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In brief

Energy compensation is the concept that

not all the energy spent when activity

levels increase translates to additional

energy spent that day, but it is poorly

characterized. Careau, Halsey et al. find

that in humans, energy compensation

averages 28%, i.e., only 72% of the extra

calories we spend on additional activity

translates into extra calories burned that

day.
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SUMMARY
Understanding the impacts of activity on energy balance is crucial. Increasing levels of activity may bring di-
minishing returns in energy expenditure because of compensatory responses in non-activity energy expen-
ditures.1–3 This suggestion has profound implications for both the evolution ofmetabolism and human health.
It implies that a long-term increase in activity does not directly translate into an increase in total energy
expenditure (TEE) because other components of TEE may decrease in response—energy compensation.
We used the largest dataset compiled on adult TEE and basal energy expenditure (BEE) (n = 1,754) of people
living normal lives to find that energy compensation by a typical human averages 28% due to reduced BEE;
this suggests that only 72% of the extra calories we burn from additional activity translates into extra calories
burned that day. Moreover, the degree of energy compensation varied considerably between people of
different body compositions. This association between compensation and adiposity could be due to
among-individual differences in compensation: people who compensate more may be more likely to accu-
mulate body fat. Alternatively, the process might occur within individuals: as we get fatter, our body might
compensate more strongly for the calories burned during activity, making losing fat progressively more diffi-
cult. Determining the causality of the relationship between energy compensation and adiposity will be key to
improving public health strategies regarding obesity.
RESULTS AND DISCUSSION

The contexts within which energy compensation occur, the

extent to which it occurs,4 and the processes involved are far
Current Biology 31, 4659–4666, Octo
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from resolved.2,5–7 Using the largest dataset on human energy

expenditure ever assembled, by estimating the relationships be-

tween total, activity, and basal energy expenditure (TEE, AEE,

and BEE), we test the mutually exclusive predictions from the
ber 25, 2021 ª 2021 The Authors. Published by Elsevier Inc. 4659
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three energy expenditure models (Figure 1) for individuals with

unremarkable lifestyles generating natural variation in TEE over

time, and without food restriction. Determining which of these

energy expenditure models apply to humans under typical,

free-living conditions, and quantifying its effects, will progress

our understanding of the evolution and control of metabolism,

and may provide key physiological information for management

strategies for weight control.

We extracted paired measurements of BEE (respirometry) and

TEE (doubly labeled water [DLW]19) for 1,754 adults from the In-

ternational Atomic Energy Agency DLW database v.3.1.2.20 All

estimates of TEE weremade using a standard calculation across

all studies.21 Controlling for age (years), sex, and body composi-

tion (i.e., fat-free mass [FFM] in kg, derived from the body water

dilution spaces, and fat mass [FM] in kg, calculated as the differ-

ence between body mass and fat-free mass), a multiple regres-

sion of TEE as a function of BEE revealed an overall positive and

highly significant relationship between TEE and BEE, with a

slope of b ± SE = 0.723 ± 0.049 (Table S1A) and 95% confidence

intervals (CIs) that exclude both 0 and 1 (CI: 0.626; 0.820). The

positive relationship between BEE and TEE is not surprising,

given that BEE represents the largest component of TEE (Fig-

ure 1B). Due to the part-whole relationship, however, the slope

between BEE and TEE should be 1 unless the active and basal

components of energy expenditure are positively or negatively

linked (as postulated in the performance and compensation

models, respectively; Figure 1C). Because our analysis revealed

that the slope is significantly <1 (Figure 2A), this indicates that a

considerable degree (27.7%) of compensation occurred be-

tween the active and basal components of energy expenditure.

To further illustrate compensation, we calculated the AEE for

each individual by subtracting BEE from 0.9*TEE (TEE adjusted

to account for the thermic effect of food). A multiple regression

of AEE as a function of BEE (with age, sex, and body composition

as covariates) revealed an overall negative and highly significant

relationship, with a slope of b ± SE =�0.349 ± 0.044 (t = 7.86, p <

0.0001; Table S1A; Figure 2B) and 95% CI that excludes 0 (CI:

�0.436; �0.262). These findings concur with those from the

model regressing TEE as a function of BEE. Note that, in princi-

ple, one mechanism that does not represent energy compensa-

tion and yet could, in principle, create the observed patterns is
that people who are more active (and have a higher AEE) have

a greater proportion of muscle mass,22 which increases FFM

without substantively increasing BEE,23 resulting in more active

people having a low mass-corrected BEE. However, this possi-

bility can be disregarded given that our analysis indicates energy

compensation in people having accounted for variation in their

FFM by its inclusion as a covariate (as both a main effect and

as an interaction term with BEE and age).

Thus, humans living typical modern lives—not undertaking

exceptional levels of activity or experiencing chronic food short-

ages—exhibit a fairly strong compensation between the energy

they expend on activity and that expended on basal metabolic

processes; over the long term, more than a quarter of the extra

calories burned by people during activity do not translate into ex-

tra calories expended that day. Presumably, such compensation

would have been adaptive for our ancestors because it mini-

mized food energy demands and hence reduced the time

needed for foraging, the advantages of which may include

reducing exposure to predation. However, it is potentially mal-

adaptive for modern-living humans exercising to try to burn off

excess food consumption, given the chain of association linking

high-density foods to greater energy intake,24 obesity,25 and its

related diseases.26

Public health initiatives often include prescribed increases in

activity in part to increase TEE and thereby control weight gain

or promote fat loss.27 Such a prescription, however, often as-

sumes that costs of activity are additively related to basal

costs,28 which our analyses suggest is untrue. It will therefore

be important when prescribing personalized exercise plans

for controlling or reducing weight, and managing patient ex-

pectations, to know if the degree of long-term energy compen-

sation changes with age and other demographic variables such

as sex. It is well known that older individuals are more at risk of

obesity than are younger individuals. To test if older people,

and potentially one sex more than the other, exhibit greater en-

ergy compensation, we took advantage of the information on

sex, age, and body composition (measured by isotope dilution)

included in our dataset, which consisted of 692 men and 1,062

women aged 18 to 96 years, with FFM ranging from 24.3 to

97.1 (median: 47.64 kg) and body mass index (BMI) ranging

from 12.5 to 61.7 (median: 25.2 kg/m2). To test if the slope
Current Biology 31, 4659–4666, October 25, 2021 4661
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Figure 1. Energy budgets and competing hypotheses

(A) Representation of the total energy expenditure (TEE) of endothermic animals as the sum of the energy invested in activity, reproduction, growth, thermo-

regulation, digestion (thermic effect of food; TEF), and basal energy expenditure (BEE; theminimumamount of energy required for the functioning [e.g., breathing]

and themaintenance [e.g., tissue turnover] of vital systems). Proportions are somewhat arbitrary but recognize that in vertebrates BEE is typically aminor element

of TEE.8 Any source of energy expenditure above BEE (except TEF) is apportioned as activity energy expenditure (AEE), which includes the costs of thermo-

regulation, reproduction, and growth when present.

(B) Representation of the TEE of most non-reproductive adult humans, in which there are no energy costs of growth or reproduction, and the cost of thermo-

regulation is assumed to be negligible. In this simplified energy budget, the proportions recognize that in adult humans ~60% of energy is spent on BEE

(categorized into proportions based loosely on Müller et al.9), and most of the AEE component is indeed represented by physical activity, including locomotion,

posture, and ‘‘fidgeting.’’10

(C) Illustration of the various models that have been proposed to describe how humans and other animals manage their energy budget,11–15 and their associated

predictions about the slope (b) of the relationship between TEE and BEE and between AEE and BEE. The left stack bar shows a simplified baseline version of TEE

as the sumof BEE and AEE. Comparing the left versus right stacks shows themean effect of an increase in AEE onBEE and TEE. The regression lines in the panels

to the right show the predicted relationships between TEE and BEE and between AEE and BEE; example individual data points have been included to illustrate the

predicted relationship in addition to some unexplained variation. The additive model assumes that AEE and BEE are independent and thus uncorrelated.

Therefore, variation in BEE should add up to variation in TEE, with b = 1 due to part-whole correlation. In other words, the additive model predicts that additional

calories burned by undertaking extra activity results in an equivalent increase in TEE. By contrast, the performance model assumes that a greater "metabolic

machinery" is needed to support higher AEE due to increased assimilation of energy, and thus b > 1 for the relationship between TEE and BEE. That is, the

performance model predicts that the resultant total calories burned due to activity will be higher than just the calories expended during the activity because of

additional energy spent on subsequent physical recovery andmaintenance of amore expensivemetabolic machinery to support this behavior. Alternatively, both

humans and animals may respond to greater energy being expended on activity over the long term by reducing the energy expended on other processes, a

phenomenon captured by the compensation model. The compensation model assumes that energy budgets are somewhat constrained, which forces trade-offs

between energy invested into AEE and BEE, thus predicting a negative relationship between AEE and BEE and therefore b < 1 for the relationship between TEE

and BEE. It is currently unknown whether energy compensation in humans occurs only under extreme conditions, or at least only during periods of prescribed

exercise, where measured or inferred energy compensation has been documented on several occasions,16–18 or instead whether it is the default model of energy

expenditure in humans living typical lives, where activity and energy intake are naturally adjusted over time.
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A B Figure 2. Energy compensation in humans

(A) Total energy expenditure (TEE; MJ∙d�1) and (B)

activity energy expenditure (AEE; MJ∙d�1) as a

function of basal energy expenditure (BEE;

MJ∙d�1) in 1,754 subjects included in this study,

controlling for sex, age, and body composition. (A)

illustrates how the slope of the TEE-BEE relation-

ship is <1 (compared to the 1:1 dotted line),

whereas (B) illustrates the negative relationship

between AEE and BEE.
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(b) of the TEE-BEE and AEE-BEE relationships changes ac-

cording to sex, age, and body composition, we added the

interaction terms between BEE and each of these factors to

the multiple regression model (in addition to other two-way

interactions between sex, age, and body composition that

control for sex differences and age-related changes in

body composition; Table S1B). Overall, energy compensation

was not different in men versus women and did not vary

with age (i.e., BEE 3 sex and BEE 3 age interactions; Table

S1B). Hence, energy compensation seems to be a general

phenomenon that applies equally to men and women, young

and old. Note that FFM and FM were derived from isotope dilu-

tion, assuming a constant ratio for FFM hydration (73.2%), but

according to published literature, FFM hydration may not be

constant with adult age. However, any variation is probably

small,29 and indeed unpublished analyses on data for over

1,000 adults with ages ranging from 20 to over 70 indicate

that the ratio of total body weight to FFM hardly changes (S.

Heymsfield, personal communication).

Interestingly, the BEE 3 FM interaction was significant with a

negative estimate (Table S1B), indicating that the slope of the

TEE-BEE and AEE-BEE relationships decreases as FM in-

creases. In other words, controlling for sex, age, and FFM,
A B

Current Biolo
compensation increases with FM. People

that are at the 10th percentile of the BMI

distribution compensate 27.7% of activity

calories, whereas people at the 90th
percentile compensate 49.2%of activity calories (Figure 3). It ap-

pears then that individuals with greater fat levels are predisposed

to increased adiposity either because they are stronger energy

compensators or because they become stronger compensators

as they get fatter. If the former, then two people can be equally

active, yet one puts on fat mass while the other stays lean. If

the latter, then such a positive feedback loop may imply that us-

ing exercise as a strategy to escape high adiposity becomes less

and less effective. Resolving the causality of this relationship be-

tween fat mass and energy compensation might be key to better

deploying exercise in the fight against the growing obesity

pandemic.

Theenergycompensationdetected in theaforementionedanal-

ysis can be the result of processes occurring at two distinct levels

of covariation: between individuals and within individuals. Energy

compensation at the between-individual level would indicate that

people with higher-than-average AEE tend to have a lower-than-

average BEE—a covariance due to genetic and/or permanent

environmental factors that would cause the between-individual

TEE-BEEslope (bbetween) tobe<1.Bycontrast, energycompensa-

tion at the within-individual level would indicate that, for a given

individual, reversible increases in AEE are accompanied by

decreases in BEE, and vice versa, which would cause the
Figure 3. Compensation increases with fat

mass
(A) Frequency distribution of body mass index in

the 1,754 subjects included in this study, showing

where the 10th, 50th, and 90th percentiles lie (long

dash, short dash, and dash-dot lines, respec-

tively).

(B) Total energy expenditure (TEE; MJ∙d�1) as a

function of basal energy expenditure (BEE;

MJ∙d�1), controlling for sex, age, and body

composition. This figure illustrates the significant

BEE 3 FM interaction (Table S1B), showing how

compensation increases from 27.7% in people at

the 10th percentile of the BMI distribution (long

dash line) to 49.2% in people at the 90th percentile

of the BMI distribution (dash-dot line). Relation-

ships are plotted separately for three broad BMI

categories, but FM is treated as a continuous

variable in the analysis (see Table S1B for esti-

mates). The thin solid line indicates a 1:1 rela-

tionship.

gy 31, 4659–4666, October 25, 2021 4663



A B Figure 4. Energy trade-offs within individ-

uals

Residual (A) total energy expenditure (TEE;

MJ∙d�1) and (B) activity energy expenditure (AEE;

MJ∙d�1) as a function of basal energy expenditure

(BEE; MJ∙d�1) in elderly men and women (n = 68)

with two pairs of TEE-BEE measures each. Within-

individual slopes are illustrated by the thin black

lines connecting the two residual values (gray dots;

extracted from the bivariate mixed model; Table

S2) for each individual.
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within-individual TEE-BEE slope (bwithin) to be <1. To partition the

relationship between TEE and BEE at the between- andwithin-in-

dividual levels,we re-analyzeddata representingpairedmeasure-

ments of 36 men and 32 women aged between 70 and 90 years

sampled 7 years apart within the context of a longitudinal study.30

This dataset provides the opportunity to estimate the extent of en-

ergy compensation occurringbothbetween andwithin individuals

in elderly people. Using a bivariate mixed model, we partitioned

the slope of the TEE-BEE relationship (while accounting for sex,

age, FFM, FM, and sex- and age-related differences in FFM and

FM) at the between- and within-individual levels (Table S2A).

This analysis clearly reveals that energy compensation occurs

only at the within-individual level (Figure 4A). While the between-

individual slopewasbbetween ±SE=1.86±1.05, thewithin-individ-

ual slope was bwithin ± SE = 0.15 ± 0.17.

To further illustrate the compensation occurring at thewithin-in-

dividual level, we ran a second bivariate mixed model with AEE

and BEE as the dependent variables. In this model, the within-in-

dividual covariance was significantly negative (Table S2B). The

within-individual correlation (±SE) between AEE and BEE was

r = �0.58 ± 0.08 (Figure 4B). Hence, during extended periods

when the studied cohort expended more energy on activity, they

compensated by reducing energy expended on basal processes

(but individuals with higher-than-average AEE do not necessarily

have a lower-than-average BEE). The within-individual slope in

these people indicates particularly strong energy compensation

between AEE and BEE (Figure 4B). That is, in this sample of peo-

ple, the calories they burn during bouts of activity are almost

entirely compensated for by reducing energy expended on other

processes such that variation in activity had little impact on TEE.

Measurements of BEE and TEE provide invaluable insights

into energy management; the next step is to elucidate the prox-

imate and ultimate mechanisms driving these observed patterns

of energy compensation. One possible factor is energy intake.

For example, if obese people tend to increase their food con-

sumption in response to increased AEE less so than other demo-

graphics, they have fewer resources for other functions, and this

could encourage the body to energy compensate, reducing

BEE.31 Another possible factor involved in energy compensa-

tion, which is relatively hard to measure and not available in

our dataset, is fidgeting, or non-exercise activity thermogenesis

(NEAT). In principle, NEAT can decrease in response to
4664 Current Biology 31, 4659–4666, October 25, 2021
increases in AEE, although few studies

have directly measured it,6 and reviews

of the literature to determine whether

NEAT in humans decreases to compen-
sate or partially compensate for increases in AEE conclude

that there is no evidence overall that NEAT systematically

changes, e.g., Fedewa et al.5

If energy compensation has an underlying genetic basis, in the

future it might be possible to screen individuals to ascertain

whether exercise would be a valuable fat loss intervention

because they are ‘‘weak compensators’’ or a fruitless fat loss

intervention because they are strong compensators (while

recognizing other benefits to exercise including protecting

against weight regain32,33). Moreover, we need to understand

whether there are costs to reducing BEE. If there are, such as,

for example, a compromised immune system or slowed recovery

from injury,34,35 then for some individuals the point at which ex-

ercise reaches a detrimental level will be considerably lower than

for others.

The ever growing and diversifying range of fat loss plans and

fads available to the public reflects the reality, well known to re-

searchers, that prescribed exercise programs for weight reduc-

tion rarely result in substantive or long-term changes in body

mass.36 The few national guidelines that have been published

converge on the recommendation of a 500–600 kcal/day deficit

through exercising and dieting to instigate fat loss.37 These

guidelines are general for the population and do not factor in

the variation in energy compensation exhibited by people with

different levels of fat mass, as demonstrated in the current study.

Public health strategies for fat loss should be revised to recog-

nize energy compensation as our understanding progresses

about which individuals compensate and by how much. In this

vein, more research is needed on the potentially substantial di-

versity of energy compensation between sub-populations. In

the future, personalized exercise plans targeting fat loss might

be developed partly based on an individual’s genetic propensity

for energy compensation.
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31. Melin, A., Tornberg, Å.B., Skouby, S., Møller, S.S., Sundgot-Borgen, J.,

Faber, J., Sidelmann, J.J., Aziz, M., and Sjödin, A. (2015). Energy availabil-
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Custom-written R code (script) for the

analysis and generation of data figures.

Custom-written by the authors. Figshare. Entitled ‘R script for Current

Biology paper ‘Energy compensation and

adiposity in humans’: https://figshare.com/

articles/software/R_script_for_Current_

Biology_paper_Energy_compensation_

and_adiposity_in_humans_/15054129
RESOURCE AVAILABILITY

Lead Contact
Further information and requests should be directed to and will be fulfilled by the lead contact, Lewis Halsey (l.halsey@roehampton.

ac.uk).

Materials availability
All the data used in this study have already been published and are available in the public domain; the current manuscript presents a

secondary analysis.

Data and code availability

d The data reported in this study cannot be deposited in a public repository because they are held by the management group of

the IAEA DLW database. To request access, follow the instructions available at https://doubly-labelled-water-database.iaea.

org/dataAnalysisInstructions.

d The code used for all statistical analyses and the production of data figures has been deposited at Figshare and is publicly avail-

able as of the date of publication. The DOI is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

The International Atomic Energy Agency DLW database (v 3.1.2) is a world-wide collection of total energy expenditure (TEE) mea-

surements.20 All TEE measurements were made using the stable isotope method of doubly-labeled water analysis,14,38 and are

based on recalculations of the original data using the latest DLW equations.21 Although the entire database includes over 6,500

DLW measurements between 1981 and 2017, for the purpose of this study the database was restricted to TEE measures accom-

panied by measurements of BEE via indirect calorimetry. The database was also restricted to adult subjects (> 18 y old) and we

excluded subjects undergoing intense physical activity including professional sports training, and those who were pregnant,

lactating, or diseased. Fat free (lean) mass (FFM) was derived from isotope dilution and fat mass (FM) was calculated by sub-

tracting FFM from total body weight. Note that using total body weight and height-normalized indices of FFM and FM yielded

similar results to using FFM and FM. Activity energy expenditure (AEE) was calculated as 0.9*TEE – BEE, assuming that the

thermic effect of food accounts for 10% of the total energy budget.39 The average (±SD) physical activity level (PAL = TEE/

BEE) of the analyzed database was 1.74 ± 0.27 (range: 0.76 – 3.30) and 90% of observations were between 1.35 and 2.18

PAL (5th and 95th quartiles).

METHOD DETAILS

To test the mutually exclusive predictions arising from the energy management models (Figure 1C), we used multiple linear regres-

sions with TEE as the dependent variable and sex, age, FFM, FM, and BEE as independent variables, on some or all of a dataset on

1754 adults. FFM and FM were square-root transformed to reduce the influence of some potentially influential observations at the

extreme upper end of the distribution (e.g., 6 observations with > 80 kg fat mass).
Current Biology 31, 4659–4666.e1–e2, October 25, 2021 e1

mailto:l.halsey@roehampton.ac.uk
mailto:l.halsey@roehampton.ac.uk
https://doubly-labelled-water-database.iaea.org/dataAnalysisInstructions
https://doubly-labelled-water-database.iaea.org/dataAnalysisInstructions
https://figshare.com/articles/software/R_script_for_Current_Biology_paper_Energy_compensation_and_adiposity_in_humans_/15054129
https://figshare.com/articles/software/R_script_for_Current_Biology_paper_Energy_compensation_and_adiposity_in_humans_/15054129
https://figshare.com/articles/software/R_script_for_Current_Biology_paper_Energy_compensation_and_adiposity_in_humans_/15054129
https://figshare.com/articles/software/R_script_for_Current_Biology_paper_Energy_compensation_and_adiposity_in_humans_/15054129


ll
OPEN ACCESS Report
QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were conducted in R using bespoke code. Details of the results of those analyses are found in the Results and discussion

section, and the Tables S1 and S2, with visualization provided in Figures 2, 3, and 4. Confidence intervals are provided for all regres-

sion slope estimates. Results were interpreted as statistically significant when associated with p < 0.05. The first multiple regression

model was run on the entire dataset to get an overall estimate of the TEE-BEE and AEE-BEE relationships after accounting for sex,

age, FFM, and FM (Table S1A). We were then interested to test if the TEE-BEE and AEE-BEE relationships varied by sex, age, and

body composition. To do so, we introduced two-way interactions between BEE and sex, age, FFM, and FM (Table S1B). To control

for possible sex- and age-related changes in the effects of FFM and FM, we also included two-way interactions between body

composition variables (FFM and FM) and sex and age (Table S1B). All independent variables (including sex) were centered prior

to analysis, such that significance of main effects are estimated at the average values despite significant interactions in the model.40

We used the visreg function41 to plot the partial residuals and illustrate the TEE-BEE and AEE-BEE slopes (Figure 2) and the inter-

action between BEE and FM (Figure 3). For these models, the residuals had homogeneity of variance and were normally distributed,

and there were suitably low variance inflation factors for all covariates indicating limited linear covariance between the predictor

variables.42

Bivariate mixed model analysis
The Health, Aging, and Body Composition (Health ABC) study has produced repeated paired measurements of TEE and BEE in

elderly men and women.43 The first set of measurements were taken between 1998 and 2000 on subjects in their 8th decade of

life. A second set of measurements was carried out in 2006, approximately 7 years after the first.30 We used bivariate mixed models

in ASReml-R44 to partition the relationship between TEE and BEE at the between- versus within-individual levels in men and women

separately. Both TEE and BEEwere fitted as response variables in amodel that included (anonymous) individual identity as a random

effect. This enabledmodeling of the between-individual variances (Vbetween) in TEE and BEE as well as the between-individual covari-

ance (COVbetween) between the two. The residuals were also modeled as an unstructured variance-covariance matrix, effectively

capturing the within-individual variances (Vwithin) in TEE and BEE as well as the within-individual covariance (COVwithin). The be-

tween-individual slope (bbetween) between TEE and BEE was calculated as COVbetween divided by Vbetween in BEE, while the

within-individual slope (bwithin) was calculated as COVwithin divided by Vwithin in BEE. Note that the bivariate mixed model included

age, FFM, and FM as fixed effects fitted to both TEE and BEE, and as such the slope estimates are conditioned on these variables.

Moreover, interactions between age and FFM and age and FM were included to control for potential age-related changes in body

composition. To better illustrate the relationship between AEE and BEE, we ran a second bivariate mixed model that was identical

to the above except that TEE was replaced by AEE. For each model, assessment of the residuals indicated homogeneity of variance

and normality, and suitably low variance inflation factors for all covariates.
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