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Abstract 

This master thesis looks at unexpected volatility- and financial turbulence’s predictive ability, and 

exploit these measures of financial risk, together with volatility, to create three dynamic asset 

allocation strategies, and test if they can outperform a passive and naively diversified buy-and-

hold strategy. The idea with the dynamic strategies is to increase the portfolio return by keeping 

the portfolio risk at a low and stable level over time. This is be done by changing the allocation 

between risky asset and risk-free asset, as the market environment changes. Three dynamic asset 

allocation strategies are implemented: a turbulence-responsive strategy, an unexpected 

volatility-responsive strategy, and a volatility-responsive strategy. The empirical results show that 

all three dynamic asset allocation strategies strongly outperform a passive equally-weighted 

benchmark in the out-of-sample period with respect to risk-adjusted return.  
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1. Introduction 

A rational investor will try to maximize his/hers portfolio return adjusted for its risk. Risk is usually 

measured as the volatility of the return, that is the chance that an investment’s actual return will 

be different from expected. However, there is alternative measures of risk such as unexpected 

volatility and financial turbulence1.  

 

Figure 1: Development of 10 Industry Portfolios from 01.1975 to 07.2014. We can see several bear markets 
categorized by persistent periods of negative returns, high volatility and high turbulence, while bull markets 
are considered with persistent periods of positive returns, low volatility and low turbulence. 

 

Asset allocation is generally very fixed at institutional investors, because the decision makers 

review the strategic plan for asset allocation with respect to the market conditions too 

infrequently. Although a portfolio of 50% risky assets and 50% risk-free asset (50/50 portfolio) 

may deliver a wanted level of risk on average in the long-run, it is rarely an optimal portfolio in 

bear markets, where the market volatility is high. Fixed-weighted asset allocation strategies can 

have very unpredictable performance in high-volatile periods. Baker and Haugen (2012) found 

                                                      
1Financial turbulence is in the following of this thesis just denoted as turbulence.  
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that low-volatility and low-beta portfolios produced exceptional high returns and small 

drawdowns in the period 1968-2008, in contrast to the traditional assumption that higher risk is 

rewarded with higher expected return. This low-volatility anomaly from Baker and Haugen (2012) 

supports that it rarely optimal be invested in a fixed-weighted (passive) portfolio in volatile 

periods.  

 

A dynamic volatility-responsive asset allocation strategy takes care of that problem, by adjusting 

the weights between a risky asset and a risk-free asset according to the market volatility, such 

that the portfolio volatility is managed. That is, in periods of high volatility, the dynamic strategy 

will reduce the weight in the risky asset, and hence increase the weight in the risk-free asset. In 

periods with low volatility, the strategy will keep a high weight in the risky asset and a low weight 

in the risk-free asset.  

 

Figure 2: Monthly volatility of a dynamic volatility-responsive strategy (blue) and a passive 50/50 portfolio 
(red). Both strategies uses an equally weighted portfolio of U.S. 10 Industry Portfolio returns as the risky 
asset, and U.S. Treasury bill return as the risk-free asset. The 50/50 portfolio are all-time fixed 50 percent 
in the risky asset and fixed 50 percent in the risk-free asset, whereas the volatility-responsive strategy 
allocate the weighs in the two assets after changes in the economic environment. 

 

In Figure 2, you see an example of the difference in volatility between a passive 50/50 portfolio 
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and a dynamic volatility-responsive strategy. The volatility in a dynamic volatility-responsive 

portfolio rarely get monthly volatility above 2 percent. Moreover, in the volatile periods, e.g. 

1987, ’98, ’03, ’08 and 2012, the volatility-responsive portfolio weight down in risky asset to 

approximately zero monthly portfolio volatility. Whereas the passive 50/50 portfolio reaches high 

levels of monthly volatility in distressful periods. 

 

Merton (1980) argue that excess return and market volatility should be positively related, yet, 

many researchers find a negative relation between excess return and market volatility over time. 

French, Schwert and Stambaugh (1987) explain that volatility consist of expected- and 

unexpected volatility, while expected volatility is positively related to excess return, unexpected 

volatility is negatively related to excess return. In fact, many empirical studies find that active 

strategies that seek to keep the volatility at a target level outperform passive buy-and-hold 

strategies, but few have explored how unexpected volatility predicts future volatility and can be 

used as a determining factor in a dynamic asset allocation strategy.  

 

Zakamulin (2014) covers a gap in the literature with his paper “Dynamic Asset Allocation 

Strategies Based on Unexpected Volatility”. However, there are still lots of room for textbook in 

finance to write about unexpected volatility. Likewise, turbulence is only mentioned by a handful 

of researchers in finance, Kritzman and Li (2010) and Harman (2014) is three of them, they define 

financial turbulence and use turbulence as a risk measure in asset allocation strategies to improve 

portfolio risk-adjusted return. 

 

There is an argument among researchers on whether an optimized portfolio, that have a specific 

strategy to diversify across assets and time, can significantly outperform a naively diversified 

portfolio. DeMiguel, Garlappi and Uppal (2009) and Duchin and Levy (2009) claim that none of 

the tested optimized portfolios preformed significantly better than the naively diversified 

portfolio, in terms of Sharpe ratio. Kritzman, Page and Turkington (2010) answered by presenting 

a minimum-variance portfolio and a mean-variance portfolio where both of them delivered 

higher Sharpe ratios out-of- sample than a naively diversified portfolio and the market portfolio. 

Kirby and Ostdiek (2012) also replied by representing an optimized portfolio with time 

diversification. 
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This thesis investigates three different dynamic asset allocation strategies based on volatility, 

unexpected volatility and turbulence. These three dynamic strategies monthly allocate the weight 

in a risky asset and a risk-free asset according to last month measured risk, in order to keep a high 

reward and at the same time keep a low level of risk in the portfolio. They are compared against 

a benchmark, which is a naively diversified equally weighted market portfolio.  

 

Before I go further with these asset allocation strategies, I present in Section 5.1 unexpected 

volatility and its ability to predict future volatility and excess return. I find that unexpected 

volatility can predict future volatility and future excess return, this result is in line with French et 

al. (1987) and Zakamulin (2014), and is a key element for making a dynamic unexpected volatility-

responsive strategy.  

 

Similarly, I present historical turbulence’s ability to predict future turbulence and future excess 

return in Section 5.2. I find that turbulence is like volatility very persistent, turbulence can be used 

to predict next month turbulence, equivalent to Kritzman and Li (2010). This result give an 

opportunity to use turbulence in a dynamic asset allocation strategy. However, I find no 

significant relation between turbulence and future excess return.   

 

The three dynamic asset allocation strategies implemented in this thesis are: a volatility-

responsive strategy, an unexpected volatility-responsive strategy and a turbulence-responsive 

strategy. They diversify the portfolios across assets and over time, and they are evaluated on risk-

adjusted returns. To estimate the input in these dynamic asset allocation strategies, volatility, 

unexpected volatility and turbulence, I apply a five years in-sample period and a five years rolling 

estimation window that runs throughout the out-of-sample period. I find that all three dynamic 

asset allocation strategies deliver a considerable higher risk-adjusted return than the passive 

benchmark in the out-of-sample period. 

  

The rest of the thesis is organized as follows: Section 2 is relevant theory and review on literature, 

Section 3 informs about the dataset, Section 4 explains the methodology, Section 5 presents the 
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empirical result, Section 6 discusses the findings, and Section 7 concludes. The R programs used 

to compute the empirical results are presented in the Appendix.  

 

2. Relevant theory –and literature review 

2.1 Modern portfolio theory 

The pioneer of modern portfolio theory (MPT), Harry Markowitz, introduced MPT in Markowitz 

(1952) and Markowitz (1959). It is a financial theory where the investor is assumed to be rational, 

and attempts to optimize a portfolio by allocate weights of specific various assets according to 

investor’s risk aversion. Such that it maximizes portfolio expected return for a given level portfolio 

risk, or minimize portfolio risk for a given level of expected return. This means that you should 

not select individual assets based on its own qualities, but rather based on how its returns will 

affect the portfolio qualities, in that how the individual asset returns correlates to other assets 

returns in the portfolio, in order to diversify portfolio risk.  

 

In more mathematical terms and matrix notation, we can find the minimum portfolio variance, 

𝜎𝑝
2,  for any particular portfolio return, 𝜇𝑝. The weights, 𝑤𝑖, invested in each asset, assuming N 

different assets exist, is limited to 1.  

∑ 𝑤𝑖 = 1.𝑁
𝑖=1    (2.1) 

The weights is a (N x 1) vector, 𝒘 = (
𝑤1
𝑤2

⋮
𝑤𝑁

) 2. 

The portfolio return, 𝑟𝑝, is the weighed sum of the individual asset returns, 𝒓, where 𝑟𝑝 is a (1 x 

1) scalar and 𝒓 = (
𝑟1
𝑟2
⋮

𝑟𝑁

) is a (N x 1) vector of returns.   

𝑟𝑝 =  𝒘′𝒓 = (𝑤1, 𝑤2, ⋯ , 𝑤𝑁) (
𝑟1
𝑟2
⋮

𝑟𝑁

) = 𝑤1𝑟1 + 𝑤2𝑟2 + ⋯ + 𝑤𝑁𝑟𝑁. (2.2) 

This gives us the expected portfolio return,  

𝜇𝑝 = 𝐸[𝑟𝑝] = 𝒘′𝑬[𝒓] = 𝒘′𝝁, where 𝝁 = 𝑬[𝒓].    (2.3) 

                                                      
2 Vectors and matrices are expressed in bold typography. 
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The portfolio variance is given by,  

𝜎𝑝
2 =  𝒘′𝜮𝒘 = 

 

(𝑤1, 𝑤2, ⋯ , 𝑤𝑁) (

𝑉𝑎𝑟(𝑟1) 𝑐𝑜𝑣(𝑟1, 𝑟2) ⋯ 𝑐𝑜𝑣(𝑟1, 𝑟𝑁)

𝑐𝑜𝑣(𝑟2, 𝑟1) 𝑉𝑎𝑟(𝑟2) ⋯ 𝑐𝑜𝑣(𝑟2, 𝑟𝑁)
⋮ ⋮ ⋱ ⋮

𝑐𝑜𝑣(𝑟𝑁 , 𝑟1) 𝑐𝑜𝑣(𝑟𝑁 , 𝑟2) ⋯ 𝑉𝑎𝑟(𝑟𝑁)

) (
𝑤1
𝑤2

⋮
𝑤𝑁

).(2.4) 

Where 𝜮 is a (N x N) covariance matrix containing the variance of all N assets returns and their 

pair wise covariance between the N assets returns. 

 

The minimum variance for a target portfolio return, 𝜇∗, can be found by solving this quadratic 

function,  

𝑚𝑖𝑛0.5𝜎𝑝
2, 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝜇𝑝 = 𝜇∗ 𝑎𝑛𝑑 ∑ 𝑤𝑖 = 1.𝑁

𝑖=1   (2.5) 

By solving this problem, you get the optimal asset allocation weights that will minimize the risk 

for a given level of return. This optimal solution lies on the efficient frontier (described by 

Markowitz (1952)). The efficient frontier is a set of risky assets that offers a minimum amount of 

risk for a given feasible target return, this forms as an upper part of a hyperbola in a (𝜇𝑝, 𝜎𝑝)-

space. The exact allocation in the efficient frontier depends on the investor’s risk tolerance. 

 

When a risk-free asset is included, the efficient frontier will no longer be a set of portfolios, but 

one specific portfolio of risky assets, called the tangency portfolio (sometimes also called the 

optimal risky portfolio). That is the portfolio that tangents the efficient frontier when you draw a 

line from the risk-free asset to the efficient frontier in a (𝜇𝑝, 𝜎𝑝)-space. The tangency portfolio 

together with the risk-free asset, will be the best fit for each investor’s individual risk tolerance. 

And the portfolio return, 𝑟𝑝 is,  

𝑟𝑝 = 𝑤𝑟𝑡
∗ + (1 − 𝑤)𝑟𝑓.   (2.6) 

Where 𝑟𝑡
∗ denote return from the tangency portfolio, 𝑤 is the weight invested in the tangency 

portfolio and 𝑟𝑓 denotes the return on the risk-free asset. 𝑟𝑝  is called the best possible capital 

allocation line (CAL). Due to the fact that the variance and the risk of a risk-free asset is zero, the 

variance of this portfolio will be,  
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𝜎𝑝
2 = 𝑤2𝜎𝑡

2 + (1 − 𝑤)2𝜎𝑟𝑓
2 + 2𝑤2(1 − 𝑤)2𝑐𝑜𝑣(𝑟𝑡 , 𝑟𝑓) 

      =  𝑤2𝜎𝑡
2 + (1 − 𝑤)20 + 2𝑤2(1 − 𝑤)20 =  𝑤2𝜎𝑡

2. (2.7) 

Now that we know the portfolio return and we know that the standard deviation is the square 

root of the variance, we can compute the CAL as,  

𝑟𝑝 = 𝑟𝑓 + (
𝑟𝑡 −𝑟𝑓

𝜎𝑡
) 𝜎𝑝.   (2.8) 

 

Figure 3: Illustration of Efficient frontier, CAL and tangency portfolio, with and without short sale restriction 

 

Figure 3 illustrates the efficient frontier with and without short sale restrictions, and the 

corresponding CAL and tangency portfolios. As you see, the short sale restriction make a 

difference. With short sale allowed, the CAL is steeper, and the tangency portfolio have a higher 

expected return and higher risk. According to modern portfolio theory, a risk averse investor will 

set his/hers portfolio somewhere on the CAL. When short sale is restricted, the investor’s 

portfolio will be on the CAL, either in point A, in point B, or between point A and B, depending on 

investor’s attitudes to risk. In the state where short selling is allowed, a rational investor will 

allocate his/hers investments on the CAL, from point A to point C or further out on the line. If the 

investor are risk tolerant and adapt the portfolio on the CAL to the right of point C, then the 
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investor buys risky asset on margin and borrows money at a risk-free rate to finance the tangency 

portfolio. This implies that the investor have weights larger than one in the tangency portfolio, 

𝑤 > 1, and negative weights in the risk-free assets, (1 − 𝑤) < 0.  

 

2.2 Capital Asset Pricing Model 

In early 1960s, Jack Treynor (1961,1962), William Sharpe (1964), John Lintner (1965) and Jan 

Mossin (1966) independently extended the work on MPT and derived the Capital Asset Pricing 

Model (CAPM). CAPM claim that portfolio returns is given by this equation in an equilibrium state, 

𝐸[𝑟𝑝] = 𝑟𝑓 +  𝛽𝑝(𝐸[𝑟𝑚] − 𝑟𝑓),   (2.9) 

Where portfolios expected return, 𝐸[𝑟𝑝], is a sum of risk-free rate of return, 𝑟𝑓, in addition to the 

systematic risk coefficient, 𝛽𝑝, multiplied with expected market excess return, 𝐸[𝑟𝑚] − 𝑟𝑓.  

The CAPM has a long list of assumptions, that are unrealistic, but CAPM is still popular due to its 

simplicity and variety. According to CAPM, all investors will hold a part of their wealth in the 

tangency portfolio, because investors are assumed to be rational, be utility-maximizes and that 

information asymmetries does not exist. When all investors hold the tangency portfolio and a 

risk-free asset, then this becomes the market portfolio, which will have the highest possible 

excess return given the risk.  

 

Jensen (1968) developed an extension of the CAPM to estimate how much a manager's 

forecasting ability contributes to the fund's returns, this is now known as the Single Index Model, 

which is the CAPM regressed on market portfolio’s excess return, 

𝑟𝑝 − 𝑟𝑓 = 𝛼𝑝 +  𝛽𝑝(𝑟𝑚 − 𝑟𝑓) + 𝑒𝑝    (2.10) 

where 𝛼𝑝  is a constant and a risk-adjusted measure that indicate additional portfolio return 

compared to market return, 𝑒𝑝 is an error term. 

Taking expectations,  

𝐸[𝑟𝑝] − 𝑟𝑓 = 𝛼𝑝 +  𝛽𝑝(𝐸[𝑟𝑚] − 𝑟𝑓)   (2.11) 

When the market is efficient, and CAPM is true, then 𝐸[𝛼𝑝] = 0. If we take the variance of excess 

return in (2.10), we get the portfolio variance = systematic risk + non-systematic risk often called 

firm-specific risk,  

𝜎𝑝
2 =  𝛽𝑝

2𝜎𝑚
2 + 𝜎2(𝑒𝑝)   (2.12) 
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2.3 Volatility 

Volatility is a measure of the spread in returns for a given security or market index. In general, the 

higher the volatility, the higher the risk. Therefore, volatility is a main measurement of risk. 

Rational expectation model states that investors should get a risk premium for taking on risk, i.e. 

the higher the volatility the higher excess return demanded. So, according to rational expectation 

model, market excess return and market volatility is positively correlated over a long-run in the 

cross-section of assets.  

 

Although the relationship between market excess return and volatility should be positive in the 

long-run, this is not always the empirical result, often in long.run time-series it occurs a negative 

relationship between market excess return and market volatility. Whaley (2000) describes the 

Chicago Board Option Exchange’s Market volatility index (VIX), how it is constructed and how it 

behaves during the period 1986 to 2000, with respect to how market volatility predict the market 

returns. This is also examined by Giot (2005) and Banerjee, Doran and Peterson (2007) among 

others.  

 

This negative relationship was also found in my data: 𝑟𝑡 − 𝑟𝑓𝑡 =  0.161513 − 0.00614𝜎𝑡, but the 

explanation degree was zero and the volatility coefficient was insignificant.  

To get an rational explanation of this empirical phenomenon, French et al. (1987) suggested to 

decompose market volatility into two parts, expected volatility and unexpected volatility, 𝜎𝑡 =

𝜎𝑡
𝑒 +  𝜎𝑡

𝑢, where expected volatility 𝜎𝑡
𝑒 is predicted using GARCH(1,1) and unexpected volatility is 

given by the difference between volatility and expected volatility 𝜎𝑡
𝑢 =  𝜎𝑡 − 𝜎𝑡

𝑒. French et al. 

(1987) argued that the negative relationship between market excess return and market volatility 

exist because excess return is positively correlated to expected volatility, but volatility is highly 

persistent, so an increase in unexpected volatility would increase the future expected risk 

premium, hence, decrease the current stock price.  

 

In my data, I have computed the realized monthly variance of index returns as the sum of squared 

daily returns by using this equation:  

𝜎𝑡
2 =  ∑ 𝑟𝑖𝑡

2𝑁𝑡
𝑖=1     (2.13) 
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where Nt is the number of trading days in month t and 𝑟𝑖𝑡 is the return on day i of month t. The 

return is assumed to have the properties:  

𝑟𝑡 = 𝜇 + 𝜀𝑡, where 𝜀𝑡 ~ 𝑁(0, 𝜎𝑡
2).   (2.14) 

 

2.4 Sharpe ratio 

The Sharpe ratio aim to measure risk-adjusted performance by subtracting the risk-free interest 

rate from the portfolio rate of return, such that we get excess return of the portfolio, and then 

divide excess return by the standard deviation of the portfolio returns.  

𝑆𝑅 =
𝑟𝑝−𝑟𝑓

𝜎𝑝
    (2.15) 

The Sharpe ratio is the slope of the CAL, and was developed by William F. Sharpe (1966). It has 

two main versions from Sharpe (1994), ex-ante Sharpe ratio, which uses expected portfolio return 

in the calculations, and ex-post Sharpe ratio, which uses realized portfolio return. Since my 

objective is backward looking, I use the ex-post Sharpe ratio.  

 

The Sharpe ratio is popular in finance due to its simplicity and its ability to measure the tradeoff 

between risk and return. The Sharpe ratio follows the ideology of the rational expectation model 

in that an investor should be properly compensated for taking on additional risk. If the excess 

return on the investment is relatively low with respect to the risk, then the Sharpe ratio would be 

low. We want as high value as possible in the Sharpe ratio, as we want as high α-value as possible 

in the Single Index Model. 

 

A drawback with the Sharpe ratio is that it includes standard deviation of excess return, which 

assumes that the excess return in the portfolio follows a normal distribution, therefore, kurtosis 

and skewness can decrease the accuracy of the Sharpe ratio. The standard deviation are 

measured by the distance each return has from the mean, so a large observed return, positive or 

negative, in a series of relatively small returns will penalize the Sharpe ratio. An example from 

Harding (2002) is that a suddenly large positive return in a series of small, consistent and positive 

returns will generate a lower Sharpe ratio, due to the increased standard deviation. One solution 

to this problem is to use the Sortino rate, which produce a semi-standard deviation based on only 

negative returns to use in the denominator instead of standard deviation.  Another drawback in 
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an ex-ante Sharpe ratio is the estimation, if the estimates are spurious then the Sharpe ratio will 

be spurious.  

 

2.5 Turbulence 

Turbulence is a substitute for volatility as a measurement of risk. Turbulence is defined by 

Kritzman and Li (2010) as uncharacteristic behavior of asset prices with respect to their historical 

behavior pattern, this includes extreme price moves, diverging of correlated assets, and 

convergence of uncorrelated assets. Periods with turbulence is often characterized with excessive 

risk aversion, illiquidity, and falling prices of risky assets. This thesis uses the mathematical 

measure for turbulence presented by Chow, Jacquier, Kritzman and Lowry (1999) which is 

equivalent to the “Mahalanobis distance” introduced by Mahalanobis (1927) used to analyze 

distances and resemblances in the human skull. Turbulence is defined as:  

 

𝑑𝑡 =  √(𝒓𝒕 − 𝝁)∑−𝟏(𝒓𝒕 − 𝝁)′   (2.16) 

 

Where 𝑑𝑡 is a scalar of turbulence for a particular time period t, 𝒓𝒕 is a vector (N x 1) of assets 

returns for time period t, 𝝁 is the sample average vector (N x 1) of historical returns and ∑ is the 

sample covariance matrix (N x N) of historical returns.  

 
Four steps to interpret 𝑑𝑡:  

Step 1. We want to capture the magnitude to which of the returns that was unusually high or low, 

we do this by taking each asset’s return, 𝒓𝒕,  and subtract by the historical average, 𝝁.  

Step 2. To make 𝑑𝑡 scale independent and to capture the interaction of the assets, we multiplying 

these differences by the inverse of covariance matrix of returns.  

Step 3. To convert 𝑑𝑡  from a vector to a scalar, we post multiplying by the transpose of the 

differences between the asset returns and their averages. 

Step 4: Square the sum. 
 
Turbulence presented in this form can be estimated for any set of asset, not only for asset with 

liquid option markets, it also has the advantage that it secure interactions between combinations 

of assets in addition to the degree of the assets’ returns. Like volatility, turbulence is highly 

persistent, illustrated in Figure 7 (page 37), and return to risk are substantially lower in turbulent 

periods.  
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These features gives an incentive to lower the amount of risky assets in presence of turbulence, 

in order to maintain risk and hope to improve the tradeoff between return and risk. This is done 

by Kritzman and Li (2010), where they build an optimal turbulence-resistant portfolio and an 

unconditioned optimal portfolio. The turbulence-resistant portfolio substantially outperformed 

the unconditioned portfolio in the out-of sample turbulent periods, but slightly underperformed 

the unconditioned portfolio, on average, in all market conditions. Kritzman and Li (2010) also 

show how to use turbulence as a filter for scaling exposure to risk in risky strategies, the result 

compared to an unfiltered strategy was greater return and information ratio, lower standard 

deviation and lower negative skewness. 

 

Note that turbulence is not made to recognize cheap or expensive asset, it is rather a measure to 

determine how fragile the market is, and to see how far we are from ‘normal’ market conditions. 

Turbulence is the degree of uncharacteristic behavior, capturing extreme price movements and 

changing intra-relationships. 

 

2.6 Efficient market hypothesis 

Efficient market hypothesis (EMH) state that no stock price history can be used in a strategy and 

still be superior to the market portfolio. This statement is studied in Section 5.3. The EMH was 

developed by Eugene Fama in the early 1960s and has been very popular until the behavioural 

finance started to grow in the 1990s. EMH states that the stock market is efficient, meaning all 

stocks are fairly priced and fully reflect available information. In EMH there does not exist 

overvalued or undervalued assets, so it is impossible to get a higher excess return than the market 

given equal risk. To get a higher excess return than the market, you have to take on more risky 

assets. 

 

The EMH is closely related to the random walk hypothesis which states that the stock market 

prices is independently and identically distributed (i.i.d), this means that the stock prices evolve 

according to a random walk, and past trends or movements cannot predict the future stock price. 

Evidence that confirms the random walk hypothesis was found by Cootner (1962), Fama (1965a) 

and Granger and Morgenstern (1963) among others, all though Alexander (1961), Steiger (1964) 
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and Lo and Mackinlay (2001) dismiss the random walk hypothesis. Fama (1965b) describes the 

relationship between the random walk hypothesis and EMH as “the action of the many market 

participants should cause the actual price of a security to wander randomly about its intrinsic 

value”. 

 

There is three categories of EMH, Bodie, Kane and Marcus (2011) describes these: 

Weak-form EMH: Assets prices reflect all information of relevant historical data, such as past 

prices, trading volume and short interest. 

Semistrong-form EMH: Assets prices reflect all publicly available information. This includes past 

prices, the firm’s fundamental data, quality on management and products, balance sheet 

composition, patents held, earnings forecast, and accounting practice. 

Strong-form EMH: Asset prices reflect all relevant information including insider information. 

For a strong-form efficient market to be possible, Fama (1970) argue that these assumptions must 

be fulfilled: 

 No transaction costs. 

 All information is costless available to all participants. 

 Investors are homogeneous in the expectations about implications of current 

information and distribution of future prices. 

 

These three forms of market efficiency implies according to EMH that technical analysis would be 

pointless, and fundamental analysis will only be beneficial in a week-form efficient market. 

Strong-form EMH is generally not supported, but Chan, Gup and Pan (1997) proofs by a unit root 

test market efficiency in weak-form EMH. Basu (1977), Rosenberg, Reid and Lanstein (1985), and 

many other studies have shown that the market is inefficient, which is why the EMH is a 

controversial hypothesis.  

 

2.7 Low-volatility anomaly 

Over the years, it is been written many scientific about the dynamic relationship and behaviour 

between excess return and market risk. The traditional assumption of the risk-reward 

relationship, where you expect a higher excess return when taking on more risk, have many 

anomalies. Many studies have discovered that portfolios with low-risk stocks produce higher risk-
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adjusted returns than portfolios with high-risk stocks. That is why it exist many low-risk strategies, 

which aim to lower the risk in a portfolio in order to get a higher risk-adjusted return. One of 

these strategies are low-beta strategies. Under the assumptions of CAPM, CAPM predicts a 

positive relation between the systematic risk coefficient beta and excess return, so high-beta 

portfolios have greater expected return than low-beta portfolios. Jensen, Black and Scholes 

(1972), Roll and Ross (1994) and Baker and Haugen (2012) among others finds empirical evidence 

that there exist a flat and/or negative relationship between beta and excess return. This rises the 

popularity of low-beta portfolios, which aim to keep a low systematic risk in the portfolio in order 

to get a high excess return. Frazzini and Pedersen (2014) present a “betting against beta”-strategy 

where they construct a portfolio that go long in leveraged low-beta assets and short high-beta 

assets, their portfolio produces significant positive risk-adjusted returns. 

 

Low-volatility strategies use volatility as a key determinant to allocate assets in a portfolio. This 

has become a very popular strategy, Baker and Haugen (1991) constructs a low-volatility portfolio 

consisting of 1000 US stocks that are weighted such that they minimizes the portfolio volatility. 

Every quarter the portfolio weights are re-balanced and optimized over the trailing twenty-four 

months. Their low-volatility portfolio significantly outperformed the market portfolio with both 

lower volatility and higher return. Jagannathan and Ma (2003) found that their low-volatility 

portfolio with no short-sale constraints generated higher returns and had lower realized volatility 

than the value-weighted market portfolio. Kuo and Li (2013) explains that a traditional minimum 

variance portfolio is guaranteed to be free of noisy return expectations, therefore, the minimum 

variance portfolio avoids dealing with “garbage-assets” with high risk, and thus preforms better 

than the mean-variance optimal portfolio. Clarke, De Silva and Thorley (2010) study a minimum 

variance portfolio with long-only constraint, and concludes that the analytical and empirical 

results show that the optimal portfolio weights is determined by the beta coefficient, and that 

low-beta stocks have relatively high mean returns. Baker and Haugen (2012) found evidence that 

support the low-volatility anomaly over the time period 1991 to 2011 in 33 different markets, and 

in each country, the low-risk stocks is superior with respect to Sharpe ratio.  

 

In Blitz and Van Vliet (2007) they try to explain why low-volatility stocks earn higher risk-adjusted 

returns that the market portfolio. In a factor model based on size, value and momentum, they 
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found that there was significant higher positive alpha in low-volatility portfolios versus high-

volatility portfolios, and that low-volatility stocks had low beta. They remark that their ordinary 

risk factors cannot explain all of the volatility effect. Baker, Bradley and Wurgler (2011) claim that 

the low-risk portfolio is superior because institutional investors focus too much on their alpha 

and the information ratio, instead their benchmark-free Sharpe ratio.  

 

Risk-parity strategy is a special asset diversification strategy that is constructed such as each asset 

are weighted after their respectively risk. That gives high weights on low-risk assets and low 

weights on high-risk assets. According to a white paper by Allen (2010), a levered risk party 

portfolio would have significantly outperformed an average institutional portfolio in the time 

period 2000 to 2010, but the risk parity portfolio would have significantly underperformed against 

the average institutional investor in the time period 1990 to 2000. Asness, Frazzini and Pedersen 

(2012) found that in the time period 1926 to 2010, the risk parity portfolio has superior Sharpe 

ratio compared to a 40/60 stock/bond portfolio and the value weighted market portfolio, but the 

risk parity portfolio generates lower average returns.  

 

Over to timing diversification, Busse (1999) studied how well mutual fund managers succeed to 

time market volatility, and he found that volatility timing has huge effect on mutual funds returns, 

and the better the mutual fund manager is to time market volatility, the higher risk-adjusted 

return was yield. (Collie, Sylvanus and Thomas (2011), Albeverio, Steblovskaya, and Wallbaum 

(2013), Perchet, de Carvalho, Heckel, and Moulin (2015)) among others have used volatility’s 

persistence as motivation to make a volatility-targeting strategy that aims to target a constant 

level of risk over time in a portfolio by rebalancing between risky assets and risk-free asset as the 

market volatility changes. They found by using historical data that this active volatility-targeting 

strategy significantly outperformed the passive benchmark. Hallerbach (2012) found that 

volatility targeting generally increases the risk-adjusted return, but the risk-adjusted return is 

sensitive to the accuracy of the volatility forecast. 

  

French et al. (1987) study the relation between stock return and stock market volatility. They 

found evidence that the expected excess return is positively related to the expected volatility of 

stock returns. In addition, that unexpected stock market returns are negatively related to the 
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unexpected volatility of stock returns. French et al. (1987) lead us to the Unexpected volatility 

strategy, that break volatility up into two pieces, expected volatility and unexpected volatility. 

Unexpected volatility strategy uses unexpected volatility to predict future volatility, and then 

allocate weights between stocks and bonds based on the predicted volatility. Zakamulin (2014) 

write how unexpected volatility can predict future volatility and future excess return using a 

GARCH(1,1) model. After that, he creates different dynamic asset allocation strategies based on 

unexpected volatility, and describe how they preform compared to a passive strategy.  

 

Turbulence strategies are a relatively new concept based on the paper of Chow et al. (1999). 

Turbulence strategies aim to lower the amount of risky assets in presence of turbulence, in order 

to maintain risk-adjusted return. This is done by Kritzman and Li (2010), where they build an 

optimal turbulence-resistant portfolio and an unconditioned optimal portfolio. The turbulence-

resistant portfolio substantially outperformed the unconditioned portfolio in the out-of sample 

turbulent periods, but slightly underperformed the unconditioned portfolio, on average, in all 

market conditions. Kritzman and Li (2010) also show how to use turbulence as a filter for scaling 

exposure to risk in risky strategies, the result compared to an unfiltered strategy was greater 

return and information ratio, lower standard deviation and lower negative skewness. The white 

paper of Harman (2014) suggest using turbulence in a regime shift strategy, that weights risky 

assets to 0 and risk-free assets to 1 in turbulent periods, and in non-turbulent periods it weights 

risky assets to 1 and risk-free assets to 0.   

 

3. Data 

In this thesis, the data consist of three time-series, risk-free interest rate with 475 monthly 

observations, 10 Industry Portfolio with 11250 daily observations divided on 10 variables, and 

Portfolios Formed on Size where the decile portfolios are used, the three datasets start at 

December 31, 1969, and end in July 31, 2014. I have chosen this period because it is the last forty-

five years, which includes several periods with large volatility and turbulence, especially the stock 

market crash in November 1987, the dot-com bubble in 2000 and the financial crisis in 2008.  
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Both 10 Industry Portfolios and Portfolios Formed on Size is split in equally -and value-weighted 

returns, and are available at Kenneth French’s online data library3, in monthly or daily data. I use 

value-weighted daily data in my computations, and then convert the data into monthly data when 

needed. 10 Industry Portfolios are data originating from Center for Research in Security Prices4 

(CRSP), where the data are stock returns from each stock listed at NYSE, AMEX and NASDAQ, all 

U.S. stocks, these stocks are sorted into one of ten categories based on their current four digit SIC 

code. The categories are5: (Variable-names in brackets)  

1. Consumer NonDurables (NoDur)  

2. Consumer Durables (Durbl)  

3. Manufacturing (Manuf)  

4. Oil, Gas, and Coal Extraction and Products (Enrgy)  

5. Business Equipment (HiTec)  

6. Telephone and Television Transmission (Telcm)  

7. Wholesale, Retail, and some Services (Shops)  

8. Healthcare, Medical Equipment, and Drugs (Hlth)  

9. Utilities (Utils)  

10. Other (Other). 

 

The risk-free interest rate is also distributed by Kenneth French’s data library, I use the risk-free 

rate from the dataset ‘Fama/French 3 Factors’, which are available in daily, weekly or monthly 

data. The risk-free rate is based on one month’s U.S. Treasury Bill return, which originating from 

Ibbotson and Associates, Inc. Portfolios Formed on Size6 consists of 20 columns with returns 

where I only use the last ten columns, that is the decile portfolios formed on size. 10 Size is only 

included as a secondary dataset to confirm that the risk-adjusted performance of the created 

portfolios from dataset 10 Industry Portfolios is analogous in dataset 10 Size. Hence, the risk-free 

interest rate and 10 Industry Portfolios is the primary datasets used in this thesis, and 10 Industry 

Portfolios is the source in the following, unless 10 Size is specified. All three datasets are collected 

                                                      
3 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
4 http://www.crsp.com 
5 A more extensive definition at: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/Siccodes10.zip 
6 The dataset Portfolios Formed on Size is in the following denoted 10 Size. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://www.crsp.com/
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/Siccodes10.zip
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from Kenneth French’s data library and is limited to U.S. assets, this make them comparable and 

consistent.    

 

I primarily use monthly data, except in the estimation of volatility and turbulence, which demands 

daily data. The argument for using data with horizon of one month is that most institutional 

investors and other active investors usually only re-balance their portfolio each months, this is 

due to institutional investor’s investment committee that cannot meet every day to discus and 

re-balance the their portfolio. In addition, rebalancing an active portfolio every day would 

generate a significant transaction cost. On the contrary, rebalancing the portfolio every quarter 

or more infrequently would make the portfolio too static and the portfolio would yield a lower 

average return and Sharpe ratio. The analysis of the data is computed with help from the 

statistical free software R, which can be downloaded from http://www.r-project.org/. 

 

4. Methodology 

For the reader to understand how the how I got the empirical results and the meaning of these 

data, I present the methodology of this study. I will describe how four different portfolios are 

constructed in this thesis, along with their estimated parameters. I explain the performance 

measurements and how statistical tests are applied. The computations of my empirical results 

from the statistical software R is given in appendix. This thesis exclude transaction cost and tax 

from the portfolios, because transaction cost is negligible, especially for institutional investors. 

Tax is constantly changing and can be different from location to location, tax often depend on the 

level of capital, and dividend and capital yield can have different tax rates.       

 

4.1 Models implemented and estimation process. 

This thesis is built on the perspective of a utility maximizing investor, whose main focus is to 

maximize the portfolio risk-adjusted return. Which in this thesis are measured and ranked by the 

Sharpe ratio, although, I will also use other measurement as secondary options. Note that 

according to the CAPM, the value weighted market portfolio is the optimal portfolio with respect 

to Sharpe ratio. Although, the empirical result in Section 5.3 and Table 5.10 tell the contrary. No 

matter how different assets in a portfolio are weighted, the portfolio performance can always be 

measured by the Sharpe ratio.  

http://www.r-project.org/
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Of the four portfolios build in this thesis for a utility maximizing investor, three of them are 

dynamic asset allocation strategies responsive to volatility, unexpected volatility and turbulence 

respectively. The last one is a passive equally weighted portfolio (EWP) that contain an equal 

amount of all ten Industry portfolios, all risky assets. By constructing this EWP, I get a large naively 

diversified portfolio with value-weighted returns from ten different industries sectors that is 

simple to construct compared to building a portfolio of specific companies and/or industries. 

Building a selected portfolio of risky assets will also be time-consuming and will have a greater 

risk in volatile and turbulent periods.  

 

DeMiguel et al. (2009) stated that “Of the 14 models we evaluate across seven empirical datasets, 

none is consistently better than the 1/N rule in terms of Sharpe ratio, certainty-equivalent return, 

or turnover…” They concluded that the EWP would be a natural benchmark due to its simplicity 

and low implementation cost. Therefore, it would be natural in this thesis to use the Sharpe ratio 

of the EWP as the benchmark. 

 

The three dynamic asset allocation strategies can be considered as “optimized” portfolios, in the 

sense that they aim to have the same characteristics as Markowitz’s Minimum Variance Portfolio. 

That is, their goal is to earn a high Sharpe ratio compared to the benchmark, by minimizing the 

portfolio risk. They do this by rebalancing the portfolio every month, such that they respond by 

reducing the weights in the EWP when the risk increases, and respond by increasing the weights 

in the EWP when the risk declines. The portfolio risk is defined differently in the three dynamic 

asset allocation strategies; they allocate the weighting of the assets according to volatility, 

unexpected volatility and turbulence respectively. The four portfolios made in this thesis are 

made on the constraint of “long only”, meaning borrowing and short sale is restricted. Their 

portfolio return is equivalent to Equation (2.6) subject to budget constraint (2.1).  

 

It is assumed that risky-asset returns at time t follows a random walk which are given by:  

𝒓𝒕 =  𝝁 + 𝜺𝒕    (4.1)  
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Where 𝒓𝒕 is a (N x 1) vector of returns at time t, 𝝁 is a (N x 1) vector of mean returns, and 𝜺𝒕 is a 

(N x 1) vector of random shock at time t, that is an i.i.d random variable with zero mean and 

constant variance.  

 

The rolling window covariance matrices are computed using the following method, demonstrated 

with two assets, where historical covariance between daily returns from asset 𝑖 and daily returns 

from asset 𝑗 is applied: 

 𝜮 = 𝝈𝒊,𝒋 =
∑ 𝑟𝑖,𝑡𝑟𝑗,𝑡

𝑇
𝑡=1

𝑇
   (4.2) 

Where 𝑇 is the length of the rolling window.  

 

The constant mean return estimate, μ, is given as:  

 �̂�𝑡 =  
1

𝑇
 ∑ 𝑟𝑖

𝑡−1
𝑖=𝑡−𝑇    (4.3) 

Where 𝑇 will be the length of the in-sample period, which is the distance from 31.12.1969 to 

31.12.1974, 1260 days. The computation of the portfolios are done in matrix -and vector-form, 

and is equivalent to the notation in Equation (2.1) to (2.4). 

 

Table 4.1 exhibit the four portfolios in this study and their requirement of input estimates. As you 

can see underneath, the turbulence-responsive portfolio is the most complex portfolio with 

respect to input estimates.  

Table 4.1: The four portfolios constructed for the empirical study. 

Portfolio model Abbreviation Input estimates 

Equally weighted portfolio EWP None 

Dynamic unexpected volatility portfolio unex.port 𝜮   

Volatility-responsive portfolio vol.port 𝜮  

Turbulence-responsive portfolio turb.port 𝜮, 𝝁 

 

The three dynamic portfolios all depend on the covariance matrix in the computation of volatility, 

unexpected volatility and turbulence, in addition, the turbulence also need the mean return in 

the building process. These input factors must be estimated, since we do not know their true 

realizations, in order to construct the three optimized portfolios. These parameters will be 
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estimated by using a specific time period, called in-sample or lookback periods, to estimate the 

parameters for the following out-of-sample period, which is the period I will study. In-sample 

periods or lookback period is the basis of our estimates. So, a short or irrelevant in-sample period 

will give a bad estimate, it is therefore important that the in-sample period reflect the timeframe 

you want estimate.  

 

I implement a rolling-window of 60 months to my in-sample period. These 60 months should be 

more than enough to give a good estimate of the covariance matrix of daily returns for my out-

of-sample period, computed after Equation (4.2). This means that my in-sample period that 

estimate the covariance matrix used to generate the portfolio weights, goes from 31.12.1969 to 

31.12.1974. After one month, it is time to re-balance the portfolio. A new covariance matrix is 

estimated, this time from 31.01.1970 to 31.01.1975, this new covariance matrix is used to give 

new weight in the portfolio construction, while the old covariance matrix is ignored. This re-

balancing process is used in all three dynamic strategies, and continues every month by always 

generating a new sample covariance matrix based on the last 60 months to make a new updated 

portfolio weights.  

 

In the computation of turbulence, the mean returns need to be estimated from the in-sample 

period, but unlike the covariance matrix, the mean returns used in the computations are fixed 

through the whole out-of-sample period. According to Chopra and Ziemba (1993), the estimation 

error from covariance matrix is significantly less than the estimation error from mean returns. 

This implies that the volatility-responsive portfolio and the unexpected volatility-responsive 

portfolio should be more accurate than the turbulence-responsive portfolio. 

 

4.1.1 Equally weighted portfolio 

The equally weighted portfolio is in general a portfolio consisting of assets that are weighted 

equally and summed to one, that is, 𝑤𝑖
𝐸𝑊𝑃 =

1

𝑁
 with respect to ∑ 𝑤𝑖

𝐸𝑊𝑃 = 1𝑁
𝑖=1 , no factors of 

the assets are taken into consideration. In this thesis, the equally weighted portfolio consist of all 

risky assets, which is the value weighted returns from the 10 Industry Portfolios, where each of 

the ten industries are weighted as 
1

10
 to construct one whole portfolio with equally weighted 
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returns from risky assets. The EWP is a passive, naïve diversified buy-and-hold portfolio that do 

not require any estimation, hence no estimation error will occur. Many economist, DeMiguel et 

al. (2009) and Duchin and Levy (2009) among others, argue that the EWP is an effective and better 

alternative to advanced asset allocation strategies because it is so simple, easy to implement and 

is a cheap asset allocation strategy.  

 

This EWP is the closest we come to the value weighted market portfolio in the sense that the 10 

Industry Portfolio returns are value weighted in their individual portfolios and then the ten 

portfolios are equally weighted. Based on strong assumptions the CAPM tell us that the optimal 

strategy for the investor is to hold the market portfolio of risky assets in terms of Sharpe ratio. 

The investor should be best off by allocate his/hers wealth between the market portfolio of risky 

assets and risk-free asset based on the individual risk aversion. This support my usage of the 

EWP’s Sharpe ratio as a benchmark in this thesis, and this is also why EWP is chosen as the risky 

asset in the three dynamical asset allocation strategies. 

 

4.1.2 Volatility-responsive strategy 

The volatility-responsive portfolio aim to improve the risk-adjusted return by dynamically allocate 

the weighting between risky asset and a risk-free asset in response to the market volatility such 

that the portfolio volatility is minimized. This portfolio will be the portfolio on the efficient frontier 

that offers the lowest volatility, as you see illustrated in Figure 9 (page 42). The volatility-

responsive portfolio is equivalent to Markowitz’s Minimum variance portfolio, except the 

volatility-responsive portfolio allocate the weights between a risky asset and a risk-free asset, 

while the minimum variance portfolio only consider risky assets.  

 

The key ingredient in this portfolio, naively forecasted volatility, �̂�𝑡+1 = 𝜎𝑡 , that is realized 

volatility in months 𝑡 used as forecast for month 𝑡 + 1. The volatility vector is computed after the 

following equation: 

𝝈 =  √𝒘′𝜮𝒘    (4.4) 
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Where the first 21 daily returns of the EWP is used to make a variance covariance matrix, 𝜮, which 

is multiplied with the inverse of the vector 𝒘 = (
𝑤1
𝑤2

⋮
𝑤𝑁

) = (
0.11
0.12

⋮
0.110

)  and 𝒘  and then squared 

rooted to make it volatility, this procedure is used in a rolling window of 535 months. The output 

is, 𝝈, a vector of monthly portfolio volatility of EWP from the start of the in-sample period January 

1970 to the end of the out-of-sample period July 2014.  

 

The next step is to compute the volatility-responsive portfolio, which actively allocate the position 

in the risky EWP, and the position in the risk-free interest rate in response to changes in the 

volatility environment of U.S. 10 Industries Portfolios. This volatility-responsive portfolio in 

periods of high predicted volatility will be weighted close too, or equal one in the risk-free asset 

and will be weighted close too, or equal zero in the risky EWP. And vica versa, in periods of 

predicted low volatility, the volatility-responsive portfolio will be weighted close too, or equal one 

in the EWP and will be weighted close too, or equal zero in the risk-free asset. 

 

In the volatility-responsive strategy, the weight at time 𝑡 + 1 invested in the EWP is based on the 

volatility at time 𝑡. This means that volatility-responsive strategy use a naïve model that uses 

realized volatility as a forecast for the volatility in the upcoming month. The weight at time 𝑡 + 1 

is computed after the following equation: 

𝑤𝑡+1
𝐸𝑊𝑃 = 𝑁 (

𝐸𝑡[𝜎]−𝜎𝑡

𝑠𝑡𝑑𝑡[𝜎]
)   (4.5) 

Where 𝑁 is the Normal cumulative distribution function,  𝐸𝑡[𝜎] is the mean volatility until time 𝑡, 

𝜎𝑡 is month 𝑡’s realized volatility, used as forecast for volatility in month 𝑡 + 1. and 𝑠𝑡𝑑𝑡[𝜎] is the 

standard deviation of volatility until time 𝑡. By subtracting the last month realized volatility from 

the mean volatility, I get the deviation from the mean. Then I divide by the standard deviation of 

volatility and by taking the normal distribution of the product, I get the weight in percent of the 

wealth invested in the EWP portfolio at time 𝑡 + 1.  

 

The weight at time 𝑡 + 1 invested in the risk-free asset is equivalent to (2.6):  

𝑤𝑡+1
𝑟𝑓

= 1 − 𝑤𝑡+1
𝐸𝑊𝑃   (4.6)  
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In order to make the volatility-responsive portfolio, the weights is re-balanced every month by 

re-estimate the parameters in (4.7) in a rolling-window of 60 months to find new “optimal” 

weights. This procedure is done every month from the start one month ahead of the out-of-

sample period to the end of the out-of-sample period. These weights is then multiplied with their 

corresponding asset in order to make the volatility-responsive portfolio. 

 

4.1.3 Unexpected volatility-responsive strategy 

The unexpected volatility-responsive strategy aims to improve the risk-adjusted return by actively 

allocate the weights invested in the risky asset and the risk-free asset in response to changes in 

unexpected volatility.  

 

This strategy also depend on input estimate of the covariance matrix since it depend on the 

estimation of realized monthly volatility. The computation of expected volatility, which is a 

forecast/prediction of future volatility only needs daily returns and the in-sample period as input. 

In the forecasting of expected volatility, I use the Generalized Autoregressive Conditionally 

Hetroscedastic (GARCH) model by Bollerslev (1986) due to its mean reversion and its symmetric 

degree of past returns. The GARCH model let the conditional variance 𝜎𝑡
2 depend on its own lags, 

so the simples GARCH model, GARCH(1,1) can be written as: 

𝜎𝑡
2 = 𝑎 + 𝑏𝜎𝑡−1

2 + 𝑐𝜀𝑡
2   (4.7) 

Where 𝜎𝑡
2 is a one period ahead estimate for the variance computed on any past information 

considered as relevant. 𝑏𝜎𝑡−1
2  is the information about volatility from the previous period. 𝑐𝜀𝑡

2 

tell us the degree of how much volatility changes due to lagged shocks. Since (4.4) only hold three 

parameters, it is very parsimonious, and allow an infinite number of past squared errors to 

influence volatility at time t. 

 

The GARCH model can be extended to a GARCH(p,q) model, where p is the lags of the conditional 

variance and q is the lags of squared error: 

𝜎𝑡
2 = 𝑎 + ∑ 𝑏𝑖𝜎𝑡−𝑖

2𝑝
𝑖=1 + ∑ 𝑐𝑗𝜀𝑡−𝑗

2𝑞
𝑗=1    (4.8) 

However, I have chosen to use a GARCH(1,1) model in my calculations, because it is very simple, 

robust and sufficient to capture the volatility clustering in my dataset. For stationarity in the 

GARCH model, one need b + c < 1 , such that 𝑣𝑎𝑟(𝜀𝑡) =
𝑎

1−(𝑏+𝑐)
> 0 , this is called long-run 
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mean. If b + c ≥ 1, then you have an “integrated GARCH” process, which is non-stationarity in 

variance.  

 

The GARCH(1,1) method produce �̂�𝑡
𝑒, a vector of monthly expected (forecasted) volatility from 

daily returns of EWP based on the rolling estimation window of five years, that ranges through 

the hole out-of-sample period. As described in Section 2.3, unexpected volatility is the difference 

between realized volatility and expected volatility, which is used as input in the unexpected 

volatility-responsive strategy. 

 

The unexpected volatility-responsive portfolio is equivalent to the volatility-responsive portfolio, 

but the unexpected volatility-responsive portfolio allocate the weights in response to changes in 

unexpected volatility based on Equation (4.9). In periods with high unexpected volatility, the 

unexpected volatility-responsive portfolio will allocate the weight of the risky EWP close too or 

equal zero, and allocate the weight of the risk-free interest rate close too or equal one. In periods 

of low unexpected volatility will the unexpected volatility-responsive portfolio allocate the 

weights in opposite direction. 

 

The dynamic unexpected volatility portfolio weight at time 𝑡 + 1 invested in the EWP is computed 

after this equation: 

𝑤𝑈,𝑡+1
𝐸𝑊𝑃 = 𝑁 (

𝐸[𝜎𝑢]−𝜎𝑡
𝑢

𝑠𝑡𝑑[𝜎𝑢]
)   (4.9) 

The weight invested in the risk-free asset is:  

𝑤𝑈,𝑡+1
𝑟𝑓

= 1 − 𝑤𝑈,𝑡+1
𝐸𝑊𝑃     (4.10)  

The notation and explanation of (4.9) and (4.10) is analogous to (4.5) and (4.6), but unexpected 

volatility is substituted with volatility in the Equation (4.9). The weights is re-balanced every 

month by re-estimate the parameters in (4.9) in a rolling-window of 60 months to find new 

updated weights. This procedure is done every month from the start one month ahead of the out-

of-sample period to the end of the out-of-sample period. These weights is then multiplied with 

their corresponding asset in order to make the unexpected volatility-responsive portfolio. 
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4.1.4 Turbulence-responsive strategy 

The purpose of the turbulence-responsive strategy is to improve the risk-adjusted return by 

dynamically allocate the weighting between risky asset and a risk-free assets such that the 

portfolio turbulence is minimized. Turbulence demands input estimate of both covariance matrix 

and mean return, which make more room for estimation error in the computation compared to 

the volatility-responsive portfolio.  

 

The turbulence vector, 𝒅, is computed based on this equation: 

𝒅 =  √(𝒓 − 𝝁)∑−𝟏(𝒓 − 𝝁)′   (4.11) 

Where 𝒓 is a vector of 1260 daily returns of the EWP in the in-sample period used to construct a 

variance covariance matrix, ∑, and a vector of mean return from each portfolio in 10 Industry 

Portfolios, 𝝁. This is applied in a rolling estimation window of five years that returns realized daily 

turbulence from the start of the out-of-sample period to the end of the out-of-sample period. The 

daily turbulence is then converted to monthly turbulence in order to make fitted weights to the 

turbulence-responsive portfolio.   

 

The weights in the turbulence-responsive portfolio is determined by the forecast of turbulence. 

To forecasting turbulence I use the naïve forecasting model, that is the realized turbulence in 

month 𝑡 is used as forecast for turbulence in months 𝑡 + 1, �̂�𝑡+1 = 𝑑𝑡. Using this approach to 

forecast turbulence works fine because turbulence is highly persistent, as displayed in Table 5.5 

in Section 5.2. This means that the weight of the turbulence-responsive portfolio is set by the past 

month realized turbulence.  The weight at time 𝑡 + 1 invested in the EWP is computed after the 

following equation: 

𝑤𝑇,𝑡+1
𝐸𝑊𝑃 = 𝑁 (

𝐸[𝑑]−𝑑𝑡

𝑠𝑡𝑑[𝑑]
)   (4.12) 

The weight invested in the risk-free asset is:  

𝑤𝑇,𝑡+1
𝑟𝑓

= 1 − 𝑤𝑇,𝑡+1
𝐸𝑊𝑃     (4.13)  

The notation and explanation of (4.12) and (4.13) is equivalent to Equation (4.5) and (4.6), but 

turbulence is substituted with volatility in the Equation (4.12). These weights are re-balanced 

every month in the out-of-sample period due to a rolling window, which re-estimate the 
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parameters in (4.12) based on turbulence from the last five years. These weights is then multiplied 

with their corresponding asset in order to make the turbulence-responsive portfolio. 

 

Similar to the volatility-responsive portfolio and the unexpected volatility-responsive portfolio, 

the turbulence-responsive portfolio weight in the EWP (risk-free asset) is low (high) in turbulent 

periods and high (low) in non-turbulent periods.   

 

4.2 Portfolio performance measurement 

The different portfolios will be evaluated after mean returns, standard deviation, CAPM alpha, 

skewness, capital accumulation and Sharpe ratio, where the latter is the main measurement. 

These measurements are given numerically in chapter 5, where the portfolio performance is 

revealed.  

 

In the evaluation of the different portfolios, I check the robustness of my results and data by 

splitting the out-of-sample period into four sub-periods. All sub-periods is between nine and ten 

years. This way, it will be easier to see which portfolio who performs best and worst in the given 

sub-periods, and it will be interesting to see if the portfolio who performs best in the whole out-

of-sample period also is superior in the four sub-periods. 

 
Table 4.2: Time periods used to determine the performance of the portfolios. 

Categorization of time period Date of time period  

Out-of-sample period 31.12.1975-31.07.2014 

Sub-period #1 31.12.1975-31.12.1984 

Sub-period #2 31.01.1985-30.12.1994 

Sub-period #3 31.01.1995-31.12.2004 

Sub-period #4 31.01.2005-31.07.2014 

 

These four sub-periods all cover periods with some financial distress, although the two last sub-

periods include the periods with most risk, in form of the dot-com bubble burst and the financial 

crisis. The second sub-period include the 19’Th of October’s Black Monday (1987) that caused a 

lot of financial frustration. While the first sub-period was relatively calm without any huge burst.    
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4.2.1 Mean return and standard deviation  

Because the mean return is so simple, it is useful to get an overall view of the empirical portfolios. 

The specific portfolio mean return is computed from Equation (2.6), however, the portfolio mean 

return is annualized in this thesis by using this equation for simple interest:  

�̅�𝑝 = �̂�𝑝12    (4.14) 

Where �̅�𝑝 is the annual portfolio mean return, and  �̂�𝑝 is realized monthly portfolio mean return. 

The variance is the spread of the observations, and is computed after Equation (2.7). The standard 

deviation is the square root of variance. To annualize the portfolios monthly standard deviation, 

the monthly standard deviation of a given portfolio, �̂�𝑝, is multiplied with the square root of 12. 

𝜎𝑝 = �̂�𝑝√12    (4.15)  

Where 𝜎𝑝 is the annualized standard deviation of a given portfolio return. 

All result in this thesis are reported in annual terms, to simplify and avoid confusion. 

 

4.2.2 Skewness  

Skewness measures the deviation of symmetry in a dataset, it measures if the dataset deviate to 

the left or the right of the center point. A perfectly symmetric dataset, like the normal 

distribution, looks exactly the same on the right hand side of the mean, as on the left hand side 

of the mean. A dataset is symmetric if it has a skewness value of zero. The dataset has more values 

on the left hand side of the mean if the skewness value is negative, meaning that the data are 

skewed to the left of the mean, and the left tail is longer than the right tail. Vica versa, if the 

skewness value is positive, then the right hand side of the mean has a longer tail than the left 

hand side of the mean, and the dataset is skewed to the right of the mean.   

 

In my empirical portfolios, a negative skewness will indicate that the mass of the returns is 

concentrated to the right of the mean, the portfolio has a tail of returns that are lower than the 

mean; investors do generally not prefer this. A positive skewness indicate that the mass of the 

returns is concentrated to the left of the mean, the portfolio has a tail of returns that are higher 

than the mean; investors generally prefer positive skewness above and beyond their preference 

for a higher mean and lower volatility. Note that portfolio skewness unequal zero implies that the 

portfolios are not normally distributed.  Skewness has this formula:  
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𝑆 =  
∑ (𝑟𝑖−�̂�𝑝

𝑁
𝑖=1 )3/𝑁

�̂�𝑝
3     (4.16) 

Where 𝑁 is the number of returns in the portfolio. 𝑟𝑖 , �̂�𝑝 and �̂�𝑝 are monthly portfolio returns, 

monthly portfolio mean return and monthly portfolio standard deviation respectively, equivalent 

to previous notations.   

 

4.2.3 CAPM alpha 

I include CAPM alpha, also known as Jensen’s alpha, as a measure because it is much used in 

practice by traders and investors who manage an active portfolio to measure their additional 

portfolio return compared to market return. The CAPM alpha is given in Equation (2.10) in Section 

2.2, but can also be written as:  

𝛼𝑝 =  𝐸[𝑟𝑝] − 𝑟𝑓 − 𝛽𝑝(𝐸[𝑟𝑚] − 𝑟𝑓)   (4.17) 

Where 𝐸[𝑟𝑝] is the expected portfolio return, and 𝑟𝑓 − 𝛽𝑝(𝐸[𝑟𝑚] − 𝑟𝑓) is fair compensation for 

systematic risk. 𝛼𝑝  can be defined as the excess return generated by the portfolio over its 

benchmark   

 

When Jensen developed the alpha in 1968, he gathered annual returns from 115 mutual fund 

from the period 1945-1964 to test for positive alpha, while using the S&P500 as benchmark. . 

Jensen (1968) found that the majority of the funds had a negative estimated alpha with a mean 

alpha of 0.4%. He found only three funds that had a significant positive alpha at the 5% level of 

the 115 funds tested. 

 

4.2.4 Sharpe ratio  

The out-of-sample Sharpe ratio is the main performance measurement in this thesis, because it 

can compare portfolios with different exposure to risk. A rational investor will prefer the portfolio 

with the highest Sharpe ratio, therefore it serves as the main performance measurement in this 

thesis, regardless of its limitations. 

 

In the evaluation process, I will use this version of the Sharpe ratio,  

𝑆�̂�𝑝 =
�̂�𝑝−𝑟𝑓

�̂�𝑝
    (4.18) 
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The difference from Equation (2.15) is that I use monthly out-of-sample mean return, mean risk-

free rate of return and out-of-sample standard deviation of monthly portfolio’s returns. The out-

of-sample Sharpe ratio is annualized by multiplying by the square root of 12. 

𝑆𝑅̅̅̅̅
𝑝 = 𝑆�̂�𝑝120.5   (4.19) 

To test if the three dynamical asset allocation portfolio’s Sharpe ratio is statistical distinguishable 

compared to the passive benchmark portfolio, I implement Jobson and Korkie (1981)’s test with 

the modification by Memmel (2003). This test take two Sharpe ratios and test the null hypothesis: 

𝐻0: 𝑆𝑅1 − 𝑆𝑅2 = 0, where the test statistics is given by the following equation:  

 𝑧̅ =  
𝑆𝑅̅̅̅̅ 1−𝑆𝑅̅̅̅̅ 2

√
1

𝑇
[2(1−�̅�2)+0.5(𝑆𝑅̅̅̅̅

1
2+𝑆𝑅̅̅̅̅

2
2−2𝑆𝑅̅̅̅̅ 1𝑆𝑅̅̅̅̅ 2�̅�2)]

   (4.20) 

𝑧̅ is standard normally distributed test statistics. 𝑆𝑅̅̅̅̅
1 , 𝑆𝑅̅̅̅̅

2  and �̅�  is the annual out-of-sample 

Sharpe ratio of portfolio 1, annual out-of-sample Sharpe ratio of portfolio 2 and their correlation 

coefficient respectively. 𝑇 is the sample size. The null hypothesis is rejected if the test’s p-value 

is less then significance level α=0.05. 

 

5. Empirical results 

In this Section, I will report my empirical results for the four portfolios in this study, and compare 

the four portfolios, especially with weight on the three dynamic asset allocation strategies 

described in Section 4.1. The empirical results are given in annual terms. Section 5.1 to 5.3 exhibit 

the empirical results based on the primary dataset 10 Industry Portfolios and risk-free interest 

rate, while Section 5.4 display the empirical results for the four portfolios based on dataset 10 

Size and risk-free interest rate. An extensional discussion on the empirical results are given in 

Section 6.  

 
I will start this chapter by looking at the summary statistic of my data to get a rough impression 

of the underlying factors. Where Table 5.1 shows: minimum value, first quartile of the 

observations, median, mean, third quartile of the observations and maximum value. The notation 

in Table 5.1 is equal to what I used in R software.  
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Table 5.1: Summary statistic for the time period 01.1975-31.07.2014, based on dataset 10 Industry 
Portfolios and risk-free interest rate. *The impossible number is not valid, it is a result of a monthly return 
multiplied by 12 to annualize. 

Summary statistics in percent 

 Min. 1st Qu. Median Mean 3rd Qu. Max 

EWP -603.50* -25.80 11.80 12.83 53.75 420.30 

rf 0.0000 2.13 4.92 4.873 6.72 16.20 

ex.return -608.70* -32.06 8.5 7.937 47.81 420.30 

std.port 4.422 9.336 11.500 13.68 15.87 83.30 

std.pred 7.333 11.08 13.13 14.20 15.59 62.08 

std.unex -28.75 -3.261 -1.286 -0.5213 1.41 67.92 

Mturb 0.6418 4.8448 9.1621 17.3816 16.6056 267.2369 

 

EWP is the equally weighted portfolio described in Section 4.1.2, The summary statistics tell us 

that the EWP has a positive annual mean return of 12.23 percent. The first quartile, that is the 

middle return between the smallest and the median return, show a negative return of 25.92 

percent. On the other hand, the third quartile, that is the middle return between the median and 

the highest return, display a positive return of 53.75 percent. If you look at Figure 1, you see that 

the second half has much more spread in the returns than the first half.    

rf is the risk-free interest rate, it has a mean return of 4.873 percent. From the quartiles, we can 

state that 50 percent of the observations is between 2.13 percent and 6.72 percent. As we can 

see from Figure 1 (page 1), rf was as high as 16.2 percent in June 1981, but rf has since then 

evolved downwards in the out-of-sample period, and after the financial crisis rf has been 

approximately zero.  

ex.return is the excess return which has a positive mean return of 7.937 percent. 

std.port is the estimated realized equally weighted volatility, that has a mean volatility of 13.68 

percent, 75 percent of std.port lies below 15.87 percent which is good, but std.port has a 

maximum at 83.3 percent.    

std.pred is the predicted volatility generated by the GARCH(1,1) model, std.pred has a mean of 

14.20 percent which is higher than std.port, also the maximum volatility is a bit lower. Figure 4 

illustrates how std.pred follow std.port, the difference between them is std.unex. 
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std.unex is the unexpected volatility, that is std.port subtracted by std.pred as described in 

Section 2.3. std.unex has a mean of -0.5213 percent, this tell us that on average, historical 

volatility is less than forecasted volatility. 

Mturb is turbulence which has a mean of 17.38 percent, that is over the third quantile of 16.6 

percent, this is due to extreme levels of turbulence that happens rarely but is drives the mean 

upwards. The three most extreme observations of turbulence happened at September 1998, July 

2000 and October 2009 as illustrated in Figure 1 (page 1). 

 

Figure 4: Historical vs. predicted monthly volatility. The GARCH(1,1) model applied to a 60 months rolling 
window predicts volatility. 

  
 

5.1 Predictive abilities of unexpected volatility 

To check if unexpected volatility can predict monthly volatility of the returns on EWP and the 
monthly excess return, as suggested by French et al. (1987) and Zakamulin (2014). I check if lagged 
unexpected volatility can predict the volatility of the returns on EWP and the excess return by 
running the following regression: 
    𝜎𝑡 = 𝛼 + 𝛽𝜎𝑡−1

𝑢 + 𝜀𝑡      (5.1)  
     and 𝑟𝑡 − 𝑟𝑓𝑡 =  𝛼 + 𝛽𝜎𝑡−1

𝑢 + 𝜀𝑡     (5.2).  
The sign on the β coefficient tell us how the future dependent variable is predicted to respond to 
a change in unexpected volatility. If β < 0, then the future dependent variable is expected to move 
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in the opposite direction of unexpected volatility. If β = 0, then the future dependent variable is 
unrelated to unexpected volatility. If β > 0, then the future dependent variable is expected to 
move in the same direction as unexpected volatility.  
The R software output is given below: 
 
Table 5.2: Regression of volatility on its lagged unexpected volatility. 

Regression Time period β-coefficient P-value R-square adj. 

(5.1) 

01.1975 – 12.1984 0.95573     <2e-16 0.4669 

01.1985 – 12.1994 0.9838 <2e-16 0.8466 

01.1995 – 12.2004 0.83651 8.22e-16 0.419 

01.2005 – 07.2014 1.0674 <2e-16 0.4714 

01.1975 – 07.2014 0.98803 <2e-16 0.5223 

 
Figure 5: Volatility regresses on lagged unexpected volatility yields a positive correlation in the out-of-
sample period. 𝜎𝑡 = 𝛼 + 𝛽𝜎𝑡−1

𝑢 + 𝜀𝑡 , results: 𝛼 = 14.19, 𝛽 = 0.988, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.5223 => Significant 
positive relationship between 𝜎𝑡 and 𝜎𝑡−1

𝑢 . 

  

Regression of (5.1) shows a strong positive β coefficient in the out-of-sample period and in all four 

sub-periods. This indicates that unexpected volatility move in the same direction as future 

volatility. To be more specific, β=0.988 means that a one percentage increase in unexpected 
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volatility would increase the future value of volatility with 0.988 percent. The p- value is highly 

significant, and all periods are significant on α = 1% significance level. This means that the 

coefficient contributes significantly such that there is a linear relationship between volatility and 

unexpected volatility. The out-of-sample period have an acceptable explanation degree of 

0.5223, unexpected volatility predicts future volatility in an excellent way. The sub-period results 

is consistent with the results for the out-of-sample period regression of volatility on past values 

of unexpected volatility, hence these results are robust. 

 

Table 5.3: Regression of excess return on lagged unexpected volatility. 

Regression Time period β-coefficient P-value R-square adj. 

(5.2) 

01.1975 – 12.1984 0.05874 0.0215 0.03588 

01.1985 – 12.1994 -0.04206 6.83e-06 0.1511 

01.1995 – 12.2004 -0.0249 0.165 0.007931 

01.2005 – 07.2014 0.01587 0.224 0.004308 

01.1975 – 07.2014 -0.011943 0.0838 0.004206 

 

On the contrary, regression of (5.2) displays a more tangled result. The β coefficient is marginally 

negative in the out-of-sample period, while it is positive first- and last sub-period, and the β 

coefficient is negative in the two middle sub-periods. In the two first sub-periods, the p-value is 

significant and the explanation degree is low but useful, however, it is troubling that the β 

coefficient has opposite signs. In the two last sub-periods, the p-values are insignificant and the 

explanation degree is approximately zero. Overall, in the out-of-sample period excess return 

regressed on lagged values of unexpected volatility is insignificant, and past values of unexpected 

volatility fails to explain present values of excess return.  
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Figure 6: Excess return regresses on lagged unexpected volatility yields a slightly negative, but insignificant 
regression line. 𝑟𝑡 − 𝑟𝑓𝑡 =  𝛼 + 𝛽𝜎𝑡−1

𝑢 + 𝜀𝑡 . Results: 𝛼 = 0.073, 𝛽 = −0.012, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.084 => 
Insignificant weak-negative relation between 𝑟𝑡 − 𝑟𝑓𝑡 and 𝜎𝑡−1

𝑢 . 

  

To get a clearer point of view of how it is all connected, I run a regression where the dependent 

variable is excess return, and the independent variables are unexpected- and expected volatility.  

𝑟𝑡 − 𝑟𝑓𝑡 =  𝛼 + 𝛽1𝜎𝑡−1
𝑢 + 𝛽2𝜎𝑡−1

𝑒 + 𝜀𝑡   (5.3) 

Table 5.4: Excess return regressed on unexpected- and expected volatility lagged once. 

Regression Time period 𝜷𝟏-coefficient 

(unexpected) 

P-value 

of 𝜷𝟏 

𝜷𝟐-coefficient 

(expected) 

P-value 

of 𝜷𝟐 

R-square 

adj. 

(5.3) 

01.1975 – 12.1984 0.06002 0.0188 0.02902 0.2457 0.03882 

01.1985 – 12.1994 -0.041326 7.36e-06 0.044975 0.0353 0.1758 

01.1995 – 12.2004 -0.025782 0.158 -0.005413 0.769 0.0001953 

01.2005 – 07.2014 0.0159102 0.226 -0.0006658 0.955 -0.004552 

01.1975 – 07.2014 -0.0119397 0.0843 0.0003062 0.9666 0.0021 

 

The result of (5.3) is negative unexpected volatility coefficient 𝛽1  and marginally positive 

expected volatility coefficient 𝛽2 in the out-of-sample period. The 𝛽1 coefficient is significant on 
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an α=0.1 significance level, while the 𝛽2  coefficient is insignificant. The adjusted 𝑅2  is 

approximately zero. Similar to  French et al. (1987) and Zakamulin (2014) there is a positive 

relationship between excess return and expected volatility lagged once and a negative 

relationship between excess return and unexpected volatility lagged once in the same period. The 

𝛽1 coefficient is significant in the two first sub-periods, but the sign is different in the two first 

sub-periods equivalent to regression (5.2). The 𝛽2 coefficient is only significant in the second sub-

period, where it is positive. The second sub-period is the only period with a decent explanation 

degree of 17.6 percent, the other periods have adjusted 𝑅2 near zero (analogous to (5.2)).  

 

Out of the results from regression (5.1), (5.2) and (5.3), I can argue that unexpected volatility can 

predict future volatility and there is a positive linear relationship between them, this is also 

illustrated in Figure 5, hence unexpected volatility can be used in as input in a dynamic asset 

allocation strategy. Unexpected volatility is able to predict future excess return in the out-of-

sample period, where it is a negative linear relationship between them, but the explanation 

degree is low. Only in the first and second sub-period, unexpected volatility significantly predict 

future excess return. Expected volatility is not able to predict future excess return in the out-of-

sample period. Only in the second sub-period where there is a positive linear relationship 

between expected volatility and future excess return is significant on α=0.05 level.   

 

5.2 Predictive abilities of turbulence. 

Turbulence is as volatility very persistent, this is proofed by regressing turbulence on last month 

turbulence, given by this equation:  

𝑑𝑡 = 𝛼 + 𝛽𝑑𝑡−1 +  εt   (5.4) 

 Table 5.5 display the output of regression (5.4), where a one percentage change in turbulence is 

estimated to change future turbulence with 0.4907 percent in the same direction in the out-of-

sample period. In the out-of-sample period and all sub-periods, the β-coefficient is positive, they 

are all significant except in the second sub-period where also the explanation degree is almost 

zero. From Table 5.5 we can state that turbulence can be used to predict future values of 

turbulence, and there exist a positive linear relationship between them.  
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Table 5.5: Persistence of turbulence: Turbulence regressed on turbulence lagged once, that is 𝑑𝑡 = 𝛼 +
𝛽𝑑𝑡−1 +  𝜀𝑡 

Regression Time period β-coefficient P-value R-square adj. 

(5.4) 

01.1975 – 12.1984 0.28155 0.00149 0.07515 

01.1985 – 12.1994 0.10761 0.241 0.003264 

01.1995 – 12.2004 0.4129 2.75e-06 0.1636 

01.2005 – 07.2014 0.48855 3.13e-08 0.2316 

01.1975 – 07.2014 0.4907 < 2e-16 0.2392 

 

Figure 7: Persistence of turbulence: Turbulence regressed on its own lag in the out-of-sample period, that 
is 𝑑𝑡 = 𝛼 + 𝛽𝑑𝑡−1 + 𝜀𝑡. Results:α=8.81, β=0.49, p-value=0.00 => Significant positive relationship between 
𝑑𝑡 and 𝑑𝑡−1.  

 

Now that it is proved that turbulence is persistent and can be used to predict itself, it is time to 

test how turbulence can be used to predict future excess return. As displayed in Table 5.6 

underneath, where excess return is regressed on last month turbulence, given by this equation: 

rt − rft =  α + βdt−1 + εt   (5.5) 
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 The result of regression (5.5) is that all the β-coefficients are positive which indicated the 

direction, however none of the periods is significant on a α=5% significance level, the last sub-

period has a p-value of 5.79 percent and is significant on an α=10% significance level. The adjusted 

𝑅2 is very low in all periods, implying that what the current turbulence provides essentially zero 

information about upcoming excess returns. Based on these data, I will not state that turbulence 

can predict future excess return.    

 

Table 5.6: Regression of excess return on turbulence lagged once. 

Regression Time period β-coefficient P-value R-square adj. 

(5.5) 

01.1975 – 12.1984 0.004158 0.576 -0.005836 

01.1985 – 12.1994 0.005749 0.419 -0.002894 

01.1995 – 12.2004 0.0005263 0.839 -0.008121 

01.2005 – 07.2014 0.005241 0.0579 0.02288 

01.1975 – 07.2014 0.002028 0.18 0.001695 

 

Figure 8: Excess return regressed on turbulence lagged once, that is  𝑟𝑡 − 𝑟𝑓𝑡 =  𝛼 + 𝛽𝑑𝑡−1 + 𝜀𝑡. Results: 
𝛼 = 0.043, 𝛽 = 0.002, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.18 => Insignificant unbiased relation between 𝑟𝑡 − 𝑟𝑓𝑡 and 𝑑𝑡−1. 
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The persistence of volatility is well known documented in many scientific papers, this thesis will 

therefore not bother to replicate the volatility’s persistence before making a volatility-responsive 

strategy. Now that features of unexpected volatility and turbulence are identified, it is time to 

test how well they works as input in a dynamic asset allocation strategy. 

 

5.3 Performance of constructed portfolios. 

We saw in the part 5.1 and 5.2 that unexpected volatility can be used to predict volatility, which 

also was positively related. Only unexpected volatility could predict excess returns to some 

degree, but not very convincingly. Turbulence is persistent and can be used to predict future 

turbulence. However, this part aim to evaluate four constructed portfolios that consist of 

different allocations between of market returns of EWP and risk-free interest rate.  

Table 5.7: Mean returns 

Time period EWP vol.port unex.port turb.port 

01.1976 – 12.1984 0.16911 0.11235 0.10220 0.13373 

01.1985 – 12.1994 0.26554 0.17150 0.17816 0.20669 

01.1995 – 12.2004 0.07137 0.08217 0.09744 0.06317 

01.2005 – 07.2014 -0.01841 0.00002 -0.00357 -0.00717 

01.1976 – 07.2014 0.12230 0.09200 0.09440 0.09942 

 
The portfolios mean returns is presented in Table 5.7. In the out-of-sample period, the EWP has 

the highest mean return with 12.23 percent, followed by turb.port with 9.94 percent mean 

return. Out of the four portfolios, vol.port has the lowest mean return with 9.2 percent. The EWP 

has highest mean return in the two first sub-periods, and is worst of all four portfolios in the last 

sub-period. Only vol.port managed to get a positive mean return in the last sub-period. Among 

the three dynamic portfolios, turb.port and vol.port both have two sub-periods each where they 

performs best of the three, turb.port is best in the two first decades, unex.port has highest mean 

return in the third sub-period, while vol.port is best in the last decade.  

  



40 
 

Table 5.8: Standard deviation. 

Time period EWP vol.port unex.port turb.port 

01.1976 – 12.1984 0.20041 0.10587 0.08699 0.12706 

01.1985 – 12.1994 0.22270 0.09575 0.09888 0.12060 

01.1995 – 12.2004 0.28594 0.14519 0.13716 0.12669 

01.2005 – 07.2014 0.30285 0.11387 0.16783 0.14332 

01.1976 – 07.2014 0.25820 0.11791 0.12806 0.13123 

 
As anticipated, the EWP has the highest standard deviation in all periods and vol.port has the 

lowest standard deviation in the out-of-sample period. Unex.port has the lowest standard 

deviation in first sub-period, vol.port is superior in the second and fourth sub-period, turb.port 

has the lowest standard deviation in the third sub-period. Notice the large spread in portfolio 

standard deviation in the fourth sub-period, ranging from 0.11387 to 0.30285. 

 
Table 5.9: Skewness. 

Time period EWP vol.port unex.port turb.port 

01.1976 – 12.1984 0.35118 -0.30812 -0.36388 0.16812 

01.1985 – 12.1994 -0.43048 0.64641 1.53532 1.75402 

01.1995 – 12.2004 -2.02904 -1.93319 -0.30471 -2.25571 

01.2005 – 07.2014 0.67494 -0.34394 0.80325 0.31765 

01.1976 – 07.2014 -0.57120 -1.02104 0.32508 -0.09490 

 
In terms of skewness, the closer value to zero, the better. In the out-of-sample period, turb.port 

has the skewness closest to zero, which means that the turb.port follows the normal distribution 

best and indicating that the standard deviation and hence the Sharpe ratio is most accurate in the 

turbulence-responsive strategy. vol.port has the worst skewness in the out-of-sample period, the 

skewness is negative which means that vol.port is skewed to the left of a normal distribution.  
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Table 5.10: Sharpe ratio. The p-value of Sharpe ratio test between the dynamical portfolios and EWP in 
parentheses. 

Time period EWP vol.port unex.port turb.port 

01.1976 – 12.1984 0.40534 0.23115 (0.11) 0.16467 (0.02) 0.36088 (0.00) 

01.1985 – 12.1994 0.93998 1.20410 (0.00) 1.23336 (0.00) 1.24778 (0.00) 

01.1995 – 12.2004 0.11560 0.30204 (0.01) 0.43104 (0.00) 0.19614 (0.11) 

01.2005 – 07.2014 -0.10933 -0.12894 (0.80) -0.10889 (0.81) -0.15264 (0.95) 

01.1976 – 07.2014 0.28491  0.36696 (0.00) 0.35658 (0.00) 0.38628 (0.00) 

 
Finally, it is time to look at the key measurement. In the first sub-period, the passive EWP is 

superior with a Sharpe ratio of 0.40534. Out of the three dynamic portfolios, turb.port has 

without doubt the greatest Sharpe ratio and unex.port has the worst Sharpe ratio. In the second 

sub-period, turb.port is superior with a Sharpe ratio of 1.24778, followed by unex.port. EWP has 

the lowest Sharpe ratio. In the third sub-period, unex.port is clearly superior with a Sharpe ratio 

of 0.431, followed by vol.port. EWP has again the weakest Sharpe ratio. In the fourth and last sub-

period, all the four portfolios has a negative Sharpe ratio and the distance between their Sharpe 

ratios is small. However, unex.port has the least negative Sharpe ratio and is superior, followed 

by EWP, turb.port has the lowest Sharpe ratio.  

 

In the out-of-sample period, there is a close race between vol.port and turb.port, but the 

turbulence-responsive strategy is the optimal strategy out of these four portfolios with a Sharpe 

ratio of 0.38628. It is tight between the two portfolios in the middle, but vol.port take the second 

place in the ranking with a Sharpe ratio of 0.36696, followed by unex.port with a Sharpe ratio of 

0.35658. EWP has clearly the lowest Sharpe ratio with 0.28491 in the out/of/sample period. These 

findings indicate that it is not rational to hold the passive EWP in terms of risk-adjusted return; 

one should invest in the optimized portfolio turb.port, which has superior Sharpe ratio in the out-

of-sample period. The out-of-sample period performance in a (mean return, standard deviation)-

space is illustrated in Figure 9.      
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Figure 9: Illustration of risk/reward performance. Note that rf represents “all-in” in risk-free interest rate 
(0/100 portfolio). The blue line is the Capital allocation line. 

  

Since EWP is the benchmark, EWP is not included in the computation of CAPM alpha. In the out-

of-sample period turb.port has a superior CAPM alpha with an α of 1.74 percent out of the three 

portfolios. vol.port follow with an α of 1.5 percent in the out-of-sample period and unex.port has 

an α of 1.405 percent in the out-of-sample period. In the sub-periods, turb.port is superior in the 

first. unex.port has the best CAPM alpha in the second, third and fourth sub-period. unex.port 

performs worst in the first, second and fourth sub-period in terms of CAPM alpha. 

Table 5.11: CAPM alpha. The p-value of CAPM alpha in parentheses. 

Time period vol.port unex.port turb.port 

01.1976 – 12.1984 -0.01505 (0.28) -0.01795 (0.13) -0.00490 (0.50) 

01.1985 – 12.1994 0.04237 (0.02) 0.04960 (0.01) 0.04895 (0.00) 

01.1995 – 12.2004 0.02832 (0.10) 0.04479 (0.02) 0.01204 (0.54) 

01.2005 – 07.2014 -0.00558 (0.82) -0.00234 (0.93) -0.00833 (0.72) 

01.1976 – 07.2014 0.01500 (0.14) 0.01405 (0.17) 0.01744 (0.07) 

 
For a graphical view of the development of weights in the three dynamic portfolios, see Figure 

10, 11 and 12. unex.port seems to have a more rapid response in the allocation between stocks 
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and risk-free interest. While the vol.port moves a bit smoother, and turb.port has the smoothest 

response in the allocation between EWP and risk-free interest. As displayed in Table 5.12 

underneath, there is 2.65 percent difference in the mean weights of unex.port and turb.port, and 

the median weight in EWP of turb.port is at 61.93 percent, while unex.port has a median weight 

in EWP of 55.2 percent. It is also worth mentioning that while unex.port ranges from zero to 

hundred percent weight in EWP, turb.port has only a maximum weight in EWP of 73.17 percent.  

 

Table 5.12: Summary statistics of portfolio weights. 

Summary statistics of portfolio weights in percent 

 Min. 1st Qu. Median Mean 3rd Qu. Max 

Unex.port 0.00 37.09 55.20 51.98 68.26 100.00 

Vol.port 0.00 39.39 60.66 53.92 70.52 87.36 

Turb.port 0.00 51.02 61.93 54.63 67.94 73.17 

 

Figure 10: Weights of stocks in unexpected volatility-responsive portfolio. 
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Figure 11: Weights of stocks in volatility-responsive portfolio. 

  

Figure 12: Weights of stocks in Turbulence-responsive portfolio. 
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5.4 Performance of constructed portfolios based on dataset 10 Size. 

My primary goal of this thesis is to evaluate the dynamic asset allocation strategies based on 10 

Industry Portfolios. However, to proof that the dynamic strategies also hold on other dataset and 

that my conclusion is right, I run the constructed portfolios on the dataset 10 Size. Table 5.13 

display the performance from out-of-sample period with dataset 10 Size. 

 

Table 5.13: Statistics of the performance of the four constructed portfolios in the out-of-sample period 
01.1976 – 07.2014 based on 10 Size dataset. P-values in parentheses. 

Measure EWP vol.port unex.port turb.port 

Mean returns 0.2269 0.1546 0.1470 0.1410 

Standard deviation 0.2626 0.1231 0.1380 0.1266 

Skewness -0.2681 -0.8402 1.0087 0.3779 

Sharpe ratio 0.6786 0.8604 (0.00) 0.7123 (0.02) 0.7285 (0.00) 

CAPM alpha  0.0382 (0.00) 0.0185 (0.11) 0.0171 (0.07) 

 

The completely different dataset 10 Size present EWP as superior in terms of mean returns out 

of the four portfolios, this is in line with the mean returns based on 10 Industry Portfolios, 

however, the order has changed in Table 5.13, vol.port has highest mean returns out of the three 

dynamic portfolios, followed by unex.port. In terms of standard deviation unex.port and turb.port 

has changed places compared to the ranking in Table 5.8, although the standard deviation to 

unex.port and turb.port is very close to each other in both dataset. All the portfolios is skewed a 

bit more to the right in the 10 Size dataset, which changes the skewness from an average of -0.33 

in dataset 10 Industry Portfolios to a better average of 0.07 in dataset 10 Size. In terms of the 

primary measurement, Sharpe ratio, the three dynamic portfolios have still a significant higher 

Sharpe ratio than EWP in the 10 Size dataset, but vol.port is superior followed by turb.port and 

unex.port. All three dynamic portfolios have a higher CAPM alpha in Table 5.13 than in Table 5.11. 

vol.port yields the highest CAPM alpha in dataset 10 Size and turb.port yields the lowest CAPM 

alpha out of the three portfolios. 
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6. Discussion 

As far as I know, there exist no other study scientific paper that explore how dynamic asset 

allocation strategies based on unexpected volatility or turbulence perform on Kenneth French’s 

10 Industry Portfolio or 10 Size. So, I have no exact study to compare with. The study closest to 

this thesis, is Zakamulin (2014) and Kritzman & Li (2010). Zakamulin does a study on the S&P500- 

and DJIA index from 1970 to 2012. He finds a significant negative relation between excess return 

and unexpected volatility lagged once, however, his explanation degree is low. Zakamulin (2014) 

also found a significant positive relation between volatility and unexpected volatility lagged once. 

When he made a dynamic unexpected volatility-responsive portfolio, it clearly outperformed a 

passive 50/50 portfolio and a dynamic volatility-responsive portfolio.  

 

When I run the regression excess return on lagged unexpected volatility in the out-of-sample 

period, I got an weak negative relationship between expected return and unexpected volatility 

lagged once, significant on an α=0.1 significance level, but the explanation degree was 

approximately zero. In the second sub-period, it was a clear significant negative relationship 

between unexpected volatility and future excess return. When unexpected volatility increased in 

the second sub-period, next month’s excess return where predicted to decrease. When I run a 

regression between volatility and unexpected volatility lagged once, I got a significant strong 

positive relationship, which states that unexpected volatility is able to explain about 52 percent 

of future volatility in the out-of-sample period, and up to 85 percent in second sub-period. 

Explicitly, When unexpected volatility increases, next month’s volatility is predicted to increase. 

Regression (5.3) display an insignificant weak positive relationship with expected volatility and 

future excess return. All these data from unexpected volatility is consistent with Zakamulin (2014) 

and French et al. (1987), even though they used a different dataset then what is applied in this 

thesis.  

 

When testing the predictive abilities of turbulence on future excess return, I got an insignificant 

weak positive relation between excess return and turbulence lagged once, in out-of-sample 

period and all sub-periods at α=5% significance level. In addition, the explanation degree was 

approximately zero. However, turbulence can be used to predict next month’s turbulence. 

Turbulence lagged once was able to explain about 24 percent of future turbulence and there exist 
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a significant positive relation between them in the out-of-sample period, and all four sub-periods. 

Kritzman and Li (2010) showed that Mahalanobis distance is mathematically equivalent to 

turbulence, which is replicated in this thesis. Kritzman and Li (2010) found that turbulence 

substantially lower risk-adjusted returns, and that turbulence is continues when is arrives. Even 

though Kritzman and Li (2010) uses a different dataset then what is applied in this thesis, the 

conclusions with respect to turbulence is equivalent in this thesis. 

 

All three dynamical asset allocation portfolios deliver a statistically higher Sharpe ratio then EWP 

in the out-of-sample period in both dataset 10 Industry Portfolios and dataset 10 Size. However, 

there is differences with respect to Sharpe ratio in the four sub-periods. It is worth noticing that 

in the last sub-period, none of the dynamic portfolios is statistically different from the EWP with 

respect to Sharpe ratio, and all portfolios have negative Sharpe ratio. When considering a small 

time period, let’s say five or ten years, it is not given that the dynamic asset allocation strategies 

would deliver consistently better Sharpe ratio than the EWP of risky assets. Even though the 

empirical results also display higher Sharpe ratios in some sub-periods and lower in other sub-

periods, the four portfolios is always in a certain relation to each other. Compared to the dynamic 

portfolios, the passive EWP does not generate a stable risk/reward pattern in the long-run, the 

passive portfolio is too risky in volatile periods, and have too little risk in low volatile periods, see 

Figure 2. All three dynamic asset allocation strategies take care of this problem, and delivers a 

good and stable risk/reward pattern over time. 

 

The superiority of the dynamic portfolios is interesting considering that they are the least volatile 

portfolios, this supports findings on low-volatility anomaly and reject the traditional risk-reward 

relationship of CAPM where risky asset get compensated with higher excess return. To some 

degree, these findings also rejects the EMH since the three active strategies all get a positive 

CAPM Alpha, In the primary dataset, only turb.port is significant on an α=0.1 significance level in 

the out-of-sample period. While all three dynamic portfolios is significant in the second sub-

period. In dataset 10Size, vol.port yield a significant positive CAPM alpha on a five percent 

significance level. The EMH state that a CAPM Alpha ≤ 0 should be yield because the “market is 

efficient”.  
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Transaction cost is not included in this thesis, for small investors who typically pay a much higher 

brokerage fee/transaction cost than institutional investors, the result of the three portfolios could 

be quite different. Consider a “small-amount” private investor who pays 0.05% brokerage fee on 

the transaction amount per transaction and/or a minimum brokerage fee of $ 10. The “small-

amount” investor would allocate the portfolio rapidly if (s)he applied one of the three dynamic 

asset allocation strategies, and hence make many transactions to minimize the portfolio risk. This 

could result in a negative excess return because the transaction cost “eat up” the profit.  

 

7. Conclusion 

This thesis analysed the predictive abilities of unexpected volatility and turbulence and use these 

measures of financial risk as input, along with volatility, to create a dynamical asset allocation 

strategy that can beat a passive and naively diversified buy-and-hold strategy. The performance 

is measured in the outlook of a utility maximizing investor, whose main focus is to maximize the 

portfolio risk-adjusted return, hence, out-of-sample Sharpe ratio is applied as key measurement 

of portfolio performance. Mean return, standard deviation, skewness and CAPM alpha is also 

applied to distinguish the portfolios.  

 

I created four portfolios, one passive buy-and-hold portfolio, a naively diversified EWP of risky 

assets. And three active asset allocation portfolios that aim to avoid unnecessary risk, one 

dynamic unexpected volatility-responsive portfolio, one dynamic volatility-responsive portfolio, 

and one dynamic turbulence-responsive portfolio. These three active portfolios allocate the 

weights between the risky asset EWP and the risk-free asset, one month’s U.S. Treasury bill 

return, in the portfolios according to last month’s unexpected volatility, last month’s volatility and 

last month’s turbulence respectively. The weights are re-balanced every month. 

 

The empirical result showed that the GARCH(1,1) model was able to predict volatility pretty well. 

It exist a significant positive relation between unexpected volatility and future volatility. It was 

also found a negative relation between unexpected volatility and future excess return, significant 

on an α=0.1 significance level. Turbulence was found to be persistent and it exist a positive 

relation between turbulence and future turbulence. However, turbulence is not able to predict 

future excess return.   
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In terms of the four portfolios, the empirical result in the out-of-sample period revealed that the 

standard deviation decreased in the three portfolios that included risk-free interest rate with over 

51 percent on average, while the returns only decreased with 22 percent on average, and 

therefore improved the risk-to-reward returns. All the constructed dynamic asset allocation 

portfolios outperformed the passive portfolio in terms of Sharpe ratio, where the turbulence-

responsive portfolio had highest Sharpe ratio. These founds support low-volatility anomaly and 

reject the traditional risk-reward relationship. 
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A. Applied R code for accomplished empirical results.  

To make this thesis’s data completely reliable and possible to replicate, I present the R code used 

to achieve the empirical result. The package “xts” by Jeffrey A. Ryan and  Joshua M. Ulrich was 

applied in order to handle extensive time-series matrices. The package “PerformanceAnalytics” 

by Brian G. Peterson, Peter Carl, Kris Boudt, Ross Bennett, Joshua Ulrich, Eric Zivot, Matthieu 

Lestel, Kyle Balkissoon and Diethelm Wuertz is a collection of econometric functions for 

performance and risk analysis, this was used to attain skewness and CAPM alpha. The package 

“quadprog” by Berwin A. Turlach and Andreas Weingessel is made for solving quadratic 

programing problems, I use “quadprog” to compute the illustration of the efficient frontier.    

  

A1. R code: Program 

This code show the computations from line 1 to line 120, the performance measures from line 

121 to line 218, and line 221 to line 325 displays the code for graphical plots. 

 

rm(list=ls(all=TRUE)) 
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library(xts) 

library(PerformanceAnalytics) 

library(fGarch) 

source("functions.r") 

Return <- read.csv("10IPd-Value.csv", header=TRUE, sep=";") #10 Industry Portfolios 

rownames(Return) <- Return$Date  

 

##################### 

# STOP HERE IF YOU WANT TO USE DATASET: 10 INDUSTRY PORTFOLIO, AND CONTINUE FROM 

LINE 16, 

# IF YOU WANT TO USE DATASET: 10 SIZE, THEN RUN THE FOLLOWING LINES. 

SReturn<- read.table("size.txt", header=TRUE)  #Returns sorted on Size 

rownames(SReturn) <- Return$Date  

Return=as.xts(SReturn[,-(2:10)])         

##################### 

 

Return <- as.xts(Return[,-1]) 

# assuming that 1 Month = 21 Days 

# and 1 Year = 252 Days 

nDays <- 21 

nMonths <- floor(nrow(Return)/nDays) 

years.lookback <- 5 

lookback.period <- years.lookback*12 

n <- nMonths - lookback.period # number of monthly portfolio returns in out-of-sample period  

nact=ncol(Return) # number of activa. 

 

############## estimating Volatility and 1/N portfolio ################ 

std.hist <- matrix(data=NA, nrow=nMonths, ncol=nact) #allocate the space. 

std.port <- rep(0,nMonths) #allocate the space. 

for(i in 1:nMonths) { 

  start <- (i-1)*nDays + 1 
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  end <- i*nDays 

  ret <- Return[start:end,] #daily returns for the last month in the lookback period. 

  covmat=cov(ret)*nDays #Variance covariance matrix from last month in the lookback period. 

  std.hist[i,] <- sqrt(apply(ret^2, 2, mean))*sqrt(21)#Overall monthly volatility in %. 

   

  w <- rep(1/nact, nact) 

  std.port[i] <- sqrt(w %*% covmat %*% w) #vector of 1/N portfolio volatility, based on daily data 

} 

 

MReturn <- Return[ endpoints(Return, on="months", k=1), ] #Monthly returns! 

MReturn <- MReturn[-1,]  

ewp <- apply(MReturn,1,mean) #Realized monthly returns in equally-weighted portfolio 

std.hist=ts(std.hist[(lookback.period + 1):nMonths,],start=c(1975,1),frequency = 12) #Overall 

monthly volatility from 01.1975-31.07.2014 

std.port=ts(std.port[(lookback.period + 1):nMonths],start=c(1975,1),frequency = 12) #Monthly 

1/N portfolio volatility from 01.1975-31.07.2014 

ewp=ts(ewp[(lookback.period + 1):nMonths],start=c(1975,1),frequency = 12) #as time serie 

############### Turbulence ################### 

r <- Return[1:(lookback.period*21), ] #daily returns in the lookback period, 31.12.69-31.12.74. 

covmat = cov(r)                       #Variance covariance matrix of lookback period. 

 

turbulence = (Return[,1]*NA)           

for( t in ((lookback.period*nDays)+1) : end ) { 

  # measures turbulence for the current observation 

  turbulence[t] = mahalanobis(Return[t,], colMeans(r), covmat) #Daily turbulence 

  if( t %% 200 == 0) cat(t, 'out of', end, '\n') 

} 

Mturb <- turbulence[ endpoints(turbulence, on="months", k=1), ] #Monthly turbulence! 

Mturb <- Mturb[(lookback.period + 1):nMonths,]      

Fturb <- lag(Mturb,1) #Naively forcasted turbulence=Turbulence lagged once 

turb <- ts(cbind(Mturb[-1],Fturb[-1]), start=c(1975,1), frequency=12) 
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################ UNEXPECTED VOLATILITY and Excess return ######################### 

ewp.d=apply(Return, 1,mean)  #daily data in equally weighted portfolio. 

std.pred <- ts((garch.forecast(ewp.d, lookback.period))/100,start=c(1975,1),frequency = 12) 

#Predicted GARCH Monthly 1/N portfolio volatility from 01.1975-31.07.2014, based on daily data 

std.unex=std.port-std.pred   #Monthly Unexpected volatility 

std.unex.lag=lag(std.unex,1) #Monthly Unexpected volatility lagged once 

 

RF<- read.csv("RF.csv", header=TRUE, sep=";") 

RF <- ts(RF$RF[(lookback.period + 1):nMonths], start=c(1975,1), frequency=12)/100 #Risk free 

rate from 01.1975-31.07.2014 

rf <- RF*12  #This is Annual Risk free rates pr. months 

ex.return <- ewp-rf #Excess return 

ewp <- ewp[12:475]  #01.1976-31.07.2014 to use in the dynamic portfolios 

rf <- rf[12:475]    #01.1976-31.07.2014 to use in the dynamic portfolios 

############################################################################## 

######## DYNAMIC UNEXPECTED VOLATILITY-RESPONSIVE STRATEGY ######### 

year.start <- 1971 

MReturn <- ts(MReturn,start=c(1970,1), frequency=12)  

ind.start <- which(time(MReturn) == year.start) 

std.mean.u = mean(std.unex) # the mean of unexpected volatility 

std.std.u  = sd(std.unex)   # standard deviation of unexpected volatility    

ws.u <- rep(0,n)            # weight of ewp in the portfolio 

for (j in 1:n) { 

  # find the index of the past month 

  period.end <- ind.start + j - 2 

  # use the past month unexpected volatility as the forecast and compute the weight of ewp 

  ws.u[j] <- pnorm((std.mean.u-std.unex[period.end])/std.std.u) 

} 

ws.u <- ws.u[1:464] 
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unex.port= ts(ws.u*ewp+(1-ws.u)*rf, start=c(1975,12), frequency=12) #Return from dynamic 

unex-vol-responsive strategy, 01.1976-31.07.2014 

 

#DYNAMIC VOLATILITY-RESPONSIVE STRATEGY 

std.mean.v <- mean(std.port) 

std.std.v <- sd(std.port) 

ws.v <- rep(0,n) 

for (j in 1:n) { 

  # find the index of the past month 

  period.end <- ind.start + j - 2 

  # use the past month volatility as the forecast and compute the weight of ewp 

  ws.v[j] <- pnorm((std.mean.v-std.port[period.end])/std.std.v) 

} 

ws.v <- ws.v[1:464] 

vol.port= ts(ws.v*ewp+(1-ws.v)*rf, start=c(1975,12), frequency=12) #Return from dynamic vol-

responsive strategy, 01.1976-31.07.2014 

 

#DYNAMIC TURBULENCE-RESPONSIVE STRATEGY 

Mturb <- ts(Mturb,start=c(1975,1),frequency = 12) 

std.mean.t <- mean(Mturb) 

std.std.t <- sd(Mturb) 

ws.t <- rep(0,n) 

for (j in 1:n) { 

  # find the index of the past month 

  period.end <- ind.start + j - 2 

  # use the past month turbulence as the forecast and compute the weight of ewp 

  ws.t[j] <- pnorm((std.mean.t-Mturb[period.end])/std.std.t) 

} 

ws.t <- ws.t[1:464] 

turb.port= ts(ws.t*ewp+(1-ws.t)*rf, start=c(1975,12), frequency=12) #Return from dynamic turb-

responsive strategy, 01.1976-31.07.2014 
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####Perfomance measures in Sub-periods and OOS period#### 

#Periods 

Sub1=cbind(ewp[1:109],vol.port[1:109], unex.port[1:109], turb.port[1:109], rf[1:109]) 

Sub2=cbind(ewp[110:229],vol.port[110:229], unex.port[110:229], turb.port[110:229],  

rf[110:229]) 

Sub3=cbind(ewp[230:349],vol.port[230:349], unex.port[230:349], turb.port[230:349],  

rf[230:349]) 

Sub4=cbind(ewp[350:464],vol.port[350:464], unex.port[350:464], turb.port[350:464],  

rf[350:464]) 

OOSP=cbind(ewp,vol.port, unex.port, turb.port, rf) 

 

#Sharpe ratios 

Sharpe=matrix(c(SR(Sub1[,1]-mean(Sub1[,5])),SR(Sub1[,2]-mean(Sub1[,5])),SR(Sub1[,3]-

mean(Sub1[,5])), SR(Sub1[,4]-mean(Sub1[,5])),  

                SR(Sub2[,1]-mean(Sub2[,5])),SR(Sub2[,2]-mean(Sub2[,5])),SR(Sub2[,3]-mean(Sub2[,5])), 

SR(Sub2[,4]-mean(Sub2[,5])), 

                SR(Sub3[,1]-mean(Sub3[,5])),SR(Sub3[,2]-mean(Sub3[,5])),SR(Sub3[,3]-mean(Sub3[,5])), 

SR(Sub3[,4]-mean(Sub3[,5])),  

                SR(Sub4[,1]-mean(Sub4[,5])),SR(Sub4[,2]-mean(Sub4[,5])),SR(Sub4[,3]-mean(Sub4[,5])), 

SR(Sub4[,4]-mean(Sub4[,5])), 

                SR(ewp-mean(rf)),SR(vol.port-mean(rf)),SR(unex.port-mean(rf)), SR(turb.port-

mean(rf))), 

              nrow=5, ncol=4, byrow=T,  

              dimnames=list(c("1976-1985", "1985-1995","1995-2005","2005-2015","1976-2015"), 

                            c("ewp", "vol.port", "unex.port", "turb.port"))) 

 

#Sharpe ratio test 

SharpeT=matrix(c(ST(Sub1[,2],Sub1[,1]),ST(Sub1[,3],Sub1[,1]),ST(Sub1[,4],Sub1[,1]), 

                 ST(Sub2[,2],Sub2[,1]),ST(Sub2[,3],Sub2[,1]),ST(Sub2[,4],Sub2[,1]), 

                 ST(Sub3[,2],Sub3[,1]),ST(Sub3[,3],Sub3[,1]),ST(Sub3[,4],Sub3[,1]), 
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                 ST(Sub4[,2],Sub4[,1]),ST(Sub4[,3],Sub4[,1]),ST(Sub4[,4],Sub4[,1]), 

                 ST(vol.port,ewp),ST(unex.port,ewp),ST(turb.port,ewp)), 

               nrow=5, ncol=3, byrow=T, 

               dimnames=list(c("1976-1985", "1985-1995","1995-2005","2005-2015","1976-2015"), 

                             c("vol.port", "unex.port", "turb.port"))) 

 

#Mean returns 

Mean=matrix(c(mean(Sub1[,5]), mean(Sub1[,1]), mean(Sub1[,2]), mean(Sub1[,3]), 

mean(Sub1[,4]), 

              mean(Sub2[,5]), mean(Sub2[,1]), mean(Sub2[,2]), mean(Sub2[,3]), mean(Sub2[,4]), 

              mean(Sub3[,5]), mean(Sub3[,1]), mean(Sub3[,2]), mean(Sub3[,3]), mean(Sub3[,4]), 

              mean(Sub4[,5]), mean(Sub4[,1]), mean(Sub4[,2]), mean(Sub4[,3]), mean(Sub4[,4]), 

              mean(rf), mean(ewp), mean(vol.port), mean(unex.port), mean(turb.port)),  

            nrow=5, ncol=5, byrow=T,  

            dimnames=list(c("1976-1985", "1985-1995","1995-2005","2005-2015","1976-2015"), 

                          c("rf","ewp", "vol.port", "unex.port", "turb.port"))) 

 

#Standard deviation 

Std=matrix(c(sd(Sub1[,1])/sqrt(12), sd(Sub1[,2])/sqrt(12), sd(Sub1[,3])/sqrt(12), 

sd(Sub1[,4])/sqrt(12), 

             sd(Sub2[,1])/sqrt(12), sd(Sub2[,2])/sqrt(12), sd(Sub2[,3])/sqrt(12), sd(Sub2[,4])/sqrt(12), 

             sd(Sub3[,1])/sqrt(12), sd(Sub3[,2])/sqrt(12), sd(Sub3[,3])/sqrt(12), sd(Sub3[,4])/sqrt(12), 

             sd(Sub4[,1])/sqrt(12), sd(Sub4[,2])/sqrt(12), sd(Sub4[,3])/sqrt(12), sd(Sub4[,4])/sqrt(12), 

             sd(ewp)/sqrt(12), sd(vol.port)/sqrt(12), sd(unex.port)/sqrt(12), sd(turb.port)/sqrt(12)),  

           nrow=5, ncol=4, byrow=T,  

           dimnames=list(c("1976-1985", "1985-1995","1995-2005","2005-2015","1976-2015"), 

                         c("ewp", "vol.port", "unex.port", "turb.port"))) 

 

#Skewness 

Skewness=matrix(c(skewness(Sub1[,1]), skewness(Sub1[,2]), skewness(Sub1[,3]), 

skewness(Sub1[,4]), 
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                  skewness(Sub2[,1]), skewness(Sub2[,2]), skewness(Sub2[,3]), skewness(Sub2[,4]), 

                  skewness(Sub3[,1]), skewness(Sub3[,2]), skewness(Sub3[,3]), skewness(Sub3[,4]), 

                  skewness(Sub4[,1]), skewness(Sub4[,2]), skewness(Sub4[,3]), skewness(Sub4[,4]), 

                  skewness(ewp), skewness(vol.port), skewness(unex.port), skewness(turb.port)),  

                nrow=5, ncol=4, byrow=T,  

                dimnames=list(c("1976-1985", "1985-1995","1995-2005","2005-2015","1976-2015"), 

                              c("ewp", "vol.port", "unex.port", "turb.port"))) 

 

#CAPM Alpha 

Alpha=matrix(c(CAPM.alpha(Sub1[,2],Sub1[,1],Rf=mean(Sub1[,5])),CAPM.alpha(Sub1[,3],Sub1[,

1],Rf=mean(Sub1[,5])),CAPM.alpha(Sub1[,4],Sub1[,1],Rf=mean(Sub1[,5])), 

               

CAPM.alpha(Sub2[,2],Sub2[,1],Rf=mean(Sub2[,5])),CAPM.alpha(Sub2[,3],Sub2[,1],Rf=mean(Sub

2[,5])),CAPM.alpha(Sub2[,4],Sub2[,1],Rf=mean(Sub2[,5])), 

               

CAPM.alpha(Sub3[,2],Sub3[,1],Rf=mean(Sub3[,5])),CAPM.alpha(Sub3[,3],Sub3[,1],Rf=mean(Sub

3[,5])),CAPM.alpha(Sub3[,4],Sub3[,1],Rf=mean(Sub3[,5])), 

               

CAPM.alpha(Sub4[,2],Sub4[,1],Rf=mean(Sub4[,5])),CAPM.alpha(Sub4[,3],Sub4[,1],Rf=mean(Sub

4[,5])),CAPM.alpha(Sub4[,4],Sub4[,1],Rf=mean(Sub4[,5])), 

               CAPM.alpha(OOSP[,2],OOSP[,1], Rf=mean(rf)),CAPM.alpha(OOSP[,3],OOSP[,1], 

Rf=mean(rf)),CAPM.alpha(OOSP[,4],OOSP[,1], Rf=mean(rf))), 

             nrow=5, ncol=3, byrow=T, 

             dimnames=list(c("1976-1985", "1985-1995","1995-2005","2005-2015","1976-2015"), 

                           c("vol.port", "unex.port", "turb.port")))   

########################## 

mean((std.port-std.pred)^2)  #MSFE.pred  

A.std.port=std.port*sqrt(12) #Annual Volatility 

A.std.pred=std.pred*sqrt(12) #Annual predicted Volatility  

A.std.unex=std.unex*sqrt(12) #Annual unexpected Volatility 

A.std.unex.lag=std.unex.lag*sqrt(12) #Annual unexpected volatility lagged once 
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############ Estimate the AR(1) model, regressions ############ 

summary(lm(A.std.port ~ A.std.unex.lag))#regression of std on its lagd unexpected std. 

summary(lm(A.std.port[1:120] ~ A.std.unex.lag[1:120])) 

summary(lm(A.std.port[121:240] ~ A.std.unex.lag[121:240])) 

summary(lm(A.std.port[241:360] ~ A.std.unex.lag[241:360])) 

summary(lm(A.std.port[361:475] ~ A.std.unex.lag[361:475])) 

 

summary(lm(ex.return~A.std.unex.lag)) #regression of ex.return on lagged unexpected std. 

summary(lm(ex.return[1:120] ~ A.std.unex.lag[1:120])) 

summary(lm(ex.return[121:240] ~ A.std.unex.lag[121:240])) 

summary(lm(ex.return[241:360] ~ A.std.unex.lag[241:360])) 

summary(lm(ex.return[361:475] ~ A.std.unex.lag[361:475])) 

 

summary(lm(ex.return~A.std.port)) #Neg relationship between market excess return and market 

volatility, in contrast to rational expectation model 

summary(lm(ex.return[1:120] ~ A.std.port[1:120])) 

summary(lm(ex.return[121:240] ~ A.std.port[121:240])) 

summary(lm(ex.return[241:360] ~ A.std.port[241:360])) 

summary(lm(ex.return[361:475] ~ A.std.port[361:475])) 

 

#Relationship between between the excess market return and both the expected and unexpected 

volatility  

A.std.pred.lag <- lag(A.std.pred,1) 

#regression of excess return on its expected and unexpected volatility. 

summary(lm(ex.return~ A.std.pred.lag+A.std.unex.lag)) 

summary(lm(ex.return[1:120] ~ A.std.pred.lag[1:120]+A.std.unex.lag[1:120])) 

summary(lm(ex.return[121:240] ~ A.std.pred.lag[121:240]+A.std.unex.lag[121:240])) 

summary(lm(ex.return[241:360] ~ A.std.pred.lag[241:360]+A.std.unex.lag[241:360])) 

summary(lm(ex.return[361:475] ~ A.std.pred.lag[361:475]+A.std.unex.lag[361:475])) 
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#Presisitance of Turbulence 

summary(lm(Mturb~Fturb))#regression of turbulence on its own lag. 

summary(lm(Mturb[1:120] ~ Fturb[1:120])) 

summary(lm(Mturb[121:240] ~ Fturb[121:240])) 

summary(lm(Mturb[241:360] ~ Fturb[241:360])) 

summary(lm(Mturb[361:475] ~ Fturb[361:475])) 

 

summary(lm(ex.return~Fturb)) #regression of ex.return on its lagged turbulence. 

summary(lm(ex.return[1:120] ~ Fturb[1:120])) 

summary(lm(ex.return[121:240] ~ Fturb[121:240])) 

summary(lm(ex.return[241:360] ~ Fturb[241:360])) 

summary(lm(ex.return[361:475] ~ Fturb[361:475]))      

#################################################################### 

##################### Plots ##################### 

devel=cbind(exp(RF*12)-1 ,ts(apply(MReturn,1,mean)[(lookback.period + 

1):nMonths],start=c(1975,1),frequency = 12), A.std.port, Mturb) 

colnames(devel)=c("Risk-free rate","EWP", "Volatility", "Turbulence") 

plot(devel, main="Development in time", col="red") 

rm(devel) 

plot(cbind(A.std.port, A.std.pred),plot.type = "single", col=c("red", "blue"), main= "Volatility", 

ylab="Std, %") 

legend("top", legend=c("Historical", "Predicted"), col=c("red", "blue"), lwd=1, bty = "n") 

plot(Mturb, main= "Financial Turbulence") 

plot(turb, plot.type = "single", col=c("red", "blue"),main= "Financial Turbulence", xlab="", 

ylab="Turb., %") 

legend("top", legend=c("Historical", "Predicted"), col=c("red", "blue"), lwd=1, bty = "n") 

plot(cbind(std.port,std.unex), xlab="", ylab="Std, %", main="Historical- and unexpected 

volatility") 

plot(cbind(std.port,std.unex),plot.type = "single", col=c("red", "green"), xlab="", ylab="Std, %", 

main="Historical- and unexpected volatility") 

legend("top", legend=c("Historical", "Unexpected"), col=c("red", "green"), lwd=1, bty = "n") 
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plot(ex.return, ylab="Excess return, %", main="Excess return") 

abline(h = mean(ex.return), col="red") 

 

#Weights 

plot(ts(ws.u,start=c(1975,12),frequency = 12), ylab="Weight",col="red", main="Weight of EWP in 

Unexpected Volatility-Responsive portfolio") 

plot(ts(ws.v,start=c(1975,12),frequency = 12), ylab="Weight", col="blue",main="Weight of EWP 

in Volatility-Responsive portfolio") 

plot(ts(ws.t,start=c(1975,12),frequency = 12), ylab="Weight", col="green",main="Weight of EWP 

in Turbulence-Responsive portfolio") 

 

#AR(1) 

plot(A.std.unex.lag, A.std.port, main="Volatility regressed on lagged unexpected 

volatility",xlab="Volatility lagged once", ylab="Volatility") 

abline(lm(A.std.port ~ A.std.unex.lag), col="red") 

plot(A.std.unex.lag, ex.return, main="Excess return regressed on lagged unexpected volatility", 

xlab="Volatility lagged once", ylab="Excess return") 

abline(lm(ex.return~A.std.unex.lag), col="red") #show the regression line, slighthly negative. 

plot(ts(Mturb, start=c(1975,1), frequency=12), ts(Fturb, start=c(1975,1), frequency=12), 

main="Turbulence regressed on turbulence lagged once",xlab="Turbulence", ylab="Turbulence 

lagged once") 

abline(res.turb, col="red") #show the positive regression line. 

plot(ts(Fturb, start=c(1975,1), frequency=12), ex.return, main="Excess return regressed on 

turbulence lagged once",xlab="Turbulence lagged once") 

abline(res.exturb, col="red") #show the regression line, slighthly positive. 

 

# Constructed portfolios 

plot(c(0,Std[5,]), Mean[5,],xlab="Standard deviation",pch=19, col="red", ylab="Mean return", 

main="Average annual preformance", ylim=c(0,max(Mean[5,])), xlim=c(0, max(Std[5,]))) 

abline(a=mean(rf), b=max(Sharpe[5,2:4]), lwd=2, col="blue") 

text(x=0, y=mean(rf), labels="rf", pos=1) 
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text(x=sd(ewp)/sqrt(12), y=mean(ewp), labels="EWP", pos=2) 

text(x=sd(vol.port)/sqrt(12), y=mean(vol.port), labels="Vol.responsive", pos=2) 

text(x=sd(unex.port)/sqrt(12), y=mean(unex.port), labels="Unex.vol.", pos=4) 

text(x=sd(turb.port)/sqrt(12), y=mean(turb.port), labels="turb.port", pos=2) 

 

#10 Industry portfolios and efficient frontier. 

source("functions.r") 

library("quadprog") 

er=apply(MReturn, 2, mean) 

covmat=cov(MReturn) 

r=mean(rf) 

# EFFICIENT PORTFOLIOS 

# compute the efficient frontier with short sales 

mup.ws <- seq(from=0.05, to=0.54, by=0.04) 

n <- length(mup.ws) 

sigp.ws <- rep(0, n) 

for (i in 1:n) { 

  w <- effportfolio(er, covmat, mup.ws[i]) 

  sigp.ws[i] <- sqrt(w %*% covmat %*% w) 

} 

# compute the efficient frontier no short sales 

mup.ns <- seq(from=0.05, to=max(er), by=0.01) 

n <- length(mup.ns) 

sigp.ns <- rep(0, n) 

for (i in 1:n) { 

  w <- effportfolio(er, covmat, mup.ns[i], FALSE) 

  sigp.ns[i] <- sqrt(w %*% covmat %*% w) 

} 

#TANGENCY PORTFOLIO with short sales 

w.tan.ws <- tanportfolio(er, covmat, r) 

mup.tan.ws <- w.tan.ws %*% er 
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sigp.tan.ws <- sqrt(w.tan.ws %*% covmat %*% w.tan.ws) 

#TANGENCY PORTFOLIO no short sales 

w.tan.ns <- tanportfolio(er, covmat, r, FALSE) 

mup.tan.ns <- w.tan.ns %*% er 

sigp.tan.ns <- sqrt(w.tan.ns %*% covmat %*% w.tan.ns) 

# compute the maximum Sharpe ratio 

sr.ws <- maxsharpe(er, covmat, r) 

sr.ns <- maxsharpe(er, covmat, r, FALSE) 

# T-bills plus tangency (capital allocation line) 

sigp.tan.tbill = 0:13 

mup.tan.tbill.ns = r + sr.ns*sigp.tan.tbill 

mup.tan.tbill.ws = r + sr.ws*sigp.tan.tbill 

# create portfolio plot 

# mean-variance frontier with short sales 

plot(sigp.ws/sqrt(12), mup.ws, type="b", pch=18, col="green", lwd=2, 

     ylim=c(0, max(mup.ws)), xlim=c(0, max(sigp.ws/sqrt(12))), 

     xlab="Standard Deviation", ylab="Expected Return", 

     main="10 US Industry portfolios") 

# mean-variance frontier no short sales 

points(sigp.ns/sqrt(12), mup.ns, type="b",pch=18, col="magenta", lwd=2) 

# original assets 

sig <- sqrt(diag(covmat))/sqrt(12) 

points(sig, er, pch=19, col="blue") 

# Capital Allocation Line through tangency portfolios 

lines(sigp.tan.tbill/sqrt(12), mup.tan.tbill.ns, lwd=2, col="blue") 

lines(sigp.tan.tbill/sqrt(12), mup.tan.tbill.ws, lwd=2, col="blue") 

# tangency portfolio with short sales 

points(sigp.tan.ws/sqrt(12), mup.tan.ws, pch=19, col="red") 

# tangency portfolio no short sales 

points(sigp.tan.ns/sqrt(12), mup.tan.ns, pch=19, col="red") 

# risk-free 
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points(0, r, pch=19, col="red") 

# text labels 

text(x=0, y=r, labels="A", pos=1) 

text(x=sigp.tan.ws/sqrt(12), y=mup.tan.ws, labels="C", pos=3) 

text(x=sigp.tan.ns/sqrt(12), y=mup.tan.ns, labels="B", pos=3) 

text(x=mean(sig), y=mean(er), labels="Industry portfolios", pos=4) 

legend("topleft", legend=c("Efficient frontier WITH short sale", "Efficient frontier WITHOUT short 

sale", "CAL","Risk free rate","Tangency WITHOUT short sales","Tangency WITH short sales"), 

col=c("green", "magenta", "blue","red","red","red"), lwd=c(2,2,2,NA, NA, NA), bty = "1", 

pch=c(NA,NA,NA,"A","B", "C")) 

 

std.vol.port=ts(ws.v*std.port[12:475]+(1-ws.v)*0, start=c(1975,12), frequency=12) 

std.fifftyfiffty=ts(0.5*std.port[12:475]+0.5*0, start=c(1975,12), frequency=12) 

plot(cbind(std.fifftyfiffty, std.vol.port),plot.type = "single", col=c("red", "blue"), main= 

"Volatility", ylab="Std, %") 

legend("topleft", legend=c("50/50 portfolio", "Vol.-responsive port."), col=c("red", "blue"), 

lwd=1, bty = "n") 

################################################  

A2. R code: Functions. 

The R codes underneath present the different functions applied in the computation of the 

program.  

 

garch.forecast <- function(r, lookback.period) { 

  # this function predicts the volatility using the GARCH(1,1) model 

  nDays <- 21 

  nMonths <- floor(length(r)/nDays) 

  n <- nMonths - lookback.period # number of months in the OOS period 

  std <- rep(0,n) 

  for(i in 1:n) { 

    start <- (i-1)*nDays + 1           # start of rolling estimation window  

    end <- (i+lookback.period-1)*nDays # end of rolling estimation window 
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    ret <- r[start:end] 

    coeff = garchFit(~ garch(1, 1), data = ret, trace=FALSE) # estimate GARCH(1,1) 

    res = predict(coeff, n.ahead = nDays) # nDays ahead prediction           

    std[i] = sqrt(sum(res$standardDeviation^2))*100 

  } 

  return(std) 

} 

# exp.forecast returns the predicted monthly volatility over the OOS period using the 

exponentially-weighed moving average 

# r - is the vector of daily returns  

# lookback.period - is the number of months in the lookback period 

exp.forecast <- function(r, lookback.period, lambda=0.88) { 

  nDays <- 21 

  nMonths <- floor(length(r)/nDays) 

  n <- nMonths - lookback.period     # number of months in the OOS period 

  nLookback <- lookback.period*nDays # number of days in the lookback period 

  w <- rep(lambda,nLookback)^rev(0:(nLookback-1)) # weights of observations in the moving 

window 

  bottom <- sum(w)  # sum of weights 

   

  std <- rep(0,n) 

  for(i in 1:n) { 

    start <- (i-1)*nDays + 1           # start of rolling estimation window  

    end <- (i+lookback.period-1)*nDays # end of rolling estimation window 

    ret <- r[start:end] 

    std[i] <-  sqrt(sum(w*ret^2)/bottom)*sqrt(21)*100 # to monthly vol 

  } 

  return(std) 

} 

 

# Annual Sharpe ratio 
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SR <- function(er) { 

  return(mean(er)/sd(er)*sqrt(12)) 

} 

#Sharpe ratio test 

ST <- function(ex1, ex2) { 

  # test for equality of two Sharpe ratios 

  # ex1 - excess returns to the first portfolio 

  # ex2 - excess returns to the second portfolio 

  # returns the p-value of the test 

  # the null hypothesis is rejected when p-value is small 

  if (length(ex1) != length(ex2)) 

    stop("Different lengths of two returns!") 

  SR1 <- (mean(ex1)/sd(ex1)) 

  SR2 <- (mean(ex2)/sd(ex2)) 

  ro <- cor(ex1,ex2) 

  n <- length(ex1) 

  z <- (SR2-SR1)/sqrt( (2*(1-ro)+0.5*(SR1^2+SR2^2-2*SR1*SR2*ro^2))/n ) 

  pval <- 2*pnorm(-abs(z)) 

  return(pval) 

} 

 

# Efficient portfolio subject to target return 

effportfolio <- function(er, covmat, mu, shorts=TRUE) { 

  # inputs: 

  # er           N x 1 vector of expected returns 

  # covmat       N x N covariance matrix of returns 

  # mu             scalar, target expected return 

  # 

  # output is a vector of portfolio weights 

   

  # check for valid inputs 
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  er <- as.vector(er) 

  covmat <- as.matrix(covmat) 

  if (!is.numeric(mu) || length(mu) !=1) 

    stop("Target return is not a scalar") 

  if(length(er) != nrow(covmat)) 

    stop("Mismatch in number of rows") 

  if(any(diag(chol(covmat)) <= 0)) 

    stop("Covariance matrix is not positive definite") 

   

  # compute the weights of the efficient portfolio 

  if(shorts==TRUE){ 

    # closed-form solutions when short sales are allowed 

    ones <- rep(1, length(er))       # vector of ones 

    covmat.inv <- solve(covmat)      # inverse of covariance matrix 

    A <- er %*% covmat.inv %*% er 

    B <- er %*% covmat.inv %*% ones 

    C <- ones %*% covmat.inv %*% ones 

    lambda <- (C*mu - B)/(A*C - B^2) 

    gamma <- (A - B*mu)/(A*C - B^2) 

    w <- covmat.inv %*% (er*lambda + ones*gamma) 

    w <- as.vector(w) 

  } else if(shorts==FALSE){ 

    # numerical solution with no short sales 

    n = nrow(covmat) 

    Dmat <- covmat 

    dvec <- rep.int(0, n) 

    Amat <- cbind(rep(1,n), er, diag(1,n)) 

    bvec <- c(1, mu, rep(0,n)) 

    result <- solve.QP(Dmat=Dmat,dvec=dvec,Amat=Amat,bvec=bvec,meq=2) 

    w <- round(result$solution, 6) 

  } else { 
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    stop("shorts needs to be logical. For no-shorts, shorts=FALSE.") 

  }   

  return(w) 

}   

 

# Tangency portfolio 

tanportfolio <- function(er, covmat, r, shorts=TRUE) { 

  # inputs: 

  # er            N x 1 vector of expected returns 

  # covmat       N x N covariance matrix of returns 

  # r               scalar, risk-free rate return 

  # 

  # output is a vector of portfolio weights 

   

  # check for valid inputs 

  er <- as.vector(er) 

  covmat <- as.matrix(covmat) 

  if (!is.numeric(r) || length(r) !=1) 

    stop("Risk-free rate is not a scalar") 

  if(length(er) != nrow(covmat)) 

    stop("Mismatch in number of rows") 

  if(any(diag(chol(covmat)) <= 0)) 

    stop("Covariance matrix is not positive definite") 

   

  # Global minimum variance portfolio 

  w <- gmvportfolio(covmat, shorts=shorts) 

  if(w %*% er < r) 

    stop("Risk-free rate greater than mean return on global minimum variance portfolio") 

  # 

  # compute the weights of the tangency portfolio 

  if(shorts==TRUE){ 
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    # closed-form solutions when short sales are allowed 

    ones <- rep(1, nrow(covmat))  # vector of ones 

    covmat.inv <- solve(covmat)   # inverse of covariance matrix 

    w <- (covmat.inv %*% (er-r))/as.numeric(ones %*% covmat.inv %*% (er-r)) 

    w <- as.vector(w)   

  } else if(shorts==FALSE){ 

    # numerical solution with no short sales 

    n = nrow(covmat) 

    Dmat <- covmat 

    dvec <- rep.int(0, n) 

    Amat <- cbind(er-r, diag(1,n)) 

    bvec <- c(1, rep(0,n)) 

    result <- solve.QP(Dmat=Dmat,dvec=dvec,Amat=Amat,bvec=bvec,meq=1) 

    w <- round(result$solution/sum(result$solution), 6) 

  } else { 

    stop("shorts needs to be logical. For no-shorts, shorts=FALSE.") 

  }   

  return(w) 

}   

# in-sample Sharpe ratio 

maxsharpe <- function(er, covmat, r, shorts=TRUE) { 

  # inputs: 

  # er             N x 1 vector of expected returns 

  # covmat       N x N covariance matrix of returns 

  # r               scalar, risk-free rate return 

  # 

  # output is the maximum Sharpe ratio 

   

  # 

  # check for valid inputs 

  er <- as.vector(er) 
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  covmat <- as.matrix(covmat) 

  if (!is.numeric(r) || length(r) !=1) 

    stop("Risk-free rate is not a scalar") 

  if(length(er) != nrow(covmat)) 

    stop("Mismatch in number of rows") 

  if(any(diag(chol(covmat)) <= 0)) 

    stop("Covariance matrix is not positive definite") 

   

  # computations 

  if(shorts==TRUE){ 

    s <- sqrt((er-r) %*% solve(covmat) %*% (er-r)) 

  } else if(shorts==FALSE){ 

    w <- tanportfolio(er, covmat, r, FALSE) 

    mup <- w %*% er 

    sigp <- sqrt(w %*% covmat %*% w) 

    s <- (mup-r)/sigp 

  } else { 

    stop("shorts needs to be logical. For no-shorts, shorts=FALSE.") 

  }   

  return(as.numeric(s)) 

}   


