
Quantization in Graph Convolutional Neural
Networks

Leila Ben Saad and Baltasar Beferull-Lozano
WISENET Center, Department of ICT, University of Agder, Grimstad, Norway

Abstract—By replacing classical convolutions with graph fil-
ters, graph convolutional neural networks (GNNs) have emerged
as powerful tools to learn a nonlinear mapping for data defined
over graphs and address a variety of tasks encountered in many
applications. GNNs inherit the distributed implementation of
graph filters, where local exchanges among neighbor nodes are
performed. In such distributed setting, the quantization can
play a fundamental role to save communication and energy
resources prior to data transmission, in scenarios where nodes
are resource constrained. In this paper, we propose a quantized
GNN architecture based on distributed graph filters for signals
defined on graphs and analyze how the quantization noise can
affect its performance. We show also that the expected error due
to quantization at the GNN output is upper-bounded and the use
of a decreasing quantization stepsize leads to more accuracy. The
performance of the proposed schemes is evaluated by numerical
experiments for the application of source localization.

Index Terms—Graph neural networks; Graph signal process-
ing; Graph filters; Quantization.

I. INTRODUCTION

Recently, graph convolutional neural networks (GNNs) [1–
3] have emerged as a way to generalize and extend the
convolutional neural networks (CNNs) to data supported on
graphs by processing signals defined in irregular domains
and replacing classical convolutions with graph filters [4–6].
GNNs offer the possibility to learn a nonlinear mapping for
data defined over graphs that can be encountered in many
applications, such as social networks, sensor networks and
recommendation systems. GNNs are formed by layers of graph
filters followed by a pointwise nonlinearity. By using Finite
Impulse Response (FIR) graph filters [4–6], GNNs inherit their
distributed implementation, which is very important to ensure
the scalability and robustness to possible node failures. FIR
graph filters can have different forms of implementation [5, 6]:
node-invariant, node-variant and edge-variant. In such graph
filters, each node can communicate its input signal through
local exchanges with neighbors in a finite number of iterations.
However, when implemented over distributed networks with
constrained node resources, the graph filters in GNNs have to
deal with the limited energy, processing, and communication
capabilities. The quantization is recognized as an effective
approach to save communication and energy resources prior
to data transmission. Although the quantization has been well
studied in neural networks [7, 8] and CNNs [9–11], very
few works [12, 13] have explored the quantization problem

This work was supported by the PETROMAKS Smart-Rig grant
244205/E30, the TOPPFORSK WISECART grant 250910/F20 and the IK-
TPLUSS INDURB grant 270730/O70 from the Research Council of Norway.
© 2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
DOI: 10.23919/EUSIPCO54536.2021.9615973

in graph neural networks. In [12], a method for training a
quantized GNN is proposed, while in [13] a GNN quantization
algorithm and a fine-tuning scheme are proposed to solve
the GNN memory problem. To the best of our knowledge,
there is no work investigating the quantization for GNNs via
distributed graph filters for signals supported on graphs. In
this paper, we propose a quantized GNN architecture built
on distributed graph filters and analyze how the quantization
errors accumulated over the different layers can affect its
final output. Considering the different forms of FIR graph
filters implementation, we show how the expected error due
to quantization at the GNN output is upper-bounded and the
use of a decreasing quantization stepsize leads to more accu-
racy as compared to a fixed quantization stepsize. Numerical
experiments have been conducted to corroborate our findings.

The remainder of this paper is organized as follows. Section
II presents the background material. Section III introduces
the quantization in GNNs for signals supported on graphs
and Section IV analyzes its impacts. Section V presents the
numerical results. Section VI concludes the paper.

Notation: Vectors (respectively matrices) are denoted by
bold lowercase (uppercase) letters. We denote by ∥v∥ the l2-
norm of vector v whereas by ∥M∥ the spectral norm of matrix
M. We indicate by tr(·), diag(·) and Σx the trace operator,
the diagonal matrix and the covariance matrix of a random
process x, respectively.

II. BACKGROUND

Consider an undirected graph G = (V, E) where V =
{1, . . . , N} is the set of N vertices and E is the set of edges
such that if there is a link from node j to node i, then
(j, i) ∈ E . The structure of G is generally represented by
the graph-shift operator S, which is an N × N matrix such
that its entries are non-zero only if i = j or if (j, i) ∈ E .
Common choices of the graph-shift operator are the graph
adjacency matrix A, the graph Laplacian L or their normalized
versions. We define on the vertices of G a graph signal as a
mapping x : V → R, which can be represented as a vector
x = [x1, ..., xN]⊤ ∈ RN , where the i-th entry represents the
signal value at node i.
FIR graph filters. A linear graph filter (GF) [4] H(S) :
RN → RN is a function of the shift operator S, and where
a graph signal x is taken as an input and another graph
signal y = H(S)x is produced as an output. One common
form for H(S) is the so-called node-invariant GF, which is a
polynomial in S with output:

y = H(S)x =

K∑
k=0

hkS
kx (1)

where h0, . . . , hK are the scalar filter coefficients.
To approximate a broader class of operations, the node-

variant GF [6] has been proposed and has as output:

y = H(S)x =

K∑
k=0

diag(h(k)) Sk x (2)

where each node uses different filter coefficients collected in
an N×1 vector h(k) = [h

(l)
1 , ..., h

(k)
N]⊤.

To enable the use of a different set of weights in each shift,
the edge-variant GF [5] has been proposed. The latter is an
extended version of node-variant GF and has as output:

y = H(S)x =

K∑
k=1

(k∏
κ=1

Ψκ

)
x (3)

where Ψκ is N × N edge weighting matrix and Ψ1 · · ·ΨK

are a collection of K matrices sharing the sparsity pattern of
IN + S.
Quantization. The quantization operation encodes data (be-
fore communication) in a certain number of bits to reduce
the amount of data to be transmitted. However, in practice,
the quantization introduces always quantization errors that
affect the graph filtering output. At the k-th graph filter
shift, the quantized message is given by x̃(k) = Q(x(k)) =
x(k)+ϵ(k), where ϵ(k) is the quantization error and x(k) is the
unquantized input signal. In order to control the quantization
noise and ensure the uniform random variable assumption
and uncorrelation for the quantization errors, we consider
substractive dithering quantization [14, 15]. The latter consists
of adding a pseudo-random generator, called dither, to the
input signal prior to quantization at the transmitter node, and
then subtracting it at the receiver node after transmission. This
technique will guarantee that the quantization error [ϵ(k)]j
at each node j at iteration k, is uniformly distributed over
[−∆k/2 ,∆k/2] with a zero mean and variance (σ(k))2 =
∆2

k/12. Here, ∆k denotes the quantization stepsize at iteration
k. At the filter initialization, the unquantized input signal is
x(0) = x. After quantization, it becomes x̃(0) = x(0) + ϵ(0).
This quantized signal is then exchanged with the neighbor
nodes and the resulting quantized shifted signal has the
expression x(1) = Sx̃(0) = S(x(0) + ϵ(0)). The signal x(1)

is further quantized into x̃(1) and subsequently transmitted to
the neighbor nodes. The process is repeated k times, where
the output of the shifted signal for a general iteration k is
x(k) = Sx̃(k−1) = S(x(k−1) + ϵ(k−1)).
Graph Convolutional neural networks. GNNs [1–3] are
composed of a cascade of L layers. Each layer performs a
graph convolution followed by a pointwise nonlinearity (e.g,
ReLu). Graph convolutions can be exactly modeled by graph
filters in the node-invariant [cf. (1)], node-variant [cf. (2)] and
edge-variant [cf. (3)] forms, depending on the architecture.
Moreover, the descriptive power of GNNs can be increased
by incorporating multiple parallel features per layer. These
features are the result of processing multiple input features
with a parallel bank of graph filters. At layer ℓ, the GNN
has as input Fℓ−1 features {xg

ℓ−1}
Fℓ−1

g=1 from layer (ℓ− 1) and
returns Fℓ output features {xf

ℓ }
Fℓ

f=1. Each input feature xg
ℓ−1

for g = 1 · · ·Fℓ−1 is processed in parallel by Fℓ graph filters
{Hfg

ℓ (S)}f of the form:

Hfg
ℓ (S) =

∑K

k=0 h
fg
kℓS

k for node-invariant∑K
k=0 diag(hfg

kℓ)S
k for node-variant∑K

k=1

(∏k
κ=1 Ψ

fg
κℓ

)
for edge-variant

(4)

The filter outputs are aggregated over the input index g to
generate the f th convolved feature:

zfℓ =

Fℓ−1∑
g=1

Hfg
ℓ (S)xg

ℓ−1 for f = 1 · · ·Fℓ (5)

Then, the convolved feature zfℓ goes through an activation
function σ(·) to lead to the f th convolutional layer output:

xf
ℓ = σ(zfℓ) = σ

Fℓ−1∑
g=1

Hfg
ℓ (S)xg

ℓ−1

 for f = 1 · · ·Fℓ (6)

At layer ℓ = 1, the input feature is the graph signal x1
0 = x.

At the last layer L, we assume without loss of generality that
the number of output features is FL = 1. This last and single
output feature x1

L = xL represents the output of the GNN.
The GNN output is a function of the input signal x and the

collection of filter banks Hfg
l [cf. (4)]. By defining the filter

tensor H(S) = {Hfg
l (S)}lfg that regroups the filters of all

layers, we can consider the GNN as a map Φ(·) that has as
inputs the graph signal x and the filter tensor H(S) and as
output:

Φ
(
x;H(S)

)
= xL (7)

Consider a training data set of input-output pairs T =
(x,u). The filter parameters are trained to minimize over the
training set T a cost function (e.g, mean squared error and
L1 loss function). This cost function can assess the difference
between the GNN output xL and the true value u averaged
over the examples (x,u) ∈ T .

III. GRAPH CONVOLUTIONAL NEURAL NETWORKS WITH
QUANTIZATION

In this section, we propose a quantized GNN architecture
based on distributed graph filters for signals supported on
graphs. Consider at layer ℓ = 1, the input feature of GNN
is a graph signal κκκ1

0 = x. At any layer ℓ > 1, the GNN has
as input Fℓ−1 features {κκκg

ℓ−1}
Fℓ−1

g=1 from layer (ℓ − 1) and
returns Fℓ output features {κκκf

ℓ }
Fℓ

f=1. Each input feature κκκg
ℓ−1

for g = 1 · · ·Fℓ−1 is quantized and processed in parallel by
Fℓ graph filters.

For GNN based on a node-invariant graph filter, consider
the kth shifted input feature κκκg(k)

ℓ−1 = Skκκκg
ℓ−1 exchanged

with the neighbors at layer ℓ − 1. The quantized form of
the latter is κ̃κκg(k)

ℓ−1 = Q(κκκg(k)
ℓ−1) = κκκg(k)

ℓ−1 + ϵ
g(k)
ℓ−1 . Initially

at layer ℓ− 1, we have κκκg(0)
ℓ−1 = κκκg

ℓ−1 and its quantized
form is κ̃κκg(0)

ℓ−1 = κκκg(0)
ℓ−1 + ϵ

g(0)
ℓ−1 . This quantized signal is

exchanged with neighbors leading to the quantized shifted
signal κκκg(1)

ℓ−1 = Sκ̃κκg(0)
ℓ−1 = S(κκκg(0)

ℓ−1 +ϵ
g(0)
ℓ−1). The signal κκκg(1)

ℓ−1 is
further quantized into κ̃κκg(1)

ℓ−1 and subsequently transmitted to
the neighbor nodes. This procedure is repeated K times. The
output of the shifted graph signal with quantization at iteration
k is as follows:

κκκg(1)
ℓ−1 = Sκ̃κκg(0)

ℓ−1 = S(κκκg(0)
ℓ−1+ϵ

g(0)
ℓ−1) = Sκκκg(0)

ℓ−1+Sϵ
g(0)
ℓ−1

κκκg(2)
ℓ−1 = Sκ̃κκg(1)

ℓ−1 = S(κκκg(1)
ℓ−1+ϵ

g(1)
ℓ−1) = S2κκκg(0)

ℓ−1+S2ϵ
g(0)
ℓ−1+Sϵ

g(1)
ℓ−1

...

κκκg(k)
ℓ−1 = Sk κκκg(0)

ℓ−1 +

k−1∑
κ=0

Sk−κ ϵ
g(κ)
ℓ−1 , k ≥ 1. (8)

From (8), the f th node-invariant graph filter output with
quantization at layer ℓ is:

ỹfg
ℓ = hfg

0ℓ κκκ
g
ℓ−1 + hfg

1ℓ (Sκκκ
g
ℓ−1 + Sϵ

g(0)
ℓ−1) (9)

+ hfg
2ℓ (S

2κκκg
ℓ−1 + S2ϵ

g(0)
ℓ−1 + Sϵ

g(1)
ℓ−1) + · · ·

+ hfg
kℓ

(
SKκκκg

ℓ−1 + SKϵ
g(0)
ℓ−1 + SK−1ϵ

g(1)
ℓ−1 + · · ·

+ S2ϵ
g(K−2)
ℓ−1 + Sϵ

g(K−1)
ℓ−1

)
=

K∑
k=0

hfg
kℓS

kκκκg
ℓ−1+

K∑
k=1

hfg
kl

k−1∑
κ=0

Sk−κϵ
g(κ)
ℓ−1 =

K∑
k=0

hfg
kℓS

kκκκg
ℓ−1+ξfg

ℓ−1

where ξfgℓ−1 denotes the accumulated shifted quantization
errors.

Similarly, we can easily show that the f th node-variant
graph filter output and the f th edge-variant graph filter output
with quantization at layer ℓ are respectively given by:

ỹfg
ℓ =

K∑
k=0

diag(hfg
kℓ)S

kκκκg
ℓ−1 +

K∑
k=1

diag(hfg
kl)

k−1∑
κ=0

Sk−κϵ
g(κ)
ℓ−1︸ ︷︷ ︸

ξ
fg
ℓ−1

(10)

ỹfg
ℓ =

K∑
k=1

(k∏
κ=1

Ψfg
κℓ

)
κκκg

ℓ−1 +

K∑
k=1

k−1∑
κ=0

(k∏
τ=κ+1

Ψfg
τℓ

)
ϵ
g(κ)
ℓ−1︸ ︷︷ ︸

ξ
fg
ℓ−1

(11)

More specifically, the node-invariant graph filter outputs
are aggregated over the input index g to generate the f th
convolved feature:

z̃fℓ =

Fℓ−1∑
g=1

(
K∑

k=0

hfg
kℓS

kκκκg
ℓ−1 +

K∑
k=1

hfg
kl

k−1∑
κ=0

Sk−κϵ
g(κ)
ℓ−1

)
(12)

for f = 1 · · ·Fℓ

The node-variant graph filter outputs are aggregated over
the input index g to generate the f th convolved feature:

z̃fℓ =

Fℓ−1∑
g=1

(
K∑

k=0

diag(hfg
kℓ)S

kκκκg
ℓ−1+

K∑
k=1

diag(hfg
kl)

k−1∑
κ=0

Sk−κϵ
g(κ)
ℓ−1

)
(13)

for f = 1 · · ·Fℓ

The edge-variant graph filter outputs are aggregated over
the input index g to generate the f th convolved feature:

z̃fl =

Fℓ−1∑
g=1

(
K∑

k=1

(k∏
κ=1

Ψfg
κℓ

)
κκκg

ℓ−1 +

K∑
k=1

k−1∑
κ=0

(k∏
τ=κ+1

Ψfg
τℓ

)
ϵ
g(κ)
ℓ−1

)
(14)

for f = 1 · · ·Fℓ

Independently of which form of graph filter is adopted, the
filter outputs are aggregated over the input index g to generate
the f th convolved feature:

z̃fℓ =

Fℓ−1∑
g=1

(
Hfg

ℓ (S)κκκg
ℓ−1 + ξfgℓ−1

)
for f = 1 · · ·Fℓ (15)

The quantized convolved feature z̃fl goes through an activa-
tion function σ(·) to obtain the f th convolutional layer output:

κκκf
ℓ = σ(z̃fℓ) = σ

Fℓ−1∑
g=1

(Hfg
ℓ (S)κκκg

ℓ−1 + ξfgℓ−1)

 (16)

for f = 1 · · ·Fℓ

The output feature of the last convolutional layer is κκκL,
implying that the GNN output is κκκL. The latter depends
on the input signal x and the sequence of filter banks with
quantization. By defining the filter tensor with quantization
H̃(S) that regroups the filters with quantization of all layers,
we can consider the GNN as a map Φ̃(·) that has as inputs
the graph signal x and the filter tensor H̃(S) and as output:

Φ̃
(
x; H̃(S)

)
= κκκL (17)

Consider a training data set of input-output pairs T =
(x,v). The filter parameters are trained to minimize a cost
function over the training set T . This cost function assesses
the difference between the GNN output κκκL and the true value
v averaged over the examples (x,v) ∈ T .

IV. QUANTIZATION EFFECTS ON GRAPH CONVOLUTIONAL
NEURAL NETWORKS

In this section, we analyze the quantization effects on the
GNN output. We are interested in analyzing the norm of the
expected error due to quantization at the GNN output given
by:∥∥E[Φ(x;H(S))− Φ̃(x; H̃(S))

]∥∥ =∥E
[
xL − κκκL

]
∥ (18)

=
∥∥E[σ(zfL)− σ(z̃fL)

]∥∥
The following Theorem provides an upper-bound on the

norm of the expected error due to the quantization at the GNN
output.

Theorem 1. Consider a GNN comprising of a cascade of
L layers applying graph filters that can be in the form of
node-invariant, node-variant or edge-variant, respectively, such
that |hfg

kl | ≤ βinv,
∥∥diag(hfg

kℓ)
∥∥ ≤ βnv and

∥∥(Ψfg
κℓ

)∥∥ ≤ βev.
Consider also a graph-shift operator S such that ∥S∥ ≤ γ.
Assume also a pointwise nonlinearity σ(·) that is normal-
ized Lipschitz such that there exists a constant Cσ so that
|σ(b)− σ(a)| ≤ Cσ|b− a|. Consider also that the input signal
features are quantized with a uniform quantizer but with a
dynamic stepsize ∆k over each k iteration. Then, the norm of
the expected error due to quantization at the GNN output is
upper-bounded by:∥∥E[Φ(x;H(S))− Φ̃(x; H̃(S))

]∥∥ (19)

≤ α

(
CL−1

σ

(L−1∏
ℓ=1

Fℓ

)
µL−1 +

L−1∑
i=1

CL−i
σ

(L−1∏
ℓ=i

Fℓ

)
µL−i−1

)
where α is the upper-bound of E

[∥∥ξfgℓ−1

∥∥], given by:

α =

αinv = βinv

√
N
12

K∑
k=1

k−1∑
κ=0

γk−κ∆κ for node-invariant

αnv = βnv

√
N
12

K∑
k=1

k−1∑
κ=0

γk−κ∆κ for node-variant

αev =
√

N
12

K∑
k=1

k−1∑
κ=0

βk−κ
ev ∆k for edge-variant

(20)

and µ is the upper-bound of
∥∥Hfg

ℓ (S)
∥∥, given by:

µ =

µinv =

∑K
k=0 βinvγ

k for node-invariant
µnv =

∑K
k=0 βnvγ

k for node-variant
µev =

∑K
k=1 β

k
ev for edge-variant

(21)

Proof : See Appendix I
Theorem 1 shows that the expected error due to quantization

at the GNN output is affected by the filter coefficients, the
shift operator and the number of layers and input features. In
addition, the quantization stepsize ∆k has a significant impact
on the expected error due to quantization through the constant
α. To reduce the quantization errors accumulated through the
layers of filter banks, we can choose a decreasing quantization
stepsize at each iteration k so that α becomes smaller in (19).
The following Corollary presents this result.

Corollary 1. Consider the same settings as Theorem 1 with
input signal features quantized with a uniform quantizer, where
the quantization stepsize ∆k is decreasing at each iteration k
such that (for node-invariant or node-variant) ∆k = γk∆0 if
0 < γ < 1 and ∆k = γ−k∆0 if γ > 1, and such that (for
edge-variant) ∆k = βk

ev∆0 if 0 < βev < 1 and ∆k = β−k
ev ∆0

if βev > 1. The norm of the expected error due to quantization
at the GNN output is upper-bounded by (19) with smaller α
given by:

α =

αinv = ∆0βinvη1

√
N
12

for node-invariant

αnv = ∆0βnvη1

√
N
12

for node-variant

αev = ∆0η2

√
N
12

for edge-variant

(22)

for γ < 1 and βev < 1 and where η1 =
γ
(
1−(K+1)γK+KγK+1

)
(1−γ)2

and η2 =
βev

(
1−(K+1)βev

K+Kβev
K+1
)

(1−βev)2
.

α =

αinv = ∆0βinvς1

√
N
12

for node-invariant

αnv = ∆0βnvς1

√
N
12

for node-variant

αev = ∆0ς2

√
N
12

for edge-variant

(23)

for γ > 1 and βev > 1 and where ς1 = 1
(1−γ−2)

(
1−γK+1

1−γ −
1−γ−K−1

1−γ−1

)
and ς2 = 1

(1−βev
−2)

(
1−βev

K+1

1−βev
− 1−βev

−K−1

1−βev
−1

)
.

Proof : By replacing in (20) ∆κ with γκ∆0 for both node-
invariant and node-variant and with βκ

ev∆0 for edge-variant,
we obtain readily finite summations than can be written as
(22). By following a similar approach and replacing in (20)
∆κ with γ−κ∆0 and β−κ

ev ∆0, we can obtain (23).

V. NUMERICAL EXPERIMENTS

In this section, numerical experiments are conducted to
validate our theoretical findings. The application of interest is
source localization, where a diffusion process over a connected
and undirected graph of N = 50 nodes splitted into 5
communities {c1, ..., c5} is considered. As in [16], the graph
considered is a stochastic block model graph, which has
respectively as intra- and inter-edge probabilities 0.8 and 0.2.
The objective is to determine which community is the source
that originated the diffusion process. For that, we observe
different realizations at different time instants. The initial
source signal x(0), which is a Kronecker delta centered at the

TABLE I: GNN average source localization accuracy. The
value inside (·) is the standard deviation. The nonlinearity
function used is ReLu. The graph filter order is K = 5. The
maximum size of the messages exchanged is 64 bytes. The
maximum number of bits that can be used for quantization
over the iterations is 25 bits. The initial given quantization
stepsize is ∆0 = 0.015.

GNN architecture 1 Layer 2 Layers 4 Layers
Node-invariant 64.88%(±1.02) 79.42%(±1.34) 79.00%(±0.29)
Node-invariant ∆ 63.75%(±1.08) 72.50%(±0.78) 77.50%(±0.82)
Node-invariant ∆k 64.50%(±1.42) 75.38%(±1.18) 77.58%(±0.72)
Node-variant 66.42%(±1.37) 79.88%(±1.03) 79.17%(±0.38)
Node-variant ∆ 65.21%(±0.91) 76.00%(±1.08) 77.71%(±0.80)
Node-variant ∆k 65.67%(±1.45) 77.21%(±2.02) 78.00%(±0.52)
Edge-variant 78.92%(±0.91) 79.92%(±1.52) 79.90%(±2.76)
Edge-variant ∆ 77.46%(±0.88) 77.54%(±0.89) 77.50%(±3.38)
Edge-variant ∆k 77.75%(±0.83) 77.64%(±1.92) 78.12%(±3.77)

source node, is diffused at time τ such that x(τ) = Sτx(0),
where S = A/λmax(A) is the normalized graph adjacency
matrix. The generated training data set (x(τ), ci) is compris-
ing of 10000 samples, picked uniformly at random τ and
i ∈ {1 · · · 5}.

Table I compares the performance of 9 different GNN
architectures composed of L = {1, 2, 4} layers of distributed
graph filters. For each form of graph filter used in the GNN
architecture (i.e, node-invariant, node-variant, edge-variant),
we analyze the average source localization accuracy for three
different cases: i) without quantization, ii) with a fixed quan-
tization stepsize ∆ = ∆0, iii) with a decreasing quantization
stepsize ∆k as suggested in Corollary 1. These results are
tested and validated with 200 new samples and averaged
over ten different graph realizations and ten different data.
Among the three forms of distributed graph filters adopted,
with or without quantization, GNN with edge-variant filters
achieves the best accuracy, followed by GNN with node-
variant filters. The results show also that the GNN accuracy
in case of quantization is sligthly lower than the case without
quantization, but the overall performance still remains rela-
tively good, hence justifying the use of quantization in GNNs
with resource constrained nodes. The results highlight also the
benefits of using a decreasing quantization stepsize in GNN
as compared to a fixed quantization stepsize, where better
accuracy is achieved.

VI. CONCLUSION

In this work, we propose a quantized GNN architecture
based on distributed graph filters for signals defined on graphs
and analyze the effects of quantization on its final output. In-
dependently of which form of distributed graph filters is used,
we demonstrate that the expected error due to quantization
at the GNN output can be upper-bounded. We show also the
importance of adopting a decreasing quantization stepsize to
reduce the accumulated quantization errors, improving thus
the GNN performance. Numerical results show that better
accuracy for the application of source localization is obtained
with a decreasing quantization stepsize as compared to a fixed
quantization stepsize.

VII. APPENDIX I

Proof of Theorem 1: Using Jensen inequality of the l2-norm
in (18), we have:∥∥E[σ(zfL)− σ(z̃fL)

]∥∥ ≤ E
[∥∥σ(zfL)− σ(z̃fL)

∥∥] (24)

Next, we assume that the nonlinear operation σ(·) is applied
individually to each entry of zfL or z̃fL and the nonlinearity
σ(·) is normalized Lipschitz so that |σ(b)−σ(a)| ≤ Cσ|b−a|
(which is true for ReLu). Thus, we can write:∥∥σ(zfL)− σ(z̃fL)

∥∥ ≤ Cσ

∥∥zfL − z̃fL
∥∥ (25)

≤ Cσ

∥∥∥∥ FL−1∑
g=1

Hfg
L (S)xg

L−1 −
FL−1∑
g=1

(
Hfg

L (S)κκκg
L−1 + ξfg

L−1

)∥∥∥∥
≤ Cσ

(∥∥∥∥ FL−1∑
g=1

Hfg
L (S)(xg

L−1 − κκκg
L−1)

∥∥∥∥+ ∥∥∥∥ FL−1∑
g=1

ξfg
L−1

∥∥∥∥)

≤ Cσ

FL−1∑
g=1

∥∥Hfg
L (S)

∥∥ ∥∥xg
L−1 − κκκg

L−1

∥∥+ Cσ

FL−1∑
g=1

∥∥ξfg
L−1

∥∥
where we use the subadditivity properties of the l2-norm i.e.,
∥u± v∥ ≤ ∥u∥+ ∥v∥, and the fact that ∥Au∥ ≤ ∥A∥∥u∥.

By applying the expected value in (25), we can write for
any layer ℓ:

E
[∥∥σ(zfℓ)− σ(z̃fℓ)

∥∥] (26)

≤ Cσ

Fℓ−1∑
g=1

∥∥Hfg
ℓ (S)

∥∥E[∥xg
ℓ−1 − κκκg

ℓ−1∥
]
+ Cσ

Fℓ−1∑
g=1

E
[
∥ξfg

ℓ−1

∥∥]
≤ Cσ

Fℓ−1∑
g=1

∥∥Hfg
ℓ (S)

∥∥E[∥σ(zgℓ−1)− σ(z̃gℓ−1)∥
]
+Cσ

Fℓ−1∑
g=1

E
[
∥ξfg

ℓ−1

∥∥]
In addition, we have for the case of node-invariant filters:

∥∥ξfg
ℓ−1

∥∥ =
∥∥ K∑

k=1

hfg
kl

k−1∑
κ=0

Sk−κϵ
g(κ)
ℓ−1

∥∥ ≤
K∑

k=1

k−1∑
κ=0

|hfg
kl |
∥∥Sk−κ

∥∥∥∥ϵg(κ)ℓ−1

∥∥
(27)

By applying the expected value on (27), we have:

E
[∥∥ξfg

ℓ−1

∥∥] ≤ K∑
k=1

k−1∑
κ=0

|hfg
kl |
∥∥Sk−κ

∥∥E[∥∥ϵg(κ)ℓ−1

∥∥] (28)

Similarly, for node-variant and edge-variant graph filters,
we have respectively:

E
[∥∥ξfg

ℓ−1

∥∥] ≤ K∑
k=1

k−1∑
κ=0

∥∥diag(hfg
kℓ)
∥∥∥∥Sk−κ

∥∥E[∥∥ϵg(κ)ℓ−1

∥∥] (29)

E
[∥∥ξfg

ℓ−1

∥∥] ≤ K∑
k=1

k−1∑
κ=0

∥∥(k∏
τ=κ+1

Ψfg
τℓ

)∥∥E[∥∥ϵg(κ)ℓ−1

∥∥] (30)

By using ∥v∥ =
√

tr(vvT) and the Jensen in-
equality E[

√
x] ≤

√
E[x], the commutativity of trace

with respect to the expectation, and assuming a uniform
quantizer with a dynamic quantization stepsize ∆τ , so
that tr

(
E
[
ϵ(τ)ϵ(τ)

⊤])
=tr
(
Σϵ(τ)+E[ϵ(τ)]E[ϵ(τ)]⊤

)
=tr
(
Σϵ(τ)

)
= tr

(
(σ(τ))2 I

)
=N(σ(τ))2=N∆2

τ/12, we can write:

E
[∥∥ϵg(κ)ℓ−1

∥∥] = E
[√

tr(ϵg(κ)ℓ−1 ϵ
g(κ)
ℓ−1

T
)
]

(31)

≤
√

E
[
tr(ϵg(κ)ℓ−1 ϵ

g(κ)
ℓ−1

T
)
]
=
√

N∆2
κ/12

If we assume for node-invariant graph filter that |hfg
kl | ≤ βinv

and ∥S∥ ≤ γ and we consider (31), E
[∥∥ξfgℓ−1

∥∥] in (28) can be
upper-bounded by:

E
[∥∥ξfg

ℓ−1

∥∥] ≤√N/12

K∑
k=1

k−1∑
κ=0

|hfg
kl |
∥∥Sk−κ

∥∥∆κ (32)

≤
√

N/12

K∑
k=1

k−1∑
κ=0

βinvγ
k−κ∆κ

Similarly, for node-variant and edge-variant graph filters,
if we assume that

∥∥diag(hfg
kℓ)
∥∥ ≤ βnv,

∥∥(Ψfg
κℓ

)∥∥ ≤ βev and
∥S∥ ≤ γ, we can easily upper bound E

[∥∥ξfgℓ−1

∥∥] as presented
in (20).

By using the upper-bounds α of E
[∥∥ξfgℓ−1

∥∥] [cf. (20)] and
µ of

∥∥Hfg
ℓ (S)

∥∥ [cf. (21)], we can now write (26) as:

E
[∥∥σ(zfℓ)− σ(z̃fℓ)

∥∥] (33)

≤ Cσ

Fℓ−1∑
g=1

µ E
[
∥σ(zgℓ−1)− σ(z̃gℓ−1)∥

]
+ CσFℓ−1α

We observe in (33) that the upper-bound at layer ℓ depends
on the bound at layer ℓ−1 and the initial input features at layer
1 are x1

0 = κκκ1
0 = x. By solving (33) with the initial conditions

x1
0 = κκκ1

0 = x and considering that ∥σ(zf1)− σ(z̃f1)∥ = ∥ξfg0 ∥
and E

[
∥ξfg0 ∥

]
≤ α, we obtain finally the upper-bound (19),

which concludes the proof.

REFERENCES
[1] J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and

locally connected networks on graphs,” in International Conference on
Learning Representations, 2014.

[2] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Int. Conf.
on Neur. Inf. Process. Sys., 2016, pp. 3844–3852.

[3] F. Gama, E. Isufi, G. Leus, and A. Ribeiro, “Graphs, convolutions, and
neural networks: From graph filters to graph neural networks,” IEEE
Signal Processing Magazine, vol. 37, no. 6, pp. 128–138, 2020.

[4] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” IEEE Trans. Sig. Process., vol. 61, no. 7, pp. 1644–1656, 2013.

[5] M. Coutino, E. Isufi, and G. Leus, “Advances in distributed graph
filtering,” IEEE Trans. Sig. Process., vol. 67, no. 9, pp. 2320–2333,
May 2019.

[6] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-filter design
and applications to distributed linear network operators,” IEEE Trans.
Sig. Process., vol. 65, no. 15, pp. 4117–4131, Aug 2017.

[7] Y. Guo, “A survey on methods and theories of quantized neural net-
works,” preprint arXiv:1808.04752, Sep 2018.

[8] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 2704–2713.

[9] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” preprint arXiv:1510.00149, 2016.

[10] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point quanti-
zation of deep convolutional networks,” in International Conference on
Machine Learning, 2016, pp. 2849–2858.

[11] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 4820–4828.

[12] S. A. Tailor, J. Fernandez-Marques, and N. D. Lane, “Degree-
Quant: Quantization-aware training for graph neural network,” preprint
arXiv:2008.05000, 2020.

[13] B. Feng, Y. Wang, X. Li, S. Yang, X. Peng, and Y. Ding, “SGQuant:
Squeezing the last bit on graph neural networks with specialized
quantization,” preprint arXiv:2007.05100, 2020.

[14] L. Schuchman, “Dither signals and their effect on quantization noise,”
IEEE Trans. Commun. Tech., vol. 12, no. 4, pp. 162–165, 1964.

[15] L. B. Saad, B. Beferull-Lozano, and E. Isufi, “Quantization analysis and
robust design for distributed graph filters,” arXiv:2004.06692, 2020.

[16] E. Isufi, F. Gama, and A. Ribeiro, “Generalizing graph convolutional
neural networks with edge-variant recursions on graphs,” in Proc.
European Sig. Process. Conf., 2019, pp. 1–5.

