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Glossaries

End-effector : The last body on a robot orientated toward the target surface

� : Joint position angular [radians]

_� : Joint velocity [rad/s]

��: Joint acceleration [rad/s²]

Simscape: Simulation programe that make it possible to create models of physical systems, and
simulate the result.

Euler-angels: Describes the rotation around the x, y, z axis.

Error : A four element matrix describing position of end-effector in the relation to the target position

Index: Scalar from 1 to 100, that is used in waypoint selecting

Targetpose: The target position represented as a 4x4 homogeneous matrix transfer matrix

Target position: The the cartesian coordinates for the target. In this thesis the bolt head.
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Abstract

The main objective of this paper is to investigate the possibilities for using reinforcement learning
to control a UR-5 robot. The paper also looks at how well reinforcement learning works to control
a UR-5 robot.
These questions are answered by constructing of matlab and simulink programes. Based on different
mathworks example programs and scripts.
In this study, reinforcement learning only works in the situation it is trained to perform. The author
believe that it could work better if it were given other configurations/parameters. This will still
be an interesting subject for further studies. According to the research done in this paper, the
conventional control have the best control accuracy.
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Chapter 1

Introduction

The university of Agder are in the process of designing a robot that dismantle battery pack on
electrical vehicles. This design include a industrial robot that detects bolt heads and moves the
robot end-e�ector to the position of the bolt head. The motivation factor is that it is very ful�lling
the be part of a design process that can make electrical vehicles even more environment friendly.

This thesis constructs a simulation model o� a UR5-robot that locates screw on a battery pack.
The control of the robot will include conventional control and reinforcement learning control. The
main goal of the study is to answer how to implement Reinforcement learning control on a industrial
robot and how good accuracy it is possible to achieve with the combination o� conventional control
and Reinforcement learning.

To include reinforcement learning in a robotic-control task is a state of art area o� research. Con-
ventional control loop with PI control loop will also be a part of the control of the robot.The
conventional PI control implementation will be used without modi�cations, so it will not be dis-
cussed in this paper.

A matlab script that locate the bolt head is to be constructed. And a model o� the UR-5 robot will
be implemented using the simscape environment in simulink. The researcher will take advantage
o� mathworks library for example program and �les.

The work in this thesis will be limited to bolt location in 2 dimensions, not in 3 dimensions which
is required if it should be used on a electrical vehicle battery pack. The main portion of the thesis
will be to implement a combination of conventional control and reinforcement control to control
industrial robot.

1



Chapter 2

Theory

2.1 Degrees of freedom

A rigid body have in total 6 degrees of freedom, if no constraints are present. Degrees o� freedom
can be calculated as the sum o� freedoms bodies minus the number o� the independent constraints
acting on the body. [2]

N= Number of bodies, including ground
J = Number of joints
m= 6 for spatial bodies , 3 for planar bodies
f i = Number of freedoms provided by joint i

dof = m(N � 1 � J ) +
JX

i =1

f i (2.1)

Calculating degrees of freedom for UR5 robot.:

Figure 2.1: UR5 Robot
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N = 7

J = 6

m = 6

f i = 1

dof = 6 � (7 � 1 � 6) +
6X

i =1

1 = 6 (2.2)

2.2 Kinematics

Forward kinematics

Forward kinematics describes the position and orientation of the end-e�ector in relation to the base
frame. The end-e�ector cartesian cordinates (x,y), and the orientation� can be derived using basic
trigonometry. Below is a example for 2R planar open chain.

x = L 1cos�1 + L 2cos(� 1 + � 2) (2.3)

y = L 1sin� 1 + L 2sin (� 1 + � 2) (2.4)

� = � 1 + � 2 (2.5)

Figure 2.2: 2R planar open chain

A more systematic method for deriving the forward kinematics is to use homogeneous transforma-
tions matrices. [3]

3



Inverse kinematics

Inverse kinematics of a robot refers to the joint position(con�guration) that result in a given end-
e�ector position and orientation. Inverse kinematic is used in robotic control in simulink. The
inverse kinematic block �gure:2.3 converts the end-e�ector location and orientation from a 4x4
homogeneous transform matrix to the the con�gurations � for each joint that correspond to the
position and orientation in the homogeneous transform matrix.

Figure 2.3: Inverse kinematics Block

2.3 Dynamics

Dynamics is the study o� what cause the motion o� a robot, thus the joint forces and torques. The
forward dynamics is used in simulation. ,and describes the angular joint acceleration•� derived on
the angular position � , angular velocity _� , and the torque �
The inverse dynamics describes the torque� derived from the angular joint acceleration •� , angular
position � , angular velocity _� . Inverse dynamics is used in robotic control

2.4 URDF, Universal Robot Description Format

URDF �les contains information about the a robot that is needed for simulations. That include
the kinematics and inertia of each body, and link to visualization �les like .stl �les. Each joint
connections is described with one parent link and one child link. Researchers can manually edit the
URDF �le. If it is desirable to for example add a limit to joint angular position. The URDF can
be imported to malab workspace. And then used to generate a simscape model. It can also be used
with simulink 3d animation. This reference link to a URDF �le for the UR-5 robot.[11]
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2.5 Homogeneous Transformation Matrices

Transformation matrix calculate the translation and rotation between a reference frame (x,y,z) and a
object frame(x,y,z) Thus the placement o� the origin o� the object frame in relation to the reference
frame. Figure: 2.4

Figure 2.4: Transform from reference frame to object frame

Transformation matrix is represented by 4x4 matrix. That represent the transformation between
the reference frame and object frame. [4]

T =

2

6
6
4

r11 r12 r13 x
r21 r22 r23 y
r31 r32 r33 z
0 0 0 1

3

7
7
5 (2.6)

T =

2

6
6
4

r11 r12 r13 x
r21 r22 r23 y
r31 r32 r33 z
0 0 0 1

3

7
7
5 (2.7)

T =

2

6
6
4

r11 r12 r13 x
r21 r22 r23 y
r31 r32 r33 z
0 0 0 1

3

7
7
5 (2.8)

The upper left 3x3 o� matrix: 2.7 represents the rotation. The 3x1 o� matrix: 2.8 to the right
represent the translation(x,y,z).
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2.6 Reinforcement Learning Concept

Reinforcement learning can be used to replace conventional control loops. A typical RL control
consists o� a RL-agent that learns based on the input from the environment. The environment is
de�ned as the system/model that agent controls. The agent uses the observations to improve the
policy function. The policy function decides value o� the outputs(actions). To improve the policy
the agent take advantage of the the reward feedback. The reward could be negative or positive. If
the actions result in good observations (for example correct wather level in a tank), the reward is
positive. Constructing a good reward function is important to make the policy to learn. A state is
the result o� the actions.

Figure 2.5: RL-Learning concept

Reinforcement learning is a sub type o� machine learning. Reinforcement learning works with a
dynamic environment that's gives real-time feedback to the agent. Supervised learning and unsu-
pervised learning algorithm not based on real-time feedback. [8]

2.7 Policy

The policy er the par of the agent that decides the action. The policy updates for every episode.
One episode is variation o� iteration that result in that the episode ends, and the agent either
receives a negative or positive reward.

6



Actor Critic Algorithms

The actor critic algorithm divides the policy function in to 2 neural network, actor and critic. The
output from the actor network is the actions. The critic evaluate the actions taken by the actor
that result in state. The critic updates the actor for each episode.

Figure 2.6: Actor critic network
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Chapter 3

Simscape/Simulink Model

This mathworks example is used as a base for the robotic simulation. [9] The conventional control
sub block that in the referred example, is called "torque control subsystem" see �gure 3.1 is un-
changed. The measurement of the dynamics is improved. The author have implemented a simscape
multi-body model of the robot, sub-block "simscape". Appendix C that is is a modi�ed version of
[11] This is done enable implementing of the UR-5 robot and to take advantage of the mechanic
explorer (visualisations of robot movement) Further the waypoint generator is changed when im-
plementing reinforcement learning and a torque switch block is constructed. In general the parts
that is discussed is changed/improved and the parts not mentioned is unchanged.

The mathworks example [9] also include a matlab script that generates waypoint and loads up
URDF �le for the robot. This script is modi�ed and a detection and location of bolt head part is
added. The bolt detection part are based on [5] The locataion of bolthead part, result in a cartesian
cordinates for the bolt head. This cordinates are merged with the excisting waypoint generation.
Thus the cordinates are put in as the last waypoint (targetposition) The script that contain the
bolt detection and bolt location: A

Figure 3.1: Conventional Control Of Joint Torque and Simscape Measurement

3.1 Waypoint Selection

To make the robot move towards the �nal position, the matlab script A generate 100 waypoints. If
the robot is controlled by only the conventional control block. The robot does not move in a strait

8



line towards the target, and does not reach the target at all.

The waypoints is a 100 points strait line in the space between the robot end-e�ector initial position,
and the target position. The robot end-e�ector follow this path on the way to reach the target
position. Each waypoint consist o� a the cartesian coordinates (x,y,z) and the euler-angels :

Rx : Rotation around the x-axis

Ry : Rotation around the y-axis

Rz : Rotation around the z-axis

Waypoint =
�
X Y Z R x Ry Rz

�
(3.1)

Figure 3.2: Waypoint selection And Generating Error Vector

Figure 3.2 shows the state�owe block that select the next waypoint if the error is less than a given
value (e.g.: 0.01) Inside the state�ow block it is generated an new matrix targetpose Thats converts
the waypoint matrix into a homogenous transform matrix, element by element.

TargetPose= eul2tform (wayPoints(index; 4 : 6) (3.2)

Transform the euler angulars into 4x4 transform matrix

TargetPose(1 : 3; end) = wayPoints(index; 1 : 3)0 (3.3)

9



Puts the x,y,z coordinates into the last column o� the transform matrix. This results in a transform
matrix

Targetpose=

2

6
6
4

r11 r12 r13 x
r21 r22 r23 y
r31 r32 r33 z
0 0 0 1

3

7
7
5 (3.4)

3.2 Calculation Of Error Matrix

The error value is calculated as four normalized column vectors. The target position is subracted
by the the actual position o� the end-e�ector. The script in Figure 3.2 is:

error = vecnorm(TargetPose(1 : 3; :) � CurrentEEPose (1 : 3; :); 2; 1)) (3.5)

That correspond to:

error = TargetPose(3x3) � CurrentEEPose (3x3) (3.6)

error =

2

4
R11 R12 R13 X
R21 R22 R23 Y
R31 R32 R33 Z

3

5 (3.7)

Then the magnitude of each columns becomes:

kE1k =
q

R2
11 + R2

21 + R2
31 (3.8)

kE2k =
q

R2
12 + R2

22 + R2
32 (3.9)

kE3k =
q

R2
13 + R2

23 + R2
33 (3.10)

kEx;y;z k =
p

X 2 + Y 2 + Z 2 (3.11)

Creating the four element error vector

error =
�
E1 E2 E3 Ex;y;z

�
(3.12)
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3.3 Convential Control Of Robot Work�ow

First the matlab script for location of bolt head and generating of waypoints is loaded, appendix A.
A is based on the matlabs scripts in [9] This loads URDF �le for the UR5 robot in to the matlab
workspace. The URDF �le is used for the "inverse kinematic block" end the "get transform block".
The get transform block converts the measured con�guration of the robot into a 4x4 homogenous
transform matrix, that is further used in the generation of waypoints. The "location of bolt head"
part, locate the target position and saves the cartesian cordinates into the matlab workspace. And
is used as the target position for the waypoints.(the last waypoint)

The work�ow is described in 3.3 All the yellow block calculations done in the matlab script A the
green blocks are part of the simulink programe E. The three red blocks are part of the state�owe
sublock �gure: 3.2

Figure 3.3: Conventional Control Flowchart
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3.4 Implementing Reinforcement-learning

The author have chosen to use simulink/simscape to simulate the movement of the robot towards
the bolt head. The simulation programs uses both conventional control theory and reinforcement
learning to control the robot movements. First the robots actuators are controlled by å PI con-
troller. When the end e�ector are close to the screw, The RL Agent takes over the control of robots
actuators.

This is done by changing the end waypoint in the waypoint selector 3.2 in the Conventional control,
and then use the the measured joint con�guration in the simulink model for training agent D
The work�ow for �nding the joint con�guration that is used during the RL-training is shown in
�gure 3.4

Figure 3.4: Control �owchart for �nding joint con�gurations for further use
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3.4.1 Switch Torques To Enable RL-Agent Control

Figure 3.5 Shows the state �ow function that enable changing the torque control from conventional
control to reinforcement control. When desired waypoint is reach by the conventional control.
Switch torque changes to logic "1" this lead to that the output switch the torque output to the
"applied torque". "Applied torque that is the result of the reinforcement control.

Figure 3.5: Changes Torque

3.4.2 Implementing RL-Agent Control

To control the Robot close to the target-screw the author have chosen to use a RL-agent. [6] this
simulink example is used as a base for this implementation. And mathworks have based their work
at [10]

Design o� RL-agent in Matlab and Creating Enviroment Interface

The script including Rl-agent and enviroment interface is included in appendix B. And this is mod-
i�ed version of the matlab script in [6] . The �rst part of the script de�nes the observation interface
from the simulink programe "robotsim". The "obsinfo" matrix consist o� 12 elements, and the low
limit is set to negative in�nitive and the upper limit is set to positiv in�nitve. The values that is
interfaced from the simulink programe are the joint con�guration � and the joint velocity _� from
the UR5 robot. It could also include the joint acceleration •� but this was not included to limit the
amount of data to the RL-agent.
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Figure 3.6: RL control

open_system(�robotsimTrain�)
obsInfo = rlNumericSpec([12 1],...

�LowerLimit�,[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf ...
-inf]�,...

�UpperLimit�,[ inf inf inf inf inf inf inf inf inf inf inf inf]�);
obsInfo.Name = �observations�;
obsInfo.Description = �conf, vel�;

The action speci�cations is set to the joint torque � .

actInfo = rlNumericSpec([6 1]);
actInfo.Name = �Torque�;
numActions = actInfo.Dimension(1);

The enviroment interface object is located inside the simulink sub block "Enable Reinfrocment"

env = rlSimulinkEnv(�robotsimTrain�,�robotsimTrain/EnabledReinforcment/RL ...
Agent�,obsInfo,actInfo);

14



Sub Block Enable Reinforcement

Figure 3.7 shows the simulink block including the RL-agent, "Calculate reward block", and the
"Reward block". The "Reward block" end each episode if the error value exceeds the lower or
upper limit. Thus when the robots end e�ector either is close to the target screw, or to far away.
Figure 3.8 Exceeding the low limit result in positive reward (distance to bolt head less than 0.5mm).
Exceeding the upper limit results in negative reward. Exceeding the lower limit result in positive
reward.

Figure 3.7: Enable Reinforcement Block

Figure 3.8: Reward Block
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Reward function

The author have chosen a reward function that increases exponentially as the error (end e�ector
distance from target) decreases.[1] The reward function can be manipulated to increase the reward
value for each episode.

Figure 3.9: Reward Calculation

Reward = 1 �
1

error � 0:5 (3.13)

Reward = 1 �
1

error � 0:5 � 9 (3.14)
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Figure 3.10: Plotted exponentially reward function

Figure 3.11: More potential exponentially reward function
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3.5 Decreas of freedom/model of UR5 Robot

The UR5 robot have 6 degrees of freedom. In �gure 3.12 the revolution joint 1-3 are visualized. In
�gure 3.13 revolute joint 4-6 are visualized. The axes of rotation is indicated with a yellow arrow.

(a)

(b)
(c)

Figure 3.12: Axes of rotation, joint 1-a, joint 2-b, joint 3-c
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(a)

(b)

(c)

Figure 3.13: Axes of rotation, joint 4-a,joint 5-b,joint 6-c
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