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Abstract—Learning Automata (LA) with artificially absorbing
barriers was a completely new horizon of research in the
1980s [8]. These new machines yielded properties which were
previously unknown. More recently absorbing barriers have been
introduced in continuous estimator algorithms so that the proofs
could follow a martingale property, as opposed to monotonicity
[18], [19], [20]. However, the applications of LA with artificial
barriers are almost non-existent. In that regard, this paper is
pioneering in that it provides effective and accurate solutions to
an extremely complex application domain, namely that of solving
two-person zero-sum stochastic games which are provided with
incomplete information. LA have been previously used [13] to
design algorithms capable of converging to the game’s Nash
equilibrium under limited information. Those algorithms have
focused on the case where the Saddle Point of the game exists in
a pure strategy. However, the majority of the LA algorithms used
for games are absorbing in the probability simplex space, and
thus they converge to an exclusive choice of a single action. These
LA are thus unable to converge to other mixed Nash equilibria
when the game possesses no Saddle Point for a pure strategy.
The pioneering contribution of this paper1 is that we propose a
LA solution that is able to converge to an optimal mixed Nash
equilibrium even though there may be no Saddle Point when
a pure strategy is invoked. The scheme, being of the Linear
Reward-Inaction (LR−I ) paradigm, is in and of itself, absorbing.
However, by incorporating artificial barriers, we prevent it from
being “stuck” or getting absorbed in pure strategies. Unlike the
Linear Reward-εPenalty (LR−εP ) scheme proposed by Laksh-
mivarahan and Narendra [1] almost four decades ago, our new
scheme achieves the same goal with much less parameter tuning,
and in a more elegant manner. The paper includes the non-
trial proofs of the theoretical results characterizing our scheme,
and also contains experimental verification that confirms our
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theoretical findings.

Index Terms—Learning Automata (LA), Games with Incom-
plete Information, LA with Artificial Barriers.

I. INTRODUCTION

Learning Automata: The term Learning Automata (LA)
denotes a whole sub-field of research within adaptive systems
with several books being dedicated to its study [2], [5], [6],
[12], [14]. The work on LA dates to the the Soviet Union in the
1960s, when the mathematical giant, Tsetlin, [15] devised the
so-called Tsetlin Machine which is a learning mechanism with
finite memory. Tsetlin’s learning machines were demonstrated
to give birth to self-organizing behavior through collective
learning. In his work, Tsetlin pioneered the Goore game
which is a distributed coordination game with limited feedback
that has many practical applications, as shown by Tung and
Kleinrock [16]. The early works in the field of LA, such as
the Tsetlin Machine, fall under the family of Fixed Structure
Learning Automata. The main stream of current LA research
concerns the family of Variable Structure LA (VSLA) which,
loosely speaking, differs from Fixed Structure LA in the fact
that they operate with a probability vector that is updated
dynamically over time. In Fixed Structure LA, the choice
is governed by a transition matrix whose transitions do not
depend on time and that describes how the internal states of
the LA are updated based on the Environment’s feedback.
The term Learning Automata was coined for the first time
by Narendra and Thathachar in [6].
Markovian Representations of LA: LA can also be char-
acterized by their Markovian representations. They thus fall
into one of two families, being either ergodic or those that
possess absorbing barriers. Such a characterization is crucial
to the tenets of this paper. Absorbing automata have underlying
Markov Chains that get absorbed or locked into a barrier
state. Sometimes this can occur even after a relatively small,
finite number of iterations. The classic references [2], [5],
[6], [12], [14] report numerous LA families that contain such
absorbing barriers. On the other hand, as these same references
explain, the literature has also reported scores of ergodic
automata, which converge in distribution. In these cases,
the asymptotic distribution of the action probability vector
converges to a value that is independent of its initial vector.
Absorbing LA are usually designed to operate in stationary
Environments. As opposed to these, ergodic LA are preferred
for non-stationary Environments, namely those that possess



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

time-dependent reward probabilities. These characterizations,
and their corresponding implications for game playing, will
be explained presently.
Continuous or Discretized VSLA: VSLA can also be char-
acterized as being Continuous or Discretized. This depends on
the values that the action probabilities can take. Continuous
LA allow the action probabilities to assume any value in the
interval [0, 1]. Such algorithms have a relatively slow rate of
convergence. The problem with continuous LA is that they
approach a goal but never reach there. This was mitigated in
the 1980s by introducing the concept of discretization, where
if an action probability was close enough to zero or unity, it
could jump to that end point in a single step. This also rendered
the LA to have a faster convergence, because one could
increase their speeds of convergence, by incorporating this
phenomenon [3], [4], [9]. This is implemented by constraining
the action selection probability to be one of a finite number
of values in the interval [0, 1]. By incorporating discretization,
almost all of the reported VSSA of the continuous type have
been also discretized [9], [10], [19].
LA with Artificially Absorbing Barriers: LA with
artificially-introduced absorbing barriers was a novelty in the
1980s. These yielded machines which had properties that were
previously unknown. This was due to the fact that a discretized
machine, even though it was ergodic, could be rendered ab-
sorbing by forcing the machine to stay at one of the absorbing
barriers [8]. Ironically, this simple step introduced families of
new LA, with properties that were previously unknown. For
example, the ADLR−P and ADLI−P are absorbing versions
of their corresponding ergodic counterparts, but have been
proven to be ε-optimal in all random environments. This
phenomenon, of including artificially absorbing barriers, has
been recently applied to the family of Pursuit LA [18].
Estimator LA with Artificial Barriers: The concept of intro-
ducing absorbing barriers is also central to the proofs of esti-
mator algorithms. For three decades, these pursuit algorithms
were “proven” to be ε-optimal by virtue of the monotonicity
property. However, recently, these proofs have been shown
to be flawed. To remedy this, absorbing barriers have been
introduced in continuous estimator algorithms so that the
proofs could follow a martingale property, as opposed to
monotonicity. Consequently, Zhang and others have shown that
one can invoke this weaker property, namely, the martingale
property, by artificially providing such an absorbing barrier.
Thus, whenever an action probability is close enough to unity,
the LA is forced to jump to this absorbing barrier [18], [19],
[20].
Applications of LA: LA have boasted scores of applications.
These include theoretical problems like the graph partitioning
problem. They have been used in controlling intelligent ve-
hicles. When it concerns neural networks and hidden Markov
models, Meybodi et al. have used them in adapting the former,
and others have applied them in training the latter. Network
call admission, traffic control and quality of service routing
have been resolved using LA, while others They have also
found applications in tackling problems involving network and
communications issues. Apart from these, the entire field of
LA and stochastic learning, has had a myriad of applications

listed in the reference books [2], [5], [6], [14]. In the interest
of the page-limit constraints, the citations to these applications
are not included. But they can be easily found by executing a
simple search, and many are included in the above benchmark
references.
Game Playing with LA: While artificially-introduced barriers
have been shown to have powerful theoretical and design
implications, the applications of them are few. This is where
the present paper finds its place – it presents one such
application. LA have also been used to resolve stochastic
games with incomplete information. This paper pioneers a
merge of the above two issues. First of all, we present a
mechanism by which LA can be augmented with artificial
barriers, but unlike the state-of-the-art, these barriers are non-
absorbing. We then proceed to use these to play zero sum
games with incomplete information. Games of this type were
studied four decades ago for scenarios when the game matrix
had a Saddle Point using traditional LR−I and LR−P LA.
Our results generalize those when the game does not possess
a Nash equilibrium. Rather, we propose the non-trivial use
of LA with artificial non-absorbing barriers to resolve such
games. The paper contains the theoretical results and those
from simulations using corresponding benchmark games.
Landscape of our Present Work: In this paper, we propose
an algorithm addressing zero sum games, which can be
generalized to non-zero sum games in a manner similar to the
principle by which the method in [1] was generalized in [17].
In the latter, Xing and Chandramouli proved that the Linear
Reward − εPenalty (LR−εP ) algorithm, devised in [1], is
able to work in non-zero sum games. Thus, without further
elaborating on this2, our results are generalizable to non-zero
sum games.

Since the game is zero sum, the outcomes are either a
loss for player A, with reward −1, and the corresponding
win for player B with value +1, or the converse for the
case of a win for player A. We emphasize that this is a
limited information game where each player is unaware of
both the mixed strategy and the selected action of the other
player. The available information to each player is whether its
action resulted in a win or a loss. The reader should note that
either/both players might not even be aware of the existence
of another player, and be working with the assumption that
he is playing against Nature, as in the classical multi-armed
bandit algorithms. However, if both players learn using our
algorithm based on the assumption that they are operating
with an adversarial environment, we show that they will both
converge to the desired equilibrium. Our proposed scheme has
players adjusting their strategy whenever it obtains a “win”
for that round. This conforms to the Linear Reward-Inaction,
LR−I , paradigm, described in detail, presently. It is thus,
unarguably, radically different from the mechanism proposed
by Lakshmivarahan [1], where the probability updates are
performed upon receiving both reward and penalty responses,
and which thus render changes to occur at every time instant.
Objective and Contribution of this paper: Based on the

2Some preliminary unpublished work is being conducted for extending this
work to non-zero sum games.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

above discussion, one can summarize the objective of this
paper as to study the behavior of a non-absorbing barrier-based
LR−I mechanism in a stochastic zero-sum game played by two
players A and B, with two actions each, as earlier done in [1].
Each player uses an LA to decide his strategy, where the only
received feedback from the environment is the reward of the
joint actions of both players. The game is played iteratively
and the players are able to revise their mixed strategies.
Applications of the proposed method: Learning within the
context of games has a natural application in the realm
of Game Theory. However, in the context of Multi-Agent
Systems (MAS) this has been shown to be suitable for the
cooperative control of robotic systems [21]. In such a design,
it is assumed that the mission can be fully described as a po-
tential game, where the utility function measures how well the
nodes in the network are complying with the objectives. Never-
theless, having robots converging to pure strategies means that
the network designer is favoring exploitation and disregarding
exploration. If the environment changes and causes a different
payoff matrix, the agent would be locked into repeatedly
playing the same strategy. Moreover, this assumes that the
utility must be known and deterministic. Therefore, instead of
designing application-specific algorithms, the proposed learn-
ing algorithm can be used to address problems in cooperative
control such as the so-called “rendezvous” problem for a fleet
of robots [26], [27], the desynchronization of the use of a
shared medium [23], [22], a consensus algorithm to have the
agents agree on a common value [24], or to solve distributed
computation such as the PageRank [25], by only considering
the current stochastic payoff.

It is also pertinent to mention that the mechanism that
we propose here, can be used by the agents to learn how
to act if the payoff corresponds to how successful they are
in following the objectives of the “mission”. Much can be
said about this, but we terminate these discussions here in
the interest of brevity and due to space limitations. However,
with respect to future research, it is wise to mention that the
question of whether they can be applied to synchronization, as
in the analysis of the family of so-called “Firefly” algorithms,
is yet open.

A. The Notation Used

Most of the notation that we use, is well-established from
the theory of matrices and in the field of LA [2], [6], and
stating them would trivialize the paper. However, we mention
that apart from the well-established notation used in these
areas, we will use the notation that the conditional expectation
of some variable v with respect to w is written as E[v|w], and
the partial derivative of a variable v(t) with respect to time t
is denoted by ∂v(t)

∂t .

II. THE GAME MODEL

To initiate discussions, we formalize the game model that
is being investigated. Let P (t) =

[
p1(t) p2(t)

]ᵀ
denote

the mixed strategy of player A at time instant t, where
p1(t) accounts for the probability of adopting strategy 1 and,
conversely, p2(t) stands for the probability of adopting strategy

2. Thus, P (t) describes the distribution over the strategies of
player A. Similarly, we can define the mixed strategy of player
B at time t as Q(t) =

[
q1(t) q2(t)

]ᵀ
. The extension to

more than two actions per player is straightforward following
the method analogous to what was used by Papavassilopoulos
[11], which extended the work of Lakshmivarahan and Naren-
dra [1].

Let αA(t) ∈ {1, 2} be the action chosen by player A at
time instant t and αB(t) ∈ {1, 2} be the one chosen by
player B, following the probability distributions P (t) and
Q(t), respectively. The pair (αA(t), αB(t)) constitutes the
joint action at time t, and are pure strategies. Specifically, if
(αA(t), αB(t)) = (i, j), the probability of gain for player A
is determined by dij , as formalized in [1]. We thus construct
a matrix with the set of probabilities D = [dij ], 1 ≤ i ≤ 2,
which is the so-called payoff matrix associated with the game.

The matrix D is given by:

D =

(
d11 d12
d21 d22

)
, (1)

where all the entries are probabilities.
Clearly, the actual game matrix G is given by gij = 2dij−1,

with entries in the interval [−1, 1]. Without loss of generality,
player A corresponds to the row player while B is the column
player. Further, when referring to a “gain” we are seeing this
from the perspective of player A.

In zero-sum games, Nash equilibria are equivalently called
the “Saddle Points” for the game. Since the outcome for a
given joint action is stochastic, the game is the stochastic form
of a zero-sum game. The “zero-sum” property implies that at
any time t, there is only one winning player3.

In the interest of completeness, we present the original
scheme proposed in [1] based on the LR−εP rule. It uses two
parameters θR and θP as the learning rates associated with
the reward and penalty responses, respectively. When player
A gains at time instant t by playing action i, he updates his
mixed strategy as:

pi(t+ 1) = pi(t) + θR(1− pi(t))
ps(t+ 1) = ps(t)− θRps(t) for s 6= i.

However, if player A loses after using action i, his mixed
strategy is updated by the following:

pi(t+ 1) = pi(t)− θP pi(t)
ps(t+ 1) = ps(t) + θP (1− ps(t)) for s 6= i.

The exact update mechanism for player B is obtained by
replacing the corresponding p(t) by q(t), and by recalling that
a gain for A maps onto a loss scenario for player B. We now
introduce our novel solution that is proposed to learn a new
mixed strategy.

3The results inferred from this paper can be extended to non-zero sum
games. However, for the sake of simplicity we only consider the case of
zero-sum games.
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III. LA ALGORITHM BASED ON THE LR−I WITH
ARTIFICIAL BARRIERS

A. Non-Absorbing Artificial Barriers

We have earlier seen that an ergodic LA can be made
absorbing by artificially rendering the end states to become
absorbing. This was briefly addressed above. But what has
not been discussed in the literature is a strategy by which a
scheme which is, in and of itself, absorbing, can be rendered to
be ergodic. In other words, the LA is allowed to move within
the probability simplex by utilizing an absorbing scheme. But
when it enters an absorbing barrier, the scheme is forced to go
back into the simplex in order to render it to be ergodic. No
such scheme has ever been reported in the literature, and the
advantage of having such a scheme is that one does not get
locked into a sub-optimal absorbing barrier. Rather, we can
permit it to move around so that it can migrate stochastically
towards an optimal mixed strategy. This is, precisely, what we
shall do.

B. Non-Absorbing Game Playing

We now present our strategic LA-based game algorithm
together with a formal analysis that demonstrates the conver-
gence to the Saddle Points of the game even if the Saddle Point
corresponds to a mixed Nash equilibrium. Our LA solution is
based on the LR−I scheme, but as alluded to earlier, it has
been modified in order to non-trivially provide non-absorbing
barriers. The proof of convergence is based on Norman’s
theory for learning processes characterized by small learning
steps [6], [7].

Considering that pmax denotes an artificial barrier, we use
the notation that pmin = 1 − pmax. We further constrain
the probability for each action by restricting it, by design,
to belong to the interval [pmin, pmax] if p1(0) and q1(0) are
initially chosen to belong to the same interval. If the outcome
from the environment is a gain at a time t for action i ∈ {1, 2},
the update rule is given by:

pi(t+ 1) = pi(t) + θ(pmax − pi(t))
ps(t+ 1) = ps(t) + θ(pmin − ps(t)) for s 6= i.

(2)

The reader will observe that this update mechanism is identical
to the well-established linear schemes, except that pmin and
pmax replace the values zero and unity respectively. When the
player receives a loss, the probabilities are not updated, which
translates into:

pi(t+ 1) = pi(t)

ps(t+ 1) = ps(t) for s 6= i.
(3)

The update rules for the mixed strategy q(t+1) are defined
in a similar fashion by recalling the dichotomy that whenever
player A gains, it corresponds to a loss for player B, and vice-
versa. Analogous to the LR−I paradigm, mixed strategies are
not changed in the case of a loss.

We now proceed to analyze the convergence properties of
the proposed algorithm. To aid in the analysis, we identify
the Nash equilibrium of the game by the pair (popt, qopt). To
render the presentation to be less cumbersome, we divide the
analysis into two cases.

a) Case 1: Only One Mixed Nash Equilibrium Case (No
Saddle Point in pure strategies):: The first case depicts the
situation where no Saddle Point exists in pure strategies. In
other words, the only Nash equilibrium is a mixed one. Based
on the fundamentals of Game Theory, the optimal mixed
strategies can be easily shown to be the following:

popt =
d22 − d21

L
, qopt =

d22 − d12
L

,

where L = (d11+d22)−(d12+d21). Without loss of generality,
we assume that:

d11 > max{d12, d21} and d22 > max{d12, d21}. (4)

Notice that the above inequalities are not restrictive, as games
not satisfying them can be mapped in a symmetric manner by
re-indexing the actions of the players and/or the indices of the
players.

b) Case 2: There is a Saddle Point in pure strategies::
The case where the game matrix has Saddle Points in pure
strategies corresponds to either:
• d11 > d12, d12 < d21, d21 > d22 and d22 < d11;
• Or in the symmetric case, where d11 < d12, d12 > d21,
d21 < d22 and d22 > d11.

Since the other cases can be proven in identical manners,
in the interest of brevity, we consider only the case where:

d21 < d11 < d12. (5)

In this case, popt = 1 and qopt = 1. The other sub-cases
within Case 2 can be obtained by re-indexing the actions of
the players and/or the indices of the players, as in Case 1.

Let the vector X(t) =
[
p1(t) q1(t)

]ᵀ
. We introduce the

notation that ∆X(t) = X(t + 1) − X(t). We also represent
the conditional expected value operator by E[·|·]. Using these,
we claim the next theorem.

Theorem 1. Consider a zero sum game with a payoff matrix
as in Eq. (1) and a learning algorithm defined by equations Eq.
(2) and Eq. (3) for both players A and B, with learning rate
θ. Then, E[∆X(t)|X(t)] = θW (x) and for every ε > 0, there
exists a unique stationary point X∗ =

[
p∗1 q∗1

]ᵀ
satisfying:

1) W (X∗) = 0;
2) |X∗ −Xopt| < ε.

Proof. Let us first compute the conditional expected value4 of
the increment ∆X(t):

E[∆X(t)|X(t)] = E[X(t+ 1)−X(t)|X(t)]

=

[
E[p1(t+ 1)− p1(t)|X(t)]
E[q1(t+ 1)− q1(t)|X(t)])

]
= θ

[
W1(X(t))
W2(X(t))

]
= θW (X(t)),

4Computing the “expected value of the increment” is a standard procedure
in the theory of LA. This is because the increment, in and of itself, is a random
variable, which is sometimes positive and sometimes negative. Quantifying the
latter is not possible due to the randomness of the updating rule. However,
the conditional expected value of the increment can be determined, whence
(by invoking the “Law of the Unconscious Statistician”), one can determine
the expected value of the increment itself.
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where the above format is possible since all possible updates
share the form ∆X(t) = θW (t), for some W (t), as given in
Eq. (2).

For ease of notation, we drop the dependence on t with
the implicit assumption that all occurrences of X , p1 and q1
represent X(t), p1(t) and q1(t) respectively. W1(x) is then:

W1(X) = p1q1d11(pmax − p1) + p1(1− q1)d12(pmax − p1)

+(1− p1)q1d21(pmin − p1)

+(1− p1)(1− q1)d22(pmin − p1)

= p1 [q1d11 + (1− q1)d12] (pmax − p1)

+(1− p1) [q1d21 + (1− q1)d22] (pmin − p1)

= p1(pmax − p1)DA
1 (q1) + (1− p1)(pmin − p1)DA

2 (q1),

(6)

where,
DA

1 (q1) = q1d11 + (1− q1)d12 (7)

DA
2 (q1) = q1d21 + (1− q1)d22. (8)

By replacing pmax = 1−pmin and rearranging the expression
we get:

W1(X) = p1(1− p1)DA
1 (q1)− p1pminDA

1 (q1)

+(1− p1)pminD
A
2 (q1)− p1(1− p1)DA

2 (q1)

= p1(1− p1)
[
DA

1 (q1)−DA
2 (q1)

]
− pmin

[
p1D

A
1 (q1)− (1− p1)DA

2 (q1)
]
.

Similarly, we can get

W2(X) = q1p1(1− d11)(pmax − q1)+

q1(1− p1)(1− d12)(pmax − q1)

+(1− q1)p1(1− d21)(pmin − q1)+

(1− q1)(1− p1)(1− d22)(pmin − q1)

= q1 [p1(1− d11) + (1− p1)(1− d12)] (pmax − q1)

+(1− q1) [p1(1− d21) + (1− p1)(1− d22)] (pmin − q1)

= q1(pmax − q1)
[
1−DB

1 (p1)
]

+

(1− q1)(pmin − q1)
[
1−DB

2 (p1)
]

(9)

where
DB

1 (p1) = p1d11 + (1− p1)d21 (10)

DB
2 (p1) = p1d12 + (1− p1)d22. (11)

By replacing pmax = 1−pmin and rearranging the expression
we get:

W2(X) = q1(1− q1)(1−DB
1 (p1))− q1pmin(1−DB

1 (p1))

+(1− q1)pmin(1−DB
2 (p1))− q1(1− q1)(1−DB

2 (p1))

=− q1(1− q1)
[
DB

1 (p1)−DB
2 (p1)

]
+pmin

[
−q1(1−DB

1 (p1)) + (1− q1)(1−DB
2 (p1))

]
.

=− q1(1− q1)
[
DB

1 (p1)−DB
2 (p1)

]
+

pmin
[
q1D

B
1 (p1)− (1− q1)DB

2 (p1) + (1− 2q1)
]
.
(12)

We need to address the two identified cases. Consider Case
1), where there is only a single mixed equilibrium. According
to Eq. (4), we get:

DA
12(q1) = DA

1 (q1)−DA
2 (q1)

= (d12 − d22) + Lq1.
(13)

Given that L > 0, since d11 > d12 and d22 > d21, DA
12(q1) is

an increasing function of q1 and
DA

12(q1) < 0, if q1 < qopt,

DA
12(q1) = 0, if q1 = qopt,

DA
12(q1) > 0, if q1 > qopt.

(14)

For a given q1, W1(X) is quadratic in p1. Also, we have:

W1

([
0
q1

])
= pminD

A
2 (q1) > 0

W1

([
1
q1

])
= −pminDA

1 (q1) < 0.

(15)

Since W1(X) is quadratic with a negative second derivative
with respect to p1, and since the inequalities in Eq. (15) are
strict, it admits a single root p1 for p1 ∈ [0, 1]. Moreover, we
have W1(X) = 0 for some p1 such that:

p1 <
1
2 , if q1 < qopt,

p1 = 1
2 , if q1 = qopt,

p1 >
1
2 , if q1 > qopt.

(16)

Using a similar argument, we can see that there exists a single
solution for each p1, and as pmin → 0, we conclude that
W1(X) = 0 whenever p1 ∈ {0, popt, 1}. Arguing in a similar
manner we see that W2(X) = 0 when:

X ∈ {
[
0
0

]
,

[
0
1

]
,

[
1
0

]
,

[
1
1

]
,

[
popt
qopt

]
}.

Thus, there exists a small enough value for pmin such that
X∗ = [p∗, q∗]ᵀ satisfies W2(X∗) = 0, proving Case 1).

In the proof of Case 1), we have utilized the fact that for
small enough pmin, the learning algorithm admits a stationary
point, and also identified the corresponding possible values for
this point. It is thus always possible to select a small enough
pmin > 0 such that X∗ approaches Xopt, concluding the proof
for Case 1.)

Case 2) can be derived in a similar manner, and the details
are omitted to avoid repetition.

In the next theorem, we show that the expected value of
∆X(t) has a negative definite gradient.

Theorem 2. The matrix of partial derivatives, ∂W (X∗)
∂x is

negative definite.

Proof. We start the proof by writing the explicit format for
∂W (X)
∂X =

[
∂W1(X)
∂p1

∂W1(X)
∂q1

∂W2(X)
∂p1

∂W2(X)
∂q1

,

]
and then computing each of

the entries as below:

∂W1(X)

∂p1
=(1− 2p1)

(
DA

1 (q1)−DA
2 (q1)

)
−

pmin
(
DA

1 (q1) +DA
2 (q1)

)
=(1− 2p1)DA

12(q1)−
pmin

(
DA

1 (q1) +DA
2 (q1)

)
.

∂W1(X)

∂q1
= p1(1− p1)L− pmin(p1(d11 − d12)+

(1− p1)(d22 − d21)).
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∂W2(X)

∂p1
=− q1(1− q1)L+ pmin((q1(d11 − d21)−

(1− q1)(d12 − d22)).

∂W2(X)

∂q1
=− (1− 2q1)

(
DB

1 (p1)−DB
2 (p1)

)
+ pmin(

DB
1 (p1) +DB

2 (p1)− 2
)
.

As seen in Theorem 1, for a small enough value for pmin,
we can ignore the terms that are weighted by pmin, and
we will thus have ∂W (X∗)

∂X ≈ ∂W (Xopt)
∂X . We now subdivide

the analysis in the two cases identified as above, which are
equivalent to:
• Case 1: No Saddle Point in pure strategies
• Case 2: There is a Saddle point in pure strategies.

c) Case 1: No Saddle Point in pure strategies: In this
case, we have:

DA
1 (qopt) = DA

2 (qopt) and DB
1 (popt) = DB

2 (popt)

which makes
∂W1(Xopt)

∂p1
= −2pminD

A
1 (qopt). (17)

Similarly, we can compute

∂W1(Xopt)

∂q1
= (1− 2pmin)popt(1− popt)L. (18)

The entry ∂W2(Xopt)
∂p1

can be simplified to:

∂W2(Xopt)

∂p1
= −(1− 2pmin)qopt(1− qopt)L (19)

and
∂W2(Xopt)

∂q1
= −2pmin(1−DB

1 (popt)) (20)

resulting in:

∂W (Xopt)
∂X =

[
−2pminD

A
1 (qopt) (1− 2pmin)popt(1− popt)L

−(1− 2pmin)qopt(1− qopt)L −2pmin(1−DB
1 (popt))

]
.

(21)
The matrix given in Eq. (21) satisfies:

det

(
∂W (Xopt)

∂x

)
> 0 , trace

(
∂W (Xopt)

∂x

)
< 0, (22)

which implies the 2× 2 matrix is negative definite.
d) Case 2: There is a Saddle Point in pure strategies:

In Theorem 1, Case 2 reduces to considering qopt = 1 and
popt = 1.

Computing the entries of the matrix for this case yields:

∂W1(Xopt)

∂p1
= −(d11 − d21)− pmin(d11 + d21), (23)

and
∂W1(Xopt)

∂q1
= −pmin(d11 − d12). (24)

The entry ∂W2(Xopt)
∂p1

can be simplified to:

∂W2(Xopt)

∂p1
= pmin(d11 − d21) (25)

and
∂W2(Xopt)

∂q1
= (d11 − d12)− pmin(2− d11 − d12) (26)

resulting in:
∂W (Xopt)

∂X
(27)

=
[
−(d11 − d21)− pmin(d11 + d21) −pmin(d11 − d12)

pmin(d11 − d21) (d11 − d12)− pmin(2− d11 − d12)

]
.

The matrix in (27) satisfies:

det

(
∂W (Xopt)

∂X

)
> 0 , trace

(
∂W (Xopt)

∂X

)
< 0 (28)

for a sufficiently small value of pmin, which again implies that
the 2× 2 matrix is negative definite.

Theorem 3. Let V be the von Neumann value of the game
given by matrix D. Let p(t) = [p1, p2] and q(t) = [q1, q2].
For a sufficiently small pmin approaching 0, η(t) converges
to V as θ → 0 where:

η(t) , E[p(t)]DE[qT (t)] (23)

Proof. The proof of this results requires a classic result due
to to Norman [7], given in the Appendix A, in the interest of
completeness.

The convergence of
[
E(p1(t)) E(q1(t))

]
to
[
p∗opt q∗opt

]
is a consequence of this theorem. Interestingly enough, this
theorem is a classical fundamental result that has been used
to prove many of the convergence results in LA. It has, for
example, been used by the seminal paper by Lakshmivarahan
and Narendra to derive similar convergence properties of the
LR−εP [1], applicable for the same game settings as ours.
Indeed, it is easy to verify that Assumptions (1)-(6) required
for Norman’s result are satisfied. Thus, by further invoking
Theorem 1 and Theorem 2, the result follows.

We conclude this section by mentioning that like all LA
algorithms, the computational complexity of our scheme is
linear in the size of the action probability vector. This is
because, at the most, all the action probabilities are updated
at every time instant.

For the benefit of future researchers, we believe that it
will be profitable to record the hurdles we encountered in
this research. The break-through came when we were able
to devise/design LA systems which possessed no-absorbing
barriers. In others words, it involved the concept of forcing the
LA back into the probability space when it was close enough to
the absorbing barriers. This was a phenomenon which we had
not earlier seen in the literature. The consequent problem was
the analysis. The underlying Markov process could not be eas-
ily analyzed using the properties of absorbing chains. Neither
could it be trivially modelled as an ergodic chain converging
to an equilibrium distribution. The analysis that we presented
here came as a “brain-wave”, and once the building blocks
were established, everything naturally seemed to fall in place.
These few sentences, requested by an Anonymous Referee,
should clarify the difficulties encountered in this research, in
order to show that the present research is pioneering, and that
is not a trivial extension of existing methodologies.
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Table I: Error for different values of θ and pmax, when popt =
0.5789 and qopt = 0.7368 for the game specified by the D
matrix given by Eq. (29). The point that you have raised is
pertinent.

pmax θ = 0.001 θ = 0.0001
0.999 2.1621× 10−3 1.6820× 10−3

0.998 2.5456× 10−3 1.7059× 10−3

0.997 3.7380× 10−3 2.2332× 10−3

0.996 3.4007× 10−3 2.0155× 10−3

0.995 5.4371× 10−3 3.7888× 10−3

0.994 5.5962× 10−3 4.2018× 10−3

0.993 7.3416× 10−3 5.4064× 10−3

0.992 7.7319× 10−3 7.8230× 10−3

0.991 9.6127× 10−3 6.7476× 10−3

0.990 9.3467× 10−3 9.6713× 10−3

IV. SIMULATIONS

In this section, we present simulations to confirm the above-
mentioned theoretical properties of the proposed learning
algorithm. In the interest of maintaining benchmarks, we adopt
the same examples as those reported in [1]. Also, by using
different instances of the payoff matrix D, we are able to
experimentally cover the two cases referred to in Section III.
Again, we refer to those cases as Case 1 and Case 2, as done
in [1].

A. Convergence in Case 1

We consider an instance of the game where only one mixed
Nash equilibrium exists, i.e., there is no Saddle Point in pure
strategies. We adopt the same game matrix D as in [1] given
by:

D =

(
0.6 0.2
0.35 0.9

)
(29)

which admits popt = 0.5789 and qopt = 0.7368.
In order to eliminate the Monte Carlo error, we ran our

scheme for 5× 106 iterations, and report the error in Table I
for different values of pmax and θ as the difference between
Xopt and the mean over time of X(t) after convergence5.
An important remark is that the error decreases as pmax
approaches 1 (i.e., when pmin → 0). Please observe that
in this case, we have particularly chosen to not let pmax be
unity. If we allow it to be precisely unity, it would mean that
we would not require an artificial barrier close to unity (for
example, between 0.990 and 0.999 as in Table 1). In fact, for
pmax = 0.999 and θ = 0.001, the method achieves an error
of 2.1621 × 10−3, and further reducing θ = 0.0001 leads to
an error of 1.6820× 10−3.

To better visualize the scheme, Figure 1 depicts the evolu-
tion over time of the mixed strategies for both players (given
by X(t)) for an ensemble of 1,000 runs using θ = 0.01 and
pmax = 0.999.

The trajectory of the ensemble allows us to perceive the
mean evolution of the mixed strategies. The spiral pattern is
caused by one of the players adapting to the strategy being
used by the other, before the former learns by over-correcting

5The mean is taken over the last 10% of the total number of iterations.

Figure 1: Time evolution of [p1(t), q1(t)]ᵀ for the same
settings as in Figure 2.
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Figure 2: Trajectory of X(t) for the case of the D matrix
given by Eq. (29) with popt = 0.5789 and qopt = 0.7368, and
using pmax = 0.99 and θ = 0.00001.

its strategy. The procedure is continued leading to smaller
corrections until the players reach the Nash equilibrium.

The above-mentioned behavior can also be visualized in
Figure 2 that presents the trajectory for a single experiment
with pmax = 0.99 and θ = 0.00001 over 3 × 107 steps. The
described oscillatory behavior is attenuated as the players play
for more iterations. The reader should particularly observe
that a larger value of θ will cause more steady state error (as
specified in Theorem 1), but it will also perturb this behavior
as the nodes take larger updates whenever they win. On the
other hand, further decreasing θ results in a smaller error of
the stationary point of the method, but also decreases the
convergence speed. This well-established inherent trade-off
between the steady state error and rate of convergence can
be better visualized by comparing Figure 1 with θ = 0.001
against Figure 3 for a smaller value of θ = 10−5.

Further, in order to clearly emphasize the necessity of using
an artificial barrier, we have specifically repeated the same
experiment except that we have included an absorbing barrier
instead, i.e., set pmax = 1. The result is illustrated in Figure
Figure 4. In this case, we expect that the scheme enters an
absorbing barrier. Since it is impossible for the human eye
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Figure 3: Time evolution of X(t) where popt = 0.5789 and
qopt = 0.7368, using pmax = 0.99 and θ = 0.00001.

Figure 4: Trajectory of X(t) for the case of the D matrix
given by Eq. (29) and using an absorbing barrier pmax = 1
and θ = 0.00001.

to detect whether or not we entered an absorbing barrier by
merely examining the graph, we also manually checked the log
of the experiment and verified that the probabilities became
exactly unity after around 6,798,000 iterations. Although the
theoretical convergence should have occurred in the limit and
not after a finite number of iterations, the machine limited
accuracy rounded the probabilities to unity after this juncture.

B. Pure equilibrium

In order to assess the performance of the proposed learning
algorithm on cases with a pure equilibrium, we consider two
instances of games falling in the category of Case 2 with
popt = 1 and qopt = 1. The payoff matrices D1 and D2 for
the two games are given by:

D1 =

(
0.6 0.8
0.35 0.9

)

D2 =

(
0.7 0.9
0.6 0.8

)
We first show the convergence errors of our method for both

games D1 and D2 in Table II and Table III, respectively. As in
the previous simulation for Case 1, the errors are on the order

Table II: Error for different values of θ and pmax for D1.

pmax θ = 0.001 θ = 0.0001
0.999 2.1073× 10−3 2.0971× 10−3

0.998 4.2753× 10−3 4.4573× 10−3

0.997 6.6147× 10−3 6.9025× 10−3

0.996 8.7588× 10−3 8.9192× 10−3

0.995 1.0815× 10−2 1.1044× 10−2

0.994 1.3424× 10−2 1.2894× 10−2

0.993 1.5005× 10−2 1.5415× 10−2

0.992 1.7347× 10−2 1.7805× 10−2

0.990 1.9772× 10−2 1.9670× 10−2

0.99 2.2516× 10−2 2.2548× 10−2

Table III: Error for different values of θ and pmax for D2.

Pmax θ = 0.001 θ = 0.0001
0.999 6.2439× 10−3 4.8359× 10−3

0.998 9.8350× 10−3 9.9923× 10−3

0.997 1.5470× 10−2 1.3583× 10−2

0.996 1.8769× 10−2 2.1704× 10−2

0.995 2.5573× 10−2 2.4587× 10−2

0.994 3.1426× 10−2 2.8006× 10−2

0.993 3.6112× 10−2 3.5181× 10−2

0.992 3.7508× 10−2 4.0789× 10−2

0.991 4.6255× 10−2 4.2545× 10−2

0.99 4.8299× 10−2 4.5069× 10−2

to 10−3 for larger values of pmax. However, given that our
algorithm uses artificial barriers to prevent absorbing states,
the error is lower bounded by pmin. A similar issue is present
in game D2. We have also included this simulation since it
is a more challenging game to learn with our method for a
larger steady-state error, even for very small values of θ.

In Figure 5, we depict the time evolution of the two
components of the vector X(t) using the proposed algorithm
for an ensemble of 1,000 runs. In the case of having a Pure
Nash equilibrium, there is no oscillatory behavior as when a
player assigns more probability to an action, since the other
player reinforces the strategy. However, Figure 5a could lead
make one believe that the LA method has converged to a pure
strategy. Figure 5b zooms around the point where the strategies
have converged to showcase that their maximum value is
limited by pmax, as per the design of our updating rule. This
mechanism is particularly favourable to prevent players from
converging to absorbing states for games with time-varying
payoff matrices. However, the study of such a scenario is left
for future research, namely that of determining how to design
pmax and θ that represent a good trade-off between learning
the game and adapting to a change in the payoffs.

Game D2 presents a harder challenge for our method as we
can see from its larger steady state error. Figure 6 depicts the
time evolution of the probabilities for each player when the
algorithm is applied to D2 with θ = 0.01, Pmax = 0.999 and
for an ensemble with 1,000 runs.

The main remark regarding the results presented in Figure
6a is that the convergence is much slower when compared to
game D1. This behavior is governed by the fact that the entries
in matrix D2 are closer to each other, unlike in D1 where there
is a clear disadvantage for player A when selecting action 2.
There will, thus, be much fewer updates for player A where
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(a) Evolution over time of X(t).

(b) Zoomed version around convergence.

Figure 5: The figure shows a) the evolution over time of X(t)
for θ = 0.01 and Pmax = 0.999 when applied to game with
payoffs D1, and b) is a zoomed version around the steady-state
value.

(a) Evolution over time of X(t).

(b) Zoomed version when the mixed strategies are approaching con-
vergence.

Figure 6: The figure shows a) the evolution over time of X(t)
for θ = 0.01 and Pmax = 0.999 when applied to game with
payoffs D2, and b) is a zoomed version around the steady-state
value.

it increases the probability of action 2 in game D1 – which is
not pertinent in game D2. Figure 6b further emphasizes this
remark by displaying a zoom, and depicting a sharper change
in the probabilities in comparison with the smooth behavior
in game D1.

C. Comparisons with Related Works

Now that we have explained our new techniques and estab-
lished its theoretical basis, we continue this discussion with a
brief comparison with some of the prior art6.

6We are thankful to the anonymous Referee who requested this compre-
hensive sub-section. It significantly adds to the quality of the paper.

First of all, one possible alternative when the payoff matrix
is known can be to consider the problem as that of designing
a local controller for each of the agents. One alternative is
to explore the results in [28] and further investigated in [29].
However, this is only possible when D is known, which is not
the scenario that we have assumed in this paper.

It is not out of place to review some of the relevant works
in game theory that are not necessarily solved using LA.
However, in the interest of space and brevity, we will not aim
at submitting an extensive review of the field of game theory.
Rather, we shall cite some pertinent works inasmuch as our
main contribution in this article centers on advancing the field
of LA-based solutions, and more specifically those dealing
with the special case of games with “incomplete information”.

There are different variants of zero-sum stochastic games
in the literature. In [30], Flesch et al. have proven the gen-
eral result that every positive zero-sum stochastic game with
countable state and action spaces, admits a value if at least
one player has a finite action space. A similar value-existence
result was obtained for a zero-sum stochastic game [31] with
a continuous-time Markov chain, where the players have also
the possibility of stopping the game. Ziliotto [32] considered
weighted-average stochastic games, that is, stochastic games
where Player 1 maximizes (in expectation) a fixed weighted
average of the sequence of rewards. A so-called pumping
algorithm was proposed in [33] for two-person zero-sum
undiscounted stochastic games. Other approaches map the
game onto a dynamic programming problem, and solve it
based on Bellman’s optimal principle using concepts from the
theory of optimal control [34].

The research on game theoretical learning with incomplete
information [13] is scarce in the literature. Incomplete infor-
mation is a taxonomy used within the field of LA games to
denote the case where the players do not observe the action of
the opponent players, and where each player does not know his
own payoff function but only observes outcomes in the form
of a reward or a penalty. The informed reader would observe
that the games we deal with in this paper falls under this class
of games characterized by such incomplete information.

The case of incomplete information is not usually treated
by the main stream of literature in game theory. Indeed, the
main game learning algorithms available in the literature, such
as fictitious play [35], best response dynamics, and gradient-
based learning approaches, deal with the complete knowledge
case, where the players know their own payoff function, and
observe the history of the choices of other players. Fictitious
play is one of the few algorithms that can converge to a mixed
strategy equilibrium by maintaining various frequency-based
beliefs over the action of the opponent players, and using those
beliefs, for deciding the next action to be played. However,
the fictitious play algorithm can not solve our settings of
incomplete information.

When it comes to games with incomplete information,
different algorithms have been suggested which are based
on the Bush-Mosteller learning paradigm. Notable examples
include the ones reported in [36], [37], [38], [39]. All those
algorithms share a similar structure to our proposed LA, in
particular, and to Variable Structure LA in general, in the
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sense, that the action probabilities are updated iteratively
based on feedback, and using some learning parameter. In
this context, one should note that many LA models can be
seen as extensions of Bush-Mosteller learning. However, the
difference with our work is the fact that all the aforementioned
algorithms have absorbing barriers. The theoretical analyses of
the convergence to pure equilibria for this family of algorithms
rely usually on the theory replicator dynamics.

Another family of methods that can operate with limited in-
formation include the Erev-Roth algorithm [40] and the Arthur
algorithm [41], which in turn, can be seen as a variant of the
Erev-Roth algorithm. The Erev-Roth algorithm is alternatively
called the Erev-Roth payoff matching algorithm, and relies
on updating the so-called “propensity” for each action, which
is, loosely speaking, the cumulative payoff for that action.
Thereafter, each action is played in a manner proportional to its
corresponding relative propensity. The Erev-Roth algorithm is
one of the few examples of limited-information game learning
approaches that converge to unique mixed strategy equilibria.
However, the Erev-Roth algorithm requires storing the entire
history of rewards and penalties for each action. Furthermore,
we have not been able to locate any research study that reports
the analysis of the Erev-Roth algorithm for the case of our
stochastic zero-sum game. We therefore opted to implement
it for our game. Experimental results (not reported here, in
the interest of not distracting from the main contribution
of this paper) show that it neither converges to the desired
equilibrium, nor does it possess consistent convergence results.

D. Real-life Application Scenarios

One Referee had requested a brief explanation of a complex
environment, or different scenarios in a game, by which we
could utilize our newly-proposed solution. We agree that
providing an insightful discussion could be insightful for
interested readers and active researchers. This, of course, can
be open-ended, but to satisfy the Referee, we present the
following brief example.

Our learning algorithm admits potential applications in
many security games as well as in communication problems.
The intersection between game theory and security is an
emerging field of research. Algorithms that can converge to
mixed equilibria are of great interest to the security commu-
nity, because mixed equilibria are usually preferred over pure
ones. In fact, randomization gives less predictive ability to
the attacker to guess the deployed strategy of the defender
[42]. For instance, let us take a repetitive game involving a
jammer and a transmitter, which, in turn, constitute our players
[43]. The jammer aims to disturb and block a communica-
tion between a transmitter and its associated receiver. The
transmitter can choose the channel over which his message is
communicated, while the jammer chooses a channel to attack.
We suppose that the outcome is stochastic depending on the
choice of the attacker (jammer) and defender (transmitter), and
the stochastic characteristics of the channel. Both the jammer
and transmitter can observe whether the attack was successful
or not, and for instance, this common observation can be due
to the receiver acknowledging the correct reception of the

message over a wireless channel that both the attacker and
jammer can overhear. Thus, the game is stochastic zero-sum.

V. CONCLUSION

The theoretical applications Learning Automata (LA) with
artificially absorbing barriers have been reported since the
1980s [8], and more recently, in Estimator LA [18], [19],
[20]. This paper pioneers the study of LA with artificial non-
absorbing barriers. LA have been previously used [13] to
design algorithms capable of converging to the game’s Nash
equilibrium under limited information. The majority of the LA
algorithms used for games are absorbing in the probability
simplex space, and they converge to an exclusive choice of a
single action. These LA are, thus, unable to converge to other
mixed Nash equilibria when the game possesses no Saddle
Point for a pure strategy. As opposed to these, we propose
a LA solution that is able to converge to an optimal mixed
Nash equilibrium even though there may be no Saddle Point
when a pure strategy is invoked. The scheme is inherently
of the absorbing Linear Reward-Inaction (LR−I ) paradigm.
However, by introducing reflecting barriers, we prevent it from
being “stuck” or getting absorbed in pure strategies. Unlike the
Linear Reward-εPenalty (LR−εP ) scheme proposed in [1], our
new scheme achieves the same goal with much less parameter
tuning, and in a more elegant manner.

As far as know, our method is only the second reported
algorithm in the literature capable of finding mixed strategies
whenever no Saddle Point exists for pure strategies. If a
Saddle Point exists for pure strategies, the scheme converges
to a near-optimal solution close to the pure strategies in the
probability simplex. The paper includes the non-trial proofs
of the theoretical results characterizing the convergence and
stability of the algorithm. These are presented and illustrated
through simulations for benchmark games presented in the
literature.

With regard to future work, we believe that it will be useful
in real-life applications that can be modeled using such game-
like behavior.

APPENDIX

Norman theorem

Theorem 4. Let X(t) be a stationary Markov process depen-
dent on a constant parameter θ ∈ [0, 1]. Each X(t) ∈ I , where
I is a subset of the real line. Let ∆X(t) = X(t+ 1)−X(t).
The following are assumed to hold:

1) I is compact.
2) E[∆X(t)|X(t) = y] = θw(y) +O(θ2)
3) V ar[∆X(t)|X(t) = y] = θ2s(y) + o(θ2)

4) E[∆X(t)3|X(t) = y] = O(θ3) where supy∈I
O(θk)
θk

<

∞ for K = 2, 3 and supy∈I
o(θ2)
θ2 → 0 as θ → 0.

5) w(y) has a Lipschitz derivative in I .
6) s(y) is Lipschitz I .
If Assumptions (1)-(6) hold, w(y) has a unique root y∗ in

I and dw
dy

∣∣∣∣
y=y∗

≤ 0 then
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1) var[∆X(t)|X(0) = x] = 0(θ) uniformly for all x ∈ I
and t ≥ 0. For any x ∈ I , the differential equation
dy(τ)
dτ = w(y(t)) has a unique solution y(τ) = y(τ, x)

with y(0) = x and E[δX(t)|X(0) = x] = y(tθ) +O(θ)
uniformly for all x ∈ I and t ≥ 0.

2) X(t)−y(tθ)√
θ

has a normal distribution with zero mean and
finite variance as θ → 0 and tθ →∞.
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