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Abstract: Passive acoustic monitoring is a method that is commonly used to collect long-term data
on soniferous animal presence and abundance. However, these large datasets require substantial
effort for manual analysis; therefore, automatic methods are a more effective way to conduct these
analyses and extract points of interest. In this study, an energy detector and subsequent pre-trained
neural network were used to detect and classify six fish call types from a long-term dataset collected
in the northern Gulf of Mexico. The development of this two-step methodology and its performance
are the focus of this paper. The energy detector by itself had a high recall rate (>84%), but very
low precision; however, a subsequent neural network was used to classify detected signals and
remove noise from the detections. Image augmentation and iterative training were used to optimize
classification and compensate for the low number of training images for two call types. The classifier
had a relatively high average overall accuracy (>87%), but classifier average recall and precision
varied greatly for each fish call type (recall: 39–91%; precision: 26–94%). This coupled methodology
expedites call extraction and classification and can be applied to other datasets that have multiple,
highly variable calls.

Keywords: fish sounds; artificial intelligence; energy detector; fish call detection; classification;
neural network; Gulf of Mexico

1. Introduction

Passive acoustics are increasingly being used as a tool for population management and
assessment [1,2]. Passive acoustic monitoring (PAM) is a relatively low-cost way to collect
long-term datasets of animal occurrence, which is particularly effective when the animals
are not constantly present and calling [3]. PAM systems are fairly non-invasive, require
relatively little maintenance, are deployable in remote and extreme locations, and can record
continuously or on a pre-set schedule for months [4,5]. A plethora of information can be
extracted from the extensive recordings, such as specific call characteristics at the individual
and species level [1], diel and seasonal calling patterns [1,6,7], habitat use [8–10], biological
processes (e.g., mating, spawning, feeding, social interactions, and competition) [11–13],
species abundance and/or composition [14–17], and ecosystem health [18,19].

PAM has been applied in both freshwater and marine environments [4,6] and proven
to be a useful method in detecting and recording the calls of a variety of aquatic animals,
such as whales [10,20], dolphins and porpoises [6,21,22], seals [23,24], and fish [4,25,26].
There are over 800 species of soniferous fishes [27–32], so PAM is a very useful method for
collecting spatial and temporal data on many of those species in a non-invasive, continuous
way. For example, PAM has been used to characterize oyster toadfish (Opsanus tau) boat
whistle activity (daily, seasonal, and geographical), characteristics (amplitude, waveforms,
and spectra), and propagation [1], to determine distinct diel and seasonal calling patterns of
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white-spotted damselfish (Dascyllus albisella) [33], and to locate grouper, Epinephelidae [34],
and red drum (Sciaenops ocellatus) [35] spawning sites. Fish calls are commonly identified
in long-term datasets based on their low frequency (<1 kHz) [25,36], chorusing at dawn,
dusk, and/or overnight [36,37], and a peak in calling during summer months or known
spawning times [38,39]. However, due to the large datasets that are often created using
PAM, manual analysis may not be feasible, so automatic detection and classification
methods are preferred to expedite the data analysis process by extracting and identifying
signals of interest [40–44].

To date, at least 15 studies have used automatic analysis methods to detect and/or
classify fish calls [45]. Some studies focused only on automatic call detection without
classification [46,47], whereas others applied an automatic pattern recognition method
that both detected and classified the target call [48,49]. The commonly used detection
methods among the fish call studies included using a matched filter and spectrogram
correlation or energy threshold to find and extract the target fish calls in the dataset. These
are supervised detection methods because they are created based on call characteristics that
the researcher specifies. For example, Ruiz-Blais et al. [46] created a kernel to detect Jamaica
weakfish (Cynoscion jamaicensis) calls based on four call features and a call was detected if
every feature exceeded its threshold, which was predetermined by the researchers. Ricci
et al. [47] used a multikernel approach based on the two lowest harmonic frequencies of
oyster toadfish calls, to identify their calls within the recordings. Other detection methods
include both supervised and unsupervised machine learning algorithms, such as Gaussian
mixture models, k-nearest neighbors, support vector machine, and neural networks, which
are capable of pattern recognition and extracting relevant information to not only detect,
but also classify calls [45,50–53]. Most studies had an average detection or classification
accuracy between 85% and 93%. Previous studies reported that accuracy was dependent
on a variety of factors. The size of the training set was important, with larger training
sets leading to higher accuracy [51,53]. Data with louder ambient noise led to decreased
accuracy [53,54]. Finally, call type or fish species also affected the performance of detectors
and classifiers [45]. Meagre (Argyrosomus regius) pulses had a much lower identification rate
(6.6%) than long grunts (26.4%), intermediate grunts (93.2%), and short grunts (96%) [45],
while the identification accuracy of the grouper depended on species [49]. Additionally,
Vieira et al. [52] and Monczak et al. [50] observed that their models were able to identify
longer duration fish calls with prominent harmonics more accurately than shorter-duration,
pulsed calls. Even though detection and classification accuracy is not high for every fish
call or species, all acoustic studies of fish that have used automatic analysis methods
concluded that these methods provide the most efficient way to analyze long-term PAM
datasets [50,52].

In this study, we used a novel two-step analysis method to automatically detect and
then classify six fish call types, which were manually identified from a long-term dataset
collected in the northern Gulf of Mexico. We discuss the development of the detector
and classifier, as well as report on the accuracy, precision, and recall of each step. This
two-step methodology expedites call extraction and identification processes, can be used
when the target calls vary in both duration and frequency, and presents a new, effective
approach to study soniferous fish abundance and presence, which can help ecologists
and managers estimate population size and health, leading to improved management
decisions. Consequently, this method will be applied to a seven-year dataset collected from
the northern Gulf of Mexico to assess the impact of the 2010 Deepwater Horizon oil spill
on the local fish community based on fish calling patterns and call abundance. Lastly, this
automatic, two-step analysis approach could be used by biologists and ecologists with
limited programming skills to detect and classify many different and variable call types in
a dataset, whereas previous machine learning algorithms were often created based on a
specific call type or a few calls that have relatively similar frequency and duration.
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2. Materials and Methods
2.1. Data Collection

Data used for training, testing and evaluation of the detector and classifier were
collected using a High-frequency Acoustic Recording Package (HARP), a bottom-mounted,
autonomous calibrated recorder, containing a two-channel hydrophone—one to record
high frequencies and one to record low frequencies (sensitivity: −200 dB re Vrms/µPa
and −187 dB re Vrms/µPa, respectively; flat frequency response (±1.5 dB): 1–100 Hz and
1–10,000 Hz, respectively) [55]. The HARP was deployed in the northern Gulf of Mexico,
approximately 60 km north of the 2010 Deepwater Horizon oil spill site, at ~90 m depth
(Figure 1). Recordings were collected between 2010 and 2012 continuously, with short gaps
for recovery and redeployment. The HARP recorded at a sample rate of 200 kHz with
16-bit quantization.
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Figure 1. High-frequency acoustic recording package (HARP) deployment location in the northern
Gulf of Mexico.

The data were pre-processed by converting the compressed binary files into WAV
files. All WAV files were decimated to a sampling frequency of 2 kHz (initial sampling
frequency: 200 kHz) to reduce the data to a 1 kHz bandwidth (0–1000 Hz), which allowed
for faster computational analysis because the fish calls of interest have energy content
below 1 kHz [25,30]. Long-Term Spectral Averages (LTSAs), with a frequency and temporal
resolution of 1 Hz and 5 s, respectively, were calculated from the data using Triton, a Matlab-
based acoustic analysis software package [56]. A years’ worth of data were manually
analyzed to determine potential fish call types in the dataset. There were a total of six
likely fish calls identified in these data that were the main target of this analysis. They are
likely fish calls due to their low frequency (<1 kHz) and drumming or vibratory, pulsed
sound [29–31]. The six calls varied in frequency and duration (Figure 2, Table 1). Five of the
six calls—Beats, Buzz, Croak, Downsweep, and Pulse train—have not been documented
before and are named based on the way they sound. It is possible the Jetski is the same call
as the 300 Hz frequency modulated harmonic call described by Wall et al. [57]; however, it
is difficult to discern based on the limited call description and low-resolution spectrogram.
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Table 1. Frequency (average minimum and maximum) and temporal (average, maximum, and minimum duration)
characteristics of the six fish call types based on 30 randomly selected calls of each call type.

Call Type Average Minimum
Frequency (Hz)

Average Maximum
Frequency (Hz)

Average
Duration (s)

Maximum
Duration (s)

Minimum
Duration (s)

Beats 121 274 1.8 2.5 1.1
Buzz 35 343 6.2 18.0 2.2
Croak NA NA 10.5 92.8 2.6

Downsweep 310 850 1.9 4.8 1.0
Jetski 214 802 5.1 11.7 2.8

Pulse train 461 563 23.5 101.4 4.9

2.2. Train/Test and Evaluation Datasets

When developing artificial intelligence methods to detect and classify calls, it is
necessary to have two datasets: a train/test and evaluation dataset. A train/test dataset
was established from one month of data (August 2010) and was used to develop and
modify the automatic detector and classifier. This month was selected because all six fish
call types were present, as well as many different noise types, and a relatively high number
of occurrence of each call was present compared to other months that were manually
analyzed. The evaluation dataset was composed of the first seven days of June, September,
and December 2011 and March 2012, as well as 18–24 July 2012 to cover all four seasons,
two different years, and provide a good number of all six call types. These data were used
to assess the performance of the detector and classifier on a new, diverse subset of the
long-term dataset.

Triton was used to manually create the groundtruth, a log of the six fish calls of interest,
for both datasets. When signals of interest were visually detected in the Triton-generated
LTSA (plot length: 1 h), a short, higher-resolution spectrogram (plot length: 30–120 s,
Hanning window, 90% overlap, frequency resolution: 2 Hz, time resolution: 0.5 s) was
used to identify the fish call and record the call’s start and end time. The average maximum
and minimum frequencies and duration of each call type were measured, too (Table 1).
Based on the analyst’s manual analysis, the train/test dataset contained a total of 834 calls
of the six fish call types and the evaluation dataset contained a total of 1503 calls of the six
fish call types.
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Data analysis occurred in two steps—detection followed by classification. These two
methods are explained in more detail in Sections 2.3 and 2.4.

2.3. Call Detection: Energy Detector

To effectively and automatically determine the occurrence of signals of interest, fish
calls were detected and extracted from the recording’s waveforms using the energy detector
feature of Ishmael, a bioacoustics analysis software [58]. An energy detector was used to
detect the six fish calls of interest because it is a general, broad detector, capable of detecting
any signal or noise within a certain frequency band and above a specific threshold that
the user specifies. The fish call characteristics needed to create the Ishmael energy detector
were average minimum call frequency, average maximum call frequency, and average
call duration (Table 1). The specified detector parameters included the frequency band
(maximum frequency and minimum frequency), call duration, threshold, and call detection
neighborhood, which is how soon a subsequent call can be detected after an initial detection.
These parameters were iteratively adjusted until a detector with a high recall (>85%) was
established for the train/test dataset. Because the energy detector did not rely on other
temporal characteristics, such as amplitude, number of pulses, or interpulse interval, they
were not measured for each call type and the focus of this paper is the application of
automatic analysis methods to these data, not describing each call.

To begin, a single, broadband energy detector (frequency range: 100–800 Hz) was
applied to the dataset. The frequency range, threshold, and call detection neighborhood
were then slowly decreased to 500 Hz (spanning from 150 to 650 Hz), 0.054, and 4 s,
respectively. Recall is the fraction of true positives divided by the sum of true positives
and false negatives (i.e., the number of detections that are also found in the groundtruth
divided by the total number of calls in the groundtruth) and precision is the fraction of
true positives divided by the sum of true positives and false positives (i.e., the number
of detections that are also found in the groundtruth divided by all detections). Even
though recall was relatively high with these parameters, precision was low (Figure S1), so
modifications were made to the energy detector. Instead of one single broadband (150 to
650 Hz) energy detector, a detector with three smaller bands was applied to the train/test
dataset. However, after iteratively adjusting the three frequency band widths and settling
on 200 to 240 Hz (captured Beats and Buzz calls), 450 to 600 Hz (captured Downsweep,
Jetski, and Pulse train calls), and 870 to 950 Hz (captured Croak calls) for the bands, detector
precision and recall decreased (Figure S2). Because both recall and precision decreased,
the three-band energy detector was not tested on the evaluation dataset and the single
broadband energy detector was determined to be the best detector to extract the six fish
call types in this dataset.

The most efficient detector at extracting the six fish call types from the train/test
dataset operated over 150 to 650 Hz and had maximum call duration of 15 s with 4 s
detection neighborhood and a threshold of 0.054. The detector was then applied to the
evaluation dataset to check its performance on a new, diverse dataset it had not been
trained on. Recall and precision were calculated for different buffer lengths (tested between
3 and 6 s) to assess detector performance (Figure S1) [59]. Buffer length was used to
evaluate detector performance to see how close a detection is to a manually selected call;
if the buffer length was set to 3 s, then that means a detection occurred within 3 s of a
manually logged call start time and the detection would be considered a true positive.
Therefore, a longer buffer length will result in a higher recall rate because it increases the
probability that a detected signal will be identified in the dataset (Figure S1). In this study,
recall was prioritized over precision because the overall purpose of the detector was to
extract the majority of calls of interest. Each energy detection was saved as an individual
WAV file with the detection start time as the file’s name and the detection centered in the
file. The second step of the process, classification, enabled rejection of the false detections
and retention of signals of interest.
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2.4. Call Classification: ResNet-50 Convolutional Neural Network

Before the classification step could be conducted, the automatic detections had to be
converted into images. A custom-built MATLAB code was created to convert each Ishmael
energy detection WAV file into an image (JPG file) by performing a short-time Fourier
transform on each detection audio file, resulting in images with 2 Hz and 0.5 s resolution.
Each detection WAV file was read into MATLAB and then a spectrogram of the detection
file was created and changed to gray scale; the spectrogram was then filtered with a 2D
Gaussian smoothing kernel with standard deviation of 1 and saved as an image.

Transfer learning was used to classify all of the detected images [60,61]. The pre-
trained convolutional neural network that was used was ResNet-50 [62] and it was chosen
because of its efficiency, accuracy, and simplicity to retrain for other classification pur-
poses [63–65]. The classifier was trained with an unbalanced dataset since some fish calls
were less common than others (Figure 3). The ~2200 image dataset (train/test image
dataset) used to train and test ResNet-50 were images of the manually detected six fish
call types from the August 2010 train/test dataset, as well as with images of five noise
types—Disk write, Click train, Blank/noise (Blank), Low frequency noise (LF Noise), and
Random noise (Ra Noise)—which were commonly observed in the dataset (Figure S3).
Disk write is self-made noise by the HARP that occurs every 75 s. Click train most likely
represents sounds produced by dolphins. LF Noise was most often airgun noise. Only
26 Downsweep fish calls were manually detected in the train/test dataset, so 27 additional
Downsweep images, which were manually detected in the long-term dataset, were added
to increase the number of Downsweep images to 53, and 32 manually detected Beats images
from the evaluation dataset were added to increase the number of Beats images to 151.
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Figure 3. The number of images from the August 2010 train/test dataset used to train and test
the classifier ResNet-50 for each sound type, including the six fish call types (colored; Beats, Buzz,
Croak, Downsweep, Jetski, and Pulse train) and five noise types (gray scale; Click train, Disk write,
Blank/noise, Low frequency noise, and Random noise). The total number of images for training and
testing was 2231, with more than half of the images representing a noise type. * Majority of Beats calls
were from August 2010 train/test dataset, but 32 were from the evaluation dataset. ** Approximately
half of the Downsweep images were from the August 2010 train/test dataset and the other half was
from other periods in the long-term dataset.

ResNet-50′s accuracy was optimized by experimenting with data augmentation and
adjusting hyperparameters, such as number of epochs and mini batch size. Data augmenta-
tion involved iteratively adjusting the scaling and translation range of images [66]. When
using augmentation to train the classifier in this study, images were randomly scaled and
translated by any value in the range specified by the user. In this study, the scale range was
specified as ±10% in the Y dimension and the translation range was specified as ±50 pixels
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in the X dimension, meaning each individual training image was randomly scaled in just
the Y dimension by any percentage between −10% and +10% and shifted to the left or right
by any pixel value less than 51. However, it should be noted that there were probably in-
stances where no scaling or no translation or neither augmentation parameter was applied
since augmentation was random. For example, an image would only be translated if the
random scaling value was 0%, or vice versa, an image would only be scaled randomly and
not shifted if the random pixel translation value was 0, or the image would be scaled and
translated, or both the scaling and translation values would be 0 so the image remained
“unaugmented.” Therefore, classification accuracy can slightly differ between trials based
on how the training images are randomly augmented. Images of the six fish call and five
noise types were augmented (i.e., scaled and translated). The hyperparameters were set to
6 epochs and a mini batch size of 10.

Data augmentation was not used to adjust the level of background noise in the images.
They already had various levels of background noise found in the data, ensuring the
classifier was not trained on images with only the most intense and clear signals with
low background noise. Lastly, the actual training dataset remained unbalanced after
augmentation. Multiple epochs increased the training number of images for all sound
types, so the classifier was trained on more images of the rarer call types (e.g., Downsweep
and Pulse Train), but these rarer call types were not resampled more times than other call
types to ensure equal numbers of images in the training process.

To examine classifier consistency and accuracy, the detection images from both
datasets—train/test and evaluation—were run through the classifier three different times,
so there were three classification trials for each dataset in order to calculate average recall
and precision for each fish call type and to calculate average overall accuracy (total correctly
labeled images/total number of images) for each dataset [53]. Recall and precision were
also computed to assess classifier performance and a confusion matrix of classifier perfor-
mance was used to evaluate accuracy for each trial and averaged for each dataset (Table 2,
Table 3, Tables S1 and S2) [59]. For classification, recall is the fraction of correctly labeled
images of one sound type divided by the total number of images of that one sound type
and precision is the fraction of correctly labeled images of one sound type divided by the
total number of images that are labeled as that one sound type. Accuracy is the fraction of
true positives and true negatives divided by the total (i.e., total number of correctly labeled
images in the dataset divided by the total number of images in the dataset). Lastly, to see if
classifier performance could increase and further observe if the classifier was consistent
in labeling images, detection images labeled as the six fish call types were re-classified
because many images labeled as a fish call were often images of noise.

Table 2. Overall classifier accuracy (total correctly labeled detection images/total detection images) for the three different
times (i.e., three trials) all the detection images from both datasets—train/test and evaluation—were classified by the
data-augmented, trained classifier, as well as the average overall classifier accuracy for each dataset.

Dataset Trial # Overall Classifier Accuracy (%) Average Overall Accuracy (%)

August 2010 Train/test
1 87.42

87.972 88.20
3 88.29

Evaluation
1 93.87

93.022 93.82
3 91.35
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Table 3. The average recall and precision rate (%) for each of the six fish call types for each dataset and the combined average
recall and precision for each call type when considering all six trials (three train/test and three evaluation). The average
precision and recall values for each call come from Tables S1 and S2 for the train/test and evaluation dataset, respectively.

Dataset Beats Buzz Croak Downsweep Jetski Pulse Train

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

August 2010
Train/test 84.67 63.00 33.33 73.33 92.00 56.33 76.67 43.33 67.67 98.00 66.33 66.00

Evaluation 86.67 50.33 44.67 26.67 90.00 18.33 91.00 9.67 62.00 90.33 58.00 53.00

Combined
(Average) 85.67 56.67 39.00 50.00 91.00 37.33 83.83 26.50 64.83 94.17 62.17 59.50

Finally, MATLAB was used to calculate the signal-to-noise ratio (SNR) of 100 randomly
selected classified images of each fish call type—50 correctly classified and 50 incorrectly
classified—to evaluate if classifier performance was dependent on the intensity of the
signal compared to ambient background noise. To calculate SNR, the WAV file of each
image was used and the frequency band and duration were adjusted for each call to capture
where the most energy was present and to avoid including too much noise in the signal’s
sound pressure level (SPL) calculation (Figure S4). Two SNR calculations were made for
each Downsweep call because a high intensity version of the call would have multiple
downsweeps present but a low intensity call, which was more commonly observed in the
data, had one or two downsweeps; therefore, a full band SNR calculation would be quite
low compared to the SNR calculation when just using the strongest downsweep. The SPL
of the background noise, which was computed over the same frequency band and time
duration as the signal SPL but prior to the start of the signal start time, was then subtracted
from the signal SPL to compute the SNR. To analyze the SNR and classifier performance,
binomial logistic regression was used (0 = call was misclassified, 1 = call was correctly
classified) to fit a probability of correct classification curve. A threshold value of 0.5 was
used to determine the SNR threshold value, which is the minimum SNR value beyond
which calls have a chance better than random to be correctly classified (Figure S5). The area
under the receiver operating characteristic curve (AUC) was then calculated to evaluate
predictive performance of the logistic regression model (i.e., classifier performance based
on the SNR of a call), where anything under 0.7 was bad, 0.7–0.8 was adequate, 0.8–0.9 was
good, and >0.9 was excellent.

3. Results
3.1. Energy Detector Performance

The energy detector recall ranged from 79 to 92% depending on the buffer length—as
buffer length increased, so did recall (Figure S1a). Because detector recall was >85%
when the buffer length was 4 s for the train/test dataset, the detector was also run on the
evaluation dataset and recall only slightly decreased to 84.1% when buffer length was 4 s
(Figure S1b).

Detector precision was very low (Figure S1). The detector extracted 91,387 and
128,938 signals of interest when applied to the train/test and evaluation datasets, respec-
tively. Regardless of buffer length, detector precision was <1.2% for the train/test dataset
and the evaluation dataset. Because the energy detector threshold was quite low, the
detector selected all types of noise, including ships and boats, disk write, airguns, and a
large variety of unidentified random noises (Figure S6).

3.2. ResNet-50 Classifier Performance

Varying the training and testing set ratio (training: test ratio) of the train/test image
dataset indicated that a higher training:test ratio increased classifier accuracy when labeling
Downsweep images the most; for other call types, increasing the training:test ratio only
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slightly improved classifier accuracy (Figure S7). However, overall classification accuracy,
the rate of correct classifications for all 11 sound types (not just the six fish calls), of
the train/test image dataset increased when the training:test ratio increased. When the
training:test ratio was 70:30, 80:20, and 90:10, overall accuracy was 90.5%, 91.4%, 95.1%,
respectively. Therefore, a training:test ratio of 90:10 was used for the remainder of the
study to train and then test ResNet-50′s performance prior to classifying the thousands of
detection images from each dataset.

When augmentation was not used to train ResNet-50, average classifier precision was
low for the six fish call types when classifying the train/test dataset (<45%) and evaluation
dataset (<46%) (Figure 4). Because the six fish call types were not always in the same
location in the detection image and call size (call duration and frequency band) would
slightly vary, image augmentation was used to increase classifier precision. After iteratively
adjusting the scaling factor and pixel translation range, classifier performance was highest
when the scale range in only the Y dimension was ±10% and the translation range in
only the X dimension was ±50 pixels. When these image augmentation settings were
applied to images to train ResNet-50, as well as increasing the number of epochs to six
so that the classifier looped through the train/test image dataset six times instead of just
once, average classifier precision increased for all six fish call types (Figure 4). Augmen-
tation also increased average classifier recall for all six fish call types when classifying
the evaluation dataset detection images (Figure 4b). Even though average recall and
precision varied greatly depending on fish call and noise type, average overall classifier
accuracy with augmentation, when all 11 sound types are considered, was 87.97% and
93.02% for the train/test and evaluation dataset detection images, respectively (Table 2 and
Tables S1 and S2).

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 9 of 19 
 

 

 
(a) (b) 

Figure 4. Average (n = 3) classifier precision and recall with and without image augmentation (black and light gray shapes, 
respectively) to train the classifier. Results are presented when classifying: (a) the ~91,300 train/test dataset detection im-
ages and (b) the ~129,000 evaluation dataset detection images. Three noise categories (Low Frequency Noise, Blank/noise, 
and Random Noise) are combined to make the figures more clear. 

Table 2. Overall classifier accuracy (total correctly labeled detection images/total detection images) for the three different 
times (i.e., three trials) all the detection images from both datasets—train/test and evaluation—were classified by the data-
augmented, trained classifier, as well as the average overall classifier accuracy for each dataset. 

Dataset Trial # Overall Classifier Accuracy (%) Average Overall Accuracy (%) 

August 2010 Train/test 
1 87.42 

87.97 2 88.20 
3 88.29 

Evaluation 
1 93.87 

93.02 2 93.82 
3 91.35 

Classifier performance varied among call types. The Buzz fish call had the lowest 
average recall rate (39.00%); most of the Buzz images were labeled as LF Noise, Blank, or 
Ra Noise (Table 3). For example, in one trial of the evaluation dataset, 61 of the 213 Buzz 
images were labeled correctly, 8 were labeled as another fish call type (Beats), and 144 
were labeled as LF Noise, Blank, or Ra Noise. The other five fish call types had much 
higher average recall rates, from 91% for the Croak to 62% for the Pulse train (Table 3), 
than the Buzz call, but similar to the Buzz images, the majority of the other fish call images 
that were mislabeled were labeled as LF Noise, Blank, or Ra Noise, not as another fish call 
type (Tables S1 and S2). 

Table 3. The average recall and precision rate (%) for each of the six fish call types for each dataset and the combined 
average recall and precision for each call type when considering all six trials (three train/test and three evaluation). The 
average precision and recall values for each call come from Tables S1 and S2 for the train/test and evaluation dataset, 
respectively. 

Dataset Beats Buzz Croak Downsweep Jetski Pulse Train 

 Recall (%) 
Precision 

(%) 
Recall (%) 

Precision 
(%) 

Recall (%) 
Precision 

(%) 
Recall (%) 

Precision 
(%) 

Recall (%) 
Precision 

(%) 
Recall (%) 

Precision 
(%) 

August 2010 
Train/test 

84.67 63.00 33.33 73.33 92.00 56.33 76.67 43.33 67.67 98.00 66.33 66.00 

Evaluation 86.67 50.33 44.67 26.67 90.00 18.33 91.00 9.67 62.00 90.33 58.00 53.00 
Combined (Aver-

age) 
85.67 56.67 39.00 50.00 91.00 37.33 83.83 26.50 64.83 94.17 62.17 59.50 

Figure 4. Average (n = 3) classifier precision and recall with and without image augmentation (black and light gray shapes,
respectively) to train the classifier. Results are presented when classifying: (a) the ~91,300 train/test dataset detection images
and (b) the ~129,000 evaluation dataset detection images. Three noise categories (Low Frequency Noise, Blank/noise, and
Random Noise) are combined to make the figures more clear.

Classifier performance varied among call types. The Buzz fish call had the lowest
average recall rate (39.00%); most of the Buzz images were labeled as LF Noise, Blank, or
Ra Noise (Table 3). For example, in one trial of the evaluation dataset, 61 of the 213 Buzz
images were labeled correctly, 8 were labeled as another fish call type (Beats), and 144 were
labeled as LF Noise, Blank, or Ra Noise. The other five fish call types had much higher
average recall rates, from 91% for the Croak to 62% for the Pulse train (Table 3), than the
Buzz call, but similar to the Buzz images, the majority of the other fish call images that
were mislabeled were labeled as LF Noise, Blank, or Ra Noise, not as another fish call type
(Tables S1 and S2).
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A similar trend was observed for precision for all six fish call types—if images labeled
as a fish call were misclassified, they were not commonly labeled as a different fish call type,
but rather a noise type. For example, in one trial of the evaluation dataset, 1148 images
were labeled as “Beats” of which 448 were Beats, but 663 were LF Noise, Blank, or Ra Noise,
5 were Disk Write, 6 were Click train, and 26 were other fish call types (21 of which were
Buzz). The fish call type with the lowest average precision was Downsweep (26.50%) and
the Croak fish call type had the second lowest average precision (37.33%) (Table 3). The
four other fish call types had higher average precision (Beats: 56.67%, Buzz: 50.00%, Jetski:
94.17%, Pulse train: 59.50%). Interestingly, the average precision for each of the six call
types for the evaluation dataset was lower than the train/test dataset average precisions
for each of the fish calls.

Re-running the images labeled as any of the six fish calls through the classifier resulted
in slightly (<0.5%) to greatly increased (>20%) classifier precision (Table 4). One train/test
and evaluation data trial each had their percentage of correctly labeled images increase
by <0.5%. On the other hand, two of the evaluation and one train/test dataset trials resulted
in increases in precision between 19 and 34%, further indicating substantial level of the
inconsistency in this classifier.

Table 4. Reclassification statistics including the total number of detection images, the number of detection images labeled
as a fish call, the number (and percentage) of correctly classified detection images, and the number (and percentage) of
correctly re-classified detection images for the three trials for each dataset.

Dataset Trial # Total
Detection Images

Detection
Images Labeled as a Call

# Correctly
Classified Images

# Correctly
Re-Classified Images

Aug 2010
Train/test

1 91,387 3647 1902 (52.2%) 2617 (71.8%)
2 91,387 2429 1751 (72.1%) 1759 (72.4%)
3 91,387 2811 1814 (64.5%) 2042 (72.6%)

Evaluation
1 128,938 3413 1538 (45.1%) 1546 (45.3%)
2 128,938 4987 1605 (32.2%) 3318 (66.5%)
3 128,938 7347 1717 (23.4%) 5352 (45.2%)

For all six fish call types, the SNR was not directly related to classifier performance
(Figure S5). The selected SNR threshold value was greater than 0 for four of the calls (Beats,
Buzz, Jetski, and Pulse train) and less than 0 for three of the calls (Croak, Downsweep full
sweep, and Downsweep strongest sweep). For all fish calls, however, many calls were not
correctly classified even when the SNR value was greater than the SNR threshold value.
The area under the receiver operating characteristic curve (AUC) values ranged from 57.1%
(Buzz) to 86.2% (Beats), indicating the logistic regression model ranged from “bad” to
“good” (i.e., classifier performance was variable when labeling images correctly based on
the SNR value), depending on the call type (Figure S5). Based on the model, classifier
performance was “bad” at correctly labeling images of Buzz (57.1%), Croak (63.5%), Jetski
(67.0%), and Pulse train (66.9%) calls based on their SNR, “adequate” at correctly labeling
images of Downsweep calls when the full or strongest downsweep was measured (full:
76.6%; strongest: 71.8%), and “good” at correctly labeling images of Beats calls (86.2%).

3.3. Analysis Time: Manual vs. Automatic Methods

Using the energy detector and a pre-trained neural network sped up the call detection
and identification process (Table 5). These automatic methods, implemented on a mid-
range desktop computer with 8.00 GB RAM, 64-bit operating system, and Intel Core i3-8100
CPU and no GPU, resulted in processing of a month of data in approximately 8 and
10 hrs for the train/test and evaluation dataset, respectively. Manually going through
a day of data takes 15 to 45 min depending on the number of calls present and amount
of background noise. It took the analyst more than double the time (~2.6) to go through
each dataset than the two-step automatic detection and classification methods applied
in this study.
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Table 5. Statistics on detector and classifier performance including the number of recording days, the number of detections
selected by the energy detector, the amount of time (hr:min) it took the detector to run, the average amount of time it
took the classifier to label the detection images from each dataset, and the amount of time it took the analyst to manually
annotate each dataset.

Dataset Number of
Recording Days

Total
Detection Images

Time to Run
Detector (hr:min)

Average Time to Run
Classifier (hr:min)

Manual Analysis
Time (hr:min)

Aug 2010 Train/Test 31 91,387 4:10 4:07 21:35

Evaluation 35 128,938 3:50 6:09 26:20

4. Discussion

We used an effective automatic detector and classifier system to efficiently extract
and label six fish call types from a long-term passive acoustic monitoring dataset from the
northern Gulf of Mexico. This approach offers the potential to expedite the analysis process
for multiyear datasets from this region. However, understanding the caveats and potential
pitfalls of the process is important before applying it to long-term data.

4.1. Automatic Energy Detector

The energy detector function in Ishmael was chosen since it is a general, broad detector
capable of extracting the six fish call types, which vary in duration and frequency. The
recall rate in this study (~85%) was similar to the recall rate in another fish acoustic
study [46]. Ruiz-Blais et al. [46] used four Jamaica weakfish call features to create their
detector, which had an accuracy of 96% and recall of 81%, and Monczak et al. [50] had a
signal detector with an identification rate ((#files-# of files with false negative-# of files with
false positive/#files)*100) > 80% in most cases, depending on species, recorder location,
and call type. Wall et al. [67] developed an automatic detection algorithm to extract red
grouper (Epinephelus morio) calls within a year-long dataset and its recall rate was 44%;
however, they prioritized precision over recall because they were more interested in timing
of sound production rather than call abundance. Ricci et al. [47] also used a detector to
extract fish calls of interest, but they measured detector performance by the false detection
rate (=1—precision); their false detection rate was ~1%, which is significantly higher than
the rate observed for the energy detector in this study (precision < 1.2%). Additionally,
two other studies [48,49] developed their own algorithm that both detected and identified
their target fish call/s in their respective datasets. Kottege et al. [48] used spectro-temporal
features to successfully identify tilapia calls with ~98% accuracy and a recall rate of 94%,
using discriminant analysis methods. Chérubin et al. [49] did not report detector recall, but
their algorithm had an overall identification accuracy of 87.5%; however, it varied based
on species.

The majority of detections in our data were noise. The high false detection rate was
not surprising because the Gulf of Mexico has one of the loudest US water soundscapes due
to shipping and seismic exploitation and exploration, including airgun presence [68–70].
Manual review of detections revealed that many were airguns, which is not surprising
since seismic surveys occur all year in the northern Gulf of Mexico. Another frequent
detection was Disk write, which is self-made noise by the HARP; this noise occurs every
75 s and was often detected by the energy detector we developed.

Despite the low precision, the energy detector by itself was deemed a good detector
since it had a relatively high recall rate and it resulted in more total detections of the six
fish call types than the manual observer analysis, indicating that even though the detector
did not detect all of the same fish calls as the analyst, it was capable of extracting the calls
at alternate times that were missed by the analyst. It should be noted that in our analysis,
when the detector extracted a signal of interest and the signal was a fish call that the manual
observer had not marked, the detection was considered a false positive, even though a fish
call was present. Any other treatment would have resulted in a bias in our analysis.
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Lastly, the train/test (August 2010) and evaluation datasets were manually analyzed
by three different people to reduce subjectivity and bias because there is often inconsistency
in marking calls among multiple analysts [71]. Rather than combine the manual detections
from all three observers, we chose to use only one analyst’s log as our groundtruth for both
datasets because that log had more total fish calls marked and at the same time contained
~80% of the calls marked by the other two analysts. This approach led to a larger dataset
for evaluation and, thus, higher detector precision and recall.

4.2. ResNet-50 Classifier

ResNet-50 is an efficient and accurate pre-trained neural network that can easily be
retrained for other classification purposes [63,64]. Based on the literature review for this
study, this is the only fish acoustic study to date that has used transfer learning to classify
fish calls. Other fish acoustic studies used machine learning algorithms that were created
and trained specifically to detect and classify their fish calls of interest [45,49,51–54,72].
Pre-trained neural networks that can be retrained for other classification purposes, such as
AlexNet [73], GoogleNet [74], and ResNet-50, provide scientists, who have a background
in biology and ecology rather than signal processing or artificial intelligence, with a ready-
to-use model that can be easily modified based on their classification goals and target
signal. Zhang et al. [75] observed that classification accuracy was >20% higher when they
used transfer learning compared to training a neural network from the beginning on the
16 target whale calls in their dataset.

In this study, the classifier ResNet-50 was retrained with an unbalanced dataset of
images of the six fish call types and five noise types that were commonly detected by
the energy detector. The higher the training:test set ratio, the higher the classification
accuracy for each of the six fish call types, especially Downsweep, which only had a total of
53 images for training and testing. It is well-known that classifier performance is frequently
dependent on the size and quality of the training dataset [76]. Two fish acoustic studies
that used automatic classification methods noted the impact of training set size. Harakawa
et al. [51] used sequential machine learning algorithms to classify Sciaenidae calls and
recall increased from 80.8% to 92.2% when the percentage of training data increased from
1% to 80%. Noda et al. [53] observed that median classification accuracy increased from
81.77% to 95.58% when the training dataset size increased from 5% to 50%. Both studies
used a smaller training set percentage (<80% of the train/test image dataset) than what
we used (90%), but the number of images they had for their calls of interest was greater
than the number of images we had for each category, which is why our train:test ratio was
larger than normal.

Image augmentation, as well as having a mini batch size of 10 and 6 epochs increased
classifier precision across all fish call types (Figure 4). Interestingly, none of the fish acoustic
studies to date (according to our literature search) mentioned using image augmentation to
train their classifier; however, image augmentation has been used to increase the training
data size and classification performance when labeling other animal calls [75,77,78]. For
example, Padovese et al. [79] used image augmentation to generate synthetic calls to
increase training data size resulting in increased classifier recall and precision for labeling
North Atlantic right whale (Eubalaena glacialis) upcalls. Rasmussen and Širović [80] used
scaling and translation augmentation to prevent their classifier from overfitting during the
training process. Image augmentation was beneficial in this study because the number of
images for training and testing was relatively small (<400 images) for each sound type;
in fact, two of the six fish calls had <100 images each for training and testing (Figure 3).
Therefore, increasing the number of epochs and using augmentation to scale and translate
images increased the training set size and ensured the classifier was trained on images
where the call or noise was not always in the same location in the image and the size of
each call and noise was slightly variable.

The fish call types with the lowest (39.00%) and highest (91.00%) average recall was
Buzz and Croak, respectively. Usually, classifier performance is lower for short-duration,
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pulsed calls [45,52]; however, classifier recall did not appear to depend on call duration
or frequency band in our study. For the two pulsed calls, Pulse train and Downsweep,
average recall was 62.17% (second lowest, but much higher than average recall for Buzz) for
Pulse train and 83.83% (third highest) for Downsweep. Additionally, it was surprising that
the Buzz had a low average recall because calls with distinguished harmonics had a higher
identification rate (i.e., classified correctly more often) than shorter duration, pulsed calls
in another fish acoustic study [50]. It is likely Buzz calls were misclassified because they
slightly resemble airguns (LF Noise; Figure S6c) and Ra Noise, which have more energy
(i.e., higher intensity) at very low frequencies (<100 Hz) similar to the Buzz call (Figure 2b).
Average classifier recall was lower than might be expected for relatively long-duration
Jetski calls (64.83%). They were often labeled as Blank, which was surprising because upon
reviewing the images, the call was always present and visible.

Average precision of the classifier, on the other hand, generally appeared related to
call duration or frequency band for most of the fish calls. Even though average recall was
not the highest for the Jetski call (third lowest, 64.83%), average precision was much higher
for the Jetski call (94.17%) than the other five fish call types (second highest, Pulse train:
59.50%). This is likely because the Jetski call looks unique and does not resemble any of
the other calls or noise, making it easy to distinguish from the other call and noise types
(Figure 2e). The Downsweep call had the lowest average precision (26.50%); most images
labeled as “Downsweep” were noise, but Jetski and Pulse train images were also labeled as
Downsweep occasionally because some Jetski calls are short in duration and may resemble
a Downsweep. Pulse train calls are pulsed calls that are in the same frequency band as
the strongest sweep in a Downsweep call (Figure 2d,f) which could also have contributed
to the confusion. Croak had the second lowest average precision (37.33%) with images of
broadband noise and Disk write, which loosely look like the Croak call, commonly labeled
as “Croak.” The presence of airguns also impacted precision. They are low frequency noise
and cover the same frequency band as Beats and Buzz [69,70] and could have been the
cause of reduced precision for those calls, because lots of LF Noise was labeled as Beats
and Buzz. Further, because there was greater airgun presence in the evaluation dataset
than the train/test dataset, average precision for Beats and Buzz was further lowered in the
evaluation dataset. Lastly, average recall was higher than average precision for four of the
six calls—Beats, Croak, Downsweep, Pulse train. Harakawa et al. [51] similarly noted that
overall classifier recall was greater than overall classifier precision, regardless of training
set size, when classifying Sciaenidae calls.

Finally, average overall classifier accuracy in this study (~90%) was similar to classifier
accuracies observed in fish acoustic studies that used automatic analysis methods, such
as matched filters and machine learning algorithms [49,50,52,53,72,81]. Some studies with
higher performance trained their models on fewer classes (i.e., sound types). ResNet-50
was trained on 11 sound types (six fish calls and five common noises) and other studies
have shown that more classes (referred to as sound types in this study) often result in
lower classification accuracy [45,82]. When Vieira et al. [45] used four sound types of
meagre calls, the overall mean identification rate was 43.3%, but when they reduced the
number of sound types to two, the overall mean identification rate increased to 78.8%.
Maintaining a large number of classification labels can be useful for datasets with a large
variety of signals and when the focus of the study is not a single species or sound source.
ResNet-50 performed well overall in this study and was capable at labeling 11 different
sound types and thus could be a good option for other studies of multiple sound sources
as well. Interestingly, the “SNR” of each image (each spectrogram had to be converted
into an image to be processed by the ResNet-50 classifier) did not appear to affect classifier
accuracy (Figure S5). The relatively gradual logistic curve, low AUC values, and many
calls that were not correctly classified even though they had a high SNR indicate the poor
predictive performance of the logistic regression model and that SNR does not appear to
affect classification performance (i.e., accuracy) in this study. This was unexpected since
the SNR affected automatic detection and classification of fish chorusing and individual
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calls in other studies [53,54]. However, both Noda et al. [53] and Lin et al. [54] ran their
detection and classification algorithm on spectrograms instead of images, which means
that signal intensity and frequency influence detection and classification differently than
2D images [83]. Overall, though, ResNet-50 classified images of the six fish call types well,
regardless of the SNR.

4.3. Considerations for Application of This Approach to Long-Term Datasets

There is no ideal or standard way to divide all available data between training/testing
and evaluation. However, typical studies split the data so that 70–80% is used for training
and testing the model and 20–30% is used for evaluating how the model performs on data
it has not seen before. In this study, though, we used a much larger evaluation dataset than
typical (~55% of the data). To apply this two-step methodology to real data, we thought
it was important to evaluate the detector and classifier performance across a variety of
situations, including different months, seasons, years, and noise levels (e.g., airgun and
shipping presence). Therefore, a large evaluation dataset was specifically used to ensure
that the energy detector and ResNet-50 could perform as well across a large variety of
sound conditions that represent the diverse soundscape of the northern Gulf of Mexico.

The coupled automatic detector and machine learning methodology used in this study
expedites the call detection and identification process when analyzing a long-term passive
acoustic monitoring dataset. The analyst took ~2.6 more time to analyze each dataset than
the automatic methods used in this study, and this difference in analysis time could be
further increased if a supercomputer with more specialized and powerful hardware, such
as RAM, GPU, and FPGA, is used [84]. However, already, the methods employed here
could produce results on fish call presence from a full year of acoustic data in about five
days of processing time. The energy detector feature in Ishmael and ResNet-50 are relatively
simple programs that can be easily modified to detect and classify any signal, or signals,
of interest without requiring extensive programming abilities or equipment. Further, this
study is proof of concept that transfer learning can be used in fish vocalization studies,
which has not been applied in any previous fish acoustic study.

Even though the classifier performed well overall (~90% accuracy), it is important to
note the inconsistency in classifier performance. The accuracies of the three trials for each
dataset were similar to each other (Table 2); however, the recall and precision for each fish
call varied among trials for each dataset, indicating that the classifier was not consistent at
labeling images (Table 3). Further, when we re-ran the images labeled as any of the six fish
calls, the percentage of correctly labeled images increased between 0.2% and 34.3% for the
six trials (Table 4). This broad range in percentage of correctly re-classified images originally
labeled as a fish call shows the inconsistency in classifier performance. However, seeing an
increase of >19% in the percentage of correctly re-labeled images for three of the six trials
also suggests that using the classifier multiple times can ultimately lead to improvement
in the overall output (i.e., accuracy and precision). However, this multiple-classification
process may need to be coupled with a manual review step to validate fish detections and
remove misclassified noise from the final output.

This methodology could be applied to datasets with multiple call types that have
diverse, variable temporal features. In our study, temporal variations in calls did not matter
because the energy detector will pick up any signal if it is above the specified threshold
and within the specified frequency band; the number of pulses and interpulse interval did
not affect detection recall and precision. Similarly, since our training dataset represented
the variability of calls’ temporal features, the success of the classifier was not affected by
those variations. For example, images labeled as Beats had from one to more than five
Beats present with calls separated or overlapping. Additionally, images with three to seven
pulses for a Pulse train were reliably identified as a Pulse train due to their short duration
and relative y-position in the image (i.e., frequency), regardless of the interpulse interval.
Therefore, as long as the training set is diverse and fairly large (or diversified and expanded
with the use of data augmentation), the methods used in this study can detect and classify
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calls well, even when there are temporal and frequency variations. The energy detector is
broad and can work for any signals of interest, while the pre-trained ResNet-50 classifier
could work with any call type. However, for different call types, a separate library of
training and test images will have to be developed and ResNet-50 will have to be retrained
for those particular calls for the classifier to work on the new call types.

The methods developed in this study have the potential to be applied to soundscapes
and signals from a variety of ecosystems. By decimating the data, we were able to remove
from the energy detection most of the higher frequency biological noise—snapping shrimp
and cetaceans—that is also abundant in the region. A similar decimation approach might be
of use to others wishing to reduce false detections in the first step of the process. Our study
region, the Gulf of Mexico, is one of the loudest U.S. water soundscapes [69] with high
levels of low-frequency anthropogenic noise (e.g., commercial shipping and airguns). These
sounds could not be removed by decimation since they generally overlap in frequency
with our calls of interest. Even with these noises, however, our methods performed well
because the six fish call types were common in the dataset, allowing development of a
robust training and testing library, and distinct from other sounds in the environment.
In most instances, automated detection and classification should be used on signals that
are relatively common and easy to distinguish. In cases of sounds that are rare or whose
features are challenging to distinguish, it is not likely any automated classification methods
will perform satisfactorily. Therefore, the methodology presented in this paper should be
well suited for relatively common signals, regardless of habitat type and levels of noise
present, be they biophonic, anthrophonic, or geophonic.

In conclusion, this two-step process presents a novel, effective method to study
soniferous fish abundance and presence and can help ecologists and managers understand
potential population recovery based on call numbers and change in occurrence patterns
over the years. As the next step, the energy detector and ResNet-50 classifier will be
applied to the long-term PAM dataset collected between August 2010 and August 2017 at
this location in the Gulf of Mexico. Those results will enable us to estimate changes in call
abundance and observe daily, monthly, and annual calling patterns in the area, and possibly
assess the impact of the 2010 Deepwater Horizon oil spill on the local fish community.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jmse9101128/s1, Table S1: Average confusion matix of the three train/test dataset trials,
Table S2: Average confusion matrix of the three evaluation dataset trials, Figure S1: Energy detector
precision and recall dependent on various buffer lengths (3 s, 4 s, 5 s, and 6 s) for: (a) the train/test
dataset and (b) the evaluation dataset, Figure S2: Comparison of precision and recall between the
three-band detector (circles) and single, broadband (stars) energy detector based on various buffer
lengths of 3 s, 4 s, 5 s, and 6 s, Figure S3: Images (created from spectrograms) of the five noise
types that the classifier was trained with: (a) Disk write, (b) Click train, (c) Blank/ noise, (d) Low
frequency noise, (e) Low frequency noise, (f) Random noise, and (g) Random noise, Figure S4: Images
(created from spectrograms) of the six fish call types: (a) Beats, (b) Buzz, (c) Croak, (d) Downsweep
full sweep, (e) Downsweep strongest sweep, (f) Jetski, and (g) Pulse train, with shaded bands
(yellow) representing the frequency band and duration over which the signal sound pressure level
was calculated for each call type. Two SNR calculations were made for each Downsweep call
(indicated by d and e) because a high intensity Downsweep call had multiple downsweeps, but a
less intense Downsweep call, which was more commonly observed in the data, had only one or
two downsweeps, Figure S5: Binomial logistic regression plots with a 0.5 threshold (black, dotted
horizontal line; 0 = incorrectly classified, 1 = correctly classified) to determine the signal-to-noise ratio
(SNR) threshold value (vertical blue line in each subplot), the SNR value above which a call should be
correctly classified, for each fish call type: (a) Beats, (b) Buzz, (c) Croak, (d) Downsweep full sweep,
(e) Downswee strongest sweep, (f) Jetski, and (g) Pulse train. Area under the receiver operating
characteristic curve J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 16 of 19 (AUC) calculation
included in each subplot for each fish call type, Figure S6: Images (created from spectrograms) of
commonly detected noises in the three datasets: (a) ship noise, (b) disk write, (c) airguns, (d) airguns,
(e) unidentified noise, and (f) unidentified noise, Figure S7: ResNet-50 classification accuracy for each
of the six fish call types depending on the training:test set ratio (30:70, 50:50, 70:30, 80:20, 90:10).
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