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SUMMARY

In the last decade, the ocean has absorbed a quarter of the Earth’s greenhouse gas emissions through the
carbon (C) cycle, a naturally occurring process. Aspects of the ocean C cycle are now being incorporated
into climate change mitigation and adaptation plans. Currently, too little is known about marine vertebrate
C functions for their inclusion in policies. Fortunately, marine vertebrate biology, behavior, and ecology
through the lens of C and nutrient cycling and flux is an emerging area of research that is rich in existing
data. This review uses literature and trusted data sources to describe marine vertebrate C interactions, pro-
vides quantificationwhere possible, and highlights knowledge gaps. Implications of better understanding the
integral functions of marine vertebrates in the ocean C cycle include the need for consideration of these func-
tions both in policies on nature-based climate change mitigation and adaptation, and in management of ma-
rine vertebrate populations.
INTRODUCTION

Marine vertebrates range in size frommillimeters to the 30m long

blue whale (Balaenoptera musculus),1,2 have lifespans from

weeks to centuries,3–6 and occupy all but the lowest trophic

levels. Some undertake vast migrations across oceans, while

others have a home range of just meters.7,8 Some feed in shallow

waters but live at depth, others feed at depth but return to shallow

waters.9–12 Some marine vertebrates release sperm and eggs to

the water column, others produce fertilized eggs which may be

abandoned, and mammals can nurse their live-born young for

several years.13–15 These diverse ecologies have multiple inter-

actions with the carbon (C) cycle, many unexplored.

The C cycle describes the movement of C through various

forms and environments, on all timescales, from rapid recycling

of CO2 between the atmosphere and ocean surface, to fossilized

C stored for millions of years in rock and oil deposits. Global

anthropogenic C emissions over the last 10 years have been esti-

mated at 9.6 ± 0.5 Gt C year�1 from fossil fuels and 1.6 ± 0.7 Gt C

year�1 due to land-use change, with atmospheric CO2

increasing at 5.1 ± 0.02 Gt C year�1.16 C sinks (processes that

remove C from the atmosphere) are therefore important for

climate change mitigation and adaptation. The ocean is a signif-

icant active carbon sink, estimated to have absorbed 2.5 Gt C of

anthropogenic emissions between 2010 and 2019, while terres-

trial uptakewas 3.4Gt C.16 C absorbed from the atmosphere into

the ocean has the potential to be released, fixed (converted to

organic C), stored (held for up to 100 years), or sequestered
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(held for more than 100 years).17 Atmospheric CO2 is passively

dissolved in ocean surface waters, driven by the solubility and

biological pumps.18 Dissolved CO2 in surface waters is readily

exchanged back into the atmosphere, and in the water column

it can contribute to ocean acidification. Phytoplankton and other

marine plants remove dissolved CO2 fromwell-lit surface waters,

converting it to organic C. For organic or inorganic C (DIC) to be

stored on a timescale of multiple decades, it must be transferred

through food webs, enter sediments, or sink below the surface

layer (i.e., the photic zone or mixed layer depth, whichever is

deeper).17 Thus, processes that transfer C and provide the nutri-

ents that enable C fixation are critical to the ocean’s function as a

C sink.19,20 For 2010–2019, the ocean stock of dissolved DIC

was 38,000 Gt C, while the combination of organic C in the water

column, marine biota, coasts, and surface sediments repre-

sented approximately 2,500 Gt C.16 If C sinks below the seques-

tration depth (usually estimated as 1,000m in open oceans, shal-

lower in coastal ecosystems), or becomes buried in sediments it

can be sequestered, effectively retired from the C cycle, poten-

tially for millions of years.17,21

Marine vertebrates influence C outcomes in the ocean,

including the capacity of ecosystems to release, fix, store, or

sequester C.22–25 Marine vertebrates themselves also function

as C stores26–28 and contribute to C flux (downward movement

of C to deeper waters and sediment)29; the more quickly parti-

cles sink, the less likely they are to be remineralized in the micro-

bial loop.30,31 Marine vertebrates cycle C directly and indirectly

through at least 14 discrete interactions, which can be grouped
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Figure 1. Marine vertebrate C interactions
Conceptual diagram of the life processes and behavior through which marine vertebrates interact with C. Interactions may be performed by many different
vertebrate species, not only those depicted.
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into four categories: (1) functional C interactions, including accu-

mulation of C in biomass andmetabolic excretion of C; (2) behav-

ioral C interactions: transfer of Cwithin and between ecosystems

as a result of movement and behavior; (3) trophic interactions:

physical modification of habitats and control over prey popula-

tions in ways that can affect C fixation, storage, and sequestra-

tion; and (4) nutrient pumps: provision of nutrients that enable C

fixation or maintain storage and sequestration in biomass

(Figure 1). Differences in biology and ecology result in different

functional roles by species and populations, spatially and

temporally.

Understanding the functional role of marine vertebrates is

essential to avoid unintentional adverse changes to this aspect
of the ocean C sink. Narratives regarding oceans as infinite

have evolved with the realization that changes to ocean func-

tions have already occurred and are not simple to undo.32 For

effective policies and actions to maintain or enhance the ocean

C sink for climate changemitigation and adaptation, for example

by protecting coastal ecosystems, it is therefore important that

functional roles of marine vertebrates in the C cycle, and impacts

of their disruption, are also explored.33–35 The combination of

increased scientific and political focus on marine ecosystems

as C sinks in the context of climate change action, advances in

empirical research on marine vertebrates’ ecological roles and

influencing factors, and a growing awareness of the role of ani-

mals in nutrient cycling (zoogeochemical effects),34 represents
One Earth 4, May 21, 2021 681



Figure 2. Map of estimated C interactions and outcomes
Locations with quantified C interactions and outcomes associated with marine vertebrates. Potential C outcomes: released, C is released directly to the at-
mosphere; fixed, inorganic C is transformed to organic C; cycled, organic or inorganic C is released to the water column above the sequestration depth; upward
flux, organic or inorganic C is released to the water column above its source or removed to other biospheres (freshwater, terrestrial biomes); downward flux, C is
released to the water column below the sequestration depth or in a form that sinks below its source; stored, C is held or released in a form that does not re-enter
the water column above the sequestration depth or the atmosphere for up to 100 years; sequestered, C is held or released in a form that does not re-enter either
the water column above the sequestration depth or the atmosphere, for over 100 years.
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a wealth of data and opportunity for application. To know how a

marine vertebrate contributes to the C function of the

ecosystem, and whether it results in a net source or sink, C inter-

actions must be identified, estimated, and mapped within the

complex, intertwined flows of C and other nutrients through their

food webs and the ecosystem.

This review defines different ways in which marine vertebrates

influence C cycling, both directly and by facilitating other C vec-

tors. Many aspects of marine vertebrate biology and ecology are

well documented, yet rarely considered in the context of C

cycling. The biggest knowledge gaps are quantification of C
682 One Earth 4, May 21, 2021
interactions and probable C outcomes. Our recommendations

for future research include synthesis studies, whole-system ap-

proaches, and development of new methodologies to bring

together information from various disciplines at a scale that

can be used to inform management decisions and policies.

MARINE VERTEBRATE CARBON INTERACTIONS

The following are known and hypothesized interactions between

marine vertebrates and C, including quantification (Gt C) and

outcomes for C where possible. Figure 2 provides a definition



Figure 3. Functional carbon interactions of a fish
Sockeye salmon (Oncorhynchus nerka) consume organic C, respire dissolved
inorganic CO2, accumulate organic C in biomass, release organic C-based
biomass during reproduction and in carcasses, and deposit organic and
inorganic C in excreted material.
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of the potential outcomes of marine vertebrate interactions with

C, and maps all interactions or outcomes that have been esti-

mated or measured in terms of C. This section is split into two

themes: direct C interactions, in which animals release, deposit,

store, transfer, or otherwise cycle C through their own metabolic

processes and behaviors; and indirect C interactions, in which

the metabolic processes or behaviors of marine vertebrates

affect C that is at least one step removed from the animal. Over-

laps occur between the functional and behavioral interactions,

for example, respiration by fish releases dissolved DIC into the

water column, thus the outcome is cycled C. However, if the

fish undertake vertical migration, they may release C through

respiration below the sequestration depth, thus the outcome of

respiration with vertical transfer can be sequestered C. As this

is an emerging area of research, the information and figures

related to the role of marine vertebrates in the C cycle presented

here are exploratory and have a high degree of uncertainty.

Direct C interactions
Direct C interactions include both functional and behavioral in-

teractions. These are ways in which marine vertebrates have a

direct impact on C cycling.

Functional C interactions

C fuels the life processes of marine vertebrates, including

growth, reproduction, movement, excretion, and respiration

(Figure 3), which have various C outcomes (Figure 4). C accumu-

lated in marine vertebrate biomass (living biomass) through food

web transfer can be stored or sequestered for the lifespan of the

individual and scaled up to the population level.36,37 Global pop-

ulation figures are scarce, but fisheries stock assessments esti-

mate the number of reproductive fish (spawning stocks) in pop-

ulations of commercially targeted species. Given that

approximately 11% of the wet weight of fish is C,38,39 the Inter-

national Council for the Exploration of the Sea Spawning stock

biomass figures for 201940 indicate that the population of repro-

ductive anchovy (Engraulis encrasicolus) in the Bay of Biscay

represents a C store of 1.333 10�5 Gt C year�1, and that herring

(Clupea harengus) in the nine fishing areas reported by ICES41

store 6.97 3 10�4 Gt C year�1. Reported catch of marine and

diadromous fishes from global capture fisheries was 84.4 million

tonnes in 2018,42 which is likely to be an underestimate.43 These

fisheries may therefore have removed an estimated 9.3 3 10�3

Gt C from the ocean in 2018; for context, carbon in the living
biomass of eight baleen whale species (Balaenoptera musculus,

B. physalus, Megaptera novaeangliae, B. borealis/B. brydei,

B. acutorostrata and B. bonaerensis, Eschrichtius robustus, Eu-

balaena spp., and Balaena mysticetus) in 2001 was estimated to

be less than one-sixth of this mass44 (Figure 2). Globally, since

1950, marine fisheries are estimated to have prevented seques-

tration of 1.74–2.623 10�2 Gt C through removal of tuna, mack-

erel, billfish, and shark species from non-upwelling habitats

deeper than 200 m.45

All marine vertebrate populations self-perpetuate through

reproduction. Successful fertilization generates new vertebrate

biomass, thus C stored in the biomass of stable populations rep-

resents a carbon pool that can be considered sequestered,

potentially infinitely. During reproduction, and sometimes when

not mating, marine vertebrates may release C into the ocean

via gamete biomass. The fate of gametes that are not fertilized,

and the C therein, has not been explored. Many vertebrate spe-

cies produce offspring that have a planktonic or other larval

stage, or a vulnerable juvenile stage. The recruitment of larvae

or juveniles to adult life stagesmay be relatively low in some spe-

cies, representing a flow of C through carcasses. When marine

vertebrate carcasses of all life stages sink to the ocean floor,

the C formerly stored in their biomass can enter benthic food

webs and sediments,46 with potential to be sequestered for mil-

lions of years, depending on the depth and sediment dy-

namics.21 Carcasses are an important source of energy transfer,

but C outcomes have not been widely explored.47 In areas of

high productivity, carcasses of adult marine vertebrate mega-

fauna, such as whale sharks (Rhincodon typus) and large rays

(genus Mobula), can represent a significant source of C transfer

from surface to deep sea ecosystems.48 However high region-

ally, C in vertebrate carcasses may be negligible when consid-

ered in the context of the global C sink, as is seen with relatively

low estimates of C sequestered globally by the sinking car-

casses of eight baleen whale species44 (Figure 2). However,

Pershing et al.44 estimated that whale falls would remove 1.6 3

10�4 Gt C year�1 if baleen whale stocks were restored to pre-

whaling densities.

C is released by marine vertebrates in metabolic waste,

including fecal material, carbonates, and respired CO2. Marine

vertebrates can provide a vector for C flux within the water col-

umn, and between ecosystems, by releasing C in rapidly sinking

feces.19,31 The C-rich fecal pellets associated with northern an-

chovy (E. mordax) of the Santa Barbara Channel, US, can trans-

port C from surface waters to depth at an average sinking rate of

787 m/day.31 Similarly, fecal pellets produced by Peruvian

anchoveta (E. ringens) had an average sinking rate of 1,100 m/

day.49 These rates are comparable with thosemeasured for phy-

todetritus and some zooplankton, which form the basis of C flux

models. For instance, marine snow as well as small fecal pellets

produced by some zooplankton, such as copepods and euphau-

siids, exhibited sinking rates from <10 to hundreds of meters per

day,50–52 while faster sinking rates (up to thousands of meters

per day) were observed in larger, high-mass fecal pellets pro-

duced by other zooplankton, such as salps, pteropods, and

chaetognaths.53–55 Fish contribute 16% ± 13% to total down-

ward C flux globally, equivalent to 1.5 ± 1.2 Gt C year�1.29 The

higher potential for storage or sequestration of C associated

with rapidly sinking pellets56 suggests that deposition of C by
One Earth 4, May 21, 2021 683



Figure 4. Potential C outcomes of functional interactions
Direct, functional interactions through which marine vertebrates engage with
the C cycle: known and hypothesized carbon outcomes of each interaction are
indicated.
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marine vertebrates should be incorporated into biogeochemical

and C flux models. To date, studies on fish fecal pellets have

measured size, production rate, C content, and sinking rate,

but this information is not available for many species, and the

fate of C released in vertebrate feces in different habitats and

conditions is unexplored. While most of the work on C flux in ma-

rine vertebrate fecal matter has focused on fish, organic C is also

found in digested wax esters (lipids) released in whale feces.

Whales release buoyant fecal plumes in the mixed layer. Thus,

in contrast to rapidly sinking fish fecal pellets, C excreted

through this pathway is likely to stimulate C cycling in the upper

water column.57 In addition to C, waste transports other nutri-

ents, such as nitrogen and iron, which are also important for

the biological C cycle (see nutrient pumps).

Teleosts (i.e., modern bony fish), of which there are >25,000

species, excrete dissolved DIC in the form of calcium carbonate

(CaCO3) or magnesium (MgCO3) carbonate, which is metabo-

lized as an outlet for waste products in the seawater they

drink.58–60 Teleost carbonate production rates vary as a function

of biomass and temperature (Table 1).58 The structure of carbon-

ate produced by teleosts varies by family assemblage and in-

cludes both highly soluble forms and forms stable enough to

accumulate in marine sediment.58 Teleost carbonate could

represent an important source of mud grade (<63 mm) and fine

sand grade (typically <30 mm) carbonate to sediments (Figure 2)

and, by enhancing oceanic alkalinity through dissolution, provide

a natural buffer against ocean acidification.25,58,61 Globally, tele-

osts may contribute 3%–15% of total oceanic carbonate pro-

duction.25 The production of teleost carbonates is expected to

increase with warmer sea temperatures and dissolved CO2
684 One Earth 4, May 21, 2021
concentration, both predicted effects of climate change. Thus,

the role of teleost carbonate may be even more important in

the future.60

Fish respire dissolved CO2, which, when released within the

surface layer, can be taken up by phytoplankton to support

photosynthesis, released back to the atmosphere, or remain in

the water column, where it may contribute to ocean acidification.

When released below the surface layer, the CO2 can be stored or

sequestered in the water column.30,62,63 Del Giorgio and

Duarte64 estimated that fish respiration in the ocean gyre sys-

tems is 1.353 10�2 Gt C year�1, based on the total reported fish-

eries catches for 1988–1991, assuming that catch represents

20% of the total fish production and that fish respiration is nine

times greater than total fish production. In this same study, total

respiration in the open ocean (including vertebrates) was esti-

mated to be 66 Gt C year�1. Note, however, that abundance of

higher trophic levels in ocean gyres is relatively low compared

with coastal and shelf habitats.65 In 2018, global reported catch

for marine and diadromous fishes in capture fisheries was 84.4

Mt.42 Using Del Giorgio and Duarte’s aforementioned formula,

total global fish respiration can be estimated at 3.8 3 10�1 Gt

C year�1. Air-breathing marine vertebrates release CO2 in

gaseous form, which is assumed to return directly to the atmo-

sphere66 (Figure 2).

Behavioral C interactions

The following are interactions whereby marine vertebrates affect

C outcomes through their behavior, i.e., foraging behavior,

swimming, and migration (Figure 5). Because of the huge vari-

ability in behaviors within and between species and populations,

there are likely to be many variations on the following themes.

When marine vertebrates use more than one habitat, they pro-

vide a vector for C movement, exporting C from donor to recip-

ient habitats.19,67,68 For example, Bray et al.69 quantified C flow

for a planktivorous fish, the blacksmith (Chromis punctipinnis),

that release fecal carbon in shelters adjacent to feeding sites

(Figure 2). The C in marine vertebrate biomass andmetabolic ex-

cretions becomes available for food webs and bacterial commu-

nities in recipient ecosystems. Local movement can transfer C

within one habitat or across adjacent habitats, while migratory

animals and currents that disperse gametes and larvae can

transfer C across vast distances.19 Thesemovementsmay occur

across a horizontal or vertical gradient within the water column;

for example, across habitats at similar depths (horizontal trans-

fer), from terrestrial or shallow ecosystems to deep seas and

sediments, or vice versa (vertical transfer). Marine vertebrates

with freshwater or terrestrial spawning, nesting, or nursing

grounds are an important C flow out of marine ecosystems,

including salmon, sea turtle hatchlings, and seal carrion during

pupping season.67,68,70,71 Unfertilized gametes, larvae, and juve-

nile stages that are vulnerable to predation are likely to be a sig-

nificant vector for C in the ocean.

Outcomes for C depend on the form of C (including size and

buoyancy) and dynamics of the recipient ecosystem.19 Marine

vertebrates that use vertically distinct habitats provide a vector

for upward or downward C flux. For example, animals that feed

in shallow, coastal, or near-surface ecosystems and move

toward pelagic, benthic, open ocean ecosystems, or below the

surface layer, have the potential to increase downward C flux,

storage, and sequestration.19 Animals that move in the opposite



Table 1. Variability of teleost carbonate production rates relative to concentration of fish biomass

Teleost carbonate production rate

(g m2 year�1) Location Relative concentration of fish biomass

20–105 12.5% of tropical outer parts of the Great Barrier Reef high

9.6 tropical southern section of the outer Great

Barrier Reef

high

2.1 subtropical offshore Abrolhos Islands relatively low

As reported by Salter et al.58
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direction could reduce the sequestration potential for the C that

they transfer, although may enable C fixation through transfer

of nutrients (see nutrient pumps). Through diel vertical migration

(DVM), fish residing in the mesopelagic zone (200–1,000 m) feed

in epipelagic waters at night and return to depths during the day

where C is either stored in biomass, deposited in feces, excreted

as dissolved waste products (DIC and/or dissolved organic car-

bon), or released as CO2 through respiration. When this C is

released below the surface layer, it may be stored or seques-

tered. Although relatively few studies have estimated active

transport in DVM fish, they have demonstrated significant contri-

butions to total downward C flux. When compared with the total

sinking flux measured by sediment traps, the average estimates

of active flux of POC by fish range between 0.3% and 40%29

(Figure 2). Conversely, through their vertical migration, mesope-

lagic fish are theorized to provide an upward alkalinity pump

that buffers ocean acidification in surface waters by releasing

carbonates inwaters above sequestration depth.72Marinemam-

mals and other animals that dive to feed then return to the surface

may provide an upward flux for C; however, this is yet to be esti-

mated. Current research into the roles of air-breathing verte-

brates in the C cycle focuses on the movement of nutrients,

fromdepth to the surface layer, or fromoligotrophic to productive

ocean regions, that can enhance C fixation (see nutrient pumps).

As well as moving C that passes through their bodies, marine

vertebrates interact with extrinsic forms of C in their habitats.

Transfer of C between marine ecosystems depends on both

the strength and direction of water movement, and the pro-

cesses that lead to the creation of C that can be transported,

such as detritus.19 Nest building by wrasses (e.g., Crenilabrus

melops), which collect and assemble algal material into a dense

structure,73 moves C in the algal material and creates detritus

when the nests are eventually abandoned. Benthic feeding

mammals, such as gray whales (Eschrichtius robustus)74,75 and

walrus (Odobenus rosmarus),76 may re-suspend C from the sed-

iments they disturb. There are many other marine vertebrate

behaviors that could be viewed in this context, with as yet unex-

plored and unquantified links to C outcomes.

Indirect C interactions
Marine vertebrate interactions with nutrients and other life forms,

including plants and invertebrates, can be complex and ambig-

uous, but are important for determining C outcomes in any

ecosystem77–79 (Figure 6). We term these indirect C interactions,

which include trophic interactions and nutrient pumps.

Trophic interactions

Marine vertebrates generate both direct and indirect effects on

primary producers and other consumers through grazing and
predation, aswell as behaviors that engagewith C fixing, cycling,

and storage components of their habitats.80 Plant-eating marine

vertebrates not only convert plant biomass into different forms of

C, as described in the functional interactions above, but also

modify plant communities with consequences for C outcomes

in the ecosystem. By eating and removing plants, grazers can

alter the potential for C fixation; however, the net outcomes for

C may be unclear. For example, fish that eat phytoplankton

can decrease C fixation by removing photosynthesizing cells;

however, phytoplankton reproduce rapidly, so the disruption to

C fixation may be minimal. Furthermore, the C consumed by

planktivorous fish can cycle through any of the interactions

described in the sections above, including conversion into

longer-lived biomass and rapidly sinking fecal pellets. Thus,

the net outcome could increase C storage and sequestration.

In addition, by grazing preferred locations, or selecting preferred

species and depositing their seeds in feces, grazers can modify

and maintain community structure, influencing rates of C fixa-

tion, storage, and sequestration in sediments. For example,

grazing by dugongs (Dugong dugon) can maintain an early suc-

cessional state in seagrass communities81,82 and the grazing ac-

tivity of green turtles (Cheloniamydas) and dugongs can increase

light availability77 and regulate growth and competition between

species of seagrass (Zostera capricorni, Halophila ovalis, Halod-

ule uninervis, Cymodocea spp.).83,84 Dugongs and green turtles

are observed to increase productivity in grazed species

(H. ovalis),83 and disperse seeds of at least three seagrass spe-

cies (Z. muelleri, Halodule uninervis, and Halophila decipiens),

aiding connectivity, resilience, and recovery of these species.85

However, grazing by megaherbivores such as turtles and sire-

nians can also reduce seagrass meadow structure and reduce

the amount of productivity fated to the detrital pool, thereby

reducing the ability for these habitats to act as a carbon sink

and mitigate climate change.86

Grazing intensity varies according to number and type of

grazers, plant species composition, carrying capacity of the

ecosystem, and predation pressure. The evolution of marine

vertebrate herbivores and evolutionary responses to grazing

pressure by plants have shaped shallow coastal ecosystems.87

Kelp forests, seagrass meadows, and salt marshes are broadly

highlighted as significant C sinks.88 Seagrasses can maintain

growth and photosynthesis under high grazing pressure by

fish.89 However, in ecosystems where predators are removed,

overgrazing by turtles and dugongs can reduce active C seques-

tration and release C from sediments.26,90,91 Thus, vertebrates

can indirectly influence C in an ecosystem through predation.

In kelp forests, sea otters (Enhydra lutris) exert control over

food webs by predating on sea urchins (Strongylocentrotus
One Earth 4, May 21, 2021 685



Figure 5. Potential C outcomes of behavioral interactions
Direct behavioral interactions through which marine vertebrates engage with
the C cycle: known and hypothesized C outcomes of each interaction are
indicated.
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spp.), which reduces grazing pressure and allows kelp forests to

flourish78,92,93 (Figure 2). Similarly, Atlantic cod (Gadus morhua)

maintain kelp forest cover through predation on sea urchins.94

In temperate coastal marshes, predatory fish (e.g., striped

bass, Morone saxatilis) and crabs (e.g., blue crab, Callinectes

sapidus) can exert top-down control of populations of burrowing

and herbivorous crabs (Sesarma reticulat) that graze on cord-

grass (e.g., Spartina alterniflora).95,96 In coral reef ecosystems,

herbivorous fish graze in the proximity of patch reefs, which offer

refuge from predators, resulting in increasing algal biomass,

canopy height, and sedimentary carbon stocks with distance

from refuges22 (Figure 2). In seagrass ecosystems in Elkhorn

Slough, California, sea otter predation restrictsCancer crab pop-

ulations, which in turn reduces crab predation on epiphyte

grazers (isopod, Idotea resecata; sea slug, Phyllaplysia taylori).

Epiphyte grazers subsequently maintain grazing of eelgrass epi-

phytes (diatoms; red alga, Smithora naiadum), and thus healthy

eelgrass (Zostera marina) cover is maintained.97,98 In tropical

and subtropical seagrass meadows (including Bermuda [North-

west Atlantic Ocean], Shark Bay [Western Australia, Eastern In-

dian Ocean], Derawan [Indonesia], and Lakshadweep [India,

Central Indian Ocean]), healthy populations of tiger sharks (Ga-

leocerdo cuvier) control green turtle populations and behavior.

As a result, turtle grazing has minimal impact on seagrass cover

(Amphibolis antarctica, H. uninervis, Cymodocea angustata, and

Halophila ovalis).26 Similar controls have been observed be-

tween tiger sharks and dugong feeding behavior on seagrass

(C. angustata, H. uninervis, and H. ovalis) in Shark Bay.99,100

The impacts of predators on grazer behavior in seagrass ecosys-

tems have not been estimated in terms of C; however, the high C
686 One Earth 4, May 21, 2021
sequestration rates in healthy seagrass ecosystems is well

documented.101

Top-down relationships between predators and communities

are also observed in pelagic ecosystems but have not been

linked to C outcomes. For example, the disruption of Atlantic

cod populations in most North Atlantic fisheries led to increased

abundance of northern shrimp (Pandalus borealis), which forage

in sediments between 100 and 500 m depth.102 In sediment

communities, increased abundance of bioturbators (organisms

that physically disturb sediment, e.g., by burrowing or digging)

can result in enhanced oxygen provision,103 used as a proxy

for organic matter processing (i.e., OC). However, the impact

of sediment disturbance by shrimp on C longevity at these

depths is unknown. In the Baltic sea, Eriksson et al.104 found

that ephemeral and bloom-forming algae cover increased

when predatory fish were absent, which reduced the water qual-

ity and light for perennial marine plants. Similar results were

found when predatory fish were absent from shallow coastal

seagrass and macroalgal habitats in the northern Atlantic

Ocean.105 These conditions, which are also seen when nutrients

are over-enriched, disrupt community interactions, and can

affect C outcomes.106 For example, bloom-forming algae are re-

mineralized by bacteria in coastal habitats, as opposed to the

debris of macroalgae, which can reach marine canyons.107,108

The overall C outcomes may depend on the length and

complexity of the food web.105

Nutrient pumps

Marine vertebrates provide a vector for nutrient transport via

excretion, egesta, and movement within and between habi-

tats.109,110 These processes can result in horizontal nutrient

transfer across ecosystems, vertical mixing across the surface

layer, or nutrient recycling.111,112 Nutrients provided by marine

vertebrates can be a source of nutrition for other animals,

enabling maintenance of healthy populations that store C in

biomass. For example, sinking or suspended iron-rich fecal ma-

terial from fishmay support communities in pelagic andmesope-

lagic habitats.113 Import or recycling of limiting nutrients in sur-

face waters (e.g., Fe, N, P) can enhance phytoplankton growth,

contribute toward C fixation, and therefore drive the biological

C cycle. As described above, the biotic, chemical, and physical

features of the environment are important in determining the fate

of organic C. It is widely accepted that input of nutrients from

outside a system (allochthonous nutrients) enables new primary

production (as defined by Dugdale and Goering114), which equa-

tes to C sequestration through flux.17,21,115 In contrast, autoch-

thonous nutrients (those recycled within a system) support total

primary production without stimulating new production.116 Thus,

the below section has some commentary onwhether the interac-

tions described could enable new versus total production, which

relates to the potential for C sequestration. However, the propor-

tion and fate of nutrients excreted or transported by marine ver-

tebrates are unknown, and not all of the nutrients are taken up by

phytoplankton or marine plants; some nutrients can be

consumed by bacteria and viruses.117 The estimates below do

not necessarily consider microbial uptake.

New primary production can be stimulated by marine verte-

brates that import nutrients to nutrient-poor habitats. The ‘‘great

whale conveyor belt’’ describes how nutrients in whale by-prod-

ucts (e.g., urine, placenta, skin cells, carcasses) can be



Figure 6. Potential C outcomes of indirect interactions
Indirect trophic interactions and nutrient pumps through which marine verte-
brates engage with the carbon cycle: known and hypothesized C outcomes of
each interaction are indicated.
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transported by baleen whales migrating between typically

nutrient-rich, high-latitude feeding grounds to typically nutrient-

poor, low-latitude breeding grounds. Roman et al.27 estimated

that the 2001 Southern Ocean population of blue whales trans-

ported 8.8 3 10�8 Gt N year�1 from Antarctic feeding grounds

to tropical breeding grounds via N-rich urea released through

catabolism of lipids and proteins during fasting. Using the calcu-

lations given in Roman et al.,27 an additional 5.1 3 10�7 Gt C

year�1 would be stored or sequestered by phytoplankton. In

comparison, the pre-whaling population was estimated to have

stimulated the storage and sequestration of an additional

1.4 3 10�4 Gt C year�1. There is some uncertainty in these cal-

culations, as recent research shows that blue whales can feed in

breeding areas118 and, while they do lose body mass, it may not

be as much as previously thought (J. Roman, 2019, personal

communication, April 19).

There are multiple examples of horizontal nutrient transfer that

are likely to contribute to C storage and sequestration that are

yet to be quantified. Grunts (family Haemulidae) in the Florida

Keys feed away from reefs at night and release nutrients (N

and P) while sheltering on reefs during the day, where coral

growth is 1.5 times faster than at sites where grunts are

rare.119 Gray reef sharks (Carcharhinus amblyrhynchos) egest

nutrients on near-shore reefs from prey consumed offshore110

and seabirds (tropicbirds, Phaethon lepturus; terns, Thallasseus

bergii, Sterna spp., Onychoprion spp., Gygis alba; shearwaters,

Puffinus bailloni, Ardenna pacifica; noddies, Anous spp.; frigate-

birds, Fregata spp.; and boobies, Sula spp.) stimulate new pri-

mary production on island, coastal, and coral reef ecosystems

by excreting guano rich in nutrients from pelagic waters.120 At

Palmyra Atoll, seabird guano fertilizes plankton, which conse-
quently provides a food source for giant manta rays (Manta

birostris).20 In the Sargasso Sea, juvenile fish (Caranx spp., Can-

therhines pullus, Stephanolepis hispidus) contribute to new pri-

mary production by excreting nitrogen in a form available for up-

take by Sargassum,121 which is a globally significant vector for C

sequestration in coastal sediments and the deep sea.122,123 In

the sub-polar Auckland Islands, pelagic-feeding marine verte-

brates, including southern royal albatross (Diomedea epomo-

phora), Hooker’s sea lions (Phocarctos hookeri), and southern

right whales (Eubalaena australis), enrich coastal ecosystems

with iron-rich guano and fecal material.124 Salmon (Oncorhyn-

chus spp.) returning to spawning streams in North America

transfer nutrients to freshwater and terrestrial plants.67,68

Marine vertebrates that feed at depth and return to the surface

to breathe, recover from diving, rest, or warm up provide an op-

portunity formovement of nutrients fromdepth to surfacewaters,

which can stimulate primary production. This has been docu-

mented for whales, where the term ‘‘whale pump’’ describes ver-

tical transport of nutrients from depth to the surface layer, where

whales release nutrient-rich fecal plumes, which can stimulate

new phytoplankton growth111,125–130 (Figure 2). Movement

patterns of various vertebrates suggests that they may transfer

nutrients in this manner. For example, Emperor penguins (Apte-

nodytes forsteri), some pinniped species, young white sharks

(Carcharadon carcharias), and blue sharks (Prionace glauca) are

known to hunt beneath the surface layer and return to the sur-

face.9,131–133 However, marine vertebrates that feed and release

egesta within the surface layer support total, rather than new, pri-

mary production.20,117,126 Blue whales in the Southern Ocean

typically both feed and defecate within the surface layer125

(Figure 2). Other species that may support C fixation in this

manner include Auckland Island shags (Phalacrocorax colensoi),

black-backed gulls (Larus dominicanus), brown skuas (Cathar-

acta skua), and northern giant petrels (Macronectes halli) in the

sub-Antarctic Auckland Islands,124 and North Atlantic right

whales (E. balaena) in the Bay of Fundy.112 More information on

the nutrient content of excreted materials and excretion patterns

are needed to estimate import to the surface layer, recycling of

nutrients and C fixation through these behaviors.

Marine vertebrates may enhance nutrient availability from

sources external to the animal (extrinsic transfer). For example,

resuspension of sediment by gray whales and humpback whales

(Megaptera novaeangliae) may release nutrients from the sedi-

ment back to the water column, where they can be used in C fix-

ation27 and schooling animals can create turbulence and drag in

the water column as a by-product of their movement, mixing

layers of stratified water.134 As discussed above, where extrinsic

mixing brings nutrients into the surface layer from other sources,

it could drive new primary production and thus sequestration,

while recycling nutrients within the surface layer may contribute

to total primary production. Marine vertebrate movement may

not be an important contributor to global ocean circulation,135

but could be important for local C fixation and sequestration,

which has global relevance in the context of climate change.

Huntley and Zhou134 found that an average school of 100 Atlantic

bluefin tuna (Thunnus thynnus) can create vertical eddies daily

that span up to 20 km2, which can contribute to mixing of the

coastal and continental shelf waters that these fish inhabit during

maximal stratification. Herring schools in the Norwegian Sea
One Earth 4, May 21, 2021 687
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may affect regional-scale ocean turbulence, and anchovy

(E. ringens) schools may have been an important vertical mixing

mechanism in stratified coastal habitats before the collapse of

these fisheries in the 1970s.134 However, no estimates of C fixa-

tion enabled by the extrinsic movement of nutrients have been

published.

HUMAN ACTIVITIES

Globally, ocean ecosystems are undergoing or expected to un-

dergo a suite of changes, for example, due to climate change,

coastal and seabed development, fisheries, aquaculture, and

pollution.136,137 The C interactions of marine vertebrates are

dependent on linkages between species, food webs, and eco-

systems, while C outcomes are dependent on the form of C

and the physical, chemical, and biological parameters at the

site where C is released. Thus, the consequences for C flows

due to population, behavioral, or ecosystem disruptions may

be incongruent.138 A few examples of human activities and the

complexity of potential impacts on the C functions of marine ver-

tebrates are outlined below.

Fisheries
Fisheries can affect the functional, behavioral, and indirect ma-

rine vertebrate interactions with C, but the altered outcomes

for C are not well understood. Capture fisheries directly removed

at least 9.3 3 10�3 Gt C in fish biomass from the ocean in 2018.

However, additional changes occur in the biomass of the popu-

lation that remains in the ocean, and their associated ecological

roles. For example, mean size of adults may be reduced in the

fished population, leading to reduced capacity for C storage in

individual biomass. Fish size is also often linked to fecundity

and recruitment success of juveniles.139,140 The trophic role of

the fished population may be disrupted, with consequences for

other links in the food web. Removal of predators causes down-

stream effects on the abundance and behavior of other organ-

isms throughout the food web.104 Where marine vertebrate

predators control the population growth and behavior of grazers

and bioturbators, they are critical to the ecosystems C func-

tion.80 Disrupting predator communities can therefore affect C

in sediments, the capacity of plants to draw down CO2,
22,26,93

and transport of C bymovement and behavior of prey,138 in addi-

tion to the functional C interactions of the predator itself.

Climate change
Transfer of C through vertebrate movement has historically rep-

resented a predictable and reliable input of C to recipient

ecosystems, but these flows are being reduced, removed, or

otherwise modified due to climate change.141,142 Some of the

better-known impacts of climate change on marine vertebrates

are the changes to timing of migrations and reproductive

behavior,143 and alterations to species ranges due to tempera-

ture change, which are visible in fisheries catch records.144

Flows of carbon will consequently change in both the former

and newly adopted habitats.145

Work to identify the level of resilience and responses of marine

vertebrate populations to climate change is ongoing, but

increasingly suggests that better management of fisheries and

habitat protection may be integral to reducing the effects of
688 One Earth 4, May 21, 2021
climate change onmarine vertebrates, assuming the root causes

of climate change are also addressed.146–148 Thus, fisheries and

climate change impacts and management are connected. How-

ever, management regimes will also affect the flow of C through

ecosystems by implicit selection, with implications for C interac-

tions and outcomes in the managed area.35 For example, high-

mobility species or individuals may receive less protection

from area-based management than those with more sedentary

behavior; potential for transfer of C between habitats may there-

fore be affected.149,150

DISCUSSION

The existence of marine vertebrates in any ecosystem inevitably

influences C outcomes in that ecosystem. Although few pub-

lished studies are available, these suggest that marine verte-

brates may be an important contributor to C flux,25,30,31 regulate

C flows within and between ecosystems,19,20 and affect overall

ecosystem health.22,80,99 Every marine vertebrate will deliver

most of the functional interactions, while behavioral and indirect

interactions will be driven by the ecology, behavior, and life his-

tory of the species. Of the literature included in this review,

Figure 2 maps the 16 publications that have measured or esti-

mated marine vertebrate C interactions. These estimates cover

varying time and spatial scales and represent patchy species

and ecosystem coverage; it is therefore likely that marine verte-

brates affect C outcomes to a larger extent than current esti-

mates imply. For example, four of the publications in Figure 2

have been based on a single species69,93,116,125; only whales

and DVM fishes are included in studies that quantify more than

one interaction. Furthermore, only four publications have quanti-

fied human impacts on C outcomes.44,45,96,151 Given the limited

scope of this literature, the combined estimates ofC sequestered

through these relatively few examples total 0.028–0.05 Gt C

year�1. In comparison, DVM zooplankton between 60�N and

60�S were recently estimated to sequester 6.5 Gt C year�1.152

While global estimates of the functional roles of marine verte-

brates in C cycling will be on a different scale to the vastly

more abundant lower trophic levels, the transfer of extrinsic C,

trophic interactions, and nutrient pumps provided bymarine ver-

tebrates may have disproportionate implications for C storage in

reservoirs through multiplier effects.33 It is also likely that forage

fish play a dominant role in passive C flux through fecal pellets,

while mesopelagic fish likely play a dominant role in active flux

through DVM.24,29,31 The importance of DVM fish for climate

changemitigation has already been identified as a reason to pro-

tect myctophids (which are not yet a target for fisheries) from

exploitation until their role in C transfer is better understood,153

and for establishment of protected areas in the high seas to pro-

tect the water column (i.e., not only seafloor habitats).154

The interactions in this review are presented in isolation for

simplicity, yet all are intrinsically linked. For example, C fixation

facilitated by marine vertebrate nutrient pumps can interact

with marine vertebrates through top-down control and, upon

entering the food web, C can follow a number of pathways in

succession, with potential to be transported to another

ecosystem. Marine vertebrate biology, behavior, and ecology

through the lens of C and nutrient cycling and flux is an emerging

area of research with the benefit of extensive back catalogs of
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data. Filling in the gaps with regard to interactions and their inter-

linkages could be relatively quick, especially where literature on

bioenergetics, behavior, populations, food webs, and habitats

exists, and if existing researchers consider their subjects from

this new perspective. As a wider diversity of marine vertebrates

are explored in the context of their C functions, additional inter-

actions will likely emerge.

Disruption of marine vertebrate populations affects the capac-

ity of marine ecosystems to fix, store, and sequester C, depend-

ing on behaviors and trophic levels affected.35,45,155 Discerning

the impacts of changes to C flows is complex, as the altered out-

comes for C are dependent onmultiple dynamic factors: not only

changes to the population biology and behaviors, but also the

food webs, bacterial communities, and physical and chemical

properties of the ecosystems involved. Linking documented

changes in marine vertebrate populations and behaviors to their

C functions, and estimating these impacts in terms of C cycling,

is a first step toward understanding the changing dynamics of

the biological C cycle in the Anthropocene. While outside the

scope of this review, invertebrates and zooplankton, implicit fea-

tures inmarine vertebrate interactions with C through foodwebs,

also have significant roles in oceanic C function. For example,

krill (Euphausia superba) contribute to downward C flux through

fecal material and provide nutrients for C fixation through

schooling behavior137,156 and salps (Thalia democratica, Salpa

spp., Wheelia cylindrica, and Iasis zonari) contribute to

downward C flux through fecal material and sinking car-

casses.51–53,55,157 Interdisciplinary approaches will be required

to integrate biogeochemistry with the ecology of vertebrates,

their food sources, and the bacteria, plants, and other organisms

that use their metabolic products.

With sustainable development of oceans and ‘‘blue growth’’ on

international political agendas, and growing interest in the pro-

tection of ocean habitats for climate changemitigation and adap-

tation through ecosystem services, increased knowledge of the

functional roles of marine life is essential to inform scientific

advice, policy decisions, and effective climate action.153,158,159

Leveraging naturally occurring C fixation, storage, and seques-

tration interactions for climate change mitigation and adaptation

can be a strategy with lower risk and lower cost than many geo-

engineering solutions.160,161 However, due to the escalating

severity of the climate crisis, this strategy should be viewed as

an addition to, not a replacement for, strategies to directly reduce

greenhouse gas emissions. Holistic management approaches

are necessary to enhance or protect marine vertebrate popula-

tions and their functional roles in the ocean as a C sink.162

Research needs
Carbon interactions and outcomes of very fewmarine vertebrate

populations, species, and ecosystems have been estimated.

There are a number of research needs to establish a clearer un-

derstanding of the overall significance of marine vertebrates in C

cycling in certain ecosystems or regions, their importance for

climate changemitigation and adaptation, and the best manage-

ment strategies to secure these functions. Here, we suggest

some directions for future research.

Whole-system approaches

Estimates of animal effects and biogeochemical processes at a

system level are needed to identify the strength of marine verte-
brate C interactions and outcomes, and overall ecosystem C

function. For example, including marine vertebrates in research

to establish a net C outcome for an ecosystem or region, or esti-

mating all functional, behavioral, and indirect interactions in a

given area for a particular species. Animals are likely to influence

C outcomes at ecosystem or regional levels, thus research at this

scale would be most useful.33 Furthermore, many animals are

managed at these ecological scales by national governments

or regional governing bodies, thus policies to secure marine

vertebrate C interactions and outcomes could be readily devel-

oped at this scale.33

Synthesis studies

Very few global and regional assessments of C cycling and flux

include vertebrates, arguably because the scale of vertebrate

contribution to C flux is thought to be of little consequence. Syn-

thesis studies are required to identify the potential volumetric

significance of marine vertebrates regionally, or in different eco-

systems, despite their relatively small biomass (i.e., in compari-

son to plankton) and compare these with other C fluxes and C

cycle components. Synthesis studies that identify inherent

biases in current marine vertebrate C flux studies would also

be useful to help prioritize species that are likely to have a greater

or keystone role in C cycling or flux for future research using

whole-system approaches.

Methodologies

New thinking regarding methodologies to estimate C interac-

tions and C outcomes is required. Challenges include the con-

straints of measuring changes in the ocean and accounting for

environmental controls on C outcomes that may obscure the re-

lationships between marine vertebrates and C cycling.138 Given

the range of movement, behavior, size, depth, distribution, and

other ecological differences within and between marine verte-

brate species and life stages, as well as the dynamic nature of

marine ecosystems, a combination of methods from different

fields will likely be necessary. For example, combining behav-

ioral observationswith bioenergetics, chemical analyses, ocean-

ographic modeling, and nutrient modeling could be fruitful.

CONCLUSION

This review highlights the current state of knowledge of the roles

of marine vertebrates in C cycling. It shows that the life pro-

cesses, behaviors, and trophic interactions of marine verte-

brates are an inextricable component of the ocean C cycle. Pub-

lications are currently too few to reflect the true complexity and

magnitude of all of the functional roles of marine vertebrates in

C cycling; however, current research conveys important contri-

butions, particularly to C flux and ecosystem health. The scope

for future research spans from simply identifying functional roles,

to addressing logistics (e.g., methods to quantify the relative

contributions of the different processes by which marine verte-

brates move C), to understanding and managing impacts of hu-

man activity on the C function of marine vertebrates. Under-

standing of marine vertebrate C interactions and C outcomes

can initially be developed rapidly, as existing biological, physical,

and chemical research can be used and supplemented with

quantification of C associated with the functional roles of marine

vertebrates. Mapping C outcomes associated with moving ani-

mals in ocean systems undergoing changes will require systems
One Earth 4, May 21, 2021 689
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approaches and new thinking. The challenge is understanding

this complexity well enough to inform effective policies andman-

agement actions, especially considering that these functions are

absent in current management strategies that aim to address

climate change or secure sustainable development.
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