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Abstract

This thesis proposes a full pipeline autonomous pick-and-place procedure, integrating perception,
planning, grasping and control for execution of tasks towards long term industrial automation.
Within perception, we demonstrate the detection of a large object (target) including position and
orientation (pose) estimation in 3D world. Further on, obstacles in the work area are mapped with
proposed filtering prior to motion planning and navigation of an industrial robot to the target’s
pose. The target is then picked using a custom built motorized 3D printed end gripper, and placed
at a desired location in the robot’s reachable environment. Point cloud based model-free obstacle
avoidance is performed throughout the whole process. The complete pipeline is targeted towards
typical tasks in various industries including offshore, logistics and warehouse domain with scanning
of the scene, picking and placing of a bulky object from one position to another without or with
minimal human intervention.

The proposed methodology was tested upon the point cloud representation of the scene using a
network of six RGB-D cameras covering the entire working environment. The empirical results
together with the statistical analysis show that the proposed methodology is able to map the
environment of volume 10 m x 10 m x 5 m with lesser noise and determine the target position of
length 1.2 m with accuracy of 4.8 mm and precision of 3.6 mm from 10000 measurements.

Integrating the proposed object detection and localization, obstacle mapping and gripper with an
industrial robot resulted in a consistent, versatile and autonomous pick-and-place procedure. 30
successive tests with multiple obstacles and with the target object placed vertically, horizontally
and angled, displayed no collisions and 100% success rate on both gripping and placement of the
target.

The entire code developed in the project can be found on Github including links to CAD-files of
the gripper. A video demonstrating the complete pick-and-place procedure can be seen here or in
the URL below. The executable source code can also be found in Appendix E.

Github: github.com/evenfl/p26_master

Video: youtu.be/1QShpxbUy2Q
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Chapter 1

Introduction

Autonomous robotics are a growing industry with a wide range of applications. They are becoming a
necessity for companies to assert themselves in a competitive market. Many industries are applying
industrial robots to replace manual work or to solve new challenges inducing lower costs due to
improved e�ciency and reduced lead time. However, automating industrial applications can come
at the cost of safety for humans and expensive equipment if used without caution. Through the
fourth industrial revolution (industry 4.0), research have introduced new methods for safer use of
robotics with collision handling and human-machine interaction.

Health, safety and the environment (HSE) is a hot topic now that the technology has come far
enough to be able to automate processes where machines can replace humans working in harsh
conditions. In the oil and gas industry, the easily accessible oil reservoirs are already explored, and
the industry is exploring reservoirs in less accessible areas such as in the Barents Sea. Here, winter
temperatures can range between -20°C and -30°C [1]. This makes it desirable to be able to use
industrial robots and being able to control and monitor the operations from onshore control rooms.
The same concept applies to smelters where humans work in extremely high temperatures. These
examples are just a few of many cases where humans work in harsh environments, and where it
would be desirable to use industrial robots.

Equinor is a company that owns and operates several oil rigs, where some of them are able to operate
unmanned due to the high amount of automation. One of these rigs is Valemon [2], which initially
had a crew of 40. Now, the rig has only a few operators controlling the machinery from an onshore
control room where they can monitor the rig using 147 cameras. When Valemon started operating
with only onshore operators in 2018, the o�shore crew of 40 was moved to onshore positions within
the company, according to Nina Koch, the production director at the time [3]. This is an example
where automation led to cost reduction at the platform as well as new opportunities for the crew
and the company.

In manned environments, such as in the logistics and warehouse industry, there are many repetitive
and heavy operations that can be burdensome for humans to perform over a long period of time.
Picking and placing heavy objects can in many cases cause deepening of the worker's spine load
problem, which can be a burden for life [4]. By using industrial robots to carry out these repetitive
tasks, the workers are spared for strain, and companies can save cost through improved e�ciency
and reduced lead time.

To increase the safety of robotic applications in a manned environment, many robots are caged to
keep a �xed, predictable environment without putting human workers in danger. This is a very
ine�cient approach in tight spaces and it limits the potential of multiple machines and humans
collaborating. HSE is crucial when placing a large machine outside a cage in a harsh environment
alongside humans and unpredictable obstacles. A focus area in the industry today is to use computer
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vision to detect obstacles such as workers and equipment. State-of-the-art 3D sensors, such as the
Microsoft Kinect V2 used in this project, generates large datasets of the environment in 3D. It is
desirable to use these datasets to create position constraints for the robot to avoid colliding with
obstacles [5]. Obstacle avoidance can increase e�ciency because the robots can be able to operate
simultaneously and alongside humans and other machinery without colliding.

This thesis demonstrates an autonomous pick-and-place procedure which can be applicable for mul-
tiple industries such as o�shore, warehouse and logistics domain. Making the procedure autonomous
required both object detection and localization, and obstacle mapping through the use of 3D per-
ception algorithms. This is an important part of Industry 4.0 making machinery autonomous.
Detection algorithms can use 2D- or 3D sensors which are getting cheaper and cheaper as years go
by. Research and technology regarding computer vision is evolving at a rapid pace and it is used
for a wide range of applications, not only within robotics.

1.1 Background

This project was proposed by National Oilwell Varco (NOV). The department located in Kris-
tiansand, Norway, is currently working on research concerning robotics and computer vision.

The thesis builds on previous work done at a robotics lab at the University of Agder, see [5], [6]
and [7]. These papers describes how the robotics lab is 3D-mapped using 6 3D sensor nodes as well
as how these sensors are calibrated. They also propose a method for compressing and �ltering the
data locally with one embedded system for each sensor node. This thesis will use the experimental
setup, calibration and �ltration method proposed in these three papers as a base. From this, the
thesis will propose the software and gripper needed to lift a large object and place it at a goal
position with an industrial ABB robot without colliding with any obstacles surrounding it.

1.2 Objective

That leads us to the main objective of this thesis, which is todevelop an autonomous pick-and-
place procedure. This should be done by using an industrial robot to carry out the pick-and-place
procedure of an object while avoiding static obstacles in the reachable environment. Both the object
and the obstacles are to be detected and localized by 6 sensor nodes covering the entire operational
environment. To solve this problem, the following tasks in prioritized order has to be performed:

1. Mapping the environment in 3D

2. Object detection and localization

3. Obstacle mapping

4. Design, production and implementation of automatic low-cost gripper

5. Navigation and locomotion of robot

6. Use point 1.-5. to perform the autonomous procedure in Figure 1.1 with obstacle avoidance

Limitations

The object to be detected, localized, picked and placed is limited to a large but light object with
a length of more than 1 m. Obstacle mapping should be model-free, meaning that the robot, also
with the cylindrical target object attached, should be able to avoid obstacles of any size or shape in
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Figure 1.1: Objective

the work area. The gripper is not required to be model-free, and can therefore be developed based
on the target object chosen. This implies that the gripper itself will be automatic, and it should
work in the sequence of a complete pick-and-place procedure.

1.3 Project overview

Figure 1.2 shows theWork Breakdown Structure (WBS) of the project and how the project is split
up in di�erent tasks which are re�ected in the report structure.

Figure 1.2: Work breakdown structure of the project

1.3.1 Report structure

This project is built up by a wide range of subjects, and the report is built up to separate them
in a tidy way. This section will explain the chapters shortly to give an understanding on how the
report is structured.

Chapter 2: State-of-the-art summarizes state-of-the-art research on the topics relevant for the meth-
ods used in this project. Next, Chapter 3: Experimental setupexplains how the system is set up
with regards to both hardware and software. This chapter will also give an explanation on the most
important software tools used. Chapter 4:Perception explains the methods and results for the sub-
jects related to perception. The main topics here are object detection and localization and obstacle
mapping. Further on, Chapter 5: Gripper developmentwill explain the design and production of
the gripper from the conceptual phase to a complete prototype. The integration of Chapter 4 and
5 into one autonomous pick-and-place procedure will then be explained in Chapter 6:Autonomous
pick-and-place. This chapter includes the navigation and locomotion of the robot as well as system
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integration to make everything work together as one system. At last, it presents the �nal results
from the pick-and-place procedure. Chapter 7:Discussions presents discussions on relevant sub-
jects and on the �nal result. The �nal chapter, Chapter 8: Conclusionspresents the conclusions on
the project in total.

1.3.2 Project management

A Gantt chart was made to get an overview of the expected progress in the project, the chart were
then updated continuously to keep track on the progress, see Figure 1.3 for the Gantt chart of the
�nal progress. Such a way of planning the project made it easier to keep track of the progress and
staying within schedule.

Figure 1.3: Gantt chart showing �nal progress

In addition to the Gantt chart, a Trello board was used to implement the Scrum method. Scrum is
a method used in project planning to keep track of the progress in detail, while the Trello board is
a tool to implement this method. It is often used in software development because it is an e�ective
way of collaborating with other team members. In a large team, where a project manager manages
the progress, it can be bene�cial to have lists for suggested tasks, approved tasks, tasks in review,
etc. Since there were only two students working on this project it was found satisfactory to use
three lists:

ˆ To do � In progress� Completed

In addition to the lists, the following labels where used to categorize the tasks:

ˆ On hold � Priority � Urgent � Report � Code

The software code developed in this project utilized git to enable the group to work simultaneously
and with backup and version control. Git allowed each team member to edit their own version of the
source code locally before merging it together. A repository was made by using a DevOps platform
(GitHub). This repository could then be cloned to any machine by users with access to the Git
repository. One of the members was made merge master and had the responsibility to merge the
di�erent versions on the development branches without damaging the master branch. The GitHub
repository can be found here.
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Chapter 2

State-of-the-art

Making a pick-and-place procedure autonomous is a comprehensive task. Gathering and using
previous research on the topic is crucial to make it work within the frames of a master thesis.
First and foremost, it requires advanced perception algorithms based on years of rapid research
and development. The goal of this chapter is to present relevant research on which this thesis
builds upon. It is divided into three sections, a hardware related section containing 3D sensors and
perception, a software related covering point cloud processing and a section covering autonomous
pick-and-place.

2.1 Perception

Perception is a crucial part of robotics for making processes autonomous. Its de�nition from [8]:

Perception is the organization, identi�cation, and interpretation of sensory information
in order to represent and understand the presented information or environment.

For computational systems, perception can be obtained through various sensors. Within the �eld
of intelligent robotics, cameras are becoming the preferred choice for most applications due to the
rapid development of computer vision algorithms as the cost of computational power is reduced.
Traditional 2D cameras are used frequently for object detection and automatic incident detection
(AID) [9]. However, 2D cameras will in many application fall behind because of the lack of depth
information. Depth information can be estimated in 2D if the size of the perceived objects is known
[10]. This is not always the case, and for collision avoidance application with unknown obstacles,
the raw depth information from the sensors can be crucial [11]. This is where the advantage of
3D sensors, such as Light Detection And Ranging (Lidar) sensors and RGB-D cameras, plays an
important part.

Lidars use light pulses to estimate the distance to a point in 3D space using the time-of-�ight
principle. They are often built up by several lasers placed on a rotating gimbal or by the emerging
solid state lidar technology with many static lasers. They are a popular choice for many robotic
applications such as UAV and automotive [12]. However, their small �eld of view (FOV) limits their
use [13], e.g. in a warehouses where the sensors often must be able to work at a short range, thus
requiring a larger FOV.

The development of RGB-D cameras is gaining lots of interest because of their information richness
[14] and scalability [7]. Compared to lidars, they generally have a shorter range but a larger FOV.
This makes them suitable for applications where a large FOV is desired and range is unimportant.
RGB-D cameras can be used for many purposes, and even cheap RGB-D cameras, such as the
Kinect V2 can accomplish great results [6]. However, when using cheap equipment, [14] faced
issues with noise a�ection in motion fusion due to precision issues when using Kinect cameras in
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dynamic environments. RGB-D cameras such as the Kinect V2 utilizes active infra-red (IR) senors
to measure the depth using the time-of-�ight principle [5]. This means that the sensor has one IR
emitter and one IR sensor. It emits an IR pulse from the emitter, and calculates the distance to an
object by measuring the time it takes before the IR sensor receives the pulse.

Perception systems together with industrial robot cells could be implemented as eye-in-hand [15],
eye-to-hand [5] and [16] also covered in this project, and a hybrid-combination [17] with both eye-
in-hand and eye-to-hand. The eye-in-hand method often establishes a narrow sight from the robots
perspective, providing a closer look at the point of interest, thus providing a higher resolution and
accuracy. And eye-to-hand providing wide coverage, enabling features like obstacle mapping and
hazardous detection around the robot. [16] shows the use of eye-to-hand perception, reducing system
maintenance on sensors inside a hot environment with nuclear fuel pellets, moving the perception
system outside the hot cell.

The projection of a single camera eye-in-hand sensor implies that it cannot look behind objects,
inducing a shadowed area. This shadow can be removed by utilizing multiple sensors spread around
the environment, covering all sides of the objects. In addition, several sensors nodes leads to
better resolution [5]. This makes it very bene�cial for any industrial application with a variable
environment in a �xed area like robots moving in an environment with intervention from humans
and other equipment. A 3D sensor based virtual environment can be used for object detection [18],
obstacle mapping [19], human detection [20] and more, with loads of new research coming each year.

2.2 Point cloud processing

Point clouds are a product of the information obtained from 3D sensors. A point cloud is a set of
data points in 3D space. Each point has x-, y-, and z-coordinates, but they can also hold information
about color and intensity. Intensity represents the energy re�ected by an object. For example, a
retro�ective surface will have a very high intensity [7]. For points caused by dust in the air or
objects with either a dark colour or a large distance from the camera, the intensity will be low.
Just like digital 2D images, a point cloud is limited to a given resolution. The resolution is not
�xed in 3D space, and a nonuniform distribution of points can occur. A higher density of points in
an area implies a higher computational cost for processing of that area. Voxels are therefore often
used to set a uniform resolution in 3D space. A voxel represents a value on a regular grid in 3D
space. Point clouds are often compressed by organizing them in a voxel grid because it gives the
advantage of choosing the exact resolution of the grid [21], the same way the resolution in a 2D
image is determined by the number of pixels.

Point cloud processing can be a computationally expensive task [22]. Kaldestad, Hovland and Anisi
[23] shows how fast obstacle detection can be done through the octree method [24] and how it
greatly reduces the computational cost of point cloud processing. Octree is a method that organizes
data in a tree data structure where every node has exactly 8 children. It is often used to partition
3D space and can be closely related to point cloud processing. It divides space into octants and
suboctants as shown in Figure 2.1 [24]. While a raw point cloud is just a list of unstructured points,
the octree method is structured by nature. The advantage of the method lies within computational
power. An octree can remove lots of unnecessary computations in areas without any data and it is
expected to have time complexity O( log N ).

[14] developed a multi-granularity environment perception algorithm that puts data from multiple
Kinect sensors in an octree occupancy grid to create a uniformly distributed representation of
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Figure 2.1: Subdivision of a 3D cube into octants. On the right is the corresponding octree [25].

the environment. They point out the scalability issue with computational cost growing cubically
when the resolution or the space expands. By performing point cloud processing locally in an
embedded system, the perception system could be scaled more easily by adding more sensors with
local �ltering algorithms. However, most embedded systems struggles with point cloud processing
due to the computational cost [14]. Nevertheless, Dybedal, Aalerud and Hovland proposed in [7] a
scalable embedded solution that compresses the point clouds locally at a Jetson TX2 development
board using an octree based method. Further on, they use a novel method to generate intensity
values which are not natively produced by the Kinect cameras. They then �lter based on this
intensity. The intensity �lter removes many spurious points by setting a threshold for the intensity
value of each point. The �lter is very e�cient, but for some applications the accuracy might not be
su�cient.

As most sensors, lidars and 3D cameras induces noise. The noise appearing in the point cloud
leads to outliers that corrupt the result. Outliers, by de�nition, is data points with a great distance
from the main distribution of other points [26]. This can be a critical problem depending on the
use case. Fortunately, there are methods to deal with such measurement errors. A commonly used
method is a statistical outlier removal (SOR) �lter. What this �lter does, is calculating the distance
from a point to its neighbours. Then, it removes the points, which do not meet a certain criterion.
The �lter used in this project assumes a Gaussian distribution of data points including a mean
and a standard deviation. If a point's mean distance is outside an interval based on the global
mean and standard deviation, it is considered an outlier and is therefore trimmed from the initial
dataset [27, 26]. The SOR �lter is more comprehensive compared to the intensity �lter. However,
its computational cost is much higher, but its reliability and accuracy makes it the preferred choice
for many applications [7, 26].

2.2.1 Environment mapping

A way of mapping the environment with multiple 3D sensors was developed and implemented in
a robot lab at the University of Agder by Aalerud et al. in [5], [6] and [7]. [5] covers the setup,
placement and manual calibration of 6 Microsoft Kinect RGB-D sensors, which together achieved
a mapping area of 10x15x5 m with an accuracy of 10 mm or better and a frame rate of 20 Hz. A
problem they faced was the time it took to manually calibrate each sensor, approximately 2 hours
per sensor node. Therefore, they proposed a solution of automatic calibration in [6] which led to an
Euclidean error of 3 cm at distances up to 9.45 m from the sensors. They also decreased the area to
10x10x5 m to increase the point cloud density. The automatic calibration method proposed in [6]
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had a more reliable and robust veri�cation compared to the manual calibration [5], and therefore,
Aalerud et al. chose to go on with the automatic calibration for further work.

Within robotics, such a point cloud can be used for obstacle avoidance by utilizing occupancy grid
mapping. This method was �rst proposed by Moravec and Elfes in 1985 [28] where they used wide
range sonars to create a map of an o�ce. It remained nearly untouched by the industry until the 21st

century, and in recent years, the use of this technology has expanded rapidly due to the decreased
cost of computing power and sensors. In addition to being applied to industrial robot applications,
occupancy grid mapping is even emerging at a consumer level through the commercialization of
autonomous vehicles and even robot vacuum cleaners [29] because of the obstacle avoidance features
the technology provides. Occupancy grid mapping are in many cases closely related to the octree
method. Hornung et al. have created an open-source framework for 3D mapping called OctoMap
[30]. It uses probabilistic occupancy estimations together with octrees to create a memory compact,
multi-resolution 3D map.

2.2.2 Segmentation and model �tting

Segmentation is the task of specifying and labeling di�erent regions within an image or point cloud.
By labeling each single point and determining the corresponding class, e.g. plane or cylinder,
semantic segmentation is performed.

Model �tting is the idea of matching prede�ned models with a data set. This is often used for
�nding primitive geometrical shapes such as cube, plane and cylinder. When dealing with images
or point clouds, model �tting can be considered a segmentation approach. The most common model
�tting algorithms are Hugh Transform (HT) and Random Sample Consensus (RANSAC) [22].

RANSAC is a widely used and mature paradigm that �ts models to experimental data, e.g. point
clouds [31]. Two main advantages of RANSAC compared to HT is that RANSAC is superior within
e�ciency and success rate [32]. In addition, the RANSAC method is a very robust algorithm, even
with noisy point clouds with many outliers [33]. This makes RANSAC a very suitable choice for
cheap 3D sensors such as Microsoft Kinect. Sveier et al. shows in [18] how RANSAC can be used
to detect primitive shapes, such as planes, spheres and cylinders, even with lots of outliers.

2.3 Autonomous pick-and-place

Pick-and-place procedures are a common sight within many industrial environments today, and it is
desired to further exploit possibilities of making the procedures autonomous. With an autonomous
procedure, perception and environmental mapping is often utilized, making the system more adapt-
able to a dynamically changing environment, also making the system more �exible and easier to set
up in a new environment [34]. Perception could also provide distinct object localization algorithms
that detects what and where to pick [35]. Kotthauser et al. demonstrates in [16] how an autonomous
pick-and-place procedure can be used, carried out inside a hot environment with pick-and-place of
nuclear fuel pellets, moving the perception systems outside the hot cell.

In recent studies, the use of collaborative robots are substantial in autonomous pick-and-place
studies, as utilized in both [36] and [34]. These collaborative robots work well for their intended
use, but lacks strength and durability against harsh environments often encountered in industrial
applications. [37] states that the use of such robots is mainly used for smaller objects in a cleaner
environment. The target of combining hard robotics with system environment awareness is not
necessarily to obtain a fully secure system, but to make a base capable of cooperating with both
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people and other systems, and also be independent from human and manual control. This could
also be more valuable for industries already using hard industrial robots, being able to maintain its
established selection of hardware while implementing a less hazardous environment.
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