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Abstract—Speech quality is degraded in the presence of back-
ground noise, which reduces the quality of experience (QoE)
of the end-user and therefore motivates the usage of speech
enhancement algorithms. A large number of approaches have
been proposed in this context. However most of them have
focused on the case where the noise is stationary, an assumption
that seldom holds in practice. For instance, in mobile telephony,
noise sources with a marked non-stationary spectral signature
include vehicles, machines, and other speakers to name a few.
On the other hand, the usage of frequency-domain information
in existing algorithms for speech enhancement in non-stationary
noise environments can be made more effective by leveraging
the increased flexibility introduced by implicit Wiener filters,
which allow the control of the spectral reconstruction of the
speech signal through the adjustment of hyperparameters. To
address these limitations, the present paper develops an algorithm
that recursively estimates the noise power spectral density and
reconstructs the target speech signal in the frequency domain
by means of an implicit Wiener filter with judiciously selected
hyperparameters. The recursive noise estimation approach relies
on the past and the present power spectral values. To evaluate
the performance of the speech enhancement algorithm, speech
uttered by a male and a female speaker degraded by non-
stationary noise produced e.g. by babbling, cars, street noise,
trains, restaurants, and airport noise. To this end, the NOIZEUS
corpus is used. Objective speech quality measures such as the
log-likelihood ratio (LLR), the cepstral distance (CD), and the
weighted spectral slope distance (WSS) are evaluated for the
enhanced speech signals and compared to the conventional
spectral subtraction method. Results demonstrate that the pro-
posed algorithm provides consistent and improved enhancement
performance with all tested noise types.

Keywords—Implicit Wiener filtering, Spectral subtraction,
Speech enhancement, Noise estimation, Non-stationary noise.

I. INTRODUCTION

Speech is one of the most fundamental means of commu-
nication not only among humans but also between humans
and machines, as witnessed by the advances in speech recog-
nition and speaker identification [1]. The need for enhancing
arises in situations where the speech signal originates in a
noisy location or is affected by noise over a communication
channel. Voice communication, for instance, over cellular
phones typically suffers from the background noise present
in cars, trains, restaurants, etc. Speech enhancement (SE)
algorithms can therefore be used to improve the quality of
speech e.g. in a pre-processing stage of the speech coding
system employed by cellular phones [2] or in the speech
recognition system for voice dialing [3]. In an air-to-ground

communication scenario [4], SE techniques are needed to
improve intelligibility, since the pilot’s speech is heavily
degraded by the so-called cockpit noise. Similarly, impaired
listeners wearing hearing aids (or cochlear implant devices)
experience extreme difficulty while communicating in noisy
conditions. In this setting, SE algorithms can be used to
preprocess the noisy speech signal before amplification as it
can reduce the listener’s fatigue.

Speech enhancement depends on the characteristics of the
noise source or interference, the relationship (if any) of the
noise to the clean speech signal, and the number of micro-
phones available. The interference could be approximately
stationary, as it occurs e.g. with fan noise, or non-stationary,
as in the case e.g. of restaurant noise. Suppressing non-
stationary noise is more challenging than suppressing station-
ary noise because its spectral features are constantly changing.
Since real-life noise is typically non-stationary, its power and
spectral features need to be extracted from the noisy speech
signal alone. Noise power estimation is crucial to effective
speech enhancement as inaccurate noise estimation can result
in musical noise and speech distortion.

Spectral subtraction (SS) is one of the traditional methods
used for enhancing speech degraded by additive stationary
background noise [5], [6]. The multi-band spectral subtraction
algorithm is proposed in [7] to enhance speech corrupted
by fan noise. A modified spectral subtraction algorithm is
proposed in [8], where the noise spectrum is updated on the
basis of a short-term energy measure. These methods perform
well in the presence of stationary noise, but suffer from
a common limitation in non-stationary environments: they
introduce the so-called musical noise. Spectral subtraction also
does not attenuate noise sufficiently during silence periods.

Wiener filtering (WF) [9] is an alternative method to spectral
subtraction for enhancing the speech signal. For additive white
Gaussian noise (AWGN) and colored noise, this has been
presented in [10]. A technique in the so-called empirical
mode decomposition (EMD) domain to enhance the signal
corrupted by AWGN noise using the Wiener filter and spectral
subtraction is proposed in [11]. These methods, again, work
well in the presence of stationary noise. Wavelet denoising [12]
is another method based on the wavelet decomposition of noisy
signal and thresholding in the wavelet domain to remove back-
ground noise and enhancing the speech. However, this method
distorts some useful components of the original speech.
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Fig. 1. Block diagram of single-channel speech enhancement system.

In this paper, we propose a simple and reliable single-
channel speech enhancement algorithm for non-stationary
noise based on the so-called implicit Wiener filter [13]. The
parameters featuring this algorithm introduce an additional
degree of flexibility that allows the engineer to control how an
estimate of the noise power spectral density (PSD) is used to
suppress the noise component. Relying on a single channel is
especially useful in mobile communication applications, where
only a single microphone is available due to the cost and size
reasons. The algorithm is fed with an estimate of the noise
PSD obtained by means of a running average of the noise
spectral energy.

The block diagram of the proposed single-channel speech
enhancement system is shown in Fig. 1. Its performance
is extensively compared with the aforementioned spectral
subtraction method on a real data set that comprises clean
and corrupted speech signals.

The remainder of this paper is laid out as follows: Section II
presents the review of the spectral subtraction method and
Section III describes the implicit Wiener filter in the fre-
quency domain. Section IV presents the noise power spectral
density (PSD) estimation approach. Section V describes the
experimental dataset and Section VI outlines the evaluation
methodology of speech enhancement algorithms. Section VII
presents and discusses the simulation results. Finally, conclud-
ing remarks and future directions are presented in Section VIII.

II. THE SPECTRAL SUBTRACTION METHOD

Spectral subtraction (SS) [5], [14] is one of the most popular
methods for single-channel speech enhancement. The basic
principle of SS is to obtain an estimate of the clean speech
signal spectrum by simply subtracting the noise spectrum
from the noisy speech spectrum. It relies on the following
assumptions. Firstly, the speech signals are assumed stationary
and the noise spectrum must not change abruptly in between
frames. Secondly, the speech signals are degraded by statis-
tically uncorrelated and independent additive noise with zero
mean. Finally, it is assumed that the phase distortion is not

perceived by the human ear. For this reason, the phase of
noisy speech is kept unchanged in the enhancement stage.

Suppose that the noisy speech signal y(n) can be ex-
pressed in terms of the clean speech signal s(n) and additive
noise d(n) as,

y(n) = s(n) + d(n) (1)

Since this algorithm operates on a frame-by-frame basis, it
is convenient to express (1) as,

y(n, k) = s(n, k) + d(n, k) (2)

where n = 0, 1, 2, . . . , (N − 1) is the discrete-time index,
k = 1, 2, . . . is the frame number, and N is the length of
the frame. Taking the discrete-time Fourier transform of both
sides with respect to n yields

Y (ω, k) = S(ω, k) +D(ω, k) (3)

where ω is the discrete angular frequency. To obtain the short-
time power spectrum of y(n), we multiply both sides of (3)
by their complex conjugates, which yields

|Y (ω, k)|2 = |S(ω, k)|2 + |D(ω, k)|2 + S(ω, k)D∗(ω, k)+

D(ω, k)S∗(ω, k)

= |S(ω, k)|2 + |D(ω, k)|2 + 2Re{S(ω, k)D∗(ω, k)}
(4)

The terms |D(ω, k)|2, S(ω, k)D∗(ω, k) and D(ω, k)S∗(ω, k)
can not be obtained directly and thus are approximated as
E[|D(ω, k)|2], E[S(ω, k)D∗(ω, k)] and E[D(ω, k)S∗(ω, k)]
respectively, where E[·] denotes the expectation operator.

Typically, E[|D(ω, k)|2] is estimated during non-speech
activity. Its estimate is denoted by P̂ dd(ω, k). Due to the
assumption of zero-mean noise which is uncorrelated with
the clean speech signal, the terms E[S(ω, k)D∗(ω, k)] and
E[D(ω, k)S∗(ω, k)] reduce to zero. Thus, an estimate of the
clean speech power spectrum can be obtained as,

P̂ss(ω, k) = Pyy(ω, k)− P̂ dd(ω, k) (5)



where P̂ss(ω, k) is the enhanced speech power spectrum and
Pyy(ω, k) = |Y (ω, k)|2 is the noisy speech power spectrum.
The enhanced speech signal is then obtained by computing
the inverse Fourier transform of the square root of P̂ss(ω, k),
using the phase of Y (ω, k).

The major drawback of the SS method is that the spectrum
of the enhanced speech signal obtained using (5) may contain
negative values. As a result, a “new” noise appears in the
processed speech signal which has been described as ringing
or warbling with tonal quality. This is referred to as “musical
noise” [14] and affects the human listening.

III. THE IMPLICIT WIENER FILTER

As mentioned earlier, the enhanced speech signal computed
by the spectral subtraction method is highly affected by
musical noise. Thus, we turn our attention to the Wiener
filter, which is conceptually similar to spectral subtraction
but replaces the direct subtraction with an estimate of the
clean speech signal spectrum obtained by minimizing the mean
square error [14], [15].

In the conventional Wiener filter, the output signal ŝ(n) is
obtained as the convolution of the two-sided filter impulse
response h(n) and the input signal y(n):

ŝ(n) =

∞∑
k=−∞

hky(n− k) = h(n) ~ y(n) (6)

where ~ denotes convolution. Therefore, in the frequency
domain, one can write,

Ŝ(ω) = H(ω)Y (ω) (7)

where Ŝ(ω), H(ω) and Y (ω) are the discrete-time Fourier
transforms of ŝ(n), h(n) and y(n) respectively. The estimation
error is given by

E(ω) = S(ω)− Ŝ(ω) = S(ω)−H(ω)Y (ω) (8)

The Wiener filter finds the H(ω) that minimizes the mean
square error. Upon multiplying both sides of (8) by their
complex conjugates, the mean square error is given by

E[|E(ω)|2] = E[[S(ω)−H(ω)Y (ω)][S(ω)−H(ω)Y (ω)]∗]

= E[|S(ω)|2]−H∗(ω)E[Y ∗(ω)S(ω)]−
H(ω)E[S∗(ω)Y (ω)] + |H(ω)|2E[|Y (ω)|2]

(9)

By letting Pyy(ω) = E[|Y (ω)|2] denotes the power spec-
trum of y(n) and Psy(ω) = E[S(ω)Y ∗(ω)] the cross-power
spectrum of y(n) and s(n), one can express (9) as

J = E[|E(ω)|2] = E[|S(ω)|2]− 2Re{H∗(ω)Psy(ω)}
+|H(ω)|2Pyy(ω)

(10)

To find the optimal H(ω), one can take the complex derivative
of the mean square error or cost function J with respect to
H(ω)1 and set it equal to zero:

∂J

∂H
= 0− 2Psy(ω) + 2H(ω)Pyy(ω) = 0 (11)

1H(ω) is complex valued here because the cross-power spectrum Psy(ω)
is generally complex.

[
H(ω) =

Psy(ω)

Pyy(ω)

]
(12)

This expression provides the transfer function of the Wiener
filter. To evaluate (12), one needs to compute Psy(ω) and
Pyy(ω). On the one hand,

Psy(ω) = E[Y ∗(ω)S(ω)]

= E[{S(ω) +D(ω)}∗S(ω)]

= E[|S(ω)|2] + E[D∗(ω)S(ω)]

= E[|S(ω)|2]

= Pss(ω)

(13)

Here, the fourth equality follows from the fact that the noise
is zero-mean and uncorrelated with the clean speech signal,
which implies that the cross-term E[D∗(ω)S(ω)] reduces to
zero. The fifth equality is a definition.

On the other hand,

Pyy(ω) = E[Y (ω)Y ∗(ω)]

= E[{S(ω) +D(ω)}{S(ω) +D(ω)}∗]
= E[|S(ω)|2] + E[S(ω)D∗(ω)] + E[D(ω)S∗(ω)]

+ E[|D(ω)|2]

= Pss(ω) + Pdd(ω)
(14)

where Pss(ω) and Pdd(ω) are respectively defined as
Pss(ω) = E[|S(ω)|2] and Pdd(ω) = E[|D(ω)|2].

Finally, substituting Equations (13) and (14) in Equa-
tion (12), the transfer function of Wiener filter reads as[

HWF (ω) =
Pss(ω)

Pss(ω) + Pdd(ω)

]
(15)

Here, HWF (ω) is real, non-negative, and even because
Pdd(ω) ≥ 0 and Pss(ω) ≥ 0. Also, 0 ≤ HWF (ω) ≤ 1. This
implies that the impulse response h(n) must be even as well,
resulting in a non-causal impulse response h(n). Therefore, the
Wiener filter is not realizable and can not be applied directly to
estimate s(n) in the time domain. For this reason, the proposed
algorithm will operate in the frequency domain.

So far, we have assumed that Pss(ω) and Pdd(ω) are known.
However, in practice they must be estimated and, therefore,
the reliability of their estimates is highly dependent on the
application setup. For this reason, it is desirable to introduce
additional flexibility to control how much the enhancement
algorithm relies on these estimates. The so-called modified or
parametric Wiener filter [13] achieves this aim by introducing
two adjustable parameters β and γ as follows:

H(ω) =

[
Pss(ω)

Pss(ω) + γPdd(ω)

]β
(16)

Here, β is referred to as the noise suppression factor. If β and
γ are both equal to one, (16) reduces to (15).

Furthermore, to accommodate the non-stationarity of the
speech signal, it is convenient to introduce the following
approximation [13]:

Pss(ω) ≈ |Ŝ(ω)|2 (17)



that is, we have approximated the true power spectral density
of s(n) by its spectral energy. From (7), the output of the
Wiener filter in the frequency domain is given by

Ŝ(ω) = H(ω)Y (ω) (18)

Substituting (17) into (16) and the resulting expression in (18)
yields the following implicit estimator [13]

Ŝ(ω) =

[
|Ŝ(ω)|2

|Ŝ(ω)|2 + γPdd(ω)

]β
Y (ω) (19)

Clearly, the phase of Ŝ(ω) must equal that of Y (ω). Therefore,
one just needs to equate the magnitude of both sides of (19).

For illustration purposes, we now describe how (19) can be
solved when β = 1/2. In this case, squaring both sides of (19)
results in

|Ŝ(ω)|2 =

[
|Ŝ(ω)|2

|Ŝ(ω)|2 + γPdd(ω)

]
|Y (ω)|2 (20)

Solving (20), two solutions arise:

|Ŝ(ω)| = 0 (21a)

|Ŝ(ω)| =
[
|Y (ω)|2 − γPdd(ω)

]1/2
(21b)

A solution for |Ŝ(ω)| consistent with Equation (20) is Equa-
tion (21b) for positive values under the radical. Finally, the
enhanced speech signal is estimated as,

ŝ(n) = IFFT
[
Ŝ(ω)

]
(22)

The proposed algorithm operates on a frame-by-frame basis
and uses the overlap-add method [16] to recombine the spectra
of the individual frames using the phase of Y (ω, k).

IV. ADAPTIVE NOISE PSD ESTIMATION

Estimating noise power across frequency is of vital impor-
tance as different frequencies of the speech signal are affected
by noise more to a different extent [14]. In other words, each
spectral component will typically have a different effective
SNR. But the distribution of the noise energy in the frequency
domain also depends on the kind of source and therefore needs
to be estimated. For example, most of the energy of noise
produced by cars is concentrated in the low frequency range,
whereas train and restaurant noise occupy a wider frequency
range [14].

On the other hand, as mentioned in the introduction, many
sources produce noise with time-varying spectral characteris-
tics. This is the case for example when multiple people speak
in the background or when vehicles are passing by. For this
reason, suppressing non-stationary noise is more challenging
than suppressing stationary noise.

Furthermore, in view of the previous section, it is clear that
the quality of enhanced speech depends on the accuracy of the
noise PSD estimate. This is because low noise estimates give
rise to noisy enhanced signals, whereas high estimates lead to
intelligibility loss [17]. When estimating the PSD of the noise,

there is a trade-off involving how fast the estimates are adapted
to changes. On the one hand, if the PSD of the observations are
averaged over longer time windows, the estimates will have
a lower variance but they will not track rapid changes in the
noise spectrum.

To balance these effects, the proposed algorithm estimates
the noise PSD using the following first-order recursion [14]:

P̂ dd(ω, k) = αP̂ dd(ω, k − 1) + (1− α)Pyy(ω, k) (23)

where α (0 ≤ α ≤ 1) is the smoothing parameter, k is the
frame index, ω is the frequency bin index, Pyy(ω, k) is the
short-time power spectrum of the noisy speech signal defined
in Sec. II, and P̂ dd(ω, k) is the noise power spectrum estimate
in the ωth frequency bin of the k-th frame.

V. EXPERIMENTAL CORPUS

To investigate the performance of speech enhancement
algorithms in noisy environments, a noisy dataset is needed.
NOIZEUS [18] is a publicly available noisy speech corpus,
used to facilitate the comparison of speech enhancement
algorithms. These are 30 phonetically-balanced IEEE English
sentences, spoken by 3 male and 3 female speakers. The sen-
tences are each corrupted with one of six commonly occurring
real-world noises: babble, car, street, train, restaurant, and
airport at SNRs: 0dB, and 5dB. The noises are taken from the
AURORA database. The sentences were originally sampled at
25 kHz and then down-sampled to 8 kHz. The average duration
of each utterance is 3 seconds. All sample files are saved in
WAV format (16 bit PCM, mono).

VI. EVALUATING SPEECH ENHANCEMENT ALGORITHM

For the evaluation of speech enhancement algorithms, the
noisy speech samples from the publicly available NOIZEUS
corpus are taken. A total of two phonetically-balanced utter-
ances, one pronounced by a male speaker and one pronounced
by a female speaker, are used. The male utterance is “A good
book informs of what we ought to know” and the female
utterance is “Let us all join as we sing the last chorus”. The
noises used are: babble, car, street, train, restaurant and airport
at SNRs i.e., 0dB, and 5dB. The speech database is sampled
at 8 kHz and quantized linearly using 16 bits resolution. The
noise samples used are of zero-mean and the energy of the
noisy speech samples are normalized to unity. The frame size
is chosen to be 200 samples (25 ms duration), with 50 %
overlapping. The sinusoidal Hamming window with size 200
samples is applied to each frame individually. The windowed
speech frame is then analysed using Fast Fourier Transform
(FFT) with length 256 samples.

The noise is estimated from the noisy speech using the
first order recursive Equation (23). As each noise signal has
different time-frequency distribution and spectral characteris-
tics, they have a different impact on the speech signal. To
get the optimal value of smoothing parameter α to estimate
noise of each noise type, the segmental SNR (SNRseg.) is
calculated for speech uttered by each speaker (male and
female). Segmental SNR varies frame-to-frame in proportion



to the signal energy. In the implicit Wiener filtering technique,
we considered initial 5 frames of noisy speech as noise/silence
to estimate the noise PSD using first order recursive Equa-
tion (23), and then used a simple voice activity detector (VAD)
to update the noise PSD.

Subjective listening test such as Absolute Category Rat-
ing (ACR) [19] is the most reliable method for evaluating
speech quality, where a number of people listens the speech
samples and rate the quality. However, these tests are costly,
time-consuming and impractical for real-time scenarios. As
an alternative objective speech quality measures are utilized
which are lower cost, fast and practical.

To compare the performance of speech enhancement al-
gorithms, three different objective speech quality measures
namely; Log-likelihood ratio (LLR), Cepstral distance (CD),
and Weighted spectral slope distance (WSS) are computed.
The LLR [14] is the spectral distance measure which mainly
models the mismatch between the formants of the clean and
the enhanced speech signal. The mean LLR value is obtained
by averaging the individual frame LLR values across the
sentence. Its value is limited in the range of [0, 2] and it is
computed as,

dLLR(as, āŝ) = log10

(
āTŝ Rsāŝ
aTs Rsas

)
(24)

where aTs , and āTŝ , are the linear prediction coeffi-
cients (LPC) of the clean and enhanced speech signal respec-
tively. Rs is the auto-correlation matrix of the clean speech
signal. LLR measure is always positive.

The CD [14] provides an estimate of the log spectral
distance between two spectra. Its value is limited in the range
of [0, 10] and it is computed as,

dCD(cs, c̄ŝ) =
10

loge 10

√√√√2

p∑
k=1

[cs(k)− cŝ(k)]
2 (25)

where cs(k) and c̄ŝ(k) are the cepstrum coefficients (obtained
from LPC) of the clean and the enhanced speech signal respec-
tively, and p is the maximum order of the LPC coefficients.

The WSS distance [14] is based on the weighted difference
between the spectral slopes in each band. It penalizes heavily
difference in spectral peak (formants) locations. Its value is
limited in the range of [0, 150] and it is computed as,

dWSS(Cs, C̄ŝ) =

36∑
k=1

W (k)[Ss(k)− S̄ŝ(k)]
2 (26)

where Ss(k) and S̄ŝ(k) are the spectral slopes of the clean and
enhanced speech signal of the kth band respectively. W (k) is
the weight of the band k.

VII. SIMULATION RESULTS AND DISCUSSIONS

Table I, Table II, Table III, Table IV, Table V, and Table VI
show the segmental SNR (SNRSeg.) of spectral subtraction
with recursive noise estimation method for babble, car, street,

TABLE I
SEGMENTAL SNR OF SPECTRAL SUBTRACTION WITH RECURSIVE NOISE
ESTIMATION METHOD FOR BABBLE NOISE AT DIFFERENT SNR LEVELS.

α → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SNR ↓
Male
0dB 6.228 6.086 6.003 5.946 5.905 5.874 5.850 5.847 5.872 5.653
5dB 6.424 6.322 6.274 6.253 6.244 6.243 6.252 6.283 6.329 6.227

Female
0dB 6.494 6.388 6.323 6.275 6.237 6.213 6.200 6.210 6.246 6.005
5dB 6.691 6.612 6.566 6.534 6.515 6.508 6.517 6.556 6.621 6.666

TABLE II
SEGMENTAL SNR OF SPECTRAL SUBTRACTION WITH RECURSIVE NOISE

ESTIMATION METHOD FOR CAR NOISE AT DIFFERENT SNR LEVELS.

α → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SNR ↓
Male
0dB 6.188 6.045 5.964 5.912 5.880 5.861 5.867 5.884 5.928 5.558
5dB 6.412 6.309 6.258 6.232 6.226 6.237 6.266 6.324 6.419 6.210

Female
0dB 6.473 6.333 6.248 6.192 6.157 6.140 6.138 6.157 6.200 5.868
5dB 6.695 6.614 6.568 6.544 6.535 6.541 6.566 6.615 6.718 6.515

TABLE III
SEGMENTAL SNR OF SPECTRAL SUBTRACTION WITH RECURSIVE NOISE
ESTIMATION METHOD FOR STREET NOISE AT DIFFERENT SNR LEVELS.

α → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SNR ↓
Male
0dB 6.194 6.074 6.003 5.956 5.926 5.918 5.931 5.959 6.013 5.618
5dB 6.465 6.371 6.328 6.308 6.305 6.318 6.358 6.422 6.495 6.370

Female
0dB 6.574 6.531 6.499 6.474 6.459 6.455 6.464 6.499 6.567 6.422
5dB 6.818 6.767 6.743 6.733 6.739 6.754 6.785 6.844 6.933 6.931

TABLE IV
SEGMENTAL SNR OF SPECTRAL SUBTRACTION WITH RECURSIVE NOISE

ESTIMATION METHOD FOR TRAIN NOISE AT DIFFERENT SNR LEVELS.

α → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SNR ↓
Male
0dB 6.227 6.103 6.032 5.980 5.938 5.908 5.888 5.884 5.904 5.595
5dB 6.399 6.306 6.261 6.237 6.226 6.230 6.247 6.284 6.324 6.274

Female
0dB 6.479 6.357 6.280 6.227 6.192 6.175 6.173 6.195 6.244 5.918
5dB 6.741 6.655 6.606 6.578 6.567 6.574 6.599 6.647 6.727 6.676

train, restaurant and airport noise at SNRs 0dB and 5dB with
different values of smoothing parameter α, for the speech
uttered by both speakers (male and female) respectively.

From the extensive study of each Table, it can be observed
that for every case of input SNR, as the value of α increases
then the value of SNRseg. becomes better for each noise type.
However, the value of SNRseg. decreases at the extreme end
i.e., α = 1. As described in Equation (23) that the noise
estimation in the current frame is heavily dependent on the
noise present in the previous frame as well as lightly dependent
on the noisy speech in the current frame. Therefore, from the
different values of α, shown in Table I to Table VI, α = 0.9 is
the best suitable value for our speech enhancement algorithm.



TABLE V
SEGMENTAL SNR OF SPECTRAL SUBTRACTION WITH RECURSIVE NOISE

ESTIMATION FOR RESTAURANT NOISE AT DIFFERENT SNR LEVELS.

α → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SNR ↓
Male
0dB 6.380 6.254 6.179 6.129 6.100 6.096 6.095 6.095 6.117 5.913
5dB 6.524 6.411 6.349 6.316 6.302 6.301 6.303 6.323 6.334 6.235

Female
0dB 6.694 6.613 6.560 6.519 6.484 6.459 6.444 6.433 6.466 6.257
5dB 6.807 6.740 6.704 6.675 6.657 6.649 6.654 6.686 6.730 6.662

TABLE VI
SEGMENTAL SNR OF SPECTRAL SUBTRACTION WITH RECURSIVE NOISE
ESTIMATION METHOD FOR AIRPORT NOISE AT DIFFERENT SNR LEVELS.

α → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SNR ↓
Male
0dB 6.411 6.307 6.248 6.207 6.183 6.159 6.147 6.154 6.147 5.770
5dB 6.526 6.458 6.435 6.446 6.467 6.508 6.565 6.651 6.746 6.434

Female
0dB 6.656 6.539 6.465 6.418 6.390 6.377 6.379 6.39 5 6.454 6.211
5dB 6.675 6.611 6.577 6.559 6.556 6.576 6.613 6.682 6.791 6.633

The Fig. 2 shows the comparison of noisy PSD and the
estimated noise PSD using SS and WF with recursive noise
estimation algorithm for (a) the speech uttered by a male
speaker and degraded by the airport noise at 5dB, and (b) the
speech uttered by a female speaker and degraded by the train
noise at 5dB. It can be noticed that the noise estimation using
the Wiener filter with recursive noise estimation algorithm is
performing better than the spectral subtraction. The envelop of
the estimated noise PSD matches better with the envelop of the
noisy speech PSD using Wiener filter based algorithm. This
shows that the Wiener filter with recursive noise estimation
algorithm exhibits superior in noise estimation.

Table VII and Table VIII presents the LLR, CD and WSS of
the enhanced speech signals using SS and WF algorithms for
each type of noise at input SNRs 0dB, and 5dB, for the speech
uttered by a male and a female speaker respectively. It can be
observed from Table VII, where the utterance is pronounced
by a male speaker that the LLR, CD and WSS of wiener filter
based speech enhancement algorithm is better than the spectral
subtraction for each noise types at each input SNRs, expect
for street and airport noise at 0dB, where SS is performing
better. This shows that speech enhanced by SS reflects severe
perceptual dissimilarity, resulting in very poor noise reduction.
The LLR and CD of WF, in case of, airport noise at 5dB are
lowest. Similarly, the WSS of WF are lowest, in case of, all
noise types as compared to SS. This reflects that WF exhibits
the best performance in reducing the noise and airport noise
at 5dB, in particular, is reduced significantly higher among all
noise types.

It can also be observed from Table VIII, where the utterance
is pronounced by a female speaker that the LLR, CD and WSS
of wiener filter based speech enhancement algorithm is better
than the SS for each noise types at each input SNRs, expect
for babble noise at 0dB and airport noise at 5dB, where SS

TABLE VII
LOG-LIKELIHOOD RATIO (LLR), CEPSTRAL DISTANCE (CD) AND

WEIGHTED SPECTRAL SLOPE DISTANCE (WSS) OF ENHANCED SPEECH
SIGNALS THROUGH WIENER FILTER (WF) AND SPECTRAL SUBTRACTION
(SS) AT 0DB, AND 5DB SNRS. ENGLISH SENTENCE “A good book informs
of what we ought to know”, PRONOUNCED BY A MALE SPEAKER, IS USED

AS ORIGINAL SIGNAL.

Noise Type Input SNR LLR CD WSS
(dB) WF SS WF SS WF SS

Babble 0 1.181 1.194 6.303 6.281 89.148 102.319
5 0.980 1.034 5.570 5.732 78.229 93.772

Car 0 0.970 1.046 5.416 5.785 77.215 88.907
5 0.980 1.034 5.570 5.732 66.670 82.618

Street 0 0.987 0.904 5.569 5.350 73.434 87.803
5 1.034 1.147 5.861 6.316 75.438 96.333

Train 0 1.406 1.457 7.208 7.609 76.100 90.796
5 1.230 1.440 6.806 7.844 66.289 89.230

Restaurant 0 1.105 1.131 6.106 6.330 81.515 96.809
5 0.931 1.096 5.440 6.085 78.248 95.365

Airport 0 0.998 0.961 5.836 5.629 82.857 98.646
5 0.773 0.957 4.940 5.631 82.002 91.487

TABLE VIII
LOG-LIKELIHOOD RATIO (LLR), CEPSTRAL DISTANCE (CD) AND

WEIGHTED SPECTRAL SLOPE DISTANCE (WSS) OF ENHANCED SPEECH
SIGNALS THROUGH WIENER FILTER (WF) AND SPECTRAL SUBTRACTION
(SS) AT 0DB, AND 5DB SNRS. ENGLISH SENTENCE “Let us all join as we
sing the last chorus”, PRONOUNCED BY A FEMALE SPEAKER, IS USED AS

ORIGINAL SIGNAL.

Noise Type Input SNR LLR CD WSS
(dB) WF SS WF SS WF SS

Babble 0 0.956 0.928 5.888 5.680 100.781 118.641
5 0.933 0.961 5.584 5.772 75.049 101.960

Car 0 0.955 0.991 5.744 5.773 90.319 104.602
5 0.806 0.841 5.122 5.301 65.674 99.028

Street 0 0.975 1.028 5.680 6.110 78.476 114.885
5 0.833 0.981 5.107 5.841 69.876 104.651

Train 0 1.041 1.060 6.113 6.254 82.913 104.165
5 0.753 1.160 4.987 6.469 68.508 91.052

Restaurant 0 0.928 0.995 5.806 5.996 101.839 126.184
5 0.801 0.957 5.024 5.566 68.720 104.282

Airport 0 0.853 0.935 5.506 5.641 94.243 118.828
5 0.822 0.805 5.195 5.199 70.526 104.461

is performing good. This shows that speech enhanced by SS
reflects very high perceptual dissimilarity. The LLR and CD
of WF, in case of, train noise at 5dB are lowest. Similarly, the
WSS of WF are lowest, in case of, all noise types as compared
to SS. This reflects that WF exhibits the best performance in
reducing the noise and train noise at 5dB, in particular, is
reduced significantly higher among all noise types.

While comparing the highly reducible noise (airport noise at
5dB uttered by a male speaker and train noise at 5dB uttered
by a female speaker) by the WF algorithm, it can be observed
that the LLR and CD of the female uttered sentence is better
(lower) than the male uttered sentence. However, the WSS is
following the opposite behaviour. This shows that the female
uttered sentence, degraded in the presence of airport and train
noise, is enhanced more accurately than the male uttered
sentence degraded in the same background noise. Further, with
the informal listening test, we found that the enhanced speech
with the perceptual Wiener filter is more pleasant.



 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

  

Fig. 2. Noisy vs Noise PSD using SS and WF with recursive noise estimation algorithm for (a) speech uttered by a male speaker and degraded by the airport
noise at 5dB (left), and (b) speech uttered by a female speaker and degraded by the train noise at 5dB (right).

The Fig. 3 and Fig. 4 show the time domain representation
of the clean speech, noisy speech, enhanced speech using SS
and enhanced speech using WF and its corresponding spectro-
grams for speech uttered by a male speaker and degraded by
the airport noise at 5dB, and for speech uttered by a female
speaker and degraded by the train noise at 5dB respectively.
It can be visualised from the both signal plots that the speech
enhanced by the Wiener filter with recursive noise estimation
algorithm has better estimation, showing superior performance
than the spectral subtraction. Moreover, the spectrograms show
that the enhanced speech using Wiener filter has better signal
improvement than the spectral subtraction.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the problem of speech
signal estimation which is degraded by the non-stationary
noise. The noise power spectral density is estimated using the
first order recursive equation and is updated continuously in
each frame using a smoothing parameter. The optimal value
of smoothing parameter is calculated based on the estimated
segmental SNR in each frequency bin of the noisy speech
spectrum. The implicit Wiener filter with recursive noise
estimation algorithm is proposed to estimate clean speech from
the noisy speech and compared to the conventional spectral
subtraction method. Results shows that the envelop of the
estimated noise using the implicit Wiener filter is quite close to
the envelop of noisy speech spectrum as compared to the spec-

tral subtraction. The proposed algorithm yields the enhanced
speech signal perceptually similar to the clean speech signal
and its spectrogram is also close to the spectrogram of clean
speech signal. The musical noise is less structured than the
spectral subtraction, while the distortion of the speech remains
acceptable. Future work will investigate the integration of
different noise estimation techniques to further improve the
performance of our algorithm.
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[8] S. S. Bharti, M. Gupta, and S. Agarwal, “A new spectral subtraction
method for speech enhancement using adaptive noise estimation,” in
3rd IEEE International Conference on Recent Advances in Information
technology (RAIT), 2016, pp. 128–132.

[9] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Prentice Hall PTR, 1993.

[10] M. A. Abd El-Fattah, M. I. Dessouky, A. M. Abbas, S. M. Diab, E.-S. M.
El-Rabaie, W. Al-Nuaimy, S. A. Alshebeili, and F. E. Abd El-Samie,
“Speech enhancement with an adaptive Wiener filter,” International
Journal of Speech Technology, vol. 17, no. 1, pp. 53–64, 2014.

[11] K. Khaldi and H. Touati, “Speech enhancement in EMD domain using
spectral subtraction and Wiener filter,” 5th International Conference on
Control Engineering and Inf. Technology, vol. 32, pp. 27–32, 2018.

[12] P. Lei, M. Chen, and J. Wang, “Speech enhancement for in-vehicle voice
control systems using wavelet analysis and blind source separation,” IET
Intelligent Transport Systems, vol. 13, no. 4, pp. 693–702, 2018.

[13] J. S. Lim and A. V. Oppenheim, “Enhancement and bandwidth com-
pression of noisy speech,” Proceedings of the IEEE, vol. 67, no. 12, pp.
1586–1604, 1979.

[14] P. C. Loizou, Speech Enhancement: Theory and Practice. CRC press,
2013.

[15] D. Comminiello and J. C. Prı́ncipe, Adaptive learning methods for
nonlinear system modeling. Butterworth-Heinemann, 2018.

[16] S. W. Smith, The scientist and engineer’s guide to digital signal
processing. California Technical Publishing, 1999, vol. 14.

[17] E. W. Healy, M. Delfarah, J. L. Vasko, B. L. Carter, and D. Wang, “An
algorithm to increase intelligibility for hearing-impaired listeners in the
presence of a competing talker,” The Journal of the Acoustical Society
of America, vol. 141, no. 6, pp. 4230–4239, 2017.

[18] Y. Hu and P. C. Loizou, “Subjective comparison of speech enhancement
algorithms,” in IEEE International Conference on Acoustics Speech and
Signal Processing, vol. 1, 2006, pp. 153–156.

[19] “ITU-T Recommendation P.800: Methods for subjective determination
of transmission quality,” 1996.


