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Abstract
A new technique that utilizes surface integrals to find the force, torque and potential energy
between two non-spherical, rigid bodies is presented. The method is relatively fast, and
allows us to solve the full rigid two-body problem for pairs of spheroids and ellipsoids with
12 degrees of freedom. We demonstrate the method with two dimensionless test scenarios,
one where tumbling motion develops, and one where the motion of the bodies resemble
spinning tops. We also test the method on the asteroid binary (66391) 1999 KW4, where
both components are modelled either as spheroids or ellipsoids. The two different shape
models have negligible effects on the eccentricity and semi-major axis, but have a larger
impact on the angular velocity along the z-direction. In all cases, energy and total angular
momentum is conserved, and the simulation accuracy is kept at the machine accuracy level.

Keywords Spheroids · Dynamical evolution · Two rigid body problem · Binary systems

1 Introduction

Asteroids are remnants from the formation of the solar system. It is hoped that detailed
study of asteroids may improve our understanding on how the solar system was formed.
One way to obtain a better knowledge of asteroids is to study the dynamics of multi-body
systems. Roughly two decades ago, the existence of asteroid satellites was still uncertain
(Weidenschilling et al 1989). Not long after, the first asteroid binary, (243) Ida and its satellite
Dactyl, was discovered by theGalileo spacecraftmission in 1993 (Chapman et al 1995). Since
then, many more binaries have been observed and it is believed that roughly 15% of near-
Earth asteroids, larger than 200 meters in diameter, are binaries (Margot et al 2002). A few
asteroid binaries have also been observed amongst the main-belt asteroids, but the frequency
of such systems is generally lower (Merline et al 2002).

Studying the dynamical evolution of two rigid bodies, including both their translational
and rotational motion, is known as the full two-body problem. In the full two-body problem,
the rotational and translational motion of both bodies are fully coupled (Maciejewski 1995).
However, studying the full two-body problem is not trivial for irregular bodies, such as
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asteroids, as no analytical solution exists to compute the gravitational force between two
non-spherical objects. Therefore, several numerical approaches have been developed to solve
the full-two body problem.

A straightforward method of modelling the gravitational field of an asteroid is the mascon
model (Geissler et al. 1996). In this approach, a set of point masses are placed in a grid,
forming the shape of the asteroid. The total gravitational field of the asteroid will then be the
sum of all the point mass fields. The advantage of the mascon model is that it can produce
an accurate shape representation of an arbitrary body. Despite this advantage, the mascon
model also has several drawbacks. For instance, the accuracy of the model depends on the
number of point masses included in the body, and including a large number of point masses
is computationally expensive. Furthermore Werner and Scheeres (1997) have shown that,
despite including a large number of point masses, there exists significant errors in the force
computation. This is due to the errors in the resolution of the surface of the asteroid, as
the topology of the body is replaced with spherical balls. Wittick and Russell (2017) have
revisited and optimized the model to make it less computationally demanding and increased
the numerical accuracy.

A different, yet common method to model the gravitational field of non-spherical bodies
is through the application of series expansions. The most common case is generated by using
expansions of spherical harmonics (Konopliv et al. 2011). However, for spherical harmonics,
the potential can only be computed outside a given sphere, known as the Brillouin sphere,
as the potential will diverge inside this region (Moritz 1980). Spherical harmonics are also
utilized in the full two-body problem to describe the mutual gravitational potential (Scheeres
et al. 1996; Boldrin et al. 2016; Boué 2017).

Alternative parametrizations are also used tomitigate the divergence problempresent in the
spherical harmonics approach. For example, ellipsoidal harmonics has been used to compute
the gravity field on various small solar system bodies Garmier and Barriot (2001); Garmier
et al. (2002);Dechambre andScheeres (2002); Reimond andBaur (2016).However, the use of
ellipsoidal harmonics canbe cumbersome, due to themathematical andnumerical complexity.
Alternatively, prolate spheroidal harmonics Fukushima (2014); Sebera et al. (2016) provides
simplermathematical expressions compared to ellipsoidal harmonics, while providing a good
geometric fit for non-spherical objects. Furthermore, Reimond and Baur (2016) have shown
that, although ellipsoidal harmonics are far more accurate than spherical harmonics, there are
virtually no difference between prolate spheroidal and ellipsoidal harmonics. Nevertheless,
because all these methods use mathematical expansions, there exists a limit to the number of
terms included in the model. Neglecting higher order terms, therefore, results in truncation
errors.

Another way to expand potentials is to expand the inertia integrals. Scheeres 2009 used
this approach to study the stability of two ellipsoids restricted in the plane. Hou et al. (2017)
present a fast method to compute the mutual potential, also using inertia integrals, between
two arbitrary bodies using recurrence relations. Compère and Lemaître (2014) utilize the STF
tensor formalism, which allows one to determine the coupling between spherical harmonics
in a compact way, to determine the mutual potential and applied the method to study the
(66391) 1999 KW4 binary system.

Another approach is to model an asteroid as a polyhedron of constant density. Similar to
the mascon model, the polyhedron model allows one to include finer geometric details of an
asteroid.Werner and Scheeres (1997) present a method to compute the gravitational potential
of a polyhedron and use it to model the gravity field of the asteroid (4769) Castalia. Conway
(2015) gives an alternative formulation of the gravitational potential of a polyhedron through
the use of vector potentials, a method used to study how the dust is emitted and transported
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around Comet 67P (Kramer and Noack 2015; Kramer et al. 2015). For two bodies, a method
was presented by Werner and Scheeres (2005) to determine the mutual potential between
two polyhedra. This approach has been used to study the dynamical evolution of the asteroid
binary (66391) 1999 KW4 (Scheeres et al 2006; Fahnestock and Scheeres 2006). Shi et al.
(2017) present a different model for the mutual potential between a polyhedron and a rigid
body of an arbitrary mass distribution and use this method to also study the (66391) 1999
KW4 system.

For most asteroids, detailed shape models are not available. An alternative to the poly-
hedron model is to approximate an asteroid with a well-defined shape, such as an ellipsoid.
The gravitational potential of such bodies can be expressed analytically (MacMillan 1930).
However, the potential of an ellipsoid requires computation of elliptic functions, which may
be computationally demanding. Nevertheless, using ellipsoid shape approximation to model
asteroids has been e.g. used to study an ellipsoid-sphere system (Scheeres 2004; Bellerose
and Scheeres 2008).

Anewapproach, based on vector potentials, to compute the gravitational potential between
two extended bodies is presented by Conway (2016). Here, the force, torque and mutual
potential energy are formulated as surface integrals under the assumption of constant density.
This could potentially be a faster andmore accurate technique, as the force and torque integrals
are converted from volume integrals to surface integrals. Moreover, this approach does not
rely on series expansions and will therefore not suffer from truncation errors. This approach
was recently tested on coplanar spheroids and thin disks byWold and Conway (2021). In this
paper, we extend the work of Wold & Conway by giving a full three-dimensional treatment
of the dynamics between the two bodies, including the coupling between translational and
rotational motion.

In Sect. 2, we introduce the equations used to determine the translational and rotational
motion and describe how we treat the rotational kinematics. In Sect. 3, we present the results
of two dimensionless test scenarios, while in Sect. 4 we apply our method on the asteroid
binary system (66391) 1999KW4. In this paper, all dotted variables denote the time derivative
of the corresponding term. All vectors with a hat (e.g. x̂) show the vector expressions in the
body-fixed frame (local frame), while those without a hat are in an inertial frame.

2 Mathematical model

The main objective of the method is to calculate the force F, torque M and potential U of
a solid body of uniform density ρ in a gravitational field g (r) in terms of surface integrals
over the surface of the body.

The force of an extended body with constant density ρ, due to an external gravitational
field g(r), can be expressed through a volume integral

F̂ = ρ

∫∫∫

V

g(r)dV , (1)

where r is a position vector to a point on the surface of the body being integrated over. If the
gravitational field is given by the gradient of a scalar potential �(r), so that g(r) = ∇�(r),
we can apply the divergence theorem such that the force can be computed through a surface
integral
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F̂ = ρ

∫∫

S

�(r)ndS. (2)

It can also be shown that the torque about the mass center of an extended body is given by

M̂ = −ρ

∫∫

S

�(r)n × rdS (3)

and the mutual potential as

U = ρ

3

∫∫

S

(
r�(r) − 1

2
|r|2 g (r)

)
· ndS (4)

(Conway 2016). In these formulas n is a unit normal to the body surface. The above surface
integrals are thus alternative expressions for the force, torque and potential between two
bodies. In the following when we consider two interacting bodies, we replace the scalar
potential �(r) with known analytical formulae for spheroids and ellipsoids as the first body,
and integrate over either a spheroid or an ellipsoid as the second body. The surface integration
method is outlined in detail by Wold and Conway (2021).

Analytical formulas for g(r) and �(r) in terms of elementary functions are given for
spheroids and triaxial ellipsoids in (MacMillan 1930). The Macmillan formulas for g(r)
were validated using Eq. (2) by taking �(r) to be the scalar potential of a unit point mass
and integrating this over a spheroid. Exact agreement was obtained between Eq. (2) and the
MacMillan formulas. The analytical expressions for the moments of inertia of spheroids and
ellipsoids are already available. Therefore, it is straightforward to set up surface integration
schemes in a local body-fixed coordinate system for spheroids and ellipsoids.

Here, we analyze the motion of the bodies in a global inertial coordinate system using
the forces and torques acting on each body and applying Newton’s laws. As we consider a
two-body problem, if FA and FB are the global forces acting on the two bodies A and B,
then from Newton’s third law

FB = −FA. (5)

It should be noted that M̂A, which is the torque of F̂A about the origin of the body-fixed
frame of body A, may not necessarily be equal to M̂B , which is the torque of F̂B about
the origin of the body-fixed frame of body B. However, the torque of all forces about any
arbitrary predefined point in the system must be zero in order to maintain the conservation
of the angular momentum.

When the forces and torques are computed, the equations of motion can be solved as a
standard initial value problem, where the velocities v and positions r can be integrated as

dv
dt

= F
m

(6)

dr
dt

= v (7)

and the angular velocity ω̂ integrated from

dJ
dt

= M, (8)

where J is the angular momentum of the body.
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We use the embedded Runge-Kutta method of order 9(8) by Verner (Verner 2010) to solve
the equations of motion. The coefficients of the Butcher tableau are taken from Verner’s web
page 1, using the ‘most efficient’ coefficients provided in the web page.

2.1 Rotation angles and rotational motion

The force and torque integrals given in Eqs. (2) and (3) are computed in the body-fixed
frames. However, because we are interested in the motion in the inertial frame, the equations
of motion must be projected back to the inertial frame. To move between different reference
frames, we use a rotation matrix. In this paper, we adopt the Tait-Bryan convention where
the rotation matrix R takes the form

Rx =
⎡
⎣1 0 0
0 cosφ − sin φ

0 sin φ cosφ

⎤
⎦ (9)

Ry =
⎡
⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦ (10)

Rz =
⎡
⎣cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎤
⎦ (11)

R(φ, θ, ψ) = RzRyRx . (12)

The angles (φ, θ, ψ) are the Tait-Bryan angles, and correspond to rotations around the body-
fixed x, y, z axes respectively2. The rotation matrix given in Eq. (12) is then used to project
the force in the body-fixed frame, from Eq. (2), back to the inertial frame using the equation

F = RF̂. (13)

The computed torque in Eq. (3) is used to determine how the angular velocity changes over
time, using the equations of motion for each body in its body-fixed frame, given as

I11 ˙̂ωx + (I33 − I22)ω̂yω̂z = M̂x (14)

I22 ˙̂ωy + (I11 − I33)ω̂x ω̂z = M̂y (15)

I33 ˙̂ωz + (I22 − I11)ω̂x ω̂y = M̂z (16)

(Curtis 2013), where (ω̂x , ω̂y, ω̂z) are the angular velocity components in the body-fixed
frame, I is the moment of inertia tensor and (M̂x , M̂y, M̂z) are the components of the torque
computed in the body-fixed frame. The angular velocity (ω̂x , ω̂y, ω̂z) is related to the angular
velocity in the inertial frame as ⎡

⎣ωx

ωy

ωz

⎤
⎦ = R

⎡
⎣ω̂x

ω̂y

ω̂z

⎤
⎦ . (17)

The rotation angles (φ, θ, ψ) change over time, and the following kinematic equations relate
the time rate of change of these angles to the angular velocity of the body

φ̇ = ω̂x + (ω̂y sin φ + ω̂z cosφ) tan θ (18)

1 http://people.math.sfu.ca/~jverner/.
2 These angles are also known as roll, pitch and yaw.
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θ̇ = ω̂y cosφ − ω̂z sin φ (19)

ψ̇ = (ω̂y sin φ + ω̂z cosφ) sec θ (20)

(Fossen 2011). These kinematic equations become singular when θ = nπ/2 for any odd
integer n. This singularity is a mathematical problem and is normally resolved by using
Euler parameters (see e.g. Kane et al. 1983). Nevertheless, this singularity is generally not a
problem for our cases in question.

2.2 Surface integration

The expressions for the surface elements in the surface integrals given by Eqs. (2)–(4), as
well as the components of the moment of inertia tensor, vary depending on the shape of the
bodies. This can be generalized to any arbitrary ellipsoidal shapes.

Consider a general ellipsoid with semiaxes (a, b, c). The surface elements ndS and n ×
rdS, used in Eqs. (2)-(4) respectively, for a general ellipsoid, are given as

ndS =
⎡
⎢⎣

b
√
c2−z2
c cosα

a
√
c2−z2
c sin α
ab
c2
z

⎤
⎥⎦ dαdz (21)

n × rdS =
⎡
⎢⎣

a
c3

(c2 − b2)
√
c2 − z2z sin α

− b
c3

(c2 − a2)
√
c2 − z2z cosα

b2−a2

c2
(c2 − z2) cosα sin α

⎤
⎥⎦ dαdz (22)

Wold and Conway (2021), where α is the angle of the cylindrical coordinates (written as φ

in Wold and Conway) and z is the generalized latitude line on the ellipsoid. For a general
ellipsoid with density ρ, the only non-zero components of the moment of inertia tensor Ii j
can be expressed analytically as

I11 = 4πρabc

15
(b2 + c2) (23)

I22 = 4πρabc

15
(c2 + a2) (24)

I33 = 4πρabc

15
(a2 + b2). (25)

2.2.1 Rotated gravitational potential

In this section, we will describe how to incorporate the change in the gravitational potential
�(r) and gravitational field g(r) when the bodies are rotated.

Consider two bodies A and B whose mass centers are respectively positioned by rA and
rB from the origin of the inertial reference frame and with their respective rotation matrices
RA and RB . The vector linking the two centroids therefore becomes

rc = rB − rA. (26)

Let us consider the case where we compute the force on body A. In the inertial frame, the
position vector of an arbitrary point located on the surface of A is expressed as

rp = RA r̂p,A + rA, (27)
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Fig. 1 An illustration on how the gravitational field is computed after the bodies have rotated. The gravitational
potential �B (blue dotted lines) is rotated according to the rotation of spheroid B. The axes x, y, z denotes
the inertial frame of the system

where r̂p,A is a vector describing the surface points of A in its body-fixed frame. For a general
ellipsoid, this becomes

r̂p,A =
⎡
⎣

a
c

√
c2 − z2 cosα

b
c

√
c2 − z2 sin α

z

⎤
⎦ . (28)

The term r used as input argument in the �(r) and g(r) functions is a vector that points from
the centroid of B to any point on the surface of A. This can be written as

r = rp − rB = RA r̂p,a − rc, (29)

which can be expressed in the body frame of reference as

r̂ = RT
Br = RT

B(RA r̂p,A − rc). (30)

Equation (30) is then used as the input argument of both the gravitational potential �(r) and
the gravitational field g(r). As the bodies rotate, so must the relative gravitational field g(r).
This can be achieved using the following equation

gA(r̂) = RT
ARBgB(r̂). (31)

2.3 Total energy

When all the differential equations are solved, we use the computed velocities, positions,
angular velocities and rotation angles to determine the energy of the system. The translational
kinetic energy of each body is computed as

Ek = 1

2
mv2, (32)
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where m and v are the mass and the center of mass velocity of the body, respectively. For an
ellipsoid with constant density, the kinetic energy of rotational motion is

Erot = 1

2

(
I11ω̂

2
x + I22ω̂

2
y + I33ω̂

2
z

)
. (33)

The mutual potential energy U is computed by Eq. (4). The total energy of the system is the
sum of the kinetic, rotational and potential energies.

2.4 Angular momentum

Because we do not include external forces and moments to model the system, the angular
momentum and total energy of the system must be conserved. The total angular momentum,
in the inertial frame, is

Jtot = JA + JB , (34)

where the angular momentum of each body is given by

J = r × mv + RI ω̂. (35)

As previously stated, for a general ellipsoid, the only non-zero components of the moment
of inertia are I11, I22 and I33. Therefore, the total angular momentum becomes

Jtot = r × mv + R
⎡
⎣I11ω̂x

I22ω̂y

I33ω̂z

⎤
⎦ . (36)

2.5 Gravitational potential

To compute the force and torque given in Eqs. (2) and (3), we require an expression for the
gravitational potential �(r). This potential can take different forms depending on the shape
of the body. In this paper, we consider spheroids and triaxial ellipsoids, for which analytical
expressions for �(r) are available.

For a general ellipsoid with semiaxes a > b > c and constant density ρ, the gravitational
potential is given by

�(r) = 2πρabc√
a2 − c2

( [
1 − x2

a2 − b2
+ y2

a2 − b2

]
F(ωκ, k)

+
[

x2

a2 − b2
− (a2 − c2)y2

(a2 − b2)(b2 − c2)
+ z2

b2 − c2

]
E(ωκ, k)

+
[
c2 + κ

b2 − c2
y2 − b2 + κ

b2 − c2
z2

] √
a2 − c2√

(a2 + κ)(b2 + κ)(c2 + κ)

)
(37)

MacMillan (1930), where F(ωκ, k) and E(ωκ, k) are the elliptic integrals of the first and
second kind respectively, κ is the largest root of the equation

x2

a2 + κ
+ y2

b2 + κ
+ z2

c2 + κ
= 1 (38)
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Table 1 The initial parameters used for the two dimensionless test cases. The second and third columns show
initial positions r0 and velocities v0 in the inertial frame, respectively. The fourth column indicates the initial
rotation angles in radians. The fifth column shows the initial angular velocities in the body-fixed frames, in
units of radians per unit time. The sixth and seventh columns show the semiaxes (a, b, c) of the spheroids and
their masses, respectively. The top and bottom rows, for each case, correspond to body A and B respectively

Scenario r0 v0 (φ0, θ0, ψ0) ω̂0 (a, b, c) m

Case 1 (−4, 0, 0) (0, 0.3, 0) ( π
32 , 0, 0) (0, 0, 0) (1, 1, 0.25) 2

(Rotated) (4, 0, 0) (0, −0.3, 0) (− π
32 , 0, 0) (0, 0, 0) (1, 1, 0.25) 2

Case 2 (−4, 0, 0) (0, 0.3, 0) (0, π
32 , 0) (0, 0, 2) (1, 1, 0.25) 2

(Spinning) (4, 0, 0) (0, −0.3, 0) (0, − π
32 , 0) (0, 0, 2) (1, 1, 0.25) 2

and

ωκ = sin−1

√
a2 − c2

a2 + κ
(39)

k =
√
a2 − b2

a2 − c2
. (40)

For an oblate spheroid with semiaxes a = b > c, the gravitational potential can be expressed
as

�(r) = 2πρa2c√
a2 − c2

(
1 − x2 + y2 − 2z2

2(a2 − c2)

)
× sin−1

√
a2 − c2

a2 + κ

+ πρa2c
√
c2 + κ

a2 − c2
x2 + y2

a2 + κ
− πρa2c

a2 − c2
2z2√
c2 + κ

(41)

MacMillan (1930), where κ still satisfies Eq. (38). It should be noted that the gravitational
potentials given in Eqs. (37) and (41) are exterior potentials. The expression for the gravi-
tational field g(r), which is required to compute the mutual potential energy in Eq. (4), is
derived in Appendix A.

3 Dimensionless test scenarios

We first test our method for two dimensionless cases, where the gravitational constant is
set to unity, i.e. G = 1. In these scenarios, we let both bodies take spheroidal shapes. The
initial conditions and spheroid parameters for the simulations are summarized in Table 1.
The time span of the simulations is t ∈ [0, 200]. The actual simulation times on an ordinary
laptop computer for these test scenarios varied from 20 seconds to two minutes.

3.1 Case 1: small initial rotation of the spheroids

We first consider a case where the spheroids have a small initial rotation angle φ0,A =
−φ0,B = π/32 about the x-axis and zero angular velocity. Their physical parameters and
initial conditions are listed in Table 1 under “Case 1 (Rotated)”.
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Figure 2a shows the spheroid orbits projected into the xy-plane, while Fig. 2b shows their
z-positions as functions of time. Because forces are acting parallel to the z-axis, as seen in
Fig. 3, the motions of the spheroids are no longer restricted to one plane. The motion along
the z-axis is 11 orders of magnitude smaller than the motions along the x and y-axes. The
motion in the z-direction grows with simulation time, and becomes of the order 10−1 at
t ≈ 2200. The motion along the x and y-directions, unlike the motion in z-direction, did not
have any significant changes in the same time duration.

The rotation angles (φ, θ, ψ), plotted as sine functions, for spheroids A and B, are shown
in Fig. 2c and d, respectively. Both spheroids rotate multiple times about their x and z-axes,
and therefore have tumbling motion. The angular velocities, projected onto the respective
body-fixed frames, are shown in Fig. 2e and f for spheroids A and B. Due to the rotational
symmetry of the bodies about their z-axes, no gravitational forces can change the rotational
speeds about the z-axes. Hence, the body-fixed component ω̂z remains constant for both
spheroids.

The top panel of Fig. 4 shows the energies in the system. While both spheroids have no
initial rotational motion, the rotational energy starts to make a noticeable contribution near
t ≈ 75, which is consistent with Fig. 2e and f, indicating that the angular velocities start
to increase around t = 75. The middle panel of Fig. 4 shows the relative error in the total
energy as a function of time. The relative error is computed as

δE =
∣∣∣∣ Ei+1 − Ei

Ei

∣∣∣∣ , i = 0, 1, 2, ..., (Ns − 1) (42)

where Ns is the number of data points. Because the relative error is smaller than 10−12, the
total energy can be considered as conserved in our simulation. Finally, the absolute error of
the three total angular momentum components are shown in the bottom panel of Fig. 4. The
absolute error is computed as

δ J = |Ji+1 − Ji |, i = 0, 1, 2, ..., (Ns − 1). (43)

Similar to the total energy, the error in the total angular momentum is smaller than 10−12,
and we conclude that also the total angular momentum is conserved in the simulation.

3.2 Case 2: adding initial angular velocity to the spheroids

We now consider a system where both spheroids are initially spinning around their z-axes,
with ω̂0,z = 2, while the other angular velocity components are initially set to zero. We also
let both spheroids start with a slight tilt, in which θ0,A = −θ0,B = π/32, while the other
angles are initially zero. The other parameters are the same as those in case 1.

Figure 5a shows the spheroid orbits projected onto the xy-plane. The orbits for this case
closely resemble the case for two spheroids in co-planar motion (Wold and Conway 2021).
Figure 5b shows their z-positions as a function of time. As in Case 1, a force along the z-axis
can occur, but the motion in the z-direction is 11 orders of magnitude smaller than the motion
in the x and y-directions for both spheroids.

Figure 5c and d show the rotation angles φ and θ , plotted as sine functions, of bodies A
and B respectively. As the spheroid spins around its z-axis, the angle ψ increases linearly
and will appear as a straight line with constant slope in the figures. Meanwhile, the angles
(φ,θ ) oscillate between −π/32 and π/32. As ψ is increasing linearly and (φ, θ ) are both
oscillating, the rotational motion of the two spheroids is very similar to that of a spinning top
or a precessing gyroscope. Compared to case 1 in Sect. 3.1, where the spheroids tumbled, by
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(a)

(b)

(c)

(e)

(d)

(f)

Fig. 2 For case 1, where the spheroids are initially rotated about their respective x-axes. (a) The orbits of
spheroids A and B in the inertial frame projected into the xy-plane. (b) The z-position of the spheroids as a
function of time. (c,d) The rotation angles of bodies A and B as sine functions. (e,f) The angular velocity in
the body-fixed frames of bodies A and B as a function of time. The unit of the angular velocity ω̂ is radians
per unit time
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35 Page 12 of 21 A. Ho et al.

Fig. 3 Fz component on body A for case 1. The Fx and Fy components are not included in the figure as they
take values of order 10−1

Fig. 4 For case 1. Top: The potential energyU (green), translational kinetic energy Ek (red), rotational kinetic
energy Erot (orange) and the total energy Etot (blue). Middle: The relative error of the total energy. Bottom:
The absolute errors in the components of the total angular momentum. The errors in both the total energy Etot
as well as the total angular momentum Jtot are smaller than 10−12, which demonstrates that these quantities
are conserved in our simulations
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spinning the spheroids around their corresponding axes of symmetry, the rotational motion
stabilises.

The angular velocity components (ω̂x , ω̂y) are shown in Fig. 5e and f for bodies A and B,
respectively. Because of the rotational symmetry of the spheroid, ω̂z will remain constant at
the value ω̂z = 2 throughout the simulation, and is therefore excluded from the figures. The
values of the ω̂x and ω̂y components peaks when the two spheroids are in close proximity.
By increasing the initial angles by a factor of four, i.e. θ0 = π/8, the amplitude of both the
ω̂x and ω̂y components nearly doubles, indicating that the amplitude of these two angular
velocity components is sensitive to initial angle.

The different parts of the total energy are shown in the top panel of Fig. 6. Due to the
spheroids’ rotations, the rotational energy now makes a significant contribution to the total
energy, being greater than the kinetic energy from the translational motion. However, because
ω̂x and ω̂y are roughly 3 orders ofmagnitude smaller than ω̂z , and ω̂z is constant, the rotational
energy is nearly constant. Furthermore, both the total energy and total angular momentum
remain constant in the simulation, as their respective errors are smaller than 10−12.

4 Application to (66391) 1999 KW4

In this section, we apply our method to the asteroid binary system (66391) 1999 KW4, where
we refer to the primary as Alpha, and to the secondary as Beta. We will study the dynamical
evolution of the bodies and see how the outcome changes when the body shapes are changed
from ellipsoids to spheroids by setting the semiaxes to be a = b > c. The simulations run
with a timespan of 1 year.

The physical parameters, as well as initial conditions, used in the simulations are shown
in Table 2. We let Alpha start at rest from the origin of the inertial frame in the simulations.
We also assume that Beta is located at the pericenter at t = 0, and thus set the mean anomaly
M0 to be initially zero. (Ostro et al. 2006) also find that the angle between the rotation pole of
Alpha and the binary orbit is between 0◦ and 7.5◦ with a nominal separation of 3.2◦. As such,
we let Alpha be initially rotated with φ0 = 3.2◦, whereas Beta initially remains non-rotated.
It is assumed that the orbit of Beta is synchronous, and the initial angular velocity of Beta is
set so that its rotation period is equal to its orbital period.

The top, middle and bottom panels of Fig. 7 shows the eccentricity, semi-major axis and
inclination of Beta respectively. The inclination is calculated with respect to the original
plane of orbit. For a spheroidal model, the eccentricity can take slightly higher values, where
the eccentricity peaks at e = 0.0140 for the spheroidal model, while it peaks at e = 0.0126
for the ellipsoidal model. This is lower to the eccentricity in the excited state of Fahnestock
and Scheeres 2008 (see also Compère and Lemaître 2014; Hou et al. 2017; Shi et al. 2017),
which find that the eccentricity can surpass e = 0.03. The range of the semi-major axis are
similar in both simulation types, where it takes values between as ∈ [2.5418, 2.5526] km
and averaging at ās = 2.5471 km for the ellipsoidal model, and as ∈ [2.5433, 2.5521] km
and averages at ās = 2.5477 km for the spheroidal model.

Because the orbital period is proportional to the semi-major axis, the fact that the average
semi-major axis is larger in the spheroidal simulation, indicates that the orbital period is also
longer. We find that the average orbital period of Beta is T̄ = 17.4116 hrs for the ellipsoidal
simulation and T̄ = 17.4177 for the spheroidal simulation. The period of the inclination is
longer for the ellipsoidal model, where the period is approximately 3900 hrs between the
two maxima, whereas the period is approximately 3400 hrs for the spheroidal model.
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(a)

(b)

(c) (d)

(e) (f)

Fig. 5 Results of the translational and rotational motion of the spheroids for case 2. We have not shown ω̂z
since it has a constant value of ω̂z = 2
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Fig. 6 Same as Fig. 4 but for case 2, where both spheroids have an initial angular velocity. The total energy
and total angular momentum of the system is conserved, as demonstrated by the small relative error in these
two quantities

Table 2 The parameters and
initial conditions used for the
simulations. The orbital
elements, obtained from Ostro
et al. (2006), are those of Beta in
orbit around Alpha. For the
spheroid simulations, we set the
semiaxes to be a = b

Parameter Alpha Beta

a, semiaxis along x (km) 0.766 0.285

b, semiaxes along y (km) 0.748 0.232

c, semiaxes along z (km) 0.674 0.175

m, mass (1012 kg) 2.353 0.135

φ0, initial rotation angle around x-axis (◦) 3.2 0.0

ω̂z,0, initial angular velocity (rad hr−1) 2.2728 0.3611

as , semi-major axis (km) 2.548

e, eccentricity 0.0004

i , inclination (◦) 156.1

�, longitude of ascending node (◦) 105.4

ω, argument of periapsis (◦) 319.7

M0, mean anomaly (◦) 0.0

Figure 8 shows the angular velocity components of the secondary for the first 200 hours of
the simulation. Here, we find that the range of ω̂z is ω̂z ∈ [9.55, 11.16]·10−5 rad/s. Compared
to the findings of Fahnestock and Scheeres (2008), the range range is smaller than the excited
state, but also larger than the relaxed state, than that of Fahnestock and Scheeres. Another
major difference is in the components of both ω̂x and ω̂y . The work of Fahnestock and
Scheeres find that both of these components change very insignificantly for both the excited
and relaxed configurations. Our findings, however, show that the components respectively

123



35 Page 16 of 21 A. Ho et al.

Table 3 CPU time used for each
simulation, as well as simulation
time, presented in the paper. Note
that the simulation time for Case
1 and Case 2 have a
dimensionless quantity

Scenario CPU time Simulation time

Case 1 22.8 s 200

Case 2 129.0 s 200

1999 KW4, ellipsoids 4.6 hrs 1 yr

1999 KW4, spheroids 1.1 hrs 1 yr

oscillates around the values ω̂x ∈ [−1.89, 1.86]·10−5 rad/s, ω̂y ∈ [−3.20, 3.23]·10−5 rad/s.
As previouslymentioned in dimensionless test scenario “spinning system” (see Sect. 3.2), the
amplitude of the ω̂x and ω̂y components could be affected by the initial angle. The difference
in our result, and the one of Fahnestock and Scheeres, could therefore be due to the difference
in the initial angles.

Changing the body shapes from ellipsoids to spheroids significantly affects ω̂z . As seen
in Fig. 8, by allowing the bodies to take a spheroidal shapes, ω̂z for Beta becomes constant
as opposed to oscillating when it had an ellipsoidal shape. This is because spheroids are
rotationally symmetric, and no torques can act to change the angular velocity in the z-
direction. This is also what was seen in the dimensionless test scenarios in Sect. 3. The
ω̂x and ω̂y components, on the other hand, still oscillates between the values seen for an
ellipsoidal shape. The angular velocity of Beta in the spheroidal case is similar to the result
that was previously shown in Fig. 5e and f, in which ω̂z was constant and both ω̂x and ω̂y

were oscillating over time.
Figure 9 shows the relative error in the total energy and the relative error of the components

of the total angular momentum in the top and bottom panels respectively. The blue and red
curves correspond to simulationswhere the bodies take ellipsoidal and spheroidal shapes. The
relative error of the total energy is smaller than 10−14 for both the ellipsoidal and spheroidal
simulations. For the total angularmomentum,we only show the relative error in the ellipsoidal
simulation. Here, the relative errors in each component are smaller than 10−11. The errors
in the spheroidal simulation are similar to the ellipsoidal simulation. Although, throughout
the simulation, there is a drift in the total angular momentum, causing the errors in each
component to increase over time.

5 Summary and discussion

We have validated and explored an alternative method for simulating the dynamics of a fully
three dimensional rigid two-body problem suggested by Conway (2016). The method, which
is based on vector potentials instead of scalar potentials, uses surface integrals to determine
the force, torque and mutual potential energy between two bodies. Wold and Conway (2021)
outlined the surface integration method in detail, and tested it for a pair of coplanar spheroids
and thin disks. In this work, we extend the work and apply the method to pairs of ellipsoids
and spheroids that can be randomly oriented with respect to each other, hence torques and
angular momentum exchange is included.

Table 3 shows a summary on the CPU time used for each simulation. The CPU time used
for the dimensionless simulations varied between 20 seconds to twominutes. For the (66391)
1999 KW4 system, the CPU time required varied between one hour to four hours.

Two dimensionless cases were studied, where both test scenarios considered spheroidal
body shapes. In the first case, both the spheroids are initially rotated around their body-
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Fig. 7 Time evolution of the eccentricity, semi-major axis and inclination with respect to the original plane of
orbit

Fig. 8 The angular velocity components of Beta as a function of time. Solid lines corresponds to the bodies
take ellipsoidal shapes, while the dotted lines correspond to the bodies with spheroidal shapes

123



35 Page 18 of 21 A. Ho et al.

0

Fig. 9 Top: The relative error of the total energy of the (66391) 1999 KW4 system, where the blue and red
curves correspond to the ellipsoidal and spheroidal simulations respectively. Bottom: The relative error of the
components of the total angular momentum for the ellipsoidal simulation

fixed x-axes. Despite the lack of initial motion along the z-direction, the initial rotational
tilt allowed a small force component along the z-direction to take place. This results to a
small motion along the z-direction over time, although the motion is 11 orders of magnitude
smaller than the motion along the x and y direction. Furthermore, the rotational motion of
the spheroids develops into tumbling motion. The second dimensionless case considered is
similar to the first one, where both bodies are now initially rotated around their body-fixed
y-axes. However, in this scenario, both bodies also start with an angular velocity about their
body-fixed z-axes. The motions of the spheroids’ in this case closely resembled two tops
spinning in orbit around the common center of mass. By spinning the spheroids about their
axes of symmetry, the rotational motion stabilises so that it is no longer tumble-like.

Finally, we apply the method on the asteroid binary system (66391) 1994 KW4. In this
scenario, we consider two types of simulations: onewhere both bodies have ellipsoidal shapes
and one where both have spheroidal shapes.

We compare the difference in the dynamical evolution of Beta when the bodies had
ellipsoidal and spheroidal shapes. The eccentricity, on average, is larger in the spheroidal
simulation. Furthermore, the values of the eccentricity is smaller than the findings of of
Fahnestock and Scheeres (2008). The values of the semi-major axis are similar for both sim-
ulation types, but the average semi-major axis is slightly larger for the spheroidal simulation
compared to the ellipsoidal simulation. This also indicates that the orbital period becomes
longer when the bodies take ellipsoidal shapes. We also find that the time period it would
take for the inclination to reach its maximum are longer when both bodies took ellipsoidal
shapes.

The angular velocity components of Beta is also studied. The results are also compared
to the findings of Fahnestock and Scheeres (2008), where we find that the ω̂z component, for
the ellipsoidal simulation, is similar to the findings of Fahnestock and Scheeres. However,
the evolution of both ω̂x and ω̂y are different, in which we find that these components are
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oscillating with larger amplitudes compared to the findings of Fahnestock and Scheeres,
which is due to the difference in the initial conditions.

Studying the errors in the total energy and total angular momentum serves as a check
of simulation accuracy. We find that the errors for both the total energy and total angu-
lar momentum are smaller than 10−12 for all simulations presented. The errors, which are
numerical in origin, are small enough to demonstrate that our model conserves energy and
angular momentum.

While our method has only been demonstrated here for a handful of scenarios, the method
can also be generalized to an N -body simulation, which can be used to simulate e.g. an
asteroid triple system and even include the gravitational pull from the planets in the solar
system.
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Appendix A: Gravitational field of an ellipsoid and spheroid

The gravitational field is required to compue the mutual potential energy in Eq. (4). We will
here derive an analytical expression of g = (gx , gy, gz) = ∇� based on the expression in
Eqs. (37) and (41). It should be noted that, while κ is a function of (x, y, z), when taking the
partial derivatives of the gravitational potential �, κ can be treated as a constant (MacMillan
1930).

For a general ellipsoid, the components of the gravitational field thus become

gx = 4xπρabc√
a2 − c2

E(ωκ) − F(ωκ)

a2 − b2
(44)

gy = 4yπρabc√
a2 − c2

[
F(ωκ)

a2 − b2
− (a2 − c2)E(ωκ)

(a2 − b2)(b2 − c2)

+ (c2 + κ)

b2 − c2

√
a2 − c2√

(a2 + κ)(b2 + κ)(c2 + κ)

]
(45)

gz = 4zπρabc√
a2 − c2

[
E(ωκ)

b2 − c2
− (b2 + κ)

b2 − c2

√
a2 − c2√

(a2 + κ)(b2 + κ)(c2 + κ)

]
. (46)

For an oblate spheroid, the components of g are

gx = 2πρxa2c

a2 − c2

⎡
⎣

√
c2 + κ

a2 + κ
− 1√

a2 − c2
sin−1

⎛
⎝

√
a2 − c2

a2 + κ

⎞
⎠

⎤
⎦ (47)
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gy = 2πρya2c

a2 − c2

⎡
⎣

√
c2 + κ

a2 + κ
− 1√

a2 − c2
sin−1

⎛
⎝

√
a2 − c2

a2 + κ

⎞
⎠

⎤
⎦ (48)

gz = 4πρza2c

a2 − c2

⎡
⎣ 1√

a2 − c2
sin−1

⎛
⎝

√
a2 − c2

a2 + κ

⎞
⎠ − 1√

c2 + κ

⎤
⎦ . (49)

The value of κ , for both the ellipsoid and spheroid cases, still satisfies Eq. (38).
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Sebera, J., Bezděk, A., Pešek, I., Henych, T.: Spheroidal models of the exterior gravitational field of asteroids
bennu and castalia. ICARUS 272, 70–79 (2016)

Shi, Y., Wang, Y., Xu, S.: Mutual gravitational potential, force, and torque of a homogeneous polyhedron
and an extended body: an application to binary asteroids. Celestial Mech. Dyn. Astron. 129(3), 307–320
(2017). https://doi.org/10.1007/s10569-017-9776-6

Verner, J.H.: Numerically optimal runge-kutta pairs with interpolants. Num. Algorithms 53(2), 383–396
(2010). https://doi.org/10.1007/s11075-009-9290-3

Weidenschilling SJ, Paolicchi P, Zappala V (1989) Do asteroids have satellites? In: Binzel RP, Gehrels T,
Matthews MS (eds) Asteroids II, pp 643–658

Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic
and mascon gravitation representations of Asteroid 4769 Castalia. Celestial Mech. Dyn. Astron. 65(3),
313–344 (1997)

Werner, R.A., Scheeres, D.J.: Mutual potential of homogeneous polyhedra. Celestial Mech. Dyn. Astron.
91(3–4), 337–349 (2005). https://doi.org/10.1007/s10569-004-4621-0

Wittick, P.T., Russell, R.P.: Mascon models for small body gravity fields. AAS/AIAA Astrodyn. Spec. Conf.
162, 17–162 (2017)

Wold, M., Conway, J.T.: The planar two-body problem for spheroids and disks. Celestial Mech. Dyn. Astron.
133(6), 27 (2021). https://doi.org/10.1007/s10569-021-10023-x

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s11214-011-9794-8
https://doi.org/10.1007/s11214-011-9794-8
http://arxiv.org/abs/1505.08041
https://doi.org/10.1007/BF00691912
https://books.google.no/books?id=-PEgAAAAMAAJ
https://doi.org/10.1126/science.1072094
https://doi.org/10.1126/science.1072094
https://books.google.no/books?id=YZolAAAAMAAJ
https://doi.org/10.1126/science.1133622
https://doi.org/10.1196/annals.1311.006
https://doi.org/10.1007/s10569-009-9184-7
https://doi.org/10.1126/science.1133599
https://doi.org/10.1007/s10569-017-9776-6
https://doi.org/10.1007/s11075-009-9290-3
https://doi.org/10.1007/s10569-004-4621-0
https://doi.org/10.1007/s10569-021-10023-x

	Extended two-body problem for rotating rigid bodies
	Abstract
	1 Introduction
	2 Mathematical model
	2.1 Rotation angles and rotational motion
	2.2 Surface integration
	2.2.1 Rotated gravitational potential

	2.3 Total energy
	2.4 Angular momentum
	2.5 Gravitational potential

	3 Dimensionless test scenarios
	3.1 Case 1: small initial rotation of the spheroids
	3.2 Case 2: adding initial angular velocity to the spheroids

	4 Application to (66391) 1999 KW4
	5 Summary and discussion
	Acknowledgements
	Appendix A: Gravitational field of an ellipsoid and spheroid
	References




