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Abstract: In mobile edge computing (MEC), partial computational offloading can be intelligently
investigated to reduce the energy consumption and service delay of user equipment (UE) by dividing
a single task into different components. Some of the components execute locally on the UE while
the remaining are offloaded to a mobile edge server (MES). In this paper, we investigate the partial
offloading technique in MEC using a supervised deep learning approach. The proposed technique,
comprehensive and energy efficient deep learning-based offloading technique (CEDOT), intelligently
selects the partial offloading policy and also the size of each component of a task to reduce the
service delay and energy consumption of UEs. We use deep learning to find, simultaneously,
the best partitioning of a single task with the best offloading policy. The deep neural network
(DNN) is trained through a comprehensive dataset, generated from our mathematical model, which
reduces the time delay and energy consumption of the overall process. Due to the complexity
and computation of the mathematical model in the algorithm being high, due to trained DNN the
complexity and computation are minimized in the proposed work. We propose a comprehensive cost
function, which depends on various delays, energy consumption, radio resources, and computation
resources. Furthermore, the cost function also depends on energy consumption and delay due to the
task-division-process in partial offloading. None of the literature work considers the partitioning
along with the computational offloading policy, and hence, the time and energy consumption
due to task-division-process are ignored in the cost function. The proposed work considers all
the important parameters in the cost function and generates a comprehensive training dataset
with high computation and complexity. Once we get the training dataset, then the complexity is
minimized through trained DNN which gives faster decision making with low energy consumptions.
Simulation results demonstrate the superior performance of the proposed technique with high
accuracy of the DNN in deciding offloading policy and partitioning of a task with minimum delay
and energy consumption for UE. More than 70% accuracy of the trained DNN is achieved through a
comprehensive training dataset. The simulation results also show the constant accuracy of the DNN
when the UEs are moving which means the decision making of the offloading policy and partitioning
are not affected by the mobility of UEs.

Keywords: mobile edge computing; computational offloading; deep learning; cost function; remote
execution; energy efficiency
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1. Introduction

Computational capabilities of user equipments (UEs) have increased over recent
years. However, UEs still have limited computational and battery resources due to the
complex and energy-hungry applications [1–3]. The spectacular growth of the mobile
devices, the massive demands of resource-hungry, and delay-sensitive critical applications,
such as voice recognition, real time speech recognition, virtual reality, interactive gaming,
augmented reality, video transformation, and content-based image recovery applications
have attracted significant attention from researchers working on 5G and beyond networks.
The delay sensitive nature of these applications has resulted in an increasingly high com-
puting demand and energy consumption. Therefore, to reduce the energy consumption
and service delay of UEs, a new paradigm, known as mobile edge computing (MEC) has
been introduced [4,5]. MEC offers computing power and storage capacity to UEs at the
edge of wireless networks. In MEC, the UEs offload the compute-intensive and delay-
sensitive applications to the mobile edge server (MES) through wireless communication
to minimize the serving delay and energy consumption of UEs as it is difficult for an
UE with limited computation and storage resources to meet the requirements of such
compute-intensive applications. Similarly, battery lifetime is the main constraint of UEs
and with local computing UEs may not have better quality of experience.

There are two main categories of computational offloading, namely, total offloading
and partial offloading [6,7]. In a total offloading technique, the whole task is offloaded
to MES for execution while in partial offloading the task is first divided into different
components, and then some of the components are executed locally on UE and some are
offloaded to MES for execution. For example, if a task is divided into n components, there
are 2n possible options for n components to be executed locally on UE or remotly on MES.
Extensive research has been done on partial offloading to answer the question as to how
the task components can be divided efficiently, between UEs and MES, to reduce the energy
consumption and delays of UEs.

In partial offloading, the task-division-process is important and needs to be consid-
ered in the cost function for finding the best option for offloading [8]. Based on the type
of applications, partitioning offloading can be classified as data-oriented partitioning of-
floading (DOPO), continuous-execution partitioning offloading (CEPO), and code-oriented
partitioning offloading (COPO) [9]. In this paper, we consider DOPO, which means that an
application can be split into components of any size. The size of each component can be
selected in order to reduce the service delay and energy consumption of UEs because the
number of components per task and the size of each component directly depend on the
service delay and energy consumption of UEs [9]. Most of the related work ignores the
task partitioning and considers the size of each component as a random variable. However,
there are mZn number of possible options to divide a single task of size m into n number
of components. For example, a 400-MB task can be divided into three components of:
[100,100,200] MB or [200,200,0] MB or [100,300,0] MB or [400,0,0] MB. Therefore, there are
four possible ways, i.e., 400Z3 = 4 for 400 MB task to be divided into three components.
The number of possible ways of task partitioning also depends on the minimum allowable
size of a component, known as division resolution. The value of mZn increases exponentially
with the task size.

To find the best partitioning in mZn possible options and best offloading in 2n pos-
sible options, the complexity becomes mZn2n. For m = 1 GB and n = 10, there are
530× 1024 = 542, 720 possible options to divide in and offload components. To avoid this
huge computation overhead, in this paper, we introduce a comprehensive cost function for
partial offloading and consider all possible partitioning of a computational task to generate
a training dataset with minimum cost. The training dataset is used for a supervised deep
learning approach to find the best partitioning and offloading policy simultaneously.

The proposed work considers the partitioning process in a partial offloading technique
and calculates cost for each possible partitioning and offloading policy and then select the
partitioning and offloading policy with minimum cost. Therefore, the energy consumption
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and execution delay are minimum with a high algorithm complexity. To avoid a high
algorithm complexity, we use a supervised deep learning approach to make the decision
making process faster and energy efficient. The simulation results show that the proposed
work consumes less energy with faster execution in MEC networks.

1.1. Related Work

A detailed survey is presented on the evolving multimedia internet-of-things (M-IoT)
in [10]. The authors promote several innovative applications, aiming to improve the quality
of life by connecting numerous smart devices through emerging enabling technologies.
The main focus of the authors is to highlight the overview of M-IoT and the importance
of M-IoT applications. Major problems while designing M-IoT networks architecture,
protocols, and computing schemes are explored to provide stable IoT architecture. Similarly,
a comprehensive survey is presented on the secure deployment of MESs for MEC networks
in [11]. The concepts and applications of total offloading and partial offloading techniques
are presented in [12–15], respectively.

The Markov decision process (MDP) is used to solve the offloading time optimization
problem in [16]. The authors present computational offloading in MEC as an optimization
problem and investigate the optimal offloading MES selection strategy. The authors also
consider in the MDP framework, user mobility and heterogeneity of MESs jointly. The value
iteration algorithm is used to solve the MDP and obtain the optimal offloading time.
The problems of reliability-aware optimal computing offloading and resources allocation
are considered in [17]. The authors consider a multi-user, multi-server scenario with limited
resources of UEs. They present the computational offloading and allocation problem as a
combinatorial optimization problem while considering offloading valuable basic (OVB)
constraints. The paper also proposes a task merging strategy to reduce the complexity of
the algorithm. The authors in [18,19] consider the traditional optimization technique and
game theoretic approach, respectively, for partial offloading in MEC to find the optimal
offloading policy. However, the main issue of these techniques is the high complexity of
algorithms, which makes their deployment impractical in MEC environment. The wireless
energy transper concept is investigated in [20–22] to minimize the energy consumption
of UEs through proper energy harvesting techniques. In their work, in a single time
slot the protocol of first-harvest-then-offload is utilized. Based on the computation rate,
a maximization problem is studied in [23] for the decrease in propagation loss that severely
affects the harvested energy and computation performance of UE. The enhancement in the
computational performance of active UEs by the user cooperation technique is investigated
in [24], where the inactive UEs use their harvested energy for the help of active ones. For the
computational offloading policy, the authors in [24] consider frequency division multiple
access (FDMA) to improve the computation rate. A summery of different techniques in
related work is given in Table 1.

The maximum-minimum energy efficiency optimization problem (MMEP) with the
joint optimization of energy consumption, time slots for computational offloading and
energy transfer, and transmit power at a HAP in WP-MEC system are focused on in [25],
and by the application of block coordinate descent (BCD) and fractional programming
theory, the authors present algorithms with lower complexity. In [26], the computational
energy efficiency of an entire system is improved by the joint consideration of the optimal
allocation for UE’s transmit power, CPU frequency, and time for transmission in a WP-
MEC system. In [27], the maximization problem of system energy efficiency by the joint
consideration of optimal time allocation, local computing capacity, energy consumption,
and application offloading is discussed. In [28], the authors consider a stochastic method
for battery management and resource allocation decisions in a time slot and propose an
algorithm derived from the Lyapunov optimization technique. In [29], the authors utilize
Lyapunov optimization for the evaluation of tradeoff between the delay and energy effi-
ciency of a multi-user WP-MEC system. In all the above mentioned work, the improvement
in the computation rate is mainly focused. However, the battery life of UE is ignored and
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the number of sub-tasks in which an application should be divided for partial offloading
is assumed to be a fixed value. The authors in [30] investigate the computing problem
in ultra-dense cellular networks with a multi-user, multi-server scenario. The problem
is divided into two phases, i.e., selection of MES and offloading decision. In the first
phase, the UEs are grouped with one MES on the basis of physical distance and workload.
While in the second phase, a distributed offloading strategy based on the genetic algorithm
is proposed to get an adaptive offloading decision. The authors in [31] investigate the
computational offloading of DNN-driven AI applications in 5G-enabled MEC networks.
The authors consider dynamic task offloading and propose an online algorithm to reduce
the energy consumption of UEs and MESs. The authors in [32,33] present a theoretical
model for partial offloading in MEC, only for divisible application. They assume that the
components of the task can be executed in parallel. To minimize UE energy consumption,
a game-theoretic approach is presented in [34].

A deep learning-based MDP technique is presented in [35]. The authors propose
a gradient-based deterministic policy for computational offloading in MEC networks to
solve the optimization problem. This work considers a dense distributed cellular network
with multi-user, multi-server, and multi-tasks scenario. The authors consider the mobility
of MESs and UEs to propose an area-based parallel task offloading model to achieve
low latency for delay sensitive applications. Similarly, the authors in [36] also propose a
deep reinforcement learning approach in a dynamic MEC networks. The paper optimizes
the MES selection for offloading and computing power allocation jointly. Deep learning
approaches are considered in [37–40] to minimize the service delay of the UE. Furthermore,
the authors in [41] propose a deep imitation learning technique to minimize the service
delay of MDs. The main focus is on the service delay, therefore, their cost function only
depends on execution and transmission delays. However, for a better quality of service, it
is necessary to take an accurate decision about the offloading policy and component size.
Most of the related work considered either service delay or energy consumption or both
as a cost function. To the best of our knowledge, in the cost function, there has been no
consideration of task-division-process of getting different components of a task.

Table 1. Summary of the related work.

Techniques

Considers Service Delays? Considers Energy Consumption?
Task

Partitioning

Considered?

Multi-User

Multi-Server

Considered?

Deep

Learning

Approach?

Transmission
dti

Execution
dei, dli

Reception
dri

Partitioning
ddi

Propagation
dpi

Transmission
Eti, Eli

Reception
Eri

Partitioning
Edi

MDP-based VIA Technique

[16]
Yes Yes Yes No No No No No No Yes No

Reliability-aware Offloading

[17]
Yes Yes Yes No No Yes Yes No No Yes No

Traditional Optimization Techniques

[18,19]
Yes Yes No No No Yes No No No No No

Energy Harvesting Techniques

[20–22,25–27]
Yes Yes No No No Yes No No No No No

Genetic Algorithm

-based Offloading [30]
Yes Yes No No No Yes No No No Yes No

Offloading of DNN-driven

Applications [31]
Yes Yes No No Yes Yes No No No Yes No

Offloading for OCR Case

[32]
Yes Yes No No Yes No No No Yes No No

Game Theoretic

Approach [34]
No No No No No Yes Yes No No Yes No

Energy Efficiency-based Offloading

[35,37,41]
Yes Yes No No No No No No No Yes Yes

Cost Function-based Offloading

[36,38]
Yes Yes Yes No No Yes Yes No No Yes Yes

Cost Function-based Offloading

[39,40]
Yes Yes No No No Yes No No No No Yes

Our Proposed Technique

(CEDOT)
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
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1.2. Novelty and Contributions

The main contributions of the paper are summarized as follows.

• We propose the partitioning process, for the first time, in fine-grained computational
offloading in MEC. The proposed work considers the cost of partitioning a task into
multiple components and selects the possible partitioning option with minimum cost
in all possible partitioning options;

• We combine the selection of task partitioning from mZn possible options and partial
offloading policy from 2n possible options and model as a multi-label classification
problem. The computational overhead of finding minimum cost in terms of energy
consumption and execution delay while considering the offloading policy and parti-
tioning simultaneously becomes O(mZn2n). Therefore, to avoid this huge computation
complexity, we propose a supervised deep learning approach to solve both prob-
lems simultaneously with a complexity of trained DNN of O(1). We formulate a
comprehensive cost function, which considers multiple parameters, namely, network
fluctuations and computing resources of MESs, propagation delay, the time delays,
and energy consumptions due to partitioning, transmission, execution, and reception;

• Through extensive simulation results we demonstrate the superiority of the proposed
technique, compared with total offloading technique (TOT), random offloading tech-
nique (ROT), deep learning-based offloading technique (DOT), and energy efficient
deep learning-based offloading technique (EEDOT), in terms of energy consumption
and execution delay of UEs;

• The UEs can use the trained DNN to find the offloading policy and partitioning for n
number of components with minimum cost. Since the cost function depends on both
energy consumption and time delay, therefore, the end-user will consume minimum
energy with faster decisions on selecting the best partitioning and offloading policy
for n number of components per task.

The rest of the paper is organized as follows. In Section 2, we present the system
model. Section 3 presents the proposed technique. Simulation results are presented in
Section 4, and Section 5 concludes the paper.

2. System Model

We consider a partial offloading technique [42], where a UE divides a single task into
n components, C = {c1, c2, c3, ..., cn}. We assume that the number of components per task,
n, is known before partitioning. Each component, ci ∈ C, i = 1, 2, ..., n, can be executed
locally or offloaded to MES in a sequential manner, as shown in Figure 1. The components
of a task can be modeled as a directed graph, as in [38]. To represent this mathematically,
we introduce a binary variable ei ∈ [1, 0]. If ei = 0, ci executes locally on UE, otherwise ci
executes remotely on MES. Therefore, we develop the models of both local and remote
executions. The input data of ci is represented as µi and after the execution of ci the output
resultant data is represented as ρi. The number of central processing unit (CPU) cycles
required to process ci is αi, which depends on the value of µi as αi = η × µi, where η
represents the number of CPU cycles per bit.
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Figure 1. The proposed system model with the partitioning concept.

2.1. Local Execution Model (ei = 0)

We consider heterogeneous computing capability of UEs. Therefore, the total delay,
dli, for executing ci locally can be written as:

dli =
αi
fui

, (1)

where fui is the CPU frequency that a UE selects to process ci. Similarly, the energy
consumption due to local execution of ci, Eli, can be written as:

Eli = dliε f ζ
ui, (2)

where ε is a constant that depends on the average switch capacitance and average activity
factor of UE. ζ is a constant of UE having a value greater than 2 [32].

2.2. Remote Execution Model (ei = 1)

An UE can upload a component ci to the MES for execution. If the network utilizes
orthogonal frequency-division multiple access (OFDMA) then we can assume that the
bandwidth, B, for transmission is divided into K subcarriers. The notations used in this
paper are given in Table 2. For transmission and reception of µi and ρi, respectively,
the available subcarriers are represented by ki ∈ {1, 2, 3, ..., K}, where K is the maximum
available subcarriers. Similarly, ri ∈ {0, 1, 2, ..., R}, represents the number of CPU cores
used in the processing of ci and R represents the maximum number of CPU cores at MES.
ri = 0 implies that for component ci there is no CPU available and the system is busy. We
consider additive white Gaussian noise for uplink and downlink data rates [37], which can
be written as follows.

vupi =
ki
K

B log2

(
1 +

pt
ui|hup|2

Γ(gup)λθ
i No

)
, (3)

vdli =
ki
K

B log2

(
1 +

psi|hdl |2

Γ(gdl)λ
θ
i No

)

)
, (4)

where vupi and vdli are the uplink and downlink data rates for component ci, respectively,
while pt

ui and psi are the transmitting powers of UE and MES, respectively, for ci. hup
and hdl are the channel fading coefficients while gup and gdl represent the bit error rates,
for uplink and downlink, respectively. λi is the distance between UE and MES. θ is the path
loss exponent and No is the noise power. Γ(gdl) =

−2 log(5gdl)
3 gives the signal to noise ratio
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(SNR) margin to meet the required bit error rate. The delay due to transmission, execution,
and reception for ci can be calculated, respectively, as follows.

dti =
µi

vupi
, (5)

dei =
αi

ri fs
, (6)

dri =
ρi

vdli
, (7)

where dti, dei, and dri, are the delays due to transmission of input data µi, execution of αi,
and reception of output data ρi, respectively. fs is the frequency of MES’s CPU. Similarly,
the propagation delay, when ci is executed remotely, can be calculated as dpi =

λi
c , where c

is the speed of light. Hence, for ci component, the total remote execution delay, doi, can be
formulated as:

doi = dti + dei + dri + 2dpi. (8)

Here, 2dpi is added because the propagation delay is considered for both sides of
communication, transmission of µi, and reception of ρi. The energy consumption due to
remote execution of ci, Eoi, can be calculated as Eoi = Eti + Eri, where Eti is the energy
consumption due to transmission of the input data, µi, to MES, and Eri is the energy
consumption due to reception of the output data, ρi. These energy consumptions can be
calculated as:

Eti = dti pt
ui, (9)

Eri = dri pr
ui, (10)

where pr
ui is the received power at UE when ρi data is received. Using (3) and (5), we can

derive Eti as:

Eti =
µi K

kiB log2(1 +
pt

ui |hup |2
NoΓ(gup)λθ

i
)

pt
ui. (11)

Similarly, using (4) and (7), we can write:

Eri =
ρi K

kiB log2(1 +
psi |hdl |2

NoΓ(gdl)λ
θ
i
)

pr
ui. (12)

Table 2. List of notations.

Notations Meaning

αi Number of CPU cycles to process ci

B Transmission bandwidth

C Set off components per tasks

ci ith component

dli Total required delay to execute ci locally

dti Required delay for transmission of ci

dei Required delay for execution of ci

dri Required delay for reception of ci

dpi Propagation delay for ci

doi Total remote execution delay for ci

ddi Delay due to division process per component
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Table 2. Cont.

Notations Meaning

Edi Energy consumption due to division process per component

Eli Total energy consumption to execute ci locally

Eoi Total remote energy consumption for ci

Eti Transmission energy consumption for ci

Eri Reception energy consumption for ci

ε Average switch capacitance and activity factor

ei Binary offloading decision variable

η Number of CPU cycles per bit

fcl(ci) Local cost for component ci

fco(ci) Remote cost for component ci

fs CPU frequency of MES

fui CPU frequency of UE

δ1, δ2 Weighting coefficients for local cost function

δ3, δ4 Weighting coefficients for remote cost function

γ Division resolution in partitioning

hdl , hup Channel fading coefficients for downlink, uplink

K Maximum available subcarriers

ki Number of subcarriers assigned to ci

λi Distance between UE and MES

m Task size

µi Input data size of ci

No Noise power

n Number of components per tasks

OP Matrix of possible offloading policies

op∗ Optimal partitioning

PR Matrix of possible partitions

psi Transmitting power of MES

pt
ui Transmitting power of UE

pr
ui Receiving power of UE

R Maximum CPU cores of MES

θ Path loss exponent

τ Required delay to divide a task into two components

ri Number of CPU cores of MES assigned to ci

ρi Output data size of ci

vdli Downlink data rate

vupi Uplink data rate

z∗ Optimal offloading policy

2.3. Cost Function

The conventional optimization techniques and cost function with constraints have
high computational overhead and algorithm complexity [43]. Therefore, we need to formu-
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late a comprehensive cost function, considering all important parameters, for generating a
training dataset only. The algorithm complexity for generating a training dataset through
such a comprehensive cost function is also high however the computation during training
phase only occurs once. After the training phase the trained DNN has constant complexity
O(1) [41]. Our comprehensive cost function depends on delays and energy consumptions
due to execution, transmission, reception, and task-division for partial offloading. Further-
more, the proposed cost function also considers the propagation delay, radio resources,
and computing resources. In the partitioning process, if the number of components in-
creases, the time delay and energy consumption due to task-division-process also increase.
Therefore, the time delay, ddi, due to task-division per component can be written as:

ddi , f1(n) =
(n− 1)τ

n
, (13)

where τ is the time in which the UE can divide a task in two components. Similarly, the en-
ergy consumption, Edi, per component due to partitioning of the task can be written as:

Edi = ddiε f 3
ui. (14)

We can write the equation for the total delay, di, for ci as:

di =

{
dli + ddi, ei = 0,
doi + ddi, ei = 1.

(15)

Similarly, the total energy consumption, Ei, due to ci can be written as:

Ei =

{
Eli + Edi, ei = 0,
Eoi + Edi, ei = 1.

(16)

The cost function fc(ci, ei) can be written as:

fc(ci, ei) =

{
fcl(ci), ei = 0,
fco(ci), ei = 1.

(17)

In (17), fcl(ci) represents the local cost when ci executes locally on UE and fco(ci) is
the remote cost when ci executes remotely on MES. fcl(ci) can be calculated as:

fcl(ci) = δ1(
dli + ddi

dmax
) + δ2(

Eli + Edi
Emax

), (18)

where δ1 and δ2 are the weighting coefficients by which we can change the contribution
and priority of delay and energy consumption in the cost function, respectively. dmax is the
deadline time for a whole task to execute, and it can be calculated as the average value of
delays for different tasks (the delay of a single task is the sum of delays for all n components
per task). Emax is the maximum energy of UE’s battery. Similarly, fco(ci) can be written as:

fco(ci) = δ3[dti(1− ei−1) + dei + dri + dpi(2− ei−1) + ddi]

+ δ4[Eti(1− ei−1) + Eri + Edi] + δ5 f2(ri) + δ6 f3(ki),
(19)

where δ3, δ4, δ5, and δ6 are the weighting coefficients. The values of these coefficients can
be calculated according to the priority of time delay, energy consumption, radio resources,
and computational resources in the cost function. For example, if the importance of time
delay is higher than energy consumption then δ3 should be greater than δ4, δ5, and δ6.
However, the sum of all coefficients must be equal to 1. We multiply (1− ei−1) with dti
and Eti, because if the previous component ci−1 is executed remotely then ei−1 = 1. It
means the data for ci is available at MES and we do not need to transmit it again. Therefore,
the delay and energy consumption due to transmission must be zero. Similarly, dpi(2− ei−1)
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gives propagation delay only for reception if ei−1 = 1. f2(ri) and f3(ki) give the cost due
to used CPU cores and subcariers, respectively, and can be given as f2(ri) = ri/R and
f3(ki) = ki/K.

3. The Proposed Deep Learning Approach

In the proposed work, first we divide a task into n components and then using
the partial offloading technique, the UE offloads some of the components to MES and
some of the components are executed on UE. However, for a task of size m there are mZn
possible partitioning options and 2n possible offloading options, therefore, to find the
option with minimum cost, the complexity of the algorithm becomes O(mZn2n). To avoid
this computation overhead and high complexity, we generate a training dataset using our
comprehensive mathematical model to find the cost for all mZn2n options. In Algorithm 1,
we consider all possible partitions (partition matrix, PR) and all possible partial offloading
policies (offloading policies matrix, OP) for a task of size m with a constant γ. We select
the option with minimum cost and store its corresponding input data, partitioning option,
and offloading policy as a training dataset for different task sizes. To consider the dynamics
of the system, we take the input parameters (frequency of UE, tranmiting power of UE,
distance between UE and MES, subcarriers, computing resources of MES, number of
components, division resolution, and task size) as uniform random distribution for different
datasets. This training dataset is used to train the DNN and reduce the complexity to
O(1) of the trained DNN. The trained DNN has the ability to address the dynamics of
the system because in the training dataset we consider all the dynamics in the input
data parameters. Our proposed technique considers the comprehensive cost function to
minimize the energy consumption and service delay, therefore, we name the proposed
technique as comprehensive and energy efficient deep-learning-based offloading technique
(CEDOT). There are three types of layers in the DNN [44,45], namely input layer, hidden
layer, and output layer. The input layer consists of the information about the size of task,
division resolution (γ), number of components, distance from MES, available computing
resources of MES, and network status, as shown in Algorithm 1. The two hidden layers
consist of 100 neurons each. The output layer gives the information about the best option
for division (z∗) and offloading decision for each component represented by op∗. The
rectified linear unit (ReLU) and Softmax activation functions [46,47] are used for two
hidden layers and an output layer, respectively. The trained DNN is tested on unseen data
to calculate the accuracy of the proposed technique. We achieve more than 70% accuracy
for different sets of test data.

The following benchmark techniques are considered for comparison with CEDOT:
(i) Total offloading technique (TOT) [37], (ii) random offloading technique (ROT) [37],
(iii) deep learning-based offloading technique (DOT) [37], and (iv) energy efficient deep
learning-based offloading technique (EEDOT) [38]. TOT offloads all components to MES
without considering other partial offloading options. ROT selects any offloading decision
at random. DOT considers all available 2n offloading decisions and train a DNN with the
training dataset containing the minimum cost but the energy consumption and component
size are ignored in the cost function. EEDOT considers the partial offloading technique
with random size of components and does not consider the partitioning in the cost function.
None of the above techniques consider the delay and energy consumption of task-division-
process in their approaches. Similarly, none of them consider the energy consumption of
UE in the cost function.

The proposed technique (CEDOT) finds the partitioning and offloading decisions
with minimum cost, in terms of service delay and energy consumption, simultaneously,
using the trained DNN which is trained on a comprehensive dataset generated from the
comprehensive mathematical model.
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Algorithm 1 Partial Offloading with Partitioning
Input: {m, γ, n, ri, ki, λi}
Output: {z∗, op∗}

1: PR←Matrix of possible partitions
2: OP←Matrix of possible offloading policies
3: for k = 1 : MZi do
4: P(k)← PR(k, :)
5: for l = 1 : 2i do
6: e(l)← OP(l, :)
7: for j = 1 : i do
8: if (e(j) = 0) then
9: cost(j)← flc using (18)

10: else
11: cost(j)← foc using (19)
12: end if
13: end for
14: cost1(l)←sum(cost)
15: end for
16: [index, cost2(k)]← min(cost1)
17: OP1(k)← OP(index, :)
18: end for
19: [index, costminimum]← min(cost2)
20: op∗ ← OP1(index, :)
21: z∗ ← PR(index, :)
22: Save input data: input← {m, γ, n, ri, ki, λi}
23: Save output data: labels← {z∗, op∗}
24: Train the DNN: Trained_DNN ← train(input, labels)

4. Simulation Results and Discussion

The simulation environment used is MATLAB (R2019a) running on an Intel Core
i7 processor with a clock rate of 3.4 GHz. In the simulation, all techniques, except TOT,
divide a task of size m in six components, which are executed in a sequence on UE or
through MES. All random variables are independent for different components. The number
of raw data that is used to generate the training dataset is 40,000, which means that we
execute 40,000 tasks of different sizes, uniformly distributed in [0.1 1.5] GB, independently
through our proposed algorithm and save the output with minimum cost as labels for
corresponding input data. The fui, pt

ui, λi, ki, and ri are taken as uniformly distributed in
[0.1, 1] GHz, [0.8 1.25] Watt, [3 800] m, [1 256], and [0 16], respectively. The number of
CPU cycles to process one bit of data is taken as 737.5 cycles/bit. The effective switching
capacitance factor is taken as 10−27. The simulation parameters are given in Table 3.

Table 3. Simulation parameters.

Parameter Value Parameter Value

B 0.5 MHz R 256
Emax 800 J pt

ui 1.2 W
K 16 pr

ui 0.8 W
dmax 300 s δ1 0.6
γ 200 MB δ2 0.4
ε 10−27 δ3 0.5
η 737.5 cycles/bit δ4 0.3
No −174 dBm/Hz δ5 0.1
θ 3 δ6 0.1
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After getting the training dataset, we also generate a test dataset of size 10,000 to check
the accuracy of trained DNN for unseen data. There are 21 neurons in the input layer;
one for task size, one for division resolution, one for number of components per tasks,
six for random distances during mobility of UEs in execution of each component, six for
subcarriers during the execution of each component, and six for CPU cores assigned to each
components. Similarly, six neurons for offloading policy and six neurons for partitioning
are reserved in the output layer. The ReLU and Softmax activation function are used for
the two hidden layers and the output layer, respectively.

Figure 2 presents the comparison of energy consumption of a UE with a varying task
size. The energy consumption of CEDOT is minimum because it considers the suitable
component size along with the offloading policy having minimum cost. For different com-
ponent sizes, the energy consumption varies with different offloading policies. However,
the proposed technique selects the offloading policy with minimum cost of portioning
and offloading.
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Figure 2. Energy consumption for different task sizes.

Figure 3 shows the service delay versus task size. Here, we can observe better perfor-
mance of CEDOT because of the proposed comprehensive cost function. The benchmark
techniques do not consider the delay and energy consumption due to task-division for
partial offloading in the cost function, which is not a realistic approach. However, the pro-
posed technique considers various types of realistic delays in the cost function and finds
minimum values for various types of delays. The benchmark techniques select components
with random sizes and also ignore them in the cost function.
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Figure 3. Service delay for different task sizes.
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Figure 4 shows the normalized cost of all the techniques with a varying size of tasks.
The cost of the proposed technique is minimum because it selects the minimum value
among mZn2n possible values of the cost. However, the other benchmark techniques ignore
this fact and select the cost value depending only on time or energy consumption.
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Figure 4. Cost for different task sizes.

Figure 5 presents the size of training dataset along with a different number of com-
ponents per task. As the number of components per task increases, the complexity of the
decision boundaries increases. Therefore, to achieve more than 70% accuracy, we need to
change the size of the training data set, as depicted in Figure 5.

2 3 4 5 6 7 8 9 10

Number of components per task

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
ra

in
in

g
 d

a
ta

s
e

t 
s
iz

e

10
4 Training dataset size for more than 70% accuracy

Figure 5. Training dataset size for different number of components with more than 70% accuracy.

Similarly, the effect of the number of components per task on accuracy is shown in
Figure 6. As the number of components per task increases, the possible number of offload-
ing policies (which is 2n) increases. Therefore, the chances of selecting the offloading policy
with minimum cost decreases and the performance of TOT and ROT decreases. While
for the other techniques using deep learning-based approaches, the complexity between
constant input and output data increases, the accuracy of CEDOT, EEDOT, and DOT de-
creases as the number of components per task increases. However, the performance of the
proposed work is higher than all the other techniques and is almost equal to EEDOT with
the advantage of low energy consumption and time delay for computational offloading
and partitioning.
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Figure 6. DNN accuracey for different number of components per task.

Figure 7 shows the accuracy of the trained DNN along with varying size of training
dataset. We can observe that the accuracy increases as the size of training dataset increases
because large datasets means more data which provides more information to the DNN.
The performance of CEDOT and EEDOT is better and almost equal, however, the proposed
technique solves the computational offloading and partitioning jointly while EEDOT
ignores the partitioning of the task.
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Figure 7. Comparison of the DNN accuracy for different sizes of training dataset.

Figure 8 shows the accuracies of different techniques along with varying distance
between MES and UE. CEDOT, EEDOT, and DOT have almost constant accuracy for
different distances which means the accuracy of the DNN is not affected by the mobility of
UEs. TOT has a decreasing behavior as the distance increases between MES and UE. It is
because at lower distances the chances of offloading all components to MES are high since
the transmission and reception cost is minimum. However, the accuracies of TOT and ROT
are lower as compared to the other techniques because there is no learning mechanism
used in TOT and ROT.
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Discussion

All the simulation results show a better performance of CEDOT because of its com-
prehensive mathematical model for cost function. In the cost function, we consider all the
important and realistic parameters to calculate time delay and energy consumption for the
completion of the task. Most of the related works have not considered the task-division-cost
in the mathematical models and assumed random values for each component of a task.
However, there must be some energy consumption and time delay due to a task division
process which we have considered in our proposed work. For the sake of better comparison
we also include the cost of division process in all the benchmark techniques. The compre-
hensive mathematical model for cost function gives the more authentic training dataset
for DNN. Therefore, the other techniques select the offloading policy with higher energy
consumption and time delay as compared to the CEDOT because, their cost function and
mathematical model are not that realistic and comprehensive. By considering more and re-
alistic parameters in the cost function, it increases the accuracy of DNN because the relation
and linkages between input data and labels become stronger and clearer. The proposed
technique selects the offloading policy and partitioning with minimum cost which means
that the optimal offloading policy selected by CEDOT will consume minimum energy with
faster execution of a task.

We can observe that the accuracy of the deep learning approaches increases by using
a larger dataset, while the accuracy of the TOT and ROT is not affected by the size of
data since there is no learning mechanism involved. The offloading decisions of TOT are
constant and ROT has a random nature of selection without any mechanism. The accuracy
of all the techniques decreases as the number of components per task increases. The decline
in accuracy of TOT and ROT, with a number of components per task, is due to the increase
in the number of offloading policies and therefore, the probability of selecting policy with
minimum cost is decreased. The decline in the accuracy of deep learning-based approaches
is because of the decision boundaries becoming more complex with an increase in the
number of components per task. The accuracy of only TOT is affected by distance, the rest
of the techniques have constant accuracy during the mobility of UEs. Since, at lower
distances the cost of offloading all components become smaller, therefore, TOT has higher
accuracy at lower distances.

A limitation of our proposed model is that it cannot find the optimal number of
components per task. It is necessary to know the number of components per task before
the execution of the task. Similarly, the proposed technique works only for the applications
having sequential execution of components due to dependencies of components. For ex-
ample, if the application has callbacks or loops through previous components, then the
proposed technique cannot handle that scenario.
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5. Conclusions

In this paper, we proposed a comprehensive cost function for energy efficient com-
putational offloading in MEC. A supervised deep learning approach was used to find the
partitioning of a task in n components along with an offloading policy having minimum
cost in terms of energy consumption and time delay. Our cost function takes into account
various energy consumptions and delays due to task-division, transmission, execution,
and reception. The proposed approach comprehensively models the real environment
which is better suited for implementation in practical scenarios. The end-user can use the
trained DNN to find the offloading policy and partitioning for n number of components per
task with minimum cost. Since, the cost function depends on both energy consumption and
time delay, therefore, the end-user will consume minimum energy with a faster decision
process in selecting the best offloading policy for n number of components per task. The
simulation results demonstrate improved energy consumption and service delay with more
than 70% accuracy of the DNN. For future work, DNN can be trained to simultaneously
optimize the number of components per task, the size of each component, and offloading
policy for all types of applications.
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