
electronics

Article

A Velocity Estimation Technique for a Monocular Camera Using
mmWave FMCW Radars

Aarav Pandya 1,2 , Ajit Jha 3 and Linga Reddy Cenkeramaddi 4,*

����������
�������

Citation: Pandya, A.; Jha, A.;

Cenkeramaddi, L.R. A Velocity

Estimation Technique for a

Monocular Camera Using mmWave

FMCW Radars. Electronics 2021, 10,

2397. https://doi.org/10.3390/

electronics10192397

Academic Editor: Massimiliano

Pieraccini

Received: 24 August 2021

Accepted: 23 September 2021

Published: 30 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Engineer at Deloitte USI, Jamnagar 361001, India; pandya.aarav.97@gmail.com
2 Visiting Researcher at Department of ICT, University of Agder, 4879 Grimstad, Norway
3 Department of Engineering Sciences, University of Agder, 4879 Grimstad, Norway; ajit.jha@uia.no
4 Department of ICT, University of Agder, 4879 Grimstad, Norway
* Correspondence: linga.cenkeramaddi@uia.no

Abstract: Perception in terms of object detection, classification, and dynamic estimation (position
and velocity) are fundamental functionalities that autonomous agents (unmanned ground vehicles,
unmanned aerial vehicles, or robots) have to navigate safely and autonomously. To date, various
sensors have been used individually or in combination to achieve this goal. In this paper, we present
a novel method for leveraging millimeter wave radar’s (mmW radar’s) ability to accurately measure
position and velocity in order to improve and optimize velocity estimation using a monocular camera
(using optical flow) and machine learning techniques. The proposed method eliminates ambiguity in
optical flow velocity estimation when the object of interest is at the edge of the frame or far away from
the camera without requiring camera–radar calibration. Moreover, algorithms of various complexity
were implemented using custom dataset, and each of them successfully detected the object and
estimated its velocity accurately and independently of the object’s distance and location in frame.
Here, we present a complete implementation of camera–mmW radar late feature fusion to improve
the camera’s velocity estimation performance. It includes setup design, data acquisition, dataset
development, and finally, implementing a lightweight ML model that successfully maps the mmW
radar features to the camera, allowing it to perceive and estimate the dynamics of a target object
without any calibration.

Keywords: velocity estimation; optical flow; monocular camera; autonomous systems; mmWave
radar

1. Introduction

Autonomous vehicles require data about the environment to make decisions for safer
navigation. They use scene perception to estimate and predict the positions, velocities, and
nature of objects, and their relationships with each other. For this purpose, different sensors,
such as cameras, radar, lidar, and ultrasound are used individually to extract the relevant
features from a scene [1]. This process is generally known as simultaneous localization
and mapping (SLAM). The goal is to have the scene/environment represented in a format
which could be fed into an end to end deep learning solution capable of estimating future
actions. Naturally, a better representation with more data will serve the deep learning
models best and improve their decision making accuracy.

A lidar system gives a 3D representation of a scene in the form of point clouds, but
they are expensive, bulky, and have a large form factor [2,3]. Further, the presentation of the
point clouds is not well suited for human perception, as a human cannot decipher obstacles
or commonplace objects from it very reliably. It is difficult to analyze the data and the key
points that the machine bases its decisions on. In addition, extracting the velocities and
real-time poses of the targets computationally is very intensive, which can cause significant
latency. A camera, on the other hand, gives better visual representations of most scenes,
due to the latest advancements in object detection and classification, along with its fusion

Electronics 2021, 10, 2397. https://doi.org/10.3390/electronics10192397 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3103-1147
https://orcid.org/0000-0003-1435-9260
https://orcid.org/0000-0002-1023-2118
https://doi.org/10.3390/electronics10192397
https://doi.org/10.3390/electronics10192397
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10192397
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10192397?type=check_update&version=2


Electronics 2021, 10, 2397 2 of 13

with lidar [4,5]. Many efforts have been made to acquire environment data without the
use of lidars and radars. The methods in [6,7] used stereo cameras and proper calibration
to estimate the distance of a target object. Using a monocular (single) camera, approaches
based on optical flow have been used to estimate the velocity of a target object [8]. Recently,
millimeter wave radar (mmW radar) has been considered one of the suitable candidates for
capturing the dynamics of an object in terms of speed, longitudinal distance, and direction
of travel [1]. However, they have limited fields of view (FOV), which limits their utility
for perception.

Autonomous cars generally have multiple cameras to get a full 360 degree view of
the surroundings. Interspersed with them are range detecting devices, such as radar and
lidar. Some work has already been done to use cameras for range and velocity finding. For
example, ref. [9] is one of the earliest examples of camera calibration. Reference [10] went
on to show robust calibration for a multi-camera rig. Additionally, Several approaches
based on camera–radar fusion are used for perception and estimating the dynamics of
objects [11,12]. However, they require calibration, and slight changes in some of the
parameters of either of them will cause the system to fail to work. This is not suitable
for the case where the parameters have to be tuned and/or the spatial location of either
camera or radar detector has to be changed. Autonomous vehicles, or drones, are moving
equipment with constantly changing lighting and environment. Existing methodologies
do not work with monocular cameras, as they require environmental details to correlate
their pixel velocities with real world velocities.

To mitigate the above problems, in this paper, we present a novel method using
camera–radar setup to map the object’s velocity measured by narrow FOV mmw radar to
optimize and enhance the velocity estimated by wide FOV monocular camera employing
various machine learning (ML) techniques. We exploit individual sensors’ strengths, i.e., a
camera’s wide FOV (as compared to radar’s narrow FOV) and radar’s accurate velocity
measurement (compared to a camera’s not accurate estimation of velocity at the edge
of frame or at the larger distances using optical flow) to fuse them in such a way that a
single monocular camera can detect an object and estimate the velocity accurately, thereby
increasing its performance, which otherwise would not have been possible. Further, we
also introduce a dataset of live traffic videos captured using a monocular camera labeled
with mmW radar. The novelties of our work are listed below.

• Our system maps the position and velocity measured by mmW radar to optimize and
enhance the velocity measured by a monocular camera using optical flow and various
ML techniques. This serves two purposes. Firstly, the mmW radar measurement
together with a ML model enhances the measurement from the camera (using optical
flow). Secondly, the enhanced function of converting optical flow values to speed
permits one to generalize over other objects not detected by radar.

• The proposed method does not require camera–radar calibration as in [13,14], making
the setup ad hoc, simple, reliable, and adaptive.

• The ML model used here is lightweight, and eliminates the need for depth estimation,
as in [8], to estimate the velocity.

We first discuss the related work in the field. We show the different approaches taken
to solve the problem and present the problem statement. We then describe the dataset and
how we created it. Then we give three machine learning based algorithms with increasing
complexity that satisfy the hypothesis.

This article is organized into the following sections{

• Section 2. Related Work: Discussion on the related and existing work in the field.
• Section 3. Solution Approaches: Elucidating the approaches taken for solving the

problem statement.

– Section 3.1. Dataset Description: We show how we generated a dataset for the
problem statement.



Electronics 2021, 10, 2397 3 of 13

– Section 3.2. Dataset Format: We describe the format of the dataset for the purpose
of reuse.

– Section 3.3. Post-Processing: We describe the post-processing applied to the raw
captured dataset.

– Section 3.4. Hypothesis: We show a simple working model to motivate more
complex solutions.

– Section 3.5. Convolutional network: We show a working model with a simple
convolutional neural network.

– Section 3.6. Regression: We show that it is possible to predict speeds using linear
regression.

– Section 3.7. Yolo (You Only Look Once): We combine the convolution and
regression methods into a single method to finally give a model capable of
predicting bounding boxes and speeds.

• Section 4. Results and Discussion: We summarize the results from our different
models and compare them with the related work.

• Section 5. Conclusion: We conclude the article and provide some future research areas.

2. Related Work

There is much work done in this field using a combination of radar, lidar, and stereo
cameras. Most commonly, stereo cameras are used, which mimic the human eye system to
predict depth. Tracking objects in a depth map allows us to extract velocity information.
Some solutions use the intrinsic property of cameras, which involves translation of camera
coordinates to the real world. This works by transforming optical flow displacement
vectors to real-world displacement vectors and then using the simple speed formula to
determine the speed. Another way is to determine the geometry of the environment and
use it to understand scene. For, example, [13] used the known height and angle of the
camera to understand the environment and calculated speed using the distance traveled by
a car. They detected the license plate’s corner points to track the car, which adds another
limitation, as cars can only be tracked with the license plate in view. The implementation
in [15] was very similar and suffers from the same drawbacks. Camera calibration to
transform pixel displacement vectors to real world object displacement vectors has also
been used by [16]. A similar method was proposed in [17], where first a camera is auto-
calibrated on a road, and then a transformation, as above, is used to predict vehicle speeds.
However, again, the method requires calibration based on features of roads. The approach
in [18] uses optical flow, but still relies on the distance of the car from the driveway line
and other road features. Reference [19] also presented a method that works along the same
lines. Reference [20] presented a method that uses color calibration to detect cars and then
uses the angle of a fixed camera to translate pixel velocities to real world velocities. Camera
properties are can also be used for transformation based prediction, as in [14].

Similarly, some points of interest in the footage can be compared with already available
maps or images to estimate displacement [21]. One study [22] involved tracking license
plates from a camera with known parameters. Another [23] involved a similar method but
with two cameras. Their goal was to use wide-beam radars with cameras to reduce speed
prediction errors. The study presented in reference [24] used the projective transformation
method to generate top-down views from CCTV cameras to predict the motion of vehicles.
They used background subtraction to remove background information and only focused
on the roads. The study presented in reference [25] also used background subtraction and
obtained real world coordinates of the car. After comparing two frames, and knowing the
real world distance and time in between frames, they could predict the speed of a car. The
study presented in [26] also used a similar method. The study presented in [27] used the
track lines form roads to estimate speed information. The study presented in [28] used
uncalibrated cameras; however, they used known vehicle length.

However, all of these approaches need some extra information regarding the environ-
ment, intrinsic properties of a camera, or some pre-processed result.



Electronics 2021, 10, 2397 4 of 13

An end-to-end deep learning system has also been suggested [8]. It uses established
networks such as DepthNet [29] and FlowNet [30] to get depth estimates of the object. The
features are combined and passed through a dense network to obtain velocity. Our ap-
proach differs by suggesting a much simpler feature extractor compared to the complexity
of FlowNet and DepthNet. We show that it is possible to obtain velocity directly from
optical flow without depth information.

The study presented in [31] used a similar approach to our approach. They predicted
velocities for relative vehicles in front of a camera mounted on a moving vehicle. They
used dense optical flow combined with tracking information in a long term recurrent
neural network. In the end, the system output velocity and position output relative to the
ego-vehicle.

We analyzed the requirements of the above methods and proposed a solution to
eliminate them. Our solution involves only a single camera and removes the need for prior
known information about the environment.

Radar and lidar systems are active photo emitting devices capable of estimating the
depth and thus the velocity of any object they come across. While radar systems are
incredibly limited in FOV, lidar systems are fairly expensive. We define the problem as,
“Can we predict an object’s velocity with a single camera in real-time with little computation
cost?”

We define a use case scenario for this problem as follows. A car with a radar sensor
facing to its front is used to continuously feed ground truth values for objects in its FOV to
train a machine learning model for a monocular camera that has a larger FOV. We can use
such a system to predict speed for objects as long as a camera can see them.

3. Solution Approaches
3.1. Dataset Description

To test our hypothesis, we recorded a sequence of video captured on a busy road. The
videos recorded are roughly 3 h long and provide us with many examples of prediction
scenarios. Most common are cars moving in a single direction (towards and away from the
camera/radar setup). We also have examples of multiple vehicles in the scene, moving in
opposite directions and overlapping each other for a brief period. Adding more complexity,
we have different classes of vehicles, including cars, trucks, a bus, and even motorcycles.
The camera used was a PiCamera V2 at 1920 × 1080 30 FPS. The format of the videos
is H264. The radar used was Texas Instrument’s 1843 mmWave Radar module. The
parameters used for radar configuration are mentioned in Table 1 (see Figure 1). We
attached the camera over the radar to ensure a similar center of FOV. The FOV can be
seen in Figure 1B along with the radar (red board) with the camera attached on top of it
connected to a Raspberry Pi 3 (Figure 1C, green board), which started camera and radar
capturing synchronously. The Pi and Radar were powered by a portable power bank.
A laptop was used to monitor and interact with Pi over SSH. Start times and end times
were logged along with the capture rate to correlate frames from each device. We let the
infrastructure record independently and used the timing and rate information to overlap
them later.

The devices were kept at a roughly 45 degrees angle to the road to get a greater view of
the road. The FOV can be seen in the image given. Having an angle also gave us a contrast
between cars near and far away from the setup. Vehicles near such an apparatus will record
the same velocity on the radar as those far away but be detected multiple times as the
cross-sectional areas increase. Similarly, as the area of a car per image area increases, more
pixels are moving, and hence there will be a higher value of optical flow. Such contrasts
are needed for the machine learning solutions to learn how to predict when a vehicle’s
distance is different from what the recording apparatus assumes.

The radar was configured for the best velocity calculation with about 1.5 m2 of cross-
sectional area.



Electronics 2021, 10, 2397 5 of 13

3.2. Dataset Format

The dataset is provided using TensorFlow’s TFRecord format, which stores data in
Google’s protocol buffers format. Each row has a Frame ID and a Video ID to locate a frame
in a particular video. They are accompanied by a raw image and an optical flow image,
which are both encoded in Byte String. Raw Image is just the plain frame from the video.
An optical flow image is an image generated by converting optical flow vectors into the
HSV space. Specifically, the magnitude (or pixel speed) is encoded in V, and the direction
in a polar form is encoded in H. This gives a result as follows, where the color indicates the
direction of the car, and the intensity of the color denotes the magnitude of displacement.
A sample optical flow image is shown in Figure 2. The dataset is downloadable from [32].
Table 2 can be used to create a TFRecord reader to read the dataset.

Figure 1. Experimental setup. In clockwise order: (A) Lateral view of the setup. (B) FOV from the
camera. (C) Top down view of the setup.

Table 1. Parameters used for the 1843 mmWave Radar Module.

Parameter Value

Operating Frequency 77 GHz

Azimuth Resolution 15 deg.

Range Resolution 0.977 m

Maximum Unambiguous Range 50 m

Maximum Radial Velocity 23.03 m/s

Radial Velocity Resolution 2.89 m/s

Frame duration 33.333 ms

Range Detection Threshold 15 dB

Doppler Detection Threshold 15 dB

SDK Version 3.2



Electronics 2021, 10, 2397 6 of 13

3.3. Post-Processing

The objects in the video and radar were matched using a combination of methods.
Firstly, each frame in the video and radar was timestamped. It then became a particular case
of the bipartite matching problem. It should be noted that radar and camera had different
frame rates. Frames from both the devices were timestamped using the recorded timing
information, and frames with negligible time differences were matched. In the second
step, the you only look once (YOLO) algorithm [33] was used to find bounding boxes for
the cars in the FOV alongside dense optical flow using the Farneback algorithm [34]. The
vehicles were either moving towards the recording apparatus or away from it, allowing for
segregation of objects according to their motion directions using optical flow and radar
velocities. In the third step, the segregated objects were assigned their corresponding
speeds by running a k-means algorithm with the number of centroids as the number of
bounding boxes. The k-means algorithm used a distance function of L2 norm between (x,y)
coordinates of objects and velocities. Our dataset statistics are shown in Table 3.

Figure 2. A sample optical flow image.

Table 2. Features of the dataset.

Feature Description Data Type

Frame Index Frame order from Video Int64

VideoId Video Identifier Int64

RawImage Original Frame Byte String

OpticalFlowImage Optical flow of n− 1th and nth frame Byte String

Xmin List of min x coordinates for BBOX Float32 List

Xmax List of max x coordinates for BBOX Float32 List

Ymin List of min y coordinates for BBOX Float32 List

Ymax List of max x coordinates for BBOX Float32 List

V List of ground truth speeds for each BBOX Float32 List

Table 3. Statistics of the datasest.

Metric Value

Sample Count 1815

Velocity range 0.00–17.50 m/s

Mean Velocities across dataset 10.80 m/s

Standard deviation of velocities across dataset 3.81



Electronics 2021, 10, 2397 7 of 13

3.4. Hypothesis

To start with a simple, provable solution, we drove a car back and forth in front of the
apparatus. Naturally, the reversing speeds were much lower than the other. We plotted
the overlap of the optical flow with radar-measured speeds. To compare them, we used
frames as time measurement unit. The optical flow speeds were calculated by taking the
differences between the previous and current frames. Thus, the radar frames had to be
adjusted. Recall that the radar captured at different frame rate than camera. However, with
the start time and rate, we could adjust them to the same time scale. The plot is shown in
Figure 3.

Figure 3. Plot of optical flow values overlapped with radar speeds against time in frames.

High peaks of optical flow depict the car’s motion towards the apparatus and the
low peaks depict the reversing. It is clear that optical flow is very sensitive to car speeds,
especially when the object is near to it.

3.5. Convolutional Network

Before creating a final neural network, we first created a proof of concept convolutional
network. We wanted to prove that it is possible to predict the speed of a vehicle using
regression alone. Additionally, we note that a car will have high optical flow values near
the center of an image and low values as it moves towards the edge of an image. The
reason is simple and relates to how optical flow is calculated. Optical flow measures the
displacement of pixels between two frames, and given the time difference between the two
frames, one could interpret these values as pixels/time. Due to the camera angle, a car will
have more pixel displacement near the center of the FOV than at the edge. Therefore, we
need to take into account the positions of the car and the optical flows. A convolutional
network uses spatial relations and thus is best suited to this task.

We created a simple convolution model (in Figure 4) with optical flow image input
in the HSV space and a single velocity output. We used HSV to visualize the optical flow
images. The intensity of color represents the magnitude of optical flow per pixel, and
the color itself represents the direction. We trained our model using an ADAM optimiser
with early stopping after 10 epochs if the loss did not improve. Our model was trained



Electronics 2021, 10, 2397 8 of 13

in about 250 epochs over multiple training cycles. On Google Colab using a GPU, each
training epoch took 2 s. Prediction of a frame could be performed in 0.2 ms. With a split of
80 –20, we observed convincing results with an RMSE, on average, of 2.3 across different
bags of the dataset shuffled using various seeds. Our hyper-parameters for the model are
mentioned in Table 4.

To increase the number of samples in the training dataset, each sample was aug-
mented with random scaling, clipping, and rotation at training time. Additionally, to keep
complexity in check, only the frames with single cars were considered and direction was
ignored.

Table 4. Convolutional network hyper-parameters.

Parameter Value

Optimizer Adam

Optimizer Parameters Default

Loss rmse

Early Stopping 10 epochs

Epochs 5000

Batch Size 64

Shuffle buffer size 200

Figure 4. CNN architecture.

3.6. Regression

To further prove that regression is a viable method, we tried to approach the problem
as a linear regression problem. The dataset was made table-like by converting optical
flow images to HSV, as described above, and taking means across H and V channels.
Averaging a cut-out of an optical flow image presents some problems, as many pixels have
a value near 0. One can imagine this for a door of a car. A car door is smooth with no
edges and will have no appreciable difference from pixel to pixel. Pixels in this position
will be essentially 0. This characteristic is not a problem for convolutions as they use
filter windows. To overcome this problem, we applied a filter and considered only pixels
with appreciable values. The pixel values can vary from 0 to 255, and we repeated our
experiments for different filter values, ranging from 10 to 30. Center positions of cars
were calculated from a parallel YOLO object detector. The features considered were the
H channel values, V channel values, center position X, and center position Y. They were
regressed against the ground truth velocities for each frame. The same augmentation
techniques were used for this method as well. We did not limit ourselves to a single car per
frame in this scenario.



Electronics 2021, 10, 2397 9 of 13

Microsoft’s open source Light Gradient Boosting Machine was used for estimation
[35]. We used the parameters in Table 5 for the training.

Table 5. Regression hyper-parameters.

Metric Value

Boosting type Gradient Boosting Decision Tree

Test Size 0.25

Learning Rate 0.003

Max depth 50

Number of leaves 100

epochs 5000

3.7. YOLO Like Network

To expand upon our convolutional network POC, we took an existing network known
for regression. YOLO is a very famous state-of-the-art method for object detection in images.
Our arhitecture using YOLO can be seen in Figure 5. We applied the same techniques
and network as YOLO with a minor change in the loss function. YOLO uses regression
from end to end to detect bounding box and then uses a soft-max function to classify the
boxes. We changed the soft-max to simple regression, converting the task of classification to
regression. Our network simultaneously predicts the bounding box and the corresponding
speed. The updated loss function is then:

λcoord ∑S2

i=0 ∑B
j=0 1obj

ij [(xi − x̂i)
2 + (yi − ŷi)

2]+

λcoord ∑S2

i=0 ∑B
j=0 1obj

ij [(
√

wi −
√

ŵi)
2 + (

√
hi −

√
ĥi)

2]+

λobj ∑S2

i=0 ∑B
j=0 1obj

ij (Ci − Ĉi)
2 + λnoobj ∑S2

i=0 ∑B
j=0 1obj

ij (Ci − Ĉi)
2+

λvel ∑S2

i=0 1obj
ij ((Vi − V̂i)

2)

(1)

where
λ = scaling parameter.
1obj

ij = Indicator function indicating that an object exists in ith cell

and jth bounding box
x, y, w, h = coordinates, height, and width of the bounding box.

There are some subtle differences from the original equation. Firstly, we have in-
troduced new scales to prioritize different aspects of loss (values of scales and hyper-
parameters are given in Table 6). Secondly, the soft-max of classes is converted to squared
error. Additionally, note the absence of summation over classes for velocity, as this model
can only detect one class of objects, which in this case is cars.

We used a pre-trained version of YOLO on the COCO dataset, taken from the author’s
website, as a starting point. The model was easily trained in 30 epochs. We only report the
velocity loss here for comparison and specificity.

To increase the sample size for neural networks, several data augmentation tricks
were utilized. First, images were resized to an input range. Second, a random scale was
selected, after which the images were stretched or cropped depending upon the size of the
new scale compared to the prior. The new aspect ratio varied from 0 to a factor of 0.3 on
both the axes. Thirdly, using a 0.50 probability, the images were flipped. These operations
were performed simultaneously on the images and the bounding boxes to preserve the
relationship.



Electronics 2021, 10, 2397 10 of 13

Table 6. YOLO network hyper-parameters.

Parameter Value

Optimizer Adam

Optimizer Parameters Default

Loss Custom

Input Image size range 288–480 (chosen randomly)

Number of Anchors 9 (3 per scale)

Non Max Suppression Threshold 0.5

λcoord 1

λobj 2

λnoobj 1

λvel 1

Shuffle buffer size 200

Figure 5. Yolo flow diagram.

4. Results and Discussion

Here we show a proof of concept using the convolutional network of a fast and
straightforward neural network. We took this approach to the next level by using YOLO,
which provided very similar results to other methods. We report only the class loss—in our
case, the vehicle’s speed—as bounding box loss is irrelevant to the discussion. Our YOLO
implementation had some inaccuracies in bounding box predictions, but we chalk that up
to less training time and a low number of samples.

In summary, we were able to achieve error of approximately 0.93 RMSE using a YOLO-
based estimator. Using a simple convolutional network and regression model, we were
able to get averages of 1.93 and 2.30 RMSE, respectively. It was expected that the YOLO-
based estimator would perform better, as it is more complex and has more parameters.
Comparisons with other approaches are difficult, as not everyone reports their errors using
the same units. Additionally, datasets used in other approaches are not readily available or
do not apply to our method. Therefore, we cannot directly compare our results with other
approaches, as the dataset and conditions were different for each; we still compare the loss
values observed to give context to our results in Table 7. Only the directly comparative
approach by [8] was fairly accurate, albeit with a big architecture taking into account a
separate measurement of depth. We can see that our proposed method resulted in slightly



Electronics 2021, 10, 2397 11 of 13

less loss, which can be explained by the usage of different datasets. No definite conclusion
can be drawn about which method works better.

Finally, we have a lightweight object detection model that works with a single camera.
It can detect vehicles and classify their velocities in real-time without any calibration or
environmental information. Compared to the approaches in Section 2, our approach is
quite simple and straightforward to implement, without depending on any environmental
or background information. Additionally, given the large FOV of camera, it is capable of
detecting and classifying more objects than radar, as it only depends upon the optical flow
of the object.

Table 7. Results.

Method Loss (RMSE)

Regression (LGBM) 1.93

Convolutional network 2.30

YOLO like network 0.93394979

Flownet + Depthnet [8] 1.12

Environment geometry using input heights [15] 0.7 percent

Environment geometry using estimated heights [15] 1.4 percent

Imaging System Geometry [13] 1.32 MAE

Using real world context [21] 0.625

5. Conclusions

We presented a dataset for predicting vehicle speed, and then demonstrated the
feasibility of predicting vehicle speed via a monocular camera, without the use of any
environmental geometry or camera properties.

Our proposed models can be used in autonomous vehicles that are heavily dependent
on vision. Cameras can help cheapen the costs of the vehicles, as they are relatively inex-
pensive compared to radars and lidars. The complexity is also decreased, as configuration
of the cameras is not required, whereas light projecting devices do require configuration.
Cameras offer advantages such as increased FOV, human understandable information, and
easy setup. Hence, a fusion model such as this can be used with fewer radar detectors and
more cameras to achieve same or better results in scene understanding. The ML model itself
can be embedded into larger artificial intelligence models to achieve scene understanding
of the car’s surroundings.

For further research, we can add the class pedestrians to the dataset. It is a challenging
problem on its own because of the low walking speed of humans, the opposite motions of
parts of body (such as arms swinging in the opposite directions to those of legs), and an
surface area for the radar to detect. In addition, the models proposed can be implemented
as part of online learning. To deal with changing lighting conditions, the models can be
retrained periodically with small training samples.

Author Contributions: Conceptualization, A.P., and L.R.C.; data curation, A.P., A.J., L.R.C.; formal
analysis, A.P., A.J., L.R.C.; methodology, A.P., A.J., L.R.C.; writing—original draft, A.P., A.J., L.R.C.;
writing—review and editing, A.P. and L.R.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was partly supported by the INCAPS project: 287918 of INTPART program
from the Research Council of Norway and the Low-Altitude UAV Communication and Tracking
(LUCAT) project: 280835 of the IKTPLUSS program from the Research Council of Norway.

Data Availability Statement: The detailed data set is available at https://github.com/aaravpandya/
Vehicle-Speed-Radar-Dataset (accessed on 24 August 2021).

https://github.com/aaravpandya/Vehicle-Speed-Radar-Dataset
https://github.com/aaravpandya/Vehicle-Speed-Radar-Dataset


Electronics 2021, 10, 2397 12 of 13

Acknowledgments: This work was supported by the Indo-Norwegian Collaboration in the Au-
tonomous Cyber-Physical Systems (INCAPS) project: 287918 of the INTPART program and the
Low-Altitude UAV Communication and Tracking (LUCAT) project: 280835 of the IKTPLUSS pro-
gram from the Research Council of Norway.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Reddy Cenkeramaddi, L.; Bhatia, J.; Jha, A.; Kumar Vishkarma, S.; Soumya, J. A Survey on Sensors for Autonomous Systems. In

Proceedings of the 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 9–13
November 2020; pp. 1182–1187. [CrossRef]

2. Wu, Y.; Wang, Y.; Zhang, S.; Ogai, H. Deep 3D Object Detection Networks Using LiDAR Data: A Review. IEEE Sens. J. 2021,
21, 1152–1171; [CrossRef]

3. Rausch, M.; Feher, G. Stationary LIDAR Sensors for Indoor Quadcopter Localization. In Proceedings of the 2020 IEEE SENSORS,
Virtual, 23–26 March 2020; pp. 1–4. [CrossRef]

4. Sun, C.C.; Wang, Y.H.; Sheu, M.H. Fast Motion Object Detection Algorithm Using Complementary Depth Image on an RGB-D
Camera. IEEE Sens. J. 2017, 17, 5728–5734. [CrossRef]

5. Zhao, X.; Sun, P.; Xu, Z.; Min, H.; Yu, H. Fusion of 3D LIDAR and Camera Data for Object Detection in Autonomous Vehicle
Applications. IEEE Sens. J. 2020, 20, 4901–4913. [CrossRef]

6. Rahul; Nair, B.B. Camera-Based Object Detection, Identification and Distance Estimation. In Proceedings of the 2018 2nd Interna-
tional Conference on Micro-Electronics and Telecommunication Engineering (ICMETE), Ghaziabad, India, 20–21 September 2018;
pp. 203–205. [CrossRef]

7. Najman, P.; Zemčík, P. Vehicle Speed Measurement Using Stereo Camera Pair. IEEE Trans. Intell. Transp. Syst. 2020, 1–9,
[CrossRef]

8. Kampelmühler, M.; Müller, M.G.; Feichtenhofer, C. Camera-based vehicle velocity estimation from monocular video. arXiv 2018,
arXiv:1802.07094.

9. Heikkila, J.; Silven, O. A four-step camera calibration procedure with implicit image correction. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 1997; pp. 1106–1112.
[CrossRef]

10. Heng, L.; Furgale, P.; Pollefeys, M. Leveraging Image-Based Localization for Infrastructure-Based Calibration of a Multi-Camera
Rig. J. Field Robot. 2015, 32, 775–802. [CrossRef]

11. Bai, J.; Li, S.; Huang, L.; Chen, H. Robust Detection and Tracking Method for Moving Object Based on Radar and Camera Data
Fusion. IEEE Sens. J. 2021, 21, 10761–10774. [CrossRef]

12. Nobis, F.; Geisslinger, M.; Weber, M.; Betz, J.; Lienkamp, M. A Deep Learning-based Radar and Camera Sensor Fusion Architecture
for Object Detection. In Proceedings of the 2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, Germany,
15–17 October 2019; pp. 1–7. [CrossRef]

13. Vakili, E.; Shoaran, M.; Sarmadi, M.R. Single—Camera vehicle speed measurement using the geometry of the imaging system.
Multimed. Tools Appl. 2020, 79, 19307–19327. [CrossRef]

14. Do, V.H.; Nghiem, L.H.; Pham Thi, N.; Pham Ngoc, N. A simple camera calibration method for vehicle velocity estimation. In
Proceedings of the 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON), Hua Hin, Thailand, 24–26 June 2015; pp. 1–5. [CrossRef]

15. Wu, W.; Kozitsky, V.; Hoover, M.; Loce, R.; Jackson, D. Vehicle speed estimation using a monocular camera. Proc. Spie Int. Soc.
Opt. Eng. 2015, 9407, 940704. [CrossRef]

16. Temiz, M.S.; Kulur, S.; Dogan, S. Real time speed estimation from monocular video. Int. Arch. Photogramm. Remote Sens. Spat. Inf.
Sci. 2012, 39, 427–432. [CrossRef]

17. Wu, J.; Liu, Z.; Li, J.; Gu, C.; Si, M.; Tan, F. An algorithm for automatic vehicle speed detection using video camera. In Proceedings
of the 2009 4th International Conference on Computer Science Education, Nanning, China, 25–28 July 2009; pp. 193–196.
[CrossRef]

18. Haiying, X.; Zaiming, L. A Velocity Measuring System for Vehicle with Camera. In Proceedings of the 2006 6th International
Conference on ITS Telecommunications, Chengdu, China, 21–23 June 2006; pp. 1204–1207. [CrossRef]

19. Cathey, F.; Dailey, D. A novel technique to dynamically measure vehicle speed using uncalibrated roadway cameras. In
Proceedings of the IEEE Proceedings. Intelligent Vehicles Symposium, Las Vegas, NV, USA, 6–8 June 2005; pp. 777–782.
[CrossRef]

20. Dehghani, A.; Pourmohammad, A. Single camera vehicles speed measurement. In Proceedings of the 2013 8th Iranian Conference
on Machine Vision and Image Processing (MVIP), Zanjan, Iran, 10–12 September 2013; pp. 190–193. [CrossRef]

21. Bell, D.; Xiao, W.; James, P. Accurate vehicle speed estimation from monocular camera footage. ISPRS Ann. Photogramm. Remote
Sens. Spat. Inf. Sci. 2020, V-2-2020, 419–426. [CrossRef]

22. Lukic, V.Z.; Makarov, A.; Tao, G.; Choubey, B. Vehicle speed estimation from tracking license plates. In Proceedings of the 2015
23rd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 24–26 November 2015; pp. 429–432. [CrossRef]

http://doi.org/10.1109/ICIEA48937.2020.9248282
http://dx.doi.org/10.1109/JSEN.2020.3020626
http://dx.doi.org/10.1109/SENSORS47125.2020.9278591
http://dx.doi.org/10.1109/JSEN.2017.2723599
http://dx.doi.org/10.1109/JSEN.2020.2966034
http://dx.doi.org/10.1109/ICMETE.2018.00052.
http://dx.doi.org/10.1109/TITS.2020.3035262
http://dx.doi.org/10.1109/CVPR.1997.609468
http://dx.doi.org/10.1002/rob.21540
http://dx.doi.org/10.1109/JSEN.2021.3049449
http://dx.doi.org/10.1109/SDF.2019.8916629
http://dx.doi.org/10.1007/s11042-020-08761-5
http://dx.doi.org/10.1109/ECTICon.2015.7207027
http://dx.doi.org/10.1117/12.2083394
http://dx.doi.org/10.5194/isprsarchives-XXXIX-B3-427-2012
http://dx.doi.org/10.1109/ICCSE.2009.5228496
http://dx.doi.org/10.1109/ITST.2006.288842
http://dx.doi.org/10.1109/IVS.2005.1505199
http://dx.doi.org/10.1109/IranianMVIP.2013.6779976
http://dx.doi.org/10.5194/isprs-annals-V-2-2020-419-2020
http://dx.doi.org/10.1109/TELFOR.2015.7377499


Electronics 2021, 10, 2397 13 of 13

23. Llorca, D.F.; Salinas, C.; Jiménez, M.; Parra, I.; Morcillo, A.G.; Izquierdo, R.; Lorenzo, J.; Sotelo, M.A. Two-camera based accurate
vehicle speed measurement using average speed at a fixed point. In Proceedings of the 2016 IEEE 19th International Conference
on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; pp. 2533–2538. [CrossRef]

24. Kurniawan, A.; Ramadlan, A.; Yuniarno, E.M. Speed Monitoring for Multiple Vehicle Using Closed Circuit Television (CCTV)
Camera. In Proceedings of the 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia
(CENIM), Surabaya, Indonesia, 26–27 November 2018; pp. 88–93. [CrossRef]

25. Zhiwei, H.; Yuanyuan, L.; Xueyi, Y. Models of Vehicle Speeds Measurement with a Single Camera. In Proceedings of the 2007
International Conference on Computational Intelligence and Security Workshops (CISW 2007), Harbin, China, 15–19 December
2007; pp. 283–286. [CrossRef]

26. Rahim, H.A.; Ahmad, R.B.; Zain, A.S.M.; Sheikh, U.U. An adapted point based tracking for vehicle speed estimation in linear
spacing. In Proceedings of the International Conference on Computer and Communication Engineering (ICCCE’10), Kuala
Lumpur, Malaysia, 11–13 May 2010; pp. 1–4. [CrossRef]

27. Wang, C.; Musaev, A. Preliminary Research on Vehicle Speed Detection using Traffic Cameras. In Proceedings of the 2019 IEEE
International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 3820–3823. [CrossRef]

28. Dailey, D.; Li, L. An algorithm to estimate vehicle speed using uncalibrated cameras. In Proceedings of the 1999 IEEE/IEEJ/JSAI
International Conference on Intelligent Transportation Systems (Cat. No.99TH8383), Tokyo, Japan, 5–8 October 1999; pp. 441–446.
[CrossRef]

29. Godard, C.; Aodha, O.M.; Brostow, G.J. Unsupervised Monocular Depth Estimation with Left-Right Consistency. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 270–279.

30. Fischer, P.; Dosovitskiy, A.; Ilg, E.; Häusser, P.; Hazirbas, C.; Golkov, V.; van der Smagt, P.; Cremers, D.; Brox, T. FlowNet: Learning
Optical Flow with Convolutional Networks. arXiv 2015, arXiv:1504.06852.

31. Jain, D.K.; Jain, R.; Cai, L.; Gupta, M.; Upadhyay, Y. Relative Vehicle Velocity Estimation Using Monocular Video Stream. In
Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.
[CrossRef]

32. Pandya, A. Vehicle-Speed-Radar-Dataset. 2021. Available online: https://github.com/aaravpandya/Vehicle-Speed-Radar-
Dataset (accessed on 24 August 2021).

33. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
34. Farnebäck, G. Two-Frame Motion Estimation Based on Polynomial Expansion. In Scandinavian Conference on IMAGE Analysis;

Springer: Berlin/Heidelberg, Germany, 2003; Volume 2749, pp. 363–370. [CrossRef]
35. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A Highly Efficient Gradient Boosting Decision

Tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154.

http://dx.doi.org/10.1109/ITSC.2016.7795963
http://dx.doi.org/10.1109/CENIM.2018.8710854
http://dx.doi.org/10.1109/CISW.2007.4425492
http://dx.doi.org/10.1109/ICCCE.2010.5556812
http://dx.doi.org/10.1109/BigData47090.2019.9006233
http://dx.doi.org/10.1109/ITSC.1999.821098
http://dx.doi.org/10.1109/IJCNN48605.2020.9207182
https://github.com/aaravpandya/Vehicle-Speed-Radar-Dataset
https://github.com/aaravpandya/Vehicle-Speed-Radar-Dataset
http://dx.doi.org/10.1007/3-540-45103-X_50

	Introduction
	Related Work
	Solution Approaches
	Dataset Description
	Dataset Format
	Post-Processing
	Hypothesis
	Convolutional Network
	Regression
	YOLO Like Network

	Results and Discussion
	Conclusions
	References

