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Abstract

This thesis is part of the Mechatronics masters program at the University of Agder (UiA).
It describes the development of an animal deterrence system, using computer vision with
embedded systems for edge computing.

Household cats can run freely around in neighborhoods, but all neighbors may not ap-
preciate it. This project seeks to develop a harmless and accurate system for keeping cats
away.

The solution is to use a state-of-the-art object detector to look for cats in an area. Using
an embedded system to run the object detector and tracking method. Design a two-axis
turret with servo motors and a camera.

The object detector used for this project was YOLOv4-tiny. It was trained to detect cats,
dogs, humans, and hedgehogs. The YOLOv4-tiny object detector was implemented on an
NVIDIA Jetson Nano development board and ran at an average of 23 FPS. Robot Oper-
ating System (ROS) was used to run the control algorithm servo motors and the object
detector. A two-axis turret, which uses two servo motors, was designed and built to make
the camera track the cat. A two-axis turret, which uses two servo motors, was designed
and built to make the camera track the cat. A component housing was also designed and
built to have the whole system in a small enclosure.
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Chapter 1

Introduction

Household cats are predatory animals and are active during the night to hunt and explore
[50] [9]. This can be problematic if they roam in unwanted areas, fight with other cats,
and make unwanted mess and noise. Many creative solutions have been used, but it is
desired to create a device with a high success rate.
Ultra-sonic solution [29] One previous solution is by using motion sensor and ultrasonic
sound to scare the cat. The system works when the cat enters the range of the sensor
and the sound is played. But the cat learns that it can ignore the sound or just avoid the
range/area of the sensor. One big disadvantage of motion sensors is that it will engage
everything that passes by [49]. Water guns with motion detection has also been tested
previously, but the same problem with the motion sensor occur, but a direct hit of water
seems to work in most cases. Even if its not a direct hit it scares the cat [45].
The application in this thesis is to identify cats and keep them away from an area. The
device will use the real-time object detection You Only look Once algorithm (YOLO) to
identify if the area contains a classified object and identify if it is a cat with a certain
precision. The unwanted cat will be tracked by using deepSORT (Simple Online Real-
time tracker). These methods will be implemented on an NVIDIA Jetson AGX Xavier
Computing board for computation on site. A object detector and tracker will be developed
and tested on a NVIDIA Jetson Board.
Mechatronics is a multi-discipline field in engineering which combines electrical, me-
chanical, computer and control engineering [48]. Typical application in mechatronics is
to combine elements from each field for industrial application, prototyping and design
for innovative solutions. The cat detection and spooking device will build upon these
elements by using Computer Vision (CV), Artificial intelligence (AI), control algorithm,
electrical components, edge computing and mechanical design to create the prototype.
The field of AI is becoming more popular and has a huge potential in everything from
economics* to Industrial applications, and this thesis will showcase elements from the
subfield of AI, Machine Learning (ML), and the use of real-time CV in a physical applica-
tion.

1.1 Challenges

A challenge will be to identify the cat in both low light and daylight conditions. A control
algorithm to track the cats movement and position should also be implemented. The
implementation of real-time object identification and tracking on a physical device will
be a challenge, the main use of these applications is usually theoretical and is applied
on sampled video and images. The prototype should be tested both inside and outside,
should be able to handle outside climate for a day in the testing period.
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1.2 Goals

The main goal for this thesis is to create prototype of the cat spooking device and be able
to successfully identify and track the cat when it enters the area. Implement a spooking
method which can spray water on the target and keep it out of the area.

1.3 Product Specification

When developing a new product, its useful to develop a Product Specification to find and
specify consumer needs. The Product Specification is usually determined by the client
or constructed for the target consumer by the developer in an easy language, which later
will be translated to technical terms by engineers or designer.
These specifications are only preliminary and can change before final specifications are
set, the final specifications are covered in chapter 4.4.
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Product Specification 

 

 

 

 

 

Name: 
Group 8 

Date: 
12.01.2021 

Project: 
Master Thesis 2021 

Target Optional 

1  Function/Requirements  
1.1 Process 
1.1.1 Detect cat using Image recognition 
1.1.2 Estimate position of cat 
1.1.3 Estimate pose of cat 
1.1.4 Track Movement and targeting system  

1.2 Product 
1.2.1 Reliable and durable in outside environment (IP-rating, 
must handle rain) 
1.2.2 Fast recognition of cat  
1.2.3 Wireless, using battery and Wi-Fi  
1.2.4 Usable at night (night vision camera) 

1.3 Control 
1.3.1 Autonomous 

Note 
 
 

--- 
--- 
X 
X 
X 
 

--- 
 
 

X 
 
 
 

--- 
 
 

--- 
--- 

 
 
 

X 
--- 
X 
 
 

X 
X 
 

--- 
X 

2 Surroundings  
2.1 Indoor 
2.1.1 Test purposes  

2.2 Outdoor  
2.2.1 Outdoor testing and use 

 --- 
--- 
X 
--- 

--- 
--- 

 
--- 
X 

3 Parts  
3.1 Nvidia Jetson Computer board  
3.2 Camera 
3.3 Mounting/housing 
3.4 Water gun system 

 --- 
X 
X 
X 

--- 
 
 
 

X 

4 Project Plan  
4.1 months, Master Project deadline 

 --- 
X 

--- 

5 Cost  
5.1 Development: Within Master Budget  
5.2 Production: not defined 

 --- 
X 

--- 
 

X 

6 Product/assembly 
6.1 Simple production 
6.2 Design of Prototype 
6.3 Full scale Prototype 

 --- 
X 
X 

--- 
 
 

X 

7 Safety  
7.1 no human target or other animals  
7.2 High accuracy for wanted target 
7.3 low force on target  
7.4 No injury possibilities 

 --- 
X 
 

X 
X 

--- 
 

X 



 

 

Target Specification 

The Target specifications is developed from the Product specification. #id number is given from where its 

defined in the Product Specification. 

1  Function/Requirements 

#id Metric Unit Ideal Marginal 
1.1.1 Identification Accuracy for identifying if it is a 

cat or not. (CNN usually gives accuracy in 
percentage) 

% 90 80 

1.1.2a Furthest detection range m 20 10 

1.1.2b Closest possible detection range  m 1 2 

1.1.2c Accuracy of cat placement in space XYZ-
direction 

cm 1 5 

1.1.4 Tracking the cat inside the range matching the 
speed of the walking cat  

m/s 13 5 

1.2.1a Product is operating outside and should be 
given an estimated IP-rating (certification not 
needed) 

IP 54 43 

1.2.2 Object detector performance, measured in 
Frames Per Second 

FPS 60 10 

1.2.4 Able to work in low light conditions     

1.3.1 Starting procedure     One on/off 
button 

In Terminal 

6 Production/Assembly  

#id Metric/Description 
6.1 Parts used to make the prototype will be created with additive manufacturing and 

will be designed using simple shapes and as few parts as possible, saving printing 
time and material.  

6.2 Design a Prototype in CAD software 

6.3 Print and Assemble the Prototype  

7 Safety  

#id Metric/Description 
7.1 Only Cats will be targeted by the system, and all other interference will be ignored  

7.2 For safety reasons the system will not target if it is under 85% certainty if it is the 
wanted target  

7.3 Implemented water-gun will have low force, target should fear the sudden hit of 
water, and not experience any harm.  

 



Chapter 2

Theory

This chapter gives an overview of the theory behind the technology used in this thesis.
This will cover the general understanding of AI, Convolution Neural networks, Creation
of data-sets for deep learning, Theory of YOLO, and deepSORT. This chapter should give
the reader a better understanding of the algorithms and applications used in this thesis
and understand the choices and framework for continuing the work.

2.1 Artificial Intelligence

The basic understanding of artificial intelligence (AI) is a software (program) capable of
making choices from the input/data. This can be basic operations where a robot can
choose where to move by input from distance sensors to Deep Learning, where the output
is a learned function by looking at data of similar objects or behavior as the wanted
output. This thesis will use an object detection algorithm that uses convolution neural
networks and the principle of deep learning.

2.2 Neural networks

Neural network is a set of neurons, where each neuron contains a weight which is learned
by the input and wanted output. The neural network can contain several layers, inputs
and outputs.
The activation function defines the relation between the sum of the weighted inputs from
different nodes. The most common activation function is the Rectified Linear Activation
(ReLU) [21]

f(x) = x+ = max(0, x) (2.1)

The relevance here is, the input would be a image and the output would be the predicted
object. The neural networks layers would contain all the weights trained in the learning
phase.

Figure 2.1: Simple neural network

5



2.3 Convolutional Neural Networks (CNN)

CNNs is a class of neural network which is specialized to process data from multidi-
mensional arrays. CNNs are mostly used in machine- and deep-learning with images to
create object detectors and image classifiers [cnn]. The most basic form of CNNs consists
of three stages; Convolution-, Detection- and pooling-stage. Figure 2.2 show a simplified
3D representation of a Convolution neural network.

Figure 2.2: Convolution Neural Network: 3D representation of Figure 2.1

2.3.1 Convolution

Convolution is an mathematical operation on two functions which produces a third func-
tion which can be described as

(x ∗ w)(t) =
∞∑

a=−∞
x(a)w(t− a) (2.2)

where x(a), the first argument, is referred to as the input. w is the second argument and
is referred to as the kernel, and t is the time index. The notation ∗ is the convolution
operator. The output of the convolution function is sometimes referred to as the feature
map[19].
The function 2.2 is a general expression for a convolution function for discrete time in
one-dimension. Convolution Neural Networks is usually used in machine learning and
deep learning when using image data. Image data is usually three-dimensional, where
the image color is separated in three channels (red, green and blue) and the pixels are a
two-dimensional array of data. The channels are usually split, since its easier to calculate
with a two-dimensional data array.
The input image I is two-dimensional, the kernel K should also be two-dimensional and
the new convolution function will be equation 2.3

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.3)

2.3.2 Convolution Layer

One layer in an CNN typically consists of three stages. The convolution stage, detector
stage and pooling stage [19].
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Convolution Stage

The broad description of the job of the Convolution stage is to extract features from the
data. The feature information is extracted by applying filter on the input image. The
convolution stage uses the trained filter and passes it over the image to create a feature
map from the input image. A basic example will be a 5x5x1 image matrix convolved with
a 3x3x1 kernel(filter) will give a 3x3x1 feature as output [44]. When multiple filters are
used, i.e. 5 filters, the feature output will be a volume of the size 3x3x5[13], see figure
2.3. The filter moves over the input image from top right over the whole image to all pixels
are covered. Stride defines how many pixels it will step at a time.

Figure 2.3: Visualization of Convolution

Detector Stage

The detector stage is where the linear system from the convolution stage is passed through
a non linear activation function. Non linearity is important to describe data patternsmore
detailed[19].

Pooling Stage

The pooling stage will down sample the feature map more. This is done to make the
computation more effective and highlight dominant features. The two most used pooling
features are max pooling and average pooling. Max pooling will store the highest value
from the neighbours, and average pooling will store the average off all the neighbours[19].

Fully Connected Layer

The Fully Connected Layer (FC) is the last classification layer which is connected to every
activation point in the previous layer[13]. In the YOLO architecture, see figure 2.4, the
two last layers are the FC layers. This layer is responsible for output the predicted class.

2.4 You Only Look Once (YOLO)

YOLO is the state-of-the-art algorithm for object detection, when it comes to real-time
detection. Previous object-detection algorithms such as R-CNN, would propose potential
bounding boxes and run image classification inside the bounding boxes. YOLO was
reframed as an regression problem and would compute bounding box probability and
class prediction directly from the pixel input using only one single convolution network.
Figure 2.4 showes the convolution neural network architecture for the first version of
YOLO.
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Figure 2.4: The YOLO Architecture [27]

2.4.1 Intersection over Union

Intersection over union (IoU) determines the accuracy of the predicted bounding boxes
and the ground truth box. IoU is calculated by finding the area of the intersection and
dividing it by the union of the bounding boxes, as seen in figure 2.5. A IoU with value 1
would be a perfect result.

Figure 2.5: Intersection over Union

2.4.2 Detection

The input image is divided in to a SxS grid. Each grid cell predicts Bounding boxes B and
its confidence score. Bounding box prediction consists of five parameters (x, y, w, h, confidence),
where (x, y) is center of the Bounding box, and (w, h) is width and height.
Prediction is defined as Pr(object) ∗ IOU truth

pred , and each grid cell also predictes class prob-
abillites C as Pr(Classi|Object). One grid cell only holds the prediction of one class.

Pr(Classi|Object) ∗ Pr(Object) ∗ IoUT ruth
P red = Pr(Classi) ∗ IoUT ruth

P red (2.4)

Equation 2.4 gives the specific class prediction for each bounding box [27].
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Figure 2.6: The YOLO model; Input image is divided in SxS grip and YOLO predicts
bounding boxes and class probabilities for each cell[27]

2.4.3 Loss Function

Simply the loss function is applied during training to penalize deviation between the
predicted bounding box and the ground truth.

loss = λcoord

S2∑
i=0

B∑
j=0

1
obj
ij [(xi − x̂i)2 + (yi − ŷi)2]

+ λcoord

S2∑
i=0

B∑
j=0

1
obj
ij [(
√
wi −

√
ŵi)2 + (

√
hi −

√
ĥi)2]

+
S2∑
i=0

B∑
j=0

1
obj
ij (Cij − Ĉij)2

+ λnoobj

S2∑
i=0

B∑
j=0

1
noobj
ij (Ci − Ĉi)2

+
S2∑
i=0

1
obj
i

∑
c∈classes

(pi(c)− p̂i(c))2

(2.5)

Where 1obj
i is set to 1 if there is an object in cell i, and 1obj

ij denotes the responisble bound-
ing box predictor in cell i[27]. λcoord and λnoobj is parameters for changing the confidence
predictors to increase the loss from bounding boxes and decrease loss from boxes that
do not contain objects[27]. xi and yi is the center location of the ground truth bounding
box, and x̂i and ŷi is the predicted position. wi and hi compared the width and height
of the bounding box to the predicted width and height ŵi and ĥi. Cij is the confidence
score for a present object. This is compared to Ĉij] and is the Intersection over Union
(IoU) calculated for the prediction. The last term in the loss equation is not explained in
the research paper, but pi(c) and p̂i(c)is the class predictions, which calculates the error
for the detection of correct class.

2.4.4 YOLOv4

YOLOv4 is the fourth iteration of the original YOLO object detector. YOLOv4 was created
by a new team of researchers taking over the work on YOLO and the Darknet framework.
YOLOv4 did not have significant architectural changes, and the essence of the YOLOv4
research paper[8] was to test out different techniques to improve YOLOv3. Different data
augmentations, using different feature detectors and activation functions. Most object
detectors uses the same dataset when training to compare their performance. Figure 2.7
compares YOLOv4 to YOLOv3 and other object detectors.
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The most significant change to YOLO was the introduction of anchor boxes in YOLOv2.
YOLO was directly predicted bounding box coordinates using the fully connected layers,
but this was removed to accommodate anchor boxes [40]. Anchor boxes are pre-defined
bounding boxes specific for each class, usually with a pre-defined height and width to
match the class. The anchor box location is defined by the network output for every grid
cell, meaning multiple (can be thousands) of anchor boxes across the whole image. Using
IoU and the confidence score calculates which anchor boxes will be part of the predicted
bounding box [6]. Changes to the image size were necessary when implementing anchor
boxes and are now 416x416 and scalable by 32 for custom image sizes[40]. YOLOv3 had
some minor improvements compared with YOLOv2 and can be explored by reading the
research paper [41].

Figure 2.7: Comparison between YOLOv4 and other object detectors and classifiers[8]

2.4.5 The Architecture of YOLOv4

The Architecture of YOLOv4 was created by testing different types of methods. Figure
2.8 showes a general depiction of an object detector, such as YOLO[27], SSD[33] and
RetinaNet[32].

Figure 2.8: General One-Stage Object Detector [8]

Backbone

The backbone of the object detector is the convolution layer, also known as the feature ex-
tractor. There are many different frameworks to use for the feature extractor. In YOLOv4,
the researcher compared Darknet to ResNext and EfficientNet to see if it would gain per-
formance. The result showed that Darknet was the best option [8]. Specifically, CSP-
Darknet53 was the result.
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Neck

The Neck contains extra layers after the backbone, which extract features from different
stages in the backbone structure (Vizual explanation see figure 2.8). A method often
used is the Feature Pyramid Network (FPN). This method was implemented in YOLOv3
[41]. Each down-sample layer is done in the backbone. The FPN extracts the feature
map, up-sample the feature map, and merges each up-sample into one feature map(see
figure 2.8) Neck). For YOLOv4, they changed the Neck to Spatial pyramid pooling (SPP)
and Path Aggregation Network (PAN)[8].

Dense Predictions (Head)

The Head is responsible for bounding box prediction estimation with the anchor box
method discussed previously. This stage will output the four values for the bounding box
and the probability for the class. The Head was not changed from previous versions of
YOLO. The number of filters is calculated based on the network scale and is calculated
by equation 2.6

Filters = (nclasses + P (class) + (x, y, w, h)) · nanchors (2.6)

Number of filters for YOLOv4 using COCO weights is 255 = (80 + 1 + 4) · 3

Bag of Freebies and Bag of Specials

Bag of freebies and bag of specials is a term used in the YOLOv4 research paper to
summarize different methods to improve YOLO. Bag of freebies is data augmentation on
the dataset with rotation, cropping, changes to contrast, and saturation. The integration
of cutout where part of the image is removed.
Bag of specials talks about inclusion of methods such as Squeeze-and-Excitation and
Spatial Attention Module. YOLOv4 changed the activation function from leakyReLU to
Mish, used in the backbone[8].
These method was applied to the already improved YOLOv4 to extract more performance.
Most of the Bags of Freebies methods can be changed or deactivated when configuring
the training parameters for YOLOv4, since not all is suitable for every situation.

2.4.6 YOLOv4-tiny

YOLOv4-tiny is a compressed version of YOLOv4 meant to decrease computational load
at the cost of accuracy but able to use the object detector at embedded devices and low-
performing systems.

2.4.7 Calculating accuracy

How the object detector performs can be calculated by using different methods. Instead
of subjectively look and evaluate it can be calculated and compared with different object
detectors to see the accuracy and performance.

Average Precision

Average Precision (AP), as seen on figure fig:yolov4fast(y-axis), is a metric for measuring
the accuracy of object detectors. AP computes the average precision value for the recall
value between 0 and 1 [22].
Precision measures how accurate the prediction is, see equation 2.7.

Precision = TruePositive

TruePositive+ FalsePositive
(2.7)
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Figure 2.9: Precision-recall curve[22]

Recall measures the accuracy for finding all positive results, see equation 2.8.

Recall = TruePositive

TruePositive+ FalseNegative
(2.8)

Then the definition on the Average Precision for Object detectors will be the area under
the function Precision(Recall), see equation 2.9.

AP =
∫ 1

0
P (r)dr (2.9)

Where P(r) is the function of the precision-recall curve, see figure 2.9.

Mean Average Precision

Mean Average Precision (mAP) generally defined by calculating the AP of each class and
take the average of AP for every class.[35].
Common Objects in Context (COCO) is a dataset used by most researchers to compare
their object detectors performance against others. And in COCO context AP and mAP is
the same[15].
One more important precision metric, also used with COCO, is AP@.50 or AP@.75. This
simply means AP for a detecteon with IoU with value 0.5 or 0.75[15].

2.5 Simple Online and Real-time Tracking

Simple Online and Real-time Tracking (SORT) is a tracking framework which can track
multiple objects between frames. [56] Yolo and other object detectors showes where an
object is and the bounding boxes is not associated with the detected object, so the object
detector does not account for if the object has been detected the previous frame or if its
new. SORT in combination with YOLO is shown to work well[34].
SORT performes Kalman filtering in image space and frame-by-frame data association
using the Hungraian method with an association metric that measures bounding box
overlap
The kalman filter tracking uses eigth state-space vectors (u, v, γ, h, ẋ, ẏ, γ̇, ḣ), where (u, v)
is is the center position of bounding boxes, γ is the aspect ratio, h is the height and
(ẋ, ẏ, γ̇, ḣ) are the velocity of the image coordinates.
SORT achieves 260Hz (or FPS) on an unspecified Intel i7 2.5GHz CPU with 16 GB of
memory[7]. The computation speed of SORT makes it possible to use in real-time and
can be matched with YOLO.
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DeepSORT

DeepSORT is the improvement of the SORT approach. DeepSORT uses a pre-trained
CNN that matches appearance in the bounding boxes. Using Kalman filter and methods
from SORT algorithm deepSORT is a more robust object tracker that can track an object
for up to 30 Frames without new input from the object detector [56]

2.6 Edge Computing

Edge Computing is a computing framework which brings computations and data storage
closer to data sources[23].
Edge computing offers a more efficient alternative to computing. The data is processed
closer to the point where it’s created and stored. Since the data does not travel over a
network to a an off-site server, latency is significantly reduced. enables faster and more
comprehensive data analysis, and creating the opportunity for faster response times.
From vehicles, robots and industry 4.0, the amount of data from devices being generated
is higher than ever,and most of this IoT data is not exploited or used.
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2.7 State of the Art

There are many possible methods to spook animals. Most technological systems for this
use motion sensors, as stated in the introduction (chapter 1), and will trigger the system
for any animal or object passing the sensor. It is important to have control over what
animal passes the deterrence system. Using computer vision and deep learning, it is
possible to distinguish between different animals.

Computer vision is a heavily researched and popular topic in mechatronic engineering.
The current state-of-the-art in computer vision is object detectors and image classifiers
using deep learning. Object detectors can identify an object in an image and approx-
imately where in the image it is placed. Using a state-of-the-art object detector, it is
possible to find what animals are passing the deterrence system.

You Only Look Once (YOLO) is an object detector famous for being accurate and fast.
There are other object detectors that are faster or more accurate, but YOLO is famous for
having both attributes. Depending on which YOLO model is used and the system it is
running on, YOLO can achieve fast detection at real-time speeds.

Animals are intelligent and have tendencies to learn how to avoid stationary systems.
Using the output from object detectors makes it possible to implement control algorithms
and then target the cat directly to make it harder to avoid.

Object detector has usually been implemented on computers with high-power graphics
cards. with the ever-increasing efficiency in object detector algorithms and processing
power makes it possible to implement object detectors on an embedded device. Using em-
bedded computers with graphics cards from Nvidia Jetson, creating a small system with
high computing power can be moved and put where it is needed without being connected
to a server or an expensive computer.
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Chapter 3

Methods

This chapter will elaborate on how the system was developed and the different tools and
software used.
This chapter will elaborate on how the system was developed and the different tools and
software used. There are three main topics in this thesis and is divided into how the
object detector was trained, implementing the object detector on an embedded device,
and lastly, building an enclosure with motors to have a targeting system

3.1 Object Detector

YOLOv4 is considered the state-of-the-art object detector, with a good combination be-
tween fast detections and prediction accuracy, and is at the time of writing the best
performing object detector when combining both accuracy and computation time. It is
important to mention that YOLOv5 exists at this time and is discussed later in this thesis.
YOLOv4 is an object detector that will output multiple detections on a single image and
provide bounding boxes around the detected target to show wherein the image the de-
tected object is. YOLOv4 can be trained to detect almost anything and perform at real-
time speeds. This last feature can be helpful to develop control to target the detected
object.

3.1.1 Datasets

The dataset needs to fit the wanted outcome of the AI/computer vision algorithm. The
YOLOv4 method works like any other CNN or machine learning algorithm using an ex-
tensive dataset of images of the desired result. YOLOv4 comes with pre-trained weights
out of the box, which can detect up to 80-classes base on the COCO dataset. It is fast
and easy to use the pre-trained system if it has a suitable class, But it is also possible to
train for a custom class and improve the detection accuracy.

Image Annotation for Custom Dataset

The dataset created needs to contain ground truth boxes (bounding boxes label to tell
the algorithm where the object is). It is vital to have the correct type of label or ground
truth to match the right algorithm

Bounding Boxes

Bounding boxes are a popular version where the object is marked with a rectangular box
with two anchor-point, top left corner and bottom right corner, which shows where the
object is on the picture. This method will also include some objects or backgrounds.
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Figure 3.1: Images with Bounding Boxes

Google Open Images Dataset

There are many famous datasets used for training object detectors. Different deep learn-
ing competitions, such as Pascal VOC and MS COCO, have a standard dataset that
the participants use to compare algorithms. Google’s Open Images Dataset (OID) is a
database with prelabeled images which has over 600 different image classes. OID was
used to create a dataset for training the object detector.

Library Number of Images Number of Classes Latest Update
PASCAL VOC 11.5K 20 2012

COCO 330K 80 2017
OIDv6 9M 600 2020

Table 3.1: OID vs COCO vs Pascal VOC

Number of Images

The recommended number of images is around 2000 for each class. At the beginning
of the thesis, YOLOv4 was tested by using every cat image from OID (almost 2000) and
trained with the standard YOLOv4 configuration. These weights reached an mAP of 94%
using a validation set of 300 images, also gathered from OID. YOLOv4, trained and val-
idated from on the COCO dataset, reached approximately 90% mAP ??. These two dif-
ferent weights were compared by using a video of cats to if there was a difference. The
custom trained showed a better result, and it was decided to continue with custom train-
ing.
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Figure 3.2: YOLOv4 (left) compared with custom training using 2000 images from OID
(right)

OIDv4 Toolkit

OIDv4 Toolkit is software created to make it easy to download object detection and image
classifier datasets. It uses the API from Google’s Open Image Dataset to download the
classes with related bounding boxes. It uses one command to download multiple classes
and organizes the folder structure to be ready to use for training[51]. The YOLO bounding
box converting script was acquired from theAIGuysCode in the OIDv4_toolKit[47].

Cats and other animals

There are multiple types of animals that roam around in Norwegian woods and neigh-
borhoods. It is essential to consider the animals that can be detected and be targeted
for legal reasons. Hedgehogs are not directly red-listed, but it is common knowledge that
hedgehogs are off-limits. The Norwegian database for animal species 1 shows what ani-
mals are off-limits, and it should be check when making a system that will interfere with
wildlife.
In this case, the pre-trained class did not contain a hedgehog, which needs to be included
(see chapter 3.1.1). Creating a custom object detector gives more control over what is
detected and can be tailor-made to fit the project’s criteria. Since there are datasets
with hedgehogs available in the OID library, hedgehogs will be included in the training
of YOLOv4 for more accurate training results and possible avoidance of targeting the
species. To make sure that YOLOv4 can differentiate and not target anything other than
what is set by the control method. Hedgehogs, dogs, and humans are also included in
the dataset to differentiate between the animals. It is easier to use the control algorithm
to target cats when we have multiple outputs than to have cats as the only output and
trust that YOLOv4 has false positives.

Dataset

OID on only contained 350 images of hedgehogs. Compared to cats that have 2000
images, it is possible for the algorithm to have a bias towards classes with higher image
counts. Choosing 500 images for each class (350 for hedgehog) will decrease training
time but also accuracy. Using 500 images should be sufficient but not optimal.

1https://artsdatabanken.no/Rodliste
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Class Number of images
Cat 500
Dog 500

Human 500
Hedgehog 350

Table 3.2: Classes and number of images in the dataset

3.1.2 Darknet

Darknet is an open source neural network framework which supports CPU and GPU com-
putations with different models as YOLO, ResNet, ResNeXt, RNNs, DarkGo and custom
classifiers[58]. Darknet can be used to run or train an YOLO detector. In this project
Darknet is used to train YOLOv4.
Darknet can be downloaded from the darknet Github-page[5].
Important dependencies when using Darknet is OpenCV and CUDA.

Open Source Computer Vision Library

OpenCV is an open-source real-time computer vision library, which provide free computer
vision and machine learning application[1].
OpenCV is used in darknet to manipulate images and display images for validation and
training. OpenCV is also used to access camera on the NVIDIA Jetson

Compute Unified Device Architecture

Compute Unified Device Architecture (CUDA) is a computing platform and application
programming interface (API) which allows access to perform calculations by using the
system Graphical Processing Unit (GPU) for faster Computations with NVIDIA GPUs.

3.1.3 YOLOv4 Training Setup

When training a custom YOLO object detector with Darknet, The training files need to
fit the training objective. Five files need to be configured to fit the dataset and training
outcome. For this thesis, YOLO is used on an Nvidia Jetson Nano, and to have enough
FPS to be close to the target of 30 FPS, YOLOv4-tiny was used.

Data and Names-files

The .data file is a path to file names and directories for the training and validation dataset.
This file contains the number of classes, the names of the classes, and where to store
the backup weights. Under training, the algorithm needs the file location for every image
used. These are separated into .txt files for both the training and validation datasets.
The data file points to a names file with the name for each class. The order must match
the same as for the annotated dataset.

Training Parameters

YOLOv4 can be changed by editing the config-file. This is necessary when training on a
custom dataset, to get the right network size and parameters.
In Darknet, the number of iterations is dependent on the parameters maxbatches. After
instructions, the researchers of YOLOv4 recommend using the following calculations for
training iterations. It is possible to have a longer training period, but then the risk of
overfitting can occur.

maxbatches = Nclasses · 2000 (3.1)
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This gives the number of maxbatches, 4classes · 2000 = 8000 for the training of this object
detector[58].
Changes to step is defined by maxbatches, where the fist part should be 80% of maxbatches

and the second part should be 90% so:

steps = 6400, 7200

Network size

With a larger network size, the image becomes more accurate, but its FPS performance
will suffer. Table 3.3 shows how the network size will influence the outcome after training
the model. The data is taken from the darknet GitHub repository[5]. The comparison is
made by using the same yolov4.weigth file, only changing the network size, and tested
with the same GPU.

Size mAP@0.5 FPS
608 65.7% 34
512 64.9% 45
416 62.8% 55
320 60% 63

Table 3.3: How network size influences performance. The FPSmeasured using an NVIDIA
RTX2070[5]

Usually, the standard network size is 608 for YOLOv4, but it can be customized by chang-
ing it with steps of 32[5]. For this project, YOLOv4-tiny is used, and it has a 416x416
image input size to increase the FPS by the cost of accuracy. These changes are done in
the config-file, and there are three layers in the standard YOLO-config, but only two in
the TINY-version that needs to be changed.
The filters should be change according to the classes.

filter = (classes+ 5) ∗ 3 (3.2)

[58] so in this case with 4 classes the filters in each layer should be 27.

YOLOv4 Performance enhancers

YOLOv4 introduced different methods for enhancing performance, see section 2.4.5. Pa-
rameters such as angle, saturation, exposure and jitter was unchanged. The function
random changes the network size randomly. This caused crashed during training and
was turned off. This can increase performance and should be left on if possible.
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3.1.4 Overfitting

Overfitting can occur if training is performed too long at the same dataset. The algorithm
is trained to detect cats, but if the algorithm is overfitted, it would not be able to detect
other images than the images used for training the object detector
Overfitting can be a problem, but when following the training guide, it should not. it is
good practise to check the previous iteration with the validation set after training. Figure
3.3 shows that the training data would be more accurate over time, but when testing the
detector on the validation set, detection accuracy could be worse.

Figure 3.3: Overfitting curve show an approximation of how it would look when training
longer then necessary[58]
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3.2 Mechanical System/Hardware Setup

The main target of this thesis is to spook a cat away from an area. The main thought for
the mechanical system for the spooking device was to make a water-gun turret to shoot
water on the cat, which is safe and known to scare cats. Due to time constraints and
complexity, the water gun system will be simulated using a small laser turret that can be
used to test the object detection and control software.
The mechanical system in this thesis was made to test the object detection and control
system implemented on the NVIDIA Jetson and should be redesigned for further devel-
opment with more testing or implementation with other equipment.

Figure 3.4: Component layout

Equipment Name Comment
Controller/Computer Nvidia Jetson Nano —

Servo motor PDI-1171MG 2x
Camera Pi NoIR Camera V2 Night Camera

AC Adapter YU-0805 Converts 230v AC to 12v DC
Voltage Adapter — Converts 12v DC to 5v DC
Motor Controller AdaFruit PCA9685 12-Channel servo motor controller

3D-printed Housing Structure — —

Table 3.4: Equipment/part list
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3.2.1 Nvidia Jetson Developer Kit

Nvidia Jetson is developed to provide powerful GPUs to be used for robotics and AI in edge
computing. The developer kits are primarily used for prototyping and testing software and
hardware implementation. The integrated GPU makes the Jetson line-up more suitable
for this project compared to teensy 4.1, Arduino, and raspberry pi 4. In this thesis, both
Jetson Nano and AGX Xavier will be used. Xavier is the more powerful computer, but
the lack of easy camera implementation made it unusable for the prototype, and Jetson
Nano was used instead.
The Jetson Line-up uses Ubuntu 18.04 and comes preinstalled with OpenCV and CUDA
to access GPU computation.
In production, the developer board should not be used and should be exchanged with
NVIDIA Jetson Module. The main difference between developer kits and modules is the
provided I/Os on developer kits. Modules come only as Computer-boards without I/Os.
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NVIDIA Jetson Nano

The Jetson Nano is the smallest and has the least computing power in the Jetson Line-
up. In this thesis, the Jetson Nano Developer kit is used to get easy access to ports and
pinout for SPI and I2C communications. Jetson Nano has a built-in GPU and can use
CUDA for faster computations, which is important with Real-time object detection.
[18]

GPU 128-core NVIDIA Maxwell
CPU Quad-core ARM A57 @ 1.43 GHz

Memory 2 GB 64-bit LPDDR4 25.6 GB/s
Storage microSD (Card not included)

Video Encode 4Kp30 | 4x 1080p30 | 9x 720p30 (H.264/H.265)
Video Decode 4Kp60 | 2x 4Kp30 | 8x 1080p30 | 18x 720p30 (H.264/H.265)
Connectivity Gigabit Ethernet, 802.11ac

Size 100 mm x 80 mm x 29 mm
Camera 1x MIPI CSI-2 connector

Deployment Module (Jetson Nano)

Table 3.5: NVIDIA Jetson Nano Specifications[18]

Figure 3.5: NVIDIA Jetson Nano Developer Kit[18]
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NVIDIA Jetson AGX Xavier

AGX Xavier is the most powerful computer in the Jetson developer kit lineup[17]. It is
designed specifically for autonomous machines, is power efficient. It is supported with
Nvidia JetPack which contains CUDA, cuDNN and TensorRT libraries.
The Developer Kit is used in this Thesis. The developer kit, has ports to access Ubuntu
User Interface and I/O-pins with SPI, I2C for communication with servo motors. [16]

GPU 512-core Volta GPU with Tensor Cores
CPU 8-core ARM v8.2 64-bit CPU, 8MB L2 + 4MB L3

Memory 32GB 256-Bit LPDDR4x | 137GB/s
Storage 32GB eMMC 5.1

DL Accelerator (2x) NVDLA Engines
Vision Accelerator 7-way VLIW Vision Processor
Encoder/Decoder (2x) 4Kp60 | HEVC/(2x) 4Kp60 | 12-Bit Support

Size 105 mm x 105 mm x 65 mm
Deployment Module (Jetson AGX Xavier)

Table 3.6: NVIDIA Jetson AGX Xavier Specifications[16]

Figure 3.6: NVIDIA Jetson AGX Xavier Developer Kit[16]
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3.2.2 Raspberry Pi NoIR Camera

Figure 3.7: Raspberry Pi NoIR

Camera module Sony IMX219 8-megapixel
Video 1080p30, 720p60 and VGA90 video modes

Table 3.7: Raspberry Pi Camera Module 2 [10]

The Raspberry Pi NoIR Camera is the Raspberry Pi Camera Module V2 without Infrared
Filter. The camera works well for prototyping and fits with the NVIDIA Jetson Nano. The
camera can be used with the Picamera Python library or with OpenCV [38]. 60 FPS @
720p also works well for this project and can be changed to 1080p @ 30FPS if needed.
[38]
The camera module comes with a flexible cable as standard. This is ideal for this design
since the camera is rotating, and the wire will experience some twisting.
When designing the camera mount, the camera’s field of view (FOV) was considered to
remove as much disturbance from the image as possible. The FOV of the Raspberry pi
NoIR is 62.2◦in horizontal and 48.8◦vertical.

3.2.3 PDI-1171MG Servo Motor

The PDI-1171MG servo motor is a small and accessible servomotor that can theoretically
rotate 180◦but is limited to 120◦in this project due to issues when the built-in mechan-
ical brake stops the motor instead of using the signal as a break. The servo motors
can be used with the Adafruit PCA9685 servo driver (chapter 3.2.4). When limited to
approximately 120◦, the motors have steps resolution from 204 to 816 steps over 120◦.

Connection

Connecting the servo motors to the servo driver is straght forward. Make sure the color
code on the driver and the cable from the servo motors match. The connector is 5v, GND
and signal for the PWM frequency.
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Dead band 1µs 1520µs/330hz
Voltage range 4.8V - 6.0V

Motor High quality core motor
Operation Speed (4.8V) 0.13sec 60◦
Operation Speed (6.0V) 0.11sec 60◦

Stall Torque (4.8V) 0,29 Nm
Stall Torque (6.0V) 0,34 Nm

Dimensions 30x12x31.7mm
Weight 17.5g

Figure 3.8: JX Servo PID-1171MG [57]

3.2.4 Adafruit PCA9685 Servo Driver

Figure 3.9: Adafruit Servo Motor Driver[3]

The Adafruit PCA9685 Servo Driver is used to drive up to 16 servo motors with Pulse
width Modulation (PWM). It uses the Adafruit PCA9685 Library, which is available for
both C and Python, and the communication with the microcontroller is by I2C protocol[3].
This servo driver is used to power two servo motors.

Connection

The Adafruit is connected to the I2C bus1 on the Jetson Nano (would be the same on
AGX Xavier). That is pin-3 and pin-4 for SCL and SDA, and pin-1 (5v) for VCC and pin-6
GND. It also needs 5v from the power supply, which is connected to the screw terminals.

3.2.5 Arduino 5mW laser

The laser comes from an Arduino Uno kit and is of unknown origin: The laser is used to
point at the Target and is centered close to the camera to target the center of the camera
image.
The implementation of a laser serves two purposes. The first is to use it for targeting
and visualization of the control algorithm. The second is the see if the cat is scared away
when it is pointed directly at it.
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Connection

Nvidia Jetson Nano does not output enough current from its I/O pins to drive the laser
directly from the I/O pins. A transistor with the name BC547B from an Arduino kit was
implemented. The transistor base was connected to I/O-pin 15 on the Nvidia Jetson Nano
Board, while the emitter was connected to the laser GND and collector to Nano I/O-pin
ground.
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3.3 Turret Design

The physical build of this thesis was made to house all the components and have servo
motors mounted to have a two-axis system where the camera can be mounted and the
control algorithm tested. The main housing will hold the NVIDIA Jetson Nano, motor
driver, and voltage divider. To simplify the construction of a motor bracket for holding
the motor responsible for movement around the Y-axis (see figure 3.10), it was designed
to be directly mounted on the servo motor. The X-axis motor holds a small bracket made
to hold both the camera and laser. These parts are designed to be light and 3D-printed
with 20 percent infill.

Figure 3.10: Coordinate system

The system was designed in Solidworks CAD, 3D-printed and assembled. Figure 3.11
shows a render of the assembled model in Solidworks.

Figure 3.11: Render of Solidworks Model

Both motors are rotating around Y- and X-axis and has 2 degrees of freedom. The Rasp-
berry pi camera has the camera is mounted as close to the rotation-center of both motors
as possible. Due to construction restraints with the cables and Wires, its rotation will be
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limited to 180 degrees to not damage camera and motor cables.

3.3.1 Operating Area

The view area of the system is decided by two variables, Camera FOV and servo motor
range. The servo motor range is 120◦and the field of view of the camera 62◦.

totalrange = servorange + camerarange (3.3)

The total operating range is equal to 183◦. When the servo is at the end of its range, the
camera can see 31.5◦more in that direction, making the total viewing range equation 3.3
Since the laser is mounted center and will follow the movement of the motor, since the
target laser is set to be in the middle of the camera image, the target range for the system
is 120◦and not the full 183◦that the camera can see.

Figure 3.12: Diagram over camera FOV, servo motor range and the servo motor range

3.4 Control Software

This section will cover the development of the control software for the system. The goal
for the control system is to be able to target the object detected by the detector created
and shown in the previous section. The control algorithm will be developed and tested
on the Nvidia Jetson Nano, with the hardware from section 3.2.1.

3.4.1 TensorRT

Nvidia Jetson Nano and Xavier come out of the box with TensorRT, TensorRT is an soft-
ware developer kit for high-performing deep learning inference[37].TesnorRT is used for
running the object detector on the Jetson Nano with the built-in GPU. YOLOv4 weights
will only work when using Darknet. To utilize TensorRT for more GPU performance, the
YOLOv4 weights must be converted to TensorRT weights. The convertion was done by
using the script from GitHub-page tensorrt_demos[28].
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3.4.2 Transferring Data

TensorRT and Tensorflow both working on python 3.x, while ROS Melodic works on
python 2.7. For that reason, it is not possible to use TensorFlow and YOLO functions
directly in ROS. The workaround for this problem was to open a pipe by importing the
built-in OS library. A pipe in this context is a function that sends information between
different processes running on the system. The function is started by calling os.pipe(),
which defines two pipes, read and write, for transferring data.
The whole software for this system can be divided into two main processes. ROS is
responsible for the control algorithm and control of the servomotors, while there is a
separate python 3 process running the object detector and camera. The control algorithm
only needs four values from the object detector to work. These values were converted to
a string and sent over the pipe to ROS.

3.4.3 Object Detector Implementation

This section will go through implementing the object detector into working code that
can be sent to ROS. The main script for the object detector was created by modifying
the functions from jkjung − avt GitHub repository tensor_demos[28], primarily using the
"utils" folder, which contains the functions to run YOLOv4 with TensorRT.

Camera

Implementing a camera to send images to the object detector was implemented using
the "gstreamer" framework that comes built-in on the Jetson line-up. By calling the
"gstreamer" function, it will detect the camera connected to the MIPI-port, which is lo-
cated on the Jetson nano. Using OpenCV the data streamed from the camera is passed
to the detection function.

Sending Data to ROS

The object detection algorithm returns four numbers for the position of the target. These
numbers are the bounding box parameters that show the object’s position in the image.
The bounding box parameters were combined into a string which can be sent over the
pipe to ROS and be used by the control algorithm. The data from the detector function is
a list containing four integers where each number represents a corner from a bounding
box. The list was converted to a string to be able to send it over to ROS, and it was
converted back to a list in ROS.

3.4.4 ROS

Robot Operating System (ROS) is a framework for writing software for robotic applications.
ROS aims to simplify the task of creating complex and robust robot behavior across a
wide variety of robotic platforms. ROS enables the communication between different
computers and systems with a different programming language if ROS is supported.

Nodes

ROS nodes are the same as processes. By dividing processes into several parts, more
can be done in parallel, and therefore increasing efficiency ??. It also helps troubleshoot
where a problem can be specified to a specific node instead of looking through a massive
chunk of code. In this project, there are two nodes, see table 3.8. It is also possible to
look at the object detector script as a third node but is not inside the ROS environment,
so it is not defined as a ROS node even though it is working in parallel to the ROS nodes.
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Node Description
catdetController Functions for control algorithm, servo motors, and motor driver
mainController Main script running the system

Table 3.8: List of nodes in ROS

The catdet-controller node is responsible for communication with the Adafruit servo
driver and the servo motors. This node also contains the class with the calculations for
the control algorithm. The mainController script contains the main parts of the scripts
and how the system will behave. It runs the control algorithm and starts the object de-
tector subprocess. It receives bounding box data and passes it to the control algorithm.

Topics

Topics are messages which send data between nodes. Different nodes can publish data to
a topic or subscribe to receive the topic data stream ??. A topic can be used by multiple
nodes, which increases data communication in the ROS environment ??. This project
only uses one topic 3.9.

Topic Description
servoSetpoints Message for servomotors with step number

Table 3.9: List of topics in ROS

This topic sends the servo motor position calculated by the control algorithm to the cat-
detcontroller script, which outputs the value to the servo motors. There are also data
communication between the object detector process and the mainController.py script,
which sends the string containing the bounding box data. This data stream would have
been a topic if it was inside the ROS environment.

Packages

Package is a method for ROS to organize software in the ROS environment. The package
contains nodes, libraries, data, and useful files. Packages are helpful for reusing software
later or integrating it in different systems with other packages ??. In this project, all
software in ROS is in one package named "catdet".

3.4.5 Control Algorithm

The control algorithm will control the two servo motors implemented on the turret system.
The object detector outputs wherein the image targets are and what class the object is.
That information will be used to create the control algorithm and make the laser mounted
on the turret aim at the target.

Targeting

The goal is to keep the detected target in the middle of the screen. The laser is mounted
above the camera ?? and can target approximately in the center of the camera image.
The target will be the middle of the screen and calculated as following:

centerx = imagewidth

2

and
centery = imageheight

2
.
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Centroid

The centroid is the middle point in the bounding box (see figure 3.4.5). The bounding
box comes as a list with the image pixel position for each corner. Equation for calculating
centroid see equation 3.4.

xCentroid = (xmin(bbox) + xmax(bbox))
yCentroid = (ymin(bbox) + ymax(bbox))

(3.4)

Bounding boxes are square, and animals are often different shapes so that bounding
boxes will cover more than the exact target. Using the centroid will, with high probability,
always cover the target inside the bounding box. Using the average between the min and
max position will also minimize the movement of the centroid if the bounding box is
fluctuating in size due to detection error.

Figure 3.13: Vizualisation of Centroid

Image position to Real world position

The control algorithm works by converting the image position to a real-world position.

Figure 3.14: Visualization of control algorithm for one servo motor
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The servo motors have a known step-count inside the operation area. In this case the
there are 612 steps inside the range of 120◦of rotation. The camera documentation also
gives an approximation of the field of view (see section 3.2.2) in degrees. Using this
information, it is possible to find the step-count inside the camera’s field of view.

stepsimage = (stepmax − stepmin)
anglemax − anglemin) · cameraF OV (3.5)

Equation 3.5 outputs how many steps there are in the camera field of view. Since the
centroid should be in the center of the image, changing the difference between where
the centroid is and where it is supposed to be is possible. By using a mapping function
(equation 3.6), it can output the position difference between the detected target and where
the center is. The input in the function is the centroid pixel position, the range of the
inputmin and inputmax is the pixel resolution for the camera. The output range, outputmin

and outputmax, from the result of the steps in the camera field of view.

output = outputmax + (outputmax − outputmin)
(inputmax − inputmin) · (input− inputmin) (3.6)

The output of the map function is the offset the servo motor has to move to target the
centroid. Using the servo motors’ current position and adding the offset, the control
algorithm will return the new step target. The control algorithm will update the new
target for every centroid received from the object detector and have the same calculation
frequency as the object detector FPS.
This algorithm will utilize the whole servo range of 120◦, but it can still only detect and
receive information inside the camera field of view. This method is implemented on both
servo motors, only changing the camera field from 62◦to 49◦of view and pixel resolution
(from 1280 to 720)to match camera specs for the motor revolving around x-axis, see figure
3.10.

3.4.6 DeepSORT

The purpose of using deepSORT, is to associate the detected bounding boxes to one object
and keep track of that object. YOLO only provides detection for each image input and
outputs if there is a detected object and where it is. The YOLO algorithm does not give
any information on if it is the same object or another one. deepSORT will create an ID
for the detected object using a simple feature extractor to associate the detected object
from YOLO with the object on the next frame. By using kalmanfilter, it will try to predict
the next frame and will give the output bounding box more stability and will be easier to
use as a target.

3.4.7 Testing Accuracy of Object Detector

When testing the object detector and tracker a random image of cats on pictures and
from a mobile phone.
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Chapter 4

Results

This chapter shows the results of the developed animal deterrence system. This will
aid as a reference for further development, improvement, or recreation of the system.
This chapter will be organized into three central parts: object detection, Object tracking
(Control algorithm), and hardware.

4.1 Object Detector

This section will show the result of training the detector and how accurate the trained
YOLOv4-tiny. The object detector is validated using a separate validation dataset which
assures that it doesn’t contain images used from training. The calculation for accuracy
is discussed in section 2.4.7.

Figure 4.1: Result and validation of YOLOv4-tiny

The left graph in figure 4.1 shows the the average precision and loss for all classes during
training. It behaved as expected and the average precision increased over time, while the
loss,(see theory section2.4) decreased over time.
The info, right in figure 4.1, gives a more detailed look at the different classes. The cat
and dog class has an average precision of approximately 80%. The human class shows
a low average precision. The human class also has 594 false positives (FP) detections,
which is not a satisfactory result. The hedge class has high average precision, but it has
only 29 positive detection, which is low compared to the other classes.
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4.1.1 Real-life Detection

Calculating the precision from the validation dataset will only tell the accuracy with a
specific type of image used in the dataset, typically high resolution and with low noise.
Good engineering practice would validate real-time detection and compare the theoretical
result with what the system detects.

Figure 4.2: Result of Real-world test on the cat class(left), image used as test(right)[52]

Figure 4.3: Result of Real-world test on the human class(left), image used as
test(right)[54]
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Figure 4.4: Result of Real-world test on the dog class(left), image used as test(right)

Figure 4.5: Result of Real-world test on the hedgehog class(left), image used as
test(right)[31]

Calculating the precision from the validation dataset will only tell the accuracy with a
specific type of image used in the dataset, typically high resolution and with low noise.
Good engineering practice would validate real-time detection and compare the theoretical
result with what the system detects.
The images were held as far away from the camera where they still had detection. The
background light from the phone is turned back to 30% not to interfere or help more
than necessary.
The real-world test shows some interesting results compared to the theory. The cat class
was by far the best. Moving the image fast would not lose detection. Looking at figure 4.2
the appears small, meaning it could be targeted from afar. The cat also had reasonably
high accuracy with 0.92 probability.
The human class was satisfactory. The images lost detection whit fast movement and
had to be held closer than the cat image and with lower certainty. Compared to the 25%
Average Precision, mainly due to false positives, it performed as expected real world. Dog
images would often be detected as cats. If the image were further away than shown in
figure 4.4, it would be detected as a cat. When moving the image rapidly, it would switch
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between detecting a cat or a dog. The worst performing class for this evaluation was the
hedgehog class. For the detector to work on a hedgehog, the image needed to be close
and still.

4.1.2 Raspberry Pi NoIR

The Raspberry Pi camera without an infrared filter was implemented to use the system at
night. The camera has a lot of background noise, so much it detects objects that are not
there. Using two infrared light sources to aid the camera only made the image pink, and
it did not help. Figure3.2 shows the difference between the NoIR camera and a regular
phone camera with the same lighting. There is a considerable difference between the two
cameras, and the NoIR camera has way more visibility.

Figure 4.6: The images shows the difference between a regular camera and Raspberry pi
NoIR at the same light level. Left: Phone camera, Right: Raspberry Pi NoIR

4.1.3 Frames Per Second - Jetson Nano

The target FPS from the target specification written at the beginning of this thesis was 60
FPS for an ideal result and 10 for marginal. The resulting FPS for YOLOv4-tiny trained
with a custom dataset and implemented on Jetson Nano with TensortRT was 23 FPS. The
reported FPS for Jetson Nano with YOLOv4-tiny TensorRT optimized is 25 FPS [28].

4.2 Object Tracking

The object detector was trained on Darknet. To get more performance out of the detector,
the trained weights were converted to TensorRT.
YOLOv4 was integrated into ROS to use the bounding box values for the control algorithm
from section 3.4.5. Motor control using the object detector and control algorithm was
implemented in ROS.
Starting without motors, the control algorithm work and the output signals to the motors
were as expected. Testing with servo motors showed unexpected behavior. The control
algorithm only worked for a small step size when holding the image as center as possible.
Trying to move the cat image to the edges, the motors either vibrate or set themselves
to zero. Testing the servo motors without a control algorithm also showed not expected
behavior. The motors would not move at specific steps or set themselves to zero, which is
limited in the code. The motors were not replaced in time to make more extensive tests.
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DeepSORT was not implemented in the system due to ram limitation on Jetson Nano.
DeepSORT was tested on a windows computer to see how it behaves.
Code and video is sent in a zipped folder with the report.

4.3 Turret Design

A turret was designed with CAD software to house the components used for the animal
deterrence system. Servo motors, a camera, and a laser were also mounted to make the
development of a control algorithm easier. The build works as a two axis turret with 120
◦of rotations around y-axis and x-axis. See figure4.7 and figure 4.8 for images of the
animal deterrence system.

Figure 4.7: Animal deterrence turret (backside)

Figure 4.8: Animal deterrence turret
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4.4 Final Specification

At the beginning of the thesis, product specifications and target specifications were made
to aid the development of the animal deterrence system, see section 1.3. The following
Final Specification is a summer of the reached targets.
For the Target specification range detection was not implemented. The turret is not water
resistant.
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Final Specification 

 

 

 

 

 

Name: 
Group 8 

Date: 
10.06.2021 

Project: 
Master Thesis 2021 

Reached Not-
Reached 

1  Function/Requirements  
1.1 Process 
1.1.1 Detect cat using Image recognition 
1.1.2 Estimate position of cat 
1.1.3 Estimate pose of cat 
1.1.4 Track Movement and targeting system  

1.2 Product 
1.2.1 Reliable and durable in outside environment (IP-rating, 
must handle rain) 
1.2.2 Fast recognition of cat  
1.2.3 Wireless, using battery and Wi-Fi  
1.2.4 Usable at night (night vision camera) 

1.3 Control 
1.3.1 Autonomous 

Note 
 
 

--- 
--- 
X 
 
 

X 
--- 

 
 

X 
 
 
 

--- 
 
 

--- 
--- 

 
X 
X 
 

--- 
X 
 
 

X 
X 
 

--- 
X 

2 Surroundings  
2.1 Indoor 
2.1.1 Test purposes  

2.2 Outdoor  
2.2.1 Outdoor testing and use 

 --- 
--- 
X 
--- 

--- 
--- 

 
--- 
X 

3 Parts  
3.1 Nvidia Jetson Computer board  
3.2 Camera 
3.3 Mounting/housing 
3.4 Water gun system 

 --- 
X 
X 
X 

--- 
 
 
 

X 

4 Project Plan  
4.1 months, master project deadline 

 --- 
X 

--- 

5 Cost  
5.1 Development: within master budget  
5.2 Production: not defined 

 --- 
X 

--- 
 

X 

6 Product/assembly 
6.1 Simple production 
6.2 Design of prototype 
6.3 Full scale prototype with water gun system 

 --- 
X 
X 

--- 
 
 

X 

7 Safety  
7.1 no human target or other animals  
7.2 High accuracy for wanted target 
7.3 low force on target  
7.4 No injury possibilities 

 --- 
X 
X 
X 
X 

--- 
 
 



4.5 Video of results

The video accompanying the report contains a short demonstration of how deepSORT
would look like and work. The most important to notice is the ID that is given to the
detected cat and human. This ID will make the control algorithm target a cat instead of
just bounding boxes that can jump between cats or other targets. The number shows the
ID instead of the confidence score. DeepSORT is running on a laptop without GPU and
the FPS is very low compared to what it would with a GPU.

Figure 4.9: Image from deepSORT video-demo

The second part of the video shows that the object detector can follow the image of a cat
even with fast movements. The value beside the cat shows the confidence score for the
detected cat.

41



Chapter 5

Discussions

This chapter will cover different aspects of the methods used, cover challenges during
the project, and the thesis’s result.

5.1 Object Detector

5.1.1 Dataset

A good dataset is essential to train an accurate object detector. A good dataset would be
lots of images, preferably over 2000 for each class[58]. The images should also be taken
from different angles and distances. The optimal solution is to create a total custom
dataset by taking pictures with the camera used in the project and ensure the labels are
set correctly for each class. This would be difficult to achieve in the time frame for this
project. Therefore OID was used to create the dataset.
One drawback of OID is that the images used are not optimal. They include paintings
and vector art in the dataset. The difference between hedgehog images and human im-
ages is enormous. Even with more pictures with humans, the hedgehog mAP was much
better when compared with the validation set. When looking at random samples from
the dataset, the pictures in the hedgehog class were usually a hedgehog in the center,
clear that the object was a hedgehog, and with no vector art or "funny" pictures.
The dataset for the human class usually contained multiple humans. It was hard to find
all humans in the images when going through the dataset. the dataset for cats and dog
was usually good, Even though there were some questionable images present.

Figure 5.1: This shows two images from the dataset. The picture to the left is an ex-
ample of a bad picture (human class). The picture to the right is a good picture for this
project(hedgehog class)
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Using hedgehogs in the dataset made finding images and create a large dataset difficult.
There were only approximately 350 images available of hedgehogs. This means that hav-
ing 2000 images for the other classes would affect the Hedgehog class’s performance, so
the decision to only use 500 images for each class was made.

5.1.2 Real life evaluating of object detector

From results in section 4.1.1, the pictures show a more realistic result of the object de-
tector than what the calculations can. In section 5.1.1 it was discussed that the dataset
had questionable images that are not suitable to use. These images impacted the calcu-
lations and showed worse and better results (depends on the class) than what the object
detector can perform. The hedgehog class showed good accuracy after training but was
the worst-performing class when tested on the actual system with images. The human
and the dog class did not perform to standard and was hard to detect with the camera.
Both classes lost detection when moving the image. The cat class is performing better
than expected and is considered a success. It had a good confidence score on all images
tested and was stable when moving the image around in front of the camera.
Since the cat class performed well, re-training with improvements to the dataset will
make the other classes perform as well or even better than the cat class.

5.1.3 YOLOv4-tiny

YOLOv4-tiny was used instead of YOLOv4 to increase FPS on Jetson Nano and reaching
23 FPS when optimized with TensorRT. Accuracy is compromised compared to YOLOv4,
but the cat class was at a satisfactory level under testing. By optimizing the dataset and
the object detector YOLOv4-tiny on Jetson Nano usable for this system.

5.1.4 Object Detecting at Night

Cat are often active at night, and it is wanted for the detector to work at night. The
solution was to implement a camera that does not have an Infrared filter. The camera can
read longer wavelength light that animals and humans can not see by using background
IR-light or an additional light source. The camera outputs an image that is readable for
humans or the object detector. The NoIR camera had too much noise, see result4.1.2.
Under testing, the object detector detected different classes that were not present in the
image. When applying more light with two IR light diodes, but the background noise got
worse. A better quality camera with better light sources should make it achieve detection
at night. The object detector is looking at shapes in the image, so the different color
scales from the night camera should not impact performance a lot.
The camera out from low light condition is grey-scale, so a separate object detector was
trained on gray-scale images to be tested with the NoIR camera to increase its perfor-
mance. However, due to much noise, it was never tested.

5.1.5 YOLOv5, PP-YOLO, and Other Versions

YOLOv5 was first released in June 2020 and PP-YOLO in august 2020 and with many
controversies. The controversies revolved around the lack of research papers and non-
connections to the original researchers of YOLO and Darknet. The lack of documentation
and validation made YOLOv4 the more attractive option since it still was relatively new.
At the later stages of writing this thesis, many more exciting object detectors are coming
to the market, Like YOLOv4-Scaled and PP-YOLOv2. Also, there are now many written
articles supporting the validity of YOLOv5, but still no research paper. For further de-
velopment, or new projects using object detector these new detectors is worth looking
into.
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5.2 Object Tracking

5.2.1 Control Algorithm

The control algorithm made for this system should work well for any similar system with
the same known parameters. The positive with this approach is a fast and responsive
system, which can be used for different motors and systems by only changing step count,
resolution of the camera, or field-of-view parameters if parts are changed. The limiting
factors for the accuracy of this method are mainly the servo motor’s step resolution. Con-
sidering the distance to the target, the servo motor resolution will impact the accuracy
the further away the target is. The distance to the target would be the radius of a circle
around the system, and since the step resolution is the same, it means that the motor
has to move less to cover the same distance as if the target was closer. Therefore the
system could be improved by having higher stepper motor resolution for long-distance
targeting. This would be the case for every control algorithm implemented.
During testing of the control algorithm, there were issues with the behavior of the system.
The control algorithm did not move the way it was calculated to do. When developing the
control algorithm, extensive checks were done to test if the theory was right. When
implementing the algorithm on the system, more checks were done to see if it sent the
right servoSetpoint to the motors, and it did. During testing, one servo motor broke, and
the backup was installed. The control algorithm worked with a small step count with
the backup motor but either started shaking or set the step to zero at random. Without
more testing, it is difficult to blame the motor or the algorithm.
Implementing a PID-controller was also considered. PID-controller is a practical control
algorithm to solve most control problems. Compared to the used approach, PID-controller
will be slower and less accurate without proper tuning.
When a water gun system is implemented, it is important to choose a control method that
match the system. It can be necessary to use a PID-controller or a state-space controller
instead.

5.2.2 Importance of FPS

Performance is an essential topic in this thesis, and it has been written about accuracy
and interference time (Frames Per Second). This system is dependent on operating at
real-time speeds. Real-time speeds can have different meanings, but it is reasonable to
be defined as 30Hz (30 FPS) and above in this case. Themain reason to pursue higher FPS
is to target fast-moving objects, like cats or dogs. Simply put, the faster the system can
detect and calculate positions, the probability of hitting the target increases. If the system
is slow, the target may have exited the area or image frame before engaging. The control
algorithms’ calculation frequency is dependent on the object detector’s interference time.
If it can calculate faster, it can send a signal to the servomotors at a shorter interval, and
it can set a new position faster and reduce jerk and be more smooth.

5.2.3 DeepSORT

DeepSORT was not implemented in the system. When implementing DeepSORT on Jet-
son Nano, there fast not enough available memory on the system to run it. A video with
a demonstration of how DeepSORT would look like was delivered with the thesis. The
object detector with DeepSORT in the video ran with the YOLOv4 weights trained for this
thesis. DeepSORT will solve two challenges with the object tracker. When the YOLOv4
detects an object, it has no association between each detection, meaning it does not know
if it is the same cat or not. DeepSORT solves by using a feature extractor and compare
the detection, and gives the object an ID [56]. This can be used to track the ID instead
of the first bounding box with the suitable class. DeepSORT also comes with a more
sophisticated tracking algorithm, using a Kalman filter to keep tracking even if the view
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is obstructed or loss of detection. DeepSORT will track and keep the ID for the target for
30 frames before considering it lost or exited the frame[56]. Its important to note that
the implementation of deepSORT will impact the FPS performance of the system. The
performance impact will vary and cant be estimated or concluded before testing together
with the total system

5.2.4 ROS and Implementing Software

Implementing the object detector in ROS was not straightforward. Running ROS with
python 2.7 while the object detector runs on python 3.x. The solution to run the detector
in a subprocess work but is not the desired solution. Having the object detector inte-
grated into ROS makes it easier to extract bounding box and class information without
converting them from numbers to strings.

5.3 Hardware

5.3.1 Nvidia Jetson Nano

The intent was to use NVIDIA Jetson Xavier AGX for the system. However, Xavier De-
veloper Board is missing MIPI CSI-2 camera connector, which other Jetson model has.
It is possible to buy a connector and good quality camera modules for Xavier AGX that
could be implemented. At the time of writing, these cameras and connectors were too
expensive to acquire and deemed not reasonable for this project. The solution was to
use a Jetson Nano instead. Jetson Nano is a reasonable option in terms of price, but
at the cost of performance. This choice opens up the opportunity to test the difference
in performance and make a more qualified recommendation as to what system is worth
using for the final specification. Reaching an average of 23 FPS is under the ideal target
of 60 FPS and the real-time FPS mark of 30. However, the achieved 23 FPS is usable and
will work for this system. Using Jetson Nano is at the limit of what is needed and can be
recommended. Using YOLOv4, the non-tiny version, and the older version of YOLO will
require a better GPU.

5.3.2 Turret System

The turret system built for this thesis is not a proposed solution for how a final version
of the animal deterrence device is supposed to be. It was created to house the Nvidia
Jetson Nano and test the control algorithm and object detector with the raspberry pi
camera, and its purpose is to be a testing platform. At the current configuration, parts
are mounted directly onto the servo motors without any support. This is considered bad
engineering practice and should be avoided when designing a more permanent solution.

Camera

The Raspberry Pi NoIR camera did not meet expectations after testing. It was used with
720p to keep the frame rate high. As the results show, the camera is usable in the
daytime. Cameras with lower quality are not recommended to use with object detectors.
The low light images have lots of noise and distortion that impact the object detector’s
effect and even detect objects in the noise present. It was also tested by using too small
IR LED to improve the image. The IR LED light was clearly visible and made the image
lighter. However, the image quality and noise were still bad. It should be considered to
implement bigger light sources if the cameras are to be used further.
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Servo Motors

The servo motors used were helpful for testing and are cheap and accessible since they
were already on hand. It is not recommended to use these for a final product. The JX
1171MG has limited documentation and only provided with a sticker on its packaging.

5.4 Water Gun System

The product specification called for using a water gun as the method for scaring cats.
Water is safe, accessible, and known to scare animals and even people when surprised
or sprayed with water. The final product will include a mechanism that sprays a jet of
water directly on the target. Due to time limitations to develop the water gun system, a
laser was implemented instead to visualize if the water spray would hit the target. It was
also considered to eliminate the water gun idea and instead use the laser as the solution.
A laser could damage eyes and skin, and there is no wish to harm any target. Even with
a low-powered laser, there still would have been a risk. After careful consideration, water
would still be the best solution.
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Chapter 6

Conclusions

This project aimed to develop an animal deterrence system that uses state-of-the-art
methods to make a system to keep cats away from an area.

6.1 Object Detection

An objected detector was trained and could identify the objects wanted in this thesis.
The object detection accuracy for cat class and human class was reasonable compared
to what’s expected for YOLOv4-tiny, But the dog class and hedgehog class should be
improved.
Reaching 23 FPS with Nvidia Jetson Nano was under the target set at the beginning of
the thesis, but it can be concluded that 23 FPS is enough to make the system usable.
Detection at night was not reached. The Raspberry Pi NoIR camera did not perform as
expected. Due to the noise level on the NoIR camera the object detector could not work.

6.2 Control Software

The object detector was successfully implemented with ROS. The object detector was not
implemented inside the ROS environment due to different python versions but can now
be used by scripts in ROS.
The control algorithm works by converting the detected object’s position in the image and
converting the position to setpoints sent to the servo motors. During testing, the control
algorithm did not work as expected, and it can not be concluded as a success without
more testing.

6.3 Turret Design

A Two-axis camera turret was designed. The servo motors are used to rotate the camera
to follow the cat or animal. The turret was designed in CAD with four separate parts
that are easy to 3D-print. The undersection/base of the turret holds all the necessary
components to work.

6.4 Targets Reached

At the start of this project, a set of product specifications was set(see section 1.3). The
reached targets were covered in section 4.4. The targets in Product specification were
reached. The optional target should be used if it is wanted to continue the work.
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Chapter 7

Further Work

This chapter goes through some topics that should be looked into if the work is continued.

7.1 Object Detector

7.1.1 custom dataset

The dataset used in this thesis only contained approximately 500 images for each class.
For further development, a more extensive dataset with 2000 images for each class should
be trained and tested against the current result.

7.2 Object Tracking

The tracking algorithm should be further tested. A PID-controller should also be imple-
mented and tested.
DeepSORT is not necessary to have a good control algorithm but should make it easier
to keep control if more animals are present in the image. DeepSORT should be inte-
grated into the main code, and make use of the integrated Kalman filter should make the
Control algorithm more robust. Since deepSORT adds a convolution neural network, the
performance should be tested again to see if there is performance loss that will impact
the system.

7.2.1 Distance Sensor

A distance sensor or distance algorithm would be a helpful implementation combined
with the water gun system. If water should hit the cat up to 10m away from the water
gun nuzzle, it needs to have an angle to counteract gravity. For a more precise hit, finding
the range to the target is necessary to calculate the angle. One way would be to install
a Radar or Lidar to the system. Another option would be to implement the Perspective-
n-Point algorithm[39]. This method is most accurate for an object of the same size, and
cat comes in different shapes and sizes. This method would be interesting to test out for
this system.

7.3 Water Gun Design

Designing a water gun system for this project description should be done after the project
specification in section 1.3. One solution would be to use the garden tap to access water
and pressure. A water solenoid could release the water into a designed nozzle with a set
output diameter to accurately calculate the water velocity. Water velocity is needed to
find the distance the water would travel at different angles. This new targeting method
should be integrated with the control algorithm when developing the water gun turret.

48



Bibliography

[1] About OpenCV. 2020. url: https://opencv.org/about/. (accessed:06.05.2021).
[2] About ROS. 2015. url: https://www.ros.org/about-ros/. (accessed:06.05.2021).
[3] Adafruit 16-Channel 12-bit PWM/Servo Driver - I2C interface - PCA9685. (accessed:15.04.2021).
[4] ADVANCED EMBEDDED SYSTEMS FOR EDGE COMPUTING. —-. url: https://www.

nvidia.com/en-us/autonomous-machines/embedded-systems/. (accessed:06.05.2021).
[5] AlexeyAB. Yolo v4, v3 and v2 for Windows and Linux. url: https://github.com/

AlexeyAB/darknet.
[6] Anchor Boxes for Object Detection. url: https://www.mathworks.com/help/vision/

ug/anchor-boxes-for-object-detection.html. (accessed:06.06.2021).
[7] Alex Bewley et al. “Simple online and realtime tracking.” In: 2016 IEEE International

Conference on Image Processing (ICIP) (Sept. 2016). doi: 10.1109/icip.2016.7533003.
url: http://dx.doi.org/10.1109/ICIP.2016.7533003.

[8] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. YOLOv4: Optimal
Speed and Accuracy of Object Detection. 2020. arXiv: 2004.10934 [cs.CV].

[9] B.O. Braastad. Katt. url: https://snl.no/katt. (accessed:11.03.2021).
[10] Camera Module V2. url: https://www.raspberrypi.org/products/camera-module-

v2/. (accessed:12.05.2021).
[11] CameraModule V2. url: https://developer.nvidia.com/cuda-zone. (accessed:15.05.2021).
[12] CommonObjects in Context. url: https://cocodataset.org/#home. (accessed:12.04.2021).
[13] Convolutional Neural Networks (CNNs / ConvNets). url: https://cs231n.github.io/

convolutional-networks/. (accessed:22.05.2021).
[14] DeepSORT: Deep Learning to Track CustomObjects in a Video. (accessed:25.04.2021).
[15] Detection Evaluation. url: https://cocodataset.org/#detection-eval. (accessed:01.06.2021).
[16] NVIDIA DEVELOPER. Jetson AGX Xavier Developer Kit. url: https://developer.

nvidia.com/embedded/jetson-agx-xavier-developer-kit. (accessed:14.04.2021).
[17] NVIDIA DEVELOPER. Jetson Developer Kits. url: https://developer.nvidia.com/

embedded/jetson-developer-kits. (accessed:15.04.2021).
[18] NVIDIA DEVELOPER. Jetson Nano 2GB Developer Kit. url: https://developer.

nvidia.com/embedded/jetson-nano-2gb-developer-kit. (accessed:14.04.2021).
[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.

deeplearningbook.org. MIT Press, 2016.
[20] The AI Guy. yolov4-deepsort. 2020. url: https : / / github . com / theAIGuysCode /

yolov4-deepsort.
[21] How to Choose an Activation Function for Deep Learning. (accessed:22.05.2021).
[22] Jonathan Hui. mAP (mean Average Precision) for Object Detection. 2018. url: https:

//jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-
45c121a311731. (accessed:31.05.2021).

49

https://opencv.org/about/
https://www.ros.org/about-ros/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://www.mathworks.com/help/vision/ug/anchor-boxes-for-object-detection.html
https://www.mathworks.com/help/vision/ug/anchor-boxes-for-object-detection.html
https://doi.org/10.1109/icip.2016.7533003
http://dx.doi.org/10.1109/ICIP.2016.7533003
https://arxiv.org/abs/2004.10934
https://snl.no/katt
https://www.raspberrypi.org/products/camera-module-v2/
https://www.raspberrypi.org/products/camera-module-v2/
https://developer.nvidia.com/cuda-zone
https://cocodataset.org/#home
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
https://cocodataset.org/#detection-eval
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-developer-kits
https://developer.nvidia.com/embedded/jetson-developer-kits
https://developer.nvidia.com/embedded/jetson-nano-2gb-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-2gb-developer-kit
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://github.com/theAIGuysCode/yolov4-deepsort
https://github.com/theAIGuysCode/yolov4-deepsort
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a311731
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a311731
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a311731


[23] IBM. What is edge computing? url: https://www.ibm.com/cloud/what-is-edge-
computing. (accessed:05.05.2021).

[24] Image Annotation. url: https://lionbridge.ai/services/image-annotation/. (ac-
cessed:25.04.2021).

[25] Zicong Jiang et al. “Real-time object detection method based on improved YOLOv4-
tiny.” In: CoRR abs/2011.04244 (2020). arXiv: 2011.04244. url: https://arxiv.
org/abs/2011.04244.

[26] JONATHANDAVIDSTEELE. Image of Dog. (accessed:10.06.2021).
[27] Ross Girshick Joseph Redmon Santosh Divvala and Ali Farhadi. “You Only Look

Once: Unified, Real-Time Object Detection.” In: (2016). url: https://arxiv.org/
pdf/1506.02640.pdf. (accessed:04.05.2021).

[28] JK Jung. tensorrt _demos. 2020. url: https://github.com/jkjung-avt/tensorrt%
20%5Ctextunderscore%20demos.

[29] Roland Kays. Test of ultrasonic cat repellent. url: https://www.youtube.com/watch?
v=mv13QDct9OY. (accessed:11.03.2021).

[30] Andreas Klausen. bsc-cat-2021. 2021. url: https://github.com/andrek10/bsc-cat-
2021.

[31] Adrienne Legault. The Spruce. (accessed:10.06.2021).
[32] Tsung-Yi Lin et al. Focal Loss for Dense Object Detection. 2018. arXiv: 1708.02002

[cs.CV].
[33] Wei Liu et al. “SSD: Single Shot MultiBox Detector.” In: Lecture Notes in Computer

Science (2016), 21â€“37. issn: 1611-3349. doi: 10.1007/978-3-319-46448-0_2. url:
http://dx.doi.org/10.1007/978-3-319-46448-0_2.

[34] Vishal Mandal and Yaw Adu-Gyamfi. “Object Detection and Tracking Algorithms
for Vehicle Counting: A Comparative Analysis.” In: (2020). url: https://arxiv.org/
ftp/arxiv/papers/2007/2007.16198.pdf.

[35] mAP (mean Average Precision) might confuse you! url: https://towardsdatascience.
com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2. (accessed:01.06.2021).

[36] McKinsey and Company. THE INTERNET OF THINGS: MAPPING THE VALUE BE-
YOND THE HYPE. 2015.

[37] NVIDIA TensorRT. url: https://developer.nvidia.com/tensorrt. (accessed:10.06.2021).
[38] Pi NoIR Camera V2. (accessed:15.04.2021).
[39] Real Time pose estimation of a textured object. url: https://docs.opencv.org/3.4/

dc/d2c/tutorial_real_time_pose.html. (accessed:06.06.2021).
[40] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger. 2016. arXiv:

1612.08242 [cs.CV].
[41] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement. 2018. arXiv:

1804.02767 [cs.CV].
[42] Robot Operating System Wiki. url: http://wiki.ros.org/. (accessed:03.06.2021).
[43] Pierrick Rugery. Explanation of YOLO V4 a one stage detector. 2020. url: https:

/ / becominghuman . ai / explaining - yolov4 - a - one - stage - detector - cdac0826cbd7.
(accessed:04.05.2021).

[44] Sumit Saha. A Comprehensive Guide to Convolutional Neural Networks. 2018. url:
https : / / towardsdatascience . com / a - comprehensive - guide - to - convolutional -
neural-networks-the-eli5-way-3bd2b1164a53. (accessed:26.05.2021).

[45] Daryl Sowers. Water Sprinkler Soaks Cats - Very Funny Part 1. url: https://www.
youtube.com/watch?v=IrgUqxFik7k. (accessed:11.03.2021).

50

https://www.ibm.com/cloud/what-is-edge-computing
https://www.ibm.com/cloud/what-is-edge-computing
https://lionbridge.ai/services/image-annotation/
https://arxiv.org/abs/2011.04244
https://arxiv.org/abs/2011.04244
https://arxiv.org/abs/2011.04244
https://arxiv.org/pdf/1506.02640.pdf
https://arxiv.org/pdf/1506.02640.pdf
https://github.com/jkjung-avt/tensorrt%20%5Ctextunderscore%20demos
https://github.com/jkjung-avt/tensorrt%20%5Ctextunderscore%20demos
https://www.youtube.com/watch?v=mv13QDct9OY
https://www.youtube.com/watch?v=mv13QDct9OY
https://github.com/andrek10/bsc-cat-2021
https://github.com/andrek10/bsc-cat-2021
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1708.02002
https://doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
https://arxiv.org/ftp/arxiv/papers/2007/2007.16198.pdf
https://arxiv.org/ftp/arxiv/papers/2007/2007.16198.pdf
https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2
https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2
https://developer.nvidia.com/tensorrt
https://docs.opencv.org/3.4/dc/d2c/tutorial_real_time_pose.html
https://docs.opencv.org/3.4/dc/d2c/tutorial_real_time_pose.html
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1804.02767
http://wiki.ros.org/
https://becominghuman.ai/explaining-yolov4-a-one-stage-detector-cdac0826cbd7
https://becominghuman.ai/explaining-yolov4-a-one-stage-detector-cdac0826cbd7
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://www.youtube.com/watch?v=IrgUqxFik7k
https://www.youtube.com/watch?v=IrgUqxFik7k


[46] The PASCAL Visual Object Classes. url: http://host.robots.ox.ac.uk/pascal/VOC/.
(accessed:12.04.2021).

[47] theAIGuysCode. OIDv4_ToolKit. url: https://github.com/theAIGuysCode/OIDv4_
ToolKit. (accessed:10.06.2021).

[48] Sachin Thorat. What is Mechatronics System. url: https://learnmech.com/what-is-
mechatronics-system-application-of-mechatronics-system/. (accessed:13.03.2021).

[49] Turnah81. How you can make a Cat Repellent for Under $15 in Parts! url: https:
//www.youtube.com/watch?v=ElcviGYMb3U. (accessed:11.03.2021).

[50] unknown. Cats at night. url: https://www.cats.org.uk/help-and-advice/home-
and-environment/cats-at-night. (accessed:11.03.2021).

[51] Angelo Vittorio. Toolkit to download and visualize single or multiple classes from the
huge Open Images v4 dataset. 2018. url: https://github.com/EscVM/OIDv4_ToolKit.

[52] Von.grzanka. Image of Cat. url: https://no.wikipedia.org/wiki/Tamkatt#/media/
Fil:Felis_catus-cat_on_snow.jpg. (accessed:10.06.2021).

[53] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Scaled-YOLOv4:
Scaling Cross Stage Partial Network. 2020. arXiv: 2011.08036 [cs.CV].

[54] Werner100359. Image of Human. (accessed:10.06.2021).
[55] Nicolai Wojke and Alex Bewley.Deep CosineMetric Learning for Person Re-identification.

IEEE. 2018. doi: 10.1109/WACV.2018.00087.
[56] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple Online and Realtime Track-

ing with a Deep Association Metric. IEEE. 2017. doi: 10.1109/ICIP.2017.8296962.
[57] X PDI-1171MG 17g Metal Gear Core Motor. url: https://www.aliexpress.com/item/

4000811149213.html. (accessed:10.06.2021).
[58] Yolo v4, v3 and v2 for Windows and Linux. url: https://github.com/AlexeyAB/

darknet/blob/master/README.md. (accessed:27.04.2021).
[59] YOLOv4. url: https://github.com/ultralytics/yolov5. (accessed:05.06.2021).

51

http://host.robots.ox.ac.uk/pascal/VOC/
https://github.com/theAIGuysCode/OIDv4_ToolKit
https://github.com/theAIGuysCode/OIDv4_ToolKit
https://learnmech.com/what-is-mechatronics-system-application-of-mechatronics-system/
https://learnmech.com/what-is-mechatronics-system-application-of-mechatronics-system/
https://www.youtube.com/watch?v=ElcviGYMb3U
https://www.youtube.com/watch?v=ElcviGYMb3U
https://www.cats.org.uk/help-and-advice/home-and-environment/cats-at-night
https://www.cats.org.uk/help-and-advice/home-and-environment/cats-at-night
https://github.com/EscVM/OIDv4_ToolKit
https://no.wikipedia.org/wiki/Tamkatt#/media/Fil:Felis_catus-cat_on_snow.jpg
https://no.wikipedia.org/wiki/Tamkatt#/media/Fil:Felis_catus-cat_on_snow.jpg
https://arxiv.org/abs/2011.08036
https://doi.org/10.1109/WACV.2018.00087
https://doi.org/10.1109/ICIP.2017.8296962
https://www.aliexpress.com/item/4000811149213.html
https://www.aliexpress.com/item/4000811149213.html
https://github.com/AlexeyAB/darknet/blob/master/README.md
https://github.com/AlexeyAB/darknet/blob/master/README.md
https://github.com/ultralytics/yolov5

	Abstract
	Introduction
	Challenges
	Goals
	Product Specification

	Theory
	Artificial Intelligence
	Neural networks
	Convolutional Neural Networks (CNN)
	Convolution
	Convolution Layer

	You Only Look Once (YOLO)
	Intersection over Union
	Detection
	Loss Function
	YOLOv4
	The Architecture of YOLOv4
	YOLOv4-tiny
	Calculating accuracy

	Simple Online and Real-time Tracking
	Edge Computing
	State of the Art

	Methods
	Object Detector
	Datasets
	Darknet
	YOLOv4 Training Setup
	Overfitting

	Mechanical System/Hardware Setup
	Nvidia Jetson Developer Kit
	Raspberry Pi NoIR Camera
	PDI-1171MG Servo Motor
	Adafruit PCA9685 Servo Driver
	Arduino 5mW laser

	Turret Design
	Operating Area

	Control Software
	TensorRT
	Transferring Data
	Object Detector Implementation
	ROS
	Control Algorithm
	DeepSORT
	Testing Accuracy of Object Detector


	Results
	Object Detector
	Real-life Detection
	Raspberry Pi NoIR
	Frames Per Second - Jetson Nano

	Object Tracking
	Turret Design
	Final Specification
	Video of results

	Discussions
	Object Detector
	Dataset
	Real life evaluating of object detector
	YOLOv4-tiny
	Object Detecting at Night
	YOLOv5, PP-YOLO, and Other Versions

	Object Tracking
	Control Algorithm
	Importance of FPS
	DeepSORT
	ROS and Implementing Software

	Hardware
	Nvidia Jetson Nano
	Turret System

	Water Gun System

	Conclusions
	Object Detection
	Control Software
	Turret Design
	Targets Reached

	Further Work
	Object Detector
	custom dataset

	Object Tracking
	Distance Sensor

	Water Gun Design

	Bibliography

