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ABSTRACT

Sensitivity analysis is a commonly used technique in hydrological modeling for different purposes, including identifying the influential par-

ameters and ranking them. This paper proposes a simplified sensitivity analysis approach by applying the Taguchi design and the ANOVA

technique to 2D hydrodynamic flood simulations, which are computationally intensive. This approach offers an effective and practical

way to rank the influencing parameters, quantify the contribution of each parameter to the variability of the outputs, and investigate the

possible interaction between the input parameters. A number of 2D flood simulations have been carried out using the proposed combi-

nations by Taguchi (L27 and L9 orthogonal arrays) to investigate the influence of four key input parameters, namely mesh size, runoff

coefficient, roughness coefficient, and precipitation intensity. The results indicate that the methodology is adequate for sensitivity analysis,

and that the precipitation intensity is the dominant parameter. Furthermore, the model calibration based on local variables (cross-sectional

water level) can be inaccurate to simulate global variables (flooded area).

Key words: 2D hydrodynamic flood modeling, ANOVA, global sensitivity analysis, Taguchi design

HIGHLIGHTS

• A Taguchi–ANOVA approach can be used as an efficient sensitivity analysis method in 2D flood modeling.

• Necessity of considering both local- and global-scale calibrations is shown.

• The great importance of accurate estimation of precipitation intensity in flood simulation is presented.

• Mesh refinement sometimes can affect the results negatively.

• The significance of the input parameters can change depending on the hydrological conditions.
INTRODUCTION

In hydrologic modeling, the use of 2D hydrodynamic models is common in applications like floods or water quality assess-

ment (e.g., Yu & Lane 2006; Park et al. 2014; Zischg et al. 2018). Those models, based on the numerical solution of the 2D
shallow water equations (SWEs), use different types of input parameters with complex domain spaces (e.g., hydrological data,
floodplain and channel geometry, initial and boundary conditions, and roughness). Most of these parameters cannot be
measured directly and can only be inferred by calibration to observed system responses (Ghasemizade et al. 2017; Zadeh
et al. 2017). As a result, input parameters are one of the main sources of uncertainty in flood simulation processes, and a
considerable amount of literature has investigated the relative importance of the inputs of interest and their contributions
to the numerical models’ outputs.

In 1D simulations, particular attention has been given to input parameters such as hydraulic roughness coefficient in the
river channel and flood plains (e.g., Pappenberger et al., 2005; Werner et al. 2005; Schumann et al., 2007; Papaioannou et al.,
2017), discharge and design hydrograph (e.g., Ahmadisharaf et al. 2018; Chen et al. 2018; Vojtek et al. 2019). In 2D simu-

lations, the analysis has been extended to other inputs such as topography/bathymetry and digital terrain model (DTM)
resolution (e.g., Mejia & Reed 2011; Neal et al. 2015; van Vuren et al. 2015; Abily et al. 2016; Savage et al. 2016; Lim &
Brandt 2019), mesh type, and mesh resolution (Schubert et al. 2008; Dottori et al. 2013; Zhang et al. 2016; Hu et al.
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2019). Among the considered parameters, hydraulic roughness is usually considered the most influential and is, therefore,

given first consideration in the model calibration (Teng et al. 2017).
In recent years, due to the advances in computational power of computers and accessibility of graphics processing units

(GPU), hydrodynamic models are becoming increasingly complex which intend to apply inputs and processes similar to

what happens in nature such as spatially/temporally varying precipitation, high spatial resolution data that represent more
details and infiltration/drainage processes. One example is the study conducted by Sauer & Ortlepp (2021), in which different
rainfall scenarios are defined (time and space invariant, space invariant and time varying, and space and time varying) over a
small area (12 km2), and the relative influence of hydraulic roughness coefficients and DTM resolution on the models’ output

has been roughly assessed with a simple sensitivity analysis (SA). They concluded that rainfall data, as well as the spatial res-
olution of the digital elevation model, have a strong influence on the surface runoff dynamics in terms of water levels in space
and time. The effect of different input parameters including spatial resolution, rainfall inputs, and the parameters which are

linked with the land-use information such as roughness and drainage has been investigated in a hydrodynamic urban flood
simulation by Xing et al. (2021) using a detailed SA for a very small catchment (0.59 km2). They reported that model sensi-
tivity to the input parameters can vary depending on the outputs choice. They found that the influence of the spatial

resolution is more tightly related to the flood flow movements, whereas that of the rainfall inputs is more relevant to the
flood water volume.

Most of the hydrodynamic simulations in the above-mentioned studies were performed in small areas or limited specific

river reaches. Few studies were made at a bigger catchment scale. Some examples are the study by Fernández-Pato et al.
(2016) that investigated the influence of infiltration, and the studies by Bellos et al. (2020) and Zischg et al. (2018) that ana-
lyzed the effect of precipitation spatial patterns. According to the literature, still little attention has been paid to the influence
of parameters such as infiltration, runoff coefficient, spatially/temporally varying precipitation, and the possible interaction

between them.
Beside the importance of input parameters in the modeling process, one of the key preliminary steps for the application of

the physically based distributed modeling based on the 2D SWEs is the generation of a computational mesh (Ferraro et al.
2020). In this context, many studies have investigated the effect of mesh structure, shape, and size on the accuracy of the simu-
lated results and computation time (Caviedes-Voullième et al. 2012; Gibson et al. 2016; Hu et al. 2018). Some of the studies
reported that there is no optimal mesh type for 2D flood modeling, because each element type (e.g., triangle and quadrilateral)

is advantageous under different circumstances (e.g., Kim et al. 2014), while some tried to address ways to generate the most
optimum computational mesh (acceptable degree of accuracy and computational costs) (e.g., Bomers et al. 2019; Ferraro
et al. 2020). Most of these studies were performed in small scales such as flood plain scale or urban areas, while a few studies
have assessed the issue at the catchment scale with regard to possible interactions between land-related features (i.e., friction,

infiltration, and runoff coefficient) (e.g., Caviedes-Voullième et al. 2012; Costabile & Costanzo 2021).
The quest for developing accurate and computationally efficient simulations prompts the need for understanding the

models’ behavior under different conditions, which can be offered by SA methods.

SA methods can be broadly classified into local and global methods (van Griensven et al. 2006; Campolongo et al. 2011;
Tian 2013; Song et al. 2015). Local sensitivity measures, often referred to as ‘one at a time’ measures, assess how variation in
one input affects the model output keeping the other inputs fixed to a nominal value (Campolongo et al. 2011). The main

drawback of local SA methods is that interactions among inputs cannot be detected (Campolongo et al. 2011), which can
render nonreliable results for complex and nonlinear systems (Yang 2011), where input factors usually interact with each
other. In contrast, global SA methods can be used as a reliable approach to investigate the influence of inputs on outputs

while they are varied simultaneously over their entire domain space. Song et al. (2015) reviewed various types of global
SA methods in the field of hydrological modeling and provided a framework for SAs in hydrological modeling. Pianosi
et al. (2016) also provided a comprehensive review of existing SA methods following different end purposes such as uncer-
tainty assessment, model calibration, diagnostic evaluation, dominant control analysis, and robust decision-making in a

classified context. SA methods have been used in hydrodynamic modeling, mainly focusing on the uncertainties arising
from model parameters and inputs.

Most of the studies mentioned above use global SA methods. The main drawback of the global SA methods is that they are

computationally intensive, time-consuming, and require too many simulations. Therefore, global SA is often difficult to be
applied in engineering practice and to overcome that the number of required simulations must be drastically reduced. In
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that path, the methods and expertise accumulated in the field of design of experiments (DoE) (named after Rao 1947) can be

useful for developing a time and cost-effective design for performing SA under various conditions.
The DoE is a statistical approach to reaction optimization that allows the variation of multiple factors simultaneously

in order to screen ‘reaction space’ for a particular process (Murray et al. 2016). Making an analogy between experiments

and simulations, the statistical DoE can be implemented as a method to effectively reduce the number of simulations
(experiments) and explore the relationship between the input parameters (predictor variables) and the generated
output (response variables), as well as various interactions that may exist between the input variables (Yuangyai &
Nembhard 2010; Khang et al. 2017; Whitford et al. 2018). This approach can be classified as a global SA method

since several parameters are varied systematically and simultaneously to obtain sufficient information (Whitford
et al. 2018).

Taguchi (1986) has developed a methodology for the application of designed experiments based on orthogonal design to

reduce the number of experimental combinations. A large number of studies about the successful application of the Taguchi
method can be found in laboratory experimental practices, manufacturing, and design processes (e.g., Rao et al. 2004;
Sadeghi et al. 2012; Hadi et al. 2017). But no previous study has used the Taguchi method in hydrodynamic flood simulations.

The present study presents a global SA of flood simulations solving the 2D SWE at the catchment scale (for a big catch-
ment, 1,767 km2), involving various parameters at different levels, in which each simulation takes a long time (about 3 h
using 8� NVIDIA Tesla P100 (16 GB) GPU (Model: 2� Intel(R) Xeon(R) CPU E5-2698 v4@2.20 GHz)). Considering

these features, the Taguchi method has been chosen. The main purpose of this paper is, therefore, to evaluate the application
of the Taguchi method as a feasible engineering SA tool for 2D hydrodynamic simulations at the catchment scale and to ident-
ify the most influential parameters.
CASE STUDY

Tovdal river, located in Agder province (Norway), is selected as the case study. The computational domain is the part of the
catchment upstream of the small lake named Flaksvann, just beside a town called Birkeland (Figure 1). In order to avoid the

outlet boundary interference, the domain was extended 11 km further to the downstream of the lake. The length of the main
river reaches approximately 130 km, and the catchment with an area of about 1,767 km2 is dominated by forests (about 74%).
The elevation ranges from 10.00 to 872.34 m.a.s.l, and the average slope of the catchment along the river is about 0.65%. The
mean annual precipitation is approximately 1,261 mm, with most of the rainfall occurring between October and March

(about 60%). On 2 October 2017, an extreme flood event occurred in this area which was the highest ever recorded flood
in this river. Recorded data of the event (Table 1) (including recorded water level, discharge, flood hydrograph at Flakksvann
cross-section (CS), and flood maps) and a 2D hydrodynamic model were used to simulate the event and validate the meth-

odology. For the calibration process, the weighted average of precipitation intensities which occurred 1.5 days before the 2017
flood event was used as the reference precipitation (Table 1). Subsequently, by adjusting the friction factor and the runoff
coefficient values for each land class in a trial-and-error process, calibration was performed such that simulated water

level and discharge resembled the event’s recorded information (Table 1).
METHODS

Hydrodynamic model

In the current study, a GPU-based 2D horizontal hydrodynamic model named HiSTAV was used to simulate floods. The
model was originally proposed by Ferreira et al. (2009) and optimized by Conde et al. (2020). The core of the model is a hyper-

bolic system of partial differential equations expressing mass and momentum conservation principles for flow. The model is
closed in terms of flow resistance and a specific return-to-capacity parameter by a modified closure model. The SWEs are
solved using a finite volume scheme, which is applied on a spatial discretization using unstructured meshes. The discretiza-

tion method allows body fitting unstructured grids which can optimize the computational workload by using large cells,
where flow gradients are expected to be mild and small cells in specified areas. The detailed information about HiSTAV
and the model structure can be found in the study presented by Conde et al. (2020).

Simulation set-up and approach

In order to simulate the flow, the model solves the equations based on the following sources:
://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2021.243/946439/nh2021243.pdf



Figure 1 | (a) Map of the Tovdal river catchment area until the computational domain and (b) the flooded area (Birkeland town area).

Table 1 | The recorded data of the flood event in the study area (water level and discharge refer to Flakksvann, in Figure 1)

Date Precipitation (mm) Maximum water level (m) Maximum discharge (m3/s)

30.09.2017 45.1 21.40 501.28

01.10.2017 173.1 24.57 1,061.19

02.10.2017 63.6 25.56 1,194.88
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1. Input variables
2. Computational mesh
3. Initial and boundary conditions

The 2D model used here requires different data sets drawn from two main sources: (a) raster data structures including the
topo-bathymetric dataset, Strickler roughness coefficient values, and runoff coefficient values, and (b) precipitation records
including the spatial distribution of rainfall measurement stations.

Raster data structures and grids are used to present the catchment discretization and to describe spatially distributed terrain

parameters (i.e., elevation, bathymetry, land use, etc.). A 10� 10 m2 DTM including the river bathymetry information is used
to represent topographic features and derive hydrologic characteristics (i.e., slope, flow direction, flow accumulation, stream
network, computational cascade for flow routing, etc.).

Hydraulic roughness is inserted in the model in the form of a grid structure raster file (100� 100 m2 resolution), in which
each cell represents Strickler roughness values. The spatial distribution of roughness values is determined based on
100� 100 m2 land cover maps (obtained from https://land.copernicus.eu/- ‘Corine Land Cover 2018, Version 20’).
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Subsequently, using typical Strickler roughness coefficient tables, the roughness values were assigned for each cell (Arcement

& Schneider 1989; Dorn et al. 2014). Different land types are classified in Table 2, and possible roughness variation ranges
are assigned for each class.

The runoff coefficient C is a dimensionless factor that is used by HiSTAV to convert the rainfall amounts to runoff (effective

precipitation hp ¼ C � iP in Equation (1), being iP the precipitation intensity). In this study, we used the runoff coefficient as a
parameter which reflects the lumped effect of several processes such as the antecedent conditions of the catchment and infil-
tration, land cover effect, and spatial variability of the rainfall intensity. The concept of event runoff coefficients is widely used
in hydrologic modeling (e.g., Merz et al. 2006; Merz & Blöschl, 2009; Viglione et al. 2009; Chen et al. 2019). The choice of

runoff coefficient values was based on the average antecedent conditions for the catchment and land features. The values
were then calibrated in a way that the correspondence of the event’s rainfall and 2017 flood flow (level and velocity) is
achieved. Similar to the hydraulic roughness values, the runoff coefficient is used in the form of raster data.

In this study, a combination of two different approaches to calculate the runoff coefficient was used. Firstly, by using land
cover maps and recommended values of runoff coefficient for different types of areas (Subramanya 2013), a range was deter-
mined for each cell. Secondly, since the HiSTAV model assumes a uniform spatial distribution of precipitation as input, the

runoff coefficient was used as an artifact to introduce spatial variability of the precipitation. For this purpose, focusing on the
flood of 2 October 2017, daily precipitation data were obtained from 37 stations (Figure 2). The rainfall observations at the
stations were interpolated to delineate the spatial distribution of precipitation. For this purpose, the inverse distance weight-

ing interpolation method was used, giving similar precipitation patterns like the one presented by the Norwegian
Meteorologic Institute (http://www.senorge.no/). Thereafter, precipitation zones were delineated in Figure 2. The combi-
nation of the two mentioned approaches was used to calculate the final runoff coefficient in each cell, C, as follows:

C ¼ Cinitial � iPcell

iPmax

� �
(1)

where iPmax is the maximum amount of precipitation intensity among the recorded values, iPcell is the recorded precipitation
intensity in each cell, and Cinitial is the runoff coefficient with values displayed in Table 2 for each land cover class.

In order to define a reliable and time-consistent range to consider different flood magnitudes, three different rainfall inten-
sities, iP ranging from 3 to 9 mm/h, with a duration equal to 2 days, were considered for the simulations (Table 3). The range is
obtained based on the average precipitation intensity that occurred in the flood event (6 mm/h) with 50% bounds. This means
that the precipitation is treated as time invariant (or as block), which is rather a coarse and simplistic approach to the real

conditions. Nevertheless, since the main goal of this study is to check the feasibility of using a simplified method (Taguchi
method) for performing a global SA, we focus on reducing to a minimum number of inputs while having input ranges that
cover in the full input–output space. This was needed because for such a big catchment, the inclusion of more inputs (like

synthetic hyetographs defined by several parameters) would render many simulations.
HiSTAV employs adaptable triangular meshes in order to discretize the catchment and balance acceptable computational

workloads, different detail levels, and complex geometry fitting capabilities (Conde et al. 2015). In this study, by employing
Table 2 | The land-use classes and corresponding ranges for the Strickler roughness coefficient and runoff coefficient

Land-use class
Occupied area
(%)

Strickler roughness
(KS, m1/3/s)

Runoff coefficient
(C, %)

Constructed lands (discontinuous urban fabric, industrial,
or commercial units)

0.40 40–70 80–90

Forests (broad-leaved, coniferous) 73.75 15–40 50–70

Moors and heathland 8.23 18–35 60–80

Agriculture and vegetated areas 12.82 18–37 40–60

Water courses and water bodies 4.76 20–50 100–100

Mineral extraction sites 0.04 30–60 70–90

Note: The median values of the specified ranges correspond to the calibrated values.
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Figure 2 | Spatial distribution of the precipitation stations and the interpolated precipitation over the catchment.

Table 3 | Input parameters considered for the sensitivity analysis and their ranges of variation

Parameters Level 1 Level 2 Level 3

Mesh size (m) Maximum mesh length in the river (main channel) 15 20 25

Maximum mesh in the flood plain 150 200 250

Precipitation intensity (mm/h) 3 6 9

Strickler roughness (m1/3/s) Constructed lands (discontinuous urban fabric, industrial, or commercial units) 40 50 70

Forests (broad-leaved, coniferous) 15 25 40

Moors and heathland 18 24 30

Agriculture and vegetated areas 18 28 37

Water courses and water bodies 20 35 50

Mineral sites 30 40 60

Runoff coefficient (%) Constructed lands (discontinuous urban fabric, industrial, or commercial units) 80 85 90

Forests (broad-leaved, coniferous) 50 60 70

Moors and heathland 60 70 80

Agriculture and vegetated areas 40 50 60

Water courses and water bodies 100 100 100

Mineral sites 70 80 90

Note: The levels 1, 2, and 3 for mesh size are representative of the fine resolution (total number of mesh elements: 582,161), the medium resolution (total number of mesh elements:

473,265), and the coarser resolution (total number of mesh elements: 401,769), respectively.
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Godunov’s finite volume approach (LeVeque 2002), a mixed mesh of triangular cells are constructed in three sizes over the
computational domain by Gmsh (Geuzaine & Remacle 2009), which is a free finite element grid generator with a built-in
CAD engine and post-processor. The small cells or so-called finer resolutions are assigned to the cells where the flow gradi-
ents are expected to be large such as the river channel, medium-sized cells, or average resolution over the flood plain, and

coarser resolution over other parts of the catchment, where flow gradients are expected to be mild (Figure 3). In the post-pro-
cessing step, the constructed meshes were checked for shape and size quality. The initial conditions for the equations are zero
water depth and zero discharge everywhere (dry surface conditions). Water enters the domain only through rainfall; hence

there are no inlet boundaries. The only open boundary is at the outlet (downstream), where free outflow is assumed. Warm-up
simulations were performed until reaching the normal water level in the river network. A 9-day precipitation with an intensity
of 2 mm/h was found to be long enough to fill the river basin and the lakes with the steady flow over the main water courses.
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Figure 3 | Finite volume meshes at three different sizes.

Hydrology Research Vol 00 No 0, 7

corrected Proof

Downloaded from http
by guest
on 04 November 2021
Taguchi method

Taguchi developed a system of tabulated designs (arrays) that allows for the maximum number of main effects to be estimated
in an unbiased manner while using only a minimum number of experimental tests (Taguchi 1986). He introduced his

approach using experimental design aiming to develop a process to be robust to component variation and also to minimize
variation around a target value (Ross & Ross 1988).

The process of Taguchi analysis can be summarized into seven steps (Bao et al. 2013). The flow chart of the whole process

is illustrated in Figure 4.
In this study, the local water level and total flooded area are selected as objective parameters. To calculate these par-

ameters, nine different CS are specified in Figure 5. Several different CS were chosen to cover the changes in
hydrodynamic behavior of the river, and the water level is observed at the time step equal to 34 h (this time step is selected

based on the duration of the 2017 flood event). The CS were selected at different locations such as the areas of key impor-
tance, adjacent to bridge structures, adjacent to the flow measure stations (level and velocity), and at locations that represent
different geometries of the river. Therefore, two of the CS were chosen on the lake where the geometry and flow conditions

differ from other parts of the river to assess the flow behavior and water-level sensitivity.
The total flooded area was delineated as the subarea starting from the Birkeland city region and extended to the end of the

computational domain, which represents around 11 km along the main river.

The most important stage in the design of an experiment is the selection of the control factors. In this study, we selected the
following four control factors: mesh size, hydraulic roughness parameter (KS), runoff coefficient (C), and precipitation
Figure 4 | The general framework of Taguchi–ANOVA analyses.
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Figure 5 | Cross-sections’ locations.
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intensity (iP). These factors reflect the set of data, in which HiSTAV uses as an input to simulate the flow. We assigned three
values to each of these control factors, as shown in Table 3. The three levels reflect the possible variation range for each

parameter.
In the full factorial design, all possible combinations for a given set of factors are considered (Fanchi 2005), which, depend-

ing on the number of factors and associated levels, can result in a large number of experiments. The Taguchi method uses the

orthogonal design to reduce the number of combinations. Using orthogonal arrays allows us to collect the necessary infor-
mation by testing specific combinations, instead of examining all possible combinations. The orthogonal arrays have
special properties such as (i) all the levels appear an equal number of times (balancing property), (ii) all the levels of par-

ameters (factors) are used for conducting the experiments, and (iii) the array of each factor columns is mutually
orthogonal to any other column (Kacker et al. 1991). Accordingly, the sequence of levels for conducting the experiments fol-
lows a standard sequence and cannot be changed. There are many standard orthogonal arrays available, depending on the

number of parameters and the levels of variation for each parameter. Detailed information on the construction of orthogonal
arrays can be found in the works presented by Plackett & Burman (1946) and Taguchi (1986).

The full combination of the experiments (full factorial design), considering four parameters with three levels, corresponds to 81
simulations. However, to effectively reduce the number of experiments, the Taguchi method proposes two possible orthogonal

arrays, namely L27 and L9. The L27 consists of 27 sets of combinations and assesses themain effects and the interaction between
the parameters, while the L9 consists of nine combinations, which only concentrates onmain effects and ignores the interactions.

According to the importance of the interactions between the parameters in SA studies, this study is mainly focused on the

L27 array. However, the results for the L9 array are also briefly presented to identify the possibility of performing the SAs
with the minimum number of experiments. To validate the performance of the implemented method, the results were bench-
marked against the results obtained from all the possible combinations of simulations (L81).
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Table 4 | L9 design and calculated SNR values for the water level at nine CS (CS1–CS9) and total flooded area

Levels SNR

No. Mesh C KS iP CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9 Area

1 1 1 1 1 30.674 26.598 26.505 26.502 26.502 26.495 26.372 26.248 25.089 6.833

2 1 2 2 2 31.016 27.283 27.213 27.213 27.213 27.197 27.071 26.913 25.828 8.331

3 1 3 3 3 31.536 28.353 28.343 28.343 28.343 28.307 28.167 27.907 26.866 10.385

4 2 1 2 3 31.072 27.390 27.330 27.330 27.330 27.312 27.180 27.022 25.869 8.606

5 2 2 3 1 30.613 26.358 26.292 26.293 26.293 26.285 26.201 26.136 24.926 6.419

6 2 3 1 2 31.167 27.748 27.679 27.677 27.676 27.661 27.488 27.271 26.101 9.136

7 3 1 3 2 30.844 26.764 26.707 26.707 26.707 26.697 26.607 26.491 25.319 7.312

8 3 2 1 3 31.378 28.222 28.171 28.169 28.168 28.148 27.967 27.711 26.535 9.931

9 3 3 2 1 30.758 26.632 26.563 26.562 26.562 26.554 26.452 26.342 25.167 6.943

Mean 31.006 27.261 27.200 27.199 27.199 27.184 27.056 26.893 25.744 8.211

Standard deviation 0.299 0.689 0.703 0.703 0.703 0.695 0.669 0.607 0.637 1.343

Coefficient of variation 0.010 0.025 0.026 0.026 0.026 0.026 0.025 0.023 0.025 0.164
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TheL9 andL27 orthogonal arrays (seefirstfive columns in Tables 4 and 5)were constructed using the aforementioned factors
(Table 3) based on the Taguchi method (Kacker et al. 1991). Following the combinations constructed in the orthogonal tables,
the simulations were then performed, and the identified objective outputs were calculated as the system’s response.

The Taguchi design uses the signal-to-noise ratio (SNR) to measure the deviation of the response from the mean value (Wang
et al. 2017). Based on the purpose of the experiment, SNRs can be classified into three types: smaller the better type (minimize
the response), larger the better type (maximize the response), and nominal the best type (based on the SNR on standard devi-

ation). The equation to calculate SNR values for larger the better type is presented in the following equation:

SNR ¼ �10� log
1
n

Xn
i¼1

1
Y2
i

 !
(2)

where Yi represents the measured results in the ith experiment/simulation and n is the number of experiments/simulations.
.To investigate the conditions that result in the major flood, the goal is defined as larger the better. Therefore, the larger

values for the water level and the flooded area are desirable, and the SNR is calculated by Equation (2). The averages of

the SNR values are calculated for each factor j at level l using the following equation to analyze the effect of each factor
on the outputs:

MSNRLevel¼l
Factor¼j ¼

1
njl

Xnlj

i¼1

[SNRLevel¼l
Factor¼j]i (3)

where njl is the number of experiments that have factor j at level l and i represents the ith experiment with factor j at level l.
The significant parameters were then identified as those producing the highest difference in the mean SNR and mean
response (target outputs) values. To find the rank of the effect of each parameter in the Taguchi analysis results, a parameter

(Δj) is defined, which is the difference between the maximum and minimum SNR of all levels for each factor (see Figure 8 and
the example in Figure 6(a)). Higher values for (Δj) indicate that the model has a higher sensitivity to factor j.

Analysis of variance

In addition to the SNR analysis, analysis of variance (ANOVA) was performed to identify the most significant factors and

their potential interactions. This method focuses on the analysis of the variance explained by each factor and is accomplished
by estimating Fischer’s test value (F-value). The impact of any factor is explained by its F-value and the corresponding sum of
squares that represent variance. Higher F-value and sum of squares of any factor indicate its relative importance in the
://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2021.243/946439/nh2021243.pdf



Table 5 | L27 design and calculated SNR values for the water level at nine CS (CS1–CS9) and total flooded area

Levels SNR

No. Mesh C KS iP CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9 Area

1 1 1 1 1 30.674 26.598 26.505 26.502 26.502 26.495 26.372 26.248 25.089 6.833

2 1 1 2 2 30.892 27.014 26.930 26.929 26.929 26.915 26.801 26.666 25.554 7.743

3 1 1 3 3 31.123 27.438 27.397 27.398 27.398 27.378 27.263 27.105 26.020 8.720

4 2 2 1 1 30.738 26.787 26.704 26.701 26.701 26.693 26.563 26.431 25.235 7.313

5 2 2 2 2 30.935 27.096 27.026 27.026 27.026 27.011 26.892 26.764 25.582 7.976

6 2 2 3 3 31.259 27.692 27.660 27.661 27.661 27.636 27.513 27.348 26.227 9.131

7 3 3 1 1 30.834 26.948 26.868 26.865 26.865 26.857 26.727 26.569 25.375 7.590

8 3 3 2 2 31.140 27.503 27.453 27.452 27.452 27.437 27.313 27.094 25.952 8.795

9 3 3 3 3 31.494 28.182 28.167 28.166 28.166 28.140 28.004 27.763 26.713 9.987

10 2 3 1 2 31.167 27.748 27.679 27.677 27.676 27.661 27.488 27.271 26.101 9.136

11 2 3 2 3 31.460 28.219 28.187 28.186 28.185 28.160 27.987 27.756 26.666 10.045

12 2 3 3 1 30.660 26.468 26.404 26.405 26.405 26.397 26.310 26.239 25.026 6.720

13 3 1 1 2 30.949 27.234 27.162 27.160 27.160 27.150 27.012 26.825 25.632 8.236

14 3 1 2 3 31.110 27.461 27.411 27.410 27.410 27.395 27.276 27.060 25.919 8.734

15 3 1 3 1 30.635 26.265 26.212 26.210 26.210 26.203 26.121 26.054 24.820 5.853

16 1 2 1 2 31.087 27.663 27.596 27.594 27.594 27.577 27.419 27.202 26.048 9.007

17 1 2 2 3 31.348 28.102 28.071 28.070 28.070 28.041 27.889 27.647 26.578 9.872

18 1 2 3 1 30.642 26.398 26.313 26.314 26.314 26.303 26.224 26.143 24.988 6.423

19 3 2 1 3 31.378 28.222 28.171 28.169 28.168 28.148 27.967 27.711 26.535 9.931

20 3 2 2 1 30.705 26.512 26.444 26.444 26.444 26.436 26.336 26.235 25.044 6.632

21 3 2 3 2 31.004 27.084 27.031 27.033 27.033 27.017 26.924 26.771 25.598 7.874

22 1 3 1 3 31.714 29.060 29.032 29.031 29.030 29.000 28.799 28.478 27.252 11.383

23 1 3 2 1 30.786 26.744 26.649 26.648 26.648 26.637 26.529 26.417 25.292 7.153

24 1 3 3 2 31.209 27.573 27.533 27.535 27.535 27.513 27.398 27.224 26.151 8.909

25 2 1 1 3 31.146 27.742 27.678 27.676 27.675 27.660 27.489 27.274 26.106 9.156

26 2 1 2 1 30.603 26.352 26.280 26.279 26.279 26.272 26.172 26.095 24.895 6.246

27 2 1 3 2 30.782 26.713 26.650 26.651 26.651 26.641 26.547 26.464 25.248 7.200

Mean 31.011 27.280 27.221 27.220 27.220 27.203 27.078 26.912 25.756 8.244

Standard deviation 0.293 0.676 0.690 0.690 0.690 0.683 0.657 0.597 0.623 1.358

Coefficient of variation 0.009 0.025 0.025 0.025 0.025 0.025 0.024 0.022 0.024 0.165
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process of the response (Karmakar et al. 2018). Moreover, to explore the impacts of individual factors, the percentage con-
tribution (PC) of each factor is calculated using the following equation (Yang & Tarng 1998; Sadrzadeh & Mohammadi
2008):
PC ¼ SSj
SST

� 100 (4)
where SST is the total sum of squares and SSj is the sum of squared deviations for each factor j. Both can be calculated using
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Figure 6 | Calculated mean SNR at each level for (a) mesh parameter, (b) runoff coefficient, (c) roughness coefficient, and (d) precipitation
intensity (considering the cross-sectional water level as a system response).
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the following equations, respectively:

SST ¼
Xn
i¼1

(Yi � �Y)2 (5)

SSj ¼ njl

Xl
i¼1

(Yji � �Y)2 (6)

where n is the number of experiments/simulations, Yi represents the measured results in the ith experiment/simulation, �Y is
the average of results, Yji is the mean of results for the factor j at level i, and njl is the number of experiments that have factor j
at level l (Stahle & Wold 1989).

RESULTS AND DISCUSSION

Following the combinations constructed in the Taguchi tables (Tables 4 and 5), 9 and 27 sets of simulations were performed.
Two different output parameters, namely local water level and total flooded area, were considered as the system response to
investigate the variation resulting from each combination and subsequently to explore the significance of each input par-
ameter in the simulations. The calculated SNR values (based on Equation (2)) for the water level in each CS and the

flooded area are presented in Tables 4 and 5.
The calculated standard deviation for the SNR values in each of the local responses (CS water level) ranges between 0.29

and 0.69 for L27 (see Table 5) and for the global response (flooded area) it is equal to 1.36. The coefficient of variation which

is defined as the ratio of the standard deviation to the mean is calculated to measure the degree of variation in each of the
results series (Tables 4 and 5). The higher coefficient of variation values for the flooded area indicates that it is much more
sensitive than the local water level. This result is important because in most of the applications, the hydrodynamic models are
://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2021.243/946439/nh2021243.pdf



Figure 7 | Calculated mean SNR for each parameter (considering the flooded area as a system response).
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calibrated based on local variables (e.g., water level) with some known inputs (e.g., precipitation intensity) and some particu-

lar combinations of calibrated inputs (e.g., runoff coefficient, roughness coefficient, and mesh), which after all can correspond
to a quite different flooded area if a different combination of calibrated inputs was used.

From Table 5, it can be seen that the highest SNR results from the combination 22 (1 3 1 3) for the water level and the

flooded area, corresponding to the fine mesh size, highest runoff coefficient, smallest roughness coefficient, and highest pre-
cipitation intensity. This result is not surprising since the SNR is being computed with larger the better, i.e., the highest water
level or the flood area will give the highest SNR.

In order to quantify the significance of each parameter, the mean of the SNR for each factor at the ith level was calculated

using Equation (3) and is presented in Figures 6 and 7.
The results are compared and ranked based on Δ parameter for the L9, the L27, and the full factorial design (L81) in

Figure 8. Moreover, the PC of each factor obtained from ANOVA is presented for the mentioned designs in Figure 9 (further

details of the Taguchi and ANOVA analyses results are presented in the Supplementary Material).
As it is shown in Figures 8 and 9, for both responses (water level (panel a) and flooded area (panel b)) in all types of the

designs, the precipitation intensity is the most influencing parameter, followed by the runoff coefficient, the roughness coeffi-

cient, and lastly the mesh. The only exception can be seen for CS1 and CS9 in L9 design, in which the mesh size and the
Figure 8 | Overview of ΔSNR variation for (a) local responses (the variation range shows the variation of ΔSNR values at different CS) and
(b) global response.
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Figure 9 | Overview of the ANOVA analysis results for (a) local responses (the variation range shows the variation of PC values at different CS)
and (b) global response.
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roughness effect have equal ΔSNR values (0.12 and 0.3, respectively) and as a result are equally ranked as 3. However, com-

paring the L27 design results with the full factorial design (L81), it can be seen that there are no big differences between the
results which means the results of the ANOVA and the Taguchi analyses using L27 combinations are consistent with those
obtained from the full factorial design (L81). This finding confirms the effectiveness of the L27 design. Although the L9 design

requires few numbers of experiments and provides results almost in accordance with full factorial design results, caution must
be applied, as the findings in two of the CS (CS1 and CS9) showed that the mesh size effect has been overestimated by L9.

The results obtained from Figure 9 indicate that precipitation intensity is by far the most important factor, contributing
about 80%, while the runoff coefficient and roughness coefficient contribute about 11 and 6%, respectively, and mesh

accounts only for 1% contribution. This result highlights the huge importance of either estimating the precipitation intensity
adequately with a given return period (which possibly has a big uncertainty due to climate change) for flood mapping or of
predicting accurately the precipitation intensity (which has the uncertainty associated with the stochastic nature of weather)

for flood forecasting systems. Also interesting is the fact that the runoff coefficient is slightly more relevant than the roughness
coefficient. Usually, hydrology modelers attribute more relevance to the runoff coefficient, whereas hydraulic modelers focus
on the importance of the roughness coefficient. From the joint hydrologic and hydraulic modeling, it seems that the runoff

coefficient is quite relevant, which gives an indication to hydraulic modelers that the input discharge (usually coming
from hydrological modeling, involving precipitation and runoff coefficient) influences their final results much more than
the roughness coefficient.

The results in Figures 6 and 7 show that finer meshes (level 1) lead to slightly larger SNR values than coarser ones (levels 2

and 3). Nevertheless, the performance improvement with mesh refinement is not always true since the SNR value for the
coarser mesh (level 3) is higher than the intermediate one (level 2). This puts in evidence that refining unstructured
meshes with underlying complex topography can lead to no improvement. As stated before, for the runoff coefficient, rough-

ness coefficient, and precipitation intensity, the performance results follow what is usually expected, i.e., the increase in
runoff coefficient (levels 1–3) increases the SNR values, the increase in the Strickler coefficient (i.e., decrease in roughness,
levels 1–3) reduces the SNR values and the increase in the precipitation intensity (levels 1–3) results in higher SNR values.

This is confirmed by the maximum and minimum flooded areas, corresponding to combinations 22 and 15, respectively, that
are presented in Figure 10.

In complex and nonlinear systems, the joint effects of input parameters can have a significant influence on the outputs. Thus,

in order to have a complete SA, the interactions among parameters are analyzed using the ANOVA technique. In this regard,
://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2021.243/946439/nh2021243.pdf



Figure 10 | The variation in the calculated flooded area.
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CS4, which is considered an important CS located in the Flaksvann lake where a hydrological station exists, was selected to
explore the interaction between the parameters. The interactions are analyzed for both L27 and L81 at a specified CS. Since
the results were similar, the interaction matrix of the parameters is only presented for the L27 design in Figure 11. If the

curves are parallel with each other, it means that there are no interaction effects of the two parameters (Wang et al. 2017).
The intersection lines in Figure 11(b) imply that the mesh size mostly interacts with the roughness coefficient, presenting

similar performances for the rougher case (smaller Strickler coefficient, i.e., level 1), but a much more mixed behavior for less

rough cases (levels 2 and 3). As can be seen in Figure 11(a)–11(c), and already mentioned, mesh refinement will not necess-
arily improve performance (i.e., the SNR). In Figure 11(b), the mesh refinement always improves the performance for the
smoother case (roughness at level 3), but that is not true for the intermediate case (level 2), where a mesh refinement
from level 3 to level 2 produces worse results. As stated before, this is related to the unstructured mesh generation, in particu-

lar, near the river main channel where the roughness coefficient varies. From those figures, it is seen that, in general, the
intermediate mesh (level 2) presents lower performance, and the finer mesh (level 1) presents slightly better results than
the coarser mesh (level 3). The latter becomes more evident for high-intensity precipitation (see level 3 in Figure 11(c)),

which indicates that for simulating extreme flood events refining the mesh can originate a better performance.
The runoff coefficient slightly interacts with the precipitation intensity (Figure 11(e)). It is clear that runoff coefficients aremore

important formodel performance as the intensity precipitation level is higher. This is logic since the runoff coefficient represents a

precipitation percentage loss, which, for the same level (i.e., percentage) and higher intensity of precipitation, corresponds to a
much higher amount of water flowing through the catchment (i.e., higher SNR). Nevertheless, this points out to the importance
of a correct calibration of the runoff coefficient, especially for high-intensity precipitation events that originate floods.

Based on the mean response variation range (see blue dashed circles in Figures 11(e) and 11(f)), it can be observed that the
importance of the parameters changes depending on the precipitation intensity. At the lower intensity (level 1), the roughness
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Figure 11 | Interaction plots for the water level at CS4. C is the runoff coefficient, KS is the roughness coefficient, and ip is the precipitation
intensity. Interactions between: (a) mesh and C, (b) mesh and KS, (c) mesh and ip, (d) C and KS, (e) C and ip, and (f) KS and ip.
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parameter corresponds to higher variation comparing to the other parameters. Whereas, under moderate and high intensities
(levels 2 and 3), the runoff coefficient is the most influencing parameter, which corresponds to the higher variation range in
the mean water level.

CONCLUSION

In this study, the application of the Taguchi technique and ANOVAwas investigated to identify and rank the most influencing
parameters in a 2D hydrodynamic flood simulation model. In general, this approach has several advantages: (i) it can effec-
tively reduce the number of simulations needed for SA, (ii) it quantifies the contribution of each parameter and ranks them

based on the associated variation in target outputs, and (iii) it explores the interaction between input parameters.

• The main conclusions of this study are: the implemented Taguchi–ANOVA approach can be used as an efficient SA method
in 2D flood modeling to quantify and rank the affecting parameters. However, the results suggest that the minimum orthog-

onal array (L9) should be used cautiously and that an intermediate orthogonal array (L27) is preferred, if affordable.

• The considered global response (flooded area) is more sensitive to the input parameters variation comparing to the local
response (cross-sectional water level). This shows the necessity of considering both local and global scale calibrations

for flood simulation purposes.

The following secondary conclusions, which require further validation for a more complex hydrological approach, can be

drawn from the results presented in this paper:

• The precipitation intensity is identified as the most significant parameter in flood modeling, accounting for about 80% con-

tribution. Then follows runoff coefficients (11%), roughness coefficient (6%), and mesh size (1%). This highlights the great
importance of accurate estimation of the precipitation intensity for flood modelers and decision makers. This can be a major
challenge due to the uncertainties resulting from climate change and the stochastic nature of the weather.
://iwaponline.com/hr/article-pdf/doi/10.2166/nh.2021.243/946439/nh2021243.pdf
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• Generally, among the proposed mesh sizes, the finer mesh size (level 1) led to slightly better results compared with the other

mesh sizes (levels 2 and 3). Especially, under high-intensity precipitation (level 3), the difference is clearer. However, the
mesh refinement is not always a solution to improve the results due to the underlying complex gridded data, including topo-
graphy, roughness, and runoff coefficient values. Moreover, the strong interaction between the roughness coefficient and

the mesh size provides further support for the hypothesis that mesh refinement can, in some cases, negatively affect the
results.

• The importance of the input parameters can change depending on the hydrological conditions. Under the low-intensity pre-
cipitation (level 1), the roughness parameter is affecting the results more than other parameters. Whereas, under moderate

and high-intensity precipitations (levels 2 and 3), the runoff coefficient is the most influencing parameter, which corre-
sponds to the higher variation in outputs.
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