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Abstract

Considering a plant that contains a non-minimum phase zero or unstable pole, limits on the achiev-
able performance of the closed-loop system are imposed. However, a straight-forward compensation
cannot be applied as it renders the process internally unstable.

In this work, the partial cancellation of right-half plane zeros/poles is investigated and applied
within a loop-shaping controller design procedure. The key idea is to split the zero/pole into a
product of fractional-order pseudo zeros/poles. Those located in the stable region can be sub-
jected to a stable fractional-order cancellation term, hence without introducing instability. This
concept is extended to conjugate complex zeros/poles. Also stable but low-damped poles are con-
sidered. Here, a cancellation of those pseudo poles closest to the stability border entirely erases
the oscillatory behavior. Furthermore, we include implicit fractional-order terms that yield the
same asymptotic frequency characteristics, however differ in the crossover region. Regarding a
non-minimum phase zero, the implicit cancellation achieves a higher phase margin and steeper
magnitude slope.

This concept is applied to enhance the robust control of a two-mass oscillator with non-collocated
actuation and measurement, as well as an artificially injected input time-delay. Two cases are
considered: a dominant and a small delay. A detailed derivation of the plant model reveals a
nonlinear input gain and non-white process noise as three dominant harmonics are detectable. The
plant is controlled by a PI-lead based controller with feedforward action. The delay approximation
with Padé-terms leads to a non-minimum phase zero which is subjected to partial cancellation.
For comparison, a two-degree of freedom reference controller is designed using the H∞ framework
that yields a similar order and frequency-response.

Detailed experimental and simulation studies confirm the expected similarity for disturbance at-
tenuation, with the H∞ controller being more robust against delay uncertainties. The tracking
performance is evaluated with commonly used metrics. Best performance is achieved with the
fractional-order controller due to its feedforward action based on the model-inverse. This, how-
ever, may lead to saturation issues for step-like reference signals. Due to the weighted sensitivities,
the considered H∞ framework does not allow similar feedforward action. Thus, the H∞ controller
is significantly slower but more robust against both, delay uncertainties and step-like reference
changes.
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Kurzfassung

Im Falle einer Strecke mit nicht-minimalphasiger Nullstelle oder instabilem Pol ist die erreich-
bare Regelgüte grundlegend limitiert. Direkte Kompensation kann die interne Stabilität nicht
garantieren.

Die vorliegende Arbeit behandelt die partielle Pol-Nullstellen-Kürzung sowie ihre Anwendung im
Rahmen des Reglerentwurfs an der offenen Kette. Die Kernidee liegt in der Aufteilung der Null-
stelle bzw. des Pols in ein Produkt von Pseudo-Nullstellen/-Polen nicht-ganzzahliger, d.h. frak-
tionaler, Ordnung. All jene innerhalb des Stabilitätsbereichs können mithilfe eines Terms nicht-
ganzzahliger Ordnung gekürzt werden, ohne die Stabilität zu gefährden. Dieses Konzept wird um
konjugiert-komplexe Nullstellen/Pole erweitert. Im Falle stabiler Polpaare mit geringer Dämpfung
führt eine Kürzung nur desjenigen Pseudo-Polpaars, welches am nächsten der Stabilitätsgrenze
liegt, zur Beseitigung der Oszillationen. Desweiteren werden implizite Terme fraktionaler Ord-
nung in die Betrachtungen einbezogen. Diese führen zu vergleichbarem asymptotischen Verhalten,
unterscheiden sich jedoch im Bereich der Schnittfrequenz deutlich. Bei partieller Kürzung einer
nicht-minimalphasigen Nullstelle erzielt die implizite Darstellung einen größeren Phasenrand sowie
höhere Steigung des Amplitudengangs.

Dieses Konzept wird im Reglerentwurf für einen Zwei-Massen-Oszillator angewendet, wobei der
Messpunkt vom Ansteuerungspunkt verschieden ist. Zusätzlich verfügt die Strecke über eine
künstlich eingefügte, teils dominante, Eingangs-Totzeit. Das detaillierte Modell beinhaltet eine
Eingangs-Nichtlinearität sowie ein Prozessrausch-Modell mit Harmonischen. Die PI-Lead basierte,
robuste Regelung wird mit Vorsteuerung realisiert. Die Padé-Approximation der Totzeit führt
zu einer nicht-minimalphasigen Nullstelle, welche eine partielle Kürzung erfährt. Zum Vergleich
wird ein Zwei-Freiheitsgrade-Regler mit ähnlicher Ordnung und Frequenzcharakteristik mittels
H∞ Synthese entworfen.

Die Regler-Ähnlichkeit im Hinblick auf Störunterdrückung bestätigt sich in simulativen und expe-
rimentellen Untersuchungen, wobei der H∞ Regler robuster gegenüber Totzeit-Unsicherheiten ist.
Das Führungsverhalten wird mithilfe gängiger Metriken evaluiert. Der Regler mit fraktionalen Ele-
menten erzielt durchweg die besten Ergebnisse aufgrund der Vorsteuerung, welche auf der Modell-
Inversen basiert. Jedoch kann diese, beispielsweise für Referenzsprünge, zu Sättigungsproblemen
führen. Für den H∞ Regler sind solche unproblematisch. Dieser zeigt deutlich langsameres, hinge-
gen robusteres Verhalten mit Blick auf Totzeitunsicherheiten. Die Ursachen für die Unterschiede
der Vorsteuerungen liegen in den gewichteten Sensitivitäten des H∞ Reglers, welche ein ähnlich
aggressives Verhalten nicht zulassen.
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1 Introduction

It is well known that non-minimum phase zeros and unstable poles impose limits on
the achievable performance of the closed-loop system. These restrictions also apply
to open-loop tuning methods in terms of bounds on the crossover frequency, gain
and phase margins [2, 39]. Furthermore, a compensation cannot ensure internal
stability, hence the system may destabilize in case of disturbances or parameter
uncertainties.

This is where fractional-order operators come into play, i.e. derivatives of non-integer
order α. Although the idea of generalized derivatives is rather old and has been
used e.g. by Abel to describe the tautochrone problem back in 1823 already [29],
it has gained high popularity in the past decades only. Nowadays, applications can
be found in many fields, e.g. electro-chemistry [7], bio-engineering [21] and con-
trol [5, 29–31, 35], to mention a few. Due to the practical relevance of PI and PID
(proportional-integral-derivative) control (it makes roughly 90 % of the applied con-
trol in industry [18, 49]), these concepts have been generalized to allow integration
and differentiation of non-integer order. In terms of the Laplace transform, this
yelds ‘sα’ and gives a further degree of freedom. Advantages are for example less
phase loss for the fractional integrator compared to the integer-order case as well
as an arbitrary magnitude slope. Furthermore, these controllers can be tuned to
be robust against gain variations by means of a constant phase in the open-loop
crossover region, i.e. the iso-damping property [34, 35].

Let us come back to the zero or pole in the right-half complex plane. Allowing
non-integer orders, we may split an integer-order term in the following way

(s− 1) −→ (s0.5 − 1)(s0.5 + 1)

where the stable part can be compensated without introducing instability. This idea
can be generalized to an almost arbitrary order [27] that makes straight-forward
tuning possible. It is, however, restricted to single non-minimum phase zeros or
unstable poles. What if the plant contains a conjugate complex pair of poles, either
unstable or stable but low-damped?

One of the reasons for various applications of the fractional derivative is the fact
that it is a non-local operator. Therefore, processes containing memory phenomena
can easily be modeled [29, p. 4]. In the case of controller design, however, this
shows to be a drawback when it comes to implementation, as only limited memory
is available in physical real-time systems. For this reason, higher-order approxi-
mations are commonly used to meme the fractional-order operator in the relevant
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frequency range (e.g. [29, 31]). A reasonable approximation of the fractional deriva-
tive operator over a broad frequency range starts with five states. Most examples
in the literature compare fractional-order controllers to classical PID controllers.
However, due to the significant differences of the controller orders, there is a lack
of comparability. To overcome this problem, it is more natural to choose a design
procedure for comparison that leads to higher-order controllers as well, e.g. the
H∞ synthesis as in [38].

In the scope of this thesis, we apply the designed controllers to a physical plant in
a real-time experimental setup, located at the Universitetet i Agder in Grimstad,
Norway. The considered plant is a two-mass oscillator with non-collocated actuation
and measurement. It consists of an active, i.e. controlled, mass and a hanging load
that are connected with a spring. Only the position of the load is available for
control, hence actuation and measurement are non-collocated. Such setup has high
practical relevance, especially when the spring constant and masses are varying or
unknown, e.g. in the case of load transportation on construction sites. Already in
the early 90s, it has been used to formulate benchmark problems for robust controller
design due to its universality [47]. An H∞ control approach has been made e.g. by
Chiang and Safonov [6]. In this work, we artificially inject a communication delay
into the plant model in terms of an input time delay. An approximation of this
delay using Padé-terms leads to non-minimum phase zeros that can be addressed
using the above-mentioned procedure.

Before regarding the contribution and outline of the thesis in detail, the preliminary
work on the cancellation strategy as well as the oscillator are briefly summarized.

1.1 Preliminary Work

There are only few publications on the partial cancellation of non-minimum phase
zeros or unstable poles [22, 26, 27]. The derivations for a single non-minimum phase
zero are part of [27]. The strategy is also applied to several examples, however only
in a simulation setup and without comparable reference controllers (especially in
terms of the finally implemented controller order). In [26] the proposed cancellation
strategy is applied to models of flexible-link robots. Still, no direct comparison to
different approaches is given and, to the best of the authors knowledge, the non-
minimum phase zeros of the considered plants are not dominating. Finally, Mahani
et al. [22] compare the performance of classical PI control with an extended controller
that partially cancels the non-minimum phase zero of the plant.
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The considered plant can be found in two publications [36, 37] so far. In the first
publication [37], Ruderman proposes a robust output feedback controller that makes
use of a notch filter and a delay-based compensator as a second degree of freedom to
counteract disturbance- or uncertainty-caused oscillations. Furthermore, a detailed
robustness analysis regarding parameter uncertainties is part of the article as well
as simulation studies. The second article [36] proposes a frequency-estimation al-
gorithm which proves to be globally convergent, robust against measurement noise
and false initialization and only requires one design parameter.

1.2 Contribution and Outline of this Thesis

The necessary theoretical background to follow the considerations in this work is
summarized in Chapter 2. It covers an introduction into fractional-order linear
time-invariant systems and mentions typical fractional-order control approaches as
well as their implementation. Furthermore, the basics of the H∞ framework are
discussed. As we consider a plant with an input delay, the chapter concludes with
the frequency characteristics of the commonly used Padé-approximation.

The main contributions of this work can be divided into two categories. First, we
extend the concept of partial pole-zero cancellation to a pair of conjugate complex
zeros/poles in Chapter 3. Furthermore, implicit pseudo zeros/poles are included into
the considerations and a closed-loop stability analysis is conducted. This chapter
focuses on the frequency domain and recaptures the results presented in [45].

Second, we consider the two-mass oscillator itself. In Chapter 4, a detailed model
of the plant is derived. It consists of a linear part used for the controller design, an
experimentally identified nonlinearity at the input, a process noise model and the
artificially injected input delay.
The proposed fractional-order terms are applied to the robust control of the plant
with delay, using a two degree of freedom control structure. For comparability, a
reference controller of similar order and frequency characteristics is designed based
on the H∞ framework. We consider controllers for two nominal time delays and
compare the frequency responses in Chapter 5. These controllers are evaluated by
means of simulations and experiments with regard to disturbance attenuation and
tracking performance. Detailed discussions and illustrations are part of Chapter 6.
The Chapters 4 to 6 contain results presented in [44].

We conclude this thesis with a summary of the main findings and give perspectives
for future work in Chapter 7.
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2 Theoretical Background

In this chapter we introduce and briefly discuss the most important concepts and
preliminaries for the scope of this thesis. It consists of three parts. First, we con-
sider the fundamentals of fractional-order systems in Section 2.1, i.e. the general
definition of the fractional-order derivative as well as the concept of fractional-order
transfer functions (with exemplary step responses) and stability. Furthermore, typ-
ical fractional-order PID-type controllers as well as their realization are discussed.
The second part, Section 2.2, addresses the basics of H∞ control including the def-
initions of the two most relevant norms. Finally, as one of the main motivations
behind this thesis is the application to time-delay processes, we present the widely
used Padé-approximations in the frequency domain.

2.1 Fundamentals of Fractional-Order Systems and Control

To describe fractional-order input-output behavior of a system, we first need to
consider the very basics, i.e. the derivative of non-integer order and its Laplace
transform. This allows analyzing fractional-order transfer functions and stability in
terms of the pseudo pole locations in the complex plane. Furthermore, we describe
the frequency response of fractional-order transfer functions and briefly present two
typical controller structures. As the controller with non-integer order elements shall
be implemented in a real-time experimental setup, different approximation methods
are discussed at the end of this section.

2.1.1 The Fractional Derivative

We can generalize the derivative of integer-order n ∈ N to an operator of arbitrary
order α ∈ R+ with R+ = {x ∈ R | x > 0} in different ways. Detailed discussions and
derivations are done e.g. by Podlubny [33]. Here, we shortly discuss two operators.

On the one hand, consider the Riemann-Liouville fractional derivative operator for
the function f(·) which is bounded for t0 ≤ t ≤ tf given by [29, p. 11]

R
t0Dα

t f(t) = dn
dtn

 1
Γ(n− α)

t∫
t0

f(τ)
(t− τ)α−n+1 dτ

 , n− 1 < α < n (2.1)

with the positive integer n ∈ N, fractional order α ∈ R+ and Γ(·) denoting Euler’s
Gamma function. On the other hand, if we restrict us to functions f(·) with an
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absolute integrable n-th order derivative f (n)(·), the Caputo operator can be used.
It is defined as [29, p. 11]

t0Dα
t f(t) = 1

Γ(n− α)

t∫
t0

f (n)(τ)
(t− τ)α−n+1 dτ, n− 1 < α < n (2.2)

with n ∈ N and α ∈ R+.

The Laplace transforms L{·}(s) of the defined fractional-order derivatives are given
by [29, p. 12]

L
{

R
0 Dα

t f(t)
}

= sαL {f(t)} −
n−1∑
k=0

sk
[

R
0 Dα−k−1

t f(t)
]
t=0

and (2.3)

L {0Dα
t f(t)} = sαL {f(t)} −

n−1∑
k=0

sα−k−1f (k)(0) (2.4)

with n − 1 < α < n. In contrast to the Riemann-Liouville definition in (2.1)
and (2.3), the Caputo operator allows using the initial conditions of the integer-
order derivatives. In the following, we use the short-hand Dα for the fractional
derivative of order α with t0 = 0. As we consider zero initial conditions only, both
operators can be applied.

2.1.2 Fractional-Order Systems

In order to describe the input-output behavior of fractional-order systems, we make
use of fractional-order differential equations. Considering linear time-invariant (LTI)
single-input single-output (SISO) systems of commensurate order α ∈ R+ only, it can
be described by [29, p. 17]

n∑
k=0

akDkαy(t) =
m∑
k=0

bkDkαu(t) (2.5)

with real coefficients ak, bk ∈ R and the continuous-time input u(t) and output y(t).
Given a base order α ∈ Q+ with Q+ = {x ∈ Q | x > 0}, e.g. α = ν−1, ν ∈ N, the
system is of rational order.

Applying the Laplace transform to (2.5) for zero initial conditions leads to the
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fractional-order transfer function [29, p. 18]

G(s) = Y (s)
U(s) =

m∑
k=0

bks
αk

n∑
k=0

aks
αk

= B(sα)
A(sα) (2.6)

with input and output Laplace transforms L{u(t)}(s)=U(s) and L{y(t)}(s)=Y (s).
It can be seen as a pseudo-rational function in terms of λ = sα.

In the following, we call the solutions p ∈ C to A(p) = 0 pseudo poles, whereas all
z ∈ C satisfying B(z) = 0 are termed pseudo zeros. The bounded-input bounded-
output (BIBO) stability of a given commensurate fractional-order system can be
classified in terms of the argument of its pseudo poles:

Theorem 1 (Stability of LTI Fractional-Order Systems [24]) Consider the
coprime fractional-order transfer function G(s) = B(sα)/A(sα) in (2.6) of commen-
surate order α. G(s) is BIBO stable if and only if

| arg(p)| > α
π

2

holds for all p = sα, p ∈ C with A(p) = 0.

Re

Im

unstable

stable

stable

stable

stable

unstable

απ
2

−απ
2

Figure 2.1: Schematic representation of the stability condition for systems of commensu-
rate fractional-order α ∈ (0, 1].
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Note that this condition can be extended to the integer-order case, as for α = 1
the right-hand side coincides with the imaginary axis of the complex plane. An
illustration of the stability condition is depicted in Figure 2.1, which also shows the
enlargement of the stable region Cα = {x ∈ C | | arg(x)| > απ2 } for α ∈ (0, 1).

2.1.3 Time and Frequency Response of Fractional-Order Systems

To gain some insight into the behavior of fractional-order systems, we shortly discuss
their time and frequency responses.

By utilizing the inverse Laplace transform L−1{·}(t) on G(s) in its partial fraction
expansion

G(s) =
n∑
k=0

rk
sα − pk

, (2.7)

the impulse response g(t) and the step response h(t) can be obtained as [29, p. 27]

g(t) =
n∑
k=0

rkt
α−1Eα,α(pktα) and (2.8)

h(t) =
n∑
k=0

rkt
αEα,α+1(pktα). (2.9)

The two-parameter Mittag-Leffler function Eα,β(·) is given by [33, p. 17]

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β) , Re(α) > 0,Re(β) > 0 (2.10)

which is a generalization of the exponential function. Detailed information on the
Gamma function as well as the Mittag-Leffler function can be found in e.g. [29, 33].
In the scope of this work, we utilize integer-order approximations of the fractional
derivative. Further discussions on exact solutions to fractional-order differential
equations are therefore not part of it.

However, we make an exemplary graphical illustration. For this purpose, consider

G(s) = 1
(s0.25 − p) (s0.25 − p̄) = 1

1 − 2|p| cos(φ)s0.25 + |p|2s0.5 (2.11)

with α = 0.25 and the conjugate complex pair of pseudo poles p, p̄ ∈ C. Figure 2.2
illustrates the relationship between the argument φi of the pseudo poles pi = 1ejφi

and the corresponding step responses. The time responses are calculated using the
FOMCON toolbox in Matlab [41].
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(a) Pseudo-poles pi in the complex plane. (b) Step responses.

Figure 2.2: Step responses of a fractional-order transfer function with a pair of conjugate
complex pseudo poles pi, p̄i and its location in the complex plane.

Similar to the integer-order case, oscillations can be observed for pseudo poles close
to the stability limit, e.g. p1, p2. More precisely, an oscillatory step response occurs
whenever α π

2 < |φ| < απ and a monotonically decreasing response can be observed
for |φ| ≥ απ [29, p. 27]. For the latter case consider p3 with φ3 = 3α π

2 > απ. In
contrast to the integer-order case, the convergence for systems of non-integer order is
algebraic only as t → ∞, i.e. significantly slower than exponential convergence. De-
tailed discussions on the convergence of Mittag-Leffler-type functions can be found
in [23].

Finally, we shortly summarize the asymptotic frequency response of LTI commen-
surate fractional-order systems given by [29, p. 29]

G(s) =

m∏
k=0

(sα + zk)
n∏
k=0

(sα + pk)
, pk ̸= zk, (2.12)

since Bode-like plots can be obtained allowing intuitive controller tuning similar to
the integer-order case. Each pseudo zero that is located in the stable region leads to a
magnitude slope of 0 dB

dec for low frequencies and α 20 dB
dec for high frequencies, whereas

the phase start at 0◦ and tends to α 90◦. Every stable pseudo pole yields the opposite,
i.e. the magnitude slope tends to −α 20 dB

dec and the phase reaches −α 90◦ [29, p. 29].
Note that the magnitude at the asymptote intersection frequency ω = |pk| does not
coincide with the integer-order case of −3 dB, i.e. the straight line approximation
is worse for fractional-order systems around ω = |pk|.
Pseudo zeros and poles that are located in the unstable region are omitted here, as
they are discussed in detail in the following chapter.
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2.1.4 Fractional-Order PID-Type Controller

Various generalizations of integer-order control structures to non-integer orders can
be found in the literature, cf. [5, 29–31, 35] and the references therein. To mention
only two that are relevant in the scope of this thesis, consider first the classical and
broadly used PID controller which can be generalized using the fractional derivative.
Its Laplace transform for zero initial conditions is given by [29, p. 82]

CFOPID(s) = Kp + Ki

sµ
+Kds

β (2.13)

with β, µ ∈ (0, 1]. By choosing β = µ = 1 the integer-order PID controller is recov-
ered. As the magnitude slope of sα is α 20 dB

dec and its phase α 90◦, this generalization
obviously increases the degrees of freedom for the controller tuning.

Second, consider the fractional lead-lag compensator given by [31, 35]

CFOLL(s) = c0

 1 + s
ωlow

1 + s
ωhigh

α , α ∈ R (2.14)

where ωlow and ωhigh denote the transitional frequencies and c0 > 0 is the gain for low
frequencies. This compensator may be used to stress a constant phase of the open
loop over a frequency range Ω leading to a constant damping for loop gain variations,
the so-called iso-damping property. An illustrative derivation and example can be
found in [35].

2.1.5 Approximation of Fractional-Order Transfer-Functions

In this work we apply controllers with fractional-order elements to a physical system
using real-time hardware in the laboratory setup. Consider the derivative operators
of non-integer order in (2.1) and (2.2). The knowledge of the entire history of f(t)
is necessary in both cases, however the storage of the implementation hardware is
obviously limited. Thus, the fractional-order derivative operator is approximated.

Depending on the application, various approximation methods are possible, see
e.g. [29, 43, 48]. On the one hand, the Grünwald-Letnikov definition can be di-
rectly approximated and the short memory principle can be applied. This means
that only the recent past is considered, i.e. t ∈ [t − L, t] with positive constant L
(size of the memory), since earlier time instants only have limited influence on the
solution [29, p. 16].
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On the other hand, we can approximate the frequency response of the fractional-
order operator using integer-order terms. There are continued-fraction based meth-
ods, e.g. continued-fraction expansion, the Carlson filter or Matsuda-Fujii filter,
that may involve the following problems [48, Chap. 5]:

◦ poor behavior in the frequency and/or time domain response,
◦ not specifiable range of approximation and
◦ no capability of retaining the original transfer functions stability.

If we consider the realization of a fractional-order controller, a good approximation
fit in the crossover region as well as stability requirements are crucial. Therefore,
these methods are not further discussed. Another possibility to approximate given
frequency response data is utilizing the Matlab routine invfreqs, which is based
on [20] and yields an analog filter least-squares optimal fit of a given order. However,
the routine relies on, broadly speaking, matrix inversion and may lead to numerical
issues.

Finally, consider the Oustaloup filter which approximates the fractional-order opera-
tor in the frequency range Ω = {ω ∈ R |ωl ≤ ω ≤ ωh} by alternately placing integer-
order poles and zeros. The resulting approximation of order Noust = 2N + 1 is given
by [29]

sα ≈ Hα(s) = ωαh

N∏
k=−N

s+ ω−
k

s+ ω+
k

(2.15a)

with

ω±
k = ωl

(
ωh

ωl

) k+N+(1±α)/2
2N+1

, α ∈ (0, 1). (2.15b)

As all poles and zeros are located in C−, the open-loop controller design method is
not affected.

2.2 Fundamentals of H∞ Control

This section covers the main idea and basics of H∞ control. First, we consider
relevant norms of time-domain signals and transfer functions. Then, a special case
of the linear fractional transformations is discussed and illustrated in Section 2.2.2
and, finally, we introduce the H∞ synthesis problem in Section 2.2.3.
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2.2.1 Norms of Signals and Systems

We shortly introduce and discuss the most relevant norms in the scope of this work,
i.e. the L2 norm of a time signal w as a special case of Lp and the H∞ norm of
a proper and real-rational transfer function P . An overview of all relevant signal
and system norms can be found in [9], whereas more detailed derivations and an
introduction of the corresponding spaces are made by Zhou et al. [52, Chap. 4].

The L2 norm of a piecewise continuous signal w = w(t), t ∈ (−∞,∞) is defined
as [9, p. 13]

∥w∥2 :=
√∫ ∞

−∞
w(t)2dt. (2.16)

This definition also allows signals that start at t = 0, i.e. with w(t) = 0 ∀ t < 0,
and can easily be generalized to vector-valued signals, see e.g. [39, p. 536]. It can
be interpreted as the total signal energy which becomes evident if we consider w as
the current through a resistor of 1 ohm [9, p. 14].

Now consider the input-output behavior of a plant with transfer function P . If the
input w is a disturbance, we naturally try to keep its impact on the output v as
low as possible. The H∞ norm of the scalar-valued, proper, real-rational transfer
function P is defined as [9, p. 16]

∥P∥∞ := sup
ω

(P (jω)) (2.17)

which can be generalized to transfer matrices using the maximum singular value of
the transfer matrix σ̄(P (jω)) [39, p. 537]. Note that ∥P∥∞ is finite if and only if
P is proper and has no poles on the imaginary axis [9, p. 16]. Then, it is evident
that ∥P∥∞ equals the maximum amplitude in the corresponding Bode plot (or the
maximum of the largest singular value). In order to estimate the impact of the input
w on the output v, we may utilize the induced norm, i.e. the maximum system gain.
In case of signals with finite energy, it can be shown that [9, p. 18]

∥P∥∞ = sup
w ̸=0

∥v∥2

∥w∥2
(2.18)

for any w ∈ L2. Thus, if w is considered as a disturbance, we try to keep ∥P∥∞ low,
which can be interpreted as worst case description. It is therefore of special interest
and may be used to measure system performance [9, p. 19].
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2.2.2 Linear Fractional Transformations

We introduce a special case of linear fractional transformations that can be used to
describe the input-output behavior of a connected system.

Consider the transfer matrix P (s) which is partitioned as

P (s) =

P11(s) P12(s)

P21(s) P22(s)

 . (2.19)

Figure 2.3 shows P in the standard H∞ configuration, where w denotes the external
input and v is termed performance output, u is the output of controller C and y

is the controller input. The transfer matrix from w to v coincides with the lower
linear fractional transformation with respect to C, defined as [52, p. 240]

Fl(P,C) := P11 + P12C∞ (I − P22C∞)−1 P21, (2.20)

provided that (I − P22C∞)−1 exists, with P and C of appropriate dimensions.

C(s)

P (s)
w v

yu

Figure 2.3: Standard H∞ configuration.

Further detailed discussions on linear fractional transformations can be found e.g.
in [52, Chap. 10].

2.2.3 H∞ Synthesis

In this work, we make use of H∞ controller synthesis methods to design a robust
reference controller for the two-mass oscillator discussed in Chapter 4. The focus,
however, is on the theoretical and practical investigation of partial pole-zero can-
cellation. Therefore, we only briefly discuss the main idea and a general approach
of H∞ controller design. Further information can be found in e.g. [12, 39, 52] and,
with a focus on H∞ control of time delay systems, see [19, 25, 28, 51].

Consider Figure 2.3 which shows the (generalized) plant P in standard H∞ configu-
ration. As mentioned above, if w is an external disturbance, we try to minimize its
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impact on the performance output v. In the scope of H∞ control, we consider the
signal energy ∥v∥2 that should be minimal for all external inputs with ∥w∥2 ≤ 1.
This is equivalent to the minimization of the H∞ norm of the transfer function
from w to v, i.e. [12, p. 37]

min
C stabilizing

∥Fl(P,C)∥∞ =: γmin. (2.21)

In case there is some knowledge about the disturbances, we may use it in terms
of weight functions (typically high- or low-pass filters) [12, p. 37]. In a similar
manner, weight functions can be used to fulfill design specifications and stress the
desired closed-loop behavior. For this purpose, the plant is augmented with the
weight functions Wi and thus incorporated into P . Standard procedures to find
compromises between conflicting design specifications are e.g. the S/CS design.
Here, the Sensitivity function S is addressed with low-pass filter W1, which yields a
small stationary error, and CS is weighted with W2 to limit the bandwidth of the
closed-loop system [39, p. 376].

In general the plant P is not scalar and thus the solution to the minimization
problem in (2.21) is not unique [12, p. 39]. Instead of finding the controller C that
minimizes the H∞ norm, we consider a suboptimal solution, i.e.

∥Fl(P,C)∥∞ < γ (2.22)

where γ > 0 is a positive number. Note that γ > γmin, but a γ-iteration algorithm
can be used, e.g. bisection, to come arbitrarily close to the minimum. However, it
can be observed that the solutions close to the optimum in terms of γmin are numer-
ically ill-conditioned [12, p. 39]. Therefore, in practice, a suboptimal controller C is
usually employed [39, p. 376].

In order to find a solution to (2.22), two algebraic equations are to be solved. Neces-
sary and sufficient conditions for the existence of a solution have been determined by
Glover and Doyle [11]. Relaxed assumptions and the application to e.g. the S/CS
design are discussed in [12]. An implementation of the described problem and its
solution for a given generalized plant can be determined utilizing the Matlab routine
hinfsyn based on [8, 11].
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2.3 Time-Delay Approximations

It is well known that a time delay of length τ can be characterized in the frequency
domain by [10]

Gd(s) = e−τs. (2.23)

However, in the scope of classical H∞ controller synthesis methods Gd(s) cannot
be used directly, since it is of infinite dimension [52]. To overcome this problem,
rational approximations of the exponential function are possible, e.g. by Taylor- or
Padé-terms.

A standard procedure is to utilize the allpass Padé-appoximations [32] which do not
affect the stability and have unity gain over all frequencies. As special cases consider
the first- and second-order approximations given by [32, p. 16]

R1(s) = 2 + τs

2 − τs
and (2.24a)

R2(s) = 12 − 6(τs) + (τs)2

12 + 6(τs) + (τs)2 . (2.24b)

It can be seen that the approximations consist of stable poles and non-minimum
phase zeros, which is necessary to achieve allpass behavior. Thus, the first-order
approximation R1 yields a total phase lag of −180◦ whereas R2 leads to a negative
phase of −360◦. A phase plot of Gd = e−τ s with τ = 1 opposite to its approxima-
tions Rj up to order four is depicted in Figure 2.4b . The locations in the complex
plane of the corresponding poles and zeros are shown in Figure 2.4a. As expected,
the poles and zeros are mirrored at the imaginary axis and all approximations of
higher order (j > 1) involve a dominant pair of non-minimum phase zeros.

If we restrict the considerations to the frequency domain, the advantage of allpass
approximations is evident. If a better time domain fit is prioritized in terms of
the step response, however, Padé-approximations with order j − 1 of the numerator
(where j is the order of the denominator) may be more appropriate [10, p. 413f].

Having briefly discussed the most important preliminaries, we are prepared for the
concept of partial pole-zero cancellation.
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(a) Poles pj and zeros zj in the complex plane.

(b) Phase plot of the Padé-approximations Rj(s) opposite to Gd(s) = e−τs.

Figure 2.4: Locations of the poles and zeros in the complex plane of the Padé-
approximations of Gd(s) = e−τs for τ = 1 and their phase plots.
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3 Partial Pole-Zero Cancellation

Partial pole-zero cancellation of non-minimum phase zeros can increase the robust-
ness of the closed-loop system and reduce the undershoot of the step-response [22,
26, 27], therefore we investigate the frequency-domain behavior of fractional-order
right-half plane poles and zeros in this section. This concept is extended to parts of
the fractional-order lead-lag-element (implicit fractional-order zeros/poles) in Sec-
tion 3.2 and a pair of conjugate complex pseudo zeros or poles in Section 3.3. Here,
not only right-half plane zeros/poles are considered but also stable, low-damped
poles since they significantly affect the stability margins of the control loop, too.
Section 3.4 discusses the effect on the sensitivity functions of a standard control
loop. To use the fractional-order elements in a real-time experimental setup, we
utilize the Oustaloup recursive approximation that is presented in Section 3.5. The
final section deals with an academic example to show the effect of the different can-
cellation strategies in the frequency-domain as well as in time-domain simulations.

Parts of this chapter have been submitted to an IFAC conference for possible publi-
cation [45].

3.1 Fractional-Order Pseudo Zeros and Poles

Consider the term in the Laplace domain

Xk
z,α(s) =

(
1 −

(
s

z

)α)k
, s ∈ C, z ∈ C+, α ∈ (0, 1], k ∈ {−1, 1} (3.1)

where C+ = {x ∈ C | Re(x) > 0} is the set of right-half plane (RHP) complex
numbers. Thus, Xk

z,α represents a right-half plane (RHP) zero for k = 1 and a pole
for k = −1. As the exponent α is placed at the Laplace variable s directly, it is
termed explicit representation.

In order to calculate the magnitude and phase of Xk
z,α(jω), we make use of the

polar coordinates z = ω0e
jφ with absolute value ω0 = |z| and argument φ = arg(z)
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leading to

Xk
z,α(jω) =

(
1 −

( jω
z

)α)k
z=ω0ejφ

=
(

1 −
( jω
ω0ejφ

)α)k j = ej π
2=
(

1 −
(
ωej π

2

ω0ejφ

)α)k

=
(

1 −
(
ω

ω0

)α
ejα(π

2 −φ)
)k

=
(

1 −
(
ω

ω0

)α [
cos

(
α
(
π

2 − φ
))

+ j sin
(
α
(
π

2 − φ
))])k

.

With the abbreviation φ̃ := π
2 − φ the magnitude turns out to be

∣∣∣Xk
z,α(jω)

∣∣∣2 =
(

1 +
(
ω

ω0

)2α [
cos2 (αφ̃) + sin2 (αφ̃)

]
− 2

(
ω

ω0

)α
cos (αφ̃)

)k

=
(

1 +
(
ω

ω0

)2α
− 2

(
ω

ω0

)α
cos (αφ̃)

)k
(3.2)

and the phase is given by

∠Xk
z,α(jω) = k arctan

 −
(
ω
ω0

)α
sin (αφ̃)

1 −
(
ω
ω0

)α
cos (αφ̃)

 . (3.3)

If we consider z ∈ R+ (i.e. z ∈ R and φ = 0), the magnitude and phase of Xk
z,α(jω)

are reduced to [27]:

∣∣∣Xk
z,α(jω)

∣∣∣2 =
(

1 +
(
ω

z

)2α
− 2

(
ω

z

)α
cos

(
πα

2

))k
, (3.4)

∠Xk
z,α(jω) = k arctan

 −
(
ω
z

)α
sin

(
πα
2

)
1 −

(
ω
z

)α
cos

(
πα
2

)
 . (3.5)

The discussions in this section are restricted to RHP pseudo zeros (k = 1). However,
consider k = −1 in order to cover RHP pseudo poles.
Figure 3.1 shows the Bode plot of Xz,α for z = 1, k = 1 and α ∈ {0.25, 0.5, 1}. For
k = −1 see Figure A.1 in the appendix. To clearly identify integer-order zeros, we
introduce the RHP zero

Z1(s) = 1 − s

z
, z > 0 (3.6)

which coincides with Xz,α(s) in (3.1) for α = 1, i.e. Z1 = Xz,1.

The asymptotic behavior of the magnitude and phase is summarized in Table 3.1.
Considering high frequencies, a greater value of α leads to more magnitude slope,
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Figure 3.1: Bode plot of Xz,α and X̃z,α for z = 1 and α ∈ {0.25, 0.5} opposite to the
integer-order term Z1 and its pseudo compensation Z1D−1

1 .

however less phase lag. The phase drop of Xz,α already occurs at lower frequencies
in comparison with the integer-order term. Furthermore, the amplitude response
of Xz,α shows a minimum at the frequency ωmin that can be found by solving

d
dω

∣∣∣X1
z,α(jω)

∣∣∣2 = 0 (3.7)

for ω. Then, the calculations for the magnitude are straight forward and those for
the phase can be found in Appendix A.1.1 resulting in [27]

ωmin = z
(

cos
(
πα

2

)) 1
α

with (3.8)∣∣∣X1
z,α(jωmin)

∣∣∣ = sin
(
πα

2

)
and (3.9)

∠X1
z,α(jωmin) = π

2 (α− 1) . (3.10)
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Regarding the behavior for α → 0, we can derive [27]:

lim
α→0

(ωmin) = z, (3.11)

lim
α→0

(∣∣∣X1
z,α(jωmin)

∣∣∣) = 0 =̂ − ∞ dB and (3.12)

lim
α→0

(
∠X1

z,α(jωmin)
)

= −π

2 . (3.13)

It can be seen that the magnitude lowers for a decrease in α and the phase ap-
proaches −90◦.

Another interesting frequency to consider is ω = z, where the magnitude and phase
can be calculated as

∣∣∣X1
z,α(jω)

∣∣∣
z

=
√

2 − 2 cos
(
πα

2

)
= 2 sin

(
πα

4

)
and (3.14)

∠ X1
z,α(jω)

∣∣∣
z

= arctan
 − sin

(
πα
2

)
1 − cos

(
πα
2

)
 = π

2

(
α

2 − 1
)
. (3.15)

The calculations to (3.14) and (3.15) are part of Appendix A.1.1. As expected,
the phase lag at ω = z is half of the total phase lag, cf. Table 3.1. However, the
magnitude is decreased compared to the integer-order case (α = 1).

Consider a plant with an unstable pole or non-minimum phase zero at z > 0. Its
integer-order transfer function may be given by

G1(s) =
(

1 − s

z

)k
Ĝ1(s) = Zk

1 (s)Ĝ1(s). (3.16)

We can expand Z1 to α−1 = ν, ν ∈ N pseudo zeros [27], resulting in

Zk
1 (s) =

(
1 −

(
s

z

) 1
ν

)k ( ν∑
n=1

(
s

z

)n−1
ν

)k
= Xk

z,ν−1(s)Qk
z,ν(s) (3.17)

with

Qk
z,ν(s) =

(
ν∑

n=1

(
s

z

)n−1
ν

)k
. (3.18)

It can be shown [27] that all ν − 1 pseudo zeros of Qz,ν(s) are stable, i.e. they are
located in the region Cα = {z ∈ C | |arg(z)| > απ2 }, depicted in Figure 3.3.

Hence we can use it for a partial cancellation of the plant’s non-minimum phase
zero

Zk
1 (s) Q−k

z,ν(s) =
(

1 −
(
s

z

) 1
ν

)k
= Xk

z,ν−1(s). (3.19)
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For k = 1, this results in the above-discussed fractional-order pseudo zero. Utilizing
the mirrored pole of Z1(s), i.e.

Dk
1(s) =

(
1 + s

z

)k
, (3.20)

yields the classical integer-order pseudo compensation of the RHP zero. It can
be observed in Figure 3.1 that the partial cancellation preserves a steeper slope
of the magnitude and a larger phase margin compared to the integer-order pseudo
compensation.

Table 3.1: Frequency characteristics for the magnitude and the phase of (implicit)
fractional-order pseudo zeros and pseudo poles. The red numbers indicate dif-
ferences. Due to the limited relevance of the magnitude slope at ω = z, it is
denoted as ‘∗’.

Pseudo Zero Pseudo Pole
Frequency ω ≪ z ω = z ω ≫ z ω ≪ z ω = z ω ≫ z

| · | 1 2 sin
(
πα
4
)

∞ 1
(
2 sin

(
πα
4
))−1 0

d
dω | · | 0 dB

dec ∗ 20 α dB
dec 0 dB

dec ∗ −20 α dB
dec

∠(·) 0 π
2
(
α
2 − 1

)
π
(
α
2 − 1

)
0 π

2
(
1 − α

2
)

π
(
1 − α

2
)

Implicit Pseudo Zero Implicit Pseudo Pole
Frequency ω ≪ z ω = z ω ≫ z ω ≪ z ω = z ω ≫ z

| · | 1
√

2α ∞ 1
√

2 −α 0
d

dω | · | 0 dB
dec ∗ 20 α dB

dec 0 dB
dec ∗ −20 α dB

dec

∠(·) 0 π
2
(
α
2 − 1

)
π
(
α
2 − 1

)
0 π

2
(
1 − α

2
)

π
(
1 − α

2
)

3.2 Implicit Fractional-Order Pseudo Zeros and Poles

In order to achieve a similar effect to the partial cancellation of the non-minimum
phase zero in (3.19), we introduce the implicit term as a part of the fractional-order
lead-lag element [29]

Q̃k
z,ν(s) =

(
1 + s

z

)k ν−1
ν

, z > 0, ν ∈ N (3.21)

where the integer-order pseudo compensation is covered as an edge case, i.e.

lim
ν→∞

Q̃k
z,ν(s) = Dk

1(s).
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Applying Q̃k
z,ν to the integer-order term Zk

1 yields

X̃k
z,α(s) =

(
1 − s

z

)k
Q̃−k
z,ν(s), z > 0, α = 1

ν
, k ∈ {−1, 1} (3.22)

which is the implicit representation corresponding to (3.1). For calculating the
magnitude and phase

∣∣∣X̃k
z,α(jω)

∣∣∣ =
(

1 +
(
ω

z

)2
)kα

2

, (3.23)

∠X̃k
z,α(jω) = k arctan

(
−ω

z

)
− k(1 − α) arctan

(
ω

z

)
, (3.24)

we make use of the integer-order terms and rewrite the exponent of Q̃k
z,ν for α = ν−1,

i.e. (ν− 1)ν−1 = 1 −α. Note that we can generalize the definitions of Q̃k
z,ν and X̃k

z,α

to z ∈ C+ in order to calculate the magnitude and phase given in Appendix A.1.2,
which is necessary for later use. For now only z ∈ R+ are considered.

In following discussions we focus on implicit pseudo zeros (k = 1). However, consider
k = −1 in order to cover implicit pseudo poles.

As it can be seen in Figure 3.1 and is summarized in Table 3.1, the frequency
characteristics of the explicit and the implicit representations are very similar. An
interesting frequency to consider is ω = z, as the phase of the two representations
in (3.5) and (3.24) coincides:

∠Xk
z,α(jω)

∣∣∣∣
z

= ∠X̃k
z,α(jω)

∣∣∣∣
z

= k
π

2

(
α

2 − 1
)
. (3.25)

This does not apply to the magnitude. Consider the exemplary Bode plot in Fig-
ure 3.1 that show a magnitude drop of the explicit term around ω = z in contrast
to the implicit representation which satisfies∣∣∣X̃1

z,α(jω)
∣∣∣
z

=
√

2α > 0 dB ∀α ∈ (0, 1].

In addition, the implicit representation leads to less phase lag for ω < z which is
useful in the case of phase limitations. Therefore, Q̃z,ν(s) is preferred to partially
compensate a plant’s non-minimum phase zero.

Note that the Bode plot analysis and observations are restricted to z ∈ R>0. Since
the analysis of a single complex zero has limited practical relevance, it is omitted
here.
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3.3 Pair of Fractional-Order Conjugate Complex Pseudo Zeros
or Poles

The practical relevance of unstable poles is evident, but also low-damped stable
poles significantly affect the stability margins. Furthermore, it is worth considering
a pair of non-minimum phase conjugate complex zeros since they arise e.g. due
time delay approximations. More precisely, the Padé-approximation of a time delay
involves a pair of dominant conjugate complex RHP zeros for approximation orders
higher than one [10, 32]. In this section, we therefore consider such RHP zeros and
poles in the beginning and discuss a pair of stable poles afterwards.

Following the representations of (3.1) to (3.5), given a RHP pair of conjugate com-
plex pseudo zeros at

z = ω0e
jφ, z̄ = ω0e

−jφ ∈ C+ (3.26)

with ω0 = |z| and φ = arg(z), we may derive

X k
z,α(s) = Xk

z,α X
k
z̄,α =

(
1 −

(
s

ω0
e−jφ

)α)k (
1 −

(
s

ω0
ejφ
)α)k

= ω−2αk
0

(
s2α − 2 (sω0)α cos (φα) + ω2α

0

)k
. (3.27)

For the detailed calculations see Appendix A.1.1.

Again, the integer-order case is covered by (3.27) for α = 1, i.e.

Zk
2 (s) = ω−2k

0

(
s2 − 2sω0 cos (φ) + ω2

0

)k
. (3.28)

Similar to (3.20), it can be pseudo compensated using the integer-order term

Dk
2(s) = ω−2k

0

(
s2 + 2sω0 cos (φ) + ω2

0

)k
. (3.29)

For z = 1ej π
3 , the Bode plot of X −1

z,α is shown in Figure 3.2 with α ∈ {0.25, 0.5, 1}, i.e.
a pair of pseudo poles. As expected, we can observe a maximum of the magnitude
around ω = ω0 and, in comparison with the integer-order pseudo compensation,
more positive phase for lower frequencies. A summary of the frequency characteris-
tics is given in Table 3.2. The Bode plot of Xz,α (a pair of pseudo zeros) is shown
in Figure A.2 in the appendix.
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Figure 3.2: Bode plot of X −1
z,α and X̃ −1

z,α for z = 1ej π
3 and α ∈ {0.25, 0.5} opposite to the

integer-order term Z−1
2 and its pseudo compensation Z−1

2 D2.

Given a plant with the transfer function

G2(s) = Zk
2 (s)Ĝ2(s), (3.30)

it involves a pair of RHP conjugate complex poles (k = −1) or zeros (k = 1). Since
the expansion (3.17) holds for complex z as well, we reformulate (3.28) as

Zk
2 (s) =

(
1 − s

z

)k (
1 − s

z̄

)k
. (3.31)

Now, each term of Zk
2 can be expanded to ν pseudo zeros/poles (see (3.17)), where

Xk
z,ν−1 and Qk

z,ν have a conjugate complex part. As a result

Qk
z,ν(s) = Qk

z,ν(s) Qk
z̄,ν(s) (3.32)

has real coefficients.
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Table 3.2: Asymptotic frequency characteristics of a pair of (implicit) fractional-order
RHP conjugate complex pseudo zeros and poles.

Pair of Pseudo Zeros Pair of Pseudo Poles
Frequency ω ≪ ω0 ω ≫ ω0 ω ≪ ω0 ω ≫ ω0

d
dω | · | in dB

dec 0 40 α 0 −40 α

∠(·) in ◦ 0 −360 + 180α 0 360 − 180α

In order to use Qk
z,ν for a partial cancellation, it is to be shown that Qk

z,ν only
consist of stable pseudo zeros/poles. Without loss of generality, the discussions can
be restricted to pseudo zeros (k = 1). Since the terms of Qz,ν are conjugate complex,
we restrict us to one term of (3.32) and its associated integer-order zero in (3.31).
The remaining term can be discussed in a similar manner. We follow the reasoning
of [45].

Consider Q1
z,ν having ν pseudo zeros λn = ν

√
z with the arguments given by [4]

arg (λn) = φn = φ+ 2πn
ν

, n = 0, 1, . . . , ν − 1. (3.33)

It is evident that the angle between two consecutive roots is constant:

∆φ = φn − φn−1 = 2π
ν
. (3.34)

We know from the expansion in (3.17) that the principal ν-th pseudo zero λ0

of
(
1 − s

z

)
is separated from the remaining λn, n ≥ 1. Thus, the pseudo zeros

of Qz,ν have the arguments

φn = φ+ 2πn
ν

, n = 1, 2 . . . , ν − 1. (3.35)

As the complex roots of z are evenly distributed on a circle with radius ν

√
|z| around

the origin of the complex plane, two critical cases are to be considered. These cases
are illustrated in Figure 3.3, i.e. the roots λ1 and λν−1 must not be located in the
unstable region. Since we assume that z is located in the RHP, i.e.|φ| < π

2ν , this
condition is equivalent to

∆φ !
>
π

ν
. (3.36)

Knowing that ∆φ = 2π
ν
> π

ν
, see (3.34), condition (3.36) is satisfied. An analog

discussion can be made for k = −1 (considering pseudo poles) and for the conjugate
complex part Qk

z̄,ν . Thus, Qz,ν only consists of stable pseudo zeros.

Therefore, the fractional-order term Qk
z,ν can be used to partially cancel a pair of

conjugate complex zeros/poles Zk
2 without encountering stability issues.
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λ0

Re

Im

stable

unstable

απ
2

φ

φ0

−∆φ

∆φ

z

λ1

λν−1

Figure 3.3: Schematic representation of the roots λi with argument φi of a RHP complex
zero/pole z in the complex plane.

This yields
Zk

2 (s) Q−k
z,ν(s) = X k

z,α(s) (3.37)

where X k
z,α consists of a lower-order pair of pseudo zeros/poles (α = ν−1).

We can define the implicit counterparts of X k
z,α and Qk

z,ν for the pair of conjugate
complex z, z̄ of (3.26) and order α = ν−1 in analogy to the case of a single real RHP
zero/pole in (3.22) and (3.21). This yields

Q̃k
z,ν(s) =

(
1
ω2

0

(
s2 + 2sω0 cos (φ) + ω2

0

))k ν−1
ν

and (3.38)

X̃ k
z,α(s) = Zk

2 (s) Q̃−k
z,ν(s) =

ω2α
0

s2 − 2sω0 cos(φ) + ω2
0(

s2 + 2sω0 cos(φ) + ω2
0

)1−α


k

. (3.39)

Following the analogy, the integer-order terms of X̃ k
z,α(jω) can be utilized to derive

the magnitude and phase that are therefore omitted here. An exemplary Bode plot
of X̃ −1

z,α is shown in Figure 3.2, while Table 3.2 summarizes the frequency charac-
teristics. As expected by the analogy and confirmed by Figure 3.2 and Table 3.2,
the comparison of the explicit and implicit pair of pseudo zeros/poles leads to con-
clusions similar to the case of a single real RHP zero/pole. The most important
observations are the differences of the magnitude around ω = ω0 and the phase
for ω < ω0.
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As mentioned above, it may be desirable to reduce the effect of a given plant’s stable,
however low-damped pair of poles. We thus consider the conjugate complex pole
pair

p = ω0e
jφ, p̄ = ω0e

−jφ ∈ C− (3.40)

where C− = {z ∈ C | Re(z) < 0}. In order to subject the left-half plane (LHP) poles
to a partial cancellation without introducing instability, it is necessary to show that
all ν = α−1, ν ∈ N roots of p and p̄ remain stable, by means of their location in the
complex plane. This can be formulated as

|arg(p)| > π

2
!=⇒ pα ∈ Cα, α = ν−1. (3.41)

If this condition holds, we may use any combination of the ν-th roots λn = ν
√
p

and λ̄n = ν
√
p̄ to partially cancel the pair of poles (apart from the natural condition

of choosing conjugate complex roots).

For this purpose, we rewrite (3.33) as

arg (λn) = φ+ 2πn
ν

⇐⇒ ν arg (λn) − 2πn = φ, n = 0, 1, . . . , ν − 1 (3.42)

and consider the absolute values in the next step. This restricts the range to
0 < |arg(λn)| < π and yields

ν |arg (λn)| ≥ |φ| ⇐⇒ |arg (λn)| ≥ |φ|
ν
. (3.43)

Knowing that p ∈ C−, i.e. |φ| > π/2, it directly follows

|arg(p)| = |φ| > π

2 =⇒ |arg (λn)| > π

2ν = α
π

2 (3.44)

which proves implication (3.41).

Therefore, any pair of roots of the conjugate complex poles may be cancelled. Recall
the relationship between the location of pseudo poles and the corresponding step
responses in Section 2.1.3. As illustrated, an oscillatory step response is obtained
for stable pseudo poles with |arg(λ)| < π

ν
. In the present case, this concerns the

principal ν-th roots

λ0 = ν
√
ω0 e

j φ
ν and λ̄0 = ν

√
ω0 e

−j φ
ν . (3.45)
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Therefore, we may use the term

Xp,α(s) =
(

1 −
(
s

p

)α)(
1 −

(
s

p̄

)α)
= 1
ω2α

0

(
s2α − 2 (sω0)α cos (φα) + ω2α

0

)
(3.46)

with α = ν−1 to cancel the principal roots, i.e. the pseudo poles closest to the
stability border. Note that, for z = p, the term Xp,α coincides with Xz,α of (3.27).
Applying Xp,α to a plant with a pair of stable poles p, p̄ ∈ C− yields

G3 = ω2
0

(
s2 − 2sω0 cos (φ) + ω2

0

)−1
Ĝ3(s) = P2(s)Ĝ3(s) and (3.47)

P2(s)Xp,α(s) = Qp,ν(s). (3.48)

In the same analogy, for z = p, the term Qp,ν equals Qz,ν of (3.32). Figure 3.4 holds a
Bode plot of Qp,ν for p = −1ej 9π

20 and ν ∈ {2, 4}. The effect of the partial cancellation
is obvious in the Bode plot. As discussed above, we expect a non-oscillating step
response, which is confirmed by Figure 3.5. It shows the step response of Qp,ν

for ν ∈ {2, 4} opposite to the integer-order case.

Figure 3.4: Bode plot of Qp,ν and Q̃p,ν for p = −1ej 9π
20 and ν ∈ {2, 4} opposite to the

integer-order term P2 and its compensation P2D3 with D3 = P −1
2 .
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Figure 3.5: Step response of Qp,ν and Q̃p,ν for p = −1ej 9π
20 and ν ∈ {2, 4} opposite to the

integer-order term P2.

The implicit counterpart of (3.48) for α = ν−1 reads

X̃p,α(s) = ω−2α
0

(
s2 − 2sω0 cos (φ) + ω2

0

)α
= P−α

2 (s), (3.49)

Q̃p,ν(s) = P2(s)X̃p,α(s) = P
1−ν

ν
2 (s). (3.50)

Analog to the previous considerations, the Bode plot, depicted in Figure 3.4 on
the next page, shows the similarities of the different representations for high and
low frequencies. Significant differences can be observed around ω = ω0, where the
explicit representation erases the magnitude peak, hence the oscillatory part. The
implicit compensation only reduces the peak (and oscillations, see Figure 3.5 on the
next page). Again, the phase lag of the explicit cancellation largely exceeds the
negative phase of the implicit counterpart for ω < ω0.

In the following section, the effect of partial pole-zero cancellation on the closed-loop
stability is analyzed.
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3.4 Application to the Standard Control-Loop

Consider the standard SISO control-loop depicted in Figure 3.6, whereG(s) and C(s)
denote the plant and controller, respectively. The signals are the reference r(t), the
control error e(t) = r(t) − y(t), control signal u(t), output y(t) as well as the in-
put disturbance du(t) and output disturbance dy(t).

C(s) G(s)

du(t) dy(t)

r(t) e(t) u(t) y(t)

−

Figure 3.6: Standard control-loop.

According to Figure 3.6, we denote the complementary, output and input sensitiv-
ity functions as

T (s) = G(s)C(s)
1 +G(s)C(s) , (3.51)

Sy(s) = 1
1 +G(s)C(s) and (3.52)

Su(s) = G(s)
1 +G(s)C(s) . (3.53)

In order to investigate the discussed partial pole/zero cancellation, we partition the
plant and controller into

G(s) = Zk
i (s)Ĝ(s) and C(s) = Q−k

i (s)Ĉ(s) (3.54)

with i ∈ {1, 2}, k ∈ {−1, 1} and

Zk
i (s) = Xk

i (s)Qk
i (s) (3.55)

with
Xk
i (s) =

i∏
m=1

Xk
z,α(s) and Qk

i (s) =
i∏

m=1
Qk
z,ν(s).

This means, a RHP z ∈ R+ is considered for i = 1, cf. (3.1) and (3.16). On the
other hand, i = 2 yields z, z̄ ∈ C+, see (3.27) and (3.32). It is assumed that Zk

i

contains all RHP poles/transfer zeros of G. Including the partitions for the plant
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and controller of (3.54) into the sensitivity functions yields

T = Zk
i ĜQ

−k
i Ĉ

1 + Zk
i ĜQ

−k
i Ĉ

Zk
i =Xk

i Q
k
i= Xk

i ĜĈ

1 +Xk
i ĜĈ

= ĜĈ

X−k
i + ĜĈ

, (3.56)

Sy = 1
1 + Zk

i ĜQ
−k
i Ĉ

= 1
1 +Xk

i ĜĈ
and (3.57)

Su = Zk
i Ĝ

1 + Zk
i ĜQ

−k
i Ĉ

= Xk
i Q

k
i Ĝ

1 +Xk
i ĜĈ

= Qk
i Ĝ

X−k
i + ĜĈ

(3.58)

where we omit the variable ‘s’ for clarity reasons. Note that Zk
i = Xk

i Q
k
i contains

all RHP poles/zeros, however all roots of Qk
i are stable. We can thus conclude: the

control loop is internally stable if the fractional-order pseudo polynomial X−k
i + ĜĈ

has the roots in the stable region Cα. Note that these roots coincide with the
pseudo poles of Sy in (3.57). This conclusion holds for the partial cancellation of
stable conjugate complex poles as well, since Xp,α only has stable roots. As it is
discussed in Section 2.1.5, the integer-order Oustaloup approximation of fractional-
order terms only consist of poles in C−, therefore the same results can be achieved
for the implicit representations Q̃k

i and X̃k
i .

Now, we show the difference between the fractional-order partial cancellation of
an unstable pole and the integer-order unstable pole-zero cancellation. Therefore,
setting k = −1 and i = 1 results in the plant G = Z−1

1 Ĝ containing one unstable
pole z ∈ R+. Thus we have for the integer-order cancellation CIO = Z1ĈIO, which
yields

TIO = Z−1
1 ĜZ1Ĉ

1 + Z−1
1 ĜZ1Ĉ

= ĜĈ

1 + ĜĈ
and

Su,IO = Z−1
1 Ĝ

1 + Z−1
1 ĜZ1Ĉ

= Ĝ

Z1
(
1 + ĜĈ

) .
Obviously, although the unstable pole is not part of TIO, the input disturbance
sensitivity Su,IO is unstable. In contrast, considering the partial cancellation, we
get

T = ĜĈ

Xz,α + ĜĈ
and

Su =
Q−1
z,νĜ

Xz,α + ĜĈ
= Ĝ

Qz,ν

(
Xz,α + ĜĈ

) .
This implies that Su is stable if and only if T is stable which is in accordance with
the relation above.
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Partial Pole-Zero Cancellation

Note that fractional-order unstable partial pole-zero cancellation leads to the same
issues as integer-order unstable pole-zero cancellation discussed above, i.e. if we use
X−k
i instead of Q−k

i to partially cancel the RHP zero/pole. This becomes evident
when considering (3.56) to (3.58) and exchanging Xk

i for Qk
i . Regarding an unstable

pole as before, it leads to e.g.

T = ĜĈ

Qz,ν + ĜĈ
and

Su = Ĝ

Xz,α

(
Qz,ν + ĜĈ

) .
Thus, even if T is stable, Su contains an unstable pseudo pole.

3.5 Implementation

Having discussed the different fractional-order terms in detail as well as the appli-
cation to a standard control loop, we now come to the implementation. Recall that
the fractional derivative operator needs to be approximated and, for this purpose,
different approximation methods are possible, see Section 2.1.5. In this work we use
the Oustaloup filter (2.15). This classical Oustaloup approximation method may
lead to an erroneous stationary gain, consider for example

Q−1
z,α(s) = 1

1 −
(
s
z

)α s→0−−→ 1. (3.59)

In contrast, the proposed approximation leads to

Q−1
z,α(s) ≈ 1

1 − Hα(s)
zα

s→0−−→ 1
1 −

(
ωl
z

)α ̸= 1 for ωl > 0. (3.60)

To overcome this problem, we introduce an additional integrator like in e.g. [15, 46],
which yields

s−α = s1−α

s
≈ H1−α(s)

s
. (3.61)

For the example above, this results in

Q−1
z,α(s) = s−α

s−α − 1
zα

≈ H1−α(s)
H1−α(s) + s

zα

s→0−−→ 1 (3.62)

and the correct stationary gain is recovered.
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For the implicit terms, the substitution s̃ = 1 − s
z

can be utilized [31] leading to

Q̃−1
z,α(s) =

(
1 − s

z

)−α
= s̃−α ≈ H1−α(s̃)

s̃
=
H1−α

(
1 − s

z

)
1 − s

z

. (3.63)

In order to approximate the implicit second-order terms Q̃z,α and X̃p,α, we would
naturally use the substitution s′ = s2 − 2sr cos (φ) + r2. However, acceptable re-
sults can only be achieved if we address each conjugate complex root of p and p̄

(cf. (3.40)) separately, leading to the conjugate complex approximations H1−α(s̃1)
and H1−α(s̃2):

X̃p,α =
(

1 − s

p

)α (
1 − s

p̄

)α
=

s̃i:=1−s/pi

s̃α1 s̃
α
2

≈ s̃1s̃2

H1−α(s̃1)H1−α(s̃2)
.

Figure 3.7: Oustaloup approximations of the implicit term X̃p,α with p = −0.514+j16.346,
α = 0.5 in the frequency range [ωl, ωh] = [0.5 rad

s , 500 rad
s ] with N = 5.
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Figure 3.7 holds an exemplary Bode plot showing the differences of the two ap-
proaches. Note that the imaginary part of the complex coefficients of H1−α(s̃1)
vanishes with H1−α(s̃2) leading to an overall approximation with real coefficients
only.

3.6 Illustrative Example

In order to illustrate the theoretical results, we consider the transfer function

G(s) = (s− 1)
(1 + s

2)(1 + s
3) (3.64)

of a plant that contains a dominant non-minimum phase zero at z = 1. Thus we
expect a significant undershoot in the step response.

To compare the different compensation and cancellation strategies, four controllers
are designed that all consist of classical PI control with time constant τ = 2, but
variable proportional gain ki:

C1(s) = k1
τs+ 1
τs

, C2(s) = k2
τs+ 1
τs

D1(s),

C3(s) = k3
τs+ 1
τs

Qz,2(s), C4(s) = k4
τs+ 1
τs

Q̃z,2(s).

On the one hand, C1 and C2 are integer-order controllers where C1 is a PI con-
troller only, however C2 pseudo compensates the non-minimum phase zero by means
of the mirrored pole D1, see (3.20). The controllers C3 and C4 contain the ex-
plicit and implicit fractional-order terms Qz,2 of (3.17) and Q̃z,2 of (3.21), respec-
tively. For comparability, the tuning of the proportional gains [k1, k2, k3, k4] =
[0.68, 0.772, 1.091, 0.7245] yields an open-loop crossover frequency of ωc = 0.54 rad/s
for all controllers. Note that the relatively high value of k3 is caused by the magni-
tude drop around ω = z (see Figure 3.1).

The Bode plot of the open loops Li = GCi, depicted in Figure 3.8 (next page),
reveals the differences between the controllers. As mentioned above, the magnitude
of L3 is higher for low frequencies due to the compensation of the magnitude drop
at the non-minimum phase zero. The magnitude slope for high frequencies is very
different, as expected from the previous considerations. Considering the phase, we
can observe the earlier drop of L3 compared to the others as well as the general
differences between the total phase lag in accordance with the magnitude slope.
The gain margin of all loops but L1 is Ar,i > 3 dB, i = 2, 3, 4 and Ar,1 = 1.26 dB.
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Figure 3.8: Bode plot of Li = GCi, i = 1, . . . , 4.

The phase margins are Φr,i > 55◦, i = 1, . . . , 4. Thus, we expect all controllers to
yield acceptable results apart from C1.

For time-domain simulations, we approximate the terms Qz,2 and Q̃z,2 of non-integer
order with an Oustaloup filter in the frequency range [ωl, ωh] = [0.001 rad

s , 1000 rad
s ]

with N = 5. The differences are clearly visible in the step response of the closed
loops, depicted in Figure 3.9 on the next page. The reference step is given at t = 0 s
whereas an input disturbance step occurs at t = 15 s.

Consider the time responses involving the integer-order controllers C1 and C2. Obvi-
ously, for the present controller tuning, it is necessary to address the non-minimum
phase zero, since C1 leads to unacceptable behavior for both steps. It is evident that
better controller tuning would reduce the oscillations. Still, the additional elements
yield a significant reduction of both the initial undershoot as well as the oscilla-
tions. The integer-order pseudo compensation with C2 also improves the behavior.
In comparison with C3 and C4 however, it is significantly slower while only showing
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Figure 3.9: Closed-loop time-responses to a step in the reference at t = 0 s and the dis-
turbance at t = 15 s.

little reduction of the undershoots. The controllers with explicit cancellation C3

and implicit compensation C4 show very similar behavior, where C3 leads to faster
convergence for both steps. This is caused by the higher proportional gain to achieve
the same crossover frequency ωc.
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4 Modeling of the Two-Mass Oscillator

The laboratory setup of the experiment is investigated in this chapter in order to de-
rive a detailed model for later controller synthesis as well as simulation studies. The
considered plant is a two-mass oscillator with non-collocated actuator and measure-
ment as depicted in Figure 4.1 in the laboratory setup. The plant is connected to the
power supply and the real-time hardware (SpeedGoat Real-Time Target Baseline-S
with IO183 interfacing card [40]) which is used to control the process. Thus, it
receives and processes the measurement data in order to send the control signal to
the actuator unit and therefore allows to artificially inject a communication delay.
It is also connected to the computer for real-time interaction with the plant.

Power
Supply

Two-Mass
Oscillator

Real-Time
Target

Figure 4.1: Laboratory setup of the experiment consisting of power supply, plant (two-
mass oscillator), real-time target (SpeedGoat) and computer.

In the following section a linear model of the plant is derived. In Section 4.2 we
identify the stroke-dependent force which is typical for the utilized actuator unit.
Afterwards, the process noise is characterized by a normal distribution and two har-
monics in Section 4.3. Finally, in Section 4.4, the model for the controller synthesis
is presented, i.e. the linear plant model combined with a communication delay.

Parts of this chapter have been submitted to an IFAC conference for possible publi-
cation [44].
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Modeling of the Two-Mass Oscillator

4.1 Physical Model

A detailed illustration of the plant in the laboratory setting is given in Figure 4.2.
The plant consists of two masses m and M that are subjected to gravity d = −mg
and D = −Mg, respectively, where g is the gravity constant. The active mass m
with bounded displacement x1(t) ∈ [0 mm, 20 mm] is controlled by the actuator
unit (MGV 52 [1]) that receives the control signal u(t) ∈ [0 V, 10 V]. A spring with
spring constant k connects the active mass with the load (passive mass M). For
control we can only utilize the load position x̃3(t) which is obtained by contact-less
measurement (BAW003K [3]).

k

x1

x3

D

d

M

m

u

k

m

M
x3

u

x1

d

D

Sensor

Figure 4.2: Experimental setup of the two-mass oscillator [36, 37] with actuator and
contact-less measurement unit.

To derive the physical model of the plant, we use relative coordinates of the load
position, i.e. x3(t) = x̃3(t) − x̃3,0, where x̃3,0 is the steady-state measurement for
u = 0. The current dynamics are neglected, since the inductance of the actuator is
relatively small [1]. Similar to [37], this yields

mẍ1 = − (η + ζ) ẋ1 − k (x1 − x3) + ζẋ3 + d+ Ψ
R
u , (4.1a)

M ẍ3 = ζ (ẋ1 − ẋ3) + k (x1 − x3) +D. (4.1b)

Note that the time argument of the control signal u(t) and states xi(t), i ∈ {1, 3} is
omitted for brevity. The damping of the active and the passive mass are denoted as
η and ζ with ζ ≪ η. The actuator is characterized by the resistance R and the back
electromotive force (EMF) constant Ψ. The nominal values of the model parameters
are summarized in Table 4.1.
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Modeling of the Two-Mass Oscillator

Table 4.1: Nominal values of model parameters.
Parameter Value Unit Meaning

k 200 N/m Spring constant
m 0.6 kg Active mass
M 0.75 kg Passive mass (load)
η 200 kg/s Viscous damping of active mass
ζ 0.02 kg/s Viscous damping of passive mass
Ψ 17.16 Vs/m Actuator EMF constant
R 5.23 V/A Actuator resistance

We can reformulate (4.1) leading to the state space representation

ẋ = Ax+Bu+ E

 d
D

 , x(t0) = x0 , (4.2a)

y = Cx (4.2b)

with the state vector x = [x1 x2 x3 x4]⊤ where x2 = ẋ1, x4 = ẋ3 and initial condi-
tions x0. The system matrix A, input matrix B and disturbance matrix E are given
by

A =



0 1 0 0
−k
m

−1
m

(η + ζ) k
m

ζ
m

0 0 0 1
k
M

ζ
M

−k
M

−ζ
M


, B =



0
Ψ
Rm

0

0


and E =



0 0
1
m

0

0 0

0 1
M


,

the output matrix is C =
[
0 0 1 0

]
.

As we assume the gravitational forces d and D to be constant and known, constant
feedforward-action can be applied. For this purpose, consider (4.1) and choose the
coordinate system to be located at the equilibrium point with respect to D. Then,
we can apply the feed-forward action ud = −(d+D)RΨ = (m+M)gRΨ to compensate
the gravitational forces. Therefore, it is not necessary to include d and D into further
considerations.

For later loop-shaping controller design, it is necessary to describe the input-output
behavior in terms of a transfer function. Using the state space realization (4.2) with
the nominal parameter values (Table 4.1) yields

Gyu(s) = C (sI − A)−1 B = 0.14583 (s+ 104)
s (s+ 332.4) (s2 + 1.027s+ 267.4) (4.3)
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that consists of a stable fast pole (p1 = −332.4) and zero as well as an integra-
tor (p2 = 0) and a low-damped complex pole-pair at p3,4 = −0.514 ± j 16.346. The
location of the poles in the complex plane is depicted in Figure 4.3.

Figure 4.3: Location of the plant poles in the complex plane.

Figure 4.4: Open-loop impulse response of the experiment and the simulation.
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Having established a linear model, we can compare the open-loop model response
to the behavior of the physical plant in order to gain insight into the accuracy of
the model fit. For this purpose, starting from x0 ≈ [0.0085 0 0.0085 0]⊤, the open
loop is exited with

u(t) = ud + σ (t− t1) − 2σ (t− t1 − Tp) + σ (t− t1 − 2Tp)

where σ(·) denotes the step function, i.e. a zero-mean square pulse starting at
t1 = 1 s with pulse width Tp = 0.5 s. Figure 4.4 presents the simulation and
experimental results. Apparently, the eigenfrequency ω0 = 16.346 rad/s of the model
and physical process coincides. Still, significant differences can be observed, on the
one hand in the transient peaking, in the damping on the other hand. It seems
to be not only linear viscous damping. A controller has to compensate for these
non-modeled effects, hence has to be robust.

4.2 State-Dependent Input Gain

As it is typical for voice coil motors, a stroke-dependent force of the actuator
(AVM60-25 [1]) can be observed. Using a controller that contains an integrator to
achieve stationary precision and targeting different reference positions in a closed-
loop setup, it becomes visible in terms of a state-dependent input gain. We denote
the input gain as ku(x1) where x1 is the position of the active mass. Only the
position of the passive mass x3 can be measured. However, due to the connecting
spring, their relative displacement coincides in steady-state: x1,ss = x3,ss. Hence, for
a given steady-state reference position rss of the hanging load, the applied steady-
state control signal can be seen as dependent on the position of the active mass
uss = uss(x1,ss). This allows to identify ku(x1) in the described setup. We consider
two initial conditions x0,1 = [0 0 0 0]⊤ and x0,2 = [0.02 0 0.02 0]⊤, i.e. the lower
and the upper limit of the actuator range, and target a grid of reference positions.

Figure 4.5 shows the experimental results as well as the least-squares optimal,
second-order polynomial fit

uss(x1,ss) = 2123.20 x2
1,ss − 37.84 x1,ss + 4.69. (4.4)

Now we make use of the equilibrium of forces between the actuator and the gravi-
tational forces to calculate ku(x1), which yields:

(m+M)g = ku(x1) uss(x1)
Ψ
R

=⇒ ku(x1) = (m+M)gR
Ψ uss(x1)

. (4.5)
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Figure 4.5: Experimental identification of the steady-state input voltage to compensate the
gravitational forces. ‘Step-up’ and ‘Step-down’ refer to the initial conditions
x0,1 and x0,2, respectively.

For later simulation studies, ku(x1) is utilized to improve the model. It is worth
mentioning that the inverse of this nonlinearity cannot be used for control purposes
since only the position of the hanging load is measured. However, we can use the
mean of the inverse input gain µ (k−1

u ) as a static pre-compensation.

4.3 Process Noise Model

In order to identify a process noise model of the experimental setup, measurements
are conducted for the resting masses, i.e. for u = 0. The length of an exemplary
measurement is 20 min at fs = 2 kHz leading to 2.4 · 106 data points. The power
spectrum of the mean-adjusted measurement data is shown in Figure 4.6. Obvi-
ously, there are three dominant peaks at f0 = ω0

2π = 2.6 Hz, f1 = 74 Hz as well
as f2 = 2f1 = 148 Hz. Furthermore, a peak at f3 = 3f1 and an elevation around
f = 771 Hz can be observed. However, both are well-damped and the elevation is
not present in all measurements. It probably arises due to other active machines
that are located near the experimental setup. Thus, the following discussions are
restricted to the three dominant peaks.
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Figure 4.6: Power spectrum of a process noise measurement at fs = 2 kHz.

The derivation of the process noise model is carried out in the following steps:

1. Pre-processing of the measurement data

2. Normal distribution fit

3. Injection of the dominant harmonics

As f0 corresponds to the mechanical eigenfrequency, the hanging load is not per-
fectly resting. To ensure that the mechanical oscillations are not part of the noise
model, the measurement data is pre-processed with a high-pass filter with passband
frequency fp = 50 Hz. The two dominant peaks are addressed by notch-filters with
the edge frequencies [f1,l, f1,h] = [71 Hz, 77 Hz] and [f2,l, f2,h] = [143 Hz, 152 Hz]. The
resulting power spectrum is shown in Figure 4.6.

The histogram of the pre-processed data is depicted in Figure 4.7 and shows a
symmetrical bell shape. The normal distribution fit is determined with standard
deviation σnoise = 1.867 · 10−5 and mean µnoise = 0, which is part of Figure 4.7 as
well. The main characteristics are captured by the noise model. Utilizing this model
in simulation studies will thus lead to similar experimental results with respect to
noise attenuation. Therefore, this distribution fit is expected to be sufficient.

Finally, the two harmonics β1 and β2 are injected to reproduce the noise measure-
ment. The amplitude of each sine wave is determined by the power spectrum, see
Figure 4.6, whereas the relative phase shift is used to fit the histogram of the high-
pass filtered measurement data, depicted in Figure 4.8.

43



Modeling of the Two-Mass Oscillator

Figure 4.7: Histogram and normal distribution fit of the pre-processed measurement data.

Best results are achieved with

β1(t) = 3.166 · 10−5 sin
(

2πf1t− π

3

)
and β2(t) = 3.986 · 10−6 sin (2πf2t) . (4.6)

The histogram of the simulation results with the process noise model is generated
with the above-mentioned normal distribution as well as the two harmonics. The
resulting power spectrum is shown in Figure 4.9.

Figure 4.8: Histogram of the high-pass (HP) filtered measurement data and the simulation
results with the identified process noise model.

Both the histogram and the power spectrum confirm that the model is able to
describe the main process noise characteristics with only little differences in the
distribution on the one hand and deviations in the power spectrum on the other
hand.
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Figure 4.9: Power spectrum of the high-pass filtered measurement data and the simulation
results with the identified process noise model.

It is used to improve later simulation studies and the controller synthesis, i.e. the
frequencies f1 and f2 should be well-damped. Therefore, the model is considered to
be sufficient.

An interesting observation is made at measurements of the real-time hardware inter-
nal converters, i.e. the measurement unit [3] is turned off. In this case, the dominant
peaks are located at f̃1 = 50 Hz, f̃2 = 2f̃1 and f̃3 = 3f̃1 which coincides with the
frequency of the power supply grid. The power spectrum of an exemplary mea-
surement is shown in Figure 4.10 and reveals the origins of the peaks in the power
spectra of Figures 4.6 and 4.9. Note that the frequencies are shifted by ∆f ≈ 24 Hz,
i.e. fk = k

(
f̃1 + ∆f

)
with k = 1, 2, 3.

Figure 4.10: Power spectrum of a converter noise measurement at fs = 2 kHz.
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4.4 Communication Delay

The experimental setup allows to artificially inject an input delay τ , e.g. to simulate
a communication delay. It can be easily incorporated into the plant model and
reads

G(s) = Gyu(s) Gd(s) = 0.14583 (s+ 104)
s (s+ 332.4) (s2 + 1.027s+ 267.4)e

−τs. (4.7)

We investigate two cases. On the one hand, a dominant delay with the nominal value
τ1 = 2π

ω0
= 0.3844 s is considered. On the other hand, we regard a less significant

delay τ2 = τ1
5 = 0.07688 s.

Model (4.7) is the basis for the controller synthesis in the following chapter, where
both cases are considered.
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5 Controller Design

In this chapter, two different synthesis methods are utilized to design controllers
for the plant model G(s), provided in (4.7), including the communication delay τ .
On the one hand, H∞ controller synthesis methods are used to design a reference
controller in Section 5.1. On the other hand, fractional-order loop-shaping with
classical feed-forward is utilized as described in Section 5.2. Having discussed the
general design procedures, the design parameters and resulting controllers for two
different delays are presented afterwards. For a fair comparison, the controllers are
designed to have a similar order n, open-loop crossover frequency ωc and gain for low
frequencies. For good tracking performance two-degree of freedom (2DOF) control
structures are used.

The Padé-approximation Rj(s) of (2.24) is utilized to account for the time delay in
the H∞ framework. The order j depends on the dominance of the delay, i.e.

Gd(s) = e−τs ≈ Rj(s), j ∈ {1, 2} (5.1)
G̃(s) = Gyu(s) Rj(s) (5.2)

where we use the nominal value of the delay τi, i ∈ {1, 2} for the controller design
in each case. Note that Gyu(s) contains an integrator already, thus the additional
phase lag of low-order approximations (compare Figure 2.4b) is considered sufficient
for controller design. To ensure a fair comparison of the resulting controllers, G̃(s) is
also used for the fractional-order loop-shaping, where the first-order approximation
turns out to be sufficient. We expect the controllers to achieve a minimum phase
margin of 30◦ to allow for delay uncertainties.

Parts of this chapter have been submitted to an IFAC conference for possible publi-
cation [44].

5.1 Two Degree of Freedom H∞ Control

As we consider two nominal values for the communication delay separately, the next
section only presents the design procedure that is used in both cases. Afterwards,
the resulting controllers are given together with the corresponding open-loop Bode
plots. It follows a short discussion and justification for the chosen design structure.
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5.1.1 Design Procedure

The 2DOF control structure of Figure 5.1, inspired by [12], is used to achieve better
tracking performance.

C∞(s) Gyu(s)e−τs

G(s)

du(t)

r(t) u(t) y(t)

Figure 5.1: Two degree of freedom control structure.

Besides, disturbance attenuation of input disturbances is considered relevant. To
directly account for these disturbances, we extend the external input to w = [r du]⊤.
The elements of the performance output v = [v1 v2]⊤ are weighted with Wi and
chosen as

v1 = W1(y − r) and v2 = W2u. (5.3)

Ĉ∞(s)

G̃(s) W1(s)

W2(s)

P (s)

du(t)

r(t)

−

u(t)

v2(t)

−e(t) v1(t)y(t)

Figure 5.2: Structure of the extended plant P (s) used for the H∞ controller synthesis.

Thus, W1 considers the control error e = r − y and is therefore chosen as a low-pass
filter. A high gain for low frequencies yields an almost integrating behavior with a
pole at −ϵ. By weight W2, the control signal including the input disturbance du is
considered. Choosing it as a high-pass filter limits the tracking performance, however
ensures noise reduction by limiting the bandwidth of u. These considerations lead
to the weight functions proposed by [39]

W1(s) = 0.01(s+ z1,i)
s+ p1,i

and W2(s) = 0.95(s+ z2,i)
s+ p2,i

(5.4)

with p1,i ≪ z1,i, p2,i ≫ z2,i for i ∈ {1, 2} corresponding to the dominant and less
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dominant communication delay τ1 and τ2, respectively.

An illustration of the resulting generalized plant is depicted in Figure 5.2. The
transfer matrix reads

P (s) =



−W1(s) W1(s)G̃(s) W1(s)G̃(s)

0 W2(s) W2(s)

1 0 0

0 G̃(s) G̃(s)


with



V1(s)

V2(s)

R(s)

Y (s)


= P (s)


R(s)

Du(s)

U(s)


(5.5)

where the capital letters denote the Laplace transforms for zero initial conditions,
e.g V1(s) = L{v1(t)}(s) is the Laplace transform of v1.

As already described in Section 2.2.3, the MATLAB Robust Control Toolbox routine
hinfsyn (based on [8, 11]) can be used to synthesize a sub-optimal stabilizing 2DOF
controller Ĉ∞ determining∥∥∥∥P11 + P12Ĉ∞

(
I − P22Ĉ∞

)−1
P21

∥∥∥∥
∞

=
∥∥∥Fl

(
P, Ĉ∞

)∥∥∥
∞
< γ < 1 (5.6)

with γ = 0.96 (i.e. the transfer function from the external input w to the perfor-
mance output v). Since Ĉ∞ contains a pole at −ϵ with ϵ < 2 · 10−3, integrating
behavior can be stressed to achieve stationary precision:

Ĉ∞(s) = 1
ϵ+ s

C̃∞(s) ≈ 1
s
C̃∞(s) ≡ C ′

∞(s). (5.7)

Finally, we use a balanced truncation algorithm (balred based on [42]) on C ′
∞ to

reduce the controller order resulting in C∞ of order n∞ ≤ 7.

Table 5.1: Parameters of the weight functions W1(s) and W2(s) in (5.4) for the nominal
communication delays τ1 and τ2.

i Nominal Communication Delay τi p1,i z1,i p2,i z2,i

1 0.3844 s 0.0015 15 2850 3
2 0.07688 s 0.003 30 4750 5

5.1.2 Dominant Communication Delay τ1

Considering the dominant communication delay τ1 = 0.3844 s, it turns out to be
necessary making use of the second-order Padé-term R2(s) in (5.2). The weight
function parameters are chosen according to Table 5.1.
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Figure 5.3: Bode plot of the open-loop transfer functions for the dominant communication
delay τ1 with CFO,1 and C∞,1,y, respectively.

With the above-described procedure the resulting controller reads

C∞,1(s) =
[
C∞,1,r(s) C∞,1,y(s)

]
with (5.8a)

C∞,1,r(s) = −0.030643(s− 538.6)(s+ 31.93)(s+ 8.538)
s(s+ 507.2)(s+ 72.68)

· (s2 − 32.18s+ 1.846 · 104)(s2 − 314s+ 1.923 · 105)
(s2 + 9.086s+ 63.62)(s2 + 307.9s+ 1.36 · 105) , (5.8b)

C∞,1,y(s) = −3.3043(s− 3.893 · 104)(s− 1534)(s+ 62.69)
s(s+ 507.2)(s+ 72.68)

· (s+ 7.822)(s+ 0.6413)(s2 + 0.5762s+ 257.6)
(s2 + 9.086s+ 63.62)(s2 + 307.9s+ 1.36 · 105) (5.8c)

where C∞,1,r and C∞,1,y correspond to the reference r and the output y, respectively.
Figure 5.3 shows a Bode plot of the open loop L∞,1 = −C∞,1,yG for r = 0. The
crossover frequency of ωc,∞,1 = 1.44 rad/s, phase margin of Φr,∞,1 = 32.09◦ and gain
margin of Ar,∞,1 = 2.18 are determined numerically.
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The frequency response of the feedforward path F∞,1 = C∞,1,r from reference r to
control signal u, depicted in Figure 5.4, shows integrating behavior for low frequen-
cies. On the other hand, high frequencies of the reference signal are damped.

Figure 5.4: Bode plot of the feedforward paths for the dominant delay τ1 from r to u for
both control structures.

5.1.3 Small Communication Delay τ2

The weight function parameters for the small delay τ2 = 0.07688 s are part of Ta-
ble 5.1. In this case, the first-order Padé-approximation of the time delay (2.24a) is
sufficient, since the resulting zero and pole are at higher frequencies.
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This leads to the controller

C∞,2(s) =
[
C∞,2,r(s) C∞,2,y(s)

]
with (5.9a)

C∞,2,r(s) = 10.4903(s+ 70.34)(s2 − 139.5s+ 1.889 · 105)(s2 − 1063s+ 1 · 106)
s(s+ 9.152)(s2 + 1078s+ 3.334 · 105)(s2 + 441.1s+ 2.903 · 105) ,

(5.9b)

C∞,2,y(s) = −7.1364 · 105(s+ 2065)(s+ 340.2)(s+ 1.081)(s2 + 1.569s+ 257.6)
s(s+ 9.152)(s2 + 1078s+ 3.334 · 105)(s2 + 441.1s+ 2.903 · 105) .

(5.9c)

Figure 5.5: Bode plot of the open-loop transfer functions for the small communication
delay τ2 with CFO,2 and C∞,2,y, respectively.

Figures 5.5 and 5.6 show the Bode plots of the open loop L∞,2 = −C∞,2,yG for r = 0
as well as the feedforward path F∞,2 = C∞,2,r, respectively. In comparison with
the dominant delay, the feedforward action is very similar, however shifted towards
higher frequencies. The Bode plot of the open loop reveals that a crossover frequency
of ωc,∞,2 = 2.51 rad/s, a phase margin of Φr,∞,2 = 40.03◦ and a gain margin of
Ar,∞,2 = 5.20 are achieved. This highlights the effect of the non-minimum phase zero
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on the achievable bandwidth, as controller C∞,2 leads to a higher crossover frequency
and larger margins due to the significantly smaller communication delay and hence
faster non-minimum phase zero of the Padé-approximation (compare (2.24a)).

Figure 5.6: Bode plot of the feedforward paths for the small delay τ2 from r to u for both
control structures.

5.1.4 Discussion

It is worth mentioning that H∞ control of systems involving a time delay is a broadly
discussed topic with different proposed methods and solutions, see for example [28]
and the references therein. Many propositions are predictor-based, e.g. [19, 25, 51],
where some are suitable for unstable plants as well, utilizing a modified Smith pre-
dictor. Still, given a plant with fast stable eigenvalues, the modified Smith predictor
may lead to numerical issues [51, p. 154]. To overcome this problem, a unified Smith
predictor is proposed where further research is needed to solve the corresponding
H∞ problem [51].
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Note that this thesis focuses on fractional-order partial pole-zero cancellation, its
application to a physical experiment and comparison to a suitable reference con-
troller. Therefore, the reference controller, i.e. the H∞ controller, is chosen to be
designed based on the standard H∞ problem described in Section 2.2 using a ratio-
nal approximation of the time delay. For comparability, the same model structure
is utilized in the fractional-order loop-shaping design procedure.

Since the standard S/T - or S/CS-mixed-sensitivity H∞ controller synthesis meth-
ods [39] did not lead to sufficient results with respect to tracking performance, the
proposed 2DOF control structure is used, inspired by [12]. To keep the controller
order low, low-order weight functions and Padé-approximations are chosen.

As stated above, the input of the generalized plant is extended with du to increase the
disturbance attenuation capabilities of the controller. However, as the H∞ controller
ensures

∥∥∥Fl
(
P, Ĉ∞

)∥∥∥
∞
< γ, the input extension leads to an injected lower bound

for γ. To see this, consider the relevant sensitivities:

Tv1r,∞ = W1

(
GĈ∞,r

1 −GĈ∞,y

− 1
)

= W1 S̃y, Tv1du,∞ = W1
G

1 −GĈ∞,y

= W1 Su,

(5.10a)

Tv2r,∞ = W2
Ĉ∞,r

1 −GĈ∞,y

= W2 Ĉ∞,r Sy and Tv2du,∞ = W2
1

1 −GĈ∞,y

= W2 Sy.

(5.10b)

Note that, due to the 2DOF control structure, S̃y does not coincide with Sy of (3.57),
its amplitude response approaches, however, zero for low and one for high frequencies
(see e.g. the Bode plots in Figures 5.3 to 5.6). Thus, it is natural to choose W1

as a low-pass filter for Tv1r,∞ and Tv1du,∞ in order to stress an (almost) integrating
behavior. The sensitivity Tv2r,∞ shows the bandwidth-limiting effect of the high-pass
filter W2. Finally, consider Tv2du,∞ where W2 is combined with Sy leading to

lim
ω→∞

|W2(jω)Sy(jω)| |Sy(jω)|
ω→∞−−−→ 1= lim

ω→∞
|W2(jω)| (5.4)= 0.95 ≤ γ.

We can thus conclude
0.95 ≤

∥∥∥Fl
(
P, Ĉ∞

)∥∥∥
∞
< γ. (5.11)

Still, W2 dominates W1 for high frequencies and can be used successfully to tune a
robust controller as the results show in the next chapter.

The balanced-truncation order-reduction algorithm balred (based on [42]) is not
only used to keep the controller order low but also to ensure that all poles of the
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controllers satisfy 10|pi| < 2πfs where fs = 5 kHz is the sampling frequency. In the
present cases, it does not affect the H∞ norm.
Note that little notches can be observed around ω = ω0 in the open-loop Bode plots
in Figures 5.3 and 5.5. These result from the order-reduction and are not caused by
the H∞ controller synthesis.

5.2 Fractional-Order Loop-Shaping with Classical Feedforward

Having designed the reference controllers, now we consider the classical PI-Lead
controller design that is enhanced with partial cancellation of the non-minimum
phase zero of G̃(s). Furthermore, the complex pole-pair at ω0 = 16.346 rad/s is
subjected to an integer-order compensation. For comparability, the 2DOF control
structure of Figure 5.7 is utilized.

Since the design procedure equals for both delays, it is presented first. Afterwards
the classical feedforwad action based on the model-inverse is discussed. It follows
a description of the resulting controllers for both nominal delays and this section
concludes with a short discussion on alternative approaches.

CFO(s) Gyu(s)e−τs

G(s)

du(t)u∗(t)

r(t) e(t) u(t) y(t)

−

Figure 5.7: Control structure with feedforward action u∗(t).

5.2.1 Fractional-Order Loop-Shaping

Consider the communication delay τi, i ∈ {1, 2} that results in a non-minimum phase
zero in G̃(s) due to the Padé-approximation (2.24a). This is close to the desired
crossover frequency ωc, see (5.2) and Figures 5.3 and 5.5. Recall that partial cancel-
lation of a non-minimum phase zero can effectively reduce the phase lag, compared
to an integer-order pseudo compensation by its mirrored pole. Chapter 3 further
states that, in case of phase limitations, the implicit partial cancellation yields less
phase loss. Therefore, the non-minimum phase zero of the Padé-approximation
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at z = 2/τi is partially compensated with the implicit term Q̃z,ν of (3.21). The or-
der ν = α−1 = 2 is chosen such that the phase lag is minimized and some magnitude
slope is preserved to help keeping the magnitude low at ω0. The Bode plots of the
resulting Q̃2/τi,2 are presented in Figures 5.8 and 5.9.

It turns out that a PI controller design for Q̃2/τi,2G̃ aiming at similar crossover
frequencies as ωc,∞,i is difficult for two reasons. On the one hand, despite the
minimum order ν = 2, the applicable proportional gain is bounded due to the
necessary damping of the magnitude peak at ω0. Recall that the model damping
is overestimated (see the open-loop time-response in Figure 4.4), it is therefore
necessary to further address the magnitude peak. For this purpose, we make use of
the integer-order filter

Fpp(s) = 0.034 (s2 + 1.027s+ 267.4)
s+ 9 (5.12)

that compensates the stable pole-pair. The frequency response is part of Fig-
ure 5.8. Although Fpp is non-proper, the combination of all elements results in
overall proper controllers CFO,i, see (5.17) and (5.20). The pole is chosen to satisfy
ω0 < |p| < ωc, such that the damping at ω0 is further increased with only little phase
loss around ωc.

However, even more positive phase is needed to achieve acceptable phase margins.
Therefore, a lead-element is added to the PI-controllers resulting in KPIL,i.

In order to use the controllers

C̃FO,i(s) = KPIL,i(s)Fpp(s) Q̃−1
2/τi,2(s) (5.13)

with fractional-order elements in a real-time experimental setup, an integer-order
approximation of the fractional-order terms Q̃2/τi,2 is necessary, see Section 2.1.5.
We therefore make use of the Oustaloup approximation described in Section 3.5.
Aiming at controller orders similar to the H∞ controllers, a low-order approxima-
tion is necessary. By restricting us to the relevant frequency range [ωl,i, ωh,i], even
approximations with N = 1, leading to an order Noust = 3, achieve acceptable results
in the crossover region. This can be observed in Figures 5.8 and 5.9.
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5.2.2 Feedforward Action

As a second-degree of freedom the classical feedforward action [16]

u∗(t) = −CA3x∗(t) + r(3)(t− τi)
CA2B

(5.14)

is applied, where the matrices A, B and C correspond to the model equations in (4.2)
and x∗(t) denotes the state fitting the desired trajectory. Note that the third-order
derivative of the reference trajectory r(t) is necessary, which can be calculated offline
since function r(t) is known a priori.

We use the Laplace transform L{·}(s) for zero initial conditions in order to calculate
the feedforward path FFO,i from the reference r to the control signal u, which reads

L {u∗(t)} = −CA3L {x∗(t)} + s3L {r(t− τi)}
CA2B

with
L {x∗(t)} = (sI − A)−1B L {u∗(t)} .

By denoting U∗(s) = L {u∗(t)} and R(s) = L {r(t)} (as used in (5.5)), we get

U∗(s)
R(s) = s3e−τis

CA2B + CA3(sI − A)−1B

= G−1
yu (s) e−τis

that is the inverse of the plant model shifted in time. The overall feedforward path
therefore leads to the non-proper

FFO,i(s) = CFO,i(s) +G−1
yu (s) e−τis. (5.15)

Recall that the reference signal is known a priori, hence no feasibility problems are
encountered.

5.2.3 Dominant Communication Delay τ1

The described procedure leads to the PI-Lead controller

KPIL,1(s) =
213 (s+ 2)

(
s+ 2

3

)
s (s+ 6) (5.16)

for the dominant delay τ1. The Bode plot is shown in Figure 5.8.
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Figure 5.8: Bode plot of the controller elements for CFO,1.

The fractional-order term Q̃2/τ1,2 to partially compensate the non-minimum phase
zero is depicted in Figure 5.8 alongside with its integer-order approximation in the
frequency range [ωl,1, ωh,1] =

[
0.05 rad

s , 50 rad
s

]
.

Including the approximation, the overall controller for the dominant delay reads

CFO,1(s) = 120.2(s+ 14.09)(s+ 6.092)(s+ 5.292)(s+ 2)(s+ 0.6667)
s(s+ 6)(s+ 5.484)(s+ 5.203)(s+ 8.015)

· (s2 + 1.027s+ 267.4)
(s+ 9)(s+ 33.32) . (5.17)

The same controller order as C∞,1(s) of (5.8) is achieved with nFO,1 = n∞,1 = 7. The
frequency characteristics of the open-loop LFO,1 = CFO,1G is shown in Figure 5.3 op-
posite to the H∞ controller. An open-loop crossover frequency of ωc,FO,1 = 1.49 rad/s,
phase margin of Φr,FO,1 = 37.36◦ and gain margin of Ar,FO,1 = 1.81 can be ob-
tained.
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The feedforward action, depicted in Figure 5.4, consists of two parts, where CFO,1

dominates at low frequencies and G−1
yu at high frequencies. We can observe a con-

tinuously increasing phase lag due to the time-shift and the magnitude plot shows
the characteristic notch of the model-inverse.

5.2.4 Small Communication Delay τ2

Considering the small delay τ2, the PI-Lead controller design results in

KPIL,2(s) =
160 (s+ 2)

(
s+ 5

3

)
s (s+ 3.2) (5.18)

with the frequency response given in Figure 5.9. Note that, although the phase-lift
caused by the lead element is not obvious, KPIL,2 cannot be reduced to a PI controller
only. Consider for example

KPI(s) = 160 (s+ 1.048)
s

(5.19)

that reasonably matches the asymptotic frequency response of KPIL,2. Still, KPIL,2

shows less phase lag in the relevant region, as it can be seen in a Bode plot in
Figure A.3. It is assumed however that the lead element is not crucial in this
case and a similar frequency response could be determined by making use of the
remaining degrees of freedom, e.g. the pole of Fpp in combination with the zero of
the PI controller. Furthermore, such a combined design of all elements would lead
to a lower-order controller.

The integer-order approximation of the implicit fractional-order term Q̃2/τ2,2 is de-
termined for [ωl,2, ωh,2] =

[
0.5 rad

s , 500 rad
s

]
and is part of Figure 5.9. The resulting

overall controller is given by

CFO,2(s) = 622.09(s+ 26.9)(s+ 34.91)(s+ 114.9)(s+ 2)(s+ 1.667)
s(s+ 3.2)(s+ 9)(s+ 26.01)(s+ 28.83)

· (s2 + 1.027s+ 267.4)
(s+ 54.13)(s+ 307.2) (5.20)

and leads to the open-loop behavior and feedforward action depicted in Figures 5.5
and 5.6, respectively. The open-loop crossover frequency is ωc,FO,2 = 2.41 rad/s, the
phase and gain margins are Φr,FO,1 = 39.85◦ and Ar,FO,1 = 4.16, respectively.
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Figure 5.9: Bode plot of the controller elements for CFO,2.

5.2.5 Discussion

There are a few things to mention considering the proposed design procedure that
leads to an open-loop frequency response of LFO,i is similar to L∞,i, see Figures 5.3
and 5.5.

First, the time delay approximation in (5.1) has a stable pole that could be com-
pensated as well. However, this would significantly reduce the magnitude slope,
hence the damping of the magnitude peak. Furthermore, not enough positive phase
is injected into the crossover region which does not yield similar results. Therefore,
the pole is not compensated.

Second, having not enough phase margin with the integer-order PI controller, it
would be natural in the scope of fractional-order controller design to make use of a
fractional-order integrator, i.e. a PIµ controller with µ ∈ (0, 1) [29], see Section 2.1.4.
Following this idea, we may encounter two issues. In comparison with the H∞ con-
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troller, the resulting open-loop shows less magnitude slope for low frequencies and
thus violates the design specifications. Furthermore, the step response to an input
disturbance shows slow convergence only, even if the fractional-order term is approx-
imated in a small frequency range, see Figure A.6. An exemplary controller design
and further results are part of Appendix A.2.

Having discussed the partial cancellation of stable conjugate complex poles in Sec-
tion 3.3, it could be used instead of the integer-order cancellation of the pole pair.
However, the main difficulty caused by the pole pair is the amplitude peak at ω0,
which is only partially compensated using the implicit representation. Further
damping could be introduced by explicit partial cancellation, see Figure 3.4. How-
ever, this leads to a significantly earlier phase drop. Thus, the integer-order can-
cellation is preferred in this case, only the dominant non-minimum phase zero is
subjected to partial cancellation.

5.3 Comparison

For both values of the nominal communication delay, the controllers of similar order
show very similar open-loop frequency characteristics for r = 0 with ωc,∞,i ≈ ωc,FO,i,
i ∈ {1, 2}. However, differences in the feedforward paths can be observed, see
Figures 5.3 to 5.6. In comparison with C∞,i, the classical feedforward control is
expected to act faster and more aggressive.

In order to investigate the robustness against input disturbances du, the disturbance
sensitivity function

Syd(s) = Gyu(s)
1 + C(s)Gd(s)Gyu(s)

(5.21)

is depicted in Figure 5.10 for the nominal time delays τi, where CFO,i and −C∞,i,y

correspond to the fractional-order loop-shaping and the 2DOF H∞ control, respec-
tively. Obviously, there are only slight differences in the crossover region for τ1 and
around ω0 for τ2 leading to∥∥∥Syd,FO,1

∥∥∥
∞

= 0.0173,
∥∥∥Syd,∞,1

∥∥∥
∞

= 0.0203, (5.22a)∥∥∥Syd,FO,2

∥∥∥
∞

= 0.0164 and
∥∥∥Syd,∞,2

∥∥∥
∞

= 0.0178. (5.22b)

In order to find the reason for the differences in the feedforward paths, we con-
sider the weighted sensitivities in (5.10) and the feedforward action based on the
model-inverse in (5.14). These can be combined to the weighted sensitivities for the
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(a) Dominant communication delay τ1.

(b) Small communication delay τ2.

Figure 5.10: Magnitude plot of the input disturbance sensitivity function for both con-
trollers and communication delays.

fractional-order loop-shaping controller

Tv1r,FO = W1

(
GFFO

1 −GCFO
− 1

)
, Tv1du,FO = W1

G

1 −GCFO
, (5.23a)

Tv2r,FO = W2
FFO

1 −GCFO
and Tv2du,FO = W2

1
1 −GCFO

(5.23b)

where index i ∈ {1, 2} and argument ‘s’ are omitted for clarity. As described in
Section 5.1.4, W2 limits the bandwidth. Being interested in the feedforward action,
we need to have a closer look at Tv2r,FO = W2SyFFO. Knowing that FFO is non-proper
and

lim
ω→∞

(W2(jω)) = 0.95, lim
ω→∞

(Sy(jω)) = 1,
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we can conclude that
lim
ω→∞

(Tv2r,FO(jω)) = ∞,

hence ∥Tv2r,FO∥∞ is unbounded. This obviously violates the constraint for the upper
bound γ and, thus, cannot be achieved within the chosen H∞ controller synthesis
framework.

The H∞ norms of the remaining weighted sensitivities in (5.23) with the weight
functions Wi of (5.4) and the corresponding parameters in Table 5.1 are summarized
in Table 5.2. The fractional-order loop-shaping controller CFO,i with feedforward
path FFO,i already contains the Oustaloup approximation of the fractional-order
elements. For comparison, the H∞ norms of the weighted sensitivities (5.10) using
the 2DOF H∞ controller C∞,i are presented as well. As discussed in Section 5.1.4, we
have ∥Tv2du∥∞ = 0.95 in all cases due to the structure of the generalized plant P and
the weightW2. The sensitivities Tv1r and Tv1du consider the effect of the reference and
input disturbance on the weighted error, i.e. the performance output v1 (cf. (5.3)).
The feedforward action based on the model-inverse leads to a significant reduction
of ∥Tv1r∥∞ for the fractional-order controllers. However, the performance of the
H∞ controllers is slightly better regarding input disturbances in terms of ∥Tv1du∥∞.
Since the weight functions are designed for each nominal value of the time delay
separately, we do not generally expect better performance values for the smaller
delay τ2 by means of the H∞ norms in Table 5.2.

Table 5.2: H∞ norms of the weighted sensitivities (5.10) and (5.23) based on the first-order
Padé-approximation of the nominal time delays τi, i ∈ {1, 2}.

Controller ∥Tv1r∥∞ ∥Tv1du∥∞ ∥Tv2r∥∞ ∥Tv2du∥∞

C∞,1 0.2340 0.0030 0.0701 0.9500
CFO,1 0.1218 0.0032 ∞ 0.9500
C∞,2 0.2762 0.0019 0.0993 0.9500
CFO,2 0.0526 0.0020 ∞ 0.9500

Having designed and compared the different controllers for the two nominal values
of the communication delay, the next section describes the results if we apply these
controllers to the simulation model and experimental setup.
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6 Simulation and Experimental Results

The evaluation considers two main objectives: the disturbance attenuation and the
tracking performance. For the simulation studies, the model derived in Chapter 4 is
utilized. It contains the linear part of the plant, see (4.2), the state-dependent input
gain ku (x1) of (4.5), the process noise model of Section 4.3 and the communication
delay τ . In practice, a communication delay is expected to be hardly constant and
well-estimated. Thus, the robustness of the controllers against delay uncertainties
is of special interest. The artificially injected delay therefore varies by ±10 %, that
is τ = τi(1 ± 0.1), i ∈ {1, 2}.

The laboratory setup of the two-mass oscillator is shown in Figures 4.1 and 4.2.
Closed-loop experiments show a sticking phenomenon of the actuator similar to
static friction. To counteract this phenomenon, a low-amplitude, however high-
frequency jitter signal can be injected on top of the control signal, as suggested
in other fields [13, 14]. A square wave with the amplitude Aj = 0.4 V and the
frequency ωj = 450 rad/s yields best results. To estimate the effect of the jitter
signal on the output, consider the disturbance sensitivity function Syd in Figure 5.10.
The frequency ωj is not explicitly represented. Still, the magnitude is very small
for high frequencies |Syd(jω)| < −100 dB ∀ω > 100 rad/s leading to the expectation
of a sufficient damping despite the non-vanishing amplitude Aj. Furthermore, a
necessary adjustment of the input gain by km = 1.3 is revealed. This can be handled
with the static pre-compensation k−1

m .

Parts of this chapter have been submitted to an IFAC conference for possible publi-
cation [44].

6.1 Disturbance Attenuation

Regarding input disturbances, the largest effect on the output is expected for fre-
quencies ω ∈ Ωd =

[
0.1 rad

s , 20 rad
s

]
in both cases, i.e. τ = τ1 and τ = τ2 (see

Figure 5.10). In order to construct a disturbance du(t) of this frequency range with
limited amplitude, band-limited white noise is used via inverse Fourier transforma-
tion and normalization. This keeps the actuator output and states in the feasible
range (see Section 4.1).

A short period of exemplary time responses to the input disturbance is shown in
Figure 6.1 for the nominal value of the dominant communication delay τ = τ1. The
disturbance injection starts at t = 2 s. To be in the middle of the actuator range, the
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Figure 6.1: Exemplary time responses to the input disturbance for both controllers with
the nominal value of the dominant time delay τ = τ1. Measurement and sim-
ulation are abbreviated by ‘M.’ and ‘S.’, respectively.

initial conditions are chosen as x0,d = [0.01 0 0.01 0]⊤. Analogue time responses
for the small communication delay are depicted in Figure A.7 in Appendix A.3.1.
The similarity of the controllers in terms of their input disturbance sensitivity func-
tions (cf. Figure 5.10) is clearly visible in the time responses. Furthermore, apart
from only short-time deviations, e.g. around t = 6.3 s, the detailed simulation model
precisely captures the plant dynamics.

To evaluate the experimental and simulation results, we utilize several metrics. On
the one hand, the root-mean-square (RMS) error

eRMS =

√√√√ 1
N

N∑
n=1

e2
n (6.1)

is considered, where en = e(nTs) with sample time Ts = 2 · 10−4 s. On the other
hand, the maximum absolute error and control effort

|emax| = max
1≤n≤N

|en| and |umax| = max
1≤n≤N

|un| (6.2)

are determined (with un = u(nTs)).

The results are summarized in Table 6.1. First, consider the experimental results
for the dominant communication delay τ1 in Table 6.2a. Obviously, the best per-
formance is achieved with C∞,1 for the reduced communication delay τ = 0.9 τ1.
Focusing on the absolute values |emax| and |umax|, it outperforms CFO,1.
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Table 6.1: Disturbance attenuation simulations and experiments for both communication
delays: e in mm and u in V. Green indicates the best value of the considered
metric and nominal communication delay, whereas orange highlights the worst
performance.

(a) Dominant communication delay τ1 = 0.3844 s.
Experiments Simulations

Controller Metric τ = 0.9τ1 τ = τ1 τ = 1.1τ1 τ = 0.9τ1 τ = τ1 τ = 1.1τ1

C∞,1 eRMS 1.624 1.702 1.729 1.595 1.669 1.743
|emax| 7.603 7.986 8.511 6.130 6.501 6.849
|umax| 4.942 4.974 5.080 4.384 4.396 4.418

CFO,1 eRMS 1.637 1.632 1.692 1.576 1.641 1.703
|emax| 8.812 8.781 8.683 5.800 6.039 6.346
|umax| 5.031 5.010 5.114 4.384 4.397 4.408

(b) Small communication delay τ2 = 0.07688 s.
Experiments Simulations

Controller Metric τ = 0.9τ2 τ = τ2 τ = 1.1τ2 τ = 0.9τ2 τ = τ2 τ = 1.1τ2

C∞,2 eRMS 1.318 1.343 1.381 1.328 1.332 1.336
|emax| 5.787 6.015 6.495 5.305 5.357 5.409
|umax| 5.116 5.253 5.234 4.523 4.828 4.778

CFO,2 eRMS 1.303 1.359 1.431 1.314 1.318 1.324
|emax| 5.991 7.234 6.852 5.325 5.375 5.426
|umax| 4.889 5.088 4.929 4.431 4.743 4.444

However, the H∞ controller shows more variations for a change in τ than CFO,1, es-
pecially for the root-mean-square (RMS) error eRMS. The metrics for the simulation
results are similar to the experiments, as expected from the time response in Fig-
ure 6.1. However, even if the simulation model is detailed, there are still unmodeled
effects, see e.g. Figure 4.4. Therefore small deviations between the simulation and
experimental results can be observed. In the present case, the H∞ controller shows
the worst values in all metrics. It outperforms CFO,1 only once, where the differ-
ence between the two controllers is very little (fourth digit of |umax| for τ = 0.9 τ1).
All simulations with τ = 1.1 τ1 show the worst behavior for both controllers, as it
is naturally expected for the increased dominant time delay, hence reduced phase
margins.

Second, consider the simulation and experimental results for the small communica-
tion delay in Table 6.2b. Regarding the best values, the simulations and experiments
coincide principally. The RMS error is dependent on the delay, also for the small
nominal value τ2. The maximum values, however, do not show a consistent trend.
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All evaluation metrics are generally better for the small communication delay. This
is in accordance with the greater margins of the corresponding controllers, see Sec-
tions 5.1.3 and 5.2.4, and the smaller H∞ norms of the input disturbance sensitivity
functions in (5.22). In both cases the deviations between experiment and simulation
are sufficiently small. Hereafter we thus focus on the experimental results only.

Apart from the RMS and maximum values, we are interested in a characterization
of the disturbances impact on the energy of the control error and control effort. The
total energy of a signal u(t) is given by [9]

∥u∥2
2 =

∞∫
−∞

u(t)2dt. (6.3)

In order to compare the signal energy of experiments with different duration, it can
be normalized by the energy of the input (disturbance du). For this purpose, we
make use of the signal-to-noise ratio (SNR)

eSNR =
∑N
n=1 e

2
n∑N

n=1 d
2
u,n

and uSNR =
∑N
n=1 (un − uss)2∑N

n=1 d
2
u,n

(6.4)

for the control error and control effort, respectively, with du,n = du(nTs). Note that
we subtract the stationary part uss from the control signal which is necessary to
keep the load in the middle of the actuator range (x0,d).

Table 6.3: Signal-to-noise ratios in dB to characterize the effect of the disturbance on the
signal energy, i.e. control error e and control signal u.

Dominant Delay τ1 Small Delay τ2

Contr. Metric τ = 0.9τ1 τ = τ1 τ = 1.1τ1 τ = 0.9τ2 τ = τ2 τ = 1.1τ2

C∞,i eSNR −48.604 −48.182 −48.031 −50.405 −50.233 −49.993
uSNR −12.046 −11.318 −11.155 −9.761 −9.710 −9.469

CFO,i eSNR −48.534 −48.553 −48.192 −50.497 −50.144 −49.690
uSNR −11.512 −11.319 −10.789 −11.576 −11.249 −10.410

The results are summarized in Table 6.3. Obviously, uSNR is significantly larger than
eSNR which is natural since it is used to counteract the disturbance. The differences
between the controllers are rather small for each case of τi, i ∈ {1, 2}, there are
however visible deviations between the two cases. As expected for the error metric,
it decreases for smaller delays. This is not necessarily the case for the impact of the
disturbance on the input, which can be seen at uSNR for the nominal values τ = τi.
To sum up, in the case of the dominant delay τ1 the controller C∞,1 performs the
best in terms of the control effort energy, whereas CFO,2 yields the best results for
the small delay τ2.
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Figure 6.2: Frequency spectra of the input disturbance and the control errors for exper-
iments with both controllers CFO,1 and C∞,1 and the nominal value of the
dominant communication delay τ = τ1. The dashed black lines indicate the
frequency spectrum of the input disturbance Ωd which is used to calculate the
metrics in Table A.3.

Finally, consider the frequency spectrum of the disturbance in Figure 6.2. As stated
above, it is restricted to the frequency range ω ∈ Ωd and has a constant amplitude.
The applied jitter-signal has a significantly higher frequency and is therefore not
visible in this figure. It can be seen in Figure A.8 in Appendix A.3.1, where the fre-
quency spectra for the small delay are shown as well (see Figures A.9a and A.9b).

Using the disturbance du, we can qualitatively reproduce the magnitude plot of the
input sensitivity in Figure 5.10. The error spectra can be utilized to characterize
further evaluation metrics in terms of the maximum maxω |e(ω)|, mean µ(|e(ω)|)
and minimum min

ω
|e(ω)| for ω ∈ Ωd. These lead to similar results as the SNRs

above and thus can be found in Table A.3 in Appendix A.3.1.

6.2 Tracking Performance

In order to evaluate the tracking performance, sufficiently smooth set-point changes
from r0 to r1 are considered in terms of the transition polynomial

r(t) = r0 + (r1 − r0)
( 7∑
k=4

840 (−1)k−2

k (k − 2)! (7 − k)!

(
t

Tt

)k)
(6.5)

with transition time Tt = 2 s. The seventh order polynomial yields vanishing deriva-
tives at the boundaries for up to order three.
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To make use of the whole actuator range, the four set-point changes in Table 6.4 are
considered, where l, m and h abbreviate the positions low (5 mm), middle (10 mm)
and high (15 mm), respectively.

Table 6.4: Set-point changes with r0 and r1 used in the transition polynomial (6.5).
ri in mm mh hm ml lm

r0 10 15 10 5
r1 15 10 5 10

In order to allow quantitative evaluations, each set-point change is repeated three
times leading to the time responses depicted in Figure 6.3. It can be seen that the
set-point response differs between the directions, however the results seem repro-
ducible.

Figure 6.3: Exemplary experimental and simulation results using CFO,1 for the nominal
value of the dominant communication delay τ = τ1.

The following discussions are structured as follows. First, we consider the set-point
change lm to exemplary evaluate the tracking performance of the different controllers
for both cases of the nominal communication delay τi. The evaluation addresses
deviations from the nominal delay. Second, we look at the differences between the
set-point changes. For clarity reasons, the communication delay variations are not
considered.
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6.2.1 The Set-Point Change lm

Figure 6.4 presents exemplary simulation and experimental results for the set-point
change lm, i.e. from r0 = 5 mm to r1 = 10 mm using both controllers for the dom-
inant delay τ1. Due to little variations in the simulation results only, these are
restricted to the nominal case τ = τ1 (red dashed line). The overshooting of the
2DOF H∞ controller C∞,1 of (5.8) does not change for a variation of the commu-
nication delay. Hence, it is robust against delay uncertainties, however significantly
slower. Thanks to the more aggressive feedforward pat (5.15) of the fractional-order
controller CFO,1 of (5.17), it outperforms the H∞ controller.

(a) Closed-loop response using C∞,1 (5.8).

(b) Closed-loop response using CFO,1 (5.17) with prefilter (5.14).

Figure 6.4: Time responses to the set-point change for both controllers and the dominant
delay τ1 with initial conditions x0,t = [0.005 0 0.005 0]⊤ and a variation of
the communication delay by ±10 %.
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The sensitivity to delay variations is naturally caused by the explicit time-shift of
the reference signal in u∗(t) (see (5.14)). This confirms the expectations from the
different feedforward paths (see Figure 5.4) discussed in Section 5.3.

(a) Control signal of C∞,1 for the response in Figure 6.4a.

(b) Control signal of CFO,1 for the response in Figure 6.4b.

Figure 6.5: Control signals applied for the outputs in Figure 6.4 with the dominant com-
munication delay τ1.

Figure 6.5 presents the control signals leading to the outputs of Figure 6.4. The
slow, however robust action of the H∞ controller is clearly visible in Figure 6.5a.
The more direct and aggressive feedforward action of the fractional-order controller,
as well as the sensitivity to time delay uncertainties can be seen in Figure 6.5b.

If we consider the results for the small communication delay τ2 in Figure A.10,
the same qualitative conclusions can be drawn. Due to the higher bandwidth, the
control signals are significantly more affected by noise (see Figure A.11). Still, both
the output as well as the control action are less affected by time delay variations, as
it is expected for the less dominant delay.
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For the quantitative evaluation we utilize the metrics defined in (6.1) and (6.2),
averaged over three set-point changes. Furthermore, we make use of the integral of
time-multiplied absolute error (ITAE) [50] in its discrete version

eITAE =
NT∑
n=1

tn |en| (6.6)

with tn = nTs. This metric highlights the speed of convergence, hence significantly
greater values are expected for C∞,i. A time horizon of 20 s is used for the evaluation
metrics eRMS, eITAE, |emax| and |umax|. Finally, we are interested in the settling
time TIAE and use the integral of absolute error (IAE) [50] for t < TIAE:

eIAE =
NT∑
n=1

|ẽn| (6.7)

with NT = TIAE
Ts

, ẽn = ẽ(nTs) and |ẽ(t)| < 0.25 mm ∀t > TIAE. The maximum
deviation of 0.25 mm corresponds to 5 % of the step-size ∆r = |r1 − r0|. Due to the
upper bound on the absolute error, this metric is sensitive to outliers. Thereore, the
control error e is processed with a three-point moving-median filter resulting in ẽ.

Table 6.5: Quantitative evaluation of the tracking experiments.
Dominant Delay τ1 Small Delay τ2

Contr. Metric τ = 0.9τ1 τ = τ1 τ = 1.1τ1 τ = 0.9τ2 τ = τ2 τ = 1.1τ2

C∞,i eRMS 1.220 1.215 1.214 0.780 0.787 0.792
eITAE 138.994 133.097 152.730 68.983 66.144 70.730
eIAE 45.853 45.004 46.139 22.874 22.662 22.820
TIAE 8.007 7.192 8.708 2.785 2.670 2.690
|emax| 4.911 4.934 4.907 3.790 3.932 3.963
|umax| 5.030 5.047 5.061 5.240 5.248 5.252

CFO,i eRMS 0.104 0.149 0.221 0.089 0.083 0.098
eITAE 85.912 64.560 64.295 37.195 37.444 39.710
eIAE 5.563 4.630 6.486 1.584 1.564 1.852
TIAE 15.394 4.203 3.826 1.711 1.871 1.857
|emax| 0.474 0.784 1.205 0.647 0.582 0.712
|umax| 4.947 4.789 4.813 5.272 5.248 5.267

The results are summarized in Table 6.5 where the values for eRMS and |emax| are
given in mm, |umax| in V and TIAE in s. The calculation of the remaining metrics
eITAE and eIAE is based on en in m and tn in s. At first glance, in accordance with
the time plots, CFO,i with prefilter (5.14) outperforms the 2DOF H∞ controller in
almost all metrics. This is mainly caused by the different feedforward actions as
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discussed in Section 5.3. For a structured evaluation, we shortly discuss each metric
separately:

eRMS The RMS error for the first 20 s after each set-point change yields similar
conclusions as the time responses in Figures 6.4 and A.10. That is, the error
using C∞,i is an order of magnitude greater compared to CFO,i. However the
deviations are smaller for a variation of the communication delay.

eITAE As stated above, this metric highlights the speed of convergence, therefore
significant differences can be observed between the controllers and between the
nominal delays τi. Due to the weight t the overshoot has only a little impact, as
it can be seen at CFO,1. Even if the RMS error is minimal for this controller and
τ = 0.9 τ1, it shows a significantly worse ITAE indicating long-term deviations.

eIAE and TIAE The combination of the settling time with the IAE yields interesting
conclusions, as fast convergence does not necessarily result in a small IAE.
This can be seen at CFO,1 for τ = 1.1 τ1. As suggested by the time response,
the overshoot leads to a large error even for the minimal settling time. Next,
consider the significantly increased highlighted value. Thus, in accordance with
the high value of eITAE, the control error persists for a long duration. Looking
at eIAE, it can be seen that the best values are achieved for the nominal delay
τ = τi for all controllers.

|emax| The maximum absolute error of the H∞ controller is large however robust
against time delay variations. This is not the case for CFO,i where it signifi-
cantly increases for an increasing time delay.

|umax| As expected from the explicit time shift of the reference signal in u∗(t)
of (5.14) and the slower feedback control CFO, the maximum control effort
increases for any deviation from the nominal time delay τi. The H∞ controller,
in contrast, only shows small deviations and the best performance for the
smallest communication delay.

Finally, consider the time responses to a step-like reference signal in Figure 6.6, i.e.
a transition time of Tt = 0.2 s. Obviously, the aggressive feedforward action based
on the model-inverse (see (5.15)) leads to a saturation of the control signal, which is
not the case for the H∞ controller. This further highlights the differences between
the two controllers in the feedforward path. For this simulation, the nominal value
of the dominant communication delay τ = τ1 is used. However, similar results can
be obtained for τ = τ2.
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Figure 6.6: Simulation results for a step-like reference signal, i.e. a transition with transi-
tion time Tt = 0.2 s.

6.2.2 Entire Experiment

After having discussed the single set-point change lm for communication delay vari-
ations, we now consider the nominal values of the delays only, i.e. τ = τi, i ∈ {1, 2}.
Furthermore, we restrict the following discussion to the RMS error, as it is a broadly
used and an intuitive evaluation metric. Similar results can be derived for the re-
maining evaluation metrics, see Appendix A.3.2.

Figure 6.3 at the beginning of this section shows differences between the set-point
changes described in Table 6.4. The RMS error eRMS is utilized to characterize
these differences leading to the histograms in Figure 6.7. As discussed in the pre-
vious subsection, there are significant differences between the two controllers CFO,i

and C∞,i. Furthermore, the impact of the communication delay τi is clearly visible
in the histograms. Finally, it can be seen that the differences between the set-point
changes are systematic and the previously considered set-point change lm yields the
best overall performance. In contrast, the largest error using CFO,i with classical
feedforward is observed for hm (r0 = 15 mm), followed by the opposite set-point
change mh. This is not the case using the 2DOF H∞ controller. Therefore, it is
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(a) Dominant communication delay τ = τ1.

(b) Small communication delay τ = τ2.

Figure 6.7: Histogram of the RMS error eRMS for τ = τi and both controllers. The bar ori-
entation shows the direction of the set-point changes, e.g. the bars at the left-
hand side (r0 = 5 mm) correspond to the above-discussed set-point change lm.

most likely caused by the aggressive feedforward action based on the model-inverse
and the model fit is expected to be better in the lower range.

Furthermore, an analysis of the control signal u reveals a systematic change of the
system parameters which may arise over time and use of the experimental setup. For
this purpose consider Figure 6.8. It shows the necessary steady-state input voltage to
compensate the gravitational forces, which obviously differs from the identification
procedure in Section 4.2 and would lead to a change of the state-dependent input
gain ku(x1). Note that these changes are not caused by the necessary model gain
adjustment of km = 1.3, since it is pre-compensated with k−1

m .
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Figure 6.8: Recalculation of the steady-state input voltage to compensate the gravitational
forces based on the tracking experiments for the nominal values of the com-
munication delay τi.

6.3 Further Remarks

At the end of this chapter, two interesting observations are mentioned. First, con-
sider the applied jitter-signal, i.e. a square wave with frequency ωj = 450 rad/s.
This frequency almost coincides with the fundamental frequency of the process
noise f1 = 74 Hz, i.e. ωnoise = 2πf1 = 464.96 rad/s ≈ 450 rad/s = ωj.

Second, we consider the disturbance attenuation experiments. Before having found
the necessary jitter-signal to overcome the stiction-like phenomenon, few experi-
ments went unstable. This only applies to the large delay τ1, as the margins for
both controllers are significantly higher for the small delay. It happens more often
using the fractional-order loop-shaping controller CFO,1. Comparing the maximum
control effort |umax| of both controllers for the dominant delay, CFO,1 shows larger
values in each case of τ , see Table 6.2a, which explains this observation. The insta-
bility occurs at tmax ≈ 218 s where du(tmax) = 0.663 V = maxt |du(t)|. Exemplary
results are depicted in Figure 6.9 (next page). It shows the high value of the dis-
turbance that renders the process unstable, in combination with the large control
signal at this moment. Since the actuator position is not measured, the stiction-like
phenomenon cannot be shown here. However during the experiments it is clearly
visible and most likely the reason for the instability. The significantly better fit of
the simulation and experimental results with jitter-signal supports this assumption,
see e.g. Figures 6.1 and A.7.
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Figure 6.9: Unstable disturbance attenuation experiment without jitter-signal using CFO,1
for τ = 0.9 τ1.
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7 Conclusions and Perspectives

In this work, the partial pole-zero cancellation of integer-order right-half plane zeros
and poles is investigated and applied within a loop-shaping controller design proce-
dure. We start with a detailed analysis of fractional-order pseudo poles and zeros in
the frequency domain, as these remain from partial cancellation. Furthermore, the
fractional-order cancellation terms itself are considered and it is shown that these
only consist of stable roots and therefore do not affect the overall systems stability.
The concept to partially cancel a single integer-order zero/pole is extended to a
pair of conjugate complex zeros or poles. Here, we do not restrict us to those lo-
cated in the right-half plane, but also investigate partially canceled stable, however
low-damped poles.

Apart from classical (i.e. explicit) pseudo zeros and poles, the concept is extended to
their implicit counterparts (as a part of the fractional-order lead-lag compensator).
A comparison of these strategies within the above-mentioned scope reveals mainly
two significant differences. On the one hand, the amplitude response of an explicit
pseudo zero drops around the transitional frequency, which does not apply to the
implicit term. On the other hand, the phase drop of the explicit pseudo zero occurs
at lower frequencies already. Hence, for partial cancellation of an integer-order non-
minimum phase zero, which yields a lower-order (implicit) pseudo zero, the implicit
cancellation is preferred. Compared to an integer-order pseudo compensation by the
mirrored pole, we significantly reduce the phase lag as well as the loss of magnitude
slope with both strategies.
Considering a pair of stable poles, we show that the explicit cancellation of the
principal roots, i.e. the pseudo poles closest to the stability border, entirely erases
the oscillatory part. This applies to both the peak in the frequency response as
well as an overshooting in the time-domain. However, the implicit cancellation only
reduces these effects.

An analysis of the relevant sensitivity functions in a standard control loop confirms
that partial cancellation of right-half plane poles does not violate the internal sta-
bility, in contrast to the integer-order unstable pole-zero cancellation. Exemplary
simulation results show that partial cancellation of non-minimum phase zeros can
significantly reduce the step-response undershoot.

Therefore, the proposed concept can be applied as a tool for intuitive loop-shaping,
which is used in the second part of this thesis. We consider a two-mass oscillator
with non-collocated actuation and measurement and derive a linear time-invariant
fourth-order model, which overestimates the damping. In addition to that, the non-
linearity of the actuator is identified in terms of a state-dependent input gain and
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a process noise model is determined. To simulate a possible essential communica-
tion delay, we artificially inject a time delay and investigate two cases of different
dominance.

We design and compare, for each of these cases, two robust controllers including
feedforward action. On the one hand, fractional-order loop-shaping with classical
feedforward (i.e. based on the mode-inverse) is used to design a PI-lead based
controller. The Padé-approximation of the time delay leads to a non-minimum
phase zero that is addressed by implicit partial cancellation. On the other hand,
H∞ controller synthesis methods are used to determine a reference controller. For
comparibility, the controllers are designed to yield a similar open-loop crossover
frequency, gain for low frequencies as well as controller order.

To evaluate the robust controllers, disturbance attenuation and tracking experiments
as well as simulations are conducted with uncertainties in the communication delay.
We achieve comparable results, where the simulations only show minor deviations
from the measurements. Considering the nominal delays, the disturbance attenua-
tion capabilities are very similar for both control structures, as expected from the
corresponding sensitivity functions. However, the H∞ controller is more robust to
delay uncertainties. The tracking experiments reveal major differences between the
controllers, where the loop-shaping based controller outperforms the H∞ controller
in all relevant cases. This is caused by the differences in the feedforward paths,
i.e. the feedforward-action based on the model-inverse is more aggressive. Compar-
ing the weighted sensitivities of the controllers reveals that these results cannot be
achieved with the H∞ control structure in the present case. However, it shows to
be less sensitive to delay uncertainties.

Future Work

The future work can be categorized into three parts. The theoretical derivations
in this thesis are restricted to a partial cancellation of non-integer order α = ν−1

where ν is a positive integer. Investigations for any rational α = µ/ν ∈ (0, 1),
µ, ν ∈ N might be interesting, since in these cases we do not cancel everything but the
principal ν-th root and possibly reduce the phase lag. Similar to the case of stable,
low-damped poles, it might be sufficient to cancel only those pseudo zeros/poles
closest to the stability limit, i.e. those zi ∈ C+ in the sector α π

2 < | arg(zi)| < απ.
Furthermore, considering a conjugate complex pair of stable poles, a fractional-
order notch filter might enhance an intuitive fractional-order loop-shaping controller
design. In the scope of this thesis, we only apply partial cancellation, however
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the relative damping as a further degree of freedom may be promising. Finally, it
may be effective to incorporate the partial cancellation terms into controller tuning
strategies based on optimization problems resulting in an optimal order of partial
cancellation.

This leads to the second part, the plant model and controller design. It might
be interesting and effective for control to model or estimate the stiction-like phe-
nomenon of the actuator. To enhance the performance of the H∞ controller, differ-
ent design procedures may be applied, e.g. H∞ loop-shaping [39] or predictor-based
approaches [51]. Regarding the fractional-order loop-shaping controller, more ro-
bustness is expected if we incorporate for instance a disturbance observer [17] into
the control structure.

Finally, note that the proposed partial cancellation is applied to the Padé-approxi-
mation of a time delay, where the delay is artificially injected. An application to
a plant that naturally contains a right-half plane zero/pole or low-damped poles
might be interesting, e.g. an inverted pendulum.
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Appendix

A.1 Pseudo Zeros and Pseudo Poles: Calculations and Bode
Plots

This part of the appendix covers the necessary calculations leading to the results in
Chapter 3. Furthermore, Bode plots are shown for a RHP pseudo pole and a pair
of conjugate complex RHP pseudo zeros.

A.1.1 Pseudo Zeros and Poles

The Bode plot of a single pseudo pole for both representations is depicted in Fig-
ure A.1.

Figure A.1: Bode plot of X−1
z,α and X̃−1

z,α for z = 1 and α ∈ {0.25, 0.5} opposite to the
integer-order term Z−1

1 and its pseudo compensation Z−1
1 D1.
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The phase of a single explicit pseudo zero/pole at the frequency ωmin can be calcu-
lated as

∠ Xk
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∣∣∣
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and thus results in (3.9) for k = 1.

The magnitude at ω = z in (3.14) can be calculated as
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and the phase in (3.15) can be found by the following calculations:
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A.1.2 Implicit Pseudo Zeros and Poles

In order to calculate the magnitude and phase of the implicit terms Q̃k
z,ν and X̃k

z,α

for z = ω0e
jφ, z ∈ C+, without loss of generality consider
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Note that |φ| < π, therefore cos(φ) < 0 and thus
∣∣∣Q̃k

z,ν(jω)
∣∣∣2 > 0 ∀ω ∈ R+ ∪ {0}.

Analogue calculations lead to the analytic formulations for X̃k
z,α(jω).

A.1.3 Conjugate Complex Pair of Pseudo Zeros or Poles

The result in (3.27) can be found by the following calculations, where the zero-pair
is z = ω0e

jφ and z̄ = ω0e
−jφ:
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The analysis of Xz,α(jω)Xz̄,α(jω) leads to
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(
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and thus the magnitude and phase can be calculated. As this is straight forward and
does not disclose further insights, this task is left to the diligent reader. Another
possibility is to directly use (3.2) and (3.3) for z and z̄, as they are suitable for
complex zeros.

Figure A.2: Bode plot of Xz,α and X̃z,α for z = 1ej π
3 and α ∈ {0.25, 0.5} opposite to the

integer-order term Z2 and its pseudo compensation Z2D−1
2 .

The Bode plot of a pair of pseudo zeros is shown in Figure A.2.
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A.2 Controller Design

This section covers the relevant background for the statements of Section 5.2. First,
the differences between the designed PI-lead controller and a similar PI controller
are considered (Section 5.2.4). It follows a brief derivation of the PIµ controller
design which is mentioned in Section 5.2.5.

A.2.1 Small Communication Delay τ2

Figure A.3 shows a Bode plot of the PI-Lead controller of (5.18) and the similar PI
controller of (5.19). The asymptotic fit is clearly visible, however differences in the
crossover region (ωc,FO,2 = 2.41 rad/s) can be observed as well.

Figure A.3: Bode plot of the PI-Lead controller KPIL,2 of (5.18) opposite to a similar PI
controller KPI of (5.19).
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A.2.2 PIµ Controller Design for the Dominant Delay τ1

A natural way to enlarge the phase margin in the scope of fractional-order controller
design is to use an integrator of non-integer order. As discussed in Section 2.1.4,
it reduces the phase lag to −µ 90◦ regarding the fractional-order integrator s−µ,
µ ∈ (0, 1]. We present such a controller for the dominant communication delay and
simulation results in this section.

Table A.1: Elements of a PIµ controller for the dominant delay τ1 = 0.3844 s.
Element (FO) Transfer Function Parameter Values

PIµ Controller KPIµ(s) = kp
Tis

µ+1
Tisµ

kp = 45, Ti = 0.9,
µ = 1

8

Part. Comp. Padé-zero Q̃z,2(s) =
(
1 + s

z

) 1
ν z = τ1

2 , ν = 2

Part. Comp. Pole-Pair X̃p,α(s) = 1
ω2α

0

(
s2 − 2sω0 cos (φ) + ω2

0
)α ω0 = 16.346 rad/s,

φ = 91.8◦, α = 0.5

Compensation Padé-pole Qp(s) = 1 − s
p p = − τ1

2

Additional Damping at ω0 Qn(s) = 1 − s
pn

pn = −10

Aiming at a crossover frequency similar to ωc,FO,1 = 1.48 rad/s, a PIµ controller is
determined that consists of the elements summarized in Table A.1. The overall
fractional-order controller is thus given by

CPIµ(s) = KPIµ(s)X̃p,α(s)Qp(s)
Q̃z,2(s)Qn(s)

.

In contrast to the controller design of Section 5.2, here the stable pole of the first-
order Padé-term is addressed, but the resonance peak is only partially compen-
sated using the implicit term. Note that the integer-order approximations of the
fractional-order PIµ controller yield proper transfer functions The corresponding
approximation parameters are summarized in Table A.2. To illustrate the effect of
the approximation range, two cases are considered for the approximation of the PIµ

controller element.

Table A.2: Oustaloup approximation (2.15) parameters for the fractional-order elements
of CPIµ .

FO Term ωl in rad/s ωh in rad/s N

KPIµ,1(s) 0.1 10 1

KPIµ,2(s) 0.01 10 1

Q̃z,2(s) 0.05 50 1

X̃p,α(s) 0.5 500 1
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First, the controller CPIµ,1 is determined by using the Oustaloup approximation
of KPIµ,1. In the second case, the lower limit is extended to ωl,2 = 0.01 rad/s leading
to the controller CPIµ,2. This is the only difference between these controllers.

Figure A.4: Bode plot of the open loop for integer-order approximations of the PIµ con-
troller for the dominant delay τ1.

A Bode plot of both resulting PIµ controllers is depicted in Figure A.4 opposite
to CFO,1 of (5.17). The controller with the smaller approximation range achieves a
phase margin of ΨPIµ,1 = 43.99◦, the larger frequency band yields ΨPIµ,2 = 45.53◦,
while the crossover frequencies coincide: ωc,PIµ = 1.50 rad/s. The differences be-
tween the controllers are clearly visible at lower frequencies. Both controllers nat-
urally result in less magnitude slope for low frequencies due to the fractional-order
integrator. However, the positive phase exceeds the PI-lead based controller CFO,1.
Furthermore, a magnitude peak at ω0 can be observed since the conjugate complex
pair of stable poles is partially compensated with the implicit term.

Since the disturbance attenuation of input disturbances is of special interest, consider
the magnitude plot of the disturbance sensitivity functions (5.21) in Figure A.5.
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Figure A.5: Magnitude plot of the disturbance sensitivity function Syd using different
integer-order approximations of the PIµ controller for the dominant delay τ1.

Figure A.6: Time response to a step in the reference r(t) = σ(t) as well as the distur-
bance du(t) = σ(t − td) at td = 50 s using a fractional-order PIµ controller.
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Due to the small slope at low frequencies, only slow convergence following a distur-
bance step is expected.

The simulation results for a reference step at tr = 0 s, i.e. r(t) = σ(t), and a step
of the input disturbance du(t) at td = 50 s, resulting in du(t) = σ(t− td), are de-
picted in Figure A.6. Note that all controllers are realized in the standard control
configuration (see Figure 3.6), hence without a prefilter.

The results clearly illustrate the effect of the different approximation ranges on the
decay rate of the disturbance response. The initial overshooting is significantly
reduced compared to CFO,1, however, the disturbance responses are not sufficient.
Regarding the simulation and experimental studies in Chapter 6, CFO,1 is combined
with a prefilter as a second-degree of freedom leading to precise tracking capabili-
ties.

A.3 Simulation and Experimental Results

In this section, we present further simulation and experimental results that are only
briefly mentioned in Chapter 6.

A.3.1 Disturbance Attenuation

Exemplary time responses to the input disturbance du(t) acting in the frequency
range Ωd for the nominal value of the small communication delay τ = τ2 and initial
condition x0,d are depicted in Figure A.7 (next page). Only a short period of time
is presented. The disturbance injection starts at t = 2 s. The detailed simulation
model obviously captures the main process characteristics.

The frequency spectra of the disturbance attenuation experiments for the nomi-
nal value of the dominant communication delay τ = τ1 are depicted in Figure A.8
(next page). The amplitude peak of the jitter signal is clearly visible at ωj =
450 rad/s, however appears to be well damped by the process.
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Figure A.7: Exemplary time responses to the input disturbance for both controllers with
the nominal value of the small time delay τ = τ2. Measurement and simulation
are abbreviated by ‘M.’ and ‘S.’, respectively.

Figure A.8: Entire frequency spectra of the input disturbance and the control errors for
experiments with both controllers CFO,1 and C∞,1 and the nominal value of
the dominant communication delay τ = τ1.

Regarding the disturbance attenuation experiments for the small delay τ = τ2, simi-
lar frequency spectra can be obtained. These are depicted in Figure A.9 (Page A 11)
and also show the qualitative shape of the corresponding magnitude plot of the dis-
turbance sensitivity function in Figure 5.10.

The frequency data can be evaluated in the relevant spectrum, i.e. for ω ∈ Ωd, lead-
ing to similar results as the RMS error values, which are summarized in Table A.3.
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(a) Entire spectra.

(b) Relevant spectra.

Figure A.9: Frequency spectra of the input disturbance and the control errors for exper-
iments with both controllers CFO,2 and C∞,2 and the nominal value of the
dominant communication delay τ = τ2. The dashed black lines indicate the
frequency spectrum of the input disturbance Ωd which is used to calculate the
metrics in Table A.3.

Table A.3: Frequency analysis of the disturbance attenuation experiments for both delays
with |e(ω)| in dB and ω ∈ Ωd =

[
0.1 rad

s , 20 rad
s

]
.

Dominant Delay τ1 Small Delay τ2

Contr. Metric τ = 0.9τ1 τ = τ1 τ = 1.1τ1 τ = 0.9τ2 τ = τ2 τ = 1.1τ2

C∞,i max
ω

|e(ω)| −49.077 −47.253 −46.966 −50.944 −50.914 −50.944

µ(|e(ω)|) −60.792 −60.369 −60.219 −62.591 −62.419 −62.179
min
ω

|e(ω)| −104.036 −99.844 −99.825 −108.445 −101.959 −95.760

CFO,i max
ω

|e(ω)| −48.330 −47.726 −46.920 −51.372 −51.253 −50.935

µ(|e(ω)|) −60.723 −60.742 −60.380 −62.682 −62.329 −61.877
min
ω

|e(ω)| −108.204 −102.271 −100.618 −97.324 −100.264 −95.741
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A.3.2 Tracking Performance

The simulation and experimental results for the tracking experiments are discussed
in Section 6.2. However, exemplary time responses for the set-point change lm are
only presented for the dominant communication delay τ1. Therefore, analog results
regarding the small delay τ1 are presented in this section. For a detailed discussion
see Section 6.2.1.

Considering the set-point change lm for the small communication delay, the outputs
are depicted in Figure A.10. The simulation results are restricted to the nominal
case τ = τ2, since the variation is very little only.

(a) Closed-loop response using C∞,2 (5.9).

(b) Closed-loop response using CFO,2 (5.20) with prefilter (5.14).

Figure A.10: Time responses to the set-point change for both controllers and the small
delay with the initial conditions x0,t = [0.005 0 0.005 0]⊤ and a variation
of the plant’s time delay by ±10 %.
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The corresponding control inputs are shown in Figure A.11. As discussed in Sec-
tion 6.2.1, they show significantly more noise amplification. This is expected due to
the higher open-loop crossover frequencies.

(a) Control signal for the response in Figure A.10a.

(b) Control signal for the response in Figure A.10b.

Figure A.11: Control signals for the time responses in Figure A.10.
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Finally, we consider the entire tracking experiments as in Section 6.2.2. The his-
tograms of the remaining evaluation metrics are summarized in Figure A.12. It
can be observed that the error-related evaluation metrics are smaller for the small
delay τ2 and for CFO,i in general. This is not the case for the maximum absolute
control effort in Figures A.12g and A.12h, which increases for the dominant delay.
Furthermore, it is independent of the set-point change direction. Regarding the
small communication delay, the metrics of the two controllers differ in the fourth
digit only.

(a) Dominant communication delay τ = τ1. (b) Small communication delay τ = τ2.

(c) Dominant communication delay τ = τ1. (d) Small communication delay τ = τ2.

(e) Dominant communication delay τ = τ1. (f) Small communication delay τ = τ2.

(g) Dominant communication delay τ = τ1. (h) Small communication delay τ = τ2.

Figure A.12: Histograms of ITAE eITAE, IAE eIAE, maximum error |emax| and maximum
control effort |umax| for τ = τi and both controllers. The bar orientation
shows the direction of the set-point changes, e.g. the bars at the left-hand
side (r0 = 5 mm) correspond to the set-point change lm.
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