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Abstract

Tsetlin Machines (TM) use finite state machines for learning and propositional logic

to represent patterns. The resulting pattern recognition approach captures informa-

tion in the form of conjunctive clauses, thus facilitating human interpretation. In this

work, we propose a TM-based approach to three common natural language

processing (NLP) tasks, namely, sentiment analysis, semantic relation categorization

and identifying entities in multi-turn dialogues. By performing frequent itemset min-

ing on the TM-produced patterns, we show that we can obtain a global and a local

interpretation of the learning, one that mimics existing rule-sets or lexicons. Further,

we also establish that our TM based approach does not compromise on accuracy in

the quest for interpretability, via comparison with some widely used machine learning

techniques. Finally, we introduce the idea of a relational TM, which uses a logic-

based framework to further extend the interpretability.
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1 | INTRODUCTION

The burgeoning of machine learning (ML) and artificial intelligence (AI) research and techniques have resulted in their widespread use in everyday

technology. Currently, many AI-based systems lack interpretability, that is, the ability to explain their actions or decisions in a form that is under-

standable to humans. Without proper explanations, identifying and preventing erroneous behaviour becomes impossible, or at the very least,

complicated. Sometimes the consequences of this lack of interpretability are extremely harsh, from a human-centric point of view, such as pris-

oners being incorrectly denied bail or questionable financial decisions being taken without human intervention. As more and more AI-based sys-

tems become part of the social fabric of our lives, building trust in such systems becomes paramount (Rudin, 2019).

A major driving force behind the push to make AI interpretable is to enable researchers and engineers to improve their models by leveraging

the model itself. By accessing and analysing information on where and why a model fails, debugging (or bettering) it becomes easier. Perhaps one

of the most compelling reasons for using AI as compared to human reasoning has been, historically, that machines have the potential of being

unbiased. Unfortunately, that belief has been held for a very long time and only recently have studies been conducted into the veracity of the

claim. It has come to light that bias is more widespread in AI systems than previously thought, and it creeps undetected into algorithms either via

inherent biases that researchers hold themselves or even from the data used for developing models. Limited interpretability hampers the detec-

tion of such bias once it is encoded into a model and their subsequent rectification, thus leading to biased systems falsely being advertised other-

wise (Lipton, 2018).
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Despite the increasing research into the necessity and techniques of interpretable AI, still, there are not many readily available interpretable

ML techniques (compared to standard non-interpretable ones), especially those that work well for the type of complex problems that AI generally

deals with. Current research usually follows either of two different approaches: (a) Model-based—intrinsic interpretability, which is achieved dur-

ing the running of a model and the model is simple and describable; and (b) Post-hoc—extrinsic interpretability, where explanations are extracted

from a trained model after the model has been run. There are concerns that model-based approaches may not reach sufficiently high predictive

accuracy. Contrarily, post-hoc processing also suffers from the handicap that the explanations acquired are, at best, an approximation of what the

model has learned. It is not enough for a method to be highly accurate—the extracted explanations must also be relevant (Murdoch et al., 2019).

By dint of relying on standard ML techniques, natural language processing (NLP) is also afflicted by the conflict between interpretability and

accuracy. There are several approaches to pattern recognition in NLP, some of which we list here in order of an increasing loss of interpretability:

rule-based pattern-recognition system, statistical (TF-IDF) (Jones, 2004) methods, linear classifiers (Aggarwal & Zhai, 2012), and neural network

models employing vector space representations of words (Bengio et al., 2003). Basic neural network architectures are currently further enhanced

using multiple techniques, such as grammatical information, pooling, convolution, and so forth (Collobert et al., 2011; Socher et al., 2013), leading

to gains in terms of accuracy. This work proposes the use of a recently introduced paradigm, Tsetlin Machine (TM), for NLP, and show that it can

successfully address concerns related to both interpretability and accuracy.

1.1 | Tsetlin Machines

TM are a pattern recognition approach, which provides an interpretable approach to ML (Granmo, 2018). A TM stands apart from other traditional

techniques in its ability to construct patterns in the form of highly discriminative conjunctive clauses in propositional logic (hence making them

understandable to humans). More recently, Phoulady et al. (2019) proposed a modified learning mechanism that combats false positives and

encourage true positives, resulting in a weighted scheme that further increases the discrimination power of the clauses by assigning them weights.

Recent works show Tsetlin machines to have successfully addressed several machine learning tasks, including natural language understanding

(Berge et al., 2019; Bhattarai et al., 2021; Saha et al., 2020; Yadav et al., 2021a, 2021b), speech understanding (Lei et al., 2021), image analysis

(Granmo et al., 2019), classification (Abeyrathna et al., 2021), and regression (Darshana Abeyrathna et al., 2020). While the performance showed

by Tsetlin machines in such areas has been comparable to state-of-the-art machine learning techniques, the method has also been shown to have

a smaller memory footprint and faster inference in reported cases than more traditional neural network-based models (Granmo et al., 2019;

Wheeldon et al., 2020). Furthermore, Shafik et al. (2020) elaborate on Tsetlin machines being able to completely mask stuck-at faults, thus having

fault-tolerant properties as well. Inherent interpretability makes Tsetlin machines a promising candidate for the cause of interpretable AI. Indeed,

conjunctive clauses have turned out to be well suited for human interpretation, while still allowing complex nonlinear patterns to be formed

(Wang et al., 2017).

1.2 | Paper contributions

In this work, we aim to showcase the ability as well as the appropriateness of a TM-based classification technique to produce human-intelligible

clauses when applied to NLP via experiments and analyses on sentiment analysis, semantic relation analysis and dialogue-based entity identifica-

tion. We focus on the linguistic patterns obtained by means of the clauses, to identify their informativeness and interpretability. We compare

these clauses with expert-crafted rules wherever available to better judge them against an established standard. We also show that we can main-

tain interpretability while achieving competitive accuracy, and suggest areas for further research-based upon our findings. An important aspect of

the continued direction of our work is the relational TM, where we propose to enhance the framework with a logic-based structure that focuses

on learning interactions between actions and entities, rather than on literals (words), from natural language text.

Paper Organization. The paper is organized as follows. In Section 2, we present a short background on interpretability, related work on inter-

pretable NLP, and interpretable NLP with Tsetlin machines. Section 3 focuses on the working of the TM and further details on how it is suited for

NLP tasks. In Sections 4 and 5, we describe how we employ TMs in three different NLP experiments, and analyse the results, as well as the by-

products, in light of interpretability. Future direction of work, including a relational version of the model proposed in this work, are concisely put

forward in Section 6, before finally concluding in Section 7.

2 | BACKGROUND AND RELATED WORK

As mentioned earlier in Section 1, one way of bringing interpretation to ML is via a post-hoc model that explains an initial black-box model. Unfor-

tunately, the unknown amount of approximation involved in such a process leads to these explanations often being not reliable and can thus be
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misleading (Rudin, 2019). For an explanation to be completely faithful, it needs to be an explicit description of the model itself, which is very often

impossible to attain. Even so, an explanation should, at the least, correspond to how the model behaves specifically when an instance is being

predicted. This brings up the two related, but separate ideas of global and local fidelity. Importantly, local fidelity does not imply global fidelity:

globally important features may not be important in the local context. While global fidelity would (ideally) imply local fidelity, identifying globally

faithful explanations that are interpretable remains a challenge for complex models (Ribeiro et al., 2016). Ultimately, the inclination is towards

innately interpretable models, since they have a distinct correspondence to the actual computation carried out by the model (Rudin, 2019).

Existing work on interpretability for NLP has primarily focused on text classification problems, though none involves models that can organi-

cally explain the decisions. Samek et al. (2017) proposed the use of heat maps to obtain information about how much each hidden element con-

tributes to the prediction, and use that information to build connections between the input and the output. Another approach, by Ribeiro

et al. (2016) involves a model-agnostic approach: an interpretable model of the predictions of Black-box models is used, where the interpretable

model describes the actions of the classifier locally (i.e., for the instance being classified). Hancock et al. (2018) developed a framework via which

human annotators provided a natural language explanation for each label, and these annotations were subsequently used to create a weakly

supervised larger training set. This was ultimately used to train a classifier that is capable of classifying text together with an explanation for the

same. Finally, Liu et al. (2018) presented a hybrid generative-discriminative method for text classification, which creates a novel generative expla-

nation framework that can generate reasonable explanations using information inferred from raw texts.

Since research into the application of Tsetlin machines has been relatively recent, there has been limited investigation done in terms of

exploring its capabilities for NLP. Berge et al. (2019) use a TM-based approach to analyse medical data and learn human-interpretable rules from

that. The approach is able to successfully categorize text, based on the presence or absence of unique medical terminology. The potential of

detecting novel content in documents by using linguistic structures that are characteristic of a particular text type was shown by Bhattarai

et al. (2021). Another interesting application was demonstrated by Yadav et al. (2021b) in their work dealing with word sense disambiguation

depending on the surrounding context.

3 | TSETLIN MACHINE FOR NLP TASKS

3.1 | General classification and learning using Tsetlin machines

Introduced in the 1960s, a Tsetlin automaton (TA) is a deterministic automaton that learns the optimal action to be performed, among the set of

actions available in an environment. It performs the action associated with its current state, prompting a reward or penalty to be activated, based

on the ground truth. The state is updated correspondingly so that the TA gradually shifts closer towards the optimal action (Tsetlin, 1961).

A TM is composed of a collection of such TAs, which work together to express complex propositional formulae using conjunctive clauses. It

takes a vector X¼ x1,…,xfð Þ of Boolean features as input, to be classified into one of two classes, y¼0 or y¼1. These features, along with their

negated counterparts, xk ¼ ¬xk ¼1�xk , make up a set of literals L¼ x1,…,xf ,x1,…,xff g.
A TM pattern is formulated as a conjunctive clause Cj , formed by ANDing a subset Lj ⊆ L of the literal set L:

Cj Xð Þ¼ ^ lk � Lj lk ¼
Y
lk � Lj

lk: ð1Þ

For example, the clause Cj Xð Þ¼ x1^x2¼ x1x2 consists of the literals Lj¼ x1,x2f g and outputs 1 if x1¼ x2¼1.

The number of clauses is defined by a parameter n. n/2 number of clauses are assigned positive polarity (henceforth termed as positive clau-

ses), while the other half is assigned negative polarity (negative clauses). A classification decision is obtained by consolidating the clause outputs

via summation and thresholding using the unit step function u vð Þ¼1 if v ≥0else0:

by¼ u
Xn=2
j¼1

Cþj Xð Þ�
Xn=2
j¼1

C�j Xð Þ
 !

: ð2Þ

That is to say, majority voting decides the classification, with positive clauses voting in support of y¼1 and negative clauses voting for the oppo-

site, that is, y¼0. For example, the classifier by¼ u x1x2þx1x2�x1x2�x1x2ð Þ, captures the XOR-relation (as shown in Figure 1) (Granmo, 2018).

Algorithm 1 encompasses the entire learning procedure. We observe that learning is performed by a team of 2f TAs per clause, one TA per lit-

eral lk (Algorithm 1, Step 2). Each TA has two actions—Include or Exclude—and decides whether to include its designated literal lk in its clause.

Learning which literals to include is based on reinforcement: Type I feedback encourages frequent patterns, while Type II feedback increases the

discriminative power of the patterns.

Tsetlin machines learn online, processing one training example X,yð Þ at a time (Step 7). The TAs first produce a new configuration of clauses

(Step 8), Cþ1 ,…,C
�
n=2, followed by calculating a voting sum v (Step 9).
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Feedback is then distributed stochastically to each TA team. The difference ϵ between the clipped voting sum vc and a user-set voting target

T determines the probability with which each TA team will receive feedback (Steps 12–20).

Type I feedback is given probabilistically to positive clauses when y¼1 and to negative clauses when y¼0. Each clause, in turn, reinforces its

TAs based on the following three things: (1) its output Cj Xð Þ; (2) the action of the TA – Include or Exclude; and (3) the value of the literal lk

assigned to the TA. Two rules are used to control Type I feedback:

• Include is rewarded and Exclude is penalized with probability s�1
s whenever Cj Xð Þ¼1 and lk ¼1. This reinforcement is strong (i.e., activated with

high probability) and ensures the clause remembers and refines the pattern it recognizes in X.1

• Include is penalized and Exclude is rewarded with probability 1
s whenever Cj Xð Þ¼0 or lk ¼0. This reinforcement is triggered with low probability

and transforms infrequent patterns into more frequent ones by coarsening the infrequent ones.

Above, the user-configurable parameter s controls pattern frequency, i.e., a higher s produces less frequent patterns.

Type II feedback is similarly probabilistic but is given to positive clauses when y¼0 and to negative clauses when y¼1. It penalizes Exclude

whenever Cj Xð Þ¼1 and lk ¼0. Thus, this feedback produces literals for discriminating between y¼0 and y¼1, by making the clause evaluate to

0 when facing its competing class. Further details can be found in Granmo (2018).

To note here, the voting sum is clipped to normalize the feedback probability. The voting target for y¼1 is T and for y¼0 it is �T. For any
input X, the probability of reinforcing a clause gradually drops to zero as the voting sum approaches the user-set target. This is to ensure that clau-

ses distribute themselves across the frequent patterns, rather than ignoring some and over-concentrating on others.

3.2 | Tsetlin Machines in NLP

A snapshot of the training and testing mechanism in a TM setup for NLP is shown in Figure 2a. It also depicts how a global and local interpretation

of the task is acquired from the clauses. In the figure, the TM takes a Boolean feature vector as input Di¼ f1, f2,…, fo½ �� 0,1f go (Figure 2a: Training

F IGURE 1 The Tsetlin Machine architecture
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Feature Vectors). In this scenario, Di refers to a singular input text, while each feature fk represents the presence/absence of a specific unigram or

bigram in Di, as the case may be for a particular experiment.

The feature vector is further processed by the clauses Cþ1 ,…,Cþn
2
and C�1…,C�n

2
. Each clause captures a particular linguistic sub-pattern as a con-

junction of literals: Ca ¼ f1^…^ f4^ ¬f6^… (Figure 2a: Clauses Learnt by Tsetlin Machine).

During learning, a larger T together with an increase in the number of clauses leads to the creation of more specific clauses. That is, each

clause encapsulates very particular sub-patterns seen in the text without much overlap between clauses. The evidence for a sample to belong to a

class is aggregated and thresholded for the output, as discussed previously. As expected, not all the clauses learnt by the TM actively participates

in the decision making process for a particular sample, only a small subset of the clauses are required. This subset leads to a local description of

the said sample (In Figure 2a: Local Description, the prediction is made by Ca,Cb,Cc…).

In the process of forming clauses that best describe the training data, the TM chooses features that are judged most important for decision-

making. In our experiments, features are unigrams and bigrams for the first two datasets, and only unigrams for the third one. Since the clauses

are initialized with a random set of literals at the beginning, in a single epoch of training, there are some inconsequential literals selected as part of

one or more clauses, along with the important ones. To preserve our original objective, i.e. interpretability of rules for text classification, we take

advantage of the Tsetlin machine's proclivity towards frequently occurring sub-patterns. We perform a frequent itemset mining (Agrawal &

Srikant, 1994) of clauses over multiple epochs, and arrive at a set of representative sub-clauses (Figure 2a: Global Description). As discussed sub-

sequently in Section 5, these representatives hold up well to linguistic scrutiny. The same approach can also be used for analysing local clauses,

i.e. clauses activated for making a classification in a single sample only.

4 | EXPERIMENTAL SETUP

In this work, we have used three datasets: (a) SemEval 2010 Semantic Relations dataset (Hendrickx et al., 2009), (b) Sentiment140 Twitter dataset

(Go et al., 2009), and (c) Multi-Turn, Multi-Domain, Task-Oriented Dialogue Dataset (Eric & Manning, 2017).

Algorithm 1

TM algorithm

input Tsetlin Machine (TM), example pool S, training rounds e, clauses n, features f, voting target T, specificity s

1: procedure train (TM,S,e,n, f,T,s)

2: for j 1,…,n=2 do

3: TAþj  Randomly Initialize Clause TA Team 2fð Þ
4: TA�j  Randomly Initialize Clause TA Team 2fð Þ
5: end for

6: for i 1,…,e do

7: Xi,yið Þ Obtain Training Example Sð Þ
8: Cþ1 ,…,C

�
n=2 Compose Clauses TAþ1 ,…,TA

�
n=2

� �
9: vi 

Pn=2
j¼1C

þ
j Xið Þ�

Pn=2
j¼1C

�
j Xið Þ ▷ Vote sum

10: vci  clip vi, �T,Tð Þ ▷ Clipped vote sum

11: for j 1,…,n=2 do ▷ Update TA teams

12: if yi¼1 then

13: ϵ T�vci ▷ Voting error

14: Type_I_Feedback (Xi ,TA
þ
j ,s) if rand() ≤

ϵ
2T

15: Type_II_Feedback (Xi ,TA
�
j ) if rand() ≤

ϵ
2T

16: else

17:
Ð  Tþvci ▷ Voting error

18: Type_II_Feedback (Xi ,TA
þ
j ) if rand() ≤

ϵ
2T

19: Type_I_Feedback (Xi ,TA
�
j ,s) if rand() ≤

ϵ
2T

20: end if

21: end for

22: end for

23: end procedure
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The SEMEVAL-2010 Task 8 focused on identifying semantic relations between pairs of nominals in text. The dataset consists of 10,717 anno-

tated samples, each of which belongs to one of the following 10 relation classes: Cause-Effect (S:CE), Product-Producer (S:PP), Content-Container

(S:CC), Member-Collection (S:MC), Entity-Origin (S:EO), Entity-Destination (S:ED), Instrument-Agency (S:IA), Component-Whole (S:CW),

Message-Topic (S:MT) and Other.

The Sentiment140 dataset is primarily for sentiment classification on short texts. It contains 1.6 million English language tweets, classified as

positive or negative. Preprocessing involves stripping the data of emoticons to force classifiers to learn from other features, i.e. the words only.

While the above two datasets have become fairly standard with respect to semantic relation analysis and sentiment analysis (in short texts)

respectively, the third dataset we have used is targeted towards building task-oriented dialogue systems. It consists of 3030 multi-turn dialogues,

each of which has an average of 5.25 utterances, belonging to one of three predefined tasks (Calendar Scheduling, Point of Interest Navigation or

Weather Information Retrieval). Out of these, we use Weather Information Retrieval dialogues (which consist of 997 out of the total 3030

F IGURE 2 Tsetlin Machine (TM) for natural language processing tasks. (a) Mechanism of interpretable rule mining using TM. (b) Example of
classification using TM
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dialogues) for the purpose of this paper. Each such dialogue contains one or more of the following slots that form the basis of that dialogue: loca-

tion, weekly time, and weather attribute. We task the classifier with determining whether or not each of these given slots is present at each turn

of a dialogue.

To better, highlight the Tsetlin machine's capability to discern between the salient and non-important parts of the text, we purposefully do

not perform stopword or punctuation removal in any of the datasets.

Since the SemEval dataset contains multiple possible classes, we first do a set of experiments in a binary classification setup (i.e., one-vs.-all),

followed by a final experiment with all the classes in a multi-class setup. The Dialogue dataset was subjected only to binary one-vs.-all classifica-

tions. We use a standard TM model for all experiments,2 as described by Berge (Berge et al., 2019). For experiments involving binary classification

on the SemEval dataset, the TM was configured hyperparameters were 40 clauses, a threshold value (T) of 15 and s-value of 3.9. For the multi-

class classification, we used 1500 clauses, since there was a lot more information to be learnt, with a T of 800. In case of the Sentiment140

dataset, we use 4000 clauses, with the same T and s as before. Classification on the Dialogue dataset required hyperparameters of 40 clauses, a

T of 60 and s-value of 6.

5 | ANALYSIS OF INTERPRETABILITY PROVIDED BY TSETLIN MACHINES

The interpretability of the TM approach is expressed in the clauses produced in the learning process. Inspecting the clauses learnt (for training)

and activated (for testing) establishes why each text was classified the way it was. In this section, we explore the clauses obtained in the experi-

ments and showcase their relevancy with respect to the aim of providing a linguistic explanation. During training, the TM arrives at a set of clau-

ses using the features provided, which together gives a description of the task in general. During testing, each sample can match only a subset of

all clauses, and these clauses define the classification problem with respect to that particular sample only.

We begin with instances that contain a Cause-Effect relationship in the SemEval data. While it is possible to have multiple linguistic ways of

expressing causation in text, the presence of one or more specific literals (termed as unambiguous causal connectives) is enough to classify a sen-

tence as being a causal sentence (Xuelan & Kennedy, 1992). Hence, we can hypothesize that a major discriminator to classify sentences as causal

or non-causal will be the presence or absence of such words in a sentence.

An overview of the task Cause-Effect versus all classification becomes clearer in the form of propositional logic, which we get from a frequent

itemset from the clauses from over 300 runs of the proposed classifier:

Sentence_Contains caused_byð Þ_ causesð Þ_ triggered_byð Þ_ resulted_inð Þ_ been_caused_byð Þ_ radiating_fromð Þ_ lead_toð Þ_…ð Þ)Class Cause-Effectð Þ:

The literals present in the above description match those termed as ‘causal connectives’, by researchers in linguistic causality (Girju, 2003;

Xuelan & Kennedy, 1992).

While the above summarizes the global description of the classification, it is not applicable in its entirety in the local context of a single sam-

ple. When classifying a single instance, like ‘The burst has been caused by water hammer pressure’ shown in Figure 2b, the clauses activated

(greyed) provide a local explanation of the classification.

While there are no similar exhaustive studies available for the other relations as there is for causality, visual inspection of the descriptions

obtained for the one-vs.-all classification for such relations indicate similar levels of success. For example, the description for the class Entity-

Destination relationship is as follows:

Sentence_Contains into_theð Þ_ sent_toð Þ_ delivered_toð Þ_ donated_toð Þ_ put_insideð Þ_ shipped_toð Þ_ added_toð Þ_…ð Þ)Class Entity-Destinationð Þ:

For the Sentiment140 Dataset, similarity with expert-verified lexicons is judged by comparing frequent subclauses with a range of existing

standard Twitter Sentiment Analysis lexicons. The various manual and semi-automatically created sources used are: AFINN-111 (Nielsen, 2011),

Affect Intensity Lexicon (Mohammad, 2018), EmoLex (Mohammad & Turney, 2013), NRC Hashtag Lexicon (Kiritchenko et al., 2014), LIWC

(Tausczik & Pennebaker, 2010), Bing Liu's opinion lexicon (Hu & Liu, 2004), MPQA subjective lexicon (Wilson et al., 2005), Sentiment Composition

Lexicon (Kiritchenko & Mohammad, 2017).

Table 1 shows the coverage obtained by frequent TM sub-patterns (created by training the TM) over the available lexicons. High overlap is

obtained with almost all lexicons, further confirming that the TM-based approach can indeed automatically arrive at a linguistic description of the

classification at hand.

These two experiments give a fair idea of how the TM-based classifier allows us to have a global interpretation of the classifier's work. The

clauses obtained, taken together, piece together an understanding of the objective of the task at hand, giving us an approximate description of

the individual classes. With the experiments on the Dialogue dataset, we focus on the local interpretability. In a multi-turn dialogue context, infor-

mation that has been seen previously may not have an effect currently (at the current turn), but it still needs to be remembered for further

SAHA ET AL. 7 of 12



processing. Primarily, we wish to show that, due to the nature of clauses obtained by the TM, such behaviour is not only obtainable, but also

track-able, on a per dialogue basis.

More importantly, this behaviour is available without compromising on the initial goal of classifying whether or not certain key information is

present in the dialogue, as shown in Table 3 (rows Dialogue:Location, Dialogue:Weekly Time and Dialogue:Weather Attr.).

An interesting experimental observation was made at this stage with regards to the location information presence/absence classification. Tak-

ing inspiration from the original work, all the named location entities were changed to a generalized token ‘LOC’. This one change led to the accu-

racy of classification going from 91.49% to 95.8%. Consequently, the learnt clauses are shown in Table 2 and the relevant discussions henceforth

use the modified feature (i.e. using ‘LOC’ instead of location name).

In Table 2, we choose two typical examples from the dataset and show the local clauses that are triggered for each of the utterances in

order to make the decision about the predicted class (location information present or location information absent). The feature-set consists of

a bag of words for each utterance. Since an utterance is not a stand-alone entity, each feature is further enhanced by also including its turn

number (designated as St_FeatureWord, where t is the turn number). Also, the feature vector for an utterance includes the feature vectors

created for the previous utterances in the dialogue as well, if any, in order to ensure preceding context is not lost. Two special features are

also included, one of which indicates the speaker of a given utterance (driver or assistant), and the other indicates whether or not an utter-

ance is the end of a dialogue.

The first example is short, consisting of just four turns, all of which are classified correctly. The clauses for the first two utterances cap-

ture well the conditions in the text that lead to a ‘present’ classification. The clauses referred to for the last two utterances are more interest-

ing. Not only do they capture the fact that a particular location was referred to earlier in the dialogue, they also recognize that that reference

TABLE 1 Coverage of various lexicons by Tsetlin Machine clauses

Lexicon Source: Twitter Mode of creation Size of LD
� LD coverage

AFINN-111 Yes Manual 1363 87.97%

Affect Intensity Yes Manual 18,719 83.55%

EmoLex No Manual 6272 85.30%

NRC Hashtag Yes Automatic 29,249 85.68%

LIWC No Automatic 1771 92.20%

Bing Liu No Manual 1048 83.21%

MPQA No Manual 473 87.53%

SCL-NMA No Manual 1339 84.17%

Note: �LD ¼ Lexicon \ Dataset.

TABLE 2 Local snapshot of clauses for example dialogues

Dialogue Turn Speaker Utterance Clauses
Predicted
class

1 1 Driver In the next 48 h will it rain in Alhambra? (S1_Loc and S1_in) or (S1_Loc and S1_Driver) Present

2 Assistant Just a little: the weather in Alhambra will

be drizzle today and overcast tomorrow.

(S1_Loc and S2_Loc) or NOT(#S1_LOC and S1_Driver) Present

3 Driver Thank you. (S1_Loc and S2_Loc and S3_Driver) Absent

4 Assistant Sure! (End_Dialogue and S4_Assistant and S1_Loc and

#S3_Loc)

Absent

2 1 Driver What is the weather forecast for the

upcoming week?

(#S1_Loc and #S1_in and S1_Driver) or (#S1_Loc and

#S1_at and S1_Driver)

Absent

2 Assistant What city would you like to know the

weather about?

(#S1_Loc and #S1_in and S1_Driver and S2_what and

S2_Assistant) or (S2_like and S2_what and S2_know)

Absent

3 Driver Will it be overcast in Durham this week? (S3_Loc and S3_Driver and S3_in) Present

4 Assistant It will not be overcast in Durham this

week.

(S3_Loc and S3_Driver and #End_Dialogue and

S4_Assistant)

Present

5 Driver Thanks. (S3_Loc and S4_Loc and S4_thanks) Absent

6 Assistant You are welcome. (End_Dialogue and S6_Assistant and S3_Loc and

S4_Loc and S4_thanks)

Absent
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does not affect the lack of location in the current utterance under scrutiny. In turn 4, the clause seems to encapsulate the ideas that (a) this is

the end of the dialogue, (b) it is spoken by the assistant and (c) Driver provided location information in the first utterance but not in the

subsequent ones.

The second example deals with a slightly more complex scenario than the first one. It consists of six turns (compared to just four in the previ-

ous one). The clauses for turn 1 indicate that (a) utterance is made by the driver, (b) but no mention of any location is made, leading to an ‘absent’
classification. Furthermore, clauses for turn 2 not only capture the previous information but also include the assistant asking for clarification.

However, once the driver provides a location in turn 3, the previous information does not remain relevant. The last two turns are similar in terms

of clauses to the previous example.

These examples reinforce the claim made previously, the flow of important information in a dialogue can be identified and tracked using a

local sample-specific view of clauses in our proposed TM based approach.

In summary, the frequent itemset of clauses contribute to global interpretability, while sub-clauses that contribute to the final decision of a

particular example relates to the local interpretability of the task. Moreover, the obtained clauses mimic expert-crafted rules, especially with less

complexity than similar approaches (such as decision trees or random forest).

While we have discussed the interpretability of the clauses obtained by the proposed TM-based approach, we know discuss how the method

does not sacrifice performance for the sake of interpretability. In order to compare with existing methods, we use SVM (RBF kernel), Random For-

est (RF), Gaussian Naive Bayes (NB), and CNN-LSTM. While the first three are vanilla methods, we include CNN-LSTM to compare our work with

an ensemble neural network model as well. Standard Python implementations with Scikit-Learn and Keras were employed. For the CNN-LSTM

model, we used a one-dimensional Convolutional layer of filter size 64 with MaxPooling, and a unidirectional LSTM layer of output size 100, along

with a dense layer with sigmoid activation. In the case of the random forest classifier, we used 100 trees with a maximum depth of two. Table 3

records the accuracy obtained by the proposed TM-based classifier on both datasets, in comparison to those by other algorithms as the baseline.

The algorithms chosen for comparison are generally regarded as sufficient for the kinds of NLP tasks that we have shown in our experiments.

Complex applications, for example, domain-specific tasks, may often need specialized approaches, including, but not limited to, pre-training, multi-

ple models targeting specific aspects of the task, domain-dependent language models, and so forth. In this work, we wish to highlight the inter-

pretability of the TA/TM paradigm, so we have chosen generalized methods rather than specialized ones. However, to ensure we do not end up

with only a simplistic comparison in terms of accuracy, we also use the CNN-LSTM ensemble, to show that the TM performs at par with methods

that are more complex as well.

Table 4 reports the average time to train taken by the TM versus CNN-LSTM and SVM on the three datasets, with the TM and CNN-LSTM

each being trained over 100 epochs, in a multi-threaded DGX2 setup. The TM based architecture consistently trains faster compared to other

methods.

In conclusion, our findings suggest that the TM-based approach produces results comparable to other standard text classification methodolo-

gies, and has comparable training times to neural networks.

TABLE 3 Comparing results of Tsetlin Machine-based classifier versus baseline approaches on SemEval-2010 task 8 data, Sentiment140 data
and multi-turn dialogue data

Data Tsetlin Machine SVM RF NB CNN-LSTM

SemEval:CE 93.5 92.3 86.3 86.9 87.11

SemEval:IA 95.1 94.0 91.9 89.9 93.2

SemEval:PP 92.5 90.7 89.8 86.3 91.13

SemEval:CC 91.6 96.23 90.4 90.7 92.89

SemEval:EO 92.75 91.6 87.4 86.5 90.45

SemEval:ED 92.5 94.5 89.3 88.8 88.4

SemEval:CW 89.75 87.8 86.3 85.9 90.37

SemEval:MC 92.75 91.1 88.4 86.8 91.02

SemEval:MT 93.3 92.2 89.1 86.4 92.02

SemEval:All 50.20 44.9 29.05 39.9 46.7

Sentiment140 69.4 69.7 62.52 60.5 49.9

Dialogue:Location 91.49 94.9 61.85 62.38 60.89

Dialogue:Weekly Time 91.07 90.2 86.40 69.21 82.70

Dialogue:Weather Attr. 91.39 90.48 64.43 64.50 66.82

Note: Best results for each dataset appear in bold.
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6 | FUTURE WORK

We aim to continue this work, focusing on exploring further, how a feature set enriched by grammatical and semantic information (as in

(Hendrickx et al., 2009)) can affect the performance of our currently proposed approach. We also plan to experimentally investigate the suitability

of the convolutional TM architecture (Granmo et al., 2019) specifically for NLP applications, by making good on its promise of producing clauses

that are even more informative. Further discussion and research are also required for the obtained clauses themselves. Making them more and

more human-interpretable, while still being informative and concise, is a viable (and unexplored) avenue of research.

The propositional clauses constructed by a TM contribute both to a global and local understanding of the job and any propositional formula

can be expressed by using the disjunctive normal form. Further work on Tsetlin machines aims to increase its computing power even further by

employing first-order logic. The success achieved in correctly identifying various relations present in the text, as elaborated in this work, lays the

ground work for the proposed expansion. Text in natural language is reduced to its constituent relations. This allows the TM to focus on under-

standing and learning in terms of consequences of interactions between the relations (rather than interactions between individual words),

resulting in learning that closely mimic real-world occurrences. Furthermore, we also plan to take advantage of the observation noted in Section 5,

with respect to the increase in accuracy when using a generalized token, rather than individual named entities. Initial experiments, which are

beyond the scope of discussion of the current work, indicate that the usage of such generalized entities hand-in-hand with a relational approach

lends itself extremely well to the TM paradigm, and increases its expressiveness. The resulting Relational TM (Saha et al., 2021) is expected to

have a wider range of applications on NLP tasks, by taking advantage of logical structures that occur in natural language in order to encode rules

representing actions and effects in the form of Horn clauses.

7 | CONCLUSION

In this work, we propose the usage of an interpretable TM-based approach to text categorization. Interpretability is provided by the clauses that

the TM identifies during learning and uses for making the categorization decision. The linguistic structures evident in the clauses are sufficiently

similar to those arrived at by human experts, thus ensuring that the success of the model is not merely based on statistical findings that are

unrelated to the language itself. We conclude that we can get an all-round view of the learning and decision process due to the clauses: analysing

all the clauses together as a whole gives us a global description of the task during training, while analysis of clauses that are activated for a single

test sample gives a local description of that particular sample. Because of the multi-faceted view afforded by the TM-based approach, we believe

that researchers may be able to use such methods to achieve an in-depth understanding of the data and the task, especially in situations where

subject experts may be unavailable. Not only do Tsetlin machines allow for a degree of transparency in the decision making process, which is diffi-

cult to obtain in more conventional methods, they are also shown to perform at par with baseline approaches, both in terms of accuracy and train-

ing time. Moreover, the interpretability of the learning process enables effective triage for future betterment, even in a scenario where the

current iteration of the model makes a mistake. Further enhancements to the approach, including provisions for a relational framework, show

promising results in moving closer to real-world understanding from natural language texts.

In conclusion, our novel approach to various text categorization tasks using a TM based system shows promising interpretable results. We

believe that further studies into more varied NLP tasks (sequence labelling, entity resolution, question answering) can highlight the power of the

approach, and pave the way for more interpretable NLP by artificially intelligent systems.

ENDNOTES
1 Note that the probability s�1

s is replaced by 1 when boosting true positives.
2 Python implementation of TM based classifier: code retrieved from https://github.com/cair/pyTsetlinMachine.
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