par or better performance. In terms of average F1-Score,

the TM with the proposed feature representation also outperforms several state-of-the-art

machine learning algorithms.

In our future work, we intend to investigate possibility of applying a similar feature

representation on multi-class and regression versions of the TM.

114

Bibliography

[1] Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian Jiang, and Joel T Dudley.

“Deep Learning for Healthcare: Review, Opportunities and Challenges”. In: Brief-

ings in bioinformatics 19.6 (2018), pp. 1236–1246.

[2] Riccardo Bellazzi and Blaz Zupan. “Predictive Data Mining in Clinical Medicine:

Current Issues and Guidelines”. In: International journal of medical informatics

77.2 (2008), pp. 81–97.

[3] Michael J Pazzani, S Mani, and William R Shankle. “Acceptance of Rules Gener-

ated by Machine Learning Among Medical Experts”. In: Methods of information in

medicine 40.05 (2001), pp. 380–385.

[4] Bart Baesens, Christophe Mues, Manu De Backer, Jan Vanthienen, and Rudy Se-

tiono. “Building Intelligent Credit Scoring Systems Using Decision Tables”. In: En-

terprise Information Systems V. Springer, 2004, pp. 131–137.

[5] Johan Huysmans, Karel Dejaeger, Christophe Mues, Jan Vanthienen, and Bart Bae-

sens. “An Empirical Evaluation of the Comprehensibility of Decision Table, Tree and

Rule Based Predictive Models”. In: Decision Support Systems 51.1 (2011), pp. 141–

154.

[6] Elen Lima, Christophe Mues, and Bart Baesens. “Domain Knowledge Integration in

Data Mining Using Decision Tables: Case Studies in Churn Prediction”. In: Journal

of the Operational Research Society 60.8 (2009), pp. 1096–1106.

[7] Wouter Verbeke, David Martens, Christophe Mues, and Bart Baesens. “Building

Comprehensible Customer Churn Prediction Models with Advanced Rule Induction

Techniques”. In: Expert systems with applications 38.3 (2011), pp. 2354–2364.

[8] Alex A Freitas, Daniela C Wieser, and Rolf Apweiler. “On the Importance of Com-

prehensible Classification Models for Protein Function Prediction”. In: IEEE/ACM

Transactions on Computational Biology and Bioinformatics 7.1 (2008), pp. 172–

182.

[9] Duane Szafron, Paul Lu, Russell Greiner, David S Wishart, Brett Poulin, Roman

Eisner, Zhiyong Lu, John Anvik, Cam Macdonell, Alona Fyshe, et al. “Proteome

Analyst: Custom Predictions With Explanations in a Web-Based Tool for High-

Throughput proteome Annotations”. In: Nucleic acids research 32.suppl 2 (2004),

W365–W371.

115

[10] Mehdi Ben Lazreg, Morten Goodwin, and Ole-Christoffer Granmo. “Deep Learning

for Social Media Analysis in Crises Situations”. In: The 29th Annual Workshop of

the Swedish Artificial Intelligence Society (SAIS) 2–3 June 2016, Malmö, Sweden.

2016, p. 31.

[11] Rishabh Agarwal, Nicholas Frosst, Xuezhou Zhang, Rich Caruana, and Geoffrey

E Hinton. “Neural Additive Models: Interpretable Machine Learning with Neural

Nets”. In: arXiv preprint arXiv:2004.13912 (2020).

[12] Christoph Molnar. Interpretable Machine Learning. Lulu. com, 2019.

[13] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “”Why Should I Trust

You?” Explaining the Predictions of any Classifier”. In: Proceedings of the 22nd

ACM SIGKDD international conference on knowledge discovery and data mining.

2016, pp. 1135–1144.

[14] Cynthia Rudin. “Stop Explaining Black Box Machine Learning Models for High

Stakes Decisions and Use Interpretable Models Instead”. In: Nature Machine Intel-

ligence 1.5 (2019), pp. 206–215.

[15] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. “Mining Association Rules

Between Sets of Items in Large Databases”. In: SIGMOD Rec. 22.2 (1993), pp. 207–

216. issn: 0163-5808.

[16] Tyler McCormick, Cynthia Rudin, and David Madigan. “A Hierarchical Model for

Association Rule Mining of Sequential Events: An Approach to Automated Medical

Symptom Prediction”. In: Annals of Applied Statistics (2011).

[17] Vitaly Feldman. “Hardness of Approximate Two-Level Logic Minimization and PAC

Learning with Membership Queries”. In: Jrnl. of Computer and System Sciences

75.1 (2009), pp. 13–26.

[18] Leslie G Valiant. “A Theory of the Learnable”. In: Communications of the ACM

27.11 (1984), pp. 1134–1142.

[19] Tong Wang, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl, and

Perry MacNeille. “A Bayesian Framework for Learning Rule Sets for Interpretable

Classification”. In: The Journal of Machine Learning Research (JMLR) 18.1 (2017),

pp. 2357–2393.

[20] John R Hauser, Olivier Toubia, Theodoros Evgeniou, Rene Befurt, and Daria Dzyabura.

“Disjunctions of Conjunctions, Cognitive Simplicity, and Consideration Sets”. In:

Jrnl. of Marketing Research 47.3 (2010), pp. 485–496.

[21] Yitao Liang and Guy Van den Broeck. “Learning Logistic Circuits”. In: Proceedings

of the 33rd AAAI Conference on Artificial Intelligence. Vol. 33. 2019, pp. 4277–

4286.

[22] Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caruana. “InterpretML: A Uni-

fied Framework for Machine Learning Interpretability”. In: arXiv preprint arXiv:1909.09223

(2019).

116

[23] Yin Lou, Rich Caruana, and Johannes Gehrke. “Intelligible Models for Classification

and Regression”. In: Proceedings of the 18th ACM SIGKDD international conference

on Knowledge discovery and data mining. 2012, pp. 150–158.

[24] Ole-Christoffer Granmo. “The Tsetlin Machine - A game Theoretic Bandit Driven

Approach to Optimal Pattern Recognition With Propositional Logic”. In: arXiv

preprint arXiv:1804.01508 (2018).

[25] Adrian Phoulady, Ole-Christoffer Granmo, Saeed Rahimi Gorji, and Hady Ah-

mady Phoulady. “The Weighted Tsetlin Machine: Compressed Representations with

Clause Weighting”. In: Ninth International Workshop on Statistical Relational AI

(StarAI 2020). 2020.

[26] Geir Thore Berge, Ole-Christoffer Granmo, Tor Oddbjørn Tveit, Morten Good-

win, Lei Jiao, and Bernt Viggo Matheussen. “Using the Tsetlin Machine to Learn

Human-Interpretable Rules for High-Accuracy Text Categorization With Medical

Applications”. In: IEEE Access 7 (2019), pp. 115134–115146.

[27] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, Lei Jiao, and

Morten Goodwin. “The Regression Tsetlin Machine - A Novel Approach to Inter-

pretable Non-Linear Regression”. In: Philosophical Transactions of the Royal Society

A 378 (2164 2019).

[28] Saeed Rahimi Gorji, Ole-Christoffer Granmo, Adrian Phoulady, and Morten Good-

win. “A Tsetlin Machine with Multigranular Clauses”. In: Lecture Notes in Com-

puter Science: Proceedings of the Thirty-ninth International Conference on Innova-

tive Techniques and Applications of Artificial Intelligence (SGAI-2019). Vol. 11927.

Springer International Publishing, 2019.

[29] Saeed Gorji, Ole Christoffer Granmo, Sondre Glimsdal, Jonathan Edwards, and

Morten Goodwin. “Increasing the Inference and Learning Speed of Tsetlin Machines

with Clause Indexing”. In: International Conference on Industrial, Engineering and

Other Applications of Applied Intelligent Systems. Springer. 2020.

[30] Adrian Wheeldon, Rishad Shafik, Alex Yakovlev, Jonathan Edwards, Ibrahim Had-

dadi, and Ole-Christoffer Granmo. “Tsetlin Machine: A New Paradigm for Pervasive

AI”. In: Proceedings of the SCONA Workshop at Design, Automation and Test in

Europe (DATE). 2020.

[31] Michael Lvovitch Tsetlin. “On Behaviour of Finite Automata in Random Medium”.

In: Avtomat. i Telemekh 22.10 (1961), pp. 1345–1354.

[32] Rohan Kumar Yadav, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin. “In-

terpretability in Word Sense Disambiguation using Tsetlin Machine”. In: 13th In-

ternational Conference on Agents and Artificial Intelligence (ICAART), Vienna,

Austria. INSTICC. 2021.

[33] Bimal Bhattarai, Lei Jiao, and Ole-Christoffer Granmo. “Measuring the Novelty of

Natural Language Text Using the Conjunctive Clauses of a Tsetlin Machine Text

Classifier”. In: 13th International Conference on Agents and Artificial Intelligence

(ICAART), Vienna , Austria. INSTICC. 2021.

117

[34] Jivitesh Sharma, Rohan Yadav, Ole-Christoffer Granmo, and Lei Jiao. “Human

Interpretable AI: Enhancing Tsetlin Machine Stochasticity with Drop Clause”. In:

arXiv preprint arXiv:2105.14506 (2021). url: https://arxiv.org/abs/2105.

14506.

[35] Jie Lei, Tousif Rahman, Rishad Shafik, Adrian Wheeldon, Alex Yakovlev, Ole-

Christoffer Granmo, Fahim Kawsar, and Akhil Mathur. “Low-Power Audio Key-

word Spotting Using Tsetlin Machines”. In: Journal of Low Power Electronics and

Applications 11 (18 2021). url: https://www.mdpi.com/2079-9268/11/2/18.

[36] Ole-Christoffer Granmo, Sondre Glimsdal, Lei Jiao, Morten Goodwin, Christian

W. Omlin, and Geir Thore Berge. “The Convolutional Tsetlin Machine”. In: arXiv

preprint:1905.09688 (2019).

[37] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, and Morten Good-

win. “A Scheme for Continuous Input to the Tsetlin Machine With Applications

to Forecasting Disease Outbreaks”. In: International Conference on Industrial, En-

gineering and Other Applications of Applied Intelligent Systems. Springer. 2019,

pp. 564–578.

[38] K. Darshana Abeyrathna, O. -C. Granmo, and M. Goodwin. “Extending the Tsetlin

Machine With Integer-Weighted Clauses for Increased Interpretability”. In: IEEE

Access 9 (2021), pp. 8233–8248. doi: 10.1109/ACCESS.2021.3049569.

[39] Adrian Wheeldon, Rishad Shafik, Tousif Rahman, Jie Lei, Alex Yakovlev, and Ole-

Christoffer Granmo. “Learning Automata Based Energy-efficient AI Hardware De-

sign for IoT”. In: Philosophical Transactions of the Royal Society A (2020). url:

https://eprints.ncl.ac.uk/268038.

[40] K. Darshana Abeyrathna, Bimal Bhattarai, Morten Goodwin, Saeed Gorji, Ole-

Christoffer Granmo, Lei Jiao, Rupsa Saha, and Rohan K. Yadav. “Massively Paral-

lel and Asynchronous Tsetlin Machine Architecture Supporting Almost Constant-

Time Scaling”. In: The Thirty-eighth International Conference on Machine Learning

(ICML 2021). ICML. 2021.

[41] Rishad Shafik, Adrian Wheeldon, and Alex Yakovlev. “Explainability and Depend-

ability Analysis of Learning Automata based AI Hardware”. In: IEEE 26th Interna-

tional Symposium on On-Line Testing and Robust System Design (IOLTS). IEEE.

2020.

[42] K. Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten Goodwin. “A Re-

gression Tsetlin Machine with Integer Weighted Clauses for Compact Pattern Rep-

resentation”. In: International Conference on Industrial, Engineering and Other

Applications of Applied Intelligent Systems. Springer. 2020.

[43] Xuan Zhang, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin. “On the

Convergence of Tsetlin Machines for the IDENTITY- and NOT Operators”. In:

arXiv preprint arXiv:2007.14268 (2020).

118

https://arxiv.org/abs/2105.14506
https://arxiv.org/abs/2105.14506
https://www.mdpi.com/2079-9268/11/2/18
https://doi.org/10.1109/ACCESS.2021.3049569
https://eprints.ncl.ac.uk/268038

[44] Lei Jiao, Xuan Zhang, Ole-Christoffer Granmo, and K. Darshana Abeyrathna. “On

the Convergence of Tsetlin Machines for the XOR Operator”. In: arXiv preprint

arXiv:2101.02547 (2021).

[45] B John Oommen. “Stochastic Searching On the Line and Its Applications to Pa-

rameter Learning in Nonlinear Optimization”. In: IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics) 27.4 (1997), pp. 733–739.

[46] K. Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten Goodwin. “Adap-

tive Sparse Representation of Continuous Input for Tsetlin Machines Based on

Stochastic Searching on the Line”. In: In Preparation (2020).

[47] Brian Lucena. “StructureBoost: Efficient Gradient Boosting for Structured Cate-

gorical Variables”. In: arXiv preprint arXiv:2007.04446 (2020).

[48] Kumpati S Narendra and Mandayam AL Thathachar. Learning Automata: An In-

troduction. Courier corporation, 2012.

[49] M A L Thathachar and P S Sastry. Networks of Learning Automata: Techniques

for Online Stochastic Optimization. Kluwer Academic Publishers, 2004.

[50] Tianqi Chen and Carlos Guestrin. “Xgboost: A Scalable Tree Boosting System”. In:

Proceedings of the 22nd acm sigkdd international conference on knowledge discovery

and data mining. 2016, pp. 785–794.

[51] Myoung-Jong Kim and Ingoo Han. “The Discovery of Experts’ Decision Rules From

Qualitative Bankruptcy Data Using Genetic Algorithms”. In: Expert Systems with

Applications 25.4 (2003), pp. 637–646.

[52] James McDermott and Richard S Forsyth. “Diagnosing a Disorder in a Classification

Benchmark”. In: Pattern Recognition Letters 73 (2016), pp. 41–43.

[53] Brian Lucena. “Exploiting Categorical Structure Using Tree-Based Methods”. In:

arXiv preprint arXiv:2004.07383 (2020).

[54] K. Darshana Abeyrathna, O. -C. Granmo, and M. Goodwin. “On Obtaining Classi-

fication Confidence, Ranked Predictions and AUC with Tsetlin Machines”. In: 2020

IEEE Symposium Series on Computational Intelligence (SSCI). 2020, pp. 662–669.

doi: 10.1109/SSCI47803.2020.9308460.

119

https://doi.org/10.1109/SSCI47803.2020.9308460

Paper D

The Regression Tsetlin Machine - A

Novel Approach to Interpretable

Non-Linear Regression

Relying simply on bitwise operators, the recently introduced Tsetlin Machine (TM)

has provided competitive pattern classification accuracy in several benchmarks, in-

cluding text understanding. In this paper, we introduce the Regression Tsetlin Ma-

chine (RTM), a new class of TMs designed for continuous input and output, tar-

geting non-linear regression problems. In all brevity, we convert continuous input

into a binary representation based on thresholding, and transform the propositional

formula formed by the TM into an aggregated continuous output. Our empirical

comparison of the RTM with state-of-the-art regression techniques reveals either su-

perior or on par performance on five datasets.

D.1 Introduction

Over the last few years, there has been tremendous progress in research on predictive

models, resulting in increasingly higher predictive accuracy. However, high predictive

accuracy is not always sufficient to trust a predictive model. For applications where

humans are making the final decision, the rationale behind a prediction can sometimes be

essential to the decision making process. Therefore, human interpretability of results is of

great importance [1]. This importance has been emphasized in many application domains

such as credit scoring [2, 3], medicine [4, 5], bioinformatics [6, 7], and churn prediction [8,

9].

The Tsetlin Machine (TM) is a recent pattern recognition approach that attempts

to bridge the gap between the interpretability of rule-based techniques and the high

predictive accuracy of deep learning [10].

The TM is relatively simple computationally, being based on propositional logic to

form the classifier, and straightforward bitwise operations for recognition and learning.

This structure makes the TM interpretable, yet it achieves competitive accuracy for many

pattern recognition problems.

121

The inputs and output of the TM are propositional variables, represented as bits. In

the first TM layer, the inputs and their negations, referred to as literals, are connected by

conjunctions to form so-called conjunctive clauses. In the second layer, the output of the

TM is decided by a majority vote among the clauses that have been formed in layer one.

For learning patterns, each clause is assigned one Tsetlin Automaton (TA) [11] per literal.

A literal takes part in a clause if the designated TA decides to include it. To make this

decision, the TA interacts with its environment (the rest of the Tsetlin Machine) in an

iterative manner. It decides the next action based on its current state, which, in turn, is

influenced by the feedback it receives. Feedback in the TM is governed by a novel game,

with each TA trying to learn the optimal action after a series of interactions with the

environment [12].

The use of TAs to solve complex problems has a long history. Illustrative work in-

cludes forecasting disease outbreaks [13], graph coloring [14], distributed coordination

[15], stochastic searching on the line [16], and resource allocation [17]. Despite its sim-

plicity, the TM has provided competitive results in comparison with traditional machine

learning techniques, including Multilayer Perceptrons, Support Vector Machines, Logis-

tic Regression, and Näıve Bayes, in well-known benchmarks such as handwritten digits

classification (MNIST), Iris data classification, and classification of Noisy XOR data with

non-informative features [10]. Recently, Berge et al. also studied the ability of the TM

to categorize natural language text simply based on a document word presence vector

[18]. They further investigated the interpretability of the produced clauses, for analyzing

electronic health records. This work demonstrated that the TM in some cases can outper-

form vanilla deep learning techniques, including Convolutional Neural Networks (CNN)

and Long Short-Term Memory (LSTM) Neural Networks, while keeping the important

property of interpretability.

Paper Contributions: The classic TM has been designed for binary inputs and

output. Although continuous input and output can be encoded in bit form, the natural

ordering of numbers is lost. We address this limitation in the present paper by introducing

the Regression Tsetlin Machine (RTM), which consists of three parts:

1. For continuous input, we propose a data preprocessing procedure that transforms

the input losslessly into a binary representation that maintains semantic relation-

ship between numbers. In brief, the preprocessing procedure considers each unique

data sample in each continuous feature as a potential threshold. The original data

samples are then compared with the complete set of thresholds to create a new

feature matrix that only contains bits.

2. To produce continuous output that leverages the natural ordering of numbers, we

modify the inner inference mechanism of the TM. That is, the inputs are transformed

into a single continuous output, rather than to distinct categories. We achieve this

by eliminating the polarities of the clauses, and by summing all the non-polarized

votes, mapping the sum into a continuous output.

3. Finally, we propose a new feedback scheme for guiding the TA of the RTM, to sup-

port regression. This scheme minimizes the discrepancy between the predicted and

the target outputs, with the aid of a modified stochastic clause activation function.

122

Paper Organization: The remainder of the paper is organized as follows. In Section

2, we discuss the structure and inference mechanisms of the TM, with a particular focus on

the parts of the architecture that we build upon. Then, in Section 3 and 4, we present the

main contribution of this paper, which is the data preprocessing and regression procedures,

leading to the RTM. The RTM is analysed empirically in Section 5 by the help of both

artificial and real-world datasets, in comparison with selected state-of-the-art regression

techniques. We conclude our work in Section 6.

D.2 The Tsetlin Machine (TM)

In classification problems, a class can be represented by its constituting sub-patterns. The

TM has been designed to capture these sub-patterns explicitly by operating upon a series

of conjunctive clauses, how many decided by the user. The structure of the TM as well

as the procedures for recognition and learning are described in the following.

TM structure: Consider an input feature vector X = (xk) ∈ {0, 1}o consisting of

o propositional variables xk with domain {0, 1}. The TM considers both the features xk
themselves as well as their negations ¬xk (the literals) when forming the clauses. In all

brevity, each clause j takes the following form:

cj = 1 ∧

∧
k∈IIj

xk

 ∧
∧

k∈ĪIj

¬xk

 . (D.1)

Above, IIj and ĪIj are non-overlapping subsets of the input variable indexes, IIj , Ī
I
j ⊆

{1, . . . , o}, IIj ∩ ĪIj = ∅, that specify which of the literals take part in the clause j. The

indexes of the included original features are found in IIj while the indexes of the included

negated features are found in ĪIj . The upper index I signals that the literals in the subsets

are included. Conversely, IEj and ĪEj specify the literals that are excluded.

To simplify notation, we now introduce an augmented feature vector X′, which can be

written as X′ = [x1, x2, x3, . . . , xo,¬x1,¬x2,¬x3, . . . ,¬xo], after concatenating the original

features with the negated features. The elements of the augmented feature vector x′k are

now the literals, and we then only need to consider IIj and IEj , however, for the expanded

feature index set {1, . . . , 2o}.
The TM employs two-action TAs to decide which feature indexes 1, . . . , 2o go into

IIj , with one team of TAs per clause j. That is, with o features, we need 2 × o TAs

per clause. Half of them represent the original features and the remaining represent the

negated features.

The two actions available to each TA are include and exclude. Here, include refers to

including the literal assigned to the TA and exclude means excluding it. The action that

the TA performs is decided by its current state, aj,k ∈ {1, . . . , 2N}. If the state is less than

or equal to N, the literal is excluded from the clause. Therefore, the subset of indexes of

the excluded literals can be stated as, IEj = {k|aj,k ≤ N, 1 ≤ k ≤ 2o}. Oppositely, if the

state is higher than N, the corresponding literal is inserted in the clause. The subset of

the indexes of the included literals can be then written as IIj = {k|aj,k > N, 1 ≤ k ≤ 2o}.

123

x1

x2

 .

 .

 .

 .

xo

 x1

 x2

 .

 .

 xo

 ¬x1

 .

 .

¬xo-1

¬xo

 TAo−1
2

.

.

.

.

 I

n
p
u
ts

L

it
er

al
s

T

A

T

A

D

ec
is

io
n
s

C

la
u
se

𝐶𝑗
Conjunction

Operator

TA team 1

TA team 2

TA team m

𝐶1

𝐶2

 .

 .

 .

𝐶𝑚

∑ 𝐶𝑗

𝑚

𝑗=1

 +

 _

.

 .

.

_

 .

 .

 .

TM 1

TM q

 .

 .

 .

 .

 .

 .

 .

TM 2

∑ 𝐶𝑗
1

𝑚
𝑞

𝑗=1

∑ 𝐶𝑗
2

𝑚
𝑞

𝑗=1

∑ 𝐶𝑗
𝑞

𝑚
𝑞

𝑗=1

 .

 .

y

 O

u
tp

u
t

Argmax

Operator

 TA2
1

 .

 .

 TAo
1

 .

 .

 TAo
2

 TA1
1

 O

u
tp

u
t

y

 TA1
2

Include/Exclude ¬xo-1

Include/Exclude ¬xo

Include/Exclude x2

Include/Exclude x1

Include/Exclude ¬x1

Include/Exclude xo

Figure D.1: Forming a clause using input features and the actions of the TAs.

All these states aj,k of all the clauses are organized in an m× 2o matrix A: A = (aj,k) ∈
{1, . . . , 2N}m×2o.

Figure D.1 illustrates the above described TM structure. In the figure, the upper

index t of TAt
k denotes the type of the feature (1 for the original and 2 for the negated)

while the lower index k denotes the original feature index.

Clause output: Since the TM clause is a conjunction of literals, including any literal

of value 0, even a single one, will make the clause output 0. Let the index set I1
X′ be

the indexes k of all of the literals of value x′k = 1 in the input X′. Accordingly, a clause

evaluates to 1 if and only if the indexes of the included literals IIj is a subset of the indexes

I1
X′ of literals of value 1:

cj =

{
1 if IIj ⊆ I1

X′ ,

0 otherwise.
(D.2)

Clause voting: The above clause outputs are then organized in a vector C = (cj) ∈
{0, 1}m. To increase the expressiveness of the TM, clauses are assigned positive or negative

polarity. Clauses with positive polarity (C+) vote for the class y = 1 and clauses with

negative polarity (C−) vote for the class y = 0. To avoid bias, the clauses are equally

divided among class 0 and class 1. E.g., clauses with odd indexes can be assigned positive

polarity and clauses with even indexes can be assigned negative polarity. The TA state

matrix A then has two separate sections: A+ and A−. The section A+ maintains the

states of TAs of positive clauses: A+ = (a+
j,k) ∈ {1, . . . , 2N}m

2
×2o, representing the odd

rows of matrix A. The section A− maintains the states of TAs of negative clauses:

A− = (a−j,k) ∈ {1, . . . , 2N}m
2
×2o, representing the even rows of matrix A.

The resulting two-class architecture is illustrated in Figure D.2a. The summation

operator at the end sums the votes for each class separately and considers the difference:

v =
∑

j c
+
j −

∑
j c
−
j . At last, the final output is decided as in (D.3).

y =

{
1 if v ≥ 0

0 if v < 0 .
(D.3)

124

x1

x2

 .

 .

 .

 .

xo

 x1

 x2

 .

 .

 .

 .

¬xo-1

¬xo

 TAo−1
2

Include/Exclude x1

Include/Exclude x2

.

.

.

.

Include/Exclude ¬xo-1

Include/Exclude ¬xo

In

p
u
ts

L
it

er
al

s

T
A

T
A

D
ec

is
io

n
s

C

la
u
se

𝐶𝑗
Conjunction

Operator

TA team 1

TA team 2

TA team m

𝐶1

𝐶2

 .

 .

 .

𝐶𝑚

∑ 𝐶𝑗

𝑚

𝑗=1

 +

 _

.

 .

.

_

 .

 .

 .

TM 1

TM q

 .

 .

 .

 .

 .

 .

TM 2

∑ 𝐶𝑗
1

𝑚
𝑞

𝑗=1

∑ 𝐶𝑗
2

𝑚
𝑞

𝑗=1

∑ 𝐶𝑗
𝑞

𝑚
𝑞

𝑗=1

 .

 .

 .

y

 O

u
tp

u
t

Argmax

Operator

 TA2
1

 .

 .

 .

 .

 TAo
2

 TA1
1

 O

u
tp

u
t

y

(a)

x1

x2

 .

 .

 .

 .

xo

 x1

 x2

 .

 .

 .

 .

¬xo-1

¬xo

 TAo−1
2

Include/Exclude x1

Include/Exclude x2

.

.

.

Include/Exclude ¬xo-1

Include/Exclude ¬xo

In

p
u

ts

L

it
er

al
s

T

A

T

A

D

ec
is

io
n

s

C

la
u
se

𝐶𝑗
Conjunction

Operator

TA team 1

TA team 2

TA team m

𝐶1

𝐶2

 .

 .

 .

𝐶𝑚

∑ 𝐶𝑗

𝑚

𝑗=1

 +

 _

.

 .

.

_

 .

 .

 .

TM 1

TM q

 .

 .

 .

 .

 .

 .

 .

TM 2

∑ 𝐶𝑗
1

𝑚
𝑞

𝑗=1

∑ 𝐶𝑗
2

𝑚
𝑞

𝑗=1

∑ 𝐶𝑗
𝑞

𝑚
𝑞

𝑗=1

 .

 .

y

 O

u
tp

u
t

Argmax

Operator

 TA2
1

 .

 .

 .

 .

 TAo
2

 TA1
1

 O

u
tp

u
t

y

(b)

Figure D.2: (a) The basic TM for two class problems. (b) Multi-class version of the TM.

Note that for categorization tasks with more classes than two, separate TMs are needed

for each class as shown in Figure D.2b. In such situations, clauses are partitioned equally

among the classes. Clauses with positive polarity vote in favor of the considered class, and

clauses with negative polarity vote against the considered class. In the end, an argmax

operator arbitrates the class predicted for the input, based on the votes collected for each

class. When there are q classes and vi is the difference between positive and negative

votes for class i, the output, y, can be expressed as:

y = argmaxi=1,...,q

{
vi
}
. (D.4)

Learning procedure: The conjunctive clauses of the TM are formed by the decisions

made by the collective of TAs associated with all of the clauses. Hence, training in the TM

entails careful guiding of the TAs so that they as a collective make the optimal include

and exclude decisions. We achieve this by reinforcement learning, organized as a game

between the TAs. In all brevity, the TAs adjust their states based on feedback from the

game (environment), encompassing rewards, penalties, and inaction feedback. To achieve

the learning goal, the probabilities of receiving these different types of feedback have been

designed to account for critical factors, namely, the actual output, the clause outputs, the

literal values, and current state of the TAs.

In contrast to gradient-based learning, learning in TMs naturally combats false posi-

tives and false negatives. As a consequence, it eludes the issues attached to gradient-based

algorithms such as vanishing/exploding gradients. In the case of categorization problems

with two classes, the basic idea is to penalize voters when they vote to procure a false

positive or false negative and to reward voters when they vote to procure a true positive

or true negative. In the TM, this is done by two types of feedback – Type I and Type II.

Type I feedback: The clauses that receive Type I feedback is decided stochastically

using the following conditions:

pj,y =

{
1 with probability T−max(−T,min(T,v))

2T
,

0 otherwise.
(D.5)

Here, the lower indexes j and y of p represent the clause and target class, respectively. A

user defined target T decides the robustness of the learning. Higher T makes more clauses

125

get involved in learning each sub-pattern, diversifying the representation. However, in-

creasing T also demands more clauses, increasing computational complexity.

Type I feedback is given to clauses with positive polarity when the actual output ŷ

is 1 and to clauses with negative polarity when the actual output ŷ is 0. Therefore, the

complete matrix, Py, that picks the clauses for feedback Type I, is a combination of P+
1

and P−0 where P+
1 = (p+

j,1) ∈ {0, 1}m
2 and P−0 = (p−j,0) ∈ {0, 1}m

2 . Type I feedback does

two jobs. Type Ia reinforces include actions of TAs whose corresponding literal value is 1

when the clause output is 1. Type Ib combats over-fitting by reinforcing exclude actions

of TAs when the corresponding literal is 0 or when the clause output is 0. Both Type Ia

and Type Ib feedback are provided to TAs stochastically using a user set parameter s (s

≥ 1).

Type Ia feedback: The matrix R, i.e., R = (rj,k) ∈ {0, 1}m×2o stores the decisions

whether the kth TA of the jth clause has been selected as candidate for feedback Type Ia.

The decisions are made stochastically as follows:

rj,k =

{
1 with probability s−1

s
,

0 otherwise.
(D.6)

Now, using the complete set of conditions, the indexes I Ia
C of the TAs which receive Type

Ia feedback can be identified as I Ia
C = {(j, k)|x′k = 1 ∧ cj = 1 ∧ pj,y = 1 ∧ rj,k = 1} .

Type Ib feedback: Similarly, candidates for receiving Type Ib feedback are decided

stochastically and decisions are stored in matrix Q, i.e., Q = (qj,k) ∈ {0, 1}m×2o. In this

situation, the decision for the kth TA of the jth clause is

qj,k =

{
1 with probability 1

s
,

0 otherwise.
(D.7)

Again, considering all other conditions, the indexes I Ib
C of the TAs that receive feedback

Type Ib are expressed as I Ib
C = {(j, k)|(x′k = 0 ∨ cj = 0) ∧ pj,y = 1 ∧ qj,k = 1} .

The identified TAs are updated by changing their internal state. The available update

operations are ⊕ and 	. The operator ⊕ adds 1 to the current state while operator 	
subtracts 1 from the current state within the given state space: A←

(
A⊕ I Ia

C

)
	 I Ib

C .

In conclusion, Type I feedback stimulates positive clauses to output 1 when the actual

output ŷ is 1, while it stimulates negative clauses to output 1 when the actual output ŷ

is 0. Hence, Type I feedback reinforces true positive output.

Type II feedback: Type II feedback is given to clauses with positive polarity when

the actual output ŷ is 0 and clauses with negative polarity when the actual output ŷ is 1.

Whether the jth clause for target output ŷ receives Type II feedback is decided as follows:

pj,y =

{
1 with probability T+max(−T,min(T,v))

2T
,

0 otherwise.
(D.8)

Similar to Type I feedback, T is a user decided voting target, and decisions are stored

in the matrix Py. The idea is to alter the clause output of the clauses which output 1.

This can be done by simply including literals of value 0. The TAs that match the above

126

conditions can be identified as I II
C = {(j, k)|x′k = 0 ∧ cj = 1 ∧ pj,y = 1} . The identified

TAs are updated by changing their internal state: A← A⊕ I II
C .

In this way, Type II feedback stimulates clauses to output 0. Type II feedback is

applied to clauses of positive polarity when the actual output ŷ is 0 and to clauses of

negative polarity when the actual output ŷ is 1. In this manner, it combats false positives.

The training procedure of the multi-class version of the TM is similar to the above

training procedure. Clauses of the class being the target of the current training sample

are treated as if ŷ = 1, while the clauses of a randomly selected class from the remaining

classes are treated as if ŷ = 0. In each class, clauses with positive polarity vote to say that

the output belongs to the considered class. Similarly, the clauses with negative polarity

vote to indicate that the output does not belong to the considered class.

D.3 An Encoding Scheme for Continuous Input to

the Tsetlin Machine

The input feature vector of the TM that we presented in the previous section only had bi-

nary features, i.e., X = [x1, x2, x3, . . . , xo] with xk, k = 1, 2, ..., o, being 0 or 1. Clauses are

directly composed by these features or their negations, as decided by the TAs. However,

in many real-world applications, one cannot necessarily expect binary features. Instead,

the input features are often continuous valued. In order to cope with such applications,

we introduce a preprocessing procedure that transforms continuous features into binary

ones, while maintaining ranking relationships among the continuous feature values.

By way of example, Table D.1 shows how two continuous features are binarized. As

seen, the two features are respectively listed in table column 1 and column 2. The pre-

processing procedure follows the following steps to convert them into binary form, one

feature at a time.

1. Identify the unique values {v1, v2, . . . , vu} of the feature.

2. Sort the identified unique values from smallest to largest.

3. Consider each unique value vi, i = 1, 2, ..., u, as a threshold “≤ vi”, as shown in

sorted order in the “Thresholds” row in the table.

4. Compare each original continuous value in the feature with each of the sorted thresh-

olds. If the feature value is greater than the threshold, set the corresponding binary

variable to 0, otherwise, set the bit to 1.

5. Repeat steps (i) to (iv) until all the continuous values are converted into binary

form.

According to above the procedure, the first feature in the given example has three

unique values, i.e., 5.779, 10.008, and 3.834 (step (i)). These unique values are sorted and

considered as thresholds, ≤ 3.834, ≤ 5.779, and ≤ 10.008 (step (ii) and (iii)). Notice that

the number of binary feature bits we are going to have after converting the continuous

127

Table D.1: Preprocessing of two continuous features.

Raw Feature Thresholds

1 2 ≤ 3.834 ≤ 5.779 ≤ 10.008 ≤ 11.6 ≤ 25.7 ≤ 32.4 ≤ 56.1

5.779 25.7 0 1 1 0 1 1 1

10.008 56.1 0 0 1 0 0 0 1

5.779 11.6 0 1 1 1 1 1 1

3.834 32.4 1 1 1 0 0 1 1

inputs equals the number of thresholds. In this case, for Feature 1 in the table (first

column), three new binary feature bits are introduced, each of which corresponds to its

respective threshold. If we compare the first raw continuous value of Feature 1, namely,

5.779, with the identified three thresholds, we get a 011 as the raw value is greater than

3.834 (resulting in 0), equal to 5.779 (resulting in 1), and less than 10.008 (resulting in 1)

(Step iv). Similarly, the remaining raw continuous values, 10.008 and 3.834, are converted

into 001 and 111, respectively.

Once all the raw continuous values of the first feature are converted, conversion of the

second feature can start. This procedure is iterated until all the continuous values in all

the continuous features have been converted to binary form (step (v)).

Note that the thresholds found in the above procedure are open-ended at the extreme

ends. Thus, arbitrarily low or high feature values can be processed, independent of the

actual values in the training data.

The new binary representation of continuous features becomes particularly powerful

because it allows the TM to reason about the ordering of the values, forming conjunctive

clauses that specify rules based on thresholds, and with negated features, also rules based

on intervals.

D.4 The Regression Tsetlin Machine (RTM)

For many real-world prediction problems, the target y is continuous valued, referred to

as regression problems. Although continuous output can be encoded in bit form, the

inherent properties of continuous values are lost, such as the ordering of values. Thus,

the binary output of the classic TM shown in Figure D.2a and Figure D.2b is not ideal

for representing continuous output. In order to address this problem, we here propose a

new type of TM — the Regression Tsetlin Machine (RTM).

The structure of the RTM is illustrated in Figure D.3. As the figure shows, we remove

the polarity of the clauses in the vanilla TM structure. Instead, we use clauses as additive

building blocks to calculate the continuous outputs. That is, the summation operator in

Figure D.3 counts the total number of clauses that evaluate to 1, and the resulting sum

is further mapped into a continuous value according to Eq. (D.9):

y =

∑m
j=1Cj(X̂)

T
× ŷmax. (D.9)

Above, T is a user specified output resolution and ŷmax is the maximum value of the target

128

TA team 1

TA team m

𝐶1

𝐶2

 .

 .

 .

𝐶𝑚

∑ 𝐶𝑗

𝑚

𝑗=1

 .

 .

 .

 .

 .

 .

�̂�

TA team 2

 O

u
tp

u
t

0

𝑦𝑚𝑎𝑥

 M

ap
p
in

g

𝑥1

𝑥2

𝑥3

𝑥𝑜

 .

 .

 .

 .

 .

 .

Figure D.3: The RTM structure.

output found in the training data, assuming positive output1. This maximum value is

merely a reference point, to establish a scale, and should not be considered as an upper

bound for the output.

Once a continuous output value y has been calculated, it is compared with the target

output ŷ. Following the convention of regression analysis, we refer to the difference

between the output y and ŷ as the error of the prediction. The output itself and the error

are, in turn, fed back to the RTM, and influence the decision made by the TAs so that

the error can be minimized. The goal is for the RTM to learn patterns appropriate for

regression from the training dataset.

Feedback for the RTM is derived slightly differently compared to the vanilla TM. That

is, whether it is given Type I or Type II feedback is based on the difference between y

and ŷ, as determined by Eq. (D.10):

Feedback =

Type I, if y < ŷ ,

Type II, if y > ŷ .

(D.10)

The rationale behind Eq. (D.10) is as follows. We want to increase the number of clauses

that output 1 when the predicted output is less than the target output (y < ŷ). To

achieve this, Type I feedback is introduced. Conversely, Type II feedback is applied to

decrease the number of clauses that evaluate to 1 when the predicted output is higher

than the target output (y > ŷ).

If the feedback determined by (D.10) is offered to all the clauses, the predicted value

will keep oscillating around the target output throughout the training process. Hence,

we randomly select a subset of the clauses to receive feedback, with the prediction error

controlling the cardinality of the subset. We achieve this by introducing the following

feedback activation probability function, Pact, by which the RTM decides stochastically

which clauses to be updated:

Pact =
K× | y − ŷ |

ŷmax

. (D.11)

1Our scheme also supports negative output values by employing clauses of negative polarity.

129

Start Regression Tsetlin Machine

Set: Clauses m, Precision s, Threshold T

Random Initialization of TAs:

2 × o TA per Clause

Evaluate Clauses

Feedbacks to

the Clauses

�̂� > 𝑦

Satisfy Eq. (D.11)

�̂� < 𝑦

Satisfy Eq. (D.11)

Compute Output: �̂�

Type II Feedback

Type I Feedback

Stopping

Criteria

Ready to Predict Unseen Data

Yes

No

Training

Sample: 𝑋, 𝑦

Figure D.4: The training work-flow of the RTM.

Note that in Eq. (D.11), the parameter K is added to adjust the activation probability

according to the total number of clauses. In other words, the probability varies propor-

tionally to the error, and is reasonably scaled to fit the total number of clauses.

The flowchart given in Figure D.4 summarizes the complete training procedure of the

RTM, including the data preprocessing step introduced in Section D.3.

D.5 Empirical Results and Analysis

We now study the properties of the RTM empirically, by means of two artificial and five

real-world datasets.2

2The artificial datasets and RTM code are available to download at

https://github.com/cair/regression-tsetlin-machine

130

0

20

40

60

80

100

120

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

1
6
1

1
6
6

1
7
1

1
7
6

1
8
1

1
8
6

1
9
1

1
9
6

M
A

E

Iteration

Dataset I 7-T (Train MAE - 0.00, Test MAE - 0.00) 20-T (Train MAE - 18.60, Test MAE - 18.50)

70-T (Train MAE - 0.00, Test MAE - 0.00) 500-T (Train MAE - 0.40, Test MAE - 0.41)

5000-T (Train MAE - 0.07, Test MAE - 0.07)

0

20

40

60

80

100

120

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

1
6
1

1
6
6

1
7
1

1
7
6

1
8
1

1
8
6

1
9
1

1
9
6

M
A

E

Iteration

Dataset II 7-T (Train MAE - 7.33, Test MAE - 5.64) 20-T (Train MAE - 15.49, Test MAE - 15.23)

70-T (Train MAE - 7.13, Test MAE - 4.81) 500-T (Train MAE - 5.40, Test MAE - 1.51)

5000-T (Train MAE - 5.26, Test MAE - 0.26)

Figure D.5: Training error per epoch for Dataset I. The dataset is processed with different

T .

0

20

40

60

80

100

120

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

1
6
1

1
6
6

1
7
1

1
7
6

1
8
1

1
8
6

1
9
1

1
9
6

M
A

E

Iteration

Dataset I 7-T (Train MAE - 0.00, Test MAE - 0.00) 20-T (Train MAE - 18.60, Test MAE - 18.50)

70-T (Train MAE - 0.00, Test MAE - 0.00) 500-T (Train MAE - 0.40, Test MAE - 0.41)

5000-T (Train MAE - 0.07, Test MAE - 0.07)

0

20

40

60

80

100

120

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

1
6
1

1
6
6

1
7
1

1
7
6

1
8
1

1
8
6

1
9
1

1
9
6

M
A

E

Iteration

Dataset II 7-T (Train MAE - 7.33, Test MAE - 5.64) 20-T (Train MAE - 15.49, Test MAE - 15.23)

70-T (Train MAE - 7.13, Test MAE - 4.81) 500-T (Train MAE - 5.40, Test MAE - 1.51)

5000-T (Train MAE - 5.26, Test MAE - 0.26)

Figure D.6: Training error per epoch for Dataset II. The dataset is processed with different

T .

D.5.1 Artificial Datasets

The two artificial datasets have been designed to demonstrate how the RTM form non-

linear clauses, which in turn are used as additive components in the regression. The first

dataset, Dataset I, has 8 distinct outputs, each of which is triggered by a specific 3-bit

input. Each input bit has an equal probability of being set to either 0 or 1, leading to an

uniform distribution of bit values. The continuous output is quite simply calculated by

multiplying 100 with the decimal representation of the input. For example, the continuous

output for input (011) becomes 100 × 3 = 300. The complete dataset consists of 10, 000

samples, split into 80% training data and 20% test data. The second dataset, Dataset

II, is built in the same way, except that the output of the training data is perturbed by

adding a random value in the range [−10, 10] to introduce noise.

We train and test the RTM separately on the above two datasets, with Mean Absolute

Error (MAE) utilized as evaluation criterion. For all of our experiments on artificial data

we use a specificity value s of 2. Figure D.5 and Figure D.6 depict training MAE across

1000 epochs, examining the effect of resolution T . The final training and test MAEs, i.e.,

the ones obtained after 1000 epochs, are provided in the legends. As seen in Figure D.5,

noise-free data can be perfectly learnt by an RTM with merely resolution 7, utilizing 7

clauses. However, in general, as seen in Figure D.6, higher resolution progressively reduces

MAE under noise.

Let us now study the case with 7 clauses and noise-free data more carefully to cast

further light on how the RTM learns. With 3 uniformly distributed bits, there are 8

unique sub-patterns, illustrated in Figure D.7. Each of these occurs with probability

131

Table D.2: Computing outputs for different 3 bit inputs.

Input Represented Patterns Output Computation Output

000 None

4 × (1 S S) × 0 = 0

2 × (S 1 S) × 0 = 0

1 × (S S 1) × 0 = 0

0 × 100 = 0

001 (S S 1)

4 × (1 S S) × 0 = 0

2 × (S 1 S) × 0 = 0

1 × (S S 1) × 1 = 1

1 × 100 = 100

010 (S 1 S)

4 × (1 S S) × 0 = 0

2 × (S 1 S) × 1 = 2

1 × (S S 1) × 0 = 0

2 × 100 = 200

011
(S 1 S)

(S S 1)

4 × (1 S S) × 0 = 0

2 × (S 1 S) × 1 = 2

1 × (S S 1) × 1 = 1

3 × 100 = 300

100 (1 S S)

4 × (1 S S) × 1 = 4

2 × (S 1 S) × 0 = 0

1 × (S S 1) × 0 = 0

4 × 100 = 400

101
(1 S S)

(S S 1)

4 × (1 S S) × 1 = 4

2 × (S 1 S) × 0 = 0

1 × (S S 1) × 1 = 1

5 × 100 = 500

110
(1 S S)

(S 1 S)

4 × (1 S S) × 1 = 4

2 × (S 1 S) × 1 = 2

1 × (S S 1) × 0 = 0

6 × 100 = 600

111

(1 S S)

(S 1 S)

(S S 1)

4 × (1 S S) × 1 = 4

2 × (S 1 S) × 1 = 2

1 × (S S 1) × 1 = 1

7 × 100 = 700

1
8
. The shaded area in the figure contains the pattern (1 S S), whose probability of

occurrence is 4
8
. Here, S means either 0 or 1. Similarly, the probabilities of occurrence

for both the pattern (S 1 S) and the pattern (S S 1) is 4
8
, too. According to the Tsetlin

Machine dynamics explained in [10], in order to capture these patterns, specificity should

be set to s = 2.

With only 7 clauses available, the clauses need to encode the input in a very compact

way, shown in Table D.2, to produce the correct output. As seen, we need four clauses

for the pattern (1 S S), two clauses for the pattern (S 1 S), and one clause for the

pattern (S S 1). Now, consider input (0 1 1) as an example. This input matches both

pattern (S 1 S) and pattern (S S 1). Therefore, it activates three clauses from the table.

Consequently, after scaling, output 300 is correctly computed from (0 1 1). In this manner,

the correct output can be calculated for all 3-bit inputs from Table D.2. Returning to

Figure D.5, we notice that the MAE of the RTM is exactly 0 for 7 clauses/resolution 7,

meaning that the RTM has found the structure of Table D.2 by itself. Hence, the power

of the scheme!

For real-world cases, however, the exact number of clauses required is generally un-

132

Phase Operations Comments

1 x1 x2 …………… xr X = [x1, x2, x3, ……. xr]

2 x1 ¬ x1 x2 ¬ x2

xr ¬ xr
Literals

3 TA1
1

 TA1
2 TA2

1
 TA2

2
 ……………. TA𝑟

1 TA𝑟
2 TA

4 in ex ex in ………………. ex in Actions = {in, ex}

5 x1 Ʌ ¬ x2 Ʌ………Ʌ ¬ xr

c1 = ⋀ 𝑥𝑖
𝑟
𝑖=1 , ∀ TA𝑖

1 = in

c2 = ⋀ ¬𝑥𝑖
𝑟
𝑖=1 , ∀ TA𝑖

2 = in

C = c1 Ʌ c2

∀

1 0 0 0 1 0

0 0 1

0 1 1 1 0 1

1 1 0

1 1 1

0 0 0

Figure D.7: Pattern distribution for the 3-bits input datasets.

known. Then, selecting an inappropriate low resolution may lead to a high MAE. This is

seen in Figure D.5 for T = 20. Then one must instead resort to increasing the resolution

to a sufficient level, which also helps with dealing with noisy data. That is, as seen, both

training and testing MAEs drops with T = 500 and T = 5000 for Dataset I. The latter

reasoning also applies to the results for Dataset II (see Figure D.6). I.e., the training and

testing MAEs decrease with increasing T . Indeed, it turns out that the testing MAE can

be made arbitrarily close to 0 for the present task simply by increasing the resolution, the

number of training examples, and the number of training epochs.

D.5.2 Real-World Datasets

We now study the behavior of the RTM on five different real-world datasets:

Dengue Incidences:3 This dataset consists of monthly dengue incidences in the

Philippines per 100,000 population. The Philippines has 17 administrative regions. The

department of health in the Philippines collected the data from all of these regions sep-

arately from 2008 to 2016. In this experiment, the RTM is trained separately for each

region using the data from 2008 to 2015. Dengue incidences from the neighboring regions

are used as input features. More details about data preprocessing and feature selection

can be found in [19]. Dengue incidences in 2016 are used as testing data.

Energy Performance:4 In this application, heating load of residential buildings

has to be estimated using eight input features: glazing area distribution, glazing area,

orientation, relative compactness, wall area, surface area, overall height, roof area, and

orientation [20]. The complete dataset comprises 768 samples. We utilize 80% of the data

samples to train the model and the rest to evaluate it.

Stock Selection:5 The US historical stock market data was used to simulate the

weights of the stock-picking concepts in [21]. These weights are employed to build a stock

3Available from https://www.kaggle.com/grosvenpaul/dengue-cases-in-the-philippines
4Available from https://archive.ics.uci.edu/ml/datasets/Energy+efficiency
5Available from https://archive.ics.uci.edu/ml/datasets/Stock+portfolio+performance

133

selection decision support system. The dataset consists of six output variables. Only two

of them, i.e., Annual Return and Real Win Rate is used here. Again, 80% of the data

samples are utilized to train the model and the rest is used for testing.

Real Estate Valuation:6 This is a time series dataset that has been used to estimate

the house price per unit area in Taiwan [22]. The house price per unit area (Dollars per

Ping, 1 Ping = 3.3 meter squared) is estimated using six features, namely the transaction

date, the house age, the distance to the nearest MRT station, the number of convenience

stores in the living circle on foot, and the geographical coordinates (latitude and longi-

tude). Again we use (80%) of the dataset for training and (20%) for testing.

Aerofoil Noise:7 The data set comprises different sizes of NACA 0012 airfoils (an

airfoil shape for aircraft wings) at various wind tunnel speeds and angles of attack. The

goal is to predict the self-generated noise of an airfoil blade in decibels using five attributes,

namely, Frequency (in Hertzs), Angle of attack (in degrees), Chord length (in meters),

Free-stream velocity (in meters per second), and Suction side displacement thickness (in

meters). Out of the total 1503 data samples, 625 are randomly selected for doing the

experiment. The RTM is trained on 80% of the selected data and tested on the rest of

them.

Apart from Dengue Incidences, we used the same number of clauses and the same

resolution for all of the datasets, respectively, 2 000 000 and 1 000 000. This setting was

found by increasing the number of clauses and resolution until the accuracy gain became

insignificant. The specificity s for each dataset was found by a manual binary search (4

for Energy Performance, 3 for Annual Return, 2.5 for Real Win Rate, 3.8 for Real Estate

Valuation, and 2.7 for Aerofoil Noise). For forecasting dengue incidences across all the

regions in the Philippines we used 200 000 clauses, a resolution of 100 000, and an s-value

of 6.

Table D.3 reports average MAE obtained by replicating each experiment 20 times,

together with 95% confidence intervals. To evaluate the performance of the RTM, we

used three other state-of-the-art machine learning models as a baseline. These models

are Regression Tree (RT), Random Forest (RF), and Support Vector Regression (SVR).

Each of these were configured based on a thorough parameter search in order to facilitate

a fair comparison. Each model predicts six different data series using their relevant input

features. In conclusion, RTM obtained the best MAE for four of the prediction tasks

(Dengue Incidences, Energy Performance, Real Win Rate, and Real Estate Valuation).

For Annual Return, SVR produced the lowest MAE, while RTM achieved the second best.

Finally, RF provided the best MAE for Aerofoil Noise. Here, RTM obtained the third

best result.

In order to investigate the ability of the RTM to extrapolate, we cross-validated the

model using the Energy Performance dataset. To produce test data with extreme values

not found in the training data, ten different datasets were created by randomly shuffling

the original dataset. Collectively, this procedure created 22 test outcomes outside the

minimum and maximum output values in the training data. The MAE of those 22 testing

outputs was 0.516, which is only slightly higher than the overall MAE in Table D.3, mean-

6Available from https://archive.ics.uci.edu/ml/datasets/Real+estate+valuation+data+set
7Available from https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise#

134

ing that the RTM extrapolates reasonably well. This can be explained by the additive

nature of RTM regression. By summing the binary output of non-linear clauses, the RTM

avoids extreme non-linear distortions when operating outside the value ranges found in

the training data.

Table D.3: Mean MAE with 95% confidence intervals for selected models on five datasets.

Model
Dengue

Incidences

Energy

Performance

Stock

Selection
Real Estate

Valuation

Aerofoil

Noise
Annual

Return

Real

Win Rate

RTM 5.184 0.503±0.00 0.077±0.00 0.089±0.00 5.218±0.00 2.244±0.00

RT 7.769 0.598±0.00 0.091±0.00 0.096±0.00 6.033±0.11 2.280±0.07

RF 9.122 0.563±0.00 0.088±0.00 0.097±0.00 5.360±0.00 1.921±0.00

SVR 5.305 1.155±0.00 0.073±0.00 0.092±0.00 5.697±0.00 2.156±0.00

D.6 Conclusion

In this paper, we proposed the Regression Tsetlin Machine (RTM), a novel variant of

the Tsetlin Machine that supports continuous output in non-linear regression problems.

We also introduced a data preprocessing procedure that converts continuous inputs into

a lossless binary feature matrix. In RTM, the polarities in clauses are removed and the

inner inference mechanism is modified. That is, the input patterns are transformed into

individual continuous outputs, rather than to distinct categories. The activation of clauses

during RTM learning is based on a linear activation probability function that is governed

by the magnitude of the regression error. The behavior of the new algorithm was studied

by applying it to both artificial and real-world datasets. In brief, RTM demonstrated

superior performance in comparison with Regression Trees, Random Forests, and Support

Vector Regression, when predicting Dengue incidences in the Philippines, heating load in

the Energy Performance dataset, Real Win Rate in the Stock Selection dataset, and house

price per unit area in the Real Estate Valuation dataset. The RTM also extrapolates

reasonably well outside the minimum and maximum output values found in the training

data.

135

Bibliography

[1] Alex A Freitas. “Comprehensible Classification Models: A Position Paper”. In: ACM

SIGKDD explorations newsletter 15.1 (2014), pp. 1–10.

[2] Bart Baesens, Christophe Mues, Manu De Backer, Jan Vanthienen, and Rudy Se-

tiono. “Building Intelligent Credit Scoring Systems Using Decision Tables”. In: En-

terprise Information Systems V. Springer, 2004, pp. 131–137.

[3] Johan Huysmans, Karel Dejaeger, Christophe Mues, Jan Vanthienen, and Bart Bae-

sens. “An Empirical Evaluation of the Comprehensibility of Decision Table, Tree and

Rule Based Predictive Models”. In: Decision Support Systems 51.1 (2011), pp. 141–

154.

[4] Riccardo Bellazzi and Blaz Zupan. “Predictive Data Mining in Clinical Medicine:

Current Issues and Guidelines”. In: International journal of medical informatics

77.2 (2008), pp. 81–97.

[5] Michael J Pazzani, S Mani, and William R Shankle. “Acceptance of Rules Gener-

ated by Machine Learning Among Medical Experts”. In: Methods of information in

medicine 40.05 (2001), pp. 380–385.

[6] Alex A Freitas, Daniela C Wieser, and Rolf Apweiler. “On the Importance of Com-

prehensible Classification Models for Protein Function Prediction”. In: IEEE/ACM

Transactions on Computational Biology and Bioinformatics 7.1 (2008), pp. 172–

182.

[7] Duane Szafron, Paul Lu, Russell Greiner, David S Wishart, Brett Poulin, Roman

Eisner, Zhiyong Lu, John Anvik, Cam Macdonell, Alona Fyshe, et al. “Proteome

Analyst: Custom Predictions With Explanations in a Web-Based Tool for High-

Throughput proteome Annotations”. In: Nucleic acids research 32.suppl 2 (2004),

W365–W371.

[8] Elen Lima, Christophe Mues, and Bart Baesens. “Domain Knowledge Integration in

Data Mining Using Decision Tables: Case Studies in Churn Prediction”. In: Journal

of the Operational Research Society 60.8 (2009), pp. 1096–1106.

[9] Wouter Verbeke, David Martens, Christophe Mues, and Bart Baesens. “Building

Comprehensible Customer Churn Prediction Models with Advanced Rule Induction

Techniques”. In: Expert systems with applications 38.3 (2011), pp. 2354–2364.

[10] Ole-Christoffer Granmo. “The Tsetlin Machine - A game Theoretic Bandit Driven

Approach to Optimal Pattern Recognition With Propositional Logic”. In: arXiv

preprint arXiv:1804.01508 (2018).

137

[11] Michael Lvovitch Tsetlin. “On Behaviour of Finite Automata in Random Medium”.

In: Avtomat. i Telemekh 22.10 (1961), pp. 1345–1354.

[12] Kumpati S Narendra and Mandayam AL Thathachar. Learning Automata: An In-

troduction. Courier corporation, 2012.

[13] K. Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten Goodwin. “A Novel

Tsetlin Automata Scheme to Forecast Dengue Outbreaks in the Philippines”. In:

2018 IEEE 30th International Conference on Tools with Artificial Intelligence (IC-

TAI). IEEE. 2018, pp. 680–685.

[14] Noureddine Bouhmala and Ole-Christoffer Granmo. “Stochastic Learning for SAT-

Encoded Graph Coloring Problems”. In: International Journal of Applied Meta-

heuristic Computing (IJAMC) 1.3 (2010), pp. 1–19.

[15] Brian Tung and Leonard Kleinrock. “Using Finite State Automata to Produce Self-

Optimization and Self-Control”. In: IEEE transactions on parallel and distributed

systems 7.4 (1996), pp. 439–448.

[16] B John Oommen, Sang-Woon Kim, Mathew T Samuel, and Ole-Christoffer Granmo.

“A Solution to the Stochastic Point Location Problem in Metalevel Nonstationary

Environments”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics) 38.2 (2008), pp. 466–476.

[17] Ole-Christoffer Granmo and B John Oommen. “Solving Stochastic Nonlinear Re-

source Allocation Problems Using a Hierarchy of Twofold Resource Allocation Au-

tomata”. In: IEEE Transactions on Computers 59.4 (2010), pp. 545–560.

[18] Geir Thore Berge, Ole-Christoffer Granmo, Tor Oddbjørn Tveit, Morten Good-

win, Lei Jiao, and Bernt Viggo Matheussen. “Using the Tsetlin Machine to Learn

Human-Interpretable Rules for High-Accuracy Text Categorization With Medical

Applications”. In: IEEE Access 7 (2019), pp. 115134–115146.

[19] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, and Morten Good-

win. “A Scheme for Continuous Input to the Tsetlin Machine With Applications

to Forecasting Disease Outbreaks”. In: International Conference on Industrial, En-

gineering and Other Applications of Applied Intelligent Systems. Springer. 2019,

pp. 564–578.

[20] Athanasios Tsanas and Angeliki Xifara. “Accurate Quantitative Estimation of En-

ergy Performance of Residential Buildings Using Statistical Machine Learning Tools”.

In: Energy and Buildings 49 (2012), pp. 560–567.

[21] Yi-Cheng Liu and I-Cheng Yeh. “Using Mixture Design and Neural Networks to

Build Stock Selection Decision Support Systems”. In: Neural Computing and Ap-

plications 28.3 (2017), pp. 521–535.

[22] I-Cheng Yeh and Tzu-Kuang Hsu. “Building Real Estate Valuation Models with

Comparative Approach Through Case-Based Reasoning”. In: Applied Soft Comput-

ing 65 (2018), pp. 260–271.

138

Paper E

Integer Weighted Regression Tsetlin

Machines

The Regression Tsetlin Machine (RTM) addresses the lack of interpretability imped-

ing state-of-the-art nonlinear regression models. It does this by using conjunctive

clauses in propositional logic to capture the underlying non-linear frequent patterns

in the data. These, in turn, are combined into a continuous output through sum-

mation, akin to a linear regression function, however, with non-linear components

and binary weights. However, the resolution of the RTM output is proportional

to the number of clauses employed. This means that computation cost increases

with resolution. To address this problem, we here introduce integer weighted RTM

clauses. Our integer weighted clause is a compact representation of multiple clauses

that capture the same sub-pattern — w repeating clauses are turned into one, with

an integer weight w. This reduces computation cost w times, and increases inter-

pretability through a sparser representation. We introduce a novel learning scheme,

based on so-called stochastic searching on the line. We evaluate the potential of the

integer weighted RTM empirically using two artificial datasets. The results show

that the integer weighted RTM is able to acquire on par or better accuracy using

significantly less computational resources compared to regular RTM and an RTM

with real-valued weights.

E.1 Introduction

The recently introduced Regression Tsetlin Machine (RTM) [1, 2] is a propositional logic

based approach to interpretable non-linear regression, founded on the Tsetlin Machine

(TM) [3]. Being based on disjunctive normal form, like Karnaugh maps, the TM can map

an exponential number of input feature value combinations to an appropriate output [4].

Recent research reports several distinct TM properties. The clauses that a TM produces

have an interpretable form (e.g., if X satisfies condition A and not condition B then

Y = 1), similar to the branches in a decision tree [5]. For small-scale pattern recognition

problems, up to three orders of magnitude lower energy consumption and inference time

has been reported, compared to neural networks alike [6]. Like neural networks, the TM

139

can be used in convolution, providing competitive memory usage, computation speed,

and accuracy on MNIST, F-MNIST and K-MNIST, in comparison with simple 4-layer

CNNs, K-Nereast Neighbors, SVMs, Random Forests, Gradient Boosting, BinaryConnect,

Logistic Circuits, and ResNet [7]. By introducing clause weights that allow one clause to

represent multiple, it has been demonstrated that the number of clauses can be reduced

up to 50×, without loss of accuracy, leading to more compact clause sets [4]. Finally,

hyper-parameter search can be simplified with multi-granular clauses, eliminating the

pattern specificity parameter [8].

Paper contributions: In the RTM, regression resolution is proportional to the num-

ber of conjunctive clauses employed. In other words, computation cost and memory

usage grows proportionally with resolution. Building upon the Weighted TM (WTM) by

Phoulady et al. [4], this paper introduces weights to the RTM scheme. However, while

the WTM uses real-valued weights for classification, we instead propose a novel scheme

based on integer weights, targeting regression. In brief, we use the stochastic searching

on the line approach pioneered by Oommen in 1997 [9] to eliminate multiplication from

the weight updating. In addition to the computational benefits this entails, we also argue

that integer weighted clauses are more interpretable than real-valued ones because they

can be seen as multiple copies of the same clause. Finally, our scheme does not introduce

additional hyper-parameters, whereas the WTM relies on weight learning speed.

Paper Organization: The remainder of the paper is organized as follows. In Section

2, the basics of RTMs are provided. Then, in Section 3, the SPL problem and its solution

are explained. The main contribution of this paper, the integer weighting scheme for the

RTM, is presented in detail in Section 4 and evaluated empirically using two artificial

datasets in Section 5. We conclude our work in Section 6.

E.2 The Regression Tsetlin Machine (RTM)

The RTM performs regression based on formulas in propositional logic. In all brevity,

the input to an RTM is a vector X of o propositional variables xk, X ∈ {0, 1}o. These

are further augmented with their negated counterparts x̄k = 1 − xk to form a vector of

literals: L = [x1, . . . , xo, x̄1, . . . , x̄o] = [l1, . . . , l2o]. In contrast to a regular TM, the output

of an RTM is real-valued, normalized to the domain y ∈ [0, 1].

Regression Function: The regression function of an RTM is simply a linear sum-

mation of products, where the products are built from the literals:

y =
1

T

m∑
j=1

∏
k∈Ij

lk. (E.1)

Above, the index j refers to one particular product of literals, defined by the subset Ij
of literal indexes. If we e.g. have two propositional variables x1 and x2, the literal index

sets I1 = {1, 4} and I2 = {2, 3} define the function: y = 1
T

(x1x̄2 + x̄1x2). The user set

parameter T decides the resolution of the regression function. Notice that each product

in the summation either evaluates to 0 or 1. This means that a larger T requires more

literal products to reach a particular value y. Thus, increasing T makes the regression

function increasingly fine-grained. In the following, we will formulate and refer to the

140

products as conjunctive clauses, as is typical for the regular TM. The value cj of each

product is then a conjunction of literals:

cj =
∏
k∈Ij

lk =
∧
k∈Ij

lk. (E.2)

Finally, note that the number of conjunctive clauses m in the regression function also is

a user set parameter, which decides the expression power of the RTM.

Tsetlin Automata Teams: The composition of each clause is decided by a team

of Tsetlin Automata (TAs) [10]. There are 2 × o number of TAs per clause j. Each

represents a particular literal k and decides whether to include or exclude that literal

in the clause. The decision depends on the current state of the TA, denoted aj,k ∈
{1, . . . , 2N}. States from 1 to N produce an exclude action and states from N + 1 to

2N produce an include action. Accordingly, the set of indexes Ij can be defined as

Ij = {k|aj,k > N, 1 ≤ k ≤ 2o}. The states of all of the TAs are organized as an m × 2o

matrix A: A = (aj,k) ∈ {1, . . . , 2N}m×2o where m is the number of clauses.

Learning Procedure: Learning in RTM is done through an online reinforcement

scheme that updates the state matrix A by processing one training example (X̂i, ŷi) at a

time, as detailed below.

The RTM employs two kinds of feedback, Type I and Type II, further defined below.

Type I feedback triggers TA state changes that eventually make a clause output 1 for

the given training example X̂i. Conversely, Type II feedback triggers state changes that

eventually make the clause output 0. Thus, overall, regression error can be systematically

reduced by carefully distributing Type I and Type II feedback:

Feedback =

{
Type I, if y < ŷi,

Type II, if y > ŷi.
(E.3)

In effect, the number of clauses that evaluates to 1 is increased when the predicted output

is less than the target output (y < ŷi) by providing Type I feedback. Type II feedback,

on the other hand, is applied to decrease the number of clauses that evaluates to 1 when

the predicted output is higher than the target output (y > ŷi).

Activation Probability: Feedback is handed out stochastically to regulate learning.

The feedback probability pj is proportional to the absolute error of the prediction, | y−ŷi |.
Clauses activated for feedback are the stored in the matrix P = (pj) ∈ {0, 1}m.

Type I feedback: Type I feedback subdivides into Type Ia and Type Ib. Type Ia

reinforces include actions of TAs whose corresponding literal value is 1, however, only

when the clause output is 1. The probability of kth TA of the jth clause receives Type Ia

feedback rj,k is s−1
s

, where s (s ≥ 1) is a user set parameter. Type Ib combats over-fitting

by reinforcing exclude actions of TAs when the corresponding literal is 0 or when the

clause output is 0. The probability of kth TA of the jth clause receives Type Ib feedback

qj,k is 1
s
.

Using the complete set of conditions, the TAs selected for Type Ia feedback are sin-

gled out by the indexes I Ia = {(j, k)|lk = 1 ∧ cj = 1 ∧ pj = 1 ∧ rj,k = 1} . Similarly, TAs

selected for Type Ib are I Ib = {(j, k)|(lk = 0 ∨ cj = 0) ∧ pj = 1 ∧ qj,k = 1} .

141

Once the TAs have been targeted for Type Ia and Type Ib feedback, their states are

updated. Available updating operators are ⊕ and 	, where ⊕ adds 1 to the current state

while 	 subtracts 1. Thus, before a new learning iterations starts, the states in the matrix

A are updated as follows: A←
(
A⊕ I Ia

)
	 I Ib.

Type II feedback: Type II feedback eventually changes the output of a clause from

1 to 0, for a specific input X̂i. This is achieved simply by including one or more of the

literals that take the value 0 for X̂i. The indexes of TAs selected for Type II can thus be

singled out as I II = {(j, k)|lk = 0 ∧ cj = 1 ∧ pj = 1}. Accordingly, the states of the TAs

are updated as follows: A← A⊕ I II.

E.3 Stochastic Searching on the Line

Stochastic searching on the line, also referred to as stochastic point location (SPL) was

pioneered by Oommen in 1997 [9]. SPL is a fundamental optimization problem where

one tries to locate an unknown unique point within a given interval. The only available

information for the Learning Mechanism (LM) is the possibly faulty feedback provided by

the attached environment (E). According to the feedback, LM moves right or left from

its current location in a discretized solution space.

The task at hand is to determine the optimal value λ∗ of a variable λ, assuming that

the environment is informative. That is, that it provides the correct direction of λ∗ with

probability p > 0.5. In SPL, λ is assume to be any number in the interval [0, 1]. The SPL

scheme of Oommen discretizes the solution space by subdividing the unit interval into

N steps, {0, 1/N, 2/N, ..., (N − 1)/N, 1}. Hence, N defines the resolution of the learning

scheme.

The current guess, λ(n), is updated according to the feedback from the environment

as follows:

λ(n+ 1) =

λ(n) + 1/N, if E(n) = 1 and 0 6 λ(n) < 1 ,

λ(n)− 1/N, if E(n) = 0 and 0 < λ(n) 6 1 ,

λ(n), Otherwise .

(E.4)

The feedback E(n) = 1 is the environment suggestion to increase the value of λ and

E(n) = 0 is the environment suggestion to decrease the value of λ. Asymptotically, the

learning mechanics is able to find a value arbitrarily close to λ∗ when N →∞ and n→∞.

E.4 Regression Tsetlin Machine with Weighted Clauses

We now introduce clauses with integer weights to provide a more compact representation

of the regression function. The regression function for the integer weighted RTM attaches

a weight wj to each clause output cj, j = 1, ...,m. Consequently, the regression output

can be computed according to Eq. E.5:

y =
1

T

m∑
j=1

wj

∏
k∈Ij

lk. (E.5)

142

Weight learning: Our approach to learning the weight of each clause is similar to SPL.

However, the solution space of each weight is [0,∞], while the resolution of the learning

scheme is N = 1. The weight attached to a clause is updated when the clause receives

Type Ia feedback or Type II feedback. The weight updating procedure is summarized in

Algorithm 3. Here, wj(n) is the weight of clause j at the nth training round.

Algorithm 3 Weight Learning

input Round n updating of clause weights

1: procedure (Initialization (round 0):) wj(0)← 0, j = 1, . . . ,m

2: Initialization (round n): y is calculated according to Eq. E.5.

3: for j = 1, ...,m do

4: if y(n) < ŷi(n) ∧ cj(n) = 1 ∧ pj(n) = 1 then

5: wj(n+ 1)← wj(n) +N

6: else if y(n) > ŷi(n) ∧ cj(n) = 1 ∧ pj(n) = 1 ∧ wj(n) > 0 then

7: wj(n+ 1)← wj(n)−N
8: else

9: wj(n+ 1)← wj(n)

10: end if

11: end for

12:

13: Return wj(n+ 1), j = 1, . . . ,m

14: end procedure

Note that since weights in this study can take any value higher than or equal to 0, an

unwanted clause can be turned off by setting its weight to 0. Further, sub-patterns that

have a large impact on the calculation of y can be represented with a correspondingly

larger weight.

E.5 Empirical Evaluation

In this section, we study the behavior of the RTM with integer weighting (RTM-IW)

using two artificial datasets similar to the datasets presented in [1], in comparison with a

standard RTM and a real-value weighted RTM (RTM-RW). We use Mean Absolute Error

(MAE) to measure performance.

Artificial Datasets: Dataset I contains 3-bit feature input. The output, in turn,

is 100 times larger than the decimal value of the binary input (e.g., the input [0, 1, 0]

produces the output 200). The training set consists of 8000 samples while the testing

set consists of 2000 samples, both without noise. Dataset II contains the same data as

Dataset I, except that the output of the training data is perturbed to introduce noise.

Each input feature has been generated independently with equal probability of taking

either the value 0 or 1, producing a uniform distribution of bit values.

Results and Discussion: The pattern distribution of the artificial data was analyzed

in the original RTM study. As discussed, there are eight unique sub-patterns. The RTM

is able to capture the complete set of sub-patterns utilizing no more than three types of

143

0

200

400

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

M
A

E

Epoch

Training Error Variation (m=70, T = 100000)

No weights _MAE = 0

Integer Weights _MAE = 0

RV weights, a = 0.01 _MAE = 1.393

RV weights, a = 0.025 _MAE = 1.389

RV weights, a = 0.05 _MAE = 0.120

0

200

400

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

1
5
5

1
6
2

1
6
9

1
7
6

1
8
3

1
9
0

1
9
7

M
A

E

Epoch

Testing Error Variation (m=70, T = 100000)

No weights _MAE = 0

Integer Weights _MAE = 0

RV weights, a = 0.01 _MAE = 1.370

RV weights, a = 0.025 _MAE = 1.338

RV weights, a = 0.05 _MAE = 0.113

Figure E.1: The training error variation per training epoch for different RTM schemes.

clauses, i.e., (1 S S), (S 1 S), (S S 1)1. However, to produce the correct output, some

clauses must be duplicated multiple times, depending on the input pattern. For instance,

each dataset requires seven clauses to represent the three different patterns it contains,

namely, (4 × (1 S S), 2 × (S 1 S), 1 × (S S 1))2. So, with e.g. the input [1, 0, 1], four

clauses which represent the pattern (1 S S) and one clause which represents the pattern

(S S 1) activate to correctly output 500 (after normalization).

Notably, it turns out that the RTM-IW requires even fewer clauses to capture the sub-

patterns in the above data, as outlined in Table E.1. Instead of having multiple clauses

to represent one sub-pattern, RTM-IW utilizes merely one clause with the correct weight

to do the same job. The advantage of the proposed integer weighting scheme is thus

apparent. It learns the correct weight of each clause, so that it achieves an MAE of zero.

Further, it is possible to ignore redundant clauses simply by giving them the weight zero.

For the present dataset, for instance, decreasing m while keeping the same resolution,

T = 7, does not impede accuracy. The RTM-RW on the other hand struggles to find the

correct weights, and fails to minimize MAE. Here, the real valued weights were updated

with a learning rate of α = 0.01, determined using a binary hyper-parameter search.

1Here, S means an input feature that can take an arbitrary value, either 0 or 1.
2In this expression, “four clauses to represent the pattern (1 S S)” is written as “4 × (1 S S)”

Table E.1: Behavior comparison of different RTM schemes on Dataset III.

m T Pattern Ij Īj
No. of Clauses

Required
wj

Training

MAE

Testing

MAE

RTM 7 7

(1 S S) {1} { } 4 -

0 0(S 1 S) {2} { } 2 -

(S S 1) {3} { } 1 -

RTM-IW 3 7

(1 S S) {1} { } 1 4

0 0(S 1 S) {2} { } 1 2

(S S 1) {3} { } 1 1

RTM-RW 3 7

(1 S S) {1} { } 1 3.987

1.857 1.799(S 1 S) {2} { } 1 2.027

(S S 1) {3} { } 1 0.971

144

Figure E.1 casts further light on learning behaviour by reporting training error per

epoch for the three different RTM schemes with m = 70 and T = 100000. As seen, both

RTM and RTM-IW obtain relatively low MAE after just one training epoch, eventually

reaching MAE zero (training MAE at end of training are given in the legend of each

graph). RTM-RW, on the other hand, starts off with a much higher MAE, which is

drastically decreasing over a few epochs, however, fails to reach MAE 0 after becoming

asymptotically stable.

We also studied the effect of T on performance with noise free data by varying T , while

fixing the number of clauses m. For instance, RTM was able to reach a training MAE of

1.9 and a testing error of 2.1 with m = T = 300 [1]. For the same dataset, RTM-IW can

reach a training error of 0.19 and a testing error of 1.87 with m = 200 and T = 2000.

Further, for m = 200 and T = 20 000, training error drops to 0.027 and testing error

drops to 0.027. Finally, by increasing T to 200 000 training error falls to 0.0003 while

testing error stabilises at 0.0002.

To further compare the performance of RTM-IW with RTM and RTM-RW, each

approach was evaluated using a wide rage of m and T settings. Representative training

and testing MAE for both datasets are summarized in Table E.2. Here, the number of

clauses used with each dataset is also given. The T for the original RTM is equal to the

number of clauses, while for the RTM with weights T is simply 100 times that number.

As seen, the training and testing MAE reach zero when the RTM operates with noise

free data when m = 7. However, MAE approaches zero with RTM-IW and RTM-RW

when increasing number of clauses m.

For noisy data, the minimum training MAE achieved by RTM is 5.500, obtained with

m = 5000 clauses. The RTM-IW, on the other hand, obtains a lower MAE of 5.373 with

less than half of the clauses (m = 2000). The accuracy of RTM-IW in comparison with

RTM-RW is less clear, with quite similar MAE for noisy data. The average testing MAE

across both the datasets, however, reveals that the average MAE of RTM-IW is lower

than that of the RTM-RW (2.101 vs 2.168).

E.6 Conclusion

In this paper, we presented a new weighting scheme for the Regression Tsetlin Machine

(RTM), RTM with Integer Weights (RTM-IW). The weights attached to the clauses helps

the RTM represent sub-patterns in a more compact way. Since the weights are integer,

interpretability is improved through a more compact representation of the clause set. We

also presented a new weight learning scheme based on stochastic searching on the line,

integrated with the Type I and Type II feedback of the RTM. The RTM-IW obtains on

par or better accuracy with fewer number of clauses compared to RTM without weights.

It also performs competitively in comparison with an alternative RTM with real-valued

weights.

145

T
ab

le
E

.2:
T

rain
in

g
an

d
testin

g
M

A
E

after
200

train
in

g
ep

o
ch

s
b
y

variou
s

m
eth

o
d
s

w
ith

d
iff

eren
t
m

an
d
T

.

M
o
d
el

R
T

M
R

T
M

-R
W

R
T

M
-IW

M
A

E
T

rain
in

g
T

estin
g

T
rain

in
g

T
estin

g
T

rain
in

g
T

estin
g

D
ataset

I
II

I
II

I
II

I
II

I
II

I
II

m

7
0.000

7.400
0.000

5.000
2.230

7.702
2.217

5.955
1.172

8.019
1.171

6.236

20
14.600

13.800
14.200

14.500
1.023

7.863
1.036

6.007
0.487

9.844
0.493

8.499

70
0.000

6.600
0.000

4.200
0.292

7.365
0.295

5.735
0.189

7.602
0.189

5.532

300
1.900

5.800
2.100

3.300
0.104

5.800
0.106

2.226
0.078

5.685
0.078

2.234

700
1.000

5.900
1.000

3.400
0.013

5.551
0.013

1.968
0.044

5.532
0.044

2.149

2000
1.000

5.600
1.200

1.900
0.012

5.731
0.012

2.520
0.003

5.373
0.003

1.280

5000
0.900

5.500
1.000

2.700
0.010

5.635
0.010

2.252
0.001

5.412
0.001

1.501

146

Bibliography

[1] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Lei Jiao, and Morten Goodwin.

“The regression Tsetlin Machine: A Tsetlin Machine for Continuous Output Prob-

lems”. In: EPIA Conference on Artificial Intelligence. Springer. 2019, pp. 268–280.

[2] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, Lei Jiao, and

Morten Goodwin. “The Regression Tsetlin Machine - A Novel Approach to Inter-

pretable Non-Linear Regression”. In: Philosophical Transactions of the Royal Society

A 378 (2164 2019).

[3] Ole-Christoffer Granmo. “The Tsetlin Machine - A game Theoretic Bandit Driven

Approach to Optimal Pattern Recognition With Propositional Logic”. In: arXiv

preprint arXiv:1804.01508 (2018).

[4] Adrian Phoulady, Ole-Christoffer Granmo, Saeed Rahimi Gorji, and Hady Ah-

mady Phoulady. “The Weighted Tsetlin Machine: Compressed Representations with

Clause Weighting”. In: Ninth International Workshop on Statistical Relational AI

(StarAI 2020). 2020.

[5] Geir Thore Berge, Ole-Christoffer Granmo, Tor Oddbjørn Tveit, Morten Good-

win, Lei Jiao, and Bernt Viggo Matheussen. “Using the Tsetlin Machine to Learn

Human-Interpretable Rules for High-Accuracy Text Categorization With Medical

Applications”. In: IEEE Access 7 (2019), pp. 115134–115146.

[6] Adrian Wheeldon, Rishad Shafik, Alex Yakovlev, Jonathan Edwards, Ibrahim Had-

dadi, and Ole-Christoffer Granmo. “Tsetlin Machine: A New Paradigm for Pervasive

AI”. In: Proceedings of the SCONA Workshop at Design, Automation and Test in

Europe (DATE). 2020.

[7] Ole-Christoffer Granmo, Sondre Glimsdal, Lei Jiao, Morten Goodwin, Christian

W. Omlin, and Geir Thore Berge. “The Convolutional Tsetlin Machine”. In: arXiv

preprint:1905.09688 (2019).

[8] Saeed Rahimi Gorji, Ole-Christoffer Granmo, Adrian Phoulady, and Morten Good-

win. “A Tsetlin Machine with Multigranular Clauses”. In: Lecture Notes in Com-

puter Science: Proceedings of the Thirty-ninth International Conference on Innova-

tive Techniques and Applications of Artificial Intelligence (SGAI-2019). Vol. 11927.

Springer International Publishing, 2019.

[9] B John Oommen. “Stochastic Searching On the Line and Its Applications to Pa-

rameter Learning in Nonlinear Optimization”. In: IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics) 27.4 (1997), pp. 733–739.

147

[10] Michael Lvovitch Tsetlin. “On Behaviour of Finite Automata in Random Medium”.

In: Avtomat. i Telemekh 22.10 (1961), pp. 1345–1354.

148

Paper F

Extending the Tsetlin Machine With

Integer-Weighted Clauses for

Increased Interpretability

Building models that are both interpretable and accurate is an unresolved challenge

for many pattern recognition problems. In general, rule-based and linear models

lack accuracy, while deep learning interpretability is based on rough approxima-

tions of the underlying inference. However, recently, the rule-based Tsetlin Ma-

chines (TMs) have obtained competitive performance in terms of accuracy, memory

footprint, and inference speed on diverse benchmarks (image classification, regres-

sion, natural language understanding, and game-playing). TMs construct rules us-

ing human-interpretable conjunctive clauses in propositional logic. These, in turn,

are combined linearly to solve complex pattern recognition tasks. This paper ad-

dresses the accuracy-interpretability challenge in machine learning by introducing

a TM with integer weighted clauses – the Integer Weighted TM (IWTM). The in-

tent is to increase TM interpretability by reducing the number of clauses required

for competitive performance. The IWTM achieves this by weighting the clauses so

that a single clause can replace multiple duplicates. Since each TM clause is formed

adaptively by a Tsetlin Automata (TA) team, identifying effective weights becomes

a challenging online learning problem. We solve this problem by extending each

team of TA with another kind of automaton: the stochastic searching on the line

(SSL) automaton. We evaluate the performance of the new scheme empirically us-

ing five datasets, along with a study of interpretability. On average, IWTM uses

6.5 times fewer literals than the vanilla TM and 120 times fewer literals than a

TM with real-valued weights. Furthermore, in terms of average memory usage and

F1-Score, IWTM outperforms simple Multi-Layered Artificial Neural Networks, De-

cision Trees, Support Vector Machines, K-Nearest Neighbor, Random Forest, Gra-

dient Boosted Trees (XGBoost), Explainable Boosting Machines (EBMs), as well

as the standard and real-value weighted TMs. IWTM finally outperforms Neural

Additive Models on Fraud Detection and StructureBoost on CA-58 in terms of Area

Under Curve, while performing competitively on COMPAS.

149

F.1 Introduction

Interpretable Machine Learning refers to machine learning models that obtain trans-

parency by providing the reasons behind their output. Linear Regression, Logistic Regres-

sion, Decision Trees, and Decision Rules are traditional interpretable machine learning

approaches. However, as discussed in [1], the degree of interpretability of these algorithms

vary. More importantly, such methods struggle with obtaining high accuracy for complex

problems, especially in comparison to deep learning. On the other hand, deep learning

inference cannot easily be interpreted [2] and is thus less suitable for high-stakes domains

such as credit-scoring [3, 4], medicine [5, 6], bioinformatics [7, 8], churn prediction [9,

10] healthcare, and criminal justice [11]. Therefore, developing machine learning algo-

rithms capable of achieving a better trade-off between interpretability and accuracy is of

significant importance and continues to be an active area of research.

One of the ways to tackle the above-stated research problem is explaining the deep

learning inference. Different approaches have been proposed for local interpretability,

i.e., explaining individual predictions [12]. However, they fail to provide clear explana-

tions of model behavior globally [13]. Recently, Agarwal et al. [11] proposed a novel

deep learning approach that belongs to the family of Neural Additive Models (NAMs).

Even though NAMs are inherently interpretable, they are still surpassed by regular deep

learning algorithms when it comes to accuracy [11].

Interpretable linear and rule-based methods can sometimes offer a better trade-off

between interpretability and accuracy. Learning propositional formulae to represent data

patterns has a long history, with association rule learning [14] being one well-known

approach, which has been used to predict sequential events [15]. Other examples include

the work of Feldman on the hardness of learning formulae in Disjunctive Normal Form

(DNF) [16] and Probably Approximately Correct (PAC) learning, which has provided

fundamental insight into machine learning as well as a framework for learning formulae

in DNF [17]. Approximate Bayesian approaches have recently been introduced to provide

more robust learning of rules [18, 19]. Furthermore, hybrid Logistic Circuits have had

success in image classification [20]. Logical operators in one layer of the logistic circuit

are wired to logical operators in the next layer, and the whole system can be represented

as a logistic regression function. This approach uses local search to build a Bayesian

model that captures the logical expression, and learns to classify by employing stochastic

gradient descent. Yet, in general, rule-based machine learning scales poorly and is prone

to noise. Indeed, for data-rich problems, in particular those involving natural language

and sensory inputs, rule-based machine learning is inferior to deep learning.

Tsetlin Machines (TMs) are entirely based on logical operators and summation, founded

on TA-based bandit learning [21, 22, 23, 24, 25, 26, 27]. Despite being rule-based, TMs

have obtained competitive performance in terms of accuracy, memory footprint, and in-

ference speed on diverse benchmarks, including image classification, regression, natural

language understanding, and game-playing. Employing a team of TA [28], a TM learns a

linear combination of conjunctive clauses in propositional logic, producing decision rules

similar to the branches in a decision tree (e.g., if X satisfies condition A and not con-

dition B then Y = 1) [23].

150

Recent Progress on TMs: Recent research on TMs reports several distinct TM

properties. The TM performs competitively on several classic datasets, such as Iris, Dig-

its, Noisy XOR, and MNIST, compared to Support Vector Machines (SVMs), Decision

Trees (DTs), Random Forest (RF), Naive Bayes Classifier, Logistic Regression, and sim-

ple Artificial Neural Networks (ANNs) [21]. The TM can further be used in convolution,

providing competitive performance on MNIST, Fashion-MNIST, and Kuzushiji-MNIST,

in comparison with CNNs, K-Nearest Neighbour (KNN), SVMs, RF, Gradient Boosting,

BinaryConnect, Logistic Circuits and ResNet [29]. The TM has also achieved promising

results in text classification by using the conjunctive clauses to capture textual patterns

[23]. Further, hyper-parameter search can be simplified with multi-granular clauses, elim-

inating the pattern specificity parameter [25]. By indexing the clauses on the features that

falsify them, up to an order of magnitude faster inference and learning has been reported

[26]. Furthermore, TM hardware has demonstrated up to three orders of magnitude re-

duced energy usage and faster learning, compared to neural networks alike [27]. While

TMs are binary throughout, binarization schemes open up for continuous input [30]. Fi-

nally, the Regression Tsetlin Machine addresses continuous output problems, obtaining

on par or better accuracy on predicting dengue incidences, stock price, real estate value

and aerofoil noise, in comparison to Regression Trees, RF, and Support Vector Regression

[24].

Paper Contributions: Although TMs are capable of achieving competitive per-

formance levels, they often require a large number of clauses to do so, which impedes

interpretability. To overcome this accuracy-interpretability challenge in TMs, we propose

the IWTM, encompassing the following contributions.

• We extend each clause with the Stochastic Searching on the Line (SSL) automaton

[31]. This automaton is to learn an effective weight for its clause by interacting

with the corresponding TA team. As a result, the set of clauses can be rendered

significantly more compact, without sacrificing accuracy.

• Through the above scheme, we allow the TM to identify which clauses are inaccurate.

These clauses are given smaller weights so that they must team up to obtain high

accuracy as a team. Furthermore, the clauses that are sufficiently accurate are

assigned larger weights so that they can operate more independently.

• Empirically, we evaluate the IWTM using the eight data sets: Bankruptcy, Balance

Scale, Breast Cancer, Liver Disorders, Heart Disease, Fraud Detection, COMPAS,

and CA-58. The results show that IWTM on average uses 6.5 times fewer literals

than the vanilla TM, and 120.0 times fewer literals than a TM with real-valued

weights [22]. Furthermore, performance is competitive with recent state-of-the-art

machine learning models.

Paper Organization: In Section F.2, we present the IWTM and describe how each

team of TA, composing the clauses, is extended with the SSL. We further discuss the adap-

tive learning procedure which simultaneously update both clauses and weights. Then

in Section F.3, we evaluate the classification accuracy of IWTM empirically using five

datasets, including a study of rule extraction for Bankruptcy prediction in detail and

151

 1 2 … N-1 N N+1 N+2 ……. 2N-1 2N

Action 1 Action 2

Reward

Penalty

Figure F.1: Transition graph of a two-action Tsetlin Automaton.

compare against several ANNs, DTs, SVMs, KNN, RF, Gradient Boosted Trees (XG-

Boost), EBMs (the current state-of-the-art of Generalized Additive Models (GAMs) [32,

33]) and competing TMs. Further, we contrast the performance of IWTM against re-

ported results on recent state-of-the-art machine learning models, namely NAMs[11] and

StructureBoost [34]. Finally, the paper is concluded in Section F.4.

F.2 Integer-Weighted Tsetlin Machine

In this section, we introduce the integer weighting scheme for TMs. First, we cover the

basics of TA, which determine the composition of the TM clauses. Then we introduce the

basic TM structure, before we present how integer weights are assigned to the TM clauses.

We cover how the individual clauses are trained to learn sub-patterns and how the weight

values are updated using SSL. We conclude the section by analysing the computational

complexity of the IWTM.

F.2.1 Tsetlin Automata

In the TM, a collective of two-action TA [28] (reviewed in [35]) is used for bandit-based

learning. Figure F.1 shows a two-action TA with 2N states. As illustrated, a TA decides

its next action from its present state. States from 1 to N trigger Action 1, while states

from N +1 to 2N trigger Action 2. The TA iteratively interacts with an environment. At

each iteration, the environment produces a reward or a penalty in response to the action

performed by the TA, according to an unknown probability distribution. Reward feedback

reinforces the action performed and penalty feedback weakens it. In order to reinforce an

action, the TA changes state towards one of the “deeper” states, direction depending on

the current state. Conversely, an action is weakened by changing state towards the center

states (N/N + 1). Hence, penalty feedback eventually forces the TA to change action,

shifting its state from N to N + 1 or vice versa. In this manner, with a sufficient number

of states, a TA converges to perform the action with the highest probability of receiving

a reward – the optimal action – with probability arbitrarily close to unity, as long as the

reward probability is greater than 0.5 [28].

152

F.2.2 TM structure

The goal of a basic TM is to categorize input feature vectors X into one of two classes,

y ∈ {0, 1}. As shown in Figure F.2, X consists of o propositional variables, xk ∈ {0, 1}o.
Further, a TM also incorporates the negation ¬xk of the variables to capture more

sophisticated patterns. Together these are referred to as literals: L = [x1, x2, . . . , xo,

¬x1,¬x2, . . . ,¬xo] = [l1, l2, . . . , l2o] .

Clause construction: At the core of a TM one finds a set of m conjunctive clauses.

The conjunctive clauses are to capture the sub-patterns associated with each output y.

All of the clauses in the TM receive identical inputs, which is the vector of literals L. We

formulate a TM clause as follows:

cj =
∧
k∈Ij

lk. (F.1)

Notice that each clause, indexed by j, includes distinct literals. The indexes of the

included literals are contained in the set Ij ⊆ {1, . . . , 2o}. For the special case of Ij = ∅,
i.e., an empty clause, we have:

cj =

{
1 during learning

0 otherwise.
(F.2)

That is, during learning, empty clauses output 1 and during classification they output 0.

It is the two-action TAs that assign literals to clauses. Each clause is equipped with

2× o TAs, one per literal k, as shown in Clause-1 of Figure F.2. The TA states from 1 to

N map to the exclude action, which means that the corresponding literal is excluded from

the clause. For states from N + 1 to 2N , the decision becomes include, i.e., the literal is

included instead. The states of all the TAs in all of the clauses are jointly stored in the

matrix A: A = (aj,k) ∈ {1, . . . , 2N}m×2o, with j referring to the clause and k to the literal.

Hence, the literal indexes contained in the set Ij can be expressed as Ij = {k|aj,k > N,

1 ≤ k ≤ 2o}.
Clause output: The output of the clauses can be produced as soon as the decisions

of the TAs are known. Since the clauses are conjunctive, they evaluate to 0 if any of the

literals included are of value 0. For a given input X, let the set I1
X contain the indexes of

the literals of value 1. Then the output of clause j can be expressed as:

cj =

{
1 if Ij ⊆ I1

X ,

0 otherwise.
(F.3)

In the following, we let the vector C denote the complete set of clause outputs C =

(cj) ∈ {0, 1}m, as defined above.

Classification in TM: The TM classifies data into two classes, which means that

sub-patterns associated with both classes must be identified. This is done by dividing

clauses into two groups. Clauses with odd index are assigned positive polarity (c+
j), and

they are to capture sub-patterns of output y = 1. Clauses with even index, on the other

hand, are assigned negative polarity (c−j) and they seek the sub-patterns of output y = 0.

153

2N

N+3

N+2

N+1

N

3

2

1

2N

N+3

N+2

N+1

N

3

2

1

2N

N+3

N+2

N+1

N

3

2

1

2N

N+3

N+2

N+1

N

3

2

1

𝐋 = [𝑙1, 𝑙2, 𝑙3, 𝑙4 … … 𝑙2𝑜]

1/0 1/0 1/0 ……….

𝑣

𝑤1
+

Clause-1

Clause-2 Clause-m

…. 𝑎2,𝑘 ∈ {1, … 2𝑁} 𝑎𝑚,𝑘 ∈ {1, … 2𝑁}

1 2 k 2o

𝑤2
− 𝑤𝑚

−

Figure F.2: The Integer Weighted Tsetlin Machine structure.

Once a clause recognizes a sub-pattern, it outputs 1, casting a vote according to

its polarity. The final output of the TM is found by summing up the clause outputs,

subtracting the votes of the clauses with negative polarity from the votes of the clauses

with positive polarity. With v being the difference in clause output, v =
∑

j c
+
j −

∑
j c
−
j ,

the output of the TM is decided as follows:

ŷ =

{
1 if v ≥ 0

0 if v < 0 .
(F.4)

F.2.3 Incorporating Integer Weights into the TM

In contrast to the weighting scheme proposed by Phoulady et al. [22], which employs real-

valued weights that require multiplication and an additional hyperparameter, our scheme

is parameter-free and uses increment and decrement operations to update the weights.

Classification in IWTM: The weights decide the impact of each clause during

classification, replacing Eq. F.4 with:

ŷ =

{
1 if

∑
j w

+
j c

+
j −

∑
j w
−
j c
−
j ≥ 0

0 otherwise.
(F.5)

Above, w+
j is the weight of the jth clause with positive polarity, while w−j is the weight of

154

the jth clause with negative polarity.

F.2.4 Learning Procedure

In this sub-section, we first discuss how individual clauses are trained to learn sub-

patterns. Then the procedure of updating weights is explained in detail.

F.2.4.1 Clause Learning

A TM learns online, processing one training example (X, y) at a time. Within each clause,

a local team of TAs decide the clause output by selecting which literals are included in the

clause. Jointly, the TA teams thus decide the overall output of the TM, mediated through

the clauses. This hierarchical structure is used to update the state of each TA, with the

purpose of maximizing output accuracy. We achieve this with two kinds of reinforcement:

Type I and Type II feedback. Type I and Type II feedback control how the individual

TAs either receive a reward, a penalty, or inaction feedback, depending on the context of

their actions. In the following we focus on clauses with positive polarity. For clauses with

negative polarity, Type I feedback replaces Type II, and vice versa.

Type I feedback: Type I feedback consists of two sub-feedback schemes: Type Ia

and Type Ib. Type Ia feedback reinforces include actions of TAs whose corresponding

literal value is 1, however, only when the clause output also is 1. Type Ib feedback

combats over-fitting by reinforcing exclude actions of TAs when the corresponding literal

is 0 or when the clause output is 0. Consequently, both Type Ia and Type Ib feedback

gradually force clauses to output 1.

Type I feedback is given to clauses with positive polarity when y = 1. This stimulates

suppression of false negative output. To diversify the clauses, they are targeted for Type

I feedback stochastically as follows:

p+
j =

{
1 with probability T−max(−T,min(T,v))

2T
,

0 otherwise.
(F.6)

Here, p+
j is the decision whether to target clause j with positive polarity for feedback.

The user set target T for the clause output sum v decides how many clauses should be

involved in learning a particular sub-pattern. Higher T increases the robustness of learning

by allocating more clauses to learn each sub-pattern. The decisions for the complete set

of positive clauses are organized in the vector P+ = (p+
j) ∈ {0, 1}m

2 . Similarly, decisions

for the complete set of negative clauses can be found in P− = (p−j) ∈ {0, 1}m
2 .

If a clause is eligible to receive feedback per Eq. F.6, the individual TAs of the clause

are singled out stochastically using a user-set parameter s (s ≥ 1). The decision whether

the kth TA of the jth clause of positive polarity is to receive Type Ia feedback, r+
j,k, and

Type Ib feedback, q+
j,k, are stochastically made as follows:

r+
j,k =

{
1 with probability s−1

s
,

0 otherwise.
(F.7)

155

q+
j,k =

{
1 with probability 1

s
,

0 otherwise.
(F.8)

The above decisions are respectively stored in the two matrices R+ and Q+, i.e., R+ =

(r+
j,k) ∈ {0, 1}m×2o and Q+ = (q+

j,k) ∈ {0, 1}m×2o. Using the complete set of conditions, TA

indexes selected for Type Ia are I Ia = {(j, k)|lk = 1∧c+
j = 1∧p+

j = 1∧r+
j,k = 1}. Similarly

TA indexes selected for Type Ib are I Ib =
{

(j, k)|(lk = 0 ∨ c+
j = 0) ∧ p+

j,y = 1 ∧ q+
j,k = 1

}
.

Once the indexes of the TAs are identified, the states of those TAs are updated.

Available updating options are ⊕ and 	, where ⊕ adds 1 and 	 subtracts 1 from the

current state. The processing of the training example ends with the state matrix A+

being updated as follows: A+ ←
(
A+ ⊕ I Ia

)
	 I Ib.

Type II feedback: Type II feedback is given to clauses with positive polarity for

target output y = 0. Clauses to receive Type II feedback are again selected stochastically.

The decision for the jth clause of positive polarity is made as follows:

p+
j =

{
1 with probability T+max(−T,min(T,v))

2T
,

0 otherwise.
(F.9)

The idea behind Type II feedback is to change the output of the affected clauses

from 1 to 0. This is achieved simply by including a literal of value 0 in the clause. TAs

selected for Type II can accordingly be found in the index set: I II = {(j, k)|lk = 0 ∧
c+
j = 1∧ p+

j = 1}. To obtain the intended effect, these TAs are reinforced to include their

literals in the clause by increasing their corresponding states: A+ ← A+ ⊕ I II.

When training has been completed, the final decisions of the TAs are recorded, and

the resulting clauses can be deployed for operation.

F.2.4.2 Weight Learning

The learning of weights is based on increasing the weight of clauses that receive Type Ia

feedback (due to true positive output) and decreasing the weight of clauses that receive

Type II feedback (due to false positive output). The overall rationale is to determine which

clauses are inaccurate and thus must team up to obtain high accuracy as a team (low

weight clauses), and which clauses are sufficiently accurate to operate more independently

(high weight clauses).

The weight updating procedure is summarized in Algorithm 4 and in the flowchart

in Figure F.3. Here, wj(n) is the weight of clause j at the nth training round (ignoring

polarity to simplify notation). The first step of a training round is to calculate the clause

output as per Eq. F.3. The weight of a clause is only updated if the clause output cj(n)

is 1 and the clause has been selected for feedback (pj = 1). Then the polarity of the

clause and the class label y decide the type of feedback given. That is, like a regular TM,

positive polarity clauses receive Type Ia feedback if the clause output is a true positive

and Type II feedback if the clause output is a false positive. For clauses with negative

polarity, the feedback types switch roles.

When clauses receive Type Ia or Type II feedback, their weights are updated accord-

ingly. We use the stochastic searching on the line (SSL) automaton to learn appropriate

156

for clause 𝑗 = 1, … . . , 𝑚

if 𝑐𝑗 = 1 then

 𝑤𝑗(𝑛 + 1) = 𝑤𝑗(𝑛) + 1

 for feature 𝑘 = 1, … ,2𝑜 do

 if 𝑙𝑘 = 1 then

 Type Ia

 else

 Type Ib

 end for

else

 𝑤𝑗(𝑛 + 1) = 𝑤𝑗(𝑛)

 Type Ib

𝑐𝑗
−

 𝑦 = 0

𝑐𝑗
+

Output

Class

Clause

Type

Clause

Type

𝑝𝑗(𝑛) = 1

𝑐𝑗
−

𝑐𝑗
+

 𝑦 = 1

No

Yes

if 𝑐𝑗 = 1 then

 if 𝑤𝑗(𝑛) > 0 then

 𝑤𝑗(𝑛 + 1) = 𝑤𝑗(𝑛) − 1

 for feature 𝑘 = 1, … ,2𝑜 do

 if 𝑙𝑘 = 0 then

 Type II

 else

 Inaction

 end for

else

 𝑤𝑗(𝑛 + 1) = 𝑤𝑗(𝑛)

 Inaction

 Start Tsetlin Machine with:

Clauses m, Precision s, Target T

Random Initialization of TAs:

2 × 0 TAs per Clause

Training Data:

Training Sample X, y

Figure F.3: The complete learning process of the IWTM in a flowchart.

157

Algorithm 4 The complete IWTM learning process

1: Input: Training data (X, y), m, T , s

2: Initialize: Random initialization of TAs

3: Begin: nth training round

4: for j = 1, ...,m do if pj = 1 . Eq. (F.6) and (F.9)

5: if (y = 1 and j is odd) or (y = 0 and j is even) then

6: if cj = 1 then . Eq. (F.3)

7: wj(n+ 1)← wj(n) + 1 . Eq. (F.10-F.11)

8: for feature k = 1, ..., 2o do

9: if lk = 1 then

10: Type Ia Feedback

11: else:

12: Type Ib Feedback

13: end if

14: end for

15: else:

16: wj(n+ 1)← wj(n) . Eq. (F.10-F.11)

17: Type Ib Feedback

18: end if

19: else: (y = 1 and j is even) or (y = 0 and j is odd)

20: if cj = 1 then . Eq. (F.3)

21: if wj(n) > 0 then

22: wj(n+ 1)← wj(n)− 1 . Eq. (F.10-F.11)

23: end if

24: for feature k = 1, ..., 2o do

25: if lk = 0 then

26: Type II Feedback

27: else:

28: Inaction

29: end if

30: end for

31: else:

32: wj(n+ 1)← wj(n) . Eq. (F.10-F.11)

33: Inaction

34: end if

35: end if

36: end for

weights. SSL is an optimization scheme for unknown stochastic environments pioneered

by Oommen [31]. The goal is to find an unknown location λ∗ within a search interval

[0, 1]. In order to find λ∗, the only available information for the Learning Mechanism

(LM) is the possibly faulty feedback from its attached environment (E).

In SSL, the search space λ is discretized into N points, {0, 1/N, 2/N, . . . , (N−1)/N, 1},

158

with N being the discretization resolution. During the search, the LM has a location

λ ∈ {0, 1/N, 2/N, . . . , (N-1)/N, 1}, and can freely move to the left or to the right

from its current location. The environment E provides two types of feedback: E = 1

is the environment suggestion to increase the value of λ by one step, and E = 0 is the

environment suggestion to decrease the value of λ by one step. The next location of λ,

λ(n+ 1) can thus be expressed as follows:

λ(n+ 1) =

{
λ(n) + 1/N, if E(n) = 1 ,

λ(n)− 1/N, if E(n) = 0 .
(F.10)

λ(n+ 1) =

{
λ(n), if λ(n) = 1 and E(n) = 1 ,

λ(n), if λ(n) = 0 and E(n) = 0 .
(F.11)

Asymptotically, the learning mechanics is able to find a value arbitrarily close to λ∗ when

N →∞ and n→∞.

In our case, the search space of clause weights is [0, ∞], so we use resolution N = 1,

with no upper bound for λ. Accordingly, we operate with integer weights. As seen in

Figure F.3, if the clause output is a true positive, we simply increase the weight by 1.

Conversely, if the clause output is a false positive, we decrease the weight by 1.

By following the above procedure, the goal is to make low precision clauses team up

by giving them low weights, so that they together can reach the summation target T . By

teaming up, precision increases due to the resulting ensemble effect. Clauses with high

precision, however, gets a higher weight, allowing them to operate more independently.

The above weighting scheme has several advantages. First of all, increment and decre-

ment operations on integers are computationally less costly than multiplication based

updates of real-valued weights. Additionally, a clause with an integer weight can be

seen as multiple copies of the same clause, making it more interpretable than real-valued

weighting, as studied in the next section. Additionally, clauses can be turned completely

off by setting their weights to 0 if they do not contribute positively to the classification

task.

F.2.5 Computational Complexity of the IWTM

To evaluate computational complexity, we introduce the three constants α, β, and γ,

where α represents the computational cost to perform the conjunction of two bits, β

is the computational cost of computing the summation of two integers, and γ is the

computational cost to update the state of a single automaton (TA or SSL) in IWTM.

We here consider worst-case computational costs for training and testing, assuming

all the TAs in all of the clauses are operative and updated. In a TM with m clauses

and when the input vector consists of o features, the TM performs 2o×m number of TA

updates for a single training sample. In the IWTM, this becomes (2o + 1) ×m updates

due to the weights. Hence, we compute the computational cost of updating TA states

during the IWTM training as γ ×(2o + 1)×m. The cost is simply d times higher when

there are d number of training samples in the dataset, i.e., d×γ ×(2o+ 1)×m.

159

The other two TM operations are to compute the output of clauses and to sum up

the outputs to get the vote difference. Assuming all the TAs in all of the clauses have

decided to include their corresponding literals in the clause, the computational cost for

obtaining the clause outputs becomes α × 2o × m. Once the clause outputs are ready,

the vote difference is calculated. This requires a computational cost of β × (m− 1). We

only encounter the above stated computational requirements during the testing phase.

However, both these components have to be multiplied with the number of samples to

obtain the training cost, i.e., d[α× 2o×m+ β × (m− 1)].

Accordingly, we can formulate the computational complexity as a function of d which

exhibits how the computational complexity of the IWTM varies with d during the IWTM

training. Combining the costs of updating TAs, computing clause outputs, and calculating

the vote difference, we get a linear function f(d):

f(d) = d[γ × (2o+ 1)×m+ α× 2o×m+ β × (m− 1)]. (F.12)

Then, using the Big O notation[36], the computational complexity of IWTM training

becomes O(d), which means that the complexity of the IWTM increases linearly with the

number of training samples d. Similarly, complexity grows linearly with the number of

clauses m and with the number of inputs o.

F.3 Empirical Evaluation

In this section, we empirically evaluate the impact of integer weighting on the TM using

five real-world datasets. Three of these datasets are from the health sector: Breast Cancer

dataset, Liver Disorder dataset, and Heart Disease dataset, while the two other ones are

the Balance Scale and Corporate Bankruptcy datasets. We use the latter dataset to

examine interpretability more closely.

In the comparison, the IWTM is compared with the vanilla TM as well as the TM

with real-valued weights (RWTM). Additionally, we contrast performance against the

standard machine learning techniques Artificial Neural Networks (ANNs), Support Vector

Machines (SVMs), Decision Trees (DTs), K-Nearest Neighbor (KNN), Random Forest

(RF), Gradient Boosted Trees (XGBoost) [37], Explainable Boosting Machines (EBMs)

[32] along with two recent state-of-the-art machine learning approaches: Neural Additive

Models [11] and StructureBoost [34]. For comprehensiveness, three ANN architectures

are used: ANN-1 – with one hidden layer of 5 neurons; ANN-2 – with two hidden layers

of 20 and 50 neurons each, and ANN-3 – with three hidden layers and 20, 150, and 100

Table F.1: Binarizing categorical features in the Bankruptcy dataset.

Category Integer Code
Thresholds

≤0 ≤1 ≤2

A 0 1 1 1

N 1 0 1 1

P 2 0 0 1

160

Table F.2: Clauses produced by TM, RWTM, and IWTM for m = 10.

Clause Class
TM RWTM IWTM

Literals Literals w Literals w

1 1 ¬11 ¬14 0.0287 - 5

2 0 ¬13, 14 ¬13, 14 0.0001 ¬13, 14 6

3 1 ¬14 ¬14 0.0064 - 5

4 0 ¬13, 14 ¬13, 14 0.0001 ¬13, 14 2

5 1 ¬14 ¬11 0.7001 ¬11 0

6 0 ¬13, 14 ¬13, 14 0.0001 ¬13, 14 2

7 1 - ¬14 0.1605 - 7

8 0 ¬13, 14 ¬13, 14 0.0001 ¬13, 14 5

9 1 ¬14 ¬14 0.1425 ¬14 1

10 0 ¬13, 14 ¬13, 14 0.0001 ¬13, 14 6

Accuracy (Training/Testing) 0.98/1.00 0.99/0.96 0.98/1.00

Table F.3: Clauses produced by TM, RWTM, and IWTM for m = 2.

Clause Vote for class
TM RWTM IWTM

Literals Literals w Literals w

1 1 ¬14 ¬14 0.5297 ¬14 0

2 0 ¬13, 14 ¬13, 14 7.0065 ¬13, 14 3

Accuracy (Training/Testing) 0.99/0.96 0.99/0.96 0.96/0.98

neurons.

In the experiments, we use the binarization scheme based on thresholding proposed

in [30] for continuous and categorical features. The results are average measures over 50

independent experiment trials. We used 80% of the data for training and 20% for testing.

Hyperparameters were set using manual binary search.

F.3.1 Bankruptcy

In finance, accurate prediction of bankruptcy is important to mitigate economic loss [38].

However, since the decisions made related to bankruptcy can have critical consequences,

interpretable machine learning algorithms are often preferred over black-box methods.

Consider the historical records of 250 companies in the Bankruptcy dataset1. Each

record consists of six features pertinent to predicting bankruptcy: 1) Industrial Risk,

2) Management Risk, 3) Financial Flexibility, 4) Credibility, 5) Competitiveness, and

6) Operation Risk. These are categorical features where each feature can be in one of three

states: Negative (N), Average (A), or Positive (P). The two target classes are Bankruptcy

and Non-bankruptcy. While the class output is binary, the features are ternary. We thus

binarize the features using thresholding [30], as shown in Table F.1. Thus, the binarized

dataset contains 18 binary features.

1Available from https://archive.ics.uci.edu/ml/datasets/qualitative bankruptcy.

161

https://archive.ics.uci.edu/ml/datasets/qualitative_bankruptcy

Class - 1 Class - 0

𝑥1, 𝑥2, 𝑥3, 𝑥4, … … … … , 𝑥18

Credibility is not Negative

Competitiveness is not Negative

Competitiveness is not Average and

 Competitiveness is Negative

1 copy of

3 copies of

5 copies of

Output decider

y

Vote Collector – Class 0 Vote Collector – Class 1

Figure F.4: TM classification process for the Bankruptcy dataset.

We first investigate the behavior of TM, RWTM, and IWTM with very few clauses

(10 clauses). The clauses produced are summarized in Table F.2.

Five out of the ten clauses (clauses with odd index) vote for class 1 and the remaining

five (those with even index) vote for class 0. In the TM, the first clause contains just one

literal, which is the negation of feature 11. From the binarized feature set, we recognize

that the 11th feature is Negative Credibility. Likewise, clauses 2, 4, 6, 8, 10 contain the

same two literals – the negation of Average Competitiveness and Negative Competitiveness

non-negated. The clauses 3, 5, and 9, on the other hand, include Negative Competitiveness

negated. There is also a free vote for class 1 from the ”empty” clause 7, which is ignored

during classification.

The clause outputs of the TM in Table F.2 are visualized in Figure F.4. From the

figure, it is clear how the trained TM operates. It uses only two features, Credibility and

Competitiveness, and their negations. Further, observe how the TM implicitly introduces

weighting by duplicating the clauses.

Table F.2 also contains the clauses learnt by RWTM and IWTM. The most notable

difference is that RWTM puts little emphasis on the clauses for class 0, giving them

weight 0.0001. Further, it puts most emphasis on the negation of Negative Credibility

and Negative Competitiveness. The IWTM, on the other hand, like the TM, focuses on

the negation of Average Competitiveness and non-negated Negative Competitiveness. Note

also that, without loss of accuracy, IWTM simplifies the set of rules by turning off negated

Negative Credibility by giving clause 5 weight zero. The three literals remaining are the

negation of Average Competitiveness and Negative Competitiveness, negated and non-

negated. Because Negative Competitiveness implies negated Average Competitiveness,

162

IWTM ends up with the simple classification rule (ignoring the weights):

Outcome =

{
Bankruptcy if Negative Competitiveness

Non-bankruptcy otherwise.
(F.13)

By asking the TMs to only produce two clauses, we can obtain the above rule more

directly, as shown in Table F.3. As seen, again, TM, RWTM, and IWTM achieve similar

accuracy. Further, IWTM turns off Negative Competitiveness negated, producing the

simplest rule set of the three approaches.

The previous accuracy results represent the majority of experiment trials. However,

some of the trials fail to reach an optimal TM configuration. Instead of re-running learning

a few times, one can increase the number of clauses for increased robustness in every trial.

This comes at the cost of reduced interpretability, however. Table F.4, Table F.5, and

Table F.6 contain average performance (Precision, Recall, F1-Score, Accuracy, Specificity)

over 50 experiment trials, showing how robustness increases with more clauses, up to a

certain point.

Table F.4: Performance of TM on Bankruptcy dataset.

m 2 10 100 500 2000 8000

Precision 0.754 0.903 0.997 0.994 0.996 0.994

Recall 1.000 1.000 1.000 0.998 1.000 1.000

F1-Score 0.859 0.948 0.984 0.996 0.998 0.997

Accuracy 0.807 0.939 0.998 0.996 0.998 0.996

Specificity 0.533 0.860 0.995 0.993 0.996 0.990

No. of Lit. 19 88 222 832 3622 15201

Table F.5: Performance of RWTM on Bankruptcy dataset.

m 2 10 100 500 2000 8000

Precision 0.736 0.860 0.885 0.996 0.998 0.997

Recall 1.000 1.000 1.000 0.998 1.000 0.998

F1-Score 0.846 0.924 0.933 0.997 0.999 0.998

Accuracy 0.792 0.906 0.915 0.997 0.999 0.997

Specificity 0.511 0.785 0.824 0.996 0.998 0.995

No. of Lit. 20 97 893 825 3478 14285

Table F.4 reports the results for a standard TM. Our goal is to maximize F1-Score,

since accuracy can be misleading for imbalanced datasets. Notice how the F1-Score in-

creases with the number of clauses, peaking when m equals 2000. At this point, the

average number of literals (include actions) across the clauses is 3622 (rounded to nearest

integer). The RWTM behaves similarly, as seen in Table F.5. However, it peaks with an

F1-Score of 0.999 at m = 2000. Then 3478 literals have been included on average.

The IWTM, on the other hand, achieves its best F1-Score when m is 500. At that

point, an average of 379 literals are included (only considering clauses with a weight larger

than 0), which is significantly smaller than what was obtained with TM and RWTM.

163

Table F.6: Performance of IWTM on Bankruptcy dataset.

m 2 10 100 500 2000 8000

Precision 0.636 0.765 0.993 0.998 0.998 0.991

Recall 1.000 1.000 1.000 1.000 1.000 1.000

F1-Score 0.774 0.862 0.996 0.999 0.999 0.995

Accuracy 0.654 0.814 0.996 0.999 0.999 0.995

Specificity 0.177 0.584 0.991 0.998 0.998 0.990

No. of Lit. 8 45 148 379 1969 8965

2 10 100 500 2000 8000
No. of Clauses

0

2000

4000

6000

8000

10000

12000

14000

16000

No
. o

f L
ite

ra
ls

Literals of Bankruptcy
IWTM
TM
RWTM

Figure F.5: The number of literals included in different TM setups to work with

Bankruptcy dataset.

How the number of literals increases with the number of clauses is shown in Figure F.5.

The IWTM consistently produces fewer literals than the other two schemes, and the

difference increases with the number of clauses.

We finally compare the performance of TM, RWTM, and IWTM against several stan-

dard machine learning algorithms, namely ANN, DT, SVM, KNN, RF, XGBoost, and

EBM. The performance of all of the techniques is compiled in Table F.7. The best F1-

Score is obtained by RWTM and IWTM, which produce identical results expect that

IWTM uses fewer literals, less memory during training, and less training time per epoch.

Also, in terms of Accuracy, RWTM and IWTM obtains the best average results. Further

10% 20% 30% 40% 50% 60% 70% 80% 90%
Training data percentage

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

F1
-s

co
re

Sample Complexity for Bankruptcy
ANN-1
ANN-2
ANN-3
DT
SVM
KNN
RF
XGBoost
EBM
TM
RWTM
IWTM

Figure F.6: Sample complexity analysis for the Bankruptcy dataset.

164

T
ab

le
F

.7:
P

erform
an

ce
com

p
arison

for
B

an
k
ru

p
tcy

d
ataset.

P
recision

R
ecall

F
1

A
ccu

racy
S
p

ecifi
city

N
o.

of
L

it.
M

em
ory

R
eq

u
ired

(T
rain

in
g/T

estin
g)

T
rain

in
g

T
im

e

A
N

N
-1

0.990
1.000

0.995
0.994

0.985
-

≈
942.538K

B
/
≈

26.64K
B

0.227
sec.

A
N

N
-2

0.995
0.997

0.996
0.995

0.993
-

≈
3476.76K

B
/
≈

590.76K
B

0.226
sec.

A
N

N
-3

0.997
0.998

0.997
0.997

0.995
-

≈
28862.65K

B
/
≈

1297.12K
B

0.266
sec.

D
T

0.988
1.000

0.993
0.993

0.985
-

≈
0.00K

B
/
≈

0.00K
B

0.003
sec.

S
V

M
1.000

0.989
0.994

0.994
1.000

-
≈

90.11K
B

/
≈

0.00K
B

0.001
sec.

K
N

N
0.998

0.991
0.995

0.994
0.998

-
≈

0.00K
B

/
≈

286.71K
B

0.001
sec.

R
F

0.979
0.923

0.949
0.942

0.970
-

≈
180.22K

B
/
≈

0.00K
B

0.020
sec.

X
G

B
o
ost

0.996
0.977

0.983
0.983

0.992
-

≈
4964.35K

B
/
≈

0.00K
B

0.009
sec.

E
B

M
0.987

1.000
0.993

0.992
0.980

-
≈

1425.40K
B

/
≈

0.00K
B

13.822
sec.

T
M

0.997
1.000

0.998
0.998

0.995
3622

≈
0.00K

B
/
≈

0.00K
B

0.148
sec.

R
W

T
M

0.998
1.000

0.999
0.999

0.998
3478

≈
94.20K

B
/
≈

0.00K
B

0.148
sec.

IW
T

M
0.998

1.000
0.999

0.999
0.998

379
≈

0.00K
B

/
≈

0.00K
B

0.013
sec.

165

Table F.8: Performance of TM on Balance Scale dataset.

m 2 10 100 500 2000 8000

Precision 0.647 0.820 0.966 0.949 0.926 0.871

Recall 0.986 0.965 0.930 0.934 0.884 0.746

F1-Score 0.781 0.886 0.945 0.933 0.880 0.749

Accuracy 0.728 0.875 0.948 0.936 0.889 0.780

Specificity 0.476 0.782 0.966 0.935 0.905 0.819

No. of Lit. 17 77 790 3406 15454 60310

Table F.9: Performance of RWTM on Balance Scale dataset.

m 2 10 100 500 2000 8000

Precision 0.631 0.779 0.885 0.914 0.919 0.916

Recall 0.973 0.965 0.970 0.942 0.911 0.949

F1-Score 0.765 0.860 0.925 0.926 0.914 0.931

Accuracy 0.709 0.842 0.921 0.927 0.917 0.931

Specificity 0.457 0.720 0.874 0.915 0.924 0.913

No. of Lit. 18 90 890 4406 17454 66310

Table F.10: Performance of IWTM on Balance Scale dataset.

m 2 10 100 500 2000 8000

Precision 0.655 0.811 0.946 0.934 0.936 0.853

Recall 0.973 0.965 0.966 0.920 0.908 0.830

F1-Score 0.783 0.881 0.954 0.916 0.905 0.800

Accuracy 0.719 0.868 0.953 0.917 0.905 0.808

Specificity 0.444 0.767 0.941 0.912 0.896 0.794

No. of Lit. 9 39 120 710 2602 9607

notice that all of the TMs achieve a Recall of 1.0. Additionally, only DT, TM, and IWTM

require memory close to zero, both during training and testing. RWTM uses more mem-

ory in training than the other two TMs since it has to represent the weights of those 2000

clauses as floating point numbers.

We also perform a sample complexity analysis for all the techniques. As Figure F.6

manifests, all the techniques except RF and XGBoost surpasses an F1-Score of 0.975 when

training on 40 percent of the data. The F1-Scores of RF and XGBoost start relatively

low and fluctuate around 0.950 after 40% of the training samples have been processed.

F.3.2 Balance Scale

For the remaining datasets, we focus on TM, RWTM and IWTM configurations that pro-

vide robust performance over interpretability, comparing with selected machine learning

techniques.

166

T
ab

le
F

.11:
P

erform
an

ce
com

p
arison

for
B

alan
ce

S
cale

d
ataset.

P
recision

R
ecall

F
1

A
ccu

racy
S
p

ecifi
city

N
o.

of
L

it.
M

em
ory

R
eq

u
ired

(T
rain

in
g/T

estin
g)

T
rain

in
g

T
im

e

A
N

N
-1

0.993
0.987

0.990
0.990

0.993
-

≈
966.57K

B
/
≈

24.56K
B

0.614
sec.

A
N

N
-2

0.995
0.995

0.995
0.995

0.994
-

≈
3612.65K

B
/
≈

589.82K
B

0.588
sec.

A
N

N
-3

0.995
0.995

0.995
0.995

0.995
-

≈
33712.82K

B
/
≈

1478.64K
B

0.678
sec.

D
T

0.984
0.988

0.986
0.986

0.985
-

≈
131.07K

B
/
≈

0.00K
B

0.007
sec.

S
V

M
0.887

0.889
0.887

0.887
0.884

-
≈

65.53K
B

/
≈

241.59K
B

0.001
sec.

K
N

N
0.968

0.939
0.953

0.953
0.969

-
≈

249.77K
B

/
≈

126.87K
B

0.001
sec.

R
F

0.872
0.851

0.859
0.860

0.871
-

≈
0.00K

B
/
≈

0.00K
B

0.021
sec.

X
G

B
o
ost

0.942
0.921

0.931
0.931

0.942
-

≈
1126.39K

B
/
≈

0.00K
B

0.030
sec.

E
B

M
1.000

1.000
1.000

1.000
1.000

-
≈

1642.49K
B

/
≈

0.00K
B

15.658
sec.

T
M

0.966
0.930

0.945
0.948

0.966
790

≈
16.37K

B
/
≈

0.00K
B

0.011
sec.

R
W

T
M

0.916
0.949

0.931
0.931

0.913
66310

≈
65.53K

B
/
≈

0.00K
B

0.910
sec.

IW
T

M
0.946

0.966
0.954

0.953
0.941

120
≈

16.37K
B

/
≈

0.00K
B

0.015
sec.

167

2 10 100 500 2000 8000
No. of Clauses

0

10000

20000

30000

40000

50000

60000

No
. o

f L
ite

ra
ls

Literals of Balance Scale
IWTM
TM
RWTM

Figure F.7: The number of literals included in different TM setups to work with Balance

Scale dataset.

10% 20% 30% 40% 50% 60% 70% 80% 90%
Training data percentage

0.80

0.85

0.90

0.95

1.00

F1
-s

co
re

Sample Complexity for Balance Scale
ANN-1
ANN-2
ANN-3
DT
SVM
KNN
RF
XGBoost
EBM
TM
RWTM
IWTM

Figure F.8: Sample complexity analysis for the Balance Scale dataset.

We first cover the Balance Scale dataset2, which contains three classes: balance scale

tip to the right, tip to the left, or is in balance. The dataset also contains four features: 1)

size of the weight on the left-hand side, 2) distance from the center to the weight on the

left, 3) size of the weight on the right-hand side, and 4) distance from the center to the

weight on the right. To make the output binary, we remove the ”balanced” class ending

up with 576 data samples.

Table F.8, Table F.9, and Table F.10 contain the results of TM, RWTM, and IWTM,

respectively, with varying m. For the TM, F1-Score peaks at 0.945 when m = 100. At the

peak, 790 literals are used on average. RWTM obtains its best F1-Score with 500 clauses,

using an average of 4406 literals overall. In contrast, IWTM reaches its best F1-Score

using only 120 literals, distributed among 100 clauses. Again, IWTM uses significantly

fewer literals than TM and RWTM.

The average number of literals used for varying number of clauses is plotted in Fig-

ure F.7. IWTM uses the least number of literals, with the difference increasing with

number of clauses.

Table F.11 summarises the performance also of the other machine learning techniques

we contrast against. Here, EBM obtains the highest F1-Score and Accuracy. Out of

2Available from http://archive.ics.uci.edu/ml/datasets/balance+scale.

168

http://archive.ics.uci.edu/ml/datasets/balance+scale

Table F.12: Performance of TM on Breast Cancer dataset.

m 2 10 100 500 2000 8000

Precision 0.518 0.485 0.295 0.101 0.058 0.054

Recall 0.583 0.380 0.416 0.205 0.200 0.250

F1-Score 0.531 0.389 0.283 0.089 0.090 0.088

Accuracy 0.703 0.737 0.644 0.633 0.649 0.581

Specificity 0.742 0.864 0.731 0.800 0.800 0.750

No. of Lit. 21 73 70 407 1637 6674

Table F.13: Performance of RWTM on Breast Cancer dataset.

m 2 10 100 500 2000 8000

Precision 0.461 0.645 0.781 0.768 0.530 0.250

Recall 0.576 0.389 0.306 0.220 0.099 0.027

F1-Score 0.493 0.472 0.423 0.334 0.162 0.047

Accuracy 0.706 0.767 0.778 0.770 0.740 0.722

Specificity 0.758 0.913 0.961 0.975 0.992 1.000

No. of Lit. 4 59 232 445 1532 6608

Table F.14: Performance of IWTM on Breast Cancer dataset.

m 2 10 100 500 2000 8000

Precision 0.396 0.555 0.182 0.242 0.289 0.189

Recall 0.766 0.502 0.055 0.144 0.255 0.284

F1-Score 0.511 0.510 0.070 0.104 0.172 0.163

Accuracy 0.604 0.731 0.727 0.705 0.643 0.644

Specificity 0.545 0.824 0.979 0.895 0.815 0.783

No. of Lit. 2 9 25 84 355 1306

the three TMs, IWTM achieves the highest F1-Score and Accuracy, using similar or less

training memory. The training time required by IWTM is close to the training time of

TM, and roughly 60 times less compared to RWTM. According to the sample complexity

analysis in Figure F.8, IWTM reaches an F1-Score of 0.90 with merely 10% of the training

data, and approaches 0.95 from 20%.

F.3.3 Breast Cancer

The Breast Cancer dataset3 covers recurrence of breast cancer, and consists of nine fea-

tures: Age, Menopause, Tumor Size, Inv Nodes, Node Caps, Deg Malig, Side (left or

right), the Position of the Breast, and Irradiation Status. The dataset contains 286 pa-

tients (201 with non-recurrence and 85 with recurrence). However, some of the patient

samples miss some of the feature values. These samples are removed from the dataset in

the present experiment.

3Available from https://archive.ics.uci.edu/ml/datasets/Breast+Cancer

169

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer

T
ab

le
F

.15:
P

erform
an

ce
com

p
arison

for
B

reast
C

an
cer

d
ataset.

P
recision

R
ecall

F
1

A
ccu

racy
S
p

ecifi
city

N
o.

of
L

it.
M

em
ory

R
eq

u
ired

(T
rain

in
g/T

estin
g)

T
rain

in
g

T
im

e

A
N

N
-1

0.489
0.455

0.458
0.719

0.822
-

≈
1001.97K

B
/
≈

35.74K
B

0.249
sec.

A
N

N
-2

0.430
0.398

0.403
0.683

0.792
-

≈
3498.47K

B
/
≈

608.71K
B

0.248
sec.

A
N

N
-3

0.469
0.406

0.422
0.685

0.808
-

≈
38645.07K

B
/
≈

1837.76K
B

0.288
sec.

D
T

0.415
0.222

0.276
0.706

0.915
-

≈
102.39K

B
/
≈

0.00K
B

0.005
sec.

S
V

M
0.428

0.364
0.384

0.678
0.805

-
≈

241.66K
B

/
≈

299.00K
B

0.001
sec.

K
N

N
0.535

0.423
0.458

0.755
0.871

-
≈

249.85K
B

/
≈

61.43K
B

0.001
sec.

R
F

0.718
0.267

0.370
0.747

0.947
-

≈
139.26K

B
/
≈

0.00K
B

0.020
sec.

X
G

B
o
ost

0.428
0.344

0.367
0.719

0.857
-

≈
1327.10K

B
/
≈

0.00K
B

0.026
sec.

E
B

M
0.713

0.281
0.389

0.745
0.944

-
≈

1724.41K
B

/
≈

0.00K
B

6.
007

sec.

T
M

0.518
0.583

0.531
0.703

0.742
21

≈
0.00K

B
/
≈

0.00K
B

0.001
sec.

R
W

T
M

0.461
0.576

0.493
0.706

0.758
4

≈
0.00K

B
/
≈

0.00K
B

0.001
sec.

IW
T

M
0.396

0.766
0.511

0.604
0.545

2
≈

0.00K
B

/
≈

0.00K
B

0.001
sec.

170

2 10 100 500 2000 8000
No. of Clauses

0

1000

2000

3000

4000

5000

6000

7000

No
. o

f L
ite

ra
ls

Literals of Breast Cancer
IWTM
TM
RWTM

Figure F.9: The number of literals included in different TM setups to work with Breast

Cancer dataset.

10% 20% 30% 40% 50% 60% 70% 80% 90%
Training data percentage

0.1

0.2

0.3

0.4

0.5

F1
-s

co
re

Sample Complexity for Breast Cancer
ANN-1
ANN-2
ANN-3
DT
SVM
KNN
RF
XGBoost
EBM
TM
RWTM
IWTM

Figure F.10: Sample complexity analysis for the Breast Cancer dataset.

The accuracy and number of literals included for TM, RWTM, and IWTM are re-

spectively summarized in Table F.12, Table F.13, and Table F.14. In contrast to the

previous two datasets, the F1-Score peaks at m = 2, and then drops with increasing m.

For m = 2, the average number of literals used by TM, RWTM, and IWTM are 21, 4,

and 2, respectively. As seen in Figure F.9, IWTM requires the least amount of literals

overall.

The performance of the other machine learning techniques is similar in terms of F1-

Score, with DT, RF, SVM, XGBoost, and EBM providing the worst performance as

summarized in Table F.15. The best F1-Score is obtained by TM while IWTM provides

the second-best. Yet, the moderate increase of F1-Score from 0.511 to 0.531 for TM comes

at the cost of 19 extra literals. The three TMs also uses the least memory, requiring

negligible memory both during training and testing. Training time per epoch for the

TM approaches is also small, amounting to 0.001 seconds, which is the lowest of all the

algorithms. The TMs also maintain better F1-Scores across all training data sizes in

comparison with the other techniques, as seen from the sample complexity analysis in

Figure F.10.

171

F.3.4 Liver Disorders

The Liver Disorders dataset4 was created by BUPA Medical Research and Develop-

ment Ltd. (hereafter “BMRDL”) during the 1980s as part of a larger health-screening

database. The dataset consists of 7 attributes, namely Mean Corpuscular Volume, Al-

kaline Phosphotase, Alamine Aminotransferase, Aspartate Aminotransferase, Gamma-

Glutamyl Transpeptidase, Number of Half-Pint Equivalents of Alcoholic Beverages (drunk

per day), and Selector (used to split data into training and testing sets). However, Mc-

Dermott and Forsyth [39] claim that many researchers have used the dataset incorrectly,

considering the Selector attribute as class label. Based on the recommendation of McDer-

mott and Forsythof, we here instead use Number of Half-Pint Equivalents of Alcoholic

Beverages as the dependent variable, binarized using the threshold ≥ 3. The Selector

attribute is discarded. The remaining attributes represent the results of various blood

tests, and we use them as features.

Table F.17, Table F.18, and Table F.19 summarizes the performance of TM, RWTM,

and IWTM, respectively. As seen, all of the TM F1-Scores peak at m = 2. TM uses an

average of 27 literals, RWTM uses 29, while IWTM uses 9. Figure F.11 plots how the

number of literals increases with number of clauses, again confirming that IWTM uses

fewer literals overall.

2 10 100 500 2000 8000
No. of Clauses

0

2000

4000

6000

8000

10000

No
. o

f L
ite

ra
ls

Literals of Liver Disorders
IWTM
TM
RWTM

Figure F.11: The number of literals included in different TM setups to work with the

Liver Disorders dataset.

Considering the other machine learning techniques (Table F.16), RF produces the

highest F1-Score 0.729, obtained with the smallest memory usage for both training and

testing. However, this performance is comparable to the DT F1-Score of 0.728, spending

negligible testing memory. Of the three TM approaches, RWTM obtains the highest F1-

Score - the fourth highest among all of the techniques. All three TMs use insignificant

memory during both training and testing, requiring the same amount of training time per

epoch.

With 10% of the training data available, IWTM obtains the highest F1-Score among

all the techniques – a score of 0.725. After that, the score fluctuates with increasing

training data size, as depicted in Figure F.12.

4Available from https://archive.ics.uci.edu/ml/datasets/Liver+Disorders.

172

https://archive.ics.uci.edu/ml/datasets/Liver+Disorders

T
ab

le
F

.16:
P

erform
an

ce
com

p
arison

for
L

iver
D

isord
ers

d
ataset.

P
recision

R
ecall

F
1

A
ccu

racy
S
p

ecifi
city

N
o.

of
L

it.
M

em
ory

R
eq

u
ired

(T
rain

in
g/T

estin
g)

T
rain

in
g

T
im

e

A
N

N
-1

0.651
0.702

0.671
0.612

0.490
-

≈
985.13K

B
/
≈

18.53K
B

0.305
sec.

A
N

N
-2

0.648
0.664

0.652
0.594

0.505
-

≈
3689.39K

B
/
≈

598.26K
B

0.305
sec.

A
N

N
-3

0.650
0.670

0.656
0.602

0.508
-

≈
38365.46K

B
/
≈

1758.23K
B

0.356
sec.

D
T

0.591
0.957

0.728
0.596

0.135
-

≈
49.15K

B
/
≈

0.00K
B

0.025
sec.

S
V

M
0.630

0.624
0.622

0.571
0.500

-
≈

1597.43K
B

/
≈

0.00K
B

0.005
sec.

K
N

N
0.629

0.651
0.638

0.566
0.440

-
≈

0.00K
B

/
≈

434.17K
B

0.001
sec.

R
F

0.618
0.901

0.729
0.607

0.192
-

≈
0.00K

B
/
≈

0.00K
B

0.017
sec.

X
G

B
o
ost

0.641
0.677

0.656
0.635

0.568
-

≈
3219.45K

B
/
≈

0.00K
B

0.081
sec.

E
B

M
0.641

0.804
0.710

0.629
0.406

-
≈

7790.59K
B

/
≈

0.00K
B

10.772
sec.

T
M

0.566
0.799

0.648
0.533

0.204
27

≈
0.00K

B
/
≈

0.00K
B

0.003
sec.

R
W

T
M

0.607
0.811

0.688
0.581

0.226
29

≈
0.00K

B
/
≈

0.00K
B

0.003
sec.

IW
T

M
0.570

0.869
0.680

0.576
0.140

9
≈

0.00K
B

/
≈

0.00K
B

0.003
sec.

173

Table F.17: Performance of TM on Liver Disorders dataset.

m 2 10 100 500 2000 8000

Precision 0.566 0.540 0.506 0.455 0.442 0.417

Recall 0.799 0.597 0.508 0.595 0.500 0.593

F1-Score 0.648 0.550 0.389 0.450 0.375 0.437

Accuracy 0.533 0.540 0.516 0.522 0.526 0.504

Specificity 0.204 0.436 0.497 0.395 0.500 0.396

No. of Lit. 27 51 117 509 2315 8771

Table F.18: Performance of RWTM on Liver Disorders dataset.

m 2 10 100 500 2000 8000

Precision 0.607 0.625 0.645 0.632 0.613 0.608

Recall 0.811 0.691 0.616 0.621 0.596 0.546

F1-Score 0.688 0.653 0.627 0.620 0.599 0.571

Accuracy 0.581 0.580 0.566 0.573 0.556 0.532

Specificity 0.226 0.417 0.492 0.508 0.501 0.513

No. of Lit. 29 68 238 995 3877 10584

10% 20% 30% 40% 50% 60% 70% 80% 90%
Training data percentage

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

F1
-s

co
re

Sample Complexity for Liver Disorders
ANN-1
ANN-2
ANN-3
DT
SVM
KNN
RF
XGBoost
EBM
TM
RWTM
IWTM

Figure F.12: Sample complexity analysis for the Liver Disorders dataset.

174

Table F.19: Performance of IWTM on Liver Disorders dataset.

m 2 10 100 500 2000 8000

Precision 0.570 0.500 0.366 0.233 0.285 0.258

Recall 0.869 0.708 0.459 0.398 0.500 0.450

F1-Score 0.680 0.575 0.376 0.293 0.362 0.327

Accuracy 0.576 0.557 0.504 0.470 0.510 0.479

Specificity 0.140 0.339 0.553 0.602 0.500 0.550

No. of Lit. 9 13 26 116 353 1014

2 10 100 500 2000 8000
No. of Clauses

0

10000

20000

30000

40000

50000

60000

No
. o

f L
ite

ra
ls

Literals of Heart Disease
IWTM
TM
RWTM

Figure F.13: The number of literals included in different TM setups to work with Heart

Disease dataset.

F.3.5 Heart Disease

The Heart Disease dataset5 concerns prediction of heart disease. To this end, 13 features

are available, selected among 75. Out of the 13 features, 6 are real-valued, 3 are binary,

3 are nominal, and one is ordered.

Table F.21, Table F.22, and Table F.23 summarize the performance of TM, RWTM,

and IWTM on the Heart Disease dataset. For the TM, the best F1-Score occurs with

m = 10, achieved by using 346 literals on average. The RWTM F1-Score peaks at

m = 2000 with 18 528 literals. IWTM peaks at m = 10, with slightly lower F1-Score,

however, employing only 226 literals on average.

Considering the number of literals used with increasing number of clauses (Figure F.13),

TM and IWTM behave similarly, while RWTM requires significantly more literals.

Out of the considered machine learning models, EBM obtains the best F1-Score, while

RWTM, IWTM, and ANN-2 follow closely behind (Table F.20). However, EBM needs

the highest training time and uses the second largest training memory, while all three

TMs use negligible memory during both training and testing. Apart from DT, all of

the machine learning models surpass an F1-Score of 0.5 using only 10% of the training

data, as shown in Figure F.14. From 30% onward, the F1-Score of all the models behaves

similarly, with EBM being superior after 60%.

5Available from https://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29.

175

https://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29

T
ab

le
F

.20:
P

erform
an

ce
com

p
arison

for
H

eart
D

isease
d
ataset.

P
recision

R
ecall

F
1

A
ccu

racy
S
p

ecifi
city

N
o.

of
L

it.
M

em
ory

R
eq

u
ired

(T
rain

in
g/T

estin
g)

T
rain

in
g

T
im

e

A
N

N
-1

0.764
0.724

0.738
0.772

0.811
-

≈
973.64K

B
/
≈

16.46K
B

0.297
sec.

A
N

N
-2

0.755
0.736

0.742
0.769

0.791
-

≈
3659.59K

B
/
≈

578.11K
B

0.266
sec.

A
N

N
-3

0.661
0.662

0.650
0.734

0.784
-

≈
33952.49K

B
/
≈

1513.41K
B

0.308
sec.

D
T

0.827
0.664

0.729
0.781

0.884
-

≈
0.00K

B
/
≈

266.23K
B

0.016
sec.

S
V

M
0.693

0.674
0.679

0.710
0.740

-
≈

1363.96K
B

/
≈

262.14K
B

0.004
sec.

K
N

N
0.682

0.615
0.641

0.714
0.791

-
≈

0.00K
B

/
≈

319.48K
B

0.001
sec.

R
F

0.810
0.648

0.713
0.774

0.879
-

≈
413.69K

B
/
≈

0.00K
B

0.017
sec.

X
G

B
o
ost

0.712
0.696

0.701
0.788

0.863
-

≈
3694.58K

B
/
≈

0.00K
B

0.057
sec.

E
B

M
0.827

0.747
0.783

0.824
0.885

-
≈

4763.64K
B

/
≈

0.00K
B

11.657
sec.

T
M

0.607
0.815

0.687
0.672

0.566
346

≈
0.00K

B
/
≈

0.00K
B

0.014
sec.

R
W

T
M

0.735
0.788

0.757
0.790

0.784
18528

≈
237.56K

B
/
≈

0.00K
B

1.559
sec.

IW
T

M
0.694

0.801
0.740

0.743
0.692

226
≈

0.00K
B

/
≈

0.00K
B

0.010
sec.

176

Table F.21: Performance of TM on Heart Disease dataset.

m 2 10 100 500 2000 8000

Precision 0.547 0.607 0.835 0.507 0.351 0.360

Recall 0.938 0.815 0.626 0.408 0.646 0.486

F1-Score 0.682 0.687 0.665 0.383 0.446 0.392

Accuracy 0.593 0.672 0.749 0.619 0.533 0.584

Specificity 0.306 0.566 0.848 0.803 0.460 0.665

No. of Lit. 118 346 810 1425 11399 52071

Table F.22: Performance of RWTM on Heart Disease dataset.

m 2 10 100 500 2000 8000

Precision 0.567 0.610 0.672 0.697 0.735 0.752

Recall 0.908 0.855 0.806 0.820 0.788 0.769

F1-Score 0.695 0.707 0.725 0.748 0.757 0.754

Accuracy 0.640 0.693 0.740 0.779 0.790 0.781

Specificity 0.417 0.571 0.691 0.752 0.784 0.792

No. of Lit. 160 458 1031 16512 18528 58432

Table F.23: Performance of IWTM on Heart Disease dataset.

m 2 10 100 500 2000 8000

Precision 0.550 0.694 0.797 0.701 0.725 0.848

Recall 0.929 0.801 0.723 0.696 0.661 0.523

F1-Score 0.687 0.740 0.716 0.619 0.609 0.580

Accuracy 0.625 0.743 0.773 0.678 0.669 0.696

Specificity 0.371 0.692 0.797 0.646 0.669 0.823

No. of Lit. 81 226 609 1171 7459 40894

F.3.6 Summary of Empirical Evaluation

To compare overall performance of the various techniques, we calculate average F1-Score

across the datasets. Further to evaluate overall interpretability of TM, RWTM and

IWTM, we also report average number of literals used, overall.

In all brevity, the average F1-Score of ANN-1, ANN-2, ANN-3, DT, SVM, KNN, RF,

TM, XGBoost, EBM, RWTM, and IWTM are 0.770, 0.757, 0.744, 0.742, 0.713, 0.737,

0.724 0.728, 0.775, 0.762, 0.774, and 0.777, respectively. Out of all the considered models,

IWTM obtains the best average F1-Score, which is 0.777. Also notice that increasing

ANN model complexity (from ANN-1 to ANN-3) reduces overall F1-Score, which can

potentially be explained by the small size of the datasets.

The F1-Score of RWTM is also competitive, however, it requires much more literals

than IWTM. Indeed, the average number of literals employed are 961 for TM, 17 670 for

RWTM, and 147 for IWTM. That is, IWTM uses 6.5 times fewer literals than TM, and

120 times fewer literals than RWTM.

177

10% 20% 30% 40% 50% 60% 70% 80% 90%
Training data percentage

0.3

0.4

0.5

0.6

0.7

0.8

F1
-s

co
re

Sample Complexity for Heart Disease
ANN-1
ANN-2
ANN-3
DT
SVM
KNN
RF
XGBoost
EBM
TM
RWTM
IWTM

Figure F.14: Sample complexity analysis for the Heart Disease dataset.

The average combined memory requirement (training + testing) by TM, RWTM, and

IWTM are 3.27 KB, 79.46 KB, and 3.27, respectively. The combined memory usage of

IWTM is significantly less compared to the other models – ANN-1: ≈ 305 times, ANN-2:

≈ 1 278 times, ANN-3: ≈ 11 096 times, DT: ≈ 34 times, SVM: ≈ 255 times, KNN: ≈
106 times, RF: ≈ 45 times, XGBoost: ≈ 877 times, EBM: ≈ 1226 times, and RWTM: ≈
24 times.

F.3.7 Comparison against recent state-of-the-art machine learn-

ing models

In this section, we compare IWTM accuracy with reported results on recent state-of-

the-art machine learning models. First, we perform experiments on Fraud Detection

and COMPAS: Risk Prediction in Criminal Justice datasets to study the performance

of IWTM in comparison with Neural Additive Models [11]. A Neural Additive Model

is a novel member of so-called general adaptive models. In Neural Additive Models, the

significance of each input feature towards the output is learned by a dedicated neural

network. During the training phase, the complete set of neural networks are jointly

trained to learn complex interactions between inputs and outputs.

To compare the performance against StructureBoost [34], we use the CA weather

dataset [40]. For simplicity, we use only the CA-58 subset of the dataset in this study.

StructureBoost is based on gradient boosting and is capable of exploiting the structure of

categorical variables. StructureBoost outperforms established models such as CatBoost

and LightBoost on multiple classification tasks [34].

Since the performance of both of the above techniques has been measured in terms of

Area under the ROC Curve (AUC), we here use a soft TM output layer [41] to calculate

AUC. The performance characteristics are summarized in Table F.24.

Table F.24 shows that on Fraud Detection, IWTM outperforms NAMs and all the

other techniques mentioned in [11]. On the COMPAS dataset, IWTM exhibits competi-

tive performance compared to NAMs, EBM, XGBoost, and DNNs. IWTM shows, how-

ever, superior performance compared to Logistic Regression and DT on COMPAS. The

performance of IWTM on CA-20 is better in comparison to StructureBoost, LightBoost,

and CatBoost models, reported in [34].

178

Table F.24: Performance (in AUC) comparison against recent state-of-the-art machine

learning models.

Model Fraud Detection COMPAS CA-58

Logistic Regression 0.975 0.730 -

DT 0.956 0.723 -

NAMs 0.980 0.741 -

EBM 0.976 0.740 -

XGBoost 0.981 0.742 -

DNNs 0.978 0.735 -

LightBoost - - ≈ 0.760†
CatBoost - - ≈ 0.760†

StructureBoost - - ≈ 0.764†
IWTM 0.990 0.732 0.772

†These results were extracted from graphs in [34]

F.4 Conclusion

In this paper, we proposed a novel Tsetlin Machine (TM) having integer weights attached

to clauses, to address the accuracy-interpretability challenge in machine learning. In

our proposed TM (denoted IWTM), the weights are learnt using the stochastic search-

ing on the line (SSL) automaton. The weights attached to the clauses help the TM to

represent sub-patterns in a more compact way. Since integer weights can turn off unim-

portant clauses by setting their weight to 0, this allows the TM to create a classifier with

fewer number of literals compared to the vanilla TM and the Real-Value Weighted TM

(RWTM). We have provided empirical evidence by generating rules for several datasets.

In conclusion, the IWTM obtains on par or better accuracy compared to the vanilla TM

and the RWTM while using respectively 6.5 and 125 times fewer literals. Furthermore, in

terms of average F1-Score, the proposed IWTM also outperforms several state-of-the-art

machine learning algorithms.

In our future work, we intend to investigate more advanced SSL schemes, such as

Continuous Point Location with Adaptive Tertiary Search (CPL-ATS) [42] and Random

Walk-based Triple Level Learning Algorithm (RWTLA) [43], including their impact on

interpretability.

179

Bibliography

[1] Christoph Molnar. Interpretable Machine Learning. Lulu. com, 2019.

[2] Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian Jiang, and Joel T Dudley.

“Deep Learning for Healthcare: Review, Opportunities and Challenges”. In: Brief-

ings in bioinformatics 19.6 (2018), pp. 1236–1246.

[3] Bart Baesens, Christophe Mues, Manu De Backer, Jan Vanthienen, and Rudy Se-

tiono. “Building Intelligent Credit Scoring Systems Using Decision Tables”. In: En-

terprise Information Systems V. Springer, 2004, pp. 131–137.

[4] Johan Huysmans, Karel Dejaeger, Christophe Mues, Jan Vanthienen, and Bart Bae-

sens. “An Empirical Evaluation of the Comprehensibility of Decision Table, Tree and

Rule Based Predictive Models”. In: Decision Support Systems 51.1 (2011), pp. 141–

154.

[5] Riccardo Bellazzi and Blaz Zupan. “Predictive Data Mining in Clinical Medicine:

Current Issues and Guidelines”. In: International journal of medical informatics

77.2 (2008), pp. 81–97.

[6] Michael J Pazzani, S Mani, and William R Shankle. “Acceptance of Rules Gener-

ated by Machine Learning Among Medical Experts”. In: Methods of information in

medicine 40.05 (2001), pp. 380–385.

[7] Alex A Freitas, Daniela C Wieser, and Rolf Apweiler. “On the Importance of Com-

prehensible Classification Models for Protein Function Prediction”. In: IEEE/ACM

Transactions on Computational Biology and Bioinformatics 7.1 (2008), pp. 172–

182.

[8] Duane Szafron, Paul Lu, Russell Greiner, David S Wishart, Brett Poulin, Roman

Eisner, Zhiyong Lu, John Anvik, Cam Macdonell, Alona Fyshe, et al. “Proteome

Analyst: Custom Predictions With Explanations in a Web-Based Tool for High-

Throughput proteome Annotations”. In: Nucleic acids research 32.suppl 2 (2004),

W365–W371.

[9] Elen Lima, Christophe Mues, and Bart Baesens. “Domain Knowledge Integration in

Data Mining Using Decision Tables: Case Studies in Churn Prediction”. In: Journal

of the Operational Research Society 60.8 (2009), pp. 1096–1106.

[10] Wouter Verbeke, David Martens, Christophe Mues, and Bart Baesens. “Building

Comprehensible Customer Churn Prediction Models with Advanced Rule Induction

Techniques”. In: Expert systems with applications 38.3 (2011), pp. 2354–2364.

181

[11] Rishabh Agarwal, Nicholas Frosst, Xuezhou Zhang, Rich Caruana, and Geoffrey

E Hinton. “Neural Additive Models: Interpretable Machine Learning with Neural

Nets”. In: arXiv preprint arXiv:2004.13912 (2020).

[12] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “”Why Should I Trust

You?” Explaining the Predictions of any Classifier”. In: Proceedings of the 22nd

ACM SIGKDD international conference on knowledge discovery and data mining.

2016, pp. 1135–1144.

[13] Cynthia Rudin. “Stop Explaining Black Box Machine Learning Models for High

Stakes Decisions and Use Interpretable Models Instead”. In: Nature Machine Intel-

ligence 1.5 (2019), pp. 206–215.

[14] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. “Mining Association Rules

Between Sets of Items in Large Databases”. In: SIGMOD Rec. 22.2 (1993), pp. 207–

216. issn: 0163-5808.

[15] Tyler McCormick, Cynthia Rudin, and David Madigan. “A Hierarchical Model for

Association Rule Mining of Sequential Events: An Approach to Automated Medical

Symptom Prediction”. In: Annals of Applied Statistics (2011).

[16] Vitaly Feldman. “Hardness of Approximate Two-Level Logic Minimization and PAC

Learning with Membership Queries”. In: Jrnl. of Computer and System Sciences

75.1 (2009), pp. 13–26.

[17] Leslie G Valiant. “A Theory of the Learnable”. In: Communications of the ACM

27.11 (1984), pp. 1134–1142.

[18] Tong Wang, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl, and

Perry MacNeille. “A Bayesian Framework for Learning Rule Sets for Interpretable

Classification”. In: The Journal of Machine Learning Research (JMLR) 18.1 (2017),

pp. 2357–2393.

[19] John R Hauser, Olivier Toubia, Theodoros Evgeniou, Rene Befurt, and Daria Dzyabura.

“Disjunctions of Conjunctions, Cognitive Simplicity, and Consideration Sets”. In:

Jrnl. of Marketing Research 47.3 (2010), pp. 485–496.

[20] Yitao Liang and Guy Van den Broeck. “Learning Logistic Circuits”. In: Proceedings

of the 33rd AAAI Conference on Artificial Intelligence. Vol. 33. 2019, pp. 4277–

4286.

[21] Ole-Christoffer Granmo. “The Tsetlin Machine - A game Theoretic Bandit Driven

Approach to Optimal Pattern Recognition With Propositional Logic”. In: arXiv

preprint arXiv:1804.01508 (2018).

[22] Adrian Phoulady, Ole-Christoffer Granmo, Saeed Rahimi Gorji, and Hady Ah-

mady Phoulady. “The Weighted Tsetlin Machine: Compressed Representations with

Clause Weighting”. In: Ninth International Workshop on Statistical Relational AI

(StarAI 2020). 2020.

182

[23] Geir Thore Berge, Ole-Christoffer Granmo, Tor Oddbjørn Tveit, Morten Good-

win, Lei Jiao, and Bernt Viggo Matheussen. “Using the Tsetlin Machine to Learn

Human-Interpretable Rules for High-Accuracy Text Categorization With Medical

Applications”. In: IEEE Access 7 (2019), pp. 115134–115146.

[24] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, Lei Jiao, and

Morten Goodwin. “The Regression Tsetlin Machine - A Novel Approach to Inter-

pretable Non-Linear Regression”. In: Philosophical Transactions of the Royal Society

A 378 (2164 2019).

[25] Saeed Rahimi Gorji, Ole-Christoffer Granmo, Adrian Phoulady, and Morten Good-

win. “A Tsetlin Machine with Multigranular Clauses”. In: Lecture Notes in Com-

puter Science: Proceedings of the Thirty-ninth International Conference on Innova-

tive Techniques and Applications of Artificial Intelligence (SGAI-2019). Vol. 11927.

Springer International Publishing, 2019.

[26] Saeed Gorji, Ole Christoffer Granmo, Sondre Glimsdal, Jonathan Edwards, and

Morten Goodwin. “Increasing the Inference and Learning Speed of Tsetlin Machines

with Clause Indexing”. In: International Conference on Industrial, Engineering and

Other Applications of Applied Intelligent Systems. Springer. 2020.

[27] Adrian Wheeldon, Rishad Shafik, Alex Yakovlev, Jonathan Edwards, Ibrahim Had-

dadi, and Ole-Christoffer Granmo. “Tsetlin Machine: A New Paradigm for Pervasive

AI”. In: Proceedings of the SCONA Workshop at Design, Automation and Test in

Europe (DATE). 2020.

[28] Michael Lvovitch Tsetlin. “On Behaviour of Finite Automata in Random Medium”.

In: Avtomat. i Telemekh 22.10 (1961), pp. 1345–1354.

[29] Ole-Christoffer Granmo, Sondre Glimsdal, Lei Jiao, Morten Goodwin, Christian

W. Omlin, and Geir Thore Berge. “The Convolutional Tsetlin Machine”. In: arXiv

preprint:1905.09688 (2019).

[30] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, and Morten Good-

win. “A Scheme for Continuous Input to the Tsetlin Machine With Applications

to Forecasting Disease Outbreaks”. In: International Conference on Industrial, En-

gineering and Other Applications of Applied Intelligent Systems. Springer. 2019,

pp. 564–578.

[31] B John Oommen. “Stochastic Searching On the Line and Its Applications to Pa-

rameter Learning in Nonlinear Optimization”. In: IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics) 27.4 (1997), pp. 733–739.

[32] Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caruana. “InterpretML: A Uni-

fied Framework for Machine Learning Interpretability”. In: arXiv preprint arXiv:1909.09223

(2019).

[33] Yin Lou, Rich Caruana, and Johannes Gehrke. “Intelligible Models for Classification

and Regression”. In: Proceedings of the 18th ACM SIGKDD international conference

on Knowledge discovery and data mining. 2012, pp. 150–158.

183

[34] Brian Lucena. “StructureBoost: Efficient Gradient Boosting for Structured Cate-

gorical Variables”. In: arXiv preprint arXiv:2007.04446 (2020).

[35] Kumpati S Narendra and Mandayam AL Thathachar. Learning Automata: An In-

troduction. Courier corporation, 2012.

[36] Ian Chivers and Jane Sleightholme. “An Introduction to Algorithms and the Big O

Notation”. In: Introduction to Programming with Fortran. Springer, 2015, pp. 359–

364.

[37] Tianqi Chen and Carlos Guestrin. “Xgboost: A Scalable Tree Boosting System”. In:

Proceedings of the 22nd acm sigkdd international conference on knowledge discovery

and data mining. 2016, pp. 785–794.

[38] Myoung-Jong Kim and Ingoo Han. “The Discovery of Experts’ Decision Rules From

Qualitative Bankruptcy Data Using Genetic Algorithms”. In: Expert Systems with

Applications 25.4 (2003), pp. 637–646.

[39] James McDermott and Richard S Forsyth. “Diagnosing a Disorder in a Classification

Benchmark”. In: Pattern Recognition Letters 73 (2016), pp. 41–43.

[40] Brian Lucena. “Exploiting Categorical Structure Using Tree-Based Methods”. In:

arXiv preprint arXiv:2004.07383 (2020).

[41] K. Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten Goodwin. “On Ob-

taining Classification Confidence, Ranked Predictions and AUC with Tsetlin Ma-

chines”. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI).

IEEE. 2020.

[42] B John Oommen and Govindachari Raghunath. “Automata Learning and Intelli-

gent Tertiary Searching for Stochastic Point Location”. In: IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics) 28.6 (1998), pp. 947–954.

[43] Wen Jiang, De-Shuang Huang, and Shenghong Li. “Random Walk-Based Solution

to Triple Level Stochastic Point Location Problem”. In: IEEE transactions on cy-

bernetics 46.6 (2015), pp. 1438–1451.

184

Paper G

On Obtaining Classification

Confidence, Ranked Predictions and

AUC with Tsetlin Machines

Tsetlin machines (TMs) are a promising approach to machine learning that uses

Tsetlin Automata to produce patterns in propositional logic, leading to binary (hard)

classifications. In many applications, however, one needs to know the confidence of

classifications, e.g. to facilitate risk management. In this paper, we propose a novel

scheme for measuring TM confidence based on the logistic function, calculated from

the propositional logic patterns that match the input. We then use this scheme to

trade off precision against recall, producing area under receiver operating character-

istic curves (AUC) for TMs. Empirically, using four real-world datasets, we show

that AUC is a more sensitive measure of TM performance compared to Accuracy.

Further, the AUC-based evaluations show that the TM performs on par or better

than widely used machine learning algorithms. We thus believe our scheme will

make the TM more suitable for use in decision support, where the user needs to

inspect and validate predictions, in particular, those being uncertain.

G.1 Introduction

The demand for interpretable machine learning methods is rapidly increasing due to

widespread deployment in high-risk domains where the consequences of errors can be

severe. Examples of such domains are credit scoring [1, 2], medical treatment [3, 4],

bioinformatics [5, 6], and churn prediction [7, 8]. These domains demand transparency of

predictions, in addition to reliable metrics for performance assessment, including Preci-

sion, Recall, F1-Score, and Accuracy [9, 10, 11].

Tsetlin machines (TMs) [12, 13, 14] are a recent rule-based machine learning approach

that forms a high-accuracy alternative to widely used interpretable techniques, such as

Linear Regression, Logistic Regression and Decision Trees, which suffers from poor accu-

racy [15]. When compared to state-of-the-art machine learning techniques like Convolu-

tional Neural Networks, LSTM, Random Forest, and XGBoost, TMs exhibit competitive

185

performance with regard to accuracy [14, 13, 16], memory footprint [16, 17], energy [17],

and learning speed [16, 17]. However, while TMs support both global and local inter-

pretability [18], decisions are binary (hard), making them less suitable for applications

that require trading off precision against recall.

Indeed, Huang et al. [19] and Bradley [20] stress the importance of receiver operating

characteristic (ROC) curves and area under ROC (AUC) for assessing machine learning

techniques, as they capture the relationship between sensitivity and specificity. Further,

getting access to the confidence of classifications can be important in many applications.

One example is direct marketing, where it may be advantageous to approach the most

likely buyers first, given limited time and resources. Accordingly, the ranking of predic-

tions, based on confidence, opens up for additional applications than mere classification

[21].

Paper Contributions and Organization: In this paper, we propose a novel ap-

proach to measuring the classification confidence of TMs. In Section G.2, we introduce

the basics of TMs. Then, in Section G.3, we propose an approach for calculating a clas-

sification confidence score from the propositional logic expressions that match the input.

Based on the confidence score, we demonstrate how to rank predictions, producing ROC

curves and calculating AUC in Section G.4. Then, in Section G.5, we show that AUC is

a more sensitive measure of TM performance compared to Accuracy. We further provide

AUC-based evaluations that show that the TM performs on par or better than widely

used machine learning algorithms: Decision Tree (DT), Support Vector Machine (SVM),

Logistic Regression (LR), K-Nearest Neighbor (KNN), Random Forest (RF), and Artifi-

cial Neural Networks (ANNs). Finally, we conclude in Section G.6, summarizing our key

findings.

G.2 The Tsetlin Machine

Conceptually, a TM consists of five layers, as illustrated by Figure G.1. In this section,

we first explain the role of each of these layers when performing classification. We then

go into the details of TM learning.

G.2.1 Layer 1 – Input Layer

A TM takes a feature vector X ∈ {0, 1}o of o propositional variables xk ∈ {0, 1} as input.

To increase expression power, this feature vector is extended with the negation of the

original features: X′ = [x1, x2, x3, . . . , xo, ¬x1,¬x2,¬x3, . . . ,¬xo]. Jointly, the elements of

the extended feature vector X′ are referred to as literals.

G.2.2 Layer 2 – Clause Layer

The clause layer processes literals from the input layer. To this end, the clause layer

comprises m conjunctive clauses, which are to capture sub-patterns in the data. Each

186

𝑿′ = [𝑥1, 𝑥2, 𝑥3 … 𝑥𝑜 , ¬𝑥1, ¬𝑥2, ¬𝑥3 … ¬𝑥𝑜]

……….

Clause-1

 (𝑚 × 2𝑜)

𝑘

𝑗 𝑎𝑗,𝑘
𝑨 = 𝑎𝑗,𝑘

𝑎1,𝑘 ∈ {1, … 2𝑁}

Clause-2

𝑎2,𝑘 ∈ {1, … 2𝑁}

Clause-m

𝑎𝑚,𝑘 ∈ {1, … 2𝑁}

1/0 1/0 1/0 ……….

𝑣 = ∑ 𝑐𝑗
+ − ∑ 𝑐𝑗

−
𝑗𝑗

- - +

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Figure G.1: The TM structure.

conjunctive clause j is defined by the literals it includes:

cj = 1 ∧

∧
k∈IIj

xk

 ∧
∧

k∈ĪIj

¬xk

 . (G.1)

Above, the set IIj contains the indexes of the original variables that are included in clause

j. Similarly, the set ĪIj consists of the indexes of the included negated variables. These

sets are thus subsets of the complete set of indexes IIj , Ī
I
j ⊆ {1, . . . , o}.

G.2.3 Layer 3 – Memory Layer

The decisions of including or excluding literals in clauses are made by two-action Tsetlin

Automata (TAs) [22]. That is, 2 × o TAs are attached to each clause, one per literal

x′k, k ∈ {1, . . . , 2o}. Each TA maintains a memory state aj,k ∈ {1, . . . , 2N}, with j

referring to the clause and k to the literal. States 1 to N map to the exclude action:

exclude the kth literal from the jth clause. Conversely, states N + 1 to 2N map to the

include action: include the kth literal in the jth clause.

The memory layer is responsible for keeping track of all the TA states, which can be

organized as a matrix A: A = (aj,k) ∈ {1, . . . , 2N}m×2o. Once the states of the TAs are

given, the elements in the index set IIj can be written as: IIj = {k|aj,k > N,1 ≤ k ≤ 2o}.

187

Algorithm 5 Clause Learning

input Training example (X′, y), voting sum v, clause output cj , positive polarity indicator

pj ∈ {0, 1}, voting target T ∈ [1,∞), pattern specificity s ∈ [1.0,∞)

1: procedure UpdateClause(X′, v, cj , pj , T, s)

2: vc ← clip (v,−T, T)

3: e = T − vc if yi = 1 else T + vci
4: if rand() ≤ e

2T then

5: if yi xor pj then

6: TypeIIFeedback(X′, cj)

7: else

8: TypeIFeedback(X′, cj , s)

9: end if

10: end if

11: end procedure

G.2.4 Layer 4 – Voting Layer

The input feature vector provides the literal values and the TA decisions compose the

clauses, which can then be evaluated. Since the clauses are conjunctive, a clause evaluates

to 1 if and only if all of the included literals are of value 1. Let I1
X′ contain the indexes of

the 1-valued literals from X′. The value cj of clause j can then be succinctly defined as:

cj =

{
1 if IIj ⊆ I1

X′ ,

0 otherwise.
(G.2)

We finally represent the complete collection of clause outputs in vector form: C = (cj) ∈
{0, 1}m.

A two-class TM organizes the m clauses in two groups of equal size. Clauses with

odd indexes are to capture the sub-patterns of class y = 1 and they are given positive

polarity, denoted c+
j . The clauses with even indexes, on the other hand, are to capture

sub-patterns of class y = 0. These are given negative polarity, denoted c−j .

G.2.5 Layer 5 – Output Layer

The output layer receives the polarized clause outputs from the voting layer, which are

aggregated into a majority vote: v =
∑

j c
+
j −

∑
j c
−
j . The output of the TM is finally

decided as follows:

y =

{
1 if v ≥ 0

0 if v < 0 .
(G.3)

That is, if the negative clauses of value 1 (voting for y = 0) outnumber the positive clauses

of value 1 (voting for y = 1), the final output becomes y = 0. Otherwise, it becomes y = 1.

188

G.2.6 Learning Procedure

Recall that a clause j is composed by its attached team of TAs and that it is TA state

aj,k that decides whether literal x′k is included in clause j. Learning which literals to

include is based on two types of reinforcement: Type I and Type II. As described in the

following, Type I feedback produces frequent patterns, while Type II feedback increases

the discrimination power of the patterns.

TMs learn on-line, processing one training example (X, y) at a time. In all brevity,

after a forward pass through the layers described above, each clause is updated according

to Algorithm 5.

The first step is to decide whether the clause is to be updated (Lines 2-4). Here,

resource allocation dynamics ensure that clauses distribute themselves across the frequent

patterns, rather than missing some and over-concentrating on others. That is, for any

input X′, the probability of reinforcing a clause gradually drops to zero as the voting sum

v approaches a user-set target T for y = 1 (and −T for y = 0).

As seen, if a clause is not reinforced, it does not give feedback to its TAs, and these

are thus left unchanged. In the extreme, when the voting sum v equals or exceeds the

target T (the TM has successfully recognized the input X′), no clauses are reinforced.

They are then free to learn new patterns, naturally balancing the pattern representation

resources [12].

If a clause is going to be updated, the updating is either of Type I or Type II (Lines

5-9):

Type I feedback is given to clauses with positive polarity when y = 1 and to clauses

with negative polarity when y = 0 (Line 8). Each TA of the clause is then reinforced

based on: (1) the clause output cj; (2) the action of the TA – include or exclude; and (3)

the value of the literal x′k assigned to the TA. Two rules govern Type I feedback:

• Include is rewarded and exclude is penalized with probability s−1
s

if cj = 1 and x′k =

1. If this happens, the corresponding TA state aj,k is increased by 1, up to 2N .

This reinforcement is strong (triggered with high probability) and makes the clause

remember and refine the pattern it recognizes in X′.1

• Include is penalized and exclude is rewarded with probability 1
s

if cj = 0 or x′k = 0.

If this happens, the corresponding TA state aj,k is decreased by 1, down to 1.

This reinforcement is weak (triggered with low probability) and coarsens infrequent

patterns, making them frequent.

Above, hyper-parameter s controls pattern frequency.

Type II feedback is given to clauses with positive polarity when y = 0 and to

clauses with negative polarity when y= 1 (Line 6). It penalizes exclude with probability

1 if cj = 1 and x′k = 0. If this happens, the corresponding TA state aj,k is increased by

1. Thus, this feedback introduces literals for discriminating between y = 0 and y = 1.

In addition to the vanilla TM discussed in this section, there also exists several other

architectures: Multiclass TM [12], Regression TM [13, 23], Convolutional TM, [16], Multi-

Layered TM [24], Weighted Tsetlin Machine [25], Integer Weighted Regression TM [26],

1Note that the probability s−1
s is replaced by 1 when boosting true positives.

189

1 0 0 0 1 0 1 1 0 1 0

1 0 ⁕ 0 ⁕ 0 1 1 ⁕ 1 0

1 0 0 0 1 ⁕ 1 1 0 1 0

1 0 0 1 1 0 1 1 1 1 0

Non-Recurrence

⁕ 0 0 0 0 1 1 1 1 1 0

y = Non-Recurrence

1 0 0 0 1 1 1 1 1 1 0

1 1 0 0 0 0 1 1 0 1 0

00 1 0 0 0 1 0 1 1 0 1 0

1 0 ⁕ 0 1 0 1 1 0 ⁕ ⁕
1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 ⁕ ⁕ ⁕ 1 0 1

0

1 ⁕ ⁕ 0 1 0 0 0 0 1 0

4 2

Vote Collector – Class 1 Vote Collector – Class 0

Output decider

Recurrence

1 0 0 0 1 0 ⁕ 1 0 1 0

1 ⁕ 0 0 1 0 1 ⁕ ⁕ 1 0

1 0 1 1 1 0 1 1 1 1 0

Figure G.2: The process of making predictions from the trained Tsetlin Machine.

and Integer Weighted TM [27]. Even though we in the following discuss the confidence

of classifications and AUC calculations for the vanilla TM, the calculations can also be

extended to the other TM architectures, except for the Regression TM.

G.3 TM Classification Confidence

G.3.1 TM Predictions

Consider the machine learning example illustrated in Figure G.2. The figure depicts a TM

trained to recognize the recurrence of breast cancer based on a dataset of eleven binary

features. The TAs of each clause have already made their decisions regarding which

literals to include. As seen, we have allocated seven clauses to each class (recurrence or

non-recurrence), each recognizing a specific pattern.

Consider the sub-pattern (1 0 0 0 1 0 S 1 0 1 0) captured by one of the clauses

supporting class y = 1 (Non-Recurrence) in the figure. Here, the pattern value 0 means

that the TA of the corresponding negated feature has decided to include the negated

feature in the clause. Conversely, the pattern value 1 means the TA of the original

feature has decided to include the feature unnegated. The pattern value S, however,

190

means that both the corresponding unnegated and the negated feature have been excluded.

Representing the pattern as a clause, we get: (x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ x5 ¬x6 ∧ x8 ∧
¬x9 ∧ x10 ∧ ¬x11). Notice that neither the unnegated or negated versions of feature 7

are included.

The above clause outputs 1 for the example input [1 0 0 0 1 0 1 1 0 1 0]. Similarly,

three of the other clauses associated with class y = 1 in the figure output 1, as well. In

total, four clauses thus vote for class y = 1, collected by the ‘Vote Collector’ of class 1.

Note further that two of the clauses supporting class y = 0 (Recurrence) also recognizes

this input. These vote for class y = 0 and therefore against class y = 1, tallied by the

‘Vote Collector’ for class 0. In this case, class y = 0 is outvoted by class y = 1, hence the

output layer of the TM (Eq. (G.3)) decides to output y = 1 (Non-Recurrence).

G.3.2 Calculating Confidence

Taking the above vote ratio of 4:2 (class 1 vs class 0) as a reference ratio, consider the vote

ratios 7:0 and 1:1. According to Eq. (G.3), the output of the TM still remains the same.

However, considering the vote difference, we can argue that a 7:0 ratio represents stronger

confidence compared to e.g. the ratio 4:2 or 1:1. We therefore modify the prediction

mechanism in the output layer to manage confidence, leveraging the vote totals of the

individual vote collectors (or TMs for multi-class problems). To this end, we propose

to replace Eq. (G.3) with the logistic function in Eq. (G.4). Depending on the vote

difference, the logistic function outputs the confidence of the classification, measured as

a value between 0 and 1.

Q1,i =
1

1 + e−(vpi−vni)
. (G.4)

In Eq. (G.4), Q1,i is the confidence of classifying the input i as class y = 1. The values

vpi and vni are the number of positive and negative votes collected by the ”Vote Collectors”

of class 0 and class 1 for the input i, respectively. For instance, using Eq. (G.4), we can

calculate classification confidence for the vote ratios 4:2, 7:0, and 1:1, which are 0.88, 0.99,

and 0.5, respectively. Hence, the confidence of the classifications can be ranked as 1:1 <

4:2 < 7:0 since their respective confidence scores are 0.5 < 0.88 < 0.99.

G.3.3 Prediction Ranking and Classification Thresholds

The confidence score in Eq. (G.4) has several uses. When the task is to classify input into

two classes, the confidence in the target class decreases from score 1.0 to 0.5 and then

increases again from 0.5 to 0.0, towards the other class. In this way, predictions can be

ranked according to confidence.

Confidence scoring can further be used to set decision thresholds to achieve desired

specificity-sensitivity ratios, giving priority to one of the classes. Such prioritization can

be beneficial in applications where one knows the cost of misclassification. Confidence

score thresholds can then be set to minimize expected misclassification cost. Note that

when misclassification cost is unavailable, it is common to set the decision threshold to

0.5. In that case, classification follows Eq. (G.3).

191

Finally, ranked predictions can be used to produce ROC-curves and compute AUC

scores, as explained in the following.

G.4 Calculating AUC for TMs

AUC is an important evaluation metric for binary classifiers because it considers how

accurately a classifier can rank the confidence of its classifications [19]. AUC is based on

ROC curves, which captures how the true positive rate (= true positives
total positives

) varies with the

false positive rate (= false positives
total negatives

), at all possible decision thresholds. In all brevity, AUC

measures the entire two-dimensional area under the ROC curve.

Based on the ranked predictions introduced in the previous section, we are now

equipped to calculate AUC for TMs. One method for calculating AUC is the trapezoidal

integration approach. However, as Hanley et al. explains [28], the trapezoidal method sys-

tematically underestimates AUC. Hence, in this study, we calculate AUC using Eq. (G.5),

introduced by [29]:

AUC =
S0 − n0(n0 + 1)/2

n0n1

. (G.5)

Above, the parameters no and n1 are the number of positive (1s) and negative (0s) samples,

respectively. The ranking of the inputs are taken into account by the parameter S0, where

S0 is the sum of the rankings of all positive inputs, ri, i.e, S0 =
∑
ri.

G.5 Evaluation

In this section, we contrast AUC against Accuracy as evaluation metrics for TMs. We do

this by computing Degree of Consistency and Degree of Discriminancy, as proposed in

[19]. Further, we explore how our TM confidence score can be used to facilitate decision

making. Finally, we provide AUC-based evaluations that show that the TM performs on

par or better than several widely used machine learning algorithms.

For the experiments in this section, we use four datasets from real-world applications

where expert support is needed to quality assure decisions:

Dataset I - Bankruptcy2 considers historical cases of 250 companies, described

by the features: Industrial Risk, Management Risk, Financial Flexibility, Credibility,

Competitiveness, and Operation Risk. These are categorical features where each feature

can take one of three states: Positive, Average, or Negative. The categorical outputs are

Bankruptcy and Non-bankruptcy.

Dataset II - Breast cancer3 covers recurrence of breast cancer, characterized by

nine features, i.e., age, menopause, tumor size, inv nodes, node caps, deg malig, side (left

of right), position of the breast, and irradiation status. The dataset contains 286 patients

(201 of non-recurrence and 85 of recurrence), however, some of these lacks features and

are thus not considered here.

2Available from https://archive.ics.uci.edu/ml/datasets/qualitative bankruptcy#
3Available from https://archive.ics.uci.edu/ml/datasets/Breast+Cancer

192

Dataset III - Liver disorders4 covers mean corpuscular volume, alkaline phospho-

tase, alamine aminotransferase, aspartate aminotransferase, gamma-glutamyl transpepti-

dase, number of half-pint equivalents of alcoholic beverages (drunk per day), and selector

(used to split data into training and testing sets). In our study, the correct dependent

variable [30] – number of alcoholic drinks taken per day by the subject – is binarized

with the threshold ≥ 3. The selector attribute is discarded. The remaining attributes

represent the results of various blood tests, and are used as input features.

Dataset IV - Heart disease5 contains 270 observations, labeling whether a person

is having heart disease or not. The presence or absence of heart disease is characterized

by 13 attributes, selected from a total of 75. Out of the 13 attributes, 6 are real-valued,

3 are binary, 3 are nominal, and the remaining one is ordered.

G.5.1 AUC vs Accuracy

The degree of consistency and degree of discriminancy of AUC and Accuracy are measured

separately, per Definition 1 and Definition 2, respectively (generalized versions of the ones

given by [19]):

Definition 1 Degree of Consistency is a probabilistic measure which defines the con-

sistency of two measures. When two measures f and g are to evaluate algorithms a and

b, the consistency can be calculated as

C =
R

R + S
. (G.6)

Here, R is the number of similar classifications, e.g., f(a) > f(b) and g(a) > g(b), and S

is the number of dissimilar classifications, e.g., f(a) > f(b) and g(a) < g(b).

Definition 2 Degree of Discriminancy is a probabilistic measure which defines the

discriminancy of two measures. When two measures f and g are to evaluate algorithms

a and b, the discriminancy of f over g can be calculated as

D =
V

U
. (G.7)

Above, V is the number of classifications in which f discriminates between a and b, but

g cannot, e.g., f(a) > f(b) and g(a) = g(b), while U is the number of classifications in

which g discriminates between a and b, but f cannot, e.g., g(a) > g(b) and f(a) = f(b).

In order to measure consistency, we train two TMs with greatly different hyper-

parameter settings on all four datasets. The purpose is to measure how often AUC

and Accuracy agrees on the ranking of the two TMs. For measuring disciminancy, on the

other hand, two TMs with nearly identical hyper-parameter settings are used. The intent

here is to see how often AUC is able to discriminate between the two TMs, relative to

how many times Accuracy is able to do so. Each experiment is conducted 100 times to

4Available from https://archive.ics.uci.edu/ml/datasets/Liver+Disorders1
5Available from https://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29

193

Table G.1: Consistency of AUC and Accuracy.

Dataset
Similar

classifications

Dissimilar

classifications
C

I 100 1 1.00

II 72 28 0.72

III 64 36 0.64

IV 91 9 0.91

Table G.2: Discriminance power of AUC vs. Accuracy.

Dataset
AUC discriminates

but Accuracy cannot

Accuracy discriminates

but AUC cannot
D

I 21 10 2.1

II 20 1 20.0

III 55 1 55.0

IV 16 1 16.0

calculate the R, S, V , and U values according to Definition 1 and Definition 2. In each

experiment, a randomly selection of 60 samples are used for testing.

Table G.1 and Table G.2 show the experiment results for the consistency test and

discriminancy tests, respectively. As one can see in Table G.1, Accuracy and AUC is

agreeing more often than not, for all considered datasets. The highest level of agreement

is 1.00, which is obtained on the Bankruptcy dataset. The lowest level of agreement is

observed for the Liver disorders dataset where there is a 0.64 chance that Accuracy agrees

with AUC.

Even though Accuracy to a large degree agrees with AUC, AUC has a higher dis-

crimination power, as seen in Table G.2. The highest degree of discriminancy occurs

with the Liver disorders dataset where AUC finds the difference between the two TMs

55 times more often than Accuracy does. The lowest degree of discriminancy happens on

the Bankruptcy dataset where AUC discriminates between the two TMs 2.1 times more

often than Accuracy does.

Considering the degree of consistency and the degree of discriminancy for the differ-

ent datasets, AUC appears to be better suited for evaluating performance compared to

Accuracy.

G.5.2 Explainable Rules and Decision Support

In this section, we first show how interpretable rules are formed from a trained TM,

using the Bankruptcy dataset as an example. Then we discuss how the confidence of

classifications can help experts in their decision-making process.

Consider the Bankruptcy dataset. As the first step, the categorical features are integer-

encoded and binarized. For binarization, we employ the thresholding approach proposed

in [31]. Since each feature has three categorical values, we can represent each original

feature with three binary features, using Average (0), Negative (1), and Positive (2) as

194

thresholds. The categorical value Average is represented by 111, the categorical value

Negative is represented by 011, and the categorical value Positive is represented by 001.

Therefore, the six original features are now represented by 18 binary features.

With merely 10 clauses, the TM achieves 98% training accuracy and 100% testing

accuracy. The composition of the clauses after training is summarized in Table G.3. Out

of the ten clauses, clauses with odd index vote for class 1 (Non-Bankruptcy) and clauses

with even index vote for class 0 (Bankruptcy). As seen, the clauses voting for class 0

(2, 4, 6, 8, 10) represent the same sub-pattern, which is Competitiveness is not Average

and Competitiveness is Negative. This rule can be further simplified as Competitiveness

is Negative. For class 1, the identified sub-patterns are Credibility is not Negative (clause

1) and Competitiveness is not Negative (clauses 3, 5, and 9). There is also a free vote (all

literals are excluded) for class 1 from clause 7.

Therefore, when Competitiveness is Negative, class 0 gets 5 votes. Yet, due to clause

3, 5, and 9, which recognizes Competitiveness is not Negative, the maximum number of

votes class 1 can get is 2 (including the free vote from clause 7). Hence, if Competitiveness

is Negative, regardless of the Credibility value, the output is class 0. On the other hand,

if Competitiveness is not Negative, class 0 gets 0 votes and class 1 gets a minimum of

4 votes, without the vote from clause 1. Therefore, the output is class 1. Hence, the

pattern recognized with clause 1 (Credibility is not Negative) can simply be ignored and

the resulting TM classifier can be written as:

y =

{
Bankruptcy if Competitiveness is Negative

Non-bankruptcy Otherwise.
(G.8)

With maximum possible testing accuracy, combined with easily understandable clas-

sification rules, we can argue that the model is reliable. However, trust in the model can

be increased further by introducing local reliability, taking advantage of the classification

confidence score. Local reliability refers to the reliability of a specific classification.

As we discussed in Section G.3.3, using two confidence-level-thresholds, we can char-

acterize classifications as reliable or unreliable. With sufficiently conservative thresholds,

only unreliable classifications needs to be investigated by experts, while the reliable classi-

fications can simply be accepted as is. We here investigate the effect of different confidence-

level thresholds. Threshold-1 characterize a classification as reliable if the classification

confidence is higher than 0.90 or lower than 0.10 (< 0.10 or > 0.90), otherwise, it is

characterized as unreliable. Likewise, three other thresholds are created: Threshold-2 -

(<0.20 or >0.80), Threshold-3 - (<0.30 or >0.70), and Threshold-4 - (<0.40 or >0.60).

Accordingly, classifications decided to be reliable with Threshold-1 are more reliable than

classifications decided to be reliable with Threshold-4.

We now investigate the effect of the different thresholds for each of the datasets. The

results are summarized in Table G.4. For each dataset, 60 random samples are tested

100 times. Hence, the ”Reliable samples” column contains the number of samples, out of

6000 testing samples, characterized as reliable according to each threshold.

For the Bankruptcy dataset, Threshold-1 characterises 99.68% of the classifications

as reliable. These have a precision of 0.998. Likewise, Threshold-1 characterises 50% of

recurrence of breast cancer classifications as reliable, however, these only have a precision

195

T
ab

le
G

.3:
C

lau
se

ou
tp

u
ts

at
en

d
of

T
M

train
in

g
on

B
an

k
ru

p
tcy

d
ataset

w
h
en

m
=

10.

O
rigin

al

featu
re

1
2

3
4

5
6

B
in

arized

featu
re

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
1
0

x
1
1

x
1
2

x
1
3

x
1
4

x
1
5

x
1
6

x
1
7

x
1
8

C
lau

se
1

S
S

S
S

S
S

S
S

S
S

0
S

S
S

S
S

S
S

C
lau

se
2

S
S

S
S

S
S

S
S

S
S

S
S

0
1

S
S

S
S

C
lau

se
3

S
S

S
S

S
S

S
S

S
S

S
S

S
0

S
S

S
S

C
lau

se
4

S
S

S
S

S
S

S
S

S
S

S
S

0
1

S
S

S
S

C
lau

se
5

S
S

S
S

S
S

S
S

S
S

S
S

S
0

S
S

S
S

C
lau

se
6

S
S

S
S

S
S

S
S

S
S

S
S

0
1

S
S

S
S

C
lau

se
7

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

C
lau

se
8

S
S

S
S

S
S

S
S

S
S

S
S

0
1

S
S

S
S

C
lau

se
9

S
S

S
S

S
S

S
S

S
S

S
S

S
0

S
S

S
S

C
lau

se
10

S
S

S
S

S
S

S
S

S
S

S
S

0
1

S
S

S
S

196

Table G.4: The number of reliable samples (out of 6000) according to different confidence

thresholds.

Dataset Threshold Reliable samples Percentage Precision

I

1 5981 99.68 0.998

2 5991 99.85 0.997

3 5997 99.96 0.996

4 5997 99.96 0.996

II

1 2997 49.95 0.643

2 3926 65.43 0.574

3 5243 87.38 0.474

4 5243 87.38 0.474

III

1 3450 57.50 0.824

2 4428 73.80 0.699

3 5491 91.52 0.688

4 5491 91.52 0.688

IV

1 5218 86.97 0.772

2 5538 92.30 0.753

3 5837 97.28 0.739

4 5837 97.28 0.739

of 0.643. The Liver disorder dataset provides 57.50% reliable classifications, providing a

precision of 0.824. In general, depending on the costs of miss-classification, an appropriate

threshold can be selected.

G.5.3 TM Compared to Baseline Models

We here compare the performance of the TM in terms of AUC against six other machine

learning algorithms: Decision Tree (DT), Support Vector Machine (SVM), Logistic Re-

gression (LR), K Nearest Neighbor (KNN), Random Forecasts (RF), and Artificial Neural

Network (ANNs). For comprehensiveness, three ANN architectures are used: ANN-1 –

with one hidden layer and 5 neurons in it, ANN-2 – with two hidden layers with 20 and

50 neurons in them, respectively, and ANN-3 – with three hidden layers and 20, 150, and

100 neurons in them, respectively.

A summary of the results is given in Table G.5. The results are the mean of AUC

measures after conducting each experiment 100 times. In each trial, 60 randomly selected

data samples are used for testing and the rest is used for training. The hyperparameters

of all these machine learning algorithms are found by using binary search.

The TM used on the Bankruptcy dataset employs 1000 clauses. The s value and target

T are set to 2.0 and 12, respectively. In each experiment, the TM is run for 400 epochs.

For this dataset, TM achieves 1.00 AUC. However, the 1.00 AUC is achieved by all other

machine learning algorithms as well, except DT.

For the Breast cancer dataset, a TM with 500 clauses is utilized. The s value and

target T for this TM are set to 1.5 and 10, respectively. The number of epochs per

197

Table G.5: Performance of various machine learning algorithms in terms of AUC on four

datasets.

Algorithm / Dataset I II III IV

DT 0.99 0.57 0.58 0.72

SVM 1.00 0.69 0.67 0.84

LR 1.00 0.71 0.71 0.87

KNN 1.00 0.65 0.58 0.74

RF 1.00 0.69 0.56 0.87

ANN-1 1.00 0.71 0.66 0.83

ANN-2 1.00 0.67 0.65 0.85

ANN-3 1.00 0.66 0.62 0.80

TM 1.00 0.71 0.57 0.89

experiment is 400. The TM is able to reach 0.71 AUC which is a tied best among LR,

ANN-1, and TM. The lowest AUC is obtained by KNN.

The hyper-parameters of the TM for the Liver disorders dataset are: 500 clauses, an s

value of 1.8, and a target T of 10. Mean AUC after 100 experiment rounds ends at 0.57,

which is only higher than what is obtained with RF. However, the other schemes are close

by, with AUCs varying around 60. The exception is LR, which attains an AUC score of

0.71.

The TM achieves the best AUC score for the Heart disease dataset – an AUC of 0.89.

The TM employed here uses 1000 clauses. The s value is set to 2.0 and the target T to

12. Of the other algorithms, LR and RF share the second-best AUC. The lowest AUC

for this dataset is observed for DT.

To summarize, out of the four tasks, the TM obtains the highest mean AUC on three

out of five occasions, including two ties. At the same time, for some of the data sets, the

competitive AUC is obtained with a relatively small number of rules, as demonstrated in

Section G.5.2.

G.6 Conclusion

This paper introduced a novel scheme for measuring the confidence of Tsetlin Machine

classification. The confidence is calculated directly from the clauses that recognize the

input, using the logistic function. This allowed us to rank predictions, opening up for

calculating the area under receiver operating characteristic curve (AUC) for TMs. Em-

pirically, using four real-world datasets, our results show that AUC is a better evaluation

measure for TMs than Accuracy. We further explored how ranking classifications by con-

fidence can be used to single out reliable and unreliable classifications, to aid focusing

the attention of human experts. Finally, we investigated performance of TMs in terms

of AUC, reporting on par or better AUC compared to widely used machine learning

approaches.

198

Bibliography

[1] Bart Baesens, Christophe Mues, Manu De Backer, Jan Vanthienen, and Rudy Se-

tiono. “Building Intelligent Credit Scoring Systems Using Decision Tables”. In: En-

terprise Information Systems V. Springer, 2004, pp. 131–137.

[2] Johan Huysmans, Karel Dejaeger, Christophe Mues, Jan Vanthienen, and Bart Bae-

sens. “An Empirical Evaluation of the Comprehensibility of Decision Table, Tree and

Rule Based Predictive Models”. In: Decision Support Systems 51.1 (2011), pp. 141–

154.

[3] Riccardo Bellazzi and Blaz Zupan. “Predictive Data Mining in Clinical Medicine:

Current Issues and Guidelines”. In: International journal of medical informatics

77.2 (2008), pp. 81–97.

[4] Michael J Pazzani, S Mani, and William R Shankle. “Acceptance of Rules Gener-

ated by Machine Learning Among Medical Experts”. In: Methods of information in

medicine 40.05 (2001), pp. 380–385.

[5] Alex A Freitas, Daniela C Wieser, and Rolf Apweiler. “On the Importance of Com-

prehensible Classification Models for Protein Function Prediction”. In: IEEE/ACM

Transactions on Computational Biology and Bioinformatics 7.1 (2008), pp. 172–

182.

[6] Duane Szafron, Paul Lu, Russell Greiner, David S Wishart, Brett Poulin, Roman

Eisner, Zhiyong Lu, John Anvik, Cam Macdonell, Alona Fyshe, et al. “Proteome

Analyst: Custom Predictions With Explanations in a Web-Based Tool for High-

Throughput proteome Annotations”. In: Nucleic acids research 32.suppl 2 (2004),

W365–W371.

[7] Elen Lima, Christophe Mues, and Bart Baesens. “Domain Knowledge Integration in

Data Mining Using Decision Tables: Case Studies in Churn Prediction”. In: Journal

of the Operational Research Society 60.8 (2009), pp. 1096–1106.

[8] Wouter Verbeke, David Martens, Christophe Mues, and Bart Baesens. “Building

Comprehensible Customer Churn Prediction Models with Advanced Rule Induction

Techniques”. In: Expert systems with applications 38.3 (2011), pp. 2354–2364.

[9] Muhammad Aurangzeb Ahmad, Carly Eckert, and Ankur Teredesai. “Interpretable

Machine Learning in Healthcare”. In: Proceedings of the 2018 ACM International

Conference on Bioinformatics, Computational Biology, and Health Informatics. 2018,

pp. 559–560.

199

[10] Filip Karlo Došilović, Mario Brčić, and Nikica Hlupić. “Explainable Artificial In-

telligence: A Survey”. In: 2018 41st International convention on information and

communication technology, electronics and microelectronics (MIPRO). IEEE. 2018,

pp. 0210–0215.

[11] Finale Doshi-Velez and Been Kim. “Towards a Rigorous Science of Interpretable

Machine Learning”. In: arXiv preprint arXiv:1702.08608 (2017).

[12] Ole-Christoffer Granmo. “The Tsetlin Machine - A game Theoretic Bandit Driven

Approach to Optimal Pattern Recognition With Propositional Logic”. In: arXiv

preprint arXiv:1804.01508 (2018).

[13] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, Lei Jiao, and

Morten Goodwin. “The Regression Tsetlin Machine - A Novel Approach to Inter-

pretable Non-Linear Regression”. In: Philosophical Transactions of the Royal Society

A 378 (2164 2019).

[14] Geir Thore Berge, Ole-Christoffer Granmo, Tor Oddbjørn Tveit, Morten Good-

win, Lei Jiao, and Bernt Viggo Matheussen. “Using the Tsetlin Machine to Learn

Human-Interpretable Rules for High-Accuracy Text Categorization With Medical

Applications”. In: IEEE Access 7 (2019), pp. 115134–115146.

[15] Christoph Molnar. Interpretable Machine Learning. Lulu. com, 2019.

[16] Ole-Christoffer Granmo, Sondre Glimsdal, Lei Jiao, Morten Goodwin, Christian

W. Omlin, and Geir Thore Berge. “The Convolutional Tsetlin Machine”. In: arXiv

preprint:1905.09688 (2019).

[17] Adrian Wheeldon, Rishad Shafik, Tousif Rahman, Jie Lei, Alex Yakovlev, and Ole-

Christoffer Granmo. “Learning Automata Based Energy-efficient AI Hardware De-

sign for IoT”. In: Philosophical Transactions of the Royal Society A (2020). url:

https://eprints.ncl.ac.uk/268038.

[18] Christian D. Blakely and Ole-Christoffer Granmo. “Closed-Form Expressions for

Global and Local Interpretation of Tsetlin Machines with Applications to Explaining

High-Dimensional Data”. In: arXiv preprint arXiv:2007.13885 (2020). url: https:

//arxiv.org/abs/2007.13885.

[19] Jin Huang and Charles X Ling. “Using AUC and Accuracy in Evaluating Learn-

ing Algorithms”. In: IEEE Transactions on knowledge and Data Engineering 17.3

(2005), pp. 299–310.

[20] Andrew P Bradley. “The Use of the Area Under the ROC Curve in the Evaluation

of Machine Learning Algorithms”. In: Pattern recognition 30.7 (1997), pp. 1145–

1159.

[21] Charles X Ling and Chenghui Li. “Data Mining for Direct Marketing: Problems and

Solutions”. In: Kdd. Vol. 98. 1998, pp. 73–79.

[22] Michael Lvovitch Tsetlin. “On Behaviour of Finite Automata in Random Medium”.

In: Avtomat. i Telemekh 22.10 (1961), pp. 1345–1354.

200

https://eprints.ncl.ac.uk/268038
https://arxiv.org/abs/2007.13885
https://arxiv.org/abs/2007.13885

[23] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Lei Jiao, and Morten Goodwin.

“The regression Tsetlin Machine: A Tsetlin Machine for Continuous Output Prob-

lems”. In: EPIA Conference on Artificial Intelligence. Springer. 2019, pp. 268–280.

[24] Ole-Christoffer Granmo. “The Multi-Layered Tsetlin Machine”. In: Preparation

(2020).

[25] Adrian Phoulady, Ole-Christoffer Granmo, Saeed Rahimi Gorji, and Hady Ah-

mady Phoulady. “The Weighted Tsetlin Machine: Compressed Representations with

Clause Weighting”. In: Ninth International Workshop on Statistical Relational AI

(StarAI 2020). 2020.

[26] K. Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten Goodwin. “A Re-

gression Tsetlin Machine with Integer Weighted Clauses for Compact Pattern Rep-

resentation”. In: International Conference on Industrial, Engineering and Other

Applications of Applied Intelligent Systems. Springer. 2020.

[27] K. Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten Goodwin. “Extend-

ing the Tsetlin Machine with Integer-Weighted Clauses for Increased Interpretabil-

ity”. In: IEEE Access 9 (2021), pp. 8233–8248.

[28] James A Hanley and Barbara J McNeil. “The Meaning and Use of the Area Under

a Receiver Operating Characteristic (ROC) Curve”. In: Radiology 143.1 (1982),

pp. 29–36.

[29] David J Hand and Robert J Till. “A Simple Generalisation of the Area Under the

ROC Curve for Multiple Class Classification Problems”. In: Machine learning 45.2

(2001), pp. 171–186.

[30] James McDermott and Richard S Forsyth. “Diagnosing a Disorder in a Classification

Benchmark”. In: Pattern Recognition Letters 73 (2016), pp. 41–43.

[31] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, and Morten Good-

win. “A Scheme for Continuous Input to the Tsetlin Machine With Applications

to Forecasting Disease Outbreaks”. In: International Conference on Industrial, En-

gineering and Other Applications of Applied Intelligent Systems. Springer. 2019,

pp. 564–578.

201

Paper H

Convolutional Regression Tsetlin

Machine: An Interpretable

Approach to Convolutional

Regression

Chapter abstract:

The Convolutional Tsetlin Machine (CTM), a variant of the Tsetlin Machine (TM),

represents patterns as straightforward AND-rules, to address the high computa-

tional complexity and the lack of interpretability of Convolutional Neural Networks

(CNNs). The CTM has shown competitive performance on MNIST, Fashion-MNIST,

and Kuzushiji-MNIST pattern classification benchmarks, both in terms of accuracy

and memory footprint. However, the CTM has so far only been applied to binary out-

put. This chapter proposes the Convolutional Regression Tsetlin Machine (C-RTM)

that extends the CTM to support continuous output problems in image analysis. C-

RTM identifies patterns in images using the convolution operation as in the CTM

and then maps the identified patterns into a real-valued output in the Regression

Tsetlin Machine (RTM). The C-RTM thus unifies the two approaches.

We evaluate the performance of C-RTM using 72 different artificial datasets, with

and without noise in the training data. Our empirical results show the competitive

performance of C-RTM compared to two standard CNNs. The interpretability of

the identified sub-patterns by C-RTM clauses is also analyzed and discussed. Addi-

tionally, the performance of C-RTM on two real-world datasets is compared against

CNN. In addition to the competitive performance in terms of mean absolute error,

C-RTM filters perform significantly fewer calculations (only AND operations) dur-

ing the convolution. Further, the filters learn which image locations are important,

and then move directly to these locations during inference. This approach helps

C-RTM consume significantly less memory both during training and testing.

203

H.1 Introduction

Recent progress on TMs: Tsetlin Machines (TMs) are a recent approach to pattern

recognition that use simple AND-rules to represent patterns. Several teams of so-called

Tsetlin Automata (TA) compose these AND-rules to maximize pattern recognition accu-

racy, learning from penalties and rewards obtained by playing a novel game. On several

machine learning benchmarks including Iris Data Classification, Handwritten Digits Clas-

sification (MNIST), Predicting Optimum Moves in the Axis and Allies Board Game, and

Classification of Noisy XOR Data with Non-Informative Features performance is competi-

tive. The TM has further been expanded in other directions and evaluated on applications

from several application domains. For instance, the TM has been used for text classifi-

cation by using the conjunctive clauses to capture textual patterns [1]. The TM has also

been extended by introducing real weights [2] and integer weights [3] for both reduction of

the number of clauses without loss of accuracy and increased interpretability. The process

of hyper-parameter search of the TM has been simplified by introducing multi-granular

clauses in [4]. By indexing the clauses on the features that falsify them, up to an order of

magnitude faster inference and learning has been reported [5]. Additionally, Regression

Tsetlin Machine (RTM) compare favorably with Regression Trees, Random Forest Re-

gression, and Support Vector Regression [6]. For applications with real-valud features, a

binarization scheme based on thresholding was proposed in [7] and a scheme which learns

the above thresholds using merely two Stochastic Searching on the Line Automata (SSLs)

per feature has been proposed in [8].

TM Inference: In the TM, Tsetlin Automata (TAs) are used to represent literals –

propositional input variables and their negations. The literals, in turn, form conjunctive

clauses in propositional logic, as decided by the TAs. The final TM output is a disjunction

of all the specified clauses. In this manner, the pattern composition and learning procedure

of the TM is fully transparent and understandable, facilitating human interpretation. In

addition, the TM has an inherent computational advantage. That is, the inputs and

outputs of the TM can naturally be represented as bits, and recognition and learning is

performed by manipulating those bits. The operation of the TM thus demands relatively

small computational resources, and supports hardware-near and parallel computation,

e.g. on GPUs.

Convolutional Neural Networks: Deep learning or deep neural networks refers

to artificial neural networks with multiple layers. One of the standard deep learning

algorithms to work with image data, computer vision, and natural language processing is

the Convolutional Neural Networks (CNNs). A CNN is a combination of several layers,

namely, convolutional layer, non-linearity layer, pooling layer and fully-connected layer [9].

These interacting layers lead to high pattern recognition accuracy; however, CNNs suffer

from high computational complexity and the lack of interpretability. High computational

cost and difficulties with explaining why CNNs perform well hinder further improvement

[10].

Convolutional Tsetlin Machine: To address the above issues in CNNs, Granmo

et al. [11] introduced the Convolutional Tsetlin Machine (CTM); a new variant of TM.

If the TM is given the task of classifying an image, a clause in the TM considers the

204

entire image at once. However, in the CTM, clauses act as convolution filters. Since a

clause in the TM is a conjunction of selected features, the reasons for classification can

be easily interpreted. The CTM provides competitive performance on MNIST, Fashion-

MNIST, and Kuzushiji-MNIST, in comparison with CNNs, K-Nearest Neighbor, Support

Vector Machines, Random Forests, Gradient Boosting, BinaryConnect, Logistic Circuits

and ResNet.

Paper Contributions. Convolutional regression applications are ample in the ma-

chine learning field. A few of them are near infrared (NIR) calibration [12], Spectrum

analysis [13], depth prediction in digital holography [14], and vehicle detection and count-

ing in aerial images [15]. To work on these applications, the CTM needs to be modified

as the CTM has been designed for classification, not for producing continuous output. In

this paper, we introduce the Convolutional Regression Tsetlin Machine (C-RTM) to over-

come the above limitation of the CTM. Hence, C-RTM is a novel ensemble approach that

unifies the properties of both CTM and RTM. In brief, the image patterns recognized by

CTM clauses are piled together to map continuous outputs as in RTM. The performance

of the C-RTM is evaluated on 72 artificial datasets. The performance is also compared

against two CNN setups, with additional results on real-life data.

Paper Organization. The remainder of the paper is organized as follows. In Sec-

tion H.2, we detail the TM theory. In Section H.3 we present the main contribution of

this paper, which is the C-RTM, and how we build it upon the CTM and RTM. We

then investigate the behavior of the C-RTM using 72 different artificial datasets in Sec-

tion H.4. We demonstrate empirically that the C-RTM is capable of learning patterns of

a known input-output environment in a interpretable manner and then correctly produce

the required regression output. Performance wise, C-RTM shows competitive accuracy

compared to the predictions of CNNs. We conclude our work in Section H.5.

H.2 The Tsetlin Machine (TM)

The TM is the base for both CTM and RTM. The C-RTM combines unique properties

from both CTM and RTM. Hence, before we introduce C-RTM in more details, we first

discuss the basics of TM in this section.

H.2.1 The Tsetlin Machine Architecture

As illustrated in Figure H.1, conceptually, a TM consists of five layers. Here in the

following sub-sections, the role of each of those layers is explained in more details.

H.2.1.1 Layer 1 – Input Layer

The TM receives features in binary form. When the feature vector X consists of o

propositional variables X ∈ {0, 1}o, the augmented feature vector, X′ can be written

as X′ = [x1, x2, x3, . . . , xo, ¬x1,¬x2,¬x3, . . . ,¬xo], where X′ contains both original fea-

tures and their negations. Allowing a TM to take both original and negated features

205

𝑿′ = [𝑥1, 𝑥2, 𝑥3 … 𝑥𝑜 , ¬𝑥1, ¬𝑥2, ¬𝑥3 … ¬𝑥𝑜]

……….

 (𝑚 × 2𝑜)

𝑘

𝑗 𝑎𝑗,𝑘
𝑨 = 𝑎𝑗,𝑘

Clause-2

𝑎2,𝑘 ∈ {1, … 2𝑁}

Clause-m

𝑎𝑚,𝑘 ∈ {1, … 2𝑁}

1/0 1/0 1/0 ……….

𝑣 = ∑ 𝑐𝑗
+ − ∑ 𝑐𝑗

−
𝑗𝑗

- - +

Layer 3

1 2 k 2o

Clause-1

Layer 1

Layer 2

Layer 4

Layer 5

Figure H.1: The TM structure.

increases the expression power of patterns in data. The collective feature variables in X′

are called literals.

H.2.1.2 Layer 2 – Clause Layer

The clauses in the TM recognizes the patterns in data. A TM comprises m conjunctive

clauses. Each clause processes literals from the input layer. Different patterns of different

classes make diverse clauses, by varying the literals included in a clause to represent a

pattern. The set IIj contains the indexes of the original variables that are included in

clause j. Similarly, the set ĪIj consists of the indexes of the included negated variables.

These sets are thus subsets of the complete set of indexes IIj , Ī
I
j ⊆ {1, . . . , o}. Once the

included literals in clauses are know, the clause j can be mathematically expressed as,

cj = 1 ∧

∧
k∈IIj

xk

 ∧
∧

k∈ĪIj

¬xk

 . (H.1)

H.2.1.3 Layer 3 – Memory Layer

The indexes in set IIj and ĪIj are updated depending on the decision of Tsetlin Automata

(TAs) attached to literals in clause j. Since there are 2 × o literals in a clause, the

same number of TAs is needed in a clause to decide the composition of the clause. Each

206

TA maintains a memory state aj,k ∈ {1, . . . , 2N}, with j referring to the clause, cj, j ∈
{1, . . . ,m} and k to the literal, x′k, k ∈ {1, . . . , 2o}. States 1 to N map to the exclude

action: exclude the kth literal from the jth clause. Conversely, states N + 1 to 2N map

to the include action: include the kth literal in the jth clause.

Similar to storing weight values of a Neural Network in Deep Learning theories, a TM

stores all the TA states in the memory layer, which can be organized as a matrix A:

A = (aj,k) ∈ {1, . . . , 2N}m×2o. Accordingly, I
IX′
j , which now consists the indexes of the

included literals from the augmented feature vector, X′ can be written as: I
IX′
j = {k|N <

aj,k < 2N,1 ≤ k ≤ 2o}.

H.2.1.4 Layer 4 – Voting Layer

In the voting layer, firstly, the clause output is evaluated. When I1
X′ contain the indexes of

the 1-valued literals from X′, since the clauses are conjunctive clauses, the clause output

evaluates to 1 if I
IX′
j is a subset of I1

X′ . The value cj of clause j can then be succinctly

defined as:

cj =

{
1 if I

IX′
j ⊆ I1

X′ ,

0 otherwise.
(H.2)

H.2.1.5 Layer 5 – Output Layer

The output layer counts the sub-patterns identified by clauses of different classes. Polar-

ized clause outputs from the voting layer are used to compute the vote difference between

the two classes: v =
∑

j c
+
j −

∑
j c
−
j . Then using a step function, the output of the TM

is finally decided as:

y =

{
1 if v ≥ 0

0 if v < 0 .
(H.3)

H.2.2 Learning Procedure

Learning in TM is carefully guiding the TAs in clauses to make the right decision: include

or exclude its corresponding literal in the clause. The decision on literal x′k in the clause

j depends on the TA state aj,k. Hence, during the training process, states of the TAs in

clauses are updated so that eventually the TA teams in clauses make the most appropriate

TM output. During the learning phase, the TM processes one training sample (X, y) at a

time, leveraging the on-line learning properties. The states of TAs in clauses are updated

using two types of reinforcement: Type I and Type II. As described in the following, Type

I feedback produces frequent patterns, while Type II feedback increases the discrimination

power of the patterns.

However, to diversify the clauses over different sub-patterns, for any input X, the

probability of reinforcing a clause gradually drops to zero as the voting sum v approaches

a user-set target T . That is clauses which receives Type I feedback is sorted stochastically

with probability T−max(−T,min(T,v))
2T

. Clauses which receives Type II feedback is selected

207

stochastically with probability T+max(−T,min(T,v))
2T

. Here, higher T increases the robustness

of learning by allocating more clauses to learn each sub-pattern.

Type I feedback: Type I feedback is given to clauses with positive polarity when

y = 1. Clauses with negative polarity receive Type I feedback when y = 0. Furthermore,

Type I feedback consists of two sub-feedback schemes: Type Ia and Type Ib. Type Ia

feedback reinforces include actions of TAs whose corresponding literal value is 1, however,

only when the clause output also is 1. Type Ib feedback combats over-fitting by reinforcing

exclude actions of TAs when the corresponding literal is 0 or when the clause output is

0. Consequently, both Type Ia and Type Ib feedback gradually force clauses to output 1.

If a clause is eligible to receive feedback, the individual TAs of the clause are singled

out stochastically using a user-set parameter s (s ≥ 1). The kth TA of the jth clause

receives Type Ia feedback with probability s−1
s

. If this happens, the corresponding TA

state aj,k is increased by 1. This TA receives Type Ib feedback with probability 1
s

to

reduce the TA state aj,k by 1. As noticed, Type Ia feedback is stronger compared to Type

Ib feedback where it makes the clause remember and refine the pattern it recognizes in X′.

Type Ib, on the other hand, fine-tunes the clause output if it is 1 by further pushing states

of TAs of literal value 0 towards exclude action or makes the clause forget the pattern if

the clause output is 0 by reinforcing exclude action, regardless of the literal value.

Type II feedback is given to clauses with positive polarity when y=0 and to clauses

with negative polarity when y=1. Type II feedback does not update the states of TAs if

the clause output is 0. However, when the clause output is 1, Type II feedback attempts

to make it output 0 by including 0 literals in the clause. Hence, if x′k is 0 in a such a

clause, aj,k is increased by 1. Thus, this feedback introduces literals for discriminating

between y = 0 and y = 1.

H.3 The Convolutional-Regression Tsetlin Machine

(C-RTM)

The C-RTM is a novel ensemble approach based on the TM that unifies the unique

properties of both CTM and RTM. This section introduces the C-RTM and explains how

the patterns recognized during the convolutional operations of the CTM are merged into

regression outputs as in the RTM.

H.3.1 The Convolutional Operation

Consider an image of size X ×Y ×Z as in Figure H.2, in which, pixels are represented in

binary form1. If the complete image is to be sent into the classical TM, the augmented

feature vector, X′ will contain X × Y × Z × 2 propositional variables, X′ = (x′k) ∈
{0, 1}X×Y×Z×2. Hence, clauses will consist of X × Y ×Z × 2 number of TAs each. These

TAs will then decide which of the above literals of the image are important for a specific

class and should be included in the clauses. However, instead of sending the entire image

1pixel values can be binarized using the thresholding[7], one-hot encoding, or any other binary encoding

approach.

208

𝑋

𝑌

𝑍

𝑊𝑦 = 3

𝑊𝑥 = 3

Figure H.2: A filter of size Wx ×Wy × Z on an image of size X × Y × Z.

into the TM, the CTM [11], which was inspired by the convolution in deep learning,

considers a patch of the image at a time as further explained below.

In the CTM, filters of size Wx ×Wy × Z are used to extract the patterns of distinct

locations in the image. In Figure H.2, a filter of size 3 has been located at the top-

left corner of the image. A clause in the TM then receives the features of the image

which are covered by the filter. The resulting feature vector for a clause then consists of

Wx ×Wy × Z × 2 literals, X′ = (x′k) ∈ {0, 1}Wx×Wy×Z×2.

This filter moves around the image. It moves d steps systematically towards the right

from its current location and d steps to the bottom from its current location. As the filter

moves around, the same clause receives multiple feature vectors from different locations of

the image. Hence, to make the clause location-aware, the binary encoded location of the

filter is also augmented to the feature vector. The number of feature vectors (equal to the

number of image patches) received by a clause from an image is equal to B; B = BX×BY .

Here, BX = [X−Wx

d
] + 1 and BY = [Y−Wy

d
] + 1. Now with the binary encoded location

(one propositional variable per position along each dimension), the feature vector can be

rewritten as X′ = (x′k) ∈ {0, 1}(Wx×Wy×Z+BX+By)2.

The CTM uses m number of such filters to cover the sub-patterns in different locations

of the images from different classes. As a result, the CTM needs m number of clauses to

represent all these filters. However, each clause outputs B values per image, as the filter

moves to B unique locations in the image. As opposed to the outputs of clauses in the

classic TM, where it is the direct conjugation of the included literals, here in the CTM,

clause output is 1 if the clause recognizes a pattern at least at any of the B locations in

an image. Hence, the clause output of clause j, cj can be written as:

cj = ∨Bb=1c
b
j. (H.4)

where b is the index of the location, b ∈ {1, . . . , B} and j is clause index, j ∈
{1, . . . ,m}.

Similar to the TM, at the Voting Layer, the clauses in CTM are divided equally into

the classes so that they recognize the patterns of their corresponding classes. In the

Output Layer, still using the majority vote concept, the output is decided using a step

209

function as in (2.4).

Yet, learning in the CTM utilizes the same Type I and Type II feedbacks. However,

since the clauses in the CTM receive multiple inputs per image (B input patches), each

clause should be trained to learn only one sub-pattern from the list of sub-patterns it

recognizes at different locations of the image. The CTM randomly selects one of these

patches among the patches that made the clause evaluate to 1. The randomness of the

uniform distribution statistically spread the clauses for different sub-patterns in the target

image.

H.3.2 Mapping Clause Outputs into a Regression Value

When the output is continuous, the output layer of the CTM in [11] is unable to map the

input features into a correct output value. Hence, we now modify the structure and the

learning procedure of the CTM, which then can map image inputs into a continuous out-

put. The new ensemble approach is called as Convolutional-Regression Tsetlin Machine

(C-RTM).

Now, since the goal of the C-RTM is not to map the output into a class, clause

polarities are unnecessary, where they were initially used to recognize the classes. Hence,

we now remove the polarity of clauses, since we intend to use the clauses as additive

building blocks that can be used to calculate continuous output. As a result, the value v

in the output layer takes a value between 0 and T instead of a value between −T and T .

The goal of the modified output layer is to normalize the resulting v into a regression

output. This is simply done by using the maximum output value ŷmax among the n

training samples, Y = [ŷ1, ŷ2, ŷ3, . . . , ŷn], and the user-set target value T , which now

control the precision of the regression output. For instance, for the oth training image,

(X̂o), the C-RTM output, yo, is calculated as:

yo =

∑m
j=1 cj(X̂o) × ŷmax

T
. (H.5)

However, the above computed C-RTM output, yo can be higher or lower than the

target output, ŷo. Similarly to other machine learning methods, we need a mechanism for

minimizing the error between the predicted output, yo, and target output, ŷo. In the C-

RTM, this is quite simply achieved by providing Type I and Type II feedbacks according

to the following criteria:

Feedback =

Type I, if yo < ŷo ,

Type II, if yo > ŷo .

(H.6)

The idea is to apply Type I feedback, which forces clauses to output 1, when the

predicted output is less than the target output (yo < ŷo) and Type II feedback, which

forces clauses to output 0, when the predicted output is higher than the target output

(yo > ŷo).

However, to stabilize the output value on to a target output, the number of clauses

which receive the above feedback should be proportional to the magnitude of the error

210

between the predicted and target output. That is, in the C-RTM, feedback to clauses is

determined stochastically with a probability of K×|yo−ŷo|
ŷmax

. As noticed, the magnitude of

the function is adjusted with the constant K. The resulting activation function reduces

the oscillation of the predicted value during the training process, stabilizing it around the

target value.

H.4 Empirical Results

In this section, the performance of the proposed ensemble approach is evaluated. First,

we utilize thirty six artificial datasets with known input-output mapping. With these

artificial datasets, we explain how the C-RTM learns distinct patterns in correct numbers

to produce the right regression output. Later we make the task difficult for the C-RTM

by adding noise to the above datasets. The performance of C-RTM on noisy data is

compared against CNN. Towards the end of the section, the performance of the C-RTM

is evaluated and compared against the CNNs on two real-world applications: y-coordinate

prediction and MNIST-regression.

H.4.1 Artificial Data

We study the behaviour of the C-RTM using three different sizes of artificially generated

images. These images have been constructed to facilitate empirical analysis of the opti-

mality of C-RTM learning, with the underlying input-output mapping being known. The

first set of images are 3× 3× 1 in size. The second and third set of images are 4× 4× 1

and 5 × 5 × 1 in size, respectively. The pixels in each image are random binary values

with equal probability of being 0 or 1, leading to a more or less uniform distribution of

bit values.

Each image in a selected dataset is then covered with a weighted-mask. The mask

decide which pixels in the image are important and how important are they. The mask

together with the original image decides the output label ŷ. For instance, Figure H.3

depicts a case of a 4 × 4 × 1 image. Consider that (x, y) coordinates of the top-left

corner is (0, 0) and they increase towards right and bottom, respectively. We can see then

the mask has decided that (0, 0), (2, 0), (1, 2), and (3, 3) are the important pixels in the

image. The weights of these pixels are 23, 22, 21, and 20, respectively. By taking the

multiplication of corresponding pixels of the image and the mask, a resulting image is

0 0 1 1

1 0 1 0

0 1 0 1

1 0 0 0

23 0 22 0

0 0 0 0

0 21 0 0

0 0 0 20

0 0 4 0

0 0 0 0

0 2 0 0

0 0 0 0

�̂� = (4 + 2) × 100 = 600 × =

Original binary

image
Weighted-mask Resulting image Regression output

Figure H.3: Generating artificial data for C-RTM.

211

Table H.1: Summary of the artificial images generated to measure the performance of

RTM

Noise-free Noisy

Image Size 3× 3× 1 4× 4× 1 5× 5× 1 3× 3× 1 4× 4× 1 5× 5× 1

No. of Important

Pixels
2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4

No. of Different

Masks
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Total datasets
12 12 12 12 12 12

36 36

generated. The sum of the pixel values of the resulting image is then multiply by 100 to

get the regression output of the image.

The number of datasets can be increased by changing the important pixel locations of

the weighted-mask and by varying the number of important pixels in the weighted mask.

The number of datasets can be further increased by introducing noise into training data.

In our study, for each set of images, 12 different masks are used. In them, 4 masks highlight

2 important pixels at 4 different random locations, 4 masks highlight 3 important pixels

at 4 different random locations, and 4 masks highlight 4 important pixels at 4 different

random locations. Collectively this creates 36 different datasets. The number of datasets

are then doubled by adding noise into the training data in another similar 36 datasets.

For the purpose of demonstrating the performance of TM in the next section, we

summarize the above datasets in Table H.1. The performance of the TM is evaluated on

these datasets and compared against two CNN setups as discussed in the next section.

H.4.2 Results and Discussion on Artificial Data

We use Mean Absolute Error (MAE) to measure the performance. The C-RTM in these

experiments uses the optimum number of clauses discussed in [16] to work with noise-free

data, i.e., three clauses when the number of important pixels is 2, seven clauses when the

number of important pixels is 3, and fifteen clauses when the number of important pixels

is 4. However, to handle the noise in data, C-RTM uses large number of clauses as further

explained. The values for parameters T and s were found using a grid search in [16] for

the RTM. These values are also employed here by the C-RTM.

The C-RTM obtains zero MAE for both training and testing on noise-free datasets

as discussed in Table H.1. This can be explained using the case given in Figure H.3 as

an example. The weighted-mask can create 16 different resulting images according to the

combination of different binary values in the important pixels. Accordingly, 16 different

regression outputs are generated. For instance, if all (0, 0), (2, 0), (1, 2), and (3, 3) pixels

in the original image are 0s, the resulting ŷ will be zero. If only (3, 3) from the above

important pixels is 1, the resulting ŷ will be 100. In the C-RTM, these different output

values are computed by taking the sum of the clause outputs as in Eqn. H.5. Hence,

to correctly generate the output by making the correct number of clauses output 1, the

212

Table H.2: Four patterns recognized by filters (clauses) in the C-RTM to correctly predict

the regression outputs associated with weighted-mask in Figure H.3.

Pattern 1 Pattern 2 Pattern 3 Pattern 4

⁕ 1

⁕ ⁕

1 ⁕

⁕ ⁕

1 ⁕

⁕ ⁕

⁕ ⁕

⁕ 1

⁕ 1

⁕ ⁕

1 ⁕

⁕ ⁕

1 ⁕

⁕ ⁕

⁕ ⁕

⁕ 1

⁕ 1

⁕ ⁕

1 ⁕

⁕ ⁕

⁕ ⁕

1 ⁕

⁕ ⁕

⁕ 1

⁕ 1

⁕ ⁕

1 ⁕

⁕ ⁕

1 ⁕

⁕ ⁕

⁕ ⁕

⁕ 1

C-RTM should recognize 4 different patterns in data. Assuming the filter size is 2-by-2,

these patterns recognized by the clauses are summarized in Table H.2.

Here in patterns, ‘1’ means the original literal related to the considered pixel has

been included in the clause. The ∗ on the other hand means the pixel value can take an

arbitrary value, either 0 or 1 (both original and negated literals related to the considered

pixel have been excluded from the clause).

Now consider the new input image in Table H.3. The clause which recognizes the

pattern 1 outputs 1 since image pixel at (0, 0) is 1 (the values of other pixels are not

important since TAs representing their both original and negated pixels have decided

to exclude them from the clause: denoted in ∗). Similarly, clauses which recognize the

pattern 2 and 4 also output 1. The clause that represents the pattern 3 outputs 0 since

the image pixel at (1, 2) is 0.

According to the calculations in Figure H.3, the corresponding regression output of

the above image is 1300. As discussed early, the C-RTM needs 15 clauses to perform the

convolutional-regression task in hand. During the C-RTM learning phase, these clauses

are allocated to different pattern in right numbers. If eight clauses recognize pattern 1,

four clauses recognize pattern 2, two clauses recognize pattern 3, and one clause recognizes

pattern 4, the correct output 1300 for the above image can be calculated. Similarly,

according to the above allocation of clauses to different patterns, any regression output

for the considered convolutional-regression problem can be generated.

One might wonder why the clause which recognizes the pattern 1 does not output 1 at

picture location (2, 0), or why the clause which recognizes the pattern 2 does not output 1

at picture location (3, 3). This is due to that these clauses also learn the correct location

of the pattern.

In our case, we attach the location using the thresholding approach proposed in [7].

Table H.3: Placing filters on different image locations where they recognized those pat-

terns.

Pattern 1 at (0,0) Pattern 2 at (1,0) Pattern 3 at (1,1) Pattern 4 at (2,2)

0 0 1 1

1 0 1 0

0 1 0 1

1 0 0 0

23 0 22 0

0 0 0 0

0 21 0 0

0 0 0 20

0 0 4 0

0 0 0 0

0 2 0 0

0 0 0 0

1 0 1 1

1 0 1 0

0 0 0 1

1 0 0 1

1 0 1 1

1 0 1 0

0 0 0 1

1 0 0 1

1 0 1 1

1 0 1 0

0 0 0 1

1 0 0 1

�̂� = (4 + 2) × 100 = 600 × =

Original binary

image
Weighted-mask Resulting image Regression output

0 0 1 1

1 0 1 0

0 1 0 1

1 0 0 0

23 0 22 0

0 0 0 0

0 21 0 0

0 0 0 20

0 0 4 0

0 0 0 0

0 2 0 0

0 0 0 0

1 0 1 1

1 0 1 0

0 0 0 1

1 0 0 1

1 0 1 1

1 0 1 0

0 0 0 1

1 0 0 1

1 0 1 1

1 0 1 0

0 0 0 1

1 0 0 1

�̂� = (4 + 2) × 100 = 600 × =

Original binary

image
Weighted-mask Resulting image Regression output

0 0 1 1

1 0 1 0

0 1 0 1

1 0 0 0

23 0 22 0

0 0 0 0

0 21 0 0

0 0 0 20

0 0 4 0

0 0 0 0

0 2 0 0

0 0 0 0

1 0 1 1

1 0 1 0

0 0 0 1

1 0 0 1

1 0 1 1

1 0 1 0

0 0 0 1

1 0 0 1

1 0 1 1

1 0 1 0

0 0 0 1

1 0 0 1

�̂� = (4 + 2) × 100 = 600 × =

Original binary

image
Weighted-mask Resulting image Regression output

⁕ 1

⁕ ⁕

1 ⁕

⁕ ⁕

1 0 1 1

1 0 1 0

0 0 0 1

1 0 0 1

⁕ ⁕

1 ⁕

⁕ ⁕

⁕ 1

213

Table H.4: Binary representation of filter locations in the image

Location

Binary representation

Thresholds for BX Thresholds for BY

≤ 0 ≤ 1 ≤ 2 ≤ 0 ≤ 1 ≤ 2

(0, 0) 1 1 1 1 1 1

(1, 0) 0 1 1 1 1 1

(2, 0) 0 0 1 1 1 1

(0, 1) 1 1 1 0 1 1

(1, 1) 0 1 1 0 1 1

(2, 1) 0 0 1 0 1 1

(0, 2) 1 1 1 0 0 1

(1, 2) 0 1 1 0 0 1

(2, 2) 0 0 1 0 0 1

Since the size of the filter is 2-by-2 and the step size of the convolution, d is 1, BX and

BY can be calculated as, BX = [X−W
d

] + 1 = 3 and BY = [Y−W
d

] + 1 = 3. Therefore, each

filter moves to 9 (B) unique locations in the image. Table H.4 summarizes the binary

feature representation of all these 9 locations of filters in the image. Now the clause

which learns the pattern 1 also learns the location of the pattern, where it says x should

be ≤ 0 (by including original ≤ 0 threshold of BX in the clause) and y should be ≤ 0

(by including original ≤ 0 threshold of BY in the clause). Hence, for instance, the clause

which recognized the pattern 1 does not output 1 at location (2, 0) where ≤ 0 of (2, 0) is

0.

So far in this section, we considered the case of having 4 important pixels in a 4-by-

4 image as an example. However, regardless of the size of the image, 2-by-2 filters find

similar patterns as in Table H.2 when there are 4 important pixels. Table H.5 outlines the

complete set of patterns that clauses recognize depending on the number of important

pixels in the image and how many of them needed to form the required output. The

pattern 1 in Table H.2 has been written as (1 ∗ ∗ ∗) in Table H.5. In this case, we use a

1-by-2 filter when the number of important pixels is 2, a 1-by-3 filter when the number

of important pixels is 3, and a 2-by-2 filter when the number of important pixels is 4.

We observe that the C-RTM behaves similar to RTM [16] when T (= to the number of

clauses) is not a multiplier of the optimum required clauses. In this situation, the C-RTM

cannot align its output yo to the target output ŷo during the training phase. For instance,

by assigning sixteen clauses when the number of important pixels is 4, the training will

end up with e.g. allocating five clauses to represent the pattern (∗ 1 ∗ ∗) or two clauses

to represent the pattern (∗ ∗ ∗ 1). As a result, one or more output values cannot be

computed correctly. For example, if there are five clauses for the pattern (∗ 1 ∗ ∗) after

training, input image in Table H.3 activates 14 clauses, producing an incorrect output

that is 1400.

As a strategy for problems where the number of important pixels is unknown, and for

real-world applications where noise plays a significant role, the C-RTM can be initialized

with a large number of clauses (= T). Then, since the output, yo, is a fraction of the

214

threshold, T, the error decreases. With that in mind, C-RTM is operated with 1000 clauses

on all 36 noisy datasets. To compare the performance of the C-RTM, two CNNs are used:

CNN-50 - containing 50 filters and CNN-1000 - containing 1000 filters. The training and

testing MAEs for all the cases are summarized in Table H.6 and H.7, respectively.

All the considered models show competitive performance on noisy data as outlined in

Table H.6 and H.7. In general, the average training MAEs are higher than the average

testing MAEs as noise was added on training data. However, this shows that all models

are able to generalize the datasets despite the noise in training data. Figure H.4 illustrates

Table H.5: Computing output for different images when having different number of im-

portant pixels by activating different clauses.

No. of

important pixels
Output Required number of clauses to represent different patterns††

2

0 None

100 1×(∗ 1)

200 2×(1 ∗)
300 2×(1 ∗) + 1×(∗ 1)

3

0 None

100 1×(∗ ∗ 1)

200 2×(∗ 1 ∗)
300 2×(∗ 1 ∗) + 1×(∗ ∗ 1)

400 4×(1 ∗ ∗)
500 4×(1 ∗ ∗) + 1×(∗ ∗ 1)

600 4×(1 ∗ ∗) + 2×(∗ 1 ∗)
700 4×(1 ∗ ∗) + 2×(∗ 1 ∗) + 1×(∗ ∗ 1)

4

0 None

100 1×(∗ ∗ ∗ 1)

200 2×(∗ ∗ 1 ∗)
300 2×(∗ ∗ 1 ∗) + 1×(∗ ∗ ∗ 1)

400 4×(∗ 1 ∗ ∗)
500 4×(∗ 1 ∗ ∗) + 1×(∗ ∗ ∗ 1)

600 4×(∗ 1 ∗ ∗) + 2×(∗ ∗ 1 ∗)
700 4×(∗ 1 ∗ ∗) + 2×(∗ ∗ 1 ∗) + 1×(∗ ∗ ∗ 1)

800 8×(1 ∗ ∗ ∗)
900 8×(1 ∗ ∗ ∗) + 1×(∗ ∗ ∗ 1)

1000 8×(1 ∗ ∗ ∗) + 2×(∗ ∗ 1 ∗)
1100 8×(1 ∗ ∗ ∗) + 2×(∗ ∗ 1 ∗) + 1×(∗ ∗ ∗ 1)

1200 8×(1 ∗ ∗ ∗) + 4×(∗ 1 ∗ ∗)
1300 8×(1 ∗ ∗ ∗) + 4×(∗ 1 ∗ ∗) + 1×(∗ ∗ ∗ 1)

1400 8×(1 ∗ ∗ ∗) + 4×(∗ 1 ∗ ∗) + 2×(∗ ∗ 1 ∗)
1500 8×(1 ∗ ∗ ∗) + 4×(∗ 1 ∗ ∗) + 2×(∗ ∗ 1 ∗) + 1×(∗ ∗ ∗ 1)

†† for example, “two clauses to represent the pattern (1 ∗)” is written as “2 × (1 ∗)”

215

Table H.6: Average Training MAEs on noisy data by CNNs and C-RTM.

Image size 3× 3× 1 4× 4× 1 5× 5× 1

No. of important pixels 2 3 4 2 3 4 2 3 4

No. of different masks 4 4 4 4 4 4 4 4 4

Average

MAE

CNN-50 4.94 4.87 5.03 5.01 4.78 5.16 5.31 4.91 5.08

CNN-1000 4.81 4.90 4.93 4.79 4.86 5.03 4.76 4.96 4.81

C-RTM 5.34 5.01 4.83 4.97 4.96 5.18 5.15 5.11 4.91

Table H.7: Average Testing MAEs on noisy data by CNNs and C-RTM.

Image size 3× 3× 1 4× 4× 1 5× 5× 1

No. of important pixels 2 3 4 2 3 4 2 3 4

No. of different masks 4 4 4 4 4 4 4 4 4

Average

MAE

CNN-50 0.97 1.34 1.28 1.04 1.16 1.20 0.98 0.98 1.17

CNN-1000 1.63 1.71 2.21 1.94 2.07 1.85 2.21 1.76 2.16

C-RTM 1.17 1.14 1.21 1.09 1.32 1.17 0.98 1.22 1.03

0 5000 10000 15000 20000 25000
Epochs

0

5

10

15

20

25

30

35

40

Er
ro

r (
M

AE
)

Testing MAE (3-by-3)
Training MAE (3-by-3)
Testing MAE (4-by-4)
Training MAE (4-by-4)
Testing MAE (5-by-5)
Training MAE (5-by-5)

Figure H.4: C-RTM training and testing accuracy variation over epochs when different

sizes of images are used.

C-RTM training and testing MAE variation over epochs for a case of having 3 important

pixels in three different sizes of images. As shown, training MAEs converge to a value

close to 5 while testing MAEs converge to a value above 0. The only difference is, when

the size of the image is bigger, it requires more training epochs to find the correct clause

configuration.

Average training MAEs of CNN-1000 on all considered 9 cases are lower than those

of CNN-50. This might be due to the allocation of more filters in CNN-1000 than in

CNN-50 to capture the patterns in data. Training MAEs of C-RTM do not show any

clear difference to the MAEs of CNN-50 and CNN-1000. In some cases, MAE of C-RTM

is higher than that of both CNNs. However, in some other cases, MAE of C-RTM is lower

than that of both CNNs.

Despite better training MAEs of CNN-1000 compared to CNN-50, the testing MAEs

216

of CNN-50 are lower than the MAEs of CNN-1000. A possible reason could be the

overfitting of data by CNN-1000 during the training. ALL testing MAEs of C-RTM are

better than those of CNN-1000. In four out of nine cases, CNN-50 obtains better MAEs.

At same number of occasions, C-RTM beats CNN-50. In the case of 2 important pixels

in a 5× 5× 1 image, both CNN-50 and C-RTM acquire the MAE of 0.98.

In spite of more or less similar error, the C-RTM has an immense advantage of in-

terpretability of identified patterns in data. These patterns for example can be seen in

Table H.2. Interpretability is somehow not possible or extremely difficult to achieve with

CNN, specially when large number of filters are used. Additionally, the C-RTM can also

detail which of the learned patterns are important and add a higher value to the regres-

sion output by counting the number of clauses which learned the similar pattern. For

comprehensiveness, we further compare C-RTM and CNN in more detail in Table H.8.

Since both CNN-1000 and C-RTM use the same number of filters, CNN-1000 is se-

lected for the comparison against C-RTM. As we already discussed, C-RTM shows better

performance in terms of the testing error on all different sizes of images compared to

CNN-1000. The learned CNN filters to achieve the above performance contain float num-

bers while clauses in C-RTM contain only binary values. This can be seen in the example

filters outlined in Table H.8. Furthermore, the filters in CNN move to all the possible

locations in the image while clauses in C-RTM move only to some specific locations as

these clauses also learn the general locations of the learned patterns. More specifically,

2-by-2 filters of CNN in a 5× 5× 1 image move to 16 different locations. However, shown

example C-RTM clause in the table only activates at top-left corner of the image, (0, 0).

At each location, the CNN filter performs 4 multiplications and 3 summations. In total

at 16 different locations, the CNN filter performs 64 multiplications and 48 summations.

The C-RTM clause, only other hand, performs only one AND operation.

With the CNN, further weight analysis are needed before making the regression output.

However with the C-RTM, the clause output is just sent to the voting layer and proceed

with the output calculation. For all these internal operations in total, the CNN takes 4.34

seconds per training epoch. Foreseeably, the C-RTM takes only 0.53 seconds per epoch

for its internal operations during training.

In addition to all the above advantages with C-RTM, the C-RTM consumes signifi-

cantly lesser memory both during training and testing. The CNN requires 1009.6 more

memory to work with the artificial data during training. The CNN also requires 2.2 MiB

of memory during testing while C-RTM uses almost zero memory during testing.

H.4.3 Real-World Data: Experiments and Performance Com-

parison

We analyze the C-RTM with two real-world datasets: the y-coordinate prediction dataset

and the MNIST-regression dataset. The y-coordinate prediction dataset contains the

images of concrete beams. The goal here is to predict the y-coordinate of a specific feature

on the beam surface2. The MNIST-regression dataset basically contains the MNIST image

2Dataset and more details about the dataset can be found at: https://forums.fast.ai/t/dataset-for-

regression-cnn/30188

217

T
ab

le
H

.8:
D

etailed
com

p
arison

of
p

erform
an

ce
b

etw
een

C
N

N
-1000

an
d

C
-R

T
M

on
artifi

cial
d
ata.

C
N

N
-1000

C
-R

T
M

Im
age

S
ize

3
×

3
×

1
4
×

4
×

1
5
×

5
×

1
3
×

3
×

1
4
×

4
×

1
5
×

5
×

1

A
verage

M
A

E
1.85

1.95
2.04

1.17
1.19

1.08

A
n

E
x
am

p
le

F
ilter

(F
or

5
×

5
×

1
im

age)

5.89
0.01

0.87
-0.59

1
∗

∗
∗

F
ilter

V
alu

es
F

loats
(P

ositive/N
egative)

B
in

ary

F
ilter

L
o
cation

N
o

lo
cation

x
≤

0,
y
≤

0

M
oves

M
oves

to
16

lo
cation

s
J
u
st

stay
s

at
(0,0)

lo
cation

N
o.

of
O

p
eration

s
P

erform
ed

(p
er

fi
lter)

64
M

u
ltip

lication
s

48
S
u
m

m
ation

s

1
A

N
D

op
eration

(M
ax

im
u
m

3
A

N
D

op
eration

s)

A
fter

C
on

volu
tion

al
C

alcu
lation

s

If
n
o

oth
er

layers,
th

e
resu

ltin
g

im
age

is
sen

t
to

th
e

fu
lly

con
n
ected

layer
an

d

fu
rth

er
w

eigh
t

an
aly

sis

are
p

erform
ed

S
en

d
th

e
resu

lt
(1

or
0)

to
th

e

votin
g

layer
an

d
p
ro

ceed
w

ith

ou
tp

u
t

calcu
lation

T
rain

in
g

T
im

e
P

er
E

p
o
ch

4.34
sec.

0.53
sec.

T
rain

in
g

M
em

ory
908.6

M
iB

0.9
M

iB

T
estin

g
M

em
ory

2.2
M

iB
0.00

M
iB

218

T
ab

le
H

.9:
D

etailed
com

p
arison

of
p

erform
an

ce
b

etw
een

C
N

N
an

d
C

-R
T

M
on

y
-co

ord
in

ate
d
ataset.

C
N

N
-1000

C
-R

T
M

Im
age

S
ize

200
×

199
×

1
200
×

199
×

1

A
verage

M
A

E
16.51

14.74

A
n

E
x
am

p
le

F
ilter

(10
×

10)

0.006
-0.011

..
-0.007

-0.003

-0.001
-0.014

..
0.010

-0.014

-0.009
-0.010

..
-0.006

-0.014

-0.002
-0.007

..
-0.008

-0.008

-0.010
-0.002

..
-0.014

-0.002

0.003
-0.012

..
0.000

-0.002

-0.012
-0.005

..
0.007

0.002

0.002
-0.004

..
-0.001

0.010

0.002
-0.004

..
-0.001

0.010

0.002
-0.004

..
-0.001

0.010

∗
1
∗
∗
∗
∗

0
∗

0
∗

∗
∗

1
1
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

1
∗
∗
∗
∗
∗
∗
∗
∗
∗

1
∗
∗
∗

1
∗
∗
∗
∗
∗

∗
∗
∗
∗

1
∗
∗
∗
∗
∗

∗
1
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗

1
∗

1
1
∗
∗
∗

1

∗
∗

1
∗
∗
∗
∗
∗

1
∗

1
∗
∗

1
∗
∗
∗
∗
∗

1

F
ilter

V
alu

es
F

loats
(P

ositive/N
egative)

B
in

ary

F
ilter

L
o
cation

N
o

lo
cation

x
≤

8,
11

<
y
≤

14

M
oves

M
oves

to
381

lo
cation

s
M

oves
to

36
lo

cation

N
o.

of
O

p
eration

s
P

erform
ed

(p
er

fi
lter)

38,100
M

u
ltip

lication
s

37,719
S
u
m

m
ation

s

684
A

N
D

op
eration

s

(M
ax

im
u
m

3,600
A

N
D

op
eration

s)

A
fter

C
on

volu
tion

al
C

alcu
lation

s

If
n
o

oth
er

layers,
th

e
resu

ltin
g

im
age

is
sen

t
to

th
e

fu
lly

con
n
ected

layer
an

d

fu
rth

er
w

eigh
t

an
aly

sis

are
p

erform
ed

S
en

d
th

e
resu

lt
(1

or
0)

to
th

e

votin
g

layer
an

d
p
ro

ceed
w

ith

ou
tp

u
t

calcu
lation

T
rain

in
g

T
im

e
P

er
E

p
o
ch

5.79
sec.

33.18
sec.

T
rain

in
g

M
em

ory
1,934.1

M
iB

578.8
M

iB

T
estin

g
M

em
ory

55.5
M

iB
0.00

M
iB

219

T
ab

le
H

.10:
D

etailed
com

p
arison

of
p

erform
an

ce
b

etw
een

C
N

N
an

d
C

-R
T

M
on

M
N

IS
T

-regression
d
ataset.

C
N

N
-1000

C
-R

T
M

Im
age

S
ize

28
×

28
×

1
28
×

28
×

1

A
verage

M
A

E
0.56

0.61

A
n

E
x
am

p
le

F
ilter

(10
×

10)

-0.004
-0.007

..
-0.005

-0.004

-0.006
-0.003

..
-0.004

-0.006

-0.008
-0.008

..
-0.008

-0.008

-0.007
-0.003

..
-0.005

-0.003

-0.005
-0.004

..
-0.006

-0.005

-0.005
-0.006

..
-0.004

-0.008

-0.008
-0.007

..
-0.005

-0.004

-0.034
-0.006

..
-0.005

-0.007

-0.004
-0.008

..
-0.006

-0.006

-0.006
-0.004

..
-0.003

-0.025

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗

1
1

1
∗
∗
∗
∗

∗
∗

1
1

1
1
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗

1

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗

1
∗

∗
∗
∗
∗
∗

1
∗
∗
∗

1

∗
∗
∗

1
1
∗
∗
∗
∗
∗

1
1

1
∗
∗
∗

0
0

0
0

F
ilter

V
alu

es
F

loats
(P

ositive/N
egative)

B
in

ary

F
ilter

L
o
cation

N
o

lo
cation

x
≤

1,
y
≤

0

M
oves

M
oves

to
38

lo
cation

s
M

oves
to

2
lo

cation

N
o.

of
O

p
eration

s
P

erform
ed

(p
er

fi
lter)

3,800
M

u
ltip

lication
s

3,762
S
u
m

m
ation

s

40
A

N
D

op
eration

s

(M
ax

im
u
m

200
A

N
D

op
eration

s)

A
fter

C
on

volu
tion

al
C

alcu
lation

s

If
n
o

oth
er

layers,
th

e
resu

ltin
g

im
age

is
sen

t
to

th
e

fu
lly

con
n
ected

layer
an

d

fu
rth

er
w

eigh
t

an
aly

sis

are
p

erform
ed

S
en

d
th

e
resu

lt
(1

or
0)

to
th

e

votin
g

layer
an

d
p
ro

ceed
w

ith

ou
tp

u
t

calcu
lation

T
rain

in
g

T
im

e
P

er
E

p
o
ch

104.83
sec.

436.59
sec.

T
rain

in
g

M
em

ory
1,324.3

M
iB

749.9
M

iB

T
estin

g
M

em
ory

77.4
M

iB
0.00

M
iB

220

data [17]. However the class output of each image is converted to a float value by randomly

pulling a value from a normal distribution when class value is the mean and taking 0.02

as the standard deviation.

The images in the y-coordinate prediction dataset are cropped to be in the size of

200×199×1. Both CNN and C-RTM contains 500 filters in them (clauses in the C-RTM

case). When the number of filters in both CNN and C-RTM are similar, the performance

gap, in terms of MAE, does not significantly vary with the number of filters. Hence, the

number of filters we use here is a random number and keep it similar for both CNN and

C-RTM.

Table H.9 outlines the performance of both CNN and C-RTM on y-coordinate pre-

diction dataset. As one can notice, the C-RTM outperforms CNN by obtaining a better

MAE. The 10× 10 CNN filters containing float numbers moves to 381 locations of every

image to perform 38,100 number of multiplications and 37,719 number of summations.

The selected C-RTM filter with the same size moves only to 36 locations and performs

only 648 number of AND operations. Even though the CNN takes lesser training time on

y-coordinate prediction dataset, C-RTM consumes significantly less training and testing

memory. These are 1,934.1 MiB compared to 578.8 MiB and 55.5 MiB compared to 0.00

MiB in numbers, respectively on training and testing.

The analysis in [17] tries to see the performance of CNN on MNIST-regression dataset.

They convert the class labels into regression outputs by taking values from a normal

distribution when class value is the mean of the distribution. They analyse the variation

of the performance when different standard deviation values are used. As was foreseeable,

the MAE decreases when the standard deviation increases. However in this study, we are

just interested in comparing the performance of CNN and C-RTM. Hence, we just select

one of their standard deviation values (0.02) to create the dataset. Then, we here build

our own CNN to make a fair comparison between CNN and C-RTM by assigning both of

them the same number of filters (20,000).

The CNN obtains slightly better performance on MNIST-regression dataset as indi-

cated in Table H.10. Similar to the earlier cases with other datasets, filter values in CNN

filters are floats while filter values in C-RTM filters are binary. The 10 filters in CNN

moves to 38 image locations and performs 3,800 number of multiplications and 3,762

summations while the selected 10 filter in C-RTM moves only to 2 locations and performs

merely 40 number of AND operations. The behavior of CNN and C-RTM on MNIST-

regression dataset in terms of the consumption of training time and memory is similar to

behavior on y-coordinate prediction dataset. In other words, even though the CNN takes

roughly 4.16 times less training time, it consumes 1.77 time more training memory and

77.4 MiB testing memory while C-RTM uses close to zero testing memory.

H.5 Conclusion

This paper proposed the Convolutional-Regression Tsetlin Machine (C-RTM), a novel

ensemble approach based on the classic Tsetlin Machine that supports continuous out-

put problems in image analysis. The C-RTM combines properties of both Convolutional

221

Tsetlin Machine (CTM) and Regression Tsetlin Machine (CTM). The patterns in images

are identified using the convolution operations as in the CTM and the identified patterns

are then mapped into a continuous output as in the RTM. The learning in the C-RTM

is a combination of learning in both CTM and RTM. The prediction power of this novel

approach was studied using 72 different datasets, with noise-free and noisy training data.

Our empirical results showed the competitive performance of C-RTM compared to two

Convolutional Neural Networks (CNNs). However, the C-RTM has the additional advan-

tage of interpretability. Additionally, two real world-datasets were also used to analyze

the performance of C-RTM compared to CNN. On one of these two datasets, CNN outper-

forms C-RTM, and on the other, C-RTM outperforms CNN. However, on both datasets,

the number of convolutional calculations of C-RTM filters is significantly lower. As they

learn the location of the patterns, convolutional calculations can be performed only on

some of the image locations. This helps C-RTM to consume significantly low memory

both at training and testing.

222

Bibliography

[1] Geir Thore Berge, Ole-Christoffer Granmo, Tor Oddbjørn Tveit, Morten Good-

win, Lei Jiao, and Bernt Viggo Matheussen. “Using the Tsetlin Machine to Learn

Human-Interpretable Rules for High-Accuracy Text Categorization With Medical

Applications”. In: IEEE Access 7 (2019), pp. 115134–115146.

[2] Adrian Phoulady, Ole-Christoffer Granmo, Saeed Rahimi Gorji, and Hady Ah-

mady Phoulady. “The Weighted Tsetlin Machine: Compressed Representations with

Clause Weighting”. In: Ninth International Workshop on Statistical Relational AI

(StarAI 2020). 2020.

[3] K. Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten Goodwin. “Extend-

ing the Tsetlin Machine with Integer-Weighted Clauses for Increased Interpretabil-

ity”. In: IEEE Access 9 (2021), pp. 8233–8248.

[4] Saeed Rahimi Gorji, Ole-Christoffer Granmo, Adrian Phoulady, and Morten Good-

win. “A Tsetlin Machine with Multigranular Clauses”. In: Lecture Notes in Com-

puter Science: Proceedings of the Thirty-ninth International Conference on Innova-

tive Techniques and Applications of Artificial Intelligence (SGAI-2019). Vol. 11927.

Springer International Publishing, 2019.

[5] Saeed Gorji, Ole Christoffer Granmo, Sondre Glimsdal, Jonathan Edwards, and

Morten Goodwin. “Increasing the Inference and Learning Speed of Tsetlin Machines

with Clause Indexing”. In: International Conference on Industrial, Engineering and

Other Applications of Applied Intelligent Systems. Springer. 2020.

[6] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, Lei Jiao, and

Morten Goodwin. “The Regression Tsetlin Machine - A Novel Approach to Inter-

pretable Non-Linear Regression”. In: Philosophical Transactions of the Royal Society

A 378 (2164 2019).

[7] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, and Morten Good-

win. “A Scheme for Continuous Input to the Tsetlin Machine With Applications

to Forecasting Disease Outbreaks”. In: International Conference on Industrial, En-

gineering and Other Applications of Applied Intelligent Systems. Springer. 2019,

pp. 564–578.

[8] K. Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten Goodwin. “Adap-

tive Sparse Representation of Continuous Input for Tsetlin Machines Based on

Stochastic Searching on the Line”. In: In Preparation (2020).

223

[9] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. “Understanding of a

Convolutional Neural Network”. In: 2017 International Conference on Engineering

and Technology (ICET). IEEE. 2017, pp. 1–6.

[10] Matthew D Zeiler and Rob Fergus. “Visualizing and Understanding Convolutional

Networks”. In: European conference on computer vision. Springer. 2014, pp. 818–

833.

[11] Ole-Christoffer Granmo, Sondre Glimsdal, Lei Jiao, Morten Goodwin, Christian

W. Omlin, and Geir Thore Berge. “The Convolutional Tsetlin Machine”. In: arXiv

preprint:1905.09688 (2019).

[12] Chenhao Cui and Tom Fearn. “Modern Practical Convolutional Neural Networks

for Multivariate Regression: Applications to NIR Calibration”. In: Chemometrics

and Intelligent Laboratory Systems 182 (2018), pp. 9–20.

[13] Ine L Jernelv, Dag Roar Hjelme, Yuji Matsuura, and Astrid Aksnes. “Convolutional

Neural Networks for Classification and Regression Analysis of One-Dimensional

Spectral Data”. In: arXiv preprint arXiv:2005.07530 (2020).

[14] Tomoyoshi Shimobaba, Takashi Kakue, and Tomoyoshi Ito. “Convolutional Neural

Network-Based Regression for Depth Prediction in Digital Holography”. In: 2018

IEEE 27th International Symposium on Industrial Electronics (ISIE). IEEE. 2018,

pp. 1323–1326.

[15] Hilal Tayara, Kim Gil Soo, and Kil To Chong. “Vehicle Detection and Counting in

High-Resolution Aerial Images Using Convolutional Regression Neural Network”.

In: IEEE Access 6 (2017), pp. 2220–2230.

[16] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Lei Jiao, and Morten Goodwin.

“The regression Tsetlin Machine: A Tsetlin Machine for Continuous Output Prob-

lems”. In: EPIA Conference on Artificial Intelligence. Springer. 2019, pp. 268–280.

[17] Ziheng Wang, Su Wu, Chang Liu, Shaozhi Wu, and Kai Xiao. “The Regression of

MNIST Dataset Based on Convolutional Neural Network”. In: International Confer-

ence on Advanced Machine Learning Technologies and Applications. Springer. 2019,

pp. 59–68.

224

Paper I

A Multi-Step Finite-State

Automaton for Arbitrarily

Deterministic Tsetlin Machine

Learning

Due to the high arithmetic complexity and scalability challenges of deep learning,

there is a critical need to shift research focus towards energy efficiency. Tsetlin

Machines (TMs) are a recent approach to machine learning that has demonstrated

significantly reduced energy compared to neural networks alike, while providing com-

parable accuracy on several benchmarks. However, TMs rely heavily on energy-costly

random number generation to stochastically guide a team of Tsetlin Automata (TA)

in TM learning. In this paper, we propose a novel finite-state learning automaton

that can replace the TA in the TM, for increased determinism. The new automaton

uses multi-step deterministic state jumps to reinforce sub-patterns, without resort-

ing to randomization. A determinism parameter d finely controls trading off the

energy consumption of random number generation, against randomization for in-

creased accuracy. Randomization is controlled by flipping a coin before every d’th

state jump, ignoring the state jump on tails. E.g., d = 1 makes every update ran-

dom and d = ∞ makes the automaton completely deterministic. Both theoretically

and empirically, we establish that the proposed automaton converges to the optimal

action almost surely. Further, used together with the TM, only substantial degrees

of determinism reduces accuracy. Energy-wise, random number generation consti-

tutes switching energy consumption of the TM, saving up to 11 mW power for larger

datasets with high d values. Our new learning automaton approach thus facilitate

low-energy machine learning.

I.1 Introduction

State-of-the-art deep learning (DL) requires massive computational resources, resulting in

high energy consumption [1] and scalability challenges [2]. Thus, there is a critical need

225

to shift research focus towards dealing with energy efficiency [3, 4]. Tsetlin Machines

[5] (TMs) are a recent approach to machine learning (ML) that has demonstrated sig-

nificantly reduced energy usage compared to neural networks alike [6, 7]. Using a linear

combination of conjunctive clauses in propositional logic, the TM has obtained compet-

itive performance in terms of accuracy [8, 9, 10], memory footprint [10], energy [6], and

learning speed [10, 6] on diverse benchmarks (image classification, regression and natural

language understanding). Furthermore, the rules that TMs build seem to be interpretable,

similar to the branches in a decision tree (e.g., in the form if X satisfies condition A

and not condition B then Y = 1) [8]. The reported small memory footprint and low

energy consumption make the TM particularly attractive for addressing the scalability

and energy challenge in ML.

Recent progress on TMs. Recent research reports several distinct TM proper-

ties. The TM can be used in convolution, providing competitive performance on MNIST,

Fashion-MNIST, and Kuzushiji-MNIST, in comparison with CNNs, K-Nearest Neigh-

bor, SVMs, Random Forest, Gradient Boosting, BinaryConnect, Logistic Circuits and

ResNet [10]. The TM has also achieved promising results in natural language processing,

such as text classification [8], word sense disambiguation [11] and sentiment analysis [12].

By introducing clause weights, it has been demonstrated that the number of clauses can

be reduced by up to 50×, without loss of accuracy [13]. Further, hyper-parameter search

can be simplified with multi-granular clauses, eliminating the pattern specificity param-

eter [14]. By indexing the clauses on the features that falsify them, up to an order of

magnitude faster inference and learning has been reported [15]. Additionally, regression

TMs compare favorably with Regression Trees, Random Forest Regression, and Support

Vector Regression [9]. In [16], stochastic searching on the line automata [17] learn integer

clause weights, performing on-par or better than Random Forest, Gradient Boosting and

Explainable Boosting Machines. While TMs are binary throughout, thresholding schemes

open up for continuous input [18]. Finally, TMs have recently been shown to be fault-

tolerant, completely masking stuck-at faults [19]. The convergence property of TM has

recently been studied in [20, 21].

Paper Contributions. TMs rely heavily on energy-costly random number generation

to stochastically guide a team of TAs to a Nash Equilibrium of the TM game. In this

paper, we propose a novel finite state learning automaton that can replace the TAs of the

TM, for increased determinism. The new automaton uses multi-step deterministic state

jumps to reinforce sub-patterns. Simultaneously, flipping a coin to skip every d’th state

update ensures diversification by randomization. The d-parameter thus allows the degree

of randomization to be finely controlled. Both theoretically and empirically, we establish

that the proposed new automaton converges to the optimal action almost surely, when

it is trained over an infinite time horizon while having infinite number of memory states.

We further evaluate the performance of TM with this new automaton empirically on five

datasets, demonstrating that the d-parameter can be used to trade off accuracy against

energy consumption.

Paper Organization. In Section 2, we introduce our new type of Learning Automa-

ton (LA) – the multi-step variable-structure finite-state LA (MVF-LA). The convergence

of the MVF-LA is studied both theoretically and empirically in Section 3. Replacing the

226

TA with MVF-LA, we describe the Arbitrarily Deterministic TM (ADTM) in Section 4.

Then, in Section 5, we evaluate ADTM empirically using five datasets. The performance

of ADTM is investigated by varying the d-parameter, contrasting against the regular TM

and five other state-of-the-art machine learning algorithms. Effect of determinism on

energy consumption is discussed in Section 6. We conclude our work in Section 7.

I.2 A Multi-Step Finite-State Learning Automaton

The origins of LA [22] can be traced back to the work of M. L. Tsetlin in the early 1960s

[23]. The objective of an LA is to learn the optimal action through trial and error in a

stochastic environment. Various types of LAs are available depending on the nature of

the application [24]. Due to their computational simplicity, we here focus on two-action

finite-state LA, which we extend by introducing a novel periodically changing structure

(variable structure).

An LA interacts with its environment iteratively. In each iteration, the action that

a finite-state LA performs next is decided by its present state (the memory). The en-

vironment, in turn, randomly produces a reward or a penalty according to an unknown

probability distribution, responding to the action selected by the LA. If the finite-state

LA receives a reward, it reinforces the action performed by moving to a “deeper” state.

If the action results in a penalty, it instead changes state towards the middle state, to

weaken the performed action, ultimately switching to the other action. In this manner,

with a sufficient number of states, a finite-state LA converges to selecting the action

with the highest probability of producing rewards – the optimal action – with probability

arbitrarily close to 1.0 [22].

The transitions between states can be deterministic or stochastic. Deterministic tran-

sitions occur with probability 1.0, while stochastic transitions are randomly performed

based on a preset probability. If the transition probabilities are changing, we have a vari-

able structure automaton, otherwise, we have one with fixed structure. The pioneering

TA, depicted in Figure I.1, is a deterministic fixed-structure finite-state automaton [23].

The state transition graph in the figure depicts a TA with 2N states. States 1 to N maps

to Action 1 and states N + 1 to 2N maps to Action 2.

While the TA changes state in single steps, the deterministic Krinsky Automaton

introduces multi-step state transitions [22]. The purpose is to reinforce an action more

strongly when it is rewarded, and more weakly when penalized. The Krinsky Automaton

behaves as a TA when the response from the environment is a penalty. However, when

it is a reward, any state from 2 to N transitions to state 1, and any state from N + 1 to

2N − 1 transitions to state 2N . In effect, N consecutive penalties are needed to offset a

single reward.

Another variant of LA is the Krylov Automaton. A Krylov Automaton makes both de-

terministic and stochastic single-step transitions [22]. The state transitions of the Krylov

Automaton is identical to those of a TA for rewards. However, when it receives a penalty,

it performs the corresponding TA state change randomly, with probability 0.5.

We now introduce our new type of LA, the multi-step variable-structure finite-state

227

 1 2 … N-1 N N+1 N+2 ……. 2N-1 2N

Action 1 Action 2

Reward

Penalty

Figure I.1: Transition graph of a two-action Tsetlin Automaton with 2N memory states.

 1 2 3 … N-3 N-2 N-1 N N+1 N+2 N+3 N+4 ……. 2N-2 2N-1 2N

Action 1 Action 2

 1 2 3 … N-1 N N+1 N+2 ……. 2N-2 2N-1 2N

Action 1 Action 2

Weak penalty (takes place with probability 1 or 0.5)

Weak reward (takes place with probability 1 or 0.5)

 Strong penalty (s=3 and takes place with probability 1 or 0.5)

Strong reward (s=3 and takes place with probability 1 or 0.5)

Figure I.2: Transition graph of the Multi-Step Variable Structure Finite-State Learning

Automaton.

LA (MVF-LA), shown in Figure I.2. The MVF-LA has two kinds of feedback, strong and

weak. As covered in the next section, strong feedback is required by the TM to strongly

reinforce frequent sub-patterns, while weak feedback is required to make the TM forget

infrequent ones. To achieve this, weak feedback only triggers one-step transitions. Strong

feedback, on the other hand, triggers s-step transitions. Thus, a single strong feedback

is offset by s instances of weak feedback. Further, MVF-LA has a variable structure

that changes periodically. That is, the MVF-LA switches between two different transition

graph structures, one deterministic and one stochastic. The deterministic structure is

as shown in the figure, while the stochastic structure introduces a transition probability

0.5, for every transition. The switch between structure is performed so that every d’th

transition is stochastic, while the remaining transitions are deterministic.

I.3 Proof of the convergence of MVF-LA

In this section, we discuss the convergence of the proposed Multi-Step Variable Structure

Finite-State Learning Automaton (MVF-LA). In Sec. I.3.1 we use a Markov chain model

228

to analyze the convergence property of the MVF-LA. Thereafter, we simulate the MVF-

LA and illustrate its convergence in different conditions in Sec. I.3.2.

I.3.1 Proof of the convergence of MVF-LA using Markov chain

To build the Markov chain, we utilize the memory states of the MVF-LA, i.e., 1 to 2N ,

to represent the state space of Markov chain. The transition probability matrix, P, for

the Markov chain of MVF-LA is then to be established. The transition from any state i

to another state j in MVF-LA can happen due to one of four types of feedback: strong

reward, strong penalty, weak reward, and weak penalty. Apart from boundary conditions,

the state transition from i to j may also not happen since the every dth update is made with

probability of 0.5. Considering these conditions, the probability of making the transition

from i to j, pi,j can be calculated as follows.

Transition probability due to a strong reward, Psr can be calculated as:

Psr = PTrans × (1− c)× Ps (I.1)

Here, PTrans is the probability that any transition to other states happens. It includes

two possibilities. (1) Transitions happen d− 1 times for every d iteration. (2) Transitions

happen with probability 0.5 at the remaining 1 of d iterations. Therefore, the overall

probability of any transition, PTrans, can be calculated as,

PTrans =
d− 1

d
+ 0.5× 1

d
(I.2)

The variable c in (I.1) is the penalty probability. The penalty probability c is the

penalty probability of action 1 (c1) if the starting state i in a transition from i to j is

located in the state space of the action 1, i.e., 0 < i ≤ N . The penalty probability c on

the other hand is the penalty probability of action 2 (c2) if state i is in the state space of

action 2, i.e., N < i ≤ 2N . The probability Ps in the same equation is the probability of

getting a strong feedback.

Similarly, transition probabilities due to strong penalty: Psp, weak reward: Pwr, and

weak penalty: Pwp are calculated as in (I.3), (I.4), and (I.5), respectively.

Psp = PTrans × c× Ps. (I.3)

Pwr = PTrans × (1− c)× (1− Ps). (I.4)

Pwp = PTrans × c× (1− Ps). (I.5)

Using the above transition probabilities, we form the transition probability matrix, P

for the MVF-LA in Figure I.2. Matrix P exhibits the Markov chain property that the

sum of the probabilities of each raw equals to one:
∑

j pi,j = 1. For instance, consider

the MVF-LA in Figure I.2. Here, when the starting state of a transition is N , a strong

reward moves the state from N to N − 3 (s = 3). Similarly, a weak reward moves the

state from N to N − 1. Weak and strong penalties, on the other hand, move the state N

229

in the state space of action 1 to the state space of action 2. While a weak penalty moves

the state from N to N + 1, a strong penalty moves it to N + 3. The state N stays on the

same state with probability Pnon, where Pnon is equal to (1 − PTrans). At boundaries, if

any of the above transitions can’t be made, that transition probability is accommodated

in Pnon.

P =

1 2 3 .. N − 1 N N + 1 N + 2 .. 2N − 2 2N − 1 2N

1 Pnon Pwp − .. − - − − .. − − -

2 Pwr Pnon Pwp .. − - − − .. − − -

3 − Pwr Pnon .. − - − − .. − − -

: : : : : : : : : : : : :

N − 1 − − − .. Pnon Pwp − Psp .. − − -

N − − − .. Pwr Pnon Pwp − .. − − -

N + 1 − − − .. − Pwp Pnon Pwr .. − − -

N + 2 − − − .. Psp - Pwp Pnon .. − − -

: : : : : : : : : : : : :

2N − 2 − − − .. − - − − .. Pnon Pwr -

2N − 1 − − − .. − - − − .. Pwp Pnon Pwr

2N − − − .. − - − − .. − Pwp Pnon

The Algorithm 6 shows the step-by-step procedure of building the transition matrix

of MVF-LA.

Clearly, this Markov chain is indeed recurrent and non-periodical, and thus it is a

ergodic Markov chain. As in [25], the probability of staying at a particular state at time

n, π(n), in the Markov chain can be computed as,

π(n) = π(n− 1)P = π(n− 2)P2 = · · · = π(0)Pn (I.6)

Here, π(n) represents all the states in MVF-LA, π(n) = [π1(n), π2(n), . . . , π2N(n)] and∑
i πi(n) = 1. When n goes to infinity, we obtain the steady state probabilities, π∗. The

steady state probabilities π∗ are independent of the initial state. Hence, we can also

calculate π∗ by,

π∗ = π∗P (I.7)

Theoretically, from (I.6) and (I.7), π∗ can be obtained by multiplying P itself for

infinite number of times, π∗ = (P)∞. In practice, we multiply P itself for a sufficiently

large number of times until its entries converge and then the steady state probabilities

are obtained. Once we know the steady state probabilities, we sum up the steady state

probabilities that correspond to the action that has the lowest probability of penalty. If

the sum of the probabilities converges to 1 when N approaches to infinity, we can conclude

that, with sufficiently large number of memory states per actions, the LA converges to

the correct action. For MVF-LA, based on the calculation of Algorithm 6, we conclude

that as long as the best action’s penalty probability is less than 0.5, the action selection

probability converges to 1 when N goes to infinity.

230

Algorithm 6 Calculating the stationary distribution of the Makov chain for MVF-LA

1: Input: Number of states per action, N ; Number of strong jumps, s; Deterministic

parameter, d; Probability of getting a strong feedback, Ps; Penalty probability for

action 1, c1; Penalty probability for action 2, c2.

2: Output: Limiting Matrix

3: Initialize: Transition Probability Matrix P . P requires 2N by 2N space

4: Function:

5: for i = 1, ..., 2N do

6: if i ≤ N then

7: c = c1 . c = Penalty probability for action 1

8: else

9: c = c2 . c = Penalty probability for action 2

10: end if

11: for j = 1, ..., 2N do

12: Compute PTrans . (I.2)

13: if (i ≤ N and i− s = j) or (i > N and i+ s = j) then . strong reward

14: Pi,j = PTrans × Ps × (1− c)
15: else if (i ≤ N and i+ s = j) or (i > N and i− s = j) then . strong penalty

16: Pi,j = PTrans × Ps × c
17: else if (i ≤ N and i− 1 = j) or (i > N and i+ 1 = j) then . weak reward

18: Pi,j = PTrans × (1− Ps)× (1− c)
19: else if (i ≤ N and i+ 1 = j) or (i > N and i− 1 = j) then . weak penalty

20: Pi,j = PTrans × (1− Ps)× c
21: else (staying on the same state)

22: if i = j = 1 or i = j = 2N then . weak and strong updates can’t be made

23: Pi,j = (1− PTrans) + PTrans × (1− c)× (1− Ps) + PTrans × (1− c)× Ps

24: else if i = j then

25: if (i ≤ N and i− s < 0) or (i > N and i+ s > 2N) then . only weak

updates can be made

26: Pi,j = (1− PTrans) + PTrans × (1− c)× Ps

27: else . both weak and strong updates can be made

28: Pi,j = 1− PTrans

29: end if

30: else

31: Pi,j = 0

32: end if

33: end if

34: end for

35: P[i, j]← Update . P[i, j] = pi,j
36: end for

37: End Function

38: Return: (P)∞ . Return the stationary distribution

231

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
State

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

St
ea

dy
 S

ta
te

 P
ro

ba
bi

lit
ie

s

c1=0.1, c2=0.9, Pr[Action 1]=0.9998
c1=0.4, c2=0.6, Pr[Action 1]=0.8181
c1=0.6, c2=0.9, Pr[Action 1]=0.7547
c1=0.2, c2=0.4, Pr[Action 1]=0.9461

Figure I.3: The steady state probabilities of an MVF-LA with different penalty probabil-

ities when N = 10.

To illustrate the convergence property of MVF-LA, we form different transition ma-

trices with distinct parameter configurations using Algorithm 6. We keep s, Ps, and d as

constant at 3, 0.67, and 10, respectively for the analysis. Without loss of generality, we

always set action 1 as the best action. The steady state probability distribution over the

states of MVF-LA can be seen in Figure I.3 when N = 10. The sum of the steady state

probabilities of action 1, Pr[Action 1], for different penalty probability configurations are

also illustrated in the figure. Although with only N = 10 memories, the action selection

probability for action 1 is convincingly higher (> 0.94) when c1 = 0.1, c2 = 0.9 and

c1 = 0.2, c2 = 0.4.

The probability of selecting action 1 for the remaining penalty probability setups are

higher than 0.75. However, the probability distribution of these two setups show that the

MVF-LA has not made the decision of selecting action 1 confidently as the steady state

probabilities of the end states of action 1 are relatively lower than those of the previous

two setups.

Nevertheless, according to the theory, the probability of selecting action 1 should

increase with N and it will reach 1 as N goes to infinity, given that the best action

has a penalty probability less than 0.5. This is verified by the plots in Figure I.4 where

probability of selecting action 1 reaches 1 when N increases for all the cases except when

c1 = 0.6 and c2 = 0.9. This is because the lowest penalty probability (c1 in this case) is

not less than 0.5. Therefore, even though the difference between penalty probabilities of

the case c1 = 0.4 and c2 = 0.6 (0.2) lower than the case c1 = 0.6 and c2 = 0.9 (0.3), the

case of c1 = 0.4 and c2 = 0.6 can be perfectly learned when N increases while the other

case struggles.

I.3.2 Simulation analysis of MVF-LA

In this section, we simulate the MVF-LA and see if it behaves similar to the above

stated convergence properties. First, we build the MVF-LA and iteratively update its

232

0 5 10 15 20 25 30 35 40
Number of N

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
[A

ct
io

n
1]

c1=0.1, c2=0.9
c1=0.4, c2=0.6
c1=0.6, c2=0.9
c1=0.2, c2=0.4

Figure I.4: The increase of the probability of selecting the correct action with N .

states by stochastically generating feedbacks for MVF-LA’s actions according to known

penalty probabilities. Then we analyse the behavior of the MVF-LA and compare with

its theoretical outputs.

Here we introduce the new quantity M(n), which is the average penalty after n training

iterations. The M(n) for a two-action automaton is computed as M(n) = c1Pr[Action1]+

c2Pr[Action2] [22]. According to the theory stated in Sec. I.3.1, when n and N go to

infinity, the probability of selecting the action which has the lowest penalty probability

should reaches 1 (consequently, the probability of selecting the other action goes to 0).

Therefore, when n and N go to infinity, the average penalty, M(n) should approximate

to the lowest penalty probability.

In our simulation, to make the analysis easier, we always set the lowest penalty prob-

ability to the action 1. Then, we first analyse the variation of Pr[Action 1] against the

number of training iterations, n. Figure I.5 depicts the 20-iterations moving average of

0 100 200 300 400 500
Iterations

0.4

0.5

0.6

0.7

0.8

0.9

1.0

20
-it

er
at

io
ns

 m
ov

in
g

av
er

ag
e

of
 P

r[A
ct

io
n

1]

c1=0.1, c2=0.9
c1=0.4, c2=0.6

c1=0.6, c2=0.9
c1=0.2, c2=0.4

Figure I.5: The variation of the Pr[Action 1] against the number of training iterations, n

for different penalty probabilities.

233

0 100 200 300 400 500
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5-
ite

ra
tio

ns
 m

ov
in

g
av

er
ag

e
of

 M
(n

)

c1=0.1, c2=0.9
c1=0.4, c2=0.6

c1=0.6, c2=0.9
c1=0.2, c2=0.4

Figure I.6: The variation of average penalty M(n) against the number of training itera-

tions, n for different penalty probabilities.

Pr[Action 1] against the number of iterations. At each experiment round, the number

of training iteration, n is increased and the final Pr[Action 1] is recorded. The N , s, d,

and Ps in this simulation are fixed at 20, 3, 10, and 0.67. As expected, the Pr[Action 1]

increases with n. The case with c1 = 0.1 and c2 = 0.9 has already approaches probability

1. The probabilities of selecting action 1 in experiments with c1 = 0.4, c2 = 0.6 and

c1 = 0.2, c2 = 0.4 are slowly approaching 1. From these two, Pr[Action 1] variation of the

case c1 = 0.4 and c2 = 0.6 is more stable than the other. The Pr[Action 1] variation of

the experiment with c1 = 0.6 and c2 = 0.9 has stabilized around 0.8.

The change of the average penalty, M(n) over n for the same experiment is illustrated

in Figure I.6. Except for the experiment with c1 = 0.6 and c2 = 0.9, M(n) has approxi-

mated to the lowest penalty probability with n. The 5-iterations moving average for the

experiment with c1 = 0.2 and c2 = 0.4 is again unsteady. The reason here is both c1 and

c2 are lower then 0.5 and therefore, there is a higher chance to get a reward for both the

actions.

In the next arrangement, the change of Pr[Action 1] against n is studied for distinct

N values. For this experiment, the c1 and c2 are fixed at 0.4 and 0.6, respectively. As

expected, Figure I.7 displays that Pr[Action 1] of MVF-LA with higher N reaches highest

possible probability faster.

I.4 The Arbitrarily Deterministic TM (ADTM)

In this section, we introduce the details of the ADTM, shown in Figure I.8, where the

TA is replaced by the MVF-LA. The purpose of the ADTM is to control the amount of

stochasticity generated, thus allowing management of energy consumption during learn-

ing.

234

0 100 200 300 400 500
Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5-
ite

ra
tio

ns
 m

ov
in

g
av

er
ag

e
of

 P
r[A

ct
io

n
1] N=2 N=6 N=15 N=40

Figure I.7: The variation of the Pr[Action 1] against the number of training iterations, n

for different number of states per action, N .

I.4.1 ADTM Inference

Input Features. Like the TM, an ADTM takes a feature vector of o propositional

variables as input, X = [x1, x2, x3, . . . , xo], to be classified into one of two classes, y = 0

or y = 1. These features are extended with their negation, to produce a set of literals:

L = [x1, x2, . . . , xo, ¬x1,¬x2, . . . ,¬xo] = [l1, l2, . . . , l2o].

Clauses. Patterns are represented by m conjunctive clauses. As shown for Clause-1 in

the figure, a clause in the TM comprises 2o MVF-LAs, each controlling the inclusion of a

specific literal. Let the set Ij, Ij ⊆ {1, . . . , 2o} denote the indexes of the literals that are

included in clause j. When evaluating clause j on input literals L, the literals included

in the clause are ANDed: cj =
∧

k∈Ij lk, j = 1, . . . ,m. Note that the output of an empty

clause, Ij = ∅, is 1 during learning and 0 during inference.

Classification. In order to identify the sub-patterns associated with both of the classes

of a two-class ADTM, the clauses are grouped in two. The number of clauses employed is

a user set parameter m. Half of the clauses are assigned positive polarity (c+
j). The other

half is assigned negative polarity (c−j). The clause outputs, in turn, are combined into a

classification decision through summation and thresholding using the unit step function

u(v) = 1 if v ≥ 0 else 0:

ŷ = u

m/2∑
j=1

c+
j (X)−

m/2∑
j=1

c−j (X)

 . (I.8)

That is, classification is based on a majority vote, with the positive clauses voting for

y = 0 and the negative for y = 1.

I.4.2 The MVF-LA Game and Orchestration Scheme

The MVF-LAs in ADTM are updated by so-called Type I and Type II feedback. De-

pending on the class of the current training sample (X, y) and the polarity of the clause

235

 𝑥1 ……… 𝑥𝑜

𝑥1 ¬𝑥1 ……… 𝑥𝑜 ¬𝑥0

𝑇𝐴1 𝑇𝐴0+1 …….. 𝑇𝐴𝑜 𝑇𝐴2𝑜

 In ex …….. ex in

𝑥1 Ʌ … . . Ʌ ¬𝑥0

𝐋 = [𝑙1, 𝑙2, 𝑙3, 𝑙4 … … 𝑙2𝑜]

1/0 1/0 1/0 ……….

𝑣

+

Clause-1

Clause-2

….

−
−

Clause-m

Ʌ Ʌ

Figure I.8: The ADTM structure.

(positive or negative), the type of feedback is decided. Clauses with positive polarity

receive Type I feedback when the target output is y = 1, and Type II feedback when the

target output is y = 0. For clauses with negative polarity, Type I feedback replaces Type

II, and vice versa. In the following, we focus only on clauses with positive polarity.

Type I feedback: The number of clauses which receive Type I feedback is controlled

by selecting them stochastically according to (I.9):

T −max(−T,min(T, v))

2T
. (I.9)

Above, v =
∑m/2

j=1 c
+
j (X)−

∑m/2
j=1 c

−
j (X) is the aggregated clause output and T is a user set

parameter that decides how many clauses should be involved in learning a particular sub-

pattern. Increasing T proportionally with the number of clauses introduces an ensemble

effect, for increased learning accuracy. Type I feedback consists of two kinds of sub-

feedback: Type Ia and Type Ib. Type Ia feedback stimulates recognition of patterns

by reinforcing the include action of MVF-LAs whose corresponding literal value is 1,

however, only when the clause output also is 1. Note that an action is reinforced either

by rewarding the action itself, or by penalizing the other action. Type Ia feedback is

strong, with step size s (Figure I.2). Type Ib feedback, on the other hand, combats over-

fitting by reinforcing the exclude actions of MVF-LAs when the corresponding literal is

0 or when the clause output is 0. Type Ib feedback is weak (Figure. I.2) to facilitate

learning of frequent patterns.

Type II feedback: Clauses are also selected stochastically for receiving Type II feed-

back:
T + max(−T,min(T, v))

2T
. (I.10)

236

Type II feedback combats false positive clause output by seeking to alter clauses that

output 1 so that they instead output 0. This is achieved simply by penalizing exclusion of

literals of value 0. Thus, when the clause output is 1 and the corresponding literal value

of an MVF-LA is 0, the exclude action of the MVF-LA is penalized. Type II feedback

is strong, with step size s. Recall that in all of the above MVF-LA update steps, the

parameter d decides the determinism of the updates.

I.5 Empirical Evaluation

We now study the performance of ADTM empirically using five real-world datasets.1 The

ADTM is compared against regular TMs to assess to what degree learning accuracy suffers

from increased determinism. The ADTM is also compared against seven other state-

of-the-are machine learning approaches: Artificial Neural Networks (ANNs), Support

Vector Machines (SVMs), Decision Trees (DTs), K-Nearest Neighbor (KNN), Random

Forest (RF), Gradient Boosted Trees (XGBoost) [26], and Explainable Boosting Machines

(EBMs) [27]. For comprehensiveness, three ANN architectures are used: ANN-1 – with

one hidden layer of 5 neurons; ANN-2 – with two hidden layers of 20 and 50 neurons

each, and ANN-3 – with three hidden layers and 20, 150, and 100 neurons. Performance

of these predictive models are summarized in Table I.6. We compute both F1-score (F1)

and accuracy (Acc.) as performance measures. However, due to class imbalance, we

emphasize F1-score when comparing the performance of the different predictive models.

I.5.1 Bankruptcy

The Bankruptcy dataset contains historical records of 250 companies2. The outcome,

Bankruptcy or Non-bankruptcy, is characterized by six categorical features. We thus bi-

narize the features using thresholding [18] before we feed them into the ADTM. We first

tune the hyper-parameters of the TM and the best performance is reported in Table I.1,

for m = 100 (number of clauses), s = 3 (step size for MVF-LA), and T = 10 (summation

target). Each MVF-LA contains 100 states per action. The impact of determinism is

reported in Table I.1, for varying levels of determinism. As seen, performance is indistin-

guishable for d-values 1, 10, and 100, and the ADTM achieves its highest classification

accuracy. However, notice the slight decrease of F1-score and accuracy when determinism

is further increased to 500, 1000, and 5000.

Figure I.9 shows how training and testing accuracy evolve over the training epochs.

Only high determinism seems to influence learning speed and accuracy significantly. The

performance of the other considered machine learning models is compiled in Table I.6.

The best performance in terms of F1-score for the other models is obtained by ANN-3.

However, ANN-3 is outperformed by the ADTM for all d-values except when d = 5000.

1An implementation of ADTM can be found at https://github.com/cair/Deterministic-Tsetlin-

Machine.
2Available from https://archive.ics.uci.edu/ml/datasets/qualitative bankruptcy.

237

https://github.com/cair/Deterministic-Tsetlin-Machine
https://github.com/cair/Deterministic-Tsetlin-Machine
https://archive.ics.uci.edu/ml/datasets/qualitative_bankruptcy

Table I.1: Performance of TM and ADTM with different d on Bankruptcy

TM ADTM

d=1 d=10 d=100 d=500 d=1000 d=5000

F1 0.998 1.000 1.000 1.000 0.999 0.999 0.988

Acc. 0.998 1.000 1.000 1.000 0.999 0.999 0.987

0 50 100 150 200
Epoch

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

d = 1 d = 10 d = 100 d = 500 d = 1000 d = 5000

0 50 100 150 200
Epoch

0.6

0.7

0.8

0.9

1.0

Te
st

in
g

Ac
cu

ra
cy

Figure I.9: Training and testing accuracy per epoch on Bankruptcy

I.5.2 Balance Scale

The Balance Scale dataset3 contains three classes: balance scale tip to the right, tip to the

left, or in balance. The class is decided by the size of the weight on both sides of the scale

and the distance to each weight from the center. Hence the classes are characterized by

four features. However, to make the output binary, we remove the “balanced” class ending

up with 576 data samples. The ADTM is equipped with 100 clauses. Each MVF-LA is

given 100 states per action. The remaining two parameters, i.e., s value and T are fixed

at 3 and 10, respectively. Table I.2 contains the results obtained with TM and ADTM.

Even though ADTM uses the same number of clauses as the TM, the performance with

regards to F1-score and accuracy is better with ADTM when all updates on MVF-LAs

are stochastic. The performance of the ADTM remains the same until the determinism-

parameter surpasses 100. After that, performance degrades gradually.

Progress of training and testing accuracy per epoch can be found in Figure I.10. Each

ADTM setup reaches its peak training and testing accuracy and becomes stable within a

fewer number of training epochs. As can be seen, accuracy is maintained up to d = 100,

thus reducing random number generation to 1% without accuracy loss. From the results

listed in Table I.6 for the other machine learning approaches, EBM achieves the highest

F1-score and accuracy.

I.5.3 Breast Cancer

The Breast Cancer dataset4 contains 286 patients records related to the recurrence of

breast cancer (201 with non-recurrence and 85 with recurrence). The recurrence of breast

3Available from http://archive.ics.uci.edu/ml/datasets/balance+scale.
4Available from https://archive.ics.uci.edu/ml/datasets/Breast+Cancer

238

http://archive.ics.uci.edu/ml/datasets/balance+scale
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer

Table I.2: Performance of TM and ADTM with different d on Balance Scale

TM ADTM

d=1 d=10 d=100 d=500 d=1000 d=5000

F1 0.945 0.982 0.983 0.982 0.968 0.951 0.911

Acc. 0.948 0.980 0.981 0.980 0.935 0.894 0.793

0 50 100 150 200
Epoch

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

d = 1 d = 10 d = 100 d = 500 d = 1000 d = 5000

0 50 100 150 200
Epoch

0.7

0.8

0.9

1.0

Te
st

in
g

Ac
cu

ra
cy

Figure I.10: Training and testing accuracy per epoch on the Balance Scale

cancer is to be estimated using nine features: Age, Menopause, Tumor Size, Inv Nodes,

Node Caps, Deg Malig, Side (left or right), the Position of the Breast, and Irradiation.

However, some of the patient samples miss some of the feature values. These samples are

removed from the dataset in the present experiment. The ADTM is arranged with the

following parameter setup: m = 100, s = 5, T = 10, and the number of states in MVF-LA

per action is 100. The classification accuracy of the TM and ADTM are summarized in

Table I.3. The performance of both TM and ADTM is here considerably lower than for

the previous two datasets, and further decreases with increasing determinism. However,

the F1 measures obtained by all the other considered machine learning models are also

low, i.e., less than 0.500. The highest F1-score is obtained by ANN-1 and KNN.

Table I.3: Performance of TM and ADTM with different d on Breast Cancer

TM ADTM

d=1 d=10 d=100 d=500 d=1000 d=5000

F1 0.531 0.568 0.531 0.501 0.490 0.501 0.488

Acc. 0.703 0.702 0.698 0.691 0.690 0.690 0.693

The training and testing accuracy progress per epoch is reported in Figure I.11, show-

ing a clear degradation of performance with increasing determinism.

I.5.4 Liver Disorders

The Liver Disorders dataset5 was created by BUPA Medical Research and Development

Ltd. (hereafter “BMRDL”) during the 1980s as part of a larger health-screening database.

5Available from https://archive.ics.uci.edu/ml/datasets/Liver+Disorders.

239

https://archive.ics.uci.edu/ml/datasets/Liver+Disorders

0 50 100 150 200
Epoch

0.65

0.70

0.75

0.80

0.85
Tr

ai
ni

ng
 A

cc
ur

ac
y

d = 1 d = 10 d = 100 d = 500 d = 1000 d = 5000

0 50 100 150 200
Epoch

0.62

0.64

0.66

0.68

0.70

0.72

Te
st

in
g

Ac
cu

ra
cy

Figure I.11: Training and testing accuracy per epoch on Breast Cancer

Table I.4: Performance of TM and ADTM with different d on Liver Disorders

TM ADTM

d=1 d=10 d=100 d=500 d=1000 d=5000

F1 0.648 0.705 0.694 0.692 0.692 0.689 0.692

Acc. 0.533 0.610 0.610 0.612 0.612 0.610 0.611

The dataset consists of 7 attributes. However, [28] claim that many researchers have used

the dataset incorrectly, considering the Selector attribute as the class label. Based on the

recommendation of McDermott and Forsythof, we here instead use the Number of Half-

Pint Equivalents of Alcoholic Beverages as the dependent variable, binarized using the

threshold ≥ 3. The Selector attribute is discarded. The remaining attributes represent

the results of various blood tests, and we use them as features.

Here, ADTM is given 10 clauses per class, with s = 3 and T = 10. Each MVF-LA

action possesses 100 states. The performance of ADTM for different levels of determinism

is summarized in Table I.4. For d = 1, the F1-score of ADTM is better than what is

achieved with the standard TM. In contrast to the performance on previous datasets,

the performance of ADTM on Liver Disorders dataset with respect to F1-score does not

decrease significantly with d. Instead, it fluctuates around 0.690.

As shown in Figure I.12, unlike the other datasets, the ADTM with d = 1 requires

more training rounds than with larger d-values, before it learns the final MVF-LA actions.

It is also unable to reach the training accuracy obtained with higher d-values. Despite

the diverse learning speed, testing accuracy becomes similar after roughly 50 training

rounds. The other considered machine learning models obtain somewhat similar F1-

scores, however,only DT, RF, and EBM surpass an F1-score of 0.700.

I.5.5 Heart Disease

The Heart Disease dataset6 concerns prediction of heart disease. To this end, 13 features

are available, selected among 75. Out of the 13 features, 6 are real-valued, 3 are binary,

3 are nominal, and one is ordered.

6Available from https://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29.

240

https://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29

0 50 100 150 200
Epoch

0.60

0.65

0.70

0.75

0.80
Tr

ai
ni

ng
 A

cc
ur

ac
y

d = 1 d = 10 d = 100 d = 500 d = 1000 d = 5000

0 50 100 150 200
Epoch

0.56

0.58

0.60

0.62

Te
st

in
g

Ac
cu

ra
cy

Figure I.12: Training and testing accuracy per epoch on Liver Disorders

0 50 100 150 200
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

d = 1 d = 10 d = 100 d = 500 d = 1000 d = 5000

0 50 100 150 200
Epoch

0.5

0.6

0.7

0.8
Te

st
in

g
Ac

cu
ra

cy

Figure I.13: Training and testing accuracy per epoch on Heart Disease

In this case, the ADTM is built on 100 clauses. The number of state transitions when

the feedback is strong, s is equal to 3 while the target, T is equal to 10. The number of

states per MVF-LA action in the ADTM is 100.

As one can see in Table I.5, the ADTM provides better performance than TM in

terms of F1-score and accuracy when d = 1. F1-score then increases with d and peaks at

d = 100. After some fluctuation, it drops to a value of 0.605 when d = 5000.

Figure I.13 shows similar training and testing accuracy for all d-values, apart from the

significantly lower accuracy of d = 5000.

Out of other machine learning algorithms, EBM provides the best F1-score, as sum-

marized in Table I.6. Even though ANN-1, ANN-2, DT, RF, and XGBoost obtain better

F1-scores than TM, the F1 scores of ADTM when d equals to 1, 10, 100, 500, and 1000

are higher.

Table I.5: Performance of TM and ADTM with different d on Heart Disease

TM ADTM

d=1 d=10 d=100 d=500 d=1000 d=5000

F1 0.687 0.759 0.766 0.767 0.760 0.762 0.605

Acc. 0.672 0.778 0.780 0.783 0.773 0.781 0.633

241

Table I.6: Classification accuracy of selected machine learning models

Bankruptcy Balance Sca. Breast Can. Liver Dis. Heart Dise.

F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc.

ANN-1 0.995 0.994 0.990 0.990 0.458 0.719 0.671 0.612 0.738 0.772

ANN-2 0.996 0.995 0.995 0.995 0.403 0.683 0.652 0.594 0.742 0.769

ANN-3 0.997 0.997 0.995 0.995 0.422 0.685 0.656 0.602 0.650 0.734

DT 0.993 0.993 0.986 0.986 0.276 0.706 0.728 0.596 0.729 0.781

SVM 0.994 0.994 0.887 0.887 0.384 0.678 0.622 0.571 0.679 0.710

KNN 0.995 0.994 0.953 0.953 0.458 0.755 0.638 0.566 0.641 0.714

RF 0.949 0.942 0.859 0.860 0.370 0.747 0.729 0.607 0.713 0.774

XGBoost 0.983 0.983 0.931 0.931 0.367 0.719 0.656 0.635 0.701 0.788

EBM 0.993 0.992 1.000 1.000 0.389 0.745 0.710 0.629 0.783 0.824

TA TA

PRNG

TA TA

TATA

(a) Centralized PRNG

PRNG

TA

PRNG

TA

PRNG

TA

PRNG

TA

(b) Decentralized PRNG

Figure I.14: PRNG strategies for a) software TM; and b) hardware TM.

I.6 Effects of Determinism on Energy Consumption

Energy consumption of all TM implementations can be positively reduced by using

ADTM, since random choice is a key mechanism in learning (see Section 4). This ef-

fect is especially notable in ASIC implementations aimed at low energy on-chip learning

applications, where energy overheads are low (compared to a personal computer, for ex-

ample).

While software implementations of the TM use centralized pseudorandom number

generators (PRNGs) to facilitate the random choices (Figure I.14a), the ASIC implemen-

tation uses many smaller PRNGs localized to individual TAs to maximize parallelism

(Figure I.14b). In the ASIC implementation of TM, linear feedback shift registers (LF-

SRs) are used as PRNGs due to their small size and simplicity [6]. Power is consumed

by the PRNGs in the process of generating a new random number. This is referred to

as switching power. In the TM, every TA update is randomized, and switching power is

consumed by the PRNGs on every cycle. Additionally, power is also consumed by the

PRNGs whilst idle. We term this leakage power. Leakage power is always consumed by

the PRNGs whilst they are powered up, even when not generating new numbers.

In the ADTM with hybrid TA where the determinism parameter d is introduced, d = 1

would be equivalent to a TM where every TA update is randomized. d = ∞ means the

ADTM is fully deterministic, and no random numbers are required from the PRNG. If a

TA update is randomized only on the dth cycle, the PRNGs need only be actively switched

242

0 20 40 60 80 100
Epoch

103

104

105

106

Ra
nd

om
 n

um
be

r g
en

er
at

io
ns

 (l
og

)

d = 1
d = 10

d = 100
d = 500

d = 1000
d = 5000

Figure I.15: Number of randomisation events per epoch for the Heart Disease dataset.

(and therefore consume switching power) for 1
d

portion of the entire training procedure.

The switching power consumed by the PRNGs accounts for 7% of the total system power

when using a traditional TA (equivalent to d = 1). With d = 100 this is reduced to 0.07%

of the system power, and with d = 5000 this is reduced further to 0.001% of the same.

It can be seen that as d increases in the ADTM, the switching power consumed by the

PRNGs tends to zero.

In the special case of d =∞ the PRNGs are no longer required for TA updates since

the TAs are fully deterministic – we can omit these PRNGs from the design and prevent

their leakage power from being consumed. The leakage power of the PRNGs accounts for

32% of the total system power. On top of the switching power savings this equates to

39% of system power, meaning large power and therefore energy savings can be made in

the ADTM.

Figure I.15 shows the number of randomisation events for different d values in the case

of Heart Disease dataset. As expected, for lower d values, the number of events reduces

drastically. For example, in the first iteration this number reduces by 4219X from d=1

to d=5000. Notice, how the number of these events also reduces further for both cases

as the number of iterations increase [5]. The reduced number of events can be positively

leveraged towards power minimization.

Table I.7 shows comparative training power consumption per datapoint (i.e. all TAs

being updated concurrently) for two different d values: d=1 and d=5000. Typically, the

overall power is higher for bigger datasets as they require increased number of concurrent

TAs as well as PRNGs. As can be seen, the increase in d value reduces the power

consumption by 11 mW in the case of Heart Disease dataset. This saving is made by

reducing the switching activity in the PRNGs as explained above. More savings are made

by larger d values as the PRNG concurrent switching activities are reduced.

243

Table I.7: Comparative power per datapoint with two different d values.

Dataset Bankruptcy Breast Can. Balance Sca. Liver Dis. Heart Dise.

Power

(d=1)
6.94 mW 15.8 mW 7.7 mW 12.6 mW 148.0 mW

Power

(d=5000)
6.45 mW 14.7 mW 7.2 mW 11.8 mW 137.6 mW

I.7 Conclusion

In this paper, we proposed a novel finite-state learning automaton (MFV-LA) that can

replace the Tsetlin Automaton in TM learning, for increased determinism, and thus re-

duced energy usage. The new automaton uses multi-step deterministic state jumps to

reinforce sub-patterns. Simultaneously, flipping a coin to skip every d’th state update

ensures diversification by randomization. The new d-parameter thus allows the degree of

randomization to be finely controlled. E.g., d = 1 makes every update random and d =∞
makes the automaton fully deterministic. First, theoretically, using Markov chain prop-

erties, we showed that MVF-LA is able to select the action which has the lowest penalty

probability almost surely when both the number of training iterations and memory states

are set to infinity. Then, we simulated the MVF-LA and analyzed its convergence empir-

ically to support our theoretical inferences. Further, used together with TM, empirical

results on five real-world datasets show that overall, only substantial degrees of deter-

minism reduces accuracy. Energy-wise, the pseudorandom number generator contributes

to switching energy consumption within the TM, which can be completely eliminated

with d = ∞. We can thus use the new d-parameter to trade off accuracy against energy

consumption, to facilitate low-energy machine learning.

244

Bibliography

[1] Emma Strubell, Ananya Ganesh, and Andrew McCallum. “Energy and Policy Con-

siderations for Deep Learning in NLP”. In: ACL. 2019.

[2] J. Chen and X. Ran. “Deep Learning With Edge Computing: A Review”. In: Proc.

of the IEEE 107.8 (2019), pp. 1655–1674.

[3] Eva Garćıa-Mart́ın, Crefeda Faviola Rodrigues, Graham Riley, and H̊akan Grahn.

“Estimation of Energy Consumption in Machine Learning”. In: Journal of Parallel

and Distributed Computing 134 (2019), pp. 75–88. issn: 0743-7315. doi: https:

//doi.org/10.1016/j.jpdc.2019.07.007.

[4] Rishad Shafik, Alex Yakovlev, and Shidhartha Das. “Real-Power Computing”. In:

IEEE Transactions on Computers 67.10 (2018), pp. 1445–1461.

[5] Ole-Christoffer Granmo. “The Tsetlin Machine - A game Theoretic Bandit Driven

Approach to Optimal Pattern Recognition With Propositional Logic”. In: arXiv

preprint arXiv:1804.01508 (2018).

[6] Adrian Wheeldon, Rishad Shafik, Tousif Rahman, Jie Lei, Alex Yakovlev, and Ole-

Christoffer Granmo. “Learning Automata Based Energy-efficient AI Hardware De-

sign for IoT”. In: Philosophical Transactions of the Royal Society A (2020). url:

https://eprints.ncl.ac.uk/268038.

[7] Jie Lei, Adrian Wheeldon, Rishad Shafik, Alex Yakovlev, and Ole-Christoffer Granmo.

“From Arithmetic to Logic based AI: A Comparative Analysis of Neural Networks

and Tsetlin Machine”. In: 2020 27th IEEE International Conference on Electronics,

Circuits and Systems (ICECS). IEEE. 2020, pp. 1–4.

[8] Geir Thore Berge, Ole-Christoffer Granmo, Tor Oddbjørn Tveit, Morten Good-

win, Lei Jiao, and Bernt Viggo Matheussen. “Using the Tsetlin Machine to Learn

Human-Interpretable Rules for High-Accuracy Text Categorization With Medical

Applications”. In: IEEE Access 7 (2019), pp. 115134–115146.

[9] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, Lei Jiao, and

Morten Goodwin. “The Regression Tsetlin Machine - A Novel Approach to Inter-

pretable Non-Linear Regression”. In: Philosophical Transactions of the Royal Society

A 378 (2164 2019).

[10] Ole-Christoffer Granmo, Sondre Glimsdal, Lei Jiao, Morten Goodwin, Christian

W. Omlin, and Geir Thore Berge. “The Convolutional Tsetlin Machine”. In: arXiv

preprint:1905.09688 (2019).

245

https://doi.org/https://doi.org/10.1016/j.jpdc.2019.07.007
https://doi.org/https://doi.org/10.1016/j.jpdc.2019.07.007
https://eprints.ncl.ac.uk/268038

[11] Rohan Kumar Yadav, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin. “In-

terpretability in Word Sense Disambiguation using Tsetlin Machine”. In: Proceed-

ings of ICAART, Vienna, Austria. 2021.

[12] Rohan Kumar Yadav, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin.

“Human-Level Interpretable Learning for Aspect-Based Sentiment Analysis”. In:

Proceedings of AAAI, Vancouver, Canada. AAAI. 2021.

[13] Adrian Phoulady, Ole-Christoffer Granmo, Saeed Rahimi Gorji, and Hady Ah-

mady Phoulady. “The Weighted Tsetlin Machine: Compressed Representations with

Clause Weighting”. In: Ninth International Workshop on Statistical Relational AI

(StarAI 2020). 2020.

[14] Saeed Rahimi Gorji, Ole-Christoffer Granmo, Adrian Phoulady, and Morten Good-

win. “A Tsetlin Machine with Multigranular Clauses”. In: Lecture Notes in Com-

puter Science: Proceedings of the Thirty-ninth International Conference on Innova-

tive Techniques and Applications of Artificial Intelligence (SGAI-2019). Vol. 11927.

Springer International Publishing, 2019.

[15] Saeed Gorji, Ole Christoffer Granmo, Sondre Glimsdal, Jonathan Edwards, and

Morten Goodwin. “Increasing the Inference and Learning Speed of Tsetlin Machines

with Clause Indexing”. In: International Conference on Industrial, Engineering and

Other Applications of Applied Intelligent Systems. Springer. 2020.

[16] K. Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten Goodwin. “Extend-

ing the Tsetlin Machine with Integer-Weighted Clauses for Increased Interpretabil-

ity”. In: IEEE Access 9 (2021), pp. 8233–8248.

[17] B John Oommen. “Stochastic Searching On the Line and Its Applications to Pa-

rameter Learning in Nonlinear Optimization”. In: IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics) 27.4 (1997), pp. 733–739.

[18] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, and Morten Good-

win. “A Scheme for Continuous Input to the Tsetlin Machine With Applications

to Forecasting Disease Outbreaks”. In: International Conference on Industrial, En-

gineering and Other Applications of Applied Intelligent Systems. Springer. 2019,

pp. 564–578.

[19] Rishad Shafik, Adrian Wheeldon, and Alex Yakovlev. “Explainability and Depend-

ability Analysis of Learning Automata based AI Hardware”. In: IEEE 26th Interna-

tional Symposium on On-Line Testing and Robust System Design (IOLTS). IEEE.

2020.

[20] Lei Jiao, Xuan Zhang, Ole-Christoffer Granmo, and K. Darshana Abeyrathna. “On

the Convergence of Tsetlin Machines for the XOR Operator”. In: arXiv preprint

arXiv:2101.02547 (2021).

[21] Xuan Zhang, Lei Jiao, Ole-Christoffer Granmo, and Morten Goodwin. “On the

Convergence of Tsetlin Machines for the IDENTITY- and NOT Operators”. In:

arXiv preprint arXiv:2007.14268 (2020).

246

[22] Kumpati S Narendra and Mandayam AL Thathachar. Learning Automata: An In-

troduction. Courier corporation, 2012.

[23] Michael Lvovitch Tsetlin. “On Behaviour of Finite Automata in Random Medium”.

In: Avtomat. i Telemekh 22.10 (1961), pp. 1345–1354.

[24] M A L Thathachar and P S Sastry. Networks of Learning Automata: Techniques

for Online Stochastic Optimization. Kluwer Academic Publishers, 2004.

[25] Lei Jiao. “Markov Chain and Stationary Distribution”. In: Channel Aggregation and

Fragmentation for Traffic Flows. Springer, 2020, pp. 17–28.

[26] Tianqi Chen and Carlos Guestrin. “Xgboost: A Scalable Tree Boosting System”. In:

Proceedings of the 22nd acm sigkdd international conference on knowledge discovery

and data mining. 2016, pp. 785–794.

[27] Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caruana. “InterpretML: A Uni-

fied Framework for Machine Learning Interpretability”. In: arXiv preprint arXiv:1909.09223

(2019).

[28] James McDermott and Richard S Forsyth. “Diagnosing a Disorder in a Classification

Benchmark”. In: Pattern Recognition Letters 73 (2016), pp. 41–43.

247

Paper J

Intrusion Detection with

Interpretable Rules Generated Using

the Tsetlin Machine

The rapid deployment in information and communication technologies and internet-

based services have made anomaly based network intrusion detection ever so im-

portant for safeguarding systems from novel attack vectors. To this date, various

machine learning mechanisms have been considered to build intrusion detection sys-

tems. However, achieving an acceptable level of classification accuracy while pre-

serving the interpretability of the classification has always been a challenge. In this

paper, we propose an efficient anomaly based intrusion detection mechanism based

on the Tsetlin Machine (TM). We have evaluated the proposed mechanism over the

Knowledge Discovery and Data Mining 1999 (KDD’99) dataset and the experimen-

tal results demonstrate that the proposed TM based approach is capable of achieving

superior classification performance in comparison to several simple Multi-Layered

Artificial Neural Networks, Support Vector Machines, Decision Trees, Random For-

est, and K-Nearest Neighbor machine learning algorithms while preserving the in-

terpretability.

J.1 Introduction

Ensuring security of information systems is of significant interest due to the escalating

number of attacks mounted on systems for breaching confidentiality, integrity and avail-

ability of protected data. We refer an intrusion as an unlawful attempt which is targeted

on a system to steal or manipulate data for gaining various advantages and the mecha-

nisms which are capable of detecting such intrusions are considered as intrusion detection

systems. Given the upsurge in attention directed towards the security and privacy, it is

fair to say that the integration of sophisticated intrusion detection mechanisms are vital

for any information system.

Primarily, there are two types of intrusion detection mechanisms known as - signature

based intrusion detection and anomaly based detection. A signature based detection

249

system is equipped with a database which consists of known attack signatures. This allows

the system to recognize whether a particular access has the characteristics of an intrusion

via comparing it with the known signatures in the database [1, 2, 3, 4, 5]. However, such an

approach is not capable of providing protection against new attack patterns given the non-

existence of attack signatures. In contrast, anomaly detection deals with differentiating

normal behaviors from anomalous behaviors. An anomaly detection algorithm will learn

the normal behaviors and contrast the current events with normal activities to make

decisions on the current events [6, 7, 8, 9, 10, 11]. Hence, anomaly detection systems are

build upon classification algorithms. Thus, in comparison to signature based detection,

anomaly detection is capable of identifying novel attack patterns. However the main

challenge that we have in-developing efficient anomaly detection methods is that how we

can effectively train the system to restrict the number of false alarms or false positives

[12].

In order to develop intrusion detection systems with anomaly based detection, ma-

chine learning algorithms such as Artificial Neural Networks (ANNs), Support Vector

Machines (SVMs), Decision Trees (DTs), k-nearest neighbors (KNN) and Random Forest

(RF) classifiers have been widely considered. Among these techniques ANNs has received

significant attention due to its ability of classifying data with very high accuracy. How-

ever, on the contrary ANNs suffer from interpretability which is essential in understanding

machine learning models as well as comprehend on why certain decisions or predictions

have been made.

Interpretable machine learning refers to machine learning models that obtain trans-

parency by providing the reasons behind their output. Linear Regression, Logistic Regres-

sion, DTs, and Decision Rules are some of the traditional interpretable machine learning

approaches. However, it is important to note that the degree of interpretability of these al-

gorithms vary significantly [13]. More importantly, accuracy of these interpretable models

for more complex problems is typically low in comparison to deep learning. Deep learning

inference, on the other hand, cannot easily be interpreted [14] and is thus less suitable for

high-stakes application domains such as network intrusion detection. Therefore, develop-

ing machine learning algorithms for intrusion detection that can achieve a better trade-off

between interpretability and accuracy continues to be an active area of research. As a

solution, in this paper, we propose a novel, efficient anomaly based intrusion detection

algorithm using the Tsetlin Machine (TM) [15] which outshines ANN when considering

interpretability while achieving a competitive classification performance.

TM is a propositional logic based approach to interpretable machine learning and it

produces decision rules similar to the branches in a DT (e.g., if X satisfies condition

A and not condition B then Y = 1) [16]. However, the accuracy of the predictions

made out of these interpretable rules are competitive compared to the state-of-the-art

machine learning algorithms. This fact is supported by the original study of TM in [15],

where Granmo discusses the competitive accuracy of TM on Binary Iris Dataset, Binary

Digits Dataset, Axis and Allies board game dataset, noisy XOR dataset, and MNIST

dataset compared to SVMs, DTs, RF, Naive Bayes Classifier, Logistic Regression, and

simple ANNs. We can also find further evidence in [16] where the authors have shown

the ability of the TM in categorizing natural language text simply based on a document

250

word presence vector.

The TM has been expanded into many different directions to apply on many other

application domains and improved in many ways to achieve better interpretable and

accurate outputs, i.e, Convolutional Tsetlin Machine [17], Multi-Layered Tsetlin Machine

[18], Tsetlin Machine with multi-granular clauses[19] and Regression Tsetlin Machine [20,

21].

The rest of the paper is organized as follows. Section II summarizes the most prominent

research associated with machine learning techniques used for intrusion detection. We

introduce the TM and its operating principle in Section III which provides the base to our

intrusion detection algorithm while in Section IV, we present how the TM can be utilized

for network intrusion detection. In Section V, we provide evidence on the classification

accuracy of the proposed algorithm along with evidence to support our claim regarding the

interpretability of the proposed approach. Finally, the paper is concluded in Section VI.

J.2 Related Work

In this section, we introduce the machine learning techniques which have been adopted

in intrusion detection systems.

ANNs are inspired by the human biological system, relating to how the human brain

process information and communicate them through the nervous system. ANNs consist of

a set of highly interconnected elements referred to as neurons. These neurons transform a

set of inputs to a set of desired outputs where the transformation is dependent upon the

characteristics of the elements as well as the weights associated with the interconnections.

Given that weights influences the output, it is necessary to adjust the weights and the

thresholds accordingly, which is referred to as the learning process of an ANN [22, 23,

24]. ANN based intrusion detection algorithms are found in [9, 25, 26, 27].

In general, a two-class classification problem deals with finding a separation function

f(x), such that yi = f(xi) given n data samples (x1, y1), (x2, y2), ..., (xn, yn). In SVM, this

discriminant function formally called as a separating hyperplane. In other words, given

labeled training data, the algorithm outputs an optimal hyperplane which classifies new

examples. In two dimensional space, this hyperplane is a line dividing a plane in two parts

where in each class lay in either side [28]. There can be many hyperplanes that classify

the data, however it is necessary to find the hyperplane which maximizes the distance

between the nearest data points in each side [29]. The research work found in [8, 30, 31]

provides evidence for using SVM for intrusion detection.

DT is another well-known classification method used for classifying intrusions. DTs

consist with a set of decision nodes and a set of leaf nodes. Each decision node represents

an input parameter and it can have two or more branches depending on the attributes

of the input parameter. Furthermore, each leaf node represents the classification decision

(i.e intrusion or a normal behavior). In a DT based classification model, training of

data relates to identifying the optimum number of branches for each decision node via

learning appropriate thresholds [32, 33, 34, 35]. When a new event occurs, it is possible to

recognize whether the event is an intrusion or not with the help of the input parameters

251

 1 2 … N-1 N N+1 N+2 ……. 2N-1 2N

Action 1 Action 2

Reward

Penalty

Figure J.1: Transition graph of a two-action TA.

associated with the event and the decision tree established with the training data.

In addition to the above-stated machine learning algorithms, RFs, KNN classifiers

and Naive Bayesian classifiers have also shown promise towards constructing intrusion

detection systems and the research work in [36, 37, 38, 39] highlights the involvement of

the above-mentioned algorithms.

From the related work, it is evident that many classification algorithms have shown

immense potential in successfully classifying network intrusions. However, as we have

elaborated previously, achieving the balance between classification accuracy and inter-

pretability is an area where the above-stated algorithms fall behind. So, the main contri-

bution of this paper is to address the above-stated issue by proposing an efficient, highly

interpretable classification algorithm for intrusion detection using the TM which has never

been applied for the purpose of detecting network intrusions. In order to test our algo-

rithm, we have used the Knowledge Discovery and Data Mining 1999 (KDD’99) dataset

given that KDD’99 is the most comprehensive and widely used dataset to compare and

contrast intrusion detection algorithms.

J.3 The Tsetlin Machine (TM)

The TM is an evolving, cutting-edge classification mechanism introduced by Granmo [15]

that manipulates expressions in propositional logic based on a team of Tsetlin Automata

(TAs). A TA can be regarded as a fixed structure deterministic automaton which is

capable of learning the optimal action among the set of allowable actions offered by an

environment. An instance of a simple TA having 2N states with two actions is shown

in Figure J.1. Note that the states from 1 to N maps to Action 1, whereas states from

N+1 to 2N maps to Action 2. The TA interacts iteratively with its environment while

in each of the iteration the TA performs the action associated with its current state

(i.e. The subsequent action depends upon the current state). This, in turn, randomly

triggers a reward or a penalty from the environment, according to an unknown probability

distribution. A reward will reinforce the performed action via stepping into a “deeper”

state (i.e. one step closer to one of the ends) whereas a penalty will drive the TA one step

towards the middle state, which will ultimately weaken the performed action. Hence,

the TA ultimately converges to performing the action with the highest probability of

producing rewards (i.e. the optimal action) simply interacting with the environment [40].

The TM which build upon TAs operates as follows. Firstly, propositional formulas in

252

x1

x2

 .

 .

 .

.

xo

 x1

¬x1

 .

 .

 .

 .

 xo

¬xo

 TA1

 TA2

 .

 .

 .

 TA2o-1

 TA2o

Include/Exclude x1

Include/Exclude ¬x1

 .

 .

 .

Include/Exclude xo

Include/Exclude ¬xo

In

p
u
ts

L
it

er
al

s

T
A

T
A

D
ec

is
io

n
s

C

la
u

se

𝐶𝑖
Conjunction

Operator

TA team 1

TA team 2

TA team m

𝐶1

𝐶2

 .

 .

 .

𝐶𝑚

∑𝐶𝑖

𝑚

𝑖=1

 +

 _

.

 .

.

_

 .

 .

 .

TM 1

TM q

 .

 .

 .

 .

 .

 .

TM 2

∑𝐶𝑗
1

𝑚
𝑞

𝑗=1

∑𝐶𝑗
2

𝑚
𝑞

𝑗=1

∑𝐶𝑗
𝑞

𝑚
𝑞

𝑗=1

 .

 .

 .

y

 O

u
tp

u
t

Argmax

Operator

(a) Formation of a clause by a team of TAs.

x1

x2

 .

 .

 .

.

xo

 x1

¬x1

 .

 .

 .

 .

 xo

¬xo

 TA1

 TA2

 .

 .

 .

 TA2o-1

 TA2o

Include/Exclude x1

Include/Exclude ¬x1

 .

 .

 .

Include/Exclude xo

Include/Exclude ¬xo

In

p
u
ts

L
it

er
al

s

T
A

T
A

D
ec

is
io

n
s

C

la
u

se

𝐶𝑖
Conjunction

Operator

TA team 1

TA team 2

TA team m

𝐶1

𝐶2

 .

 .

 .

𝐶𝑚

∑𝐶𝑖

𝑚

𝑖=1

 +

 _

.

 .

.

_

 .

 .

 .

TM 1

TM q

 .

 .

 .

 .

 .

 .

TM 2

∑𝐶𝑗
1

𝑚
𝑞

𝑗=1

∑𝐶𝑗
2

𝑚
𝑞

𝑗=1

∑𝐶𝑗
𝑞

𝑚
𝑞

𝑗=1

 .

 .

 .

y

 O

u
tp

u
t

Argmax

Operator

(b) Formation of the TM.

Figure J.2: Architecture of the TM.

disjunctive normal form are used to represent the patterns. The propositional formulas

are learned using the labeled data with the help of a set of TAs organized in the form

of a game. Furthermore, the payoff matrix of the game has been designed so that the

Nash Equilibria correspond to the optimal configurations of the TM. That makes the

architecture of the TM relatively simple which ultimately helps in achieving transparency

and interpretation of both learning and classification phases. Moreover, it is also worth

pointing out that TM is designed for bit-wise operation, meaning that, it takes bits as

input and uses fast bit manipulation operators for both learning and classification. As a

result, TM has an inherent computational advantage over other classification methods.

In the following subsections, we dive into the details of the TM. We start by illustrating

the architecture of the TM, thereafter the learning mechanism is presented.

J.3.1 The Tsetlin Machine Architecture

The TM can be used to tackle pattern classification problems where a class is represented

with a collection of sub-patterns, each fixing certain features to distinct values. The TM

is capable of unearthing these sub-patterns in a fairly simpler manner with the help of a

253

series of clauses where a clause captures a sub-pattern by means of a Boolean statement

consisting of literals combined with the logical conjunctive operator. Note that a literal

simply is a propositional variable (which can be assigned with logical 0 or 1) or its negation.

To further elaborate the architecture of the TM, let us consider the following example.

Suppose X = [x1, x2, x3, . . . , xo] be a feature vector having o propositional variables with

domain {0, 1}. Then the resulting pattern classification problem with two classes (class

1 and class 0) can be captured using m conjunctive clauses Ci, 1 ≤ i ≤ m, in which

Ci = 1 ∧

(∧
k∈Ii

xk

)
∧

∧
k∈Īi

¬xk

 . (J.1)

Note that, Ii and Īi are non-overlapping subsets of the input variable indexes, Ii, Īi ⊆
{1,o}, Ii ∩ Īi = ∅. The subsets decide which of the propositional variables will be

activated in the clause, and also whether they are negated or not.

We have illustrated the architecture of the TM in Figure J.2. The sub-figure Figure

J.2a illustrates how a team of TAs forms a clause that processes the input features while

the sub-figure Figure J.2b depicts how the TM is formed by a set of TA teams. Now, let

us present the details of the above-mentioned to key phases of the TM - formation of a

clause by a team of TAs and the formation of the TM with a set of TA teams.

J.3.1.1 Formation of a clause by a team of TAs

Let us continue with the classification example presented in Section IIIA, in which we

considered an input with o propositional variables. Thus, for each of the clause Ci, as

shown in Figure J.2a, the TM takes the o propositional variables x1, x2, x3, . . . , xo as the

input. Note that, for each propositional variable xk, there are two literals, the variable

itself and its negation ¬xk. Then, each literal is assigned to a unique TA which takes the

decision whether to include or exclude its assigned literal in the given clause. Therefore,

a clause requires 2o number of TAs to serve the n input variables. We call this collective

arrangement of TAs as a TA team. Then by considering only the literals that TAs have

decided to include in the clause, the TA team composes a conjunction of the literals. The

conjunction will output a logical 1 if and only if the included literals evaluate to logical 1,

otherwise, the clause will output a logical 0.

J.3.1.2 Formation of the TM with a set of TA teams

In the example we assumed that we need m clauses to recognize the sub-patterns in

the classification problem. Hence, the TM should have m clauses with each clause is

associated with a distinct TA team as depicted in Figure J.2b. The output of the TM

is driven by a voting scheme where each clause casts its vote. This means that the m

clauses jointly compute the output of the TM. Clauses with odd indexes are assigned

positive polarity (+) and clauses with even indexes are assigned negative polarity (−).

Note that the clauses with positive polarity cast their votes to favor the decision that the

input belongs to the class 1, whereas the clauses with negative polarity vote for the input

254

 Start Tsetlin Machine with:

Clauses m, Precision s, Threshold T

Random Initialization of TAs:

2 × 0 TAs per Clause

Evaluate Clauses

Feedbacks to

the Clauses

Conditions

to Satisfy

Conditions

to Satisfy

Type I Feedback

Type II Feedback

Stopping

Criteria

Ready to Classify Unseen Data

�̂� = 1

Yes

No

Training Data:

Training Sample X, �̂�

- 𝐶+
- 𝐶−

�̂� = 0

- Satisfy Eq. (3) - Satisfy Eq. (3)

- 𝐶−
- Satisfy Eq. (4)

- 𝐶+
- Satisfy Eq. (4)

Figure J.3: The learning process of the TM.

belonging to class 0. Then, the summation operator aggregates the votes by subtracting

the number of negative votes from the number of positive votes to derive the output of

the TM by considering the majority.

J.3.2 The Tsetlin Machine Learning Mechanism

The learning mechanism of the TM is organized as a game played among the TAs. The

Nash Equilibria of the game corresponds to the goal state of the TA, providing the final

classifier. In the worst case, a single action of any TA has the power to disrupt the whole

game. Therefore, the TAs must be guided carefully, so that we can realize optimal pattern

recognition.

In order to achieve the aforementioned goal, the learning process of the TM is formed

around two kinds of feedback - Type I Feedback and Type II Feedback. The Reward,

Inaction, and Penalty probabilities associated with the above-stated two feedback types

are summarized in Table J.1. These probabilities are determined based on the clause

output (logical 1 or 0), the literal value (logical 1 or 0), and the current action of the

TA (include or exclude). Rewards and Penalties are fed to the TA as normal whereas an

Inaction means that the state of the TA remains unchanged.

We have illustrated the learning process of the TM highlighting the involvement of the

255

Table J.1: Tabulation of Reward, Inaction and Penalty probabilities associated with Type

I Feedback and Type II Feedback.

Feedback Type I II

Clause Output 1 0 1 0

Literal Value 1 0 1 0 1 0 1 0

C
u
rr

en
t

S
ta

te Include

(Probability)

Reward (s-1)/s NA 0 0 0 NA 0 0

Inaction 1/s NA (s-1)/s (s-1)/s 1 NA 1 1

Penalty 0 NA 1/s 1/s 0 NA 0 0

Exclude

(Probability)

Reward 0 1/s 1/s 1/s 0 0 0 0

Inaction 1/s (s-1)/s (s-1)/s (s-1)/s 1 0 1 1

Penalty (s-1)/s 0 0 0 0 1 0 0

*s is the precision and controls the granularity of the sub-patterns in [15]

two feedback mechanisms with the help of a flow diagram in Figure J.3. Furthermore, in

the following, We explain how each of the feedback mechanism is activated and the roles

they play upon activation in detail.

J.3.2.1 Type I Feedback

As evident from Figure J.3, Type I Feedback will only be activated if and only if the

labeled training output of the TM, ŷ = 1. To explain how Type I Feedback impacts the

learning process, we need to consider two cases - the output of the target clause is 1 and

the case in which the output of the target clause is 0. The roles that Type I Feedback

will play subjected to the above-stated two cases are summarized below.

Case 1: The output of the target clause is 1. Given that ŷ = 1, this case represents a true

positive output. In this scenario, Type I Feedback has three roles:

• It reinforces the true positive output by assigning a large reward probability (s−1)
s

to the action of including literals that evaluate to 1, and thus contributing to the

result of the clause output being 1.

• Conversely, exclude actions are penalized with the same magnitude under these

conditions. This is to tighten the clause, since it would still produce an output of 1

even when the literal considered is included instead.

• Furthermore, if the value of the literal is 0, excluding the literal is the way to go,

and therefore exclude actions are rewarded with a probability 1
s
.

Case 2: The output of the target clause is 0. Note that this case represents a false negative

output given that ŷ = 1. In this scenario, Type I Feedback has the following roles:

• Type I Feedback systematically penalizes include actions with probability 1
s
. This

is due to the fact that excluding literals is the only way to invert the output of a

clause that outputs a 0.

256

• With an exclude action, this will be rewarded with a probability 1
s
, given that

reinforcing exclude actions will sooner or later invert the output of the clause to 1.

Thus, eventually, Type I Feedback is capable of combating false negative outputs while

encouraging the true positive outputs.

J.3.2.2 Type II Feedback

In contrast to Type I Feedback, Type II Feedback is activated when the actual output

ŷ = 0. The idea behind including this type of a feedback mechanism is to eliminate false

positive outputs. This means that the clause erroneously evaluates to 1, when the clause

output should have been 0. In such a scenario, Type II Feedback is triggered. When

Type II Feedback is repeated it will ultimately force the offending clause to evaluate to

0, by simply including a literal that has the value 0 into the clause (i.e. Such an inclusion

makes the conjunction of literals evaluate to 0). This is accomplished by penalizing

exclude actions with probability 1, for literals that evaluate to 0.

In brief, Type I Feedback reinforces true positive outputs, while simultaneously re-

ducing false negative outputs. To improve the classification accuracy, these dynamics are

supported by Type II Feedback, through systematically reducing false positive outputs.

J.3.2.3 The Clause Feedback Activation Function

In addition to the above-stated two feedback mechanisms, an additional function is intro-

duced in [15] with the intention of effectively allocating the sparse pattern representation

resources provided by the clauses. This is achieved by introducing a target value T for

the number of clauses voting from a specific pattern which will helps in reducing the

frequency of feedback for a specific pattern, as the number of votes approaches T . In all

brevity, the feedback activation function is basically an activation probability controlled

by a threshold T. Thus, the probability of activating Type I Feedback for a specific clause

is given by,
T −max(−T,min(T,

∑m
i=1Ci))

2T
(J.2)

whereas for Type II Feedback, the probability is given by,

T +max(−T,min(T,
∑m

i=1Ci))

2T
. (J.3)

From (J.2), it is easily observable that the activation probability decreases as the

number of votes approaches T, and finally when T is reached, the probability reaches

0. Therefore, Type I feedback will not be activated, when enough clauses are producing

the correct number of votes. This in turn “freezes” the affected clauses purely because

TAs will no longer change the state. Furthermore, this will result in freeing out other

clauses to seek other sub-patterns, given that the “frozen” pattern is no longer attractive

for the TA. The same rationale holds for Type II feedback which is evident from (J.3). In

this way, the pattern representation resources can be allocated more effectively with the

adoption of the Clause Feedback Activation Function.

257

J.4 Empirical Evaluation

In this section, we present how the TM is utilized to differentiate network anomalies from

normal behaviors. We start the section by introducing the dataset that we have used

to test the proposed approach, then we explain how the dataset is pre-processed and

thereafter the adopted experimental setup is presented.

J.4.1 The Dataset

In this study, we used the KDD’99 dataset to demonstrate the feasibility of the TM

to be used for the purpose of detecting network intrusions1. The KDD’99 dataset has

been derived from DARPA datasets (1998) generated in MIT Lincoln Laboratories. It

consists of 41 feature attributes. The intrusions in the dataset have been grouped into

four different types - Denial of Service (DoS), Probe, Remote to Local (R2L), and User

to Root (U2R).

J.4.2 Data Pre-processing

In this study, we are interested in classifying whether a particular access represents a

network intrusion or a normal behavior based on the feature attributes instead of identi-

fying the type of the intrusion. Hence, we update the class labels so that the normal data

samples are represented by 0s while data samples representing intrusions are denoted with

1s.

We observed that only few features from the total of 41 feature attributes are cor-

relating with the class labels. For instance, 5 out of 41 feature attributes are constant

throughout the dataset. Therefore, these features will not contribute towards classifying

the patterns into the two classes separately. Accordingly, after a secondary correlation

analysis, we selected the most influencing 5 feature attributes to classify the samples

from the dataset. These features, starting from the most correlated feature, are logged in,

count, dst host count, protocol type, and dst bytes.

It is important to note that the features - logged in and protocol type are symbolic

features whereas the remaining 3 features are continuous features. As explained in Sec-

tion III, the input to the TM must be in binary form. Therefore, to feed the identified

features into the TM, firstly, the symbolic features must be integer coded so that they

can be binarized along with the continuous features. To achieve binarization, we used

the thresholding method proposed in [41]. For instance, the feature protocol type deals

with three protocol types: tcp, udp, and icmp. Hence, the feature protocol type can be

binarized as shown in Table J.2. After binarizing all features, the resulting dataset rep-

resents 1 original feature vector (consisting of 5 feature attributes) with a vector having

654 binary feature attributes. Table J.3 exhibits which of the features in the resulting

feature set belong to the originally selected 5 features.

1The dataset is available to download at http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.

html

258

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Table J.2: Binarizing the feature protocol type in the KDD’99 dataset.

Protocol Type Integer Code
Thresholds

≤0 ≤1 ≤2

icmp 0 1 1 1

tcp 1 0 1 1

udp 2 0 0 1

Table J.3: Features before and after binarization.

Original Feature Binarized Features

logged in From feature 1 to 2

count From feature 3 to 80

dst host count From feature 81 to 258

protocol type From feature 259 to 261

dst bytes From feature 262 to 654

J.4.3 The TM on KDD’99 Dataset

We have utilized several TM setups by varying the number of clauses (m = 2, 10, 100,

500, 2000, 8000, 15000, 20000) to analyze the classification capability of the TM with

the help of the pre-processed dataset2. Since there are 654 binary features, we require

1308 TAs to form a clause. Each TA is given 100 states per action. Half of the allocated

clauses will recognize the patterns associated with class 1 (intrusion) and the other half

of the clauses will recognize patterns related to class 0 (normal). The other two hyper

parameters, T and s are perceived using a binary search for distinct TM setups.

J.5 Results and Discussion

This section is dedicated to analyze the performance of our TM based intrusion detection

algorithm with the help of the KDD’99 dataset. Firstly, we evaluate the classification ac-

curacy of the TM by considering the eight TM setups introduced in Section IV to observe

the influence of the number of clauses in the TM on the classification accuracy. There-

after, the classification accuracy of the TM is compared with several other state-of-the-art

machine learning algorithms. Towards the end of the section, we provide evidence to sup-

port the claim on the interpretability of our machine learning algorithm by generating

interpretable rules from the TM.

J.5.1 Classification Accuracy

In the experiments, we used 80% of the data samples to train the TM while the rest is

utilized to measure the prediction performance. The performance was measured in-terms

of the parameters - precision, recall, F1-score, accuracy, and specificity. Considering the

dataset that we have used for the experiments, we consider that F1-score is the best

2The source code of the TM can be found at https://github.com/cair/pyTsetlinMachine

259

https://github.com/cair/pyTsetlinMachine

Table J.4: Performance of different TM Setups.

Number of Clauses (m)

2 10 100 500 2000 8000 15000 20000

Precision 0.7733 0.7843 0.8285 0.8709 0.9178 0.9575 0.9809 0.9828

Recall 0.9978 1.0000 0.9923 0.9916 0.9806 0.9729 0.9803 0.9827

F1-Score 0.8701 0.8788 0.9002 0.9252 0.9456 0.9636 0.9806 0.9827

Accuracy 0.7716 0.7866 0.8275 0.8734 0.9113 0.9419 0.9703 0.9736

Specificity 0.0492 0.0651 0.2928 0.4685 0.6917 0.8392 0.9371 0.9442

performance metric given the imbalance of the data samples belonging to the two classes

in the KDD’99 dataset. In addition, we also consider specificity as another important

metric considering our application of interest. This is because,

specificity = 1− false positive rate

and keeping the false positives to a minimum is one of the main obstacles that we need

to overcome when developing anomaly based intrusion detection systems.

J.5.1.1 TM classification accuracy with number of clauses

As we have explained in Section IV, we formulated eight TM setups by varying the

number of clauses to observe the behavior of the above-stated performance parameters.

The obtained results are tabulated in Table J.4. Note that, we conducted each experiment

50 times with random separations of training and testing data; thus the tabulated results

correspond to average values.

From Table J.4, it is evident that precision, F1-score, accuracy, and specificity improve

with the number of clauses. Hence, the best performance for these 4 metrics is achieved

when the TM is configured with 20000 clauses. At this parameter setting, the TM is

capable of achieving performance levels of 0.9828, 0.9827, 0.9736, 0.9442 for precision,

F1-score, accuracy, and specificity respectively. On the other hand, recall reaches its

maximum value of 1.0000 when the number of clauses is 10 and then fluctuates around

0.9800 when the number of clauses is further increased.

As we have explained previously, specificity is crucial for intrusion detection systems.

When the TM is configured with 20000 clauses, we have shown that it is possible to

achieve a specificity of 0.9442. This means that, with 20000 clauses, the TM is capable

of identifying nearly 95 out of 100 normal behaviors correctly. Therefore, a TM with this

number of clauses would raise about 5 false alarms. However, according to Table J.4, it

is evident that specificity can further be increased by increasing the number of clauses in

the TM; but with the expense of a higher computational cost.

J.5.1.2 Performance Comparison

To compare the performance of the proposed TM based intrusion detection algorithm,

we selected five state-of-the-art machine learning algorithms - ANNs, SVM, DT, RF,

260

Table J.5: Performance Comparison between TM and other Machine Learning Algo-

rithms.

Machine Learning Algorithm

ANN-1 ANN-2 ANN-3 SVM DT RF KNN TM

Precision 0.9656 0.9660 0.9652 1.0000 0.9796 1.0000 0.9797 0.9828

Recall 0.9967 0.9953 0.9977 0.9500 0.9830 0.9472 0.9784 0.9827

F1-Score 0.9808 0.9803 0.9812 0.9743 0.9812 0.9729 0.9788 0.9827

Accuracy 0.9702 0.9694 0.9707 0.9618 0.9711 0.9593 0.9678 0.9736

Specificity 0.8838 0.8854 0.8834 1.0000 0.9311 1.0000 0.9314 0.9442

and KNN. For comprehensiveness, three ANN architectures with the following parameter

settings were used.

• ANN-1: 1 hidden layer with 20 neurons

• ANN-2: 3 hidden layers with 20, 150, and 100 neurons

• ANN-3: 5 hidden layers with 20, 200, 150, 100, and 50 neurons

All the other machine learning algorithms were also configured with their best parameter

settings found after a secondary parameter exploration to ensure a fair comparison. In

Table J.5, we have tabulated the resulting average performance values obtained for the

considered performance metrics (i.e. precision, recall, F1-score, accuracy and specificity)

after executing 50 runs of each above-stated machine learning algorithm on the KDD’99

dataset along with the performance results of the proposed TM based classification algo-

rithm when configured with 20000 clauses.

From Table J.5, we can observe that, out of the three ANN setups, the best F1-

score is realized by ANN-3 (0.9812) (i.e. F1-score increases with the number of hidden

parameters in an ANN). However, when the number of hidden parameters in an ANN

increase, the specificity fluctuates. It is observable that the specificity at the peak F1-

Score for ANNs is merely 0.8834. The other three considered performance metrics, i.e.,

precision, recall, and accuracy also fluctuate when the number of hidden parameters in

ANNs are increased. Hence, selecting the best ANN for intrusion detection from the

considered ANN architectures is a strenuous process.

We can also notice that the DTs are capable of outperforming SVM, RF, and KNN

algorithms by achieving an F1-score similar to the one achieved with ANN-3. However,

DTs achieve this performance level with better precision, accuracy, and specificity in

comparison to ANN-3. It is also important to mention that SVM and RF acquire the

best possible specificity (1.0000). Therefore, these two algorithms (SVM and RF) do

not make false alarms while DT and KNN make nearly 6 false alarms for 100 normal

behaviors.

The proposed TM based algorithm with 20000 clauses outperforms all the considered

state-of-the-art machine learning algorithms in terms of the F1-score and accuracy. It is

nearly impossible for the SVM, DT, RF, and KNN algorithms to further improve their F1-

score by changing the hyper-parameters. Despite the mixed performance characteristics

261

Table J.6: Lower and upper bounds of each feature in each clause when the TM is

configured with 2 clauses.

Feature 1 2 3 4 5

Lower Bound (L) / Upper Bound (U) L U L U L U L U L U

Clause 1 - ≤ 0 - - - - - - - -

Clause 2 0 < - - - - - - - - -

achieved by the considered ANNs, one might argue that the performance of ANNs can be

simply improved by further increasing the number of hidden parameters. However, this

incidentally equals to the scenario of increasing the number of clauses in a TM which also

show promise in improving classification accuracy as evident from Table J.4.

J.5.2 Interpretability

In this subsection, we intend to provide evidence on the interpretability of the proposed

TM based approach through generating rules from the TM outputs.

To understand the process of generating rules from the TM outputs, first of all, it is

important to understand the properties of the utilized binarization procedure. So, let us

revisit the binarization example given in Table J.2. In this table, threshold ≤ 0 represents

the protocol type icmp while the threshold ≤ 1 and threshold ≤ 2 appear for the protocol

type tcp and udp, respectively. Thus, in a selected clause, if the only threshold included

by its corresponding TA is ≤ 1, then both protocol types icmp and tcp will be selected

to build the classifier rule (e.g. ... AND (icmp OR tcp) AND ...). Furthermore, if two

thresholds ≤ 1 and ≤ 2 are included in the clause by their corresponding TAs, then the

two protocol types - icmp and tcp will again be selected to build the rule due to the fact

that AND operation of ≤ 1 and ≤ 2 threshold columns in Table J.2 yields the threshold

column ≤ 1. Nevertheless, if the negation of the threshold ≤ 0 is the only included

threshold in the clause, then it reveals that NOT icmp should be selected to build the

rule (e.g. ... AND NOT icmp AND ...). In other words, given that the negation of ≤ 0

is equivalent to 0 <, the clause activates for both the other threshold values, i.e., ≤ 1 and

≤ 2 (e.g. ... AND (tcp OR udp) AND ...).

For continuous features, included original thresholds (i.e. non negated thresholds)

define the upper bound of the continuous feature in the rule. As an example, let us

assume that Table J.2 represents the binarization of a continuous feature instead of the

categorical feature. In this situation, if both ≤ 1 and ≤ 2 thresholds are included in the

clause, then only ≤ 1 threshold should be added to the classifier rule. The reason being

the clauses compute the conjunction of the included literals to decide the clause outputs

(AND of ≤ 1 and ≤ 2 or any other higher threshold is ≤ 1). Likewise, the lower bound

of the continuous value to be included in the rule can also be computed from the included

negated thresholds.

Taking the above properties of the binarization procedure into account, we tabulated

the clause outputs in Table J.6, when the TM is configured with merely 2 clauses. As

one can notice, the TM has considered only the most correlated feature, i.e., logged in to

262

Table J.7: Lower and upper bounds of each feature in each clause when the TM is

configured with 10 clauses.

Feature 1 2 3 4 5

Lower Bound (L) / Upper Bound (U) L U L U L U L U L U

Clause 1 - ≤ 0 - - - - - - - -

Clause 2 - - - ≤ 16 - - - - - -

Clause 3 - ≤ 0 - - - - - - - -

Clause 4 0 < - - - - - - - - -

Clause 5 - ≤ 0 - - - - - - - -

Clause 6 - - - ≤ 18 - - - - - -

Clause 7 - ≤ 0 - - - - - - - -

Clause 8 - ≤ 1 - - - - - - - -

Clause 9 - ≤ 0 - - - - - - - -

Clause 10 - ≤ 1 - - - - - - - -

make the classifications. Note that the logged in feature can have one of the two values 1

or 0 where 1 represents a successful login while 0 represents a login failure. Hence, clause

1, which is voting for class 1, says logged in should be 0 whereas the clause 2, which votes

for class 0, says logged in should be 1. With the help of the above information on clause

outputs, we can construct the following simple rule.

Outcome =

{
Not an attack if Successfully logged in

Attack otherwise.
(J.4)

Now, let us consider the case in which the TM is equipped with 10 clauses. The

clause outputs at the end of the training phase are summarized in Table J.7. Out of

these 10 clauses, clauses with an odd index vote for class 1 (an attack) while the clauses

with an even index vote for the class 0 (not an attack). All clauses with an odd index

have recognized the same sub-pattern learned by the clause 1 in Table J.6 (logged in is

unsuccessful). Therefore, when logged in is 0, class 1 receives 5 votes. However, when

logged in is 0, class 0 also receives 2 easy votes (without needing to satisfy other conditions)

from clause 8 and clause 10. With some conditions associated with feature 2, clause 2 and

clause 4 could also add votes to the class 0 when logged in is 0. However, the maximum

possible votes for class 0 is inadequate to beat class 1. Therefore, regardless of the other

conditions, when logged in is 0, that can be categorized as ‘an attack’.

On the other hand, when logged in is 1, class 0 receives 3 easy votes and 2 other votes

from clause 2 and clause 6, if they satisfy the conditions associated with the feature 2.

Class 1 does not receive votes when logged in is 1. Therefore, regardless of the other

conditions, when logged in is 1, that can be categorized as ‘not an attack’. Hence, for this

considered example, the same rule built in (J.4) can be regenerated.

From the above analysis, we can observe that, for the considered example, both the

TM configurations (i.e. TM with 2 clauses and 10 clauses) have ended up with the same

rule given in (J.4). However, intuitively we know that the probability of getting an error

with TM configured with 2 clauses is higher than the TM configured with 10 clauses.

263

Furthermore, as we can see from Table J.6, the TM configured with 2 clauses does not

have enough resources to search for other sub-patterns. It has optimally employed its

clauses to recognize the sub-pattern of the most correlated feature, logged in. In contrast,

the TM configured with 10 clauses, as evident from Table J.7, starts searching for other

sub-patterns of the two classes (e.g. additional sub-patterns associated with feature 2,

which is the second most correlated feature). Therefore, when the number of clauses

in the TM is increased, it is certain that the TM will learn additional sub-pattern with

higher probability and thereby yields better accuracy as we can observe from Table J.4.

Nevertheless, even if we discard the duplicate clauses while generating the rules, the

increase in the number of clauses will also increase the number of literals in the rules.

Furthermore, when the TM is configured with a large number of clauses, it might make

the classifier less interpretable. Hence, it is important to achieve a trade-off between the

number of literals in the rule and the prediction accuracy. In Figure J.4, we plot the

average prediction accuracy against the average number of literals in unique clauses.

0 2 10 100 500 2000 8000 15000 20000

Number of Clauses

0

0.2

0.4

0.6

0.8

1

P
re

d
ic

ti
o
n
 A

c
c
u
ra

c
y

0

5

10

15

20

25

30

35

40

N
u
m

b
e
r

o
f
L
it
e
ra

ls

Precision

Recall

F1-Score

Accuracy

Specificity

Literals

Figure J.4: Variation of the prediction accuracy and the number of literals against the

number of clauses .

From Figure J.4, we can clearly observe that the specificity benefits greatly from hav-

ing a large number of literals in rules. However, the increase of precision, F1-Score, and

accuracy compared to the growth of the number of literals is trivial while recall remains

steady. Furthermore, depending on the classification objectives or requirements, the num-

ber of clauses can be decided upon appropriately. For instance, one might satisfy with

a F1-score of 87% when the classifier is easily interpretable (less number of literals) as

in (J.4). On the other hand, one might need higher accuracy in the expense of inter-

pretability; which he or she can achieve by allocating a large number of clauses to the

TM.

264

J.6 Conclusion

In this paper, we propose an efficient anomaly based network intrusion detection mecha-

nism using the Tsetlin Machine (TM), to address the problem of achieving the necessary

balance between classification accuracy and interpretability which has a significant im-

portance for critical applications such as intrusion detection. We evaluated the proposed

TM based mechanism using the KDD’99 dataset, given that it is widely considered as

the benchmark dataset for testing intrusion detection algorithms. The classification re-

sults show us that the proposed method is capable in outperforming the state-of-the-art

interpretable machine-learning algorithms while achieving a competitive classification per-

formance in relation to ANNs. Furthermore, we have presented how classification rules

can be derived from the TM output, which supports our claim on interpretability of the

proposed approach. In our future work, we intend to investigate the possibility of using

the TM to identify the types of the intrusions instead of just classifying intrusions from

normal behaviors. In addition, we will also explore the possibilities of using the Integer

Weighted Tsetlin Machine [42], which includes fewer literals in classifier rules compared

to the regular TM, to detect the anomalies from normal behavior.

265

Bibliography

[1] B.Santos Kumar, Sk.Dawood Baba T.Chandra Sekhara Phani Raju M.Ratnakar,

and N.Sudhakar. “Intrusion Detection System-Types and Prevention”. In: Inter-

national Journal of Computer Science and Information Technologies 4.1 (2013),

pp. 77–82.

[2] F. Erlacher and F. Dressler. “FIXIDS: A High-Speed Signature-based Flow Intru-

sion Detection System”. In: Proceedings of IEEE/IFIP Network Operations and

Management Symposium. 2018, pp. 1–8.

[3] A. H. Almutairi and N. T. Abdelmajeed. “Innovative Signature based Intrusion

Detection System: Parallel Processing and Minimized Database”. In: Proceedings of

International Conference on the Frontiers and Advances in Data Science (FADS).

2017, pp. 114–119.

[4] Y. Zhang, F. Gao, Y. Guo, and X. Liu. “Research on Intrusion Detection Approach

based on Signature Generation”. In: Proceedings of 2nd Pacific-Asia Conference on

Circuits, Communications and System. 2010, pp. 236–240.

[5] What is IDS. URL: https://searchsecurity.techtarget.com/definition/intrusion-

detection-system. Accessed July 04, 2018. url: https : / / searchsecurity .

techtarget.com/definition/intrusion-detection-system.

[6] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita. “Network Anomaly Detec-

tion: Methods, Systems and Tools”. In: IEEE Communications Surveys Tutorials

16.1 (2014), pp. 303–336.

[7] Fangjun Kuang, Weihong Xu, and Siyang Zhang. “A Novel Hybrid KPCA and SVM

with GA Model for Intrusion Detection”. In: Applied Soft Computing 18 (2014),

pp. 178–184.

[8] R. R. Reddy, Y. Ramadevi, and K. V. N. Sunitha. “Effective Discriminant Func-

tion for Intrusion Detection using SVM”. In: Proceedings of International Confer-

ence on Advances in Computing, Communications and Informatics (ICACCI). 2016,

pp. 1148–1153.

[9] B. Ingre and A. Yadav. “Performance Analysis of NSL-KDD Dataset using ANN”.

In: Proceedings of International Conference on Signal Processing and Communica-

tion Engineering Systems. 2015, pp. 92–96.

[10] Nabila Farnaaz and MA Jabbar. “Random forest modeling for network intrusion

detection system”. In: Procedia Computer Science 89 (2016), pp. 213–217.

267

https://searchsecurity.techtarget.com/definition/intrusion-detection-system
https://searchsecurity.techtarget.com/definition/intrusion-detection-system

[11] J. Zhang, M. Zulkernine, and A. Haque. “Random-Forests-Based Network Intrusion

Detection Systems”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part

C (Applications and Reviews) 38.5 (2008), pp. 649–659.

[12] Types of IDS. URL: http://www.omnisecu.com/security/infrastructure-and-

email-security/types-of-intrusion-detection-systems.php. Accessed July 04,

2018. url: http://www.omnisecu.com/security/infrastructure-and-email-

security/types-of-intrusion-detection-systems.php.

[13] Christoph Molnar. Interpretable Machine Learning. Lulu. com, 2019.

[14] Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian Jiang, and Joel T Dudley.

“Deep Learning for Healthcare: Review, Opportunities and Challenges”. In: Brief-

ings in bioinformatics 19.6 (2018), pp. 1236–1246.

[15] Ole-Christoffer Granmo. “The Tsetlin Machine - A game Theoretic Bandit Driven

Approach to Optimal Pattern Recognition With Propositional Logic”. In: arXiv

preprint arXiv:1804.01508 (2018).

[16] Geir Thore Berge, Ole-Christoffer Granmo, Tor Oddbjørn Tveit, Morten Good-

win, Lei Jiao, and Bernt Viggo Matheussen. “Using the Tsetlin Machine to Learn

Human-Interpretable Rules for High-Accuracy Text Categorization With Medical

Applications”. In: IEEE Access 7 (2019), pp. 115134–115146.

[17] Ole-Christoffer Granmo, Sondre Glimsdal, Lei Jiao, Morten Goodwin, Christian

W. Omlin, and Geir Thore Berge. “The Convolutional Tsetlin Machine”. In: arXiv

preprint:1905.09688 (2019).

[18] Ole-Christoffer Granmo. “The Multi-Layered Tsetlin Machine”. In: Preparation

(2020).

[19] Saeed Rahimi Gorji, Ole-Christoffer Granmo, Adrian Phoulady, and Morten Good-

win. “A Tsetlin Machine with Multigranular Clauses”. In: Lecture Notes in Com-

puter Science: Proceedings of the Thirty-ninth International Conference on Innova-

tive Techniques and Applications of Artificial Intelligence (SGAI-2019). Vol. 11927.

Springer International Publishing, 2019.

[20] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Lei Jiao, and Morten Goodwin.

“The regression Tsetlin Machine: A Tsetlin Machine for Continuous Output Prob-

lems”. In: EPIA Conference on Artificial Intelligence. Springer. 2019, pp. 268–280.

[21] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, Lei Jiao, and

Morten Goodwin. “The Regression Tsetlin Machine - A Novel Approach to Inter-

pretable Non-Linear Regression”. In: Philosophical Transactions of the Royal Society

A 378 (2164 2019).

[22] D. Niu, Q. Wanq, and J. Li. “Short Term Load Forecasting Model Using Support

Vector Machine based on Artificial Neural Network”. In: Proceedings of Interna-

tional Conference on Machine Learning and Cybernetics. 2005, pp. 4260–4265.

[23] Using Neural Nets to Recognize Handwritten Digits. URL: http://neuralnetworksanddeeplearning.com/chap1.html.

Accessed July 10, 2018. url: http://neuralnetworksanddeeplearning.com/

chap1.html.

268

http://www.omnisecu.com/security/infrastructure-and-email-security/types-of-intrusion-detection-systems.php
http://www.omnisecu.com/security/infrastructure-and-email-security/types-of-intrusion-detection-systems.php
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html

[24] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016.

[25] H. Deng and Y. Wang. “An Artificial-Neural-Network-based Multiple Classifiers In-

trusion Detection System”. In: Proceedings of International Conference on Wavelet

Analysis and Pattern Recognition. 2007, pp. 683–686.

[26] M. U. ÖNEY and S. PEKER. “The Use of Artificial Neural Networks in Network

Intrusion Detection: A Systematic Review”. In: Proceedings of International Con-

ference on Artificial Intelligence and Data Processing (IDAP). 2018, pp. 1–6.

[27] B. Subba, S. Biswas, and S. Karmakar. “A Neural Network based system for Intru-

sion Detection and Attack Classification”. In: Proceedings of 22nd National Confer-

ence on Communication (NCC). 2016, pp. 1–6.

[28] Chapter 2-SVM Theory. URL: https://medium.com/machine-learning-101/chapter-

2-svm-support-vector-machine-theory-f0812effc72. Accessed July 04, 2018.

url: https://medium.com/machine-learning-101/chapter-2-svm-support-

vector-machine-theory-f0812effc72.

[29] SVM-Understanding the Math. URL: https://www.svm-tutorial.com/2014/11/svm-

understanding-math-part-1/. Accessed Julyl 04, 2018. url: https://www.svm-

tutorial.com/2014/11/svm-understanding-math-part-1/.

[30] B. Senthilnayaki, K. Venkatalakshmi, and A. Kannan. “Intrusion Detection Using

Optimal Genetic Feature Selection and SVM based Classifier”. In: Proceedings of

3rd International Conference on Signal Processing, Communication and Networking

(ICSCN). 2015, pp. 1–4.

[31] X. Tang, S. X. -. Tan, and H. Chen. “SVM Based Intrusion Detection Using Non-

linear Scaling Scheme”. In: Proceedings of 14th IEEE International Conference on

Solid-State and Integrated Circuit Technology (ICSICT). 2018, pp. 1–4.

[32] H. Elaidi, Y. Elhaddar, Z. Benabbou, and H. Abbar. “An Idea of a Clustering

Algorithm Using Support Vector Machines based on Binary Decision Tree”. In:

2018 International Conference on Intelligent Systems and Computer Vision (ISCV).

2018, pp. 1–5.

[33] M. A. Jabbar and S. Samreen. “Intelligent Network Intrusion Detection Using Al-

ternating Decision Trees”. In: Proceedings of International Conference on Circuits,

Controls, Communications and Computing (I4C). 2016, pp. 1–6.

[34] J. Wang, Q. Yang, and D. Ren. “An Intrusion Detection Algorithm Based on Deci-

sion Tree Technology”. In: Proceedings of Asia-Pacific Conference on Information

Processing. 2009, pp. 333–335.

[35] S. Sahu and B. M. Mehtre. “Network Intrusion Detection System Using J48 Deci-

sion Tree”. In: Proceedings of International Conference on Advances in Computing,

Communications and Informatics (ICACCI). 2015, pp. 2023–2026.

[36] J. Zhang, M. Zulkernine, and A. Haque. “Random-Forests-Based Network Intrusion

Detection Systems”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part

C (Applications and Reviews) 38.5 (2008), pp. 649–659.

269

https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-f0812effc72
https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-f0812effc72
https://www.svm-tutorial.com/2014/11/svm-understanding-math-part-1/
https://www.svm-tutorial.com/2014/11/svm-understanding-math-part-1/

[37] A. Tesfahun and D. L. Bhaskari. “Intrusion Detection Using Random Forests Clas-

sifier with SMOTE and Feature Reduction”. In: Proceedings of International Con-

ference on Cloud Ubiquitous Computing Emerging Technologies. 2013, pp. 127–132.

[38] H. Xu, C. Fang, Q. Cao, C. Fu, L. Yan, and S. Wei. “Application of a Distance-

weighted KNN Algorithm Improved by Moth-Flame Optimization in Network Intru-

sion Detection”. In: Proceedings of 4th IEEE International Symposium on Wireless

Systems within the International Conferences on Intelligent Data Acquisition and

Advanced Computing Systems (IDAACS-SWS). 2018, pp. 166–170.

[39] X. Han, L. Xu, M. Ren, and W. Gu. “A Naive Bayesian Network Intrusion Detection

Algorithm Based on Principal Component Analysis”. In: Proceedings of 7th Interna-

tional Conference on Information Technology in Medicine and Education (ITME).

2015, pp. 325–328.

[40] K. Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten Goodwin. “A Novel

Tsetlin Automata Scheme to Forecast Dengue Outbreaks in the Philippines”. In:

2018 IEEE 30th International Conference on Tools with Artificial Intelligence (IC-

TAI). IEEE. 2018, pp. 680–685.

[41] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, and Morten Good-

win. “A Scheme for Continuous Input to the Tsetlin Machine With Applications

to Forecasting Disease Outbreaks”. In: International Conference on Industrial, En-

gineering and Other Applications of Applied Intelligent Systems. Springer. 2019,

pp. 564–578.

[42] K. Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten Goodwin. “Extend-

ing the Tsetlin Machine with Integer-Weighted Clauses for Increased Interpretabil-

ity”. In: IEEE Access 9 (2021), pp. 8233–8248.

270

Paper K

Public Transport Passenger Count

Forecasting in Pandemic Scenarios

Using Regression Tsetlin Machine.

Case Study of Agder, Norway

Challenged by the effects of the COVID-19 pandemic, public transport is suffer-

ing from low ridership and staggering economic losses. One of the factors which

triggered such losses was the lack of preparedness among governments and public

transport providers. The present paper explores the use of a novel machine learning

algorithm, namely Regression Tsetlin Machine, in using historical passenger trans-

port data from the current COVID-19 pandemic and pre-pandemic period to forecast

pandemic-scenarios for public transport patronage variations. Results show that the

Regression Tsetlin Machine has the best accuracy of forecasts compared to four other

models usually employed in the field.

K.1 Introduction

K.1.1 The world-wide situation

The spread of the COVID-19 virus has shed new light on the way urban societies react

to pandemic situations. In this new daily reality, public transport (PT) has an ambiva-

lent character: maintaining the continuation of critical services (hospitals, supermarkets

etc.) and being a potential high contamination risk environment due to the enclosed and

crowded conditions typical to PT. The significant patronage losses triggered by the soci-

etal reaction to the pandemic and slow recovery process in ridership point in the direction

of a lingering fear of contagion for the population and the need for preparedness for similar

future global events.

271

K.1.2 Case study of Agder

The region of Agder (approx. 300 000 inhabitants, 80% concentrated in the coastal area)

in southern Norway is used as a case study in the present research due to the following

reasons:

• data availability- the PT provider in Agder has granted access to the transport data.

• replicability- (inter-)national replication potential for spatial and population fea-

tures.

• choice of bus line 100- limitation of scope for the model development and initial

testing.

K.1.3 Motivation of present research

We cannot predict the likelihood of pandemics. Therefore, we need to prepare the PT

network for similar events by using forecasting models.

A promising way to identify patterns in lockdown effects on the PT network is to

employ machine learning (ML) algorithms in analyzing big data sets for forecasting pur-

poses. In this study, we use the Regression Tsetlin Machine (RTM)[1], a variant of the

binary Tsetlin Machine (TM)[2], to predict the travel behavior in future pandemic scenar-

ios. The main advantage of using TMs is the competitive accuracy of predictions, despite

the fact that they are made of interpretable rule-based classifiers, memory footprint, and

inference speed.

The RTM has been previously used to predict e.g. the dengue incidences in the

Philippines [3]. Abeyrathna et al. in [4], [5], and [6] discussed the interpretability of the

binary TM on distinct applications. In our study, this algorithm is applied for the first

time to the transport domain, where we predict the PT ridership variation during the

pandemic period providing evidence on the interpretability of the TM based approach

through generating rules, which can be used for travel behavior predictions in future

pandemic scenarios.

K.2 State of the art

K.2.1 Role of public transport in a pandemic

Browne et al. [7] studied the relationship between spread and PT. They revealed that

the duration of travel and seating proximity influences the risk of infection for ground

transport. In terms of patronage, a study of the 2002/03 SARS pandemic [8] showed

that reported new cases caused immediate losses in the underground ridership, despite

no lockdown being in place (“fresh fear”) [9]. Looking at mobility data within Europe,

Santamaria et al. [10] showed that “confinement measures explain up to 90% of the

mobility patterns”.

272

K.2.2 Machine learning in public transport research

Currently, applications of ML in PT research are popular in the domains of:

• Travel mode choice modeling- analyzing user data to accurately predict mode choice.

Previous research indicates ML models, i.e. random forest or different artificial

neural nets, as the best performers in the field [11, 12, 13].

• Travel demand modelling and forecasting- models such as Autoregressive Integrated

Moving Average, dynamic Partial Adjustment Model have been used by Chi-Hong

et al. [14] to predict PT demand. Mozolin et al. used neural networks (NN) for

trip distribution forecasting [15]. Koushik et al. discuss that the results of applying

NN for travel demand models are not in favour of NN due to the “black-box” effect

[16].

• Forecasting passenger flows- Toque et al. used gated recurrent unit and recurrent

NN for short term prediction of passenger flows, comparing the results with the ones

of Random Forest and long-term forecasting models [17]. Wei and Chen employed

the empirical mode decomposition and NN [18] for the same purpose. Toque et al.

extended their previous study to long-term forecasting as well [19].

K.2.3 Machine learning in the COVID-19 pandemic

In a 2020 review, Lalmuanawma et al. conclude that “the ongoing development in AI and

ML has significantly improved treatment, medication, screening, prediction, forecasting,

contact tracing, and drug/vaccine development process for the Covid-19 pandemic and

reduced the human intervention in medical practice. However, most of the models are

not deployed enough to show their real-world operation” [20]. Another example is pre-

dicting the growth and trend of COVID-19 number of cases [21]. A recent interpretable

ML algorithm, the Regression Tsetlin Machine based mobile application, has also been

developed for the same purpose [22].

K.3 Methodology

In this section, we will briefly introduce the theory of the ML algorithm used in this

study, data pre-processing, and model validation. The diagram of the planned work-flow

is illustrated in Fig. K.1.

K.3.1 The Regression Tsetlin Machine algorithm

The RTM is a variation of TMs and a novel approach to interpretable non-linear regression

[1]. The RTM takes o propositional input features, i.e., X = [x1, x2, x3, . . . , xo,] and sends

them along with their negations (collectively called literals), i.e., X′ = [x1, x2, x3, . . . , xo,

¬x1,¬x2,¬x3, . . . ,¬xo] to each of the clauses, cj, j = 1, 2, 3, . . . ,m. Each clause com-

prises of a team of Tsetlin Automata (TAs) which decides the composition of the clause.

Individual TAs attached to each literal decide to include or exclude their corresponding

273

F
igu

re
K

.1:
M

eth
o
d

con
cep

t.

274

literals in the clause. The clause then computes the conjunction of only the included

literals in the clause. By carefully guiding these TAs to make correct decisions as a team,

individual clauses recognize the sub-patterns in data.

Once a sub-pattern is recognized by a clause, the clause outputs 1. The resulting sum

of the individual clause outputs is then mapped into a continuous value between 0 and

ŷmax, where ŷmax is the maximum training output.

During the training phase, the predicted daily passenger count, y, is compared against

the actual passenger count output, ŷ. Depending on whether y (predicted value) is higher

or lower than ŷ, the individual clauses are systematically guided to reduce the prediction

error.

K.3.2 Features, Predictions, and Data Preprocessing

What we expect in this study is to train the RTM algorithm using historical PT ridership

data from bus line 100 and the calendar of pandemic related events to predict the PT

daily ridership variation in future pandemic situations. The model requires the input of

different features to be able to estimate the future passenger count for a similar situation.

In our case, the passenger count, PC of day d for the bus line 100, PC(d) is predicted

using the previous day passenger count, PC(d − 1) previous year-same-day passenger

count of bus line 100, PC(d− 365), previous day passenger count of the Agder province,

PCA(d−1), previous year-same-day passenger count of the Agder province, PCA(d−365),

number of new corona cases of day d−1 worldwide, NCCw(d−1) number of corona cases

of day d − 1 in Agder, CCA(d − 1), number of corona cases of day d − 1 in Norway,

CCN(d − 1), number of corona cases of day d − 1 worldwide, CCw(d − 1), number of

corona deaths of day d−1 in Agder, CDA(d−1), number of corona deaths of day d−1 in

Norway, CDN(d−1), number of corona deaths of day d−1 worldwide, CDw(d−1), holiday

information related to day d, and different pandemic related measures related to day d.

In the first phase of preprocessing, the non-numerical features (e.g. pandemic measures)

are encoded to numerical values without losing the true meaning of the feature. In the

second phase, the complete set of numerical features are binarized as the RTM accepts

only binary form features. For feature binarization, we use the thresholding approach

proposed in [3].

K.3.3 Training and Validation

The RTM model is trained on different training samples by varying the day d between

1st of January, 2020 and day t. We, in this study, focus on medium-term prediction of

passenger count: up to two weeks. Hence, once the model has been trained on the data

from 1st of January, 2020 to day t, this model is used to predict the passenger count for

the days from t+ 1 to t+ 14.

However, as noticed, for real-life situations, predictions of passenger count for the

above days have to be made based on the predictions of PC(d − 1), PCA, CCA, CCN ,

NCCw, CCw, CDA, CDN , CDw, and pandemic related measures. For instance, to predict

the passenger count of day t + 7, PC(t + 7) the model will require the feature values of

275

some of the features of day t+ 6, which are not available by day t. Hence, we use simple

moving average approach to predict those input features and then send them to the model

to make predictions for the future.

The pandemic related measures on the other hand have to be also estimated to make

prediction for the next two weeks. Since numerical analysis can not be used to estimate

the future pandemic related measures, we consider three cases where we assume that 1).

no pandemic measure in the next 14 days, 2). one restrictive pandemic measure in the

next 14 days, and 3). two restrictive pandemic measures in the next 14 days. For the

cases where we assume to have a measure, the day of the measure is randomly selected.

Considering the above conditions, the RTM is used to make two predictions: Case 1

and Case 2. For Case 1, the RTM is trained on data from 1/1/2020 to 9/15/2020 and

predictions made for 9/16/2020 to 9/29/2020. In Case 2, the RTM is trained on the data

from 1/1/2020 to 10/8/2020 and predictions made for 10/9/2020 to 10/22/2020. The

accuracy values of the predictions are summarized in the next section.

K.4 Results and discussion

The performance of the RTM in relation to the above experiment is measured in terms of

the mean absolute error (MAE) between actual and predicted passenger counts. We also

contrast the performance of the RTM with a classic statistical model, Moving Average

(MA), and three other widely used machine learning models: Random Forest (RF), Re-

gression Trees (RT), and Support Vector Machine (SVM). Their performance on Cases 1

and 2 is summarized in Table K.1 and Table K.2.

Regardless of the number of measures used in testing, the RTM obtains the lowest

MAE in both cases. On average, RT exhibits second best performance, closely followed

by RF, while SVM and MA struggle to make competitive predictions.

The data shows that the error is higher for the Case 1 testing (Fig. K.2 and Fig. K.3).

Figure K.2 also shows that all machine learning models barely recognize the ridership

reduction in the weekends.

A possible reason for the above observation could be the lesser number of training

samples the Case 1 has compared to Case 2, as Case 1 consists of 259 training sample

while Case 2 contains 282. In our case, the missing samples in Case 1 are highly important

since this seems to be the period where the impact of the second pandemic wave starts

to be visible on the ridership of Line 100.

Since the drastic pandemic control measures in the first wave had been different in

relation to the number of new daily cases in Norway, the available 259 training samples did

Table K.1: MAE between actual and predicted passenger counts (testing for Case 1).

Method

RTM RF RT SVM MA

No.

of

measures

0 338.41 376.82 370.76 490.78 495.88

1 337.81 375.50 370.62 490.79 495.88

2 337.13 375.41 354.74 490.80 495.88

276

W T F S S M T W T F S S M T
Day of the week

750

1000

1250

1500

1750

2000

2250

2500

Pa
ss

an
ge

r C
ou

nt

With 0 measures
Actual RTM RF RT SVM MA

W T F S S M T W T F S S M T
Day of the week

750

1000

1250

1500

1750

2000

2250

2500

Pa
ss

an
ge

r C
ou

nt

With 1 measure

W T F S S M T W T F S S M T
Day of the week

750

1000

1250

1500

1750

2000

2250

2500

Pa
ss

an
ge

r C
ou

nt

With 2 measures

Figure K.2: Actual vs Predicted passenger count for the testing in Case 1.

F S S M T W T F S S M T W T
Day of the week

800

1000

1200

1400

1600

1800

2000

2200

Pa
ss

an
ge

r C
ou

nt

With 0 measures
Actual RTM RF RT SVM MA

F S S M T W T F S S M T W T
Day of the week

800

1000

1200

1400

1600

1800

2000

2200

Pa
ss

an
ge

r C
ou

nt

With 1 measure

F S S M T W T F S S M T W T
Day of the week

800

1000

1200

1400

1600

1800

2000

2200

Pa
ss

an
ge

r C
ou

nt

With 2 measures

Figure K.3: Actual vs Predicted passenger count for the testing in Case 2.

not provide enough similar samples for the ML training in this situation. In the lockdown

period of the first wave (March-April), the passenger count difference between weekdays

and weekends is much smaller than for the two cases analyzed. Therefore, in Case 1 the

ML models predict similar patterns to the lockdown period, with smaller passenger count

differences between weekdays and weekends. For Case 2, the models learn to recognize

the differences with better accuracy due to the increased number of training samples

available.

Another possible reason could be the predicted input data for the testing period. For

Case 1 these have been mainly derived from data previous to the second pandemic wave.

For Case 2 the data used for predictions is already overlapping the second pandemic wave,

Table K.2: MAE between actual and predicted passenger counts (testing for Case 2).

Method

RTM RF RT SVM MA

No.

of

measures

0 192.48 217.66 193.75 401.13 445.64

1 187.16 237.29 193.08 401.10 445.64

2 186.89 234.26 192.79 401.09 445.64

277

hence containing more realistic values as testing inputs than in Case 1.

A crucial result of the study is generating applicable rules for ridership variation

predictions by interpreting the logical outputs given by the TM results. Hence, we changed

the output in our dataset from regression to categorical and then applied the binary TM

on it. The output is categorized as ”positive trend” with a passenger count higher than

the average of last 14 days, and ”negative trend” otherwise. This way the clauses in the

TM identify the reasons for positive and negative trends.

Using a similar approach to the ones in [4], [5], and [6], we identify the reasons for a

positive trend using the complete set of features as,

IF CDA(d − 1) ≤ 7390 AND CDN(d − 1) ≤ 9 AND PC(d − 365) > 2220 AND

PC(d− 1) > 955 AND PCA(d− 1) > 6908 AND PCA(d− 365) > 39401 AND day d is

NOT a holiday AND Days to enforce a measure ≤ 5 AND day d is a week day THEN

a positive trend.

Similarly, the reasons for a negative trend is identified as,

IF PC(d − 365) ≤ 1997 AND PCA(d − 365) ≤ 33703 AND No pandemic control

relaxation measures taken AND No public transport restrictive measures taken AND

day d is a weekend day THEN a negative trend.

Using the above rule, the correct trend can be predicted with an accuracy of over 86%.

The next step is to remove the number of cases and deaths worldwide, and the histori-

cal ridership data from the features set and re-run the model. The resulting rule generated

from the remaining features still predicts the trend with an accuracy close to 85%. Thus,

the reasons for a positive trend using the filtered set of features are identified as,

IF CCN(d − 1) ≤ 100 AND the number of days after a positive announcement ≤ 38

AND day d is a week day THEN a positive trend.

Similarly, the reasons for a negative trend is identified as,

IF day d is a weekend day THEN a negative trend.

K.5 Conclusions and future research

Our research concentrates on the application of RTM on forecasting ridership variation in

PT in the specific conditions of a pandemic where the virus spreads similarly to COVID-

19. The results in Tables K.1 and K.2 show that RTM obtains the lowest mean absolute

error for forecasting the variation in PT ridership in comparison to all other ML models

tested (RF, RT, SVM, MA). They give evidence on the interpretability of the TM, allowing

for the formulation of forecasting rules.

Therefore, the method presents good potential for supporting PT providers and deci-

sion makers in their response to pandemic scenarios that affect PT ridership. This enables

continuous learning by implementing current data on patronage, timetable alterations and

local restrictions, allowing for minimal financial and patronage losses.

278

When discussing the accuracy of prediction, we observe variations in relation to the

period of the pandemic for which simulations are being run. For the second wave, the

accuracy of the prediction depends on how far within the second wave the simulation

is being run. It may be necessary to correct the data in future pandemic scenarios (i.e.

correct input data set to train model on similar number of daily cases) to ensure accuracy.

From the generated rules, we observe that only marking a pandemic control measure

as positive or negative does not correctly estimate the impact strength of the measure

itself. Therefore, further research is necessary on their level of impact.

279

Bibliography

[1] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, Lei Jiao, and

Morten Goodwin. “The Regression Tsetlin Machine - A Novel Approach to Inter-

pretable Non-Linear Regression”. In: Philosophical Transactions of the Royal Society

A 378 (2164 2019).

[2] Ole-Christoffer Granmo. “The Tsetlin Machine - A game Theoretic Bandit Driven

Approach to Optimal Pattern Recognition With Propositional Logic”. In: arXiv

preprint arXiv:1804.01508 (2018).

[3] K. Darshana Abeyrathna, Ole-Christoffer Granmo, Xuan Zhang, and Morten Good-

win. “A Scheme for Continuous Input to the Tsetlin Machine With Applications

to Forecasting Disease Outbreaks”. In: International Conference on Industrial, En-

gineering and Other Applications of Applied Intelligent Systems. Springer. 2019,

pp. 564–578.

[4] K. Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten Goodwin. “Extend-

ing the Tsetlin Machine with Integer-Weighted Clauses for Increased Interpretabil-

ity”. In: IEEE Access 9 (2021), pp. 8233–8248.

[5] K. Darshana Abeyrathna, Harsha S. Gardiyawasam Pussewalage, Sasanka N. Ranas-

inghe, Vladimir A. Oleshchuk, and Ole-Christoffer Granmo. “Intrusion Detection

with Interpretable Rules Generated Using the Tsetlin Machine”. In: 2020 IEEE

Symposium Series on Computational Intelligence (SSCI). IEEE. 2020.

[6] K. Darshana Abeyrathna, Ole-Christoffer Granmo, and Morten Goodwin. “On Ob-

taining Classification Confidence, Ranked Predictions and AUC with Tsetlin Ma-

chines”. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI).

IEEE. 2020.

[7] Annie Browne, Sacha St-Onge Ahmad, Charles R Beck, and Jonathan S Nguyen-

Van-Tam. “The Roles of Transportation and Transportation Hubs in the Propaga-

tion of Influenza and Coronaviruses: A Systematic Review”. In: Journal of travel

medicine 23.1 (2016), tav002.

[8] Kow-Tong Chen, Shiing-Jer Twu, Hsiao-Ling Chang, Yi-Chun Wu, Chu-Tzu Chen,

Ting-Hsiang Lin, Sonja J Olsen, Scott F Dowell, Ih-Jen Su, and Taiwan SARS

Response Team. “SARS in Taiwan: An Overview and Lessons Learned”. In: Inter-

national Journal of Infectious Diseases 9.2 (2005), pp. 77–85.

[9] Kuo-Ying Wang. “How Change of Public Transportation Usage Reveals Fear of the

SARS Virus in a City”. In: PloS one 9.3 (2014), e89405.

281

[10] Carlos Santamaria, Francesco Sermi, Spyridon Spyratos, Stefano Maria Iacus, Alessan-

dro Annunziato, Dario Tarchi, and Michele Vespe. “Measuring the Impact of COVID-

19 Confinement Measures on Human Mobility Using Mobile Positioning Data. A

European Regional Analysis”. In: Safety Science 132 (2020), p. 104925.

[11] Xilei Zhao, Xiang Yan, Alan Yu, and Pascal Van Hentenryck. “Prediction and Be-

havioral Analysis of Travel Mode Choice: A Comparison of Machine Learning and

Logit Models”. In: Travel behaviour and society 20 (2020), pp. 22–35.

[12] Long Cheng, Xuewu Chen, Jonas De Vos, Xinjun Lai, and Frank Witlox. “Applying

a Random Forest Method Approach to Model Travel Mode Choice Behavior”. In:

Travel behaviour and society 14 (2019), pp. 1–10.

[13] Julian Hagenauer and Marco Helbich. “A Comparative Study of Machine Learning

Classifiers for Modeling Travel Mode Choice”. In: Expert Systems with Applications

78 (2017), pp. 273–282.

[14] Chi-Hong Tsai, Corinne Mulley, and Geoffrey Clifton. “Forecasting Public Trans-

port Demand for the Sydney Greater Metropolitan Area: A Comparison of Uni-

variate and Multivariate Methods”. In: Road & Transport Research: A Journal of

Australian and New Zealand Research and Practice 23.1 (2014), p. 51.

[15] Mikhail Mozolin, J-C Thill, and E Lynn Usery. “Trip Distribution Forecasting with

Multilayer Perceptron Neural Networks: A Critical Evaluation”. In: Transportation

Research Part B: Methodological 34.1 (2000), pp. 53–73.

[16] Anil NP Koushik, M Manoj, and N Nezamuddin. “Machine Learning Applications in

Activity-Travel Behaviour Research: A Review”. In: Transport reviews 40.3 (2020),

pp. 288–311.

[17] Florian Toqué, Etienne Côme, Latifa Oukhellou, and Martin Trépanier. “Short-

Term Multi-Step Ahead Forecasting of Railway Passenger Flows During Special

Events with Machine Learning Methods”. In: CASPT 2018, Conference on Ad-

vanced Systems in Public Transport and TransitData 2018. 2018, 15p.

[18] Yu Wei and Mu-Chen Chen. “Forecasting the Short-Term Metro Passenger Flow

with Empirical Mode Decomposition and Neural Networks”. In: Transportation Re-

search Part C: Emerging Technologies 21.1 (2012), pp. 148–162.

[19] Florian Toqué, Mostepha Khouadjia, Etienne Come, Martin Trepanier, and Latifa

Oukhellou. “Short & Long Term Forecasting of Multimodal Transport Passenger

Flows with Machine Learning Methods”. In: 2017 IEEE 20th International Confer-

ence on Intelligent Transportation Systems (ITSC). IEEE. 2017, pp. 560–566.

[20] Samuel Lalmuanawma, Jamal Hussain, and Lalrinfela Chhakchhuak. “Applications

of Machine Learning and Artificial Intelligence for Covid-19 (SARS-CoV-2) Pan-

demic: A Review”. In: Chaos, Solitons & Fractals (2020), p. 110059.

[21] Shreshth Tuli, Shikhar Tuli, Rakesh Tuli, and Sukhpal Singh Gill. “Predicting the

Growth and Trend of COVID-19 Pandemic using Machine Learning and Cloud

Computing”. In: Internet of Things (2020), p. 100222.

282

[22] K. Darshana Abeyrathna. The Regression Tsetlin Machine Mased AI Enabled Mo-

bile App for Forecasting the Number of Corona Patients for the Next Day in Dif-

ferent Countries. URL: https://github.com/DarshanaAbeyrathna/Tsetlin-

Machine-Based-AI-Enabled-Mobile-App-for-Forecasting-the-Number-of-

Corona-Patients. 2019.

283

	I Chapters
	Introduction
	Learning Automata
	Learning Automata in Pattern Recognition
	Selected Related Approaches not Based on Learning Automata
	Research Questions, Motivations and Main Objectives
	Overall Research Approach
	Dissertation Outline
	Background on Tsetlin Machines
	The Tsetlin Machine Architecture
	The Learning Procedure
	Walk-through of Learning Using Type I and Type II Feedback to Learn Sub-Patterns
	Thesis Contributions
	Continuous Input to the Tsetlin Machine
	Continuous Output from the Tsetlin Machine
	Integer-Weighted Clauses for Compact Pattern Representation in the Tsetlin Machine
	Classification Confidence, Ranked Predictions and AUC with Tsetlin Machines
	Identifying Patterns in Images Using the Convolutional Tsetlin Machine and Use Them to Produce Continuous output
	A Multi-Step Finite-State Automaton for Arbitrarily Deterministic Tsetlin Machine Learning
	Applications
	Publications
	Conclusion
	II Papers Contributing to the Dissertation
	A Scheme for Continuous Input to the Tsetlin Machine with Applications to Forecasting Disease Outbreaks
	Introduction
	Related Work
	Methodology
	Experiments
	Conclusion
	Adaptive Continuous Feature Binarization for Tsetlin Machines Applied to Forecasting Dengue Incidences in the Philippines
	Introduction
	Tsetlin Machines
	Adaptive Binarization of Continuous Features
	Empirical Results
	Conclusion
	Adaptive Sparse Representation of Continuous Input for Tsetlin Machines Based on Stochastic Searching on the Line
	Introduction
	Learning Automata and the Stochastic Searching on the Line Automaton
	Tsetlin Machine (TM) for Continuous Features
	Sparse Representation of Continuous Features
	Empirical Evaluation
	Conclusion
	The Regression Tsetlin Machine - A Novel Approach to Interpretable Non-Linear Regression
	Introduction
	The Tsetlin Machine (TM)
	An Encoding Scheme for Continuous Input to the Tsetlin Machine
	The Regression Tsetlin Machine (RTM)
	Empirical Results and Analysis
	Conclusion

	Integer Weighted Regression Tsetlin Machines
	Introduction
	The Regression Tsetlin Machine (RTM)
	Stochastic Searching on the Line
	Regression Tsetlin Machine with Weighted Clauses
	Empirical Evaluation
	Conclusion

	Extending the Tsetlin Machine With Integer-Weighted Clauses for Increased Interpretability
	Introduction
	Integer-Weighted Tsetlin Machine
	Empirical Evaluation
	Conclusion

	On Obtaining Classification Confidence, Ranked Predictions and AUC with Tsetlin Machines
	Introduction
	The Tsetlin Machine
	TM Classification Confidence
	Calculating AUC for TMs
	Evaluation
	Conclusion

	Convolutional Regression Tsetlin Machine: An Interpretable Approach to Convolutional Regression
	Introduction
	The Tsetlin Machine (TM)
	The Convolutional-Regression Tsetlin Machine (C-RTM)
	Empirical Results
	Conclusion

	A Multi-Step Finite-State Automaton for Arbitrarily Deterministic Tsetlin Machine Learning
	Introduction
	A Multi-Step Finite-State Learning Automaton
	Proof of the convergence of MVF-LA
	The Arbitrarily Deterministic TM (ADTM)
	Empirical Evaluation
	Effects of Determinism on Energy Consumption
	Conclusion

	Intrusion Detection with Interpretable Rules Generated Using the Tsetlin Machine
	Introduction
	Related Work
	The Tsetlin Machine (TM)
	Empirical Evaluation
	Results and Discussion
	Conclusion

	Public Transport Passenger Count Forecasting in Pandemic Scenarios Using Regression Tsetlin Machine. Case Study of Agder, Norway
	Introduction
	State of the art
	Methodology
	Results and discussion
	Conclusions and future research

