
INTELLIGENT ROBOTIC REHABILITATION

THROUGH A HUMAN-ROBOT INTERACTION

A starting point for a robotic infrastructure which can be an aid for phys-
iotherapists by issuing and adjusting assistive or resistive exercises

Lars Bleie Andersen

SUPERVISORS
Filippo Sanfilippo, Associate Professor
Mohammad Poursina, Associate Professor

University of Agder, 2021
Faculty of Engineering and Science
Department of Engineering and Sciences

Acknowledgements

It has been a pleasure to work with the EVEr3 robot and the people that I have been in contact
with during this project. I would like to acknowledge:

Alexandra Christine Hott and Anders M. Östling for the consultations regarding medical con-
siderations and the cuff.

Filippo Sanfilippo and Muhammad Ali Poursina for their contributions.

Jesper Smith from Halodi Robotics for answering questions regarding the EVEr3 robot.

Arminas Gronskis for the collaboration during the initial C++ and ROS2 programming and for
being a great guy when working with the EVEr3 robot in parallel projects.

i

Abstract

This thesis contains a starting point for a robotic infrastructure which can be an aid for physiother-
apists by issuing and adjusting assistive or resistive exercises. With added equipment for specialized
operations, the Halodi EVEr3 Robot could be utilized as a basis for this kind of infrastructure.
When a physiotherapist is performing a lower extremity rehabilitative movement on a patient, the
EVEr3 robot could record this behaviour and mimic it for a desired number of repetitions. The
design of a prototype is thought to be done safely as a collaboration with healthcare professionals.

ii

Contents

Acknowledgements i

Abstract ii

List of Figures v

List of Tables vii

List of Abbreviations ix

Nomenclature ix

1 Introduction 1
1.1 Motivation . 1
1.2 Rehabilitation Robots . 1
1.3 State of the Art in Therapy Robots . 2
1.4 Safety in Human-Robot Interactions . 2
1.5 Project Objectives . 3

1.5.1 UML Activity Diagram . 4

2 Theory 5
2.1 The EVEr3 Robot . 5
2.2 Software . 6

2.2.1 ROS2 . 6
2.2.2 Gazebo . 7
2.2.3 RViz . 8
2.2.4 The Digital Twin . 8

2.3 Kinematics . 9
2.3.1 Forward Kinematics . 9
2.3.2 Inverse Kinematics . 10

2.4 PID Control . 11
2.5 Medical Considerations . 12

2.5.1 Allergic Contact Dermatitis . 12
2.5.2 Knee Anatomy . 12
2.5.3 Range of Motion . 14

3 Methods 15
3.1 Leg Model . 15

3.1.1 Kinematics . 16
3.1.2 Creating the Leg Model File . 19

3.2 Simulating and Implementing Parts of the Procedure 20
3.2.1 Joint and Grasp Manipulation . 20
3.2.2 Recording the External Input . 21
3.2.3 Constraint of the Right Hand of the Digital Twin 21

3.3 The Cuff . 23
3.3.1 An Alternative Cuff . 25

iii

4 Results and Discussion 27
4.1 Objective 1 . 27
4.2 Objective 2 . 27
4.3 Objective 3 and 4 . 27
4.4 Objective 5 . 28
4.5 Objective 6 . 29
4.6 Remarks and Suggestions for Future Works . 29

4.6.1 Objective 2 . 29
4.6.2 Objective 3 and 4 . 29
4.6.3 Objective 5 and 6 . 30
4.6.4 Safety Assessment . 30
4.6.5 Motion Control . 31

5 Conclusions 32

A Appendices 33
A.1 MATLAB Scripts . 34

A.1.1 Transformation Matrix . 34
A.1.2 Matrix Multiplication . 34

A.2 SolidWorks Drawings . 35
A.2.1 The Hook Models . 35
A.2.2 The Leg Model . 39
A.2.3 The Cuff . 45
A.2.4 The Alternative Cuff . 50

A.3 Eve Menu Package . 54
A.3.1 README.md . 54
A.3.2 package.xml . 54
A.3.3 CMakeLists.txt . 54
A.3.4 eve.cpp . 55

A.4 Joint Read Menu Package . 77
A.4.1 README.md . 77
A.4.2 package.xml . 77
A.4.3 CMakeLists.txt . 77
A.4.4 joint_read.cpp . 78

A.5 The Leg Model . 91
A.5.1 README.md . 91

A.6 Leg Model Description Package . 91
A.6.1 package.xml . 91
A.6.2 CMakeLists.txt . 91
A.6.3 rviz_launch.py . 92
A.6.4 leg_model.xacro . 94

Bibliography 98

List of Figures

1.1 Safety actions during interaction with ARMs [31] . 3
1.2 ULM activity diagram for the wanted steps in the rehabilitation procedure 4

2.1 The EVEr3 Robot made by Halodi Robotics . 5
2.2 An example of communication between ROS2 nodes through a topic [29] 7
2.3 The digital twin in its Gazebo world . 8
2.4 Executing a ROS2 command for both the real EVEr3 and the digital twin 9
2.5 Coordinate frames satisfying the two DH conditions [28] 10
2.6 Block diagram of a PID controller represented in the frequency domain 11
2.7 A general synovial joint [10] . 13
2.8 The ligaments and osseous structure in a knee [30] 13

3.1 SolidWorks model of the leg model in bent knee position 15
3.2 Kinematic schematic of the leg model . 16
3.3 The leg model structure visualized by Graphiz . 19
3.4 RViz representation of the leg model . 20
3.5 Modelled circular hook for simulated human-robot interaction 22
3.6 Modelled square hook for simulated human-robot interaction 22
3.7 First design of the cuff for the human-robot interaction 23
3.8 3D printed top of the handle . 24
3.9 3D printed base of the handle . 24
3.10 Assembled cuff with 3D printed handle . 24
3.11 Assembled cuff with 3D printed handle (top projection) 25
3.12 Assembled cuff with 3D printed handle (bottom projection) 25
3.13 The alternative cuff (upper part) . 26
3.14 The alternative cuff (lower part) . 26

4.1 Hand placement during a rehabilitative movement (©CanStockPhoto) 28
4.2 The main menu for manipulating the EVEr3 robot 29
4.3 The wireless emergency stop button provided by Halodi Robotics 31

v

.

List of Tables

2.1 Standard Ziegler-Nichols values for ultimate sensitivity tuning method [45] 12

3.1 Parameters for the leg model . 16
3.2 Denavit-Hartenberg parameters for the leg model . 16

vii

.

List of Abbreviations

ARM Assistive Robotic Manipulator

BASh Bourne Again Shell

D Derivative

DAE Digital Asset Exchange

DDS Data Distribution Service

DH Denavit-Hartenberg

DoF Degrees of Freedom

ERF Electro-Rheological Fluid

I Integral

MPC Model Predictive Control

OSRF Open Source Robotics Foundation

P Proportional

QoS Quality of Service

ROS Robot Operating System

RTPS Real-Time Publish Subscribe protocol

SDF Simulation Description Format

SEA Series Elastic Actuator

UML Unified Modeling Language

URDF Unified Robotic Description Format

XML eXtensible Markup Language

YAML YAML Ain’t Markup Language (a recursive acronym)

ix

Nomenclature

θ̇i The angular velocity of the ith joint

ω The imaginary term in a complex frequency

σ The real term in a complex frequency

Ai The homogeneous transformation matrix for the ith joint

J The Jacobian matrix which transforms velocities

T0
i The total transformation matrix from the base frame to the ith frame

e(t) Feedback error value

Iyy Moment of inertia about the y axis

Kd The derivative gain

Ki The integral gain

Kp The proportional gain

Ku The ultimate gain

L1 Length of the thigh link from the start joint to the end joint

L2 Distance from the joint of the crus to the center of the handle

m Mass

oi The origin of the ith coordinate frame

s The complex frequency

t Time variable

Td The derivative time

Ti The integral time

Tu The ultimate time period

u(t) Correction value (the input to the process from the controller)

x Length on x-axis

x(t) Reference value

xi The x-axis of the ith coordinate frame

xee The x-coordinate of the end-effector, measured from the base frame

y Length on y-axis

y(t) Process value

x

yi The y-axis of the ith coordinate frame

z Length on z-axis

zi The z-axis of the ith coordinate frame

zee The y-coordinate of the end-effector, measured from the base frame

xi

Chapter 1

Introduction

1.1 Motivation
Robotic systems are believed to be used as standard rehabilitation tools in the near future, many
inspired by the cost of the labour intensive care that is required to cover the number of patients
in need for such treatment. This is due to the fact that physical rehabilitation can take several
weeks or even months until full range of motion and joint flexibility are regained [2, 12]. Utilizing
robotics for rehabilitation can increase the number of training sessions and reduce personnel cost
by assigning one therapist to train several robots. Robotic tools can also implement a variety
of mechanical manipulations that are impossible for physical therapists to execute due to various
current human limitations (e.g. sensing, strength, speed and repeatability) [11, 25]

When deciding a useful contribution to the area of rehabilitation robots, it was discussed with
healthcare professionals that patients with decreased voluntary lower extremity function could be
suitable as the target group. This decreased function is often a result of neurological injuries (e.g.
spinal cord injuries, head injury or stroke). These are patients in which physiotherapists passively
move the leg, because they can not actively move it themselves in the beginning, and then as they
improve they can progressively participate in active movement of their leg.

The knee was selected as the target joint. This is a joint with problems for many different patient
groups with illnesses as gait, diabetes and stroke. It is also a common target joint for rehabiliation
after surgery [25, 15].

EVEr3 is a humanoid robot with a friendly appearance which can contribute to a more positive
relationship with the patient during rehabilitation in comparison to a specialized end effector robot.
The end goal for the project was therefore set to create a system that can induce a capability in
EVEr3 to mimic assistive movements for knee recovery. Active assistive exercises is the type of
exercises where the robot gives aid to an active movement by the patient. This type of rehabilitation
has a positive effect if the robotic device is adaptive to the needs of the patient. Passive assistive
exercises is the type of exercises where a physical therapist performs a desired motion and the
robotic device mimics this motion on the patient without any intended interfering movement from
muscle activation by the patient [20].

1.2 Rehabilitation Robots
There are two types of rehabilitation robots: One type is assistive robots that aid people with lost
limbs by using telemanipulation, which is the transmitting of a desired movement by the use of a
device. The other type is called rehabilitators or therapy robots. Therapy robots are machines or
tools for rehabilitation therapists that allow patients to perform specific movements that improve
recovery and minimize functional decline [20].

Robotic systems used in the field of neurorehabilitation from brain injuries can be categorized
into exoskeletons and end effector type robots, where an exoskeleton is a wearable robot with joints
and links [12]. Today, powered exoskeletons are being produced by companies such as Ekso Bionics,
ReWalk Robotics, Rehab Robotics Hocoma and Lockheed Martin.

Rehabilitation robots should always provide targeted physical support adapted to the functional

1

abilities of the patient in a way to enable functional movements. They should also be able to
adapt their output impedance and physical support to the need of the patient without disrupting
functional movement patterns. Most active rehabilitation devices contain an actuation system and
a degree of intelligence [15]. did not favorably or negatively affect the gains in motor control or
strength associated with this training

1.3 State of the Art in Therapy Robots
The first modern therapy robot was designed in 1992 at Massachusetts Institute of Technology,
called MIT-MANUS (MANUS = "Hand" in Latin language) [19]. It has the ability to not only
record the hand movement of a therapist and then perform it on a patient, but also execute the
movement with varying degrees of firmness [19]. A 2004 study on the effect of MIT-MANUS on 46
subjects found no significant improvements for stroke patients that received assistive or resistive
therapy [43]. Kahn et.al. (2014) suggests that a possible explanation for this, is that the form
of robotic forces (assistive or resistive) did not matter as much as the patients themselves tried
to move [22]. Another study in 2004 showed that an adaptive control strategy where the robot
adjusted the interference based on the capability of the patient was better for moderate impaired
stroke patients [20].

In 2006, an intelligent robotic system was designed by Aktogan et. al. [2]. This was meant to
be an answer to the limitations of the therapy robots at the time. These limitations included the
lack of motion freedom and active control, meaning that the robots could not perform complicated
exercises. Their system is able to interpret patient reactions, storing the information received,
acting according to the available data and learning from the previous experiences.

A portable Active Knee Rehabilitation Orthotic Device intended to guide and facilitate the
recovery of gait was designed by Weiberg et.al. in 2007 [47]. The skeleton consists of a brake,
brace, gear and sensors. The knee brace includes resistive and variable ERF based damping which
is controlled in ways that promotes motor recovery in stroke patients.

ARMin is a therapy robot that was developed by Nef et. al. in 2009 for patient-cooperative
arm therapy [32]. It is a semi-exoskeleton robot equipped with position, force and torque sensors.
The therapy robot takes into account the activity of the patient and provides only the required
support. It allows precise joint actuation and 3D movement of the arm, and includes a audiovisual
user interface.

In 2011, a powered exoskeleton for robot-assisted rehabiliation was developed by Beyt et.al. [3].
This skeleton was made to improve physical human–robot interaction by using pleated pneumatic
artificial muscles as high-torque actuators for the skeleton and a PSMC for sliding mode control in
order to achieve safe and adaptable guidance.

Chen et.al. wrote a paper in 2016 which presented a knee–ankle–foot robot that is portable to
carry out training at outpatient and home settings [8]. It includes a SEA made up by two springs
in series with different stiffness values as the basis for the robot-human interaction, and it records
the movements of the skeletal muscles via electromyography.

1.4 Safety in Human-Robot Interactions
A rehabilitative procedure involving robots can have severe consequences, so patient safety must
be considered. As Pan et.al. (2016) states regarding a robotic rehabilitative exercise: The patient
should be taken as a “cooperator” of the training activity, and the movement speed and range of
the training movement should be dynamically regulated according to the internal or external state
of the subject, just as what the therapist does in clinical therapy [35].

Vasic and Billard (2013) identified four elements that must be considered during a human-
robot interaction [46]: Where is the biggest danger, who is the most endangered person in the
interaction with a robot, what are the consequences of potential injuries, and which factors have
the greatest impact on safety. They cite Ogorodnikova (2008) [33] when stating that accidents
caused by robots can be grouped into three main categories: Engineering errors, human mistakes
and poor environmental conditions.

2

Mohebbi (2020) made a review of means for safety when utilizing assistive robotic manipulators
(Fig. 1.1). One notable feature is the need for task adaptation by using measurements of the force
or changes in the joint positions due to the motion of the musculoskeletal system, and feed them
back as control inputs to the robot. In that way minimum interaction forces can be achieved while
eliminating task tracking errors. This is often done by implementing impedance or admittance
control [31]. An article by Neville Hogan (1984) also generally states that the control of any robot
manipulator in contact with its environment should not only be concerned with the trajectory
control of the manipulator alone, but be combined with impedance control [18]. The mechanical
impedance of an object gives an indication of its ability to resist movement when a force/torque is
applied to it, and impedance control is used in rehabilitation robots to compensate with a torque for
a position deviation created by external movement from the patient. For linear systems, the inverse
of impedance is the admittance which gives an indication of the ability to resist a force/torque when
a movement is applied to it. Admittance control is used in rehabilitation robots to compensate
with a position deviation from the planned trajectory when an external torque from the patient is
registered by the robot [42].

Figure 1.1: Safety actions during interaction with ARMs [31]

1.5 Project Objectives
In order to realize a functional prototype, five objectives were set at the start of this project. The
ULM activity diagram in Fig. 1.2 contains the steps that were set for the desired procedure.

1) Create a code that can manipulate the joints and hands of EVEr3
a) Simulate the transfer of data to digital twin
b) Test on real EVEr3 robot

2) Create a leg model for a Gazebo simulation

3) Design a cuff for the human-robot interaction

4) Collaborate with healthcare professionals
a) Input on the created cuff
b) Input for a rehabilitative movement

5) Create an interaction between the leg model and the digital twin
a) Constrain one hand of the digital twin onto a limb of the leg model
b) Move the limb of the human model
c) Make the digital twin follow along

3

d) Detect and store the movement of digital twin into an array
e) Make the digital twin perform the movement a set number of times

6) Implement on EVEr3
a) Perform the procedure
b) Adjust the control parameters

1.5.1 UML Activity Diagram

Figure 1.2: ULM activity diagram for the wanted steps in the rehabilitation procedure

4

Chapter 2

Theory

2.1 The EVEr3 Robot

The EVEr3 (s/n A0-20-04-002) (Fig. 2.1) is the robot that was used as the basis for this project. It is
a human-sized (183 [cm], 76[kg]) robot with 24 Revo1 motors that was made by Halodi. The battery
is 54V 20Ah with a 1.1 kWh output to the robot. The battery and charging system is designed
to allow operation of the robot while charging. It uses a synthetic rope-based transmission system
for each joint that makes it possible to control the joint torques directly using current control on
the motors. It has two computers; one for balance and motion control (Intel i7-8650U with 16[GB]
RAM) and one for computing and connectivity with an Intel Core i7-8850H processor, a RTX 2080
GPU, 32[GB] RAM, a 1[TB] Solid State Storage and a 867[Mbps] 802.11ac wifi card.

EVEr3 uses open loop torque control for the joints, open loop Cartesian force control of the
arms and has a MPC whole body balance system with push recovery. The robot can interface
to various hands and grippers through mechanical adapters. It can handle a total payload of 15
[kg] and 6[kg] per straight arm, excluding the hands/grippers. The maximum velocity for wheel
movement is 12[kmh] [13]. It comes with two emergency stop-buttons; one that is wired and placed
on its right shoulder and another which is wireless and portable up to 20[m] away from the robot.

Figure 2.1: The EVEr3 Robot made by Halodi Robotics

5

2.2 Software

2.2.1 ROS2

ROS is a framework for writing robot software. It contains libaries and tools that are intended
to make robot programming easier and more collaborative by having a standardized programming
language for everyone who wants to program robots. ROS became the standard for OSRF in 2013
[37].

ROS2 Foxy was the lastest version of ROS at the time this project got started, and the biggest
difference between ROS1 and ROS2, except from all the syntax changes, is the use of DDS and
RTPS middelware for communication, and the QoS which allows users to specialize communication
between nodes [34].

ROS2 has libraries which supports the programming languages C++ and Python. The ROS2
files provided by Halodi were all written in C++, so all ROS2 contributions in this project were also
written in the C++ language. The most used ROS2 filesystem concepts are Workspaces, Packages
and Nodes. There are three types of communication interfaces: Topics, Services and Actions.

Workspaces

A ROS2 workspace is a directory which one creates with the intention of using it as a workspace
for one or more ROS2 packages. One then has to create a subfolder called src which contains all
packages in that workspace. It is necessary to source the workspace in the workspace directory
every time one wants to use a package. Sourcing involves loading the files in all subfolders into
the current shell script and make the files available for use in that particular shell. If one uses
a package often, like the ROS2 installation package, one can add them to the Bash Shell Script
(.bashrc) which contain various commands to be initialized for every shell.

Packages

A ROS2 Package is the base for everything that a ROS2 Program needs to function. When one
types the standard command for CMake, which is the C++ version for ROS2, it will create a
package folder with the include and src subdirectories, in addition to the CMakeLists.txt file and
the package.xml file which together must contain the maintainers, dependencies and directories
that either are included in a script or which are required in order to run the package.

There are six types of dependencies that a package can have: Build dependencies specify which
packages are needed to build the package. This is the case when any file from these packages
is required at build time. Build export dependencies specify which packages are needed to build
libraries against this package. Execution dependencies specify which packages are needed to run
code in the package. This is the case when the code depends on shared libraries. Test dependencies
specify only additional dependencies for unit tests. Build tool dependencies specify build system
tools which this package needs to build itself. Documentation tool dependencies specify documen-
tation tools which the package needs to generate documentation. In addition, there is a Depend
tag, which specifies three dependencies; Build, Build export, and Execution.

Nodes

A ROS node is an independent executable file which performs computation.. They are divided into
publisher/provider nodes that generate data and subscriber/client nodes that are interested in data.
Nodes can communicate with each other using messages delivered through topics. These messages
contains the data which has been computed in the publisher node and is useful for subscriber nodes.

Topics

A topic is a communication line between nodes that wants to exchange messages. The nodes have
no idea who they are exchanging messages with, only that they publish or subscribe to a particular

6

Figure 2.2: An example of communication between ROS2 nodes through a topic [29]

topic. There can be multiple publishers and subscribers to a topic, and topics are intended for
one-way communication either way the data flows through the topic.

Services

A service uses a pair of messages; one for a request and one for a reply. A providing node offers a
service, and a client node calls the service by sending the request message and awaiting the reply,
but there is no information about the progress of the transfer.

Actions

An action is the third form of communication within ROS. Action clients send a request to an
action provider and will get a feedback of the transfer progress while receiving the wanted data.
Actions also allows the client to cancel the transfer before it completes.

2.2.2 Gazebo

Gazebo is a 3D dynamic simulator which can handle multiple robot models in complex environ-
ments. It supports testing of algorithms and designing robot models. The model of the robot
is inserted in a Gazebo World environment which can include robots, sensors, objects and global
parameters including light to see the model and physics properties of the world.

Plugins can be used to communicate with a model in Gazebo. They examine the model tags
and loads the hardware interfaces, and have direct access to all the functionality of the simulator
through standard Gazebo-made C++ classes. Gazebo includes inbuilt plugins from which one can
build customised plugins. There are six types of plugins: Model, sensor, system, visual and GUI.

Models

Models can be made as a URDF model or as a SDF model. Both URDF and SDF are made
as XMLs, but the difference is that URDF models does only contain the information about the
robot model itself, i.e. kinematic and dynamical properties, while SDF models contains both a
description of the model and the Gazebo world it is presented in. URDF is the standard format
for ROS models, while SDF was created as a part of the Gazebo simulator. The URDF files are
made up of elements, such as <robot>, <link> and <joint>, arranged in hierarchical structures
called XML trees.

7

2.2.3 RViz

RViz is a 3D vizualisation tool for testing the behaviour of robot models. One can publish ROS2
messages to the model and see if it behaves correctly when publishing messages (e.g. altering
the joints of a robot model). RViz uses models created with the URDF format. By adding the
dependencies for wanted behaviour in the package.xml file, RViz can visualize the behaviour of the
robot and what it is perceiving.

2.2.4 The Digital Twin

The digital twin was given as a model from Halodi. All the implemented Gazebo simulation files
from Halodi were imported using Git. Halodi Robotics has made their GitHub repository available
for the public so that anyone can try to download and use the model of the EVEr3 Robot. All files
created by Halodi which includes messages, API, model etc. can be found in this repository. Halodi
provides a Gazebo world with a model of the robot and the following examples of manipulating
the model via a controller:

• Wave the right hand

• Return to default pose

• Move the left hand in a 5 point trajectory

• Drive in a circle

• Move the head up and down

Figure 2.3: The digital twin in its Gazebo world

When comparing the modelling in Gazebo with the real EVEr3, there will be a Real-time factor
which is an indicator of how much slower Gazebo executes the desired movements than intended
by the script. In the appended video "RTF_example.avi", there is an example of this effect. Even
with a RTF of 0.85, there is a significant delay. An extract from this video is presented in Fig. 2.4.

8

Figure 2.4: Executing a ROS2 command for both the real EVEr3 and the digital twin

2.3 Kinematics

2.3.1 Forward Kinematics

In order to manipulate a model, the kinematic formulas can be used for the motion planning.
Kinematics is concerned with positions, velocities and accelerations, but not the forces that cause
the movement to happen. All robots are considered to be made up of bodies called links which
are connected by joints to form a kinematic chain as a multibody system with a rigidly attached
coordinate frame for each link. The first coordinate frame (o0, x0, y0, z0) is the base frame of
reference and the end point is called the end effector.

Forward kinematics is performed to calculate the resultant motion of the end effector from
joint movement in the kinematic chain. The movement of the end effector and its derivatives is
called the cartesian or task space and the joint movement with its derivatives is called the joint
space. The Denavit-Hartenberg convention is often used to describe forward robot kinematics for
robots with more than one DoF, where the DoF is equal to the total number of independent joint
displacements. The DH convention consist of using four parameters to describe the geometrical
relationships between the links and homogeneous transformation matrices to describe how the
relationships are altered with regards to translation and rotation [28].

The four parameters are:

• ai: Link length. The distance between the axes z0 and z1, and is measured along the axis x1

• di: Link offset. The perpendicular distance from the origin o0 to the intersection of the x1
axis with z0 measured along the z0 axis

• αi: Link twist. The angle between the axes z0 and z1, measured in a plane normal to x1.
The positive sense for α is determined from z0 to z1 by the right-handed rule

• θi: Joint angle. The angle between x0 and x1 measured in a plane normal to z0

Each homogeneous transformation matrix Ai is the product of four transformations:
Ai = Rotz,θi

Transz,di
Transx,aiRotx,αi (Eq. (2.1, 2.2)).

There are two conditions that must be fulfilled in order to express the transformations in this form
[28] (also see Fig. 2.5):

• The axis xi is perpendicular to the axis zi−1 and zi

• The axis xi intersects the axis zi−1

9

Figure 2.5: Coordinate frames satisfying the two DH conditions [28]

Ai =

cos(θi) −sin(θi) 0 0

sin(θi) cos(θi) 0 0
0 0 1 0
0 0 0 1

1 0 0 0

0 1 0 0
0 0 1 di
0 0 0 1

1 0 0 ai

0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0

0 cos(αi) −sin(αi) 0
0 sin(αi) cos(αi) 0
0 0 0 1

 (2.1)

=

cos(θi) −sin(θi)cos(αi) sin(θi)sin(αi) aicos(θi)

sin(θi) cos(θi)cos(αi) −cos(θi)sin(αi) aisin(θi)
0 sin(αi) cos(αi) di
0 0 0 1

 (2.2)

For a planar arm with only revolute joints, the only non-zero variables are ai and θi, so the matrices
will be as in Eq. (2.3, 2.4).

Ai =

cos(θi) −sin(θi) 0 0

sin(θi) cos(θi) 0 0
0 0 1 0
0 0 0 1

1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 ai

0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 (2.3)

=

cos(θi) −sin(θi) 0 aicos(θi)

sin(θi) cos(θi) 0 aisin(θi)
0 0 1 0
0 0 0 1

 (2.4)

In order to get from the base frame (o0, x0, y0, z0) to frame i (oi, xi, yi, zi), one multiplies the
homogeneous transformation matrices as in Eq. (2.5).

T0
i = A0(...)Ai (2.5)

2.3.2 Inverse Kinematics

Inverse kinematics is performed to calculate the joint motion in the kinematic chain which is
required for a movement of the end effector. Solving the inverse kinematics of a robotic manipulator
is often harder than solving the forward kinematics due to multiple solutions which is dependant
on the configuration of the chain [16].

A numerical approach is common for solving the inverse kinematics. For 3D systems it is

10

often computationally demanding and takes a long time to perform inverse kinematics [26]. The
complexity of inverse kinematics decreases with the number of links, so for simpler planar systems,
the inverse kinematics can be calculated by a geometric approach: Using the reference frame of the
base to find the inverse relations to the position of the end effector [28].

2.4 PID Control
A control system is needed to ensure steady-state accuracy when the desired joint values are reached.
This is done by the Halodi PID controller for both the digital twin and the EVEr3 robot. The
EVEr3 robot has PID controllers for every joint, and also the control used in the YAML scripts
for ROS control uses a PID controller. This is a controller that is used in many systems where
there is no offset and the process requires a fast response time. The proportional control of the
system counteracts the reaction to a small change in the error value (e(t) = x(t) − y(t)). The
integral control is added because the P-controller alone will never reach the desired steady state
value. The integral control always attempts to make e(t) = 0, resulting in an overshoot of u(t). The
derivative control is therefore used to make the system converge to steady state even if the system
is oscillating. It does this by slowing down the correction [27]. The mathematical expression for a
PID controller is shown in Eq. (2.6) and the equivalent Laplacian form of the expression is given
in Eq. (2.7). There are several methods that has been made with the purpose of calculating the
loop tuning parameters: Ziegler–Nichols, Cohen–Coon, Internal model control, Gain-phase margin
and Optimum integral error for load disturbance [44].

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)
dt

(2.6)

U(s) = Kp + Ki

s
+Kds (2.7)

s = σ + jω (2.8)

Figure 2.6: Block diagram of a PID controller represented in the frequency domain

Ziegler-Nichols: Ultimate Sensitivity tuning method

The Ziegler-Nichols Ultimate Sensitivity tuning method has been used in the field of robotics and
is a robust, simple method [9]. It is performed by first setting the integral and derivative gains to
zero. The proportional gain is then increased until one gets a stable oscillation from the output.
This gain value is recorded as Ku and the period of this stable oscillation is recorded as Tu. Ku

and Tu are used to set Kp, Ti and Td according to Tab. 2.1 depending on the desired behaviour.
The Ki value is calculated by Eq. (2.9) and the Kd value by Eq. (2.10) [45].

11

Rule name Kp Ti Td
Classic Ziegler-Nichols 0.6Ku 0.5Tu 0.125Tu

No overshoot 0.2Ku 0.5Tu 0.33Tu

Table 2.1: Standard Ziegler-Nichols values for ultimate sensitivity tuning method [45]

Ki = Kp

Ti
(2.9)

Kd = KpTi (2.10)

2.5 Medical Considerations

For our rehabilitation robot, it is important that the movements do not induce or contribute to
disability, which is defined as instability that interferes with the required function of the knee [1]. A
second consideration for therapy robots is the avoidance of abrasion. Abrasion is a superficial graze,
which is a damage to the skin caused by external scraping. Patients with neurological problems in
the lower extremity can have reduced sensation due to the neurological injury, which makes them
more susceptible to developing abrasions and sores. Another vulnerable group of patients is people
with diabetes for whom the damage is due to a series of multiple mechanisms, including decreased
cell and growth factor response, which lead to diminished peripheral blood flow and decreased
creation of new blood vessels in the body [7].

2.5.1 Allergic Contact Dermatitis

Allergic contact dermatitis is a common health issue that must be avoided when creating the cuff for
the human-robot interaction. It consists of two phases, where the initial phase consists of repeated
exposure, followed by an inflammatory reaction [24].

A lot of metals like nickel, gold, palladium, mercury and cobalt can cause allergic contact
dermatitis [14]. For our project, the relevant allergic contact dermatitis is textile contact dermatitis
which affects people who are allergic to certain fabrics. Notable fabrics that commonly cause allergic
reactions are latex and polyester.

Hypoallergenic fabrics are then required. Hypoallergenic fabrics are woven tightly and made of
natural fibers. Common hypoallergenic fabrics are sheepskin, cotton, linen and silk.

2.5.2 Knee Anatomy

The knee is one of the largest and the most complex synovial joint in the body [21]. It is called
synovial because the bone-to-bone connection is parted by a synovial fluid (Fig. 2.7). Synovial
fluid is a plasma that also contains substances like hyaluronic acid which is secreted by the joint
tissues around the fluid. Temperature has an effect of the viscosity of the fluid; The viscosity of
the fluid decreases in inflammatory conditions, and in decreasing temperature the viscosity of the
synovial fluid increases, which may explain why joint stiffness increases in colder weather [6].
The knee joint consists of four bones which include the femur, fibula, tibia and patella (Fig. 2.8).
The thin fibula bone is fixed to the back of the tibia by very short tendons, connected to the
femur with tendons and to the hamstrings with ligaments. Tendons connect muscles to bone and
ligaments connect bone to bone. The end of the femur has two rounded shapes that fits into the
top of the tibia, and this connection is joined partly together by a fibrocartilagous meniscus that
provides a soft joint connection, and also by several bursae (cushioning sacks of fluid) and ligaments
that cover this connection [4].

The patella "hangs" in the front of this joint connection and is covered by a tendon which is
connected to the quadriceps and a ligament that connects to the femur. The patella also has other
structures connected to it, like the fat pad beneath the ligament and a bursa on the end of the
ligament and beneath the tendon. Each bursa are prone to inflammation caused by tramua and

12

Figure 2.7: A general synovial joint [10]

Figure 2.8: The ligaments and osseous structure in a knee [30]

13

overuse. The patella allows a greater extension of the knee, and the main extensor of the knee
whose contraction extends the tibia is the quadriceps femoris which divides itself into four muscles
and is comprised of six muscles in total [4].

For the flexion of the knee joint, the hamstrings are the main muscles. The hamstrings are located
at the back of the thigh and consists of four muscles: The semimembranosus, the semitendinosus,
and the long and short heads of the biceps femoris [39]. During flexion, the semimembranosus and
its attachment to the meniscus pulls the meniscus backwards in order to prevent the crushing of
meniscus by the femur and tibia [21].

2.5.3 Range of Motion

Studies on the normal range of motion are uncommon today because such values are well estab-
lished, but a study on the knee was done by Kumar et.al. in India (2012) [41]. Both passive and
active range of motion was investigated, where active range of motion is when opposing muscles
contract and relax to move the limbs, and passive range of motion is when an external force moves
the limbs. They state that the range of motion is greater in young subjects and decreases gradually
with age. When the subjects were positioned on their back in a prone position, the average active
range of motion for the knee flexion was 131.7◦ and passive range of motion was 141.9◦ [41]. These
findings, both range of motion of the knee and with respect to age are in accordance with an older
study called NHANES 1 which was conducted between 1971 and 1975 where they investigated the
hip and knee flexion of 1892 subjects. They found that the average range of motion for the hip
flexion was 120◦ [38].

14

Chapter 3

Methods

3.1 Leg Model

A 2-DoF robot model of a human leg with 2 revolute joints (Fig.3.1) was made by using the
SolidWorks software. The parameters were set as shown in table 3.1. A radius of 20[mm] was
set for the revolute joints. All parameters can be found in App.A.2.2. The leg model consists of
two movable links of length L1 and L2 that move within the (x,z) plane. L1 was set to 610 [mm]
between joint centers with a thigh length of 500[mm]. L2 was set from the center of knee joint
to the center of the handle. The links are connected by revolute joints whose joint axes are all
perpendicular to the plane. A radius of 20[mm] was set for the revolute joints.

Figure 3.1: SolidWorks model of the leg model in bent knee position

The mass of the bed was set arbitrarily to 100[kg]. The mass of each link was approximated from an
article by Plaegenhoef et.al. where cadavers obtained on 135 living subjects were used to estimate
an average weight of the segmented limbs [36]. The moments of inertia for rotation about the mid
end of each limb was set by the formula in Eq. (3.1), where the center of mass was set at the centre
of each link and the calculation was simplified by considering each link as a cylinder structure. A
mass of 0.5[kg] was added for the brace and handle, but their length parameters was discarded for
further simplification. The results are shown in Tab. 3.1. The only relevant moment of inertia for
the simulation is the Iyy, so all other moments of inertia were set to zero.

15

Part x [mm] y [mm] z [mm] m [kg] Iyy [kgm2]
Bed 1000 500 500 100 34.8958
Thigh 610 100 100 10 0.8396

Braced Crus w/Handle 305 100 to 150 195 3.5 0.1411

Table 3.1: Parameters for the leg model

Iyy = m

 y2

2
4 + x2

3

 = m

(
y2

16 + x2

3

)
(3.1)

3.1.1 Kinematics

Figure 3.2: Kinematic schematic of the leg model

Forward Kinematics

The forward kinematics of the leg model was calculated by using the DH convention and setting a
rigid frame at the middle of each joint and at the end effector position which was set at the center
of the handle. The base frame was set at the bed hinge and a coordinate system was attached
to each link as seen in Fig. 3.2. The Denavit-Hartenberg parameters were measured and put in
table 3.2. According to the DH convention, the motion should take place about the z axes of the
rigid body frames for revolute joints, so the z-axis in Gazebo is called the y-axis when using this
convention.

Link ai [m] α [◦] di [m] θi [◦]
L1 0.610 0 0 θ1*
L2 0.362 0 0 θ2*

Table 3.2: Denavit-Hartenberg parameters for the leg model

The homogeneous transformation matrices were set in Eq. (3.2 ,3.3) before they were multiplied
in order to find the total transformation matrix in Eq. (3.4).

A1 =

cos(θ1) −sin(θ1) 0 L1cos(θ1)
sin(θ1) cos(θ1) 0 L1sin(θ1)

0 0 1 0
0 0 0 1

 (3.2)

16

A2 =

cos(θ2) −sin(θ2) 0 L2cos(θ2)
sin(θ2) cos(θ2) 0 L2sin(θ2)

0 0 1 0
0 0 0 1

 (3.3)

T0
2 = A1A2 =

cos(θ1 + θ2) (−sin(θ1 + θ2)) 0 (L1cos(θ1) + L2cos(θ1 + θ2))
sin(θ1 + θ2) cos(θ1 + θ2) 0 (L1sin(θ1) + L2sin(θ1 + θ2))

0 0 1 0
0 0 0 1

 (3.4)

The x and y components of the end effector can be found in the two first entries in the last column

[28]. They were extracted from the transformation matrix and inserted into Eq. (3.5) and Eq.
(3.6).

xee(θ1, θ2) = L1cos(θ1) + L2cos(θ1 + θ2) (3.5)

zee(θ1, θ2) = L1sin(θ1) + L2sin(θ1 + θ2) (3.6)

In order to find the relation between the joint velocities and the end-effector velocities, the partial
derivatives for the xee and zee components were calculated before arranging them into a 2x2 Ja-
cobian matrix and obtaining the wanted relations given in Eq. (3.11). The Jacobian matrix then
represents the first order linear behaviour of the system.

∂(xee)
∂θ1

= −L1sin(θ1)− L2sin(θ1 + θ2) (3.7)

∂(xee)
∂θ2

= −L2sin(θ1 + θ2) (3.8)

∂(zee)
∂θ1

= L1cos(θ1) + L2cos(θ1 + θ2) (3.9)

∂(zee)
∂θ2

= L2cos(θ1 + θ2) (3.10)

[
˙xee
˙zee

]
= J

[
θ̇1
θ̇2

]
=

∂(xee)
∂θ1

∂(xee)
∂θ2

∂(zee)
∂θ1

∂(zee)
∂θ2

[θ̇1
θ̇2

]
(3.11)

Inverse Kinematics

First, the radius from the base frame to the end effector position can be calculated by Pythagoras’
theorem (Eq. (3.12)). The cosine rule can be used to express a relationship between the links and
the base radius to the end effector (Eq. (3.13)), where ψ is the angle between the links at the knee
joint.

A positive θ2 angle can then be expressed as π − ψ. By using the property of the shape of the
cosine function, the relationship in Eq. (3.14) can be set. Inserting Eq. (3.14) into Eq. (3.13)
yields the equation in Eq. (3.15) and subsequently the θ2 angle in Eq. (3.16). Due to the fact that
the knee joint is constrained to only negative angles, the unique solution is found by inserting a
negative sign before the equation in Eq. (3.17).

A new triangle can be set with L2 as the hypotenuse, L2cos(θ2) as the adjacent side and
L2sin(θ2) as the opposite side. From the base frame, another new triangle can then be established
with an angle β between the radius and the length (L1 + L2cos(θ2)) in Eq. (3.18).

Going back to the first triangle with the relationship in Eq. (3.12), a final angle, γ can be set
from the base frame (Eq. 3.19). By using the fact that θ1 can be expressed as γ + β, θ1 can be

17

obtained by using the equation in Eq. (3.20). Due to the fact that θ2 always will be negative, the
sign before the second term becomes negative and the unique solution in Eq. (3.21) can be set.

r2 = x2
ee + z2

ee (3.12)

r2 = L12 + L22 − 2L1L2cos(ψ)⇐⇒ cos(ψ) = L12 + L22 − r2

2L1L2 = L12 + L22 − x2
ee − z2

ee

2L1L2 (3.13)

cos(θ2) = −cos(ψ) (3.14)

cos(θ2) = −L12 + L22 − x2
ee − z2

ee

2L1L2 (3.15)

θ2(xee, zee)prelim = arccos

(
x2
ee + z2

ee − L12 − L22

2L1L2

)
(3.16)

θ2(xee, zee) = −arccos
(
x2
ee + z2

ee − L12 − L22

2L1L2

)
(3.17)

β = arctan

(
L2sin(θ2)

L1 + L2cos(θ2)

)
(3.18)

γ = arctan

(
zee
xee

)
(3.19)

θ1(xee, zee)prelim = γ + β = arctan

(
zee
xee

)
+ arctan

(
L2sin(θ2)

L1 + L2cos(θ2)

)
(3.20)

θ1(xee, zee) = arctan

(
zee
xee

)
− arctan

(
L2sin(θ2)

L1 + L2cos(θ2)

)
(3.21)

The initial position of the end effector is given in Eq. (3.22, 3.23). The formulas for the inverse
kinematics were verified by using the formulas for the forward kinematics. Inserting the arbitrary
angles: θ1 = 15◦, θ2 = −10◦ in Eq. (3.5) and Eq. (3.6) yields the cartesian coordinates in Eq.
(3.24, 3.25). Inserting these into Eq. (3.17) and subsequently into Eq. (3.21) along with the θ2
angle from Eq. (3.26), gives the results in Eq. (3.26, 3.27).

xee(0◦, 0◦) = 0.610cos(0◦) + 0.362cos(0◦) = 0.972[m] (3.22)

zee(0◦, 0◦) = 0.610sin(0◦) + 0.362sin(0◦) = 0[m] (3.23)

xee(15◦,−10◦) = 0.610cos(15◦) + 0.362cos(15◦ − 10◦) = 0.9498[m] (3.24)

zee(15◦,−10◦) = 0.610sin(15◦) + 0.362sin(15◦ − 10◦) = 0.1894[m] (3.25)

θ2(0.9498, 0.1894) = −arccos
(

0.949842 + 0.189432 − 0.6102 − 0.3622

2 · 0.610 · 0.362

)
= −10[◦] (3.26)

θ1(0.9498, 0.1894) = arctan

(0.1894
0.9498

)
− arctan

(0.362sin(−10)
0.610 + 0.362cos(−10)

)
= 15[◦] (3.27)

18

3.1.2 Creating the Leg Model File

The SolidWorks model was exported as a URDF file using an online converter. It had was modified
to be compatible with ROS2 and first inspected in the Graphiz tool (Fig. 3.3) to visualize the
model tree.

world

inertial_frame

xyz: 0 0 0.585
rpy: 0 -0 0

bed

hip

xyz: 0 0 0
rpy: 0 -0 0

thigh

knee

xyz: 0.61 0 0
rpy: 0 -0 0

crus

brace

xyz: 0.305 0 0.195
rpy: 0 -0 0

handle

Figure 3.3: The leg model structure visualized by Graphiz

RViz was then used for further inspection and modifications. A world frame was added to the
exported code and the CMakeLists.txt and package.xml had to be rewritten to include the required
dependencies. A Python launch file was added to start RViz with the model and a view.rviz file
was added for RViz configurations. The end effector was positioned at the center of the handle,
and the final configuration is displayed in Fig. 3.4. The manipulation of the joints was successful;
moving the hip and knee joints, and constraining their movement in the range (0◦ to 130◦) for the
hip and (-120◦ to 0◦) for the knee.

19

Figure 3.4: RViz representation of the leg model

In order to make the model appear in a Gazebo World, a lot of changes has to be made. It requires
a world file with light (sun), ground plane and the model. A short config file must be added to the
package along with the STL meshes that was exported from SolidWorks, which can be converted
into DAE or OBJ files for better textures. This can be done using an online converter. Also, the
CMakeLists.txt and package.xml files must be rewritten to define the required dependencies, and
the URDF model file must be modified by adding gazebo tags and their parameters.

3.2 Simulating and Implementing Parts of the Procedure

Halodi Robotics has made messages that was examined in order to find the ones that were required
to realize the desired tasks. They have listed all topics with the corresponding message types in
the reference [17].

It is not possible to subscribe directly to subordinate message types because it would result in
non-atomic measurements, so every desired subordinate message type must be run through the
message type that is linked to the topic.

The robot can be controlled with the Trajectory API or the Realtime API, and Halodi generally
recommends using the trajectory API, as this does not put realtime constraints on the user appli-
cation and is easier to use. The HandCommand and the WholeBodyControllerCommand message
type are part of the realtime API, while the rest belong to the trajectory API. As stated on the
Halodi repository, the trajectory API can interpolate trajectories trough points in task space and
joint space. The realtime API allows the fastest control updates for the user, but the user is respon-
sible for updating the setpoints at 250[Hz]. The realtime API is used by the trajectory manager,
and therefore cannot be used if the trajectory manager is in use.

3.2.1 Joint and Grasp Manipulation

The WholeBodyTrajectory message type with its subordinate message types are of interest for the
joint manipulation, and the HandCommand for closing and opening the hands of EVE. The grasp-
ing motion of the EVE robot is not a part of the WholeBodyTrajectory message type, so it must
be made separately. It uses the HandCommand message type through the /eve/left_hand_closure
and /eve/left_hand_closure topic. Unfortunately, it does not have a status callback message.

The WholeBodyTrajectory message type contains a lot of subordinate task-space objects (e.g.

20

TaskSpaceCommand and the JointSpaceCommand) that is useful for manipulating the EVE robot
through pre-made topics. Each WholeBodyTrajectoryPoint can be composed of desired task space
commands and/or desired joint space commands along with a desired time to get there.

Joints were accessed through the WholeBodyTrajectory message type which communicates
through the /eve/whole_body_trajectory topic. A callback message for confirmation of the trans-
fer status can be obtained with the GoalStatus message type.

The hip, knee and ankle joints are not possible to manipulate individually due to the balancing
of the robot which involves all of these joints simultaneously. Movements that include rotating,
delevating or bending the pelvis of EVE has to be done by use of the WholeBodyControllerCom-
mand message type which communicates through the /eve/whole_body_command topic.

The C++ menus were made by using mostly switch statements and do-while loops in order to
provide a graphical user interface for testing joint manipulation.

3.2.2 Recording the External Input

The WholeBodyState message type which contains the messages for measurements includes the
subordinate JointMeasurement message type which was used to read position and velocity of the
joints via the /eve/whole_body_state topic. The stiffness of the joints were relaxed for external
input by using the JointSpaceCommand; disabling the use_default_gains and setting the stiffness
to zero and damping to 1.0 which is the maximum value. The current version of the digital twin is
not optimal in terms of gravity compensation: Gravity is compensated based on a modelled mass.
If this mass is slightly off, there will be an overcompensation which gives a floating behaviour, so
this must be expected when turning off the use_default_gains option.

The removing of the stiffness was first done by using the JointSpaceCommand: Disabling the
use_default_gains, setting the stiffness to 0.0 and damping to 1.0. There was no disturbance in
the robot pose when the stiffness run, and the arm was completely vertical and still. Then when
the ’use_default_gains’ was turned off, the shoulder joint moved about 15 degrees. This behaviour
also occurred when the arm was taken high up before taking it down. The unwanted movement
disappeared when the arm first was pulled back and then put down. It was consulted with Halodi
Robotics, and they said that the motorDampingScale also should be set to 1.0 in order for this
not to happen. The damping option is applied at the joint level and quickly becomes unstable,
while the motorDamping is applied at the motor level which runs faster than the robot controller.
Setting the motorDampingScale to 1.0 diminished the unwanted floating movement in the digital
twin, but did not remove the problem. This was then tried out on the real EVEr3 robot. When the
stiffness was set to 0.0, damping to 1.0 and the motorDampingScale was set to 1.0, this unwanted
movement in the real EVEr3 robot was seemingly low, but the arm was a bit stiffer than without
the motorDampingScale involved.

3.2.3 Constraint of the Right Hand of the Digital Twin

It is not currently possible to simulate the hand due to the very complex dynamics and kinematics.
Also, some collision tags are missing in the Halodi repository, so they will have to be added to the
body of interest if it is not already made, in order for the digital twin to follow along an external
movement.

One of the supervisors came up with the idea of replacing the right hand of the digital twin with
a hook. There is no way to add friction to a part in SolidWorks, so I made both a circular and a
square hook. Both hooks were designed with a width of 50[mm] in order to get a stable connection
to the handle of the modelled cuff. The square hook was made to be one of two parts of a puzzle
that fit together when the leg is moving. The hooks (Fig. 3.6, 3.6) were made in SolidWorks,
exported as STL files which in turn was converted to OBJ files via an online converter, because
the OBJ format is what Halodi utilize for their models. Another braced crus was then also made
with a square handle that has a diagonal length of 40 [mm].

21

Figure 3.5: Modelled circular hook for simulated human-robot interaction

Figure 3.6: Modelled square hook for simulated human-robot interaction

22

3.3 The Cuff

The design in Fig. 3.7 was first discussed with healthcare professionals via e-mail. They gave me
the following general criteria for a cuff that could be used for knee rehabilitation:

• Easily adjustable in circumference

• Easy to take on and off for the patient

• Padded – i.e. no hard parts toward the skin

• A layer toward skin to provide friction (needs to be checked regarding allergens) so that the
leg doesn’t rotate or slide inside the cuff.

Figure 3.7: First design of the cuff for the human-robot interaction

The cuff was designed as a harness-like contraption made with a 3D-printed handle and base, cot-
ton fabric, foam rubber padding and a lot of cotton stuffed into the sewed cotton fabric. The
padded area is thought to be covered with a thin layer of hypoallergenic foam to add friction, and
the length can be adjusted by wrapping the excess padded area around the leg and tightening the
excess bands with connected locks.

According to a study performed by the Cukurova University School of Medicine, the circum-
ference of the widest part of the calves among students at the time ranged between 280[mm] and
420[mm] which gives the diameter range: (89 - 134)[mm] [23].

The cuff was therefore designed with a minimum diameter of approximately 85[mm] and a max-
imum diameter of 140[mm]. The width of the cuff was set to 160[mm]. Both the top and base parts
of the handle (Fig. 3.8, 3.9) was printed with PLA filaments (white and blue) on a Ultimaker Cura
2+ 3D printer.

The holes for the handle was cut as thin lines which were widened and sewed. All borders were
sewed in order to avoid the fringes from separating. The bands were cut to fit the dimensions and
sewed on the cotton fabric. The shape of the cushioning part below the base of the handle was cut
out of a foam rubber sponge and glued to the base by a cyanoacrylate glue. The top of the base
was then glued to the cotton fabric in order to make sure that the base would be fixed to the cuff,
and the glue marks were covered with patches. The edges were sewed together but leaving holes
for the cotton to be stuffed in for the padding, before sewing it shut. The top of the handle was
glued on to the base with a cyanoacrylate glue. The assembled prototype can be seen in Fig. 3.10,
3.11 and 3.12.

23

Figure 3.8: 3D printed top of the handle

Figure 3.9: 3D printed base of the handle

Figure 3.10: Assembled cuff with 3D printed handle

24

Figure 3.11: Assembled cuff with 3D printed handle (top projection)

Figure 3.12: Assembled cuff with 3D printed handle (bottom projection)

3.3.1 An Alternative Cuff

In order to present an alternative to the healthcare professionals, a second cuff had to be designed.
It was inspired by a brace that was used for upper limb rehabiliation in a master’s thesis by
a student named Rodrigo Goncalves Cerejo Antunes. It consists of a hard casing made from a
two-part hollow cylinder structure where inside of each part is smooth and there are two carved
25x1[mm] tracks for a band of velcro to be inserted. The velcro is added for surrounding the parts
and locking the casing in place. The handle is fixed to the top part and has a diameter of 40[mm]
with 5[mm] side supports. The inside diameter is adjusted by inserting more or less foam rubber
padding. Including a minimum padding of 10[mm] on each side, the diameter should be 160[mm]
in order to make it wide enough to be applicable. The parts were designed in SolidWorks as shown
in Fig 3.13 and 3.14.

25

Figure 3.13: The alternative cuff (upper part)

Figure 3.14: The alternative cuff (lower part)

26

Chapter 4

Results and Discussion

4.1 Objective 1

1) Create a code that can manipulate the joints and hands of EVEr3
a) Simulate the transfer of data to digital twin
b) Test on real EVEr3 robot

A menu was succesfully made that could provide an interface for input to the joints of both the
EVE Gazebo Model and the real EVE Robot. When the task is completed, the connection shuts
down before going back to the menu. It was simulated on the digital twin before using it on the
real EVEr3 robot.

Another menu was successfully made to test the grasping and figure out the best closing ratio for
a 40[mm] handle. It uses the HandCommand message type which sends the closure rato, velocity
and force to the robot through the /eve/left_hand_closure and /eve/right_hand_closure topics
for the left and right hand. After a few trials, the best closing ratio for the handle was found to be
0.75-0.8. Also the closure force and velocity can be set, but altering them did not make a significant
change in the execution of the grasp. As stated, the Halodi API is unable to simulate a grasping
movement with the digital twin, so this was implemented directly on the EVEr3 robot.

4.2 Objective 2

2) Create a leg model for a Gazebo simulation

A leg model was succesfully made as an URDF model and inspected with the RViz tool. It
then worked as intended, but the launch file was a remaining problem when trying to insert the
model into Gazebo. Even after many weeks with attempts, I could not manage to get the model
to appear. It appeared in the menu over models when I inserted a folder containing it into the
Gazebo model path, but I could not make it appear in the world through several attempts for the
CMakeLists.txt and package.xml files and launch scripts written both in Python and XML. One
thing I did not try or think of until the last days of the project, is that I could have tried using a
ROS bridge which enables the exchange of messages between ROS and ROS2 and checked if using
ROS2 was the problem when using the launch scripts described in Gazebo tutorials.

4.3 Objective 3 and 4

3) Design a cuff for the human-robot interaction
4) Collaborate with healthcare professionals

a) Input on the created cuff
b) Input for a rehabilitative movement

The healthcare professionals rated my harness-like design (section 3.3) higher than the alterna-

27

tive cuff with a hard casing that was suggested (subsection 3.3.1) via e-mail, and it was evaluated
as a good design. They had two improvements: Due to its loose structure, the cotton stuffing
should be replaced or appended with a a more rigid support. The outer cotton fabric is also not
hygienic, meaning that it cannot be cleaned using hygiene protocols between patients. Synthetic
materials are often used for this purpose. My prototype would then have to be covered with a syn-
thetic cover which should have another kind of hypoallergenic, hygienic fabric glued to the whole
inner part in order to increase friction between the patient and the cuff.

A second cuff could also be required for the ankle or foot of the patient. As explained to me,
a rehabilitative movement will often include two hands for holding and pushing the leg, where one
hand holds the ankle or heel for the pushing movement and the other holds on to the leg to guide
it like the example in Fig. 4.1.

The rehabilitative movement was requested at the physical meeting and will be designed for the
continuing studies.

Figure 4.1: Hand placement during a rehabilitative movement (©CanStockPhoto)

4.4 Objective 5

5) Create an interaction between the leg model and the digital twin
a) Constrain one hand of the digital twin onto a limb of the leg model
b) Move the limb of the human model
c) Make the digital twin follow along
d) Detect and store the movement of digital twin into an array
e) Make the digital twin perform the movement a set number of times

This objective was not finished in time for the deadline of the thesis. I could not figure out
how to import and utilize the leg model in Gazebo as explained in section 4.2. I designed two
hooks which seems like usable options for attaching the digital twin to a leg model as long as the
grasping simulation is not available. The square handle can be used horizontally or vertically. This
is not an optimal solution for the system as a vertical positioning could contribute to awkward joint
angles if the robot is not placed perfectly. The connection between a normal circular hook and a
circular handle could be too unstable in terms of lack of friction, but both alternatives would have
to be tested out in Gazebo. It was however difficult to sort out exactly what is required to replace
the hand due to the number of folders that is containing the quite complex modelling of the digital
twin.

28

4.5 Objective 6

6) Implement on EVEr3
a) Perform the procedure
b) Adjust the control parameters

This objective was not completed. A menu for removing the stiffness of the joints for external
input was made. It also has the options to add the stiffness again and to set all joints to zero posi-
tion. The stiffness of the joints was relaxed for external input by using the JointSpaceCommand and
disabling the use_default_gains before setting the stiffness to 0.0 and both motorDampingScale
and damping to 1.0. The menus for joint manipulation for the first objective, the grasping and the
removing of the stiffness were gathered into one functional main menu (Fig. 4.2).

Figure 4.2: The main menu for manipulating the EVEr3 robot

4.6 Remarks and Suggestions for Future Works

It is necessary to get a proper understanding of the whole repository of Halodi Robotics prior to
the process of designing a complete rehabilitative system involving the EVEr3 robot. It is also
crucial to have an early dialogue with Halodi about all possibilities and limitations regarding what
one would like to achieve and not just ask general questions.

There is an error in the current version of the Halodi API which demands several trials if the
commands are not executed. This was detected from the GoalStatus callback which sometimes halts
at the first status: "Sending trajectory, listening for whole_body_trajectory_status...". Whenever
this happens, one has to press [Ctrl]+c and retry until it is successful.

4.6.1 Objective 2

It seems better to create a leg model after a proper rehabilitative exercise has been issued, so that
the handles can be placed at the relevant positions. The healthcare professionals pointed out that
it could actually be sufficient with one cuff controlled by one arm, but this would have to be tried
out and tested to see if the lower extremity can be satisfactorily controlled with only one point of
contact in the human-robot interaction.

When trying to include the URDF model in the world of the digital twin, I tried following the
package provided by Halodi. In the CMakeLists.txt in the ever3 description package provided by
Halodi, they include a URDF to SDF converter. Unfortunately I did not manage to implement
this on my model when I eventually discovered this aspect of the model for the digital twin. I
recommend to look at the eve_r3 model package files and use these as a side tool in addition to
tutorials for creating a functional model.

4.6.2 Objective 3 and 4

The made prototype can be useful for testing a proof of concept on a doll in future works and was
left in the cage of the Mechatronics Lab at UiA Grimstad where EVEr3 was stationed. The bands
could be cut off and sealed with a lighter flame if they are too long and just are a nuisance.

29

I was given a general comment from the healthcare professionals regarding the rehabilitative
procedure: All rehabilitative exercises involves three steps. First there is a passive movement
before an assistive movement which precedes a resistive movement.

4.6.3 Objective 5 and 6

Regarding the digital twin, the mentioned floating behaviour in subsection 3.2.2 could be dimin-
ished when the model is constrained, as the arm would be locked to the leg which is in turn joined
to the bed. But it could still affect the recorded values, so it will have to be tested if a model is to
be used as the external input to the digital twin. If it is impossible to get rid of in terms of jerking
behaviour or impacts on the issuing/reading of joint values, then another approach must be taken.
In worst case, the procedure cannot be simulated in a satisfactory way and must be developed on
the real EVEr3 in combination with the digital twin, as the case is with the grasping for the current
version of the digital twin.

The manipulation of the body frame was not made in time for the hand-in of the thesis. For
future works, the units for the TaskSpaceCommand are as follows: pose (x,y,z) are issued in meters
and pose rotation are given as quaternions (unitless). Angular velocity, linear velocity, angular ac-
celeration and linear acceleration are issued in SI units. It could then be better to use the Realtime
API rather than the Trajectory API for the recording and replaying the movement. I was advised
that one could record pelvis height and orientation and hand poses, and then use task space control
by sending the recorded values to the robot. Also to express the hands in either pelvis or base
frame (enable z-up to align the base frame with gravity).

A menu for reading issued values for joint angles and angular velocities for the pitch of the right
arm was made and is appended in the folders as the joint_read_menu. It uses the WholeBodyState
message type to access the subordinate JointMeasurement message type which contains the mes-
sages for measurements. The transferred joint movement is transferred to a public function of the
node class and stored in a global vector. The ROS2 QoS was utilized to set the ROS2 reliability
setting to best effort in order to receive the messages. The only relevant data is the stop- and
turning points, so the vector values are sorted out to not store duplicate values and the value is
truncated to three decimals. This was also to avoid a std::bad_alloc error which occures whenever
there is an issue with the memory. The values can be stored in an external file which in turn can
be loaded into the script whenever the rehabilitative movement is to be replayed, but I could not
figure out how to issue them as an array of values in time for the thesis. I think the best way is to
issue them as trajectory points, but it was not figured out how to issue them from a vector.

Another problem arose when I was going to implement the recording for an external input when
the stiffness is removed. Because the joint_read_menu records when joint values are issued, it
turned out that it will not work for recording external inputs. The external movement can however
be detected by using the ros2 echo topic /eve/whole_body_state in the terminal. The only way
that I have found to record topics is to use ros2 bag, which is a command line tool that can be
used for recording values from topics, and store them in a file to be used for later use. Because
the /eve/whole_body_state topic contains a lot more information than the joint positions and
velocities, it would require a script that can remove the huge amount of excess data. If this cannot
be solved by a C++ script, it could be an idea to ask Halodi Robotics to create a specialized topic
for the desired values.

4.6.4 Safety Assessment

During the envisioned human-robot interaction, the biggest danger is at the contact point between
the patient and the EVEr3 robot. The patient is the most endangered person in interaction with
the robot, and should have the wireless emergency button (Fig. 4.3) at his or her disposal in case of
errors during the procedure or if the patient wants to end the procedure before it has finished. This
was pointed out by one of the healthcare professionals. The worst case scenario that I can think
of, is that the control system is temporary malfunctional in addition to the two AA batteries for
the emergency button running out. Those two errors must then be avoided. For the stop button,
rechargeable batteries instead of regular batteries could be used to make sure that they do not run

30

out at the wrong time. The EVEr3 robot and the batteries could then be recharged simultaneously
prior to each procedure.

Figure 4.3: The wireless emergency stop button provided by Halodi Robotics

It should be mentioned that in an article by Senanayake (2009) it is stated that manual switches
may not be practical due to the slow motions and reflexes of the physically impaired, and that an
automatic shutdown as a result of exceeding pre-defined limits of angles or forces applied on human
joints could be a safer approach [40].

4.6.5 Motion Control

A control system should be applied to gently adjust the rehabilitative movement based on mea-
surements of the force or changes in the joint positions due to the motion of the patient. In the
current version of EVEr3, the joint torques cannot be read or issued, but the angular position and
velocity of the joints are possible to measure, and the angular acceleration, velocity and position
can be issued.

Position and torque sensors could be integrated into the cuff instead of just using the joint
sensors. An example of this is given in a paper by Bolus et.al. (2008) where they created an
adjustable-stiffness knee brace with an embedded magnetic angle sensor [5]. It can however only
be used for inspiration, as the angle sensor is only capable of measuring the angular deflection
of the device created by bending, leaving a possibility for error if the anatomical angle does not
correspond exactly to the angle of the device.

When calculating the kinematics for the EVEr3 robot, the lengths of the links can be found
in the provided URDF for the digital twin by reading the <origin> tags in the joint elements,
e.g. r_elbow_y for the _upper_arm, j_r_wrist_y for the r_lower_arm, and the <origin> tag
for the distance to the center of mass of the hand found in the <inertial> tag for the <link>
element of r_palm. A positive angle is defined in the clockwise direction and a negative angle in
the anti-clockwise direction when the arm is projected from the right side. The given lengths for
the digital twin are identical to the EVEr3 robot.

31

Chapter 5

Conclusions

A complete rehabilitative system was not realized in time for the hand-in of the thesis. The intended
interaction with the leg model in Gazebo was a big obstacle. Many weeks went to going back and
fourth on the scripts that are required, and in retrospect I should not have placed so much focus on
the simulation of the leg movement and instead made an earlier effort to investigate the possibilities
for creating a functional ROS2 system on the EVEr3 robot as a proof of concept.

I have learned about many aspects of creating a rehabilitative system with the use of a robotic
infrastructure, notably impedance control, C++ and ROS2 programming, Gazebo, the David-
Hartenberg convention, knee anatomy and rehabilitation robots in general.

It seems like the EVEr3 robot could be used as the basis for a robotic infrastructure which can
aid physiotherapists by issuing and adjusting assistive or resistive exercises, but it requires more
knowledge about the possibilities within ROS2 programming, and this field is being updated all
the time as is the case with the EVEr3 software. It also requires more studies on the EVEr3 robot
with regards to gentle movement control with a human in the loop and other means for the highest
patient safety possible.

32

Appendix A

Appendices

33

A.1 MATLAB Scripts

A.1.1 Transformation Matrix

1 %GENERATION OF TRANSFORMATION MATRIX
2 %The function takes in the link length and joint angle, and produces the
3 %homogeneous transformation matrix
4 function [A] = transformation_matrix(a, theta)
5 A = [cos(theta) -sin(theta) 0 a*cos(theta);...
6 sin(theta) cos(theta) 0 a*sin(theta);...
7 0 0 1 0;...
8 0 0 0 1];
9 end

appendices/MATLAB/transformation_matrix.tex

A.1.2 Matrix Multiplication

1 %MATRIX MULTIPLICATION FOR TRANSFORMATION MATRICES
2 close all; %closes all figures whose handles are visible
3 clear; %removes all variables from the current workspace
4 clc; %clears all the text from the Command Window
5 %Declaring symbolic variables for the lengths and angles
6 syms L1
7 syms L2
8 syms theta1
9 syms theta2

10 %The matrices are calculated by transformation_matrix(a, theta)
11 A_1 = transformation_matrix(L1,theta1);
12 A_2 = transformation_matrix(L2,theta2);
13 %The total transformation matrix is calculated as T_prelim
14 T_prelim = A_1*A_2;
15 %MATLAB simplifies the solution with trigonometric addition
16 T = simplify(T_prelim)

appendices/MATLAB/matrix_multiplication.tex

34

A.2 SolidWorks Drawings

A.2.1 The Hook Models

Circular Hook Model

 50.01

 2
0.

00

 R25.00

 5.00

 1
0.

35

 57.62

50.01

 5
0.

00

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 1 OF 1

A4

WEIGHT:

circular hook 1
SOLIDWORKS Educational Product. For Instructional Use Only.

35

 57.62

 5
0.

00

 50.01

 2
0.

00

 1
0.

02

 5
.0

0

 3
3.

69

 3
.5

2

 1
7.

79

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 1 OF 1

A4

WEIGHT:

circular hook 2
SOLIDWORKS Educational Product. For Instructional Use Only.

36

Square Hook Model

 50.00

 2
0.

00

 2
0.

00

 8
3.

13

 30
.00

 40.00

 54
.06

50

.0
0

 60.18

 5
0.

00

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 1 OF 1

A4

WEIGHT:

square hook 1
SOLIDWORKS Educational Product. For Instructional Use Only.

37

 50.00

 1
0.

11

 2
0.

00

 3
8.

03

 2
.9

8

 1
0.

84

 2
1.

17

 38.69

 R25.00

 60.18

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 1 OF 1

A4

WEIGHT:

square hook 2
SOLIDWORKS Educational Product. For Instructional Use Only.

38

A.2.2 The Leg Model

Bed Part 1

 1500.00

 5
00

.0
0

 7
5.

00
 R

50
.0

0

40

.00

 5
00

.0
0

 1500.00

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:20 SHEET 1 OF 1

A4

WEIGHT:

Bed part 1
SOLIDWORKS Educational Product. For Instructional Use Only.

39

Bed Part 2

 100.00

 50.00
 25.00

 100.00

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:20 SHEET 1 OF 1

A4

WEIGHT:

Bed part 2
SOLIDWORKS Educational Product. For Instructional Use Only.

40

Thigh and Bolt

 610.00

40.00

 R50.00

 500.00

 105.00

50

.0
0

 100.00

40

.0
0

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:10 SHEET 1 OF 1

A4

WEIGHT:

Thigh and bolt
SOLIDWORKS Educational Product. For Instructional Use Only.

41

Braced Crus Square Part 1

 305.20

 40.00

40

.0
0

 1
50

.0
0

 1
50

.0
0

 1
0.

00

 205.00

 60.00

 2
00

.0
0

 70.00 70.00

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:10 SHEET 1 OF 1

A4

WEIGHT:

Braced crus 1
SOLIDWORKS Educational Product. For Instructional Use Only.

42

Braced Crus Square Part 2

 4
0.

00

 40.00

 50.00 20.00 50.00

 25.00 1
00

.0
0

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:10 SHEET 1 OF 1

A4

WEIGHT:

Braced crus 2
SOLIDWORKS Educational Product. For Instructional Use Only.

43

Braced Crus Circular

 40.00

 1
50

.0
0

 1
50

.0
0

40

.0
0

 200.00 205.00

 150.00

 240.00

 3
00

.0
0 1

00
.0

0

 100.00

 50.00

 40.00

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:10 SHEET 1 OF 1

A4

WEIGHT:

Crus Circular
SOLIDWORKS Educational Product. For Instructional Use Only.

44

A.2.3 The Cuff

Handle Top Part 1

 R20.00
29.25

 40.00

 1
20

.0
0

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:5 SHEET 1 OF 1

A4

WEIGHT:

Handle Top 1
SOLIDWORKS Educational Product. For Instructional Use Only.

45

Handle Top Part 2

 4
9.

90

 110.00

 70.00 5.00

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:5 SHEET 1 OF 1

A4

WEIGHT:

Handle Top 2
SOLIDWORKS Educational Product. For Instructional Use Only.

46

Handle Base

 120.00

 2
.0

0

 2
.5

0
 8

0.
00

 5
.0

0

 40.00

 2.50

 2
.5

0

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:2 SHEET 1 OF 1

A4

WEIGHT:

Handle Base
SOLIDWORKS Educational Product. For Instructional Use Only.

47

Cuff Part 1

 160.00

 40.00 1
10

.0
0

 1
0.

00

 25.00

 20.00 70.00

 25.00

 20.00

 5
.0

0

 5.00

 2
0.

00

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:5 SHEET 1 OF 1

A4

WEIGHT:

Cuff Part 1
SOLIDWORKS Educational Product. For Instructional Use Only.

48

Cuff Part 2

 4
10

.0
0

 160.00

 1
50

.0
0

 25.00 25.00

 1
0.

00

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:5 SHEET 1 OF 1

A4

WEIGHT:

Cuff Part 2
SOLIDWORKS Educational Product. For Instructional Use Only.

49

A.2.4 The Alternative Cuff

Alternative Cuff Top Part 1

 R20.00 1.00

 170.00

 25.00

 1
.0

0

 8
5.

00

 110.00

 R
80

.0
0

 5.00

 5
.0

0

 7.00

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:5 SHEET 1 OF 1

A4

WEIGHT:

Alt. cuff top 1
SOLIDWORKS Educational Product. For Instructional Use Only.

50

Alternative Cuff Top Part 2

 1
90

.0
0

 170.00

 25.00 25.00 80.00 20.00

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:5 SHEET 1 OF 1

A4

WEIGHT:

Alt. cuff top 2
SOLIDWORKS Educational Product. For Instructional Use Only.

51

Alternative Cuff Bottom Part 1

 25.00 25.00

 8
0.

00

 170.00

 5
.0

0

 R
80

.0
0

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:5 SHEET 1 OF 1

A4

WEIGHT:

Alt. cuff bot. 1
SOLIDWORKS Educational Product. For Instructional Use Only.

52

Alternative Cuff Bottom Part 2

 7.00

 8.00

 2
5.

00

 8
0.

00

 2
0.

00

 160.00

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:5 SHEET 1 OF 1

A4

WEIGHT:

Alt. cuff bot. 2
SOLIDWORKS Educational Product. For Instructional Use Only.

53

A.3 Eve Menu Package

A.3.1 README.md

1 ##EVE menu for Rehabilitation Project at UiA
2

3 * Author: Lars Bleie Andersen <larsa09@uia.no>
4

5 ## Contents
6 - Joint Manipulation
7 - Grasp Manipulation
8 - Removing or adding stiffness in the right arm
9

10 ## Instructions
11

12 - Copy the eve_menu folder into eve_ws/src
13 - Navigate back to eve_ws
14 - Run colcon build --packages-select eve_menu
15 - Run the program with:
16 ros2 run eve_menu eve

appendices/eve_menu/README.tex

A.3.2 package.xml

1 <?xml version="1.0"?>
2 <?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www....

w3.org/2001/XMLSchema"?>
3 <package format="3">
4 <name>eve_menu</name>
5 <version>0.0.0</version>
6 <description>Menu for Manipulating EVEr3 at UiA Grimstad</description>
7 <maintainer email="larsa09@uia.no"> Lars Bleie Andersen </maintainer>
8 <license>UiA</license>
9

10 <buildtool_depend>ament_cmake</buildtool_depend>
11

12 <depend>rclcpp</depend>
13 <depend>std_msgs</depend>
14 <depend>action_msgs</depend>
15 <depend>halodi_msgs</depend>
16

17 <test_depend>ament_lint_auto</test_depend>
18 <test_depend>ament_lint_common</test_depend>
19

20 <export>
21 <build_type>ament_cmake</build_type>
22 </export>
23 </package>

appendices/eve_menu/package.tex

A.3.3 CMakeLists.txt

1 cmake_minimum_required(VERSION 3.5)
2 project(eve_menu)
3

4 # Default to C99
5 if(NOT CMAKE_C_STANDARD)
6 set(CMAKE_C_STANDARD 99)
7 endif()
8

9 # Default to C++14
10 if(NOT CMAKE_CXX_STANDARD)
11 set(CMAKE_CXX_STANDARD 14)

54

12 endif()
13

14 if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
15 add_compile_options(-Wall -Wextra -Wpedantic)
16 endif()
17

18 # find dependencies
19 find_package(ament_cmake REQUIRED)
20 find_package(rclcpp REQUIRED)
21 find_package(std_msgs REQUIRED)
22 find_package(action_msgs REQUIRED)
23 find_package(halodi_msgs REQUIRED)
24 find_package(tf2 REQUIRED)
25 find_package(tf2_geometry_msgs REQUIRED)
26

27 add_executable(eve src/eve.cpp)
28 target_include_directories(eve PUBLIC
29 $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
30 $<INSTALL_INTERFACE:include>)
31 ament_target_dependencies(eve rclcpp halodi_msgs action_msgs)
32

33 install(TARGETS eve
34 DESTINATION lib/${PROJECT_NAME})
35

36

37

38 if(BUILD_TESTING)
39 find_package(ament_lint_auto REQUIRED)
40 ament_lint_auto_find_test_dependencies()
41 endif()
42

43 ament_package()

appendices/eve_menu/CMakeLists.tex

A.3.4 eve.cpp

1 #include <iostream>
2 #include <memory>
3 #include <boost/uuid/uuid.hpp>
4 #include <boost/uuid/uuid_generators.hpp>
5 #include "rclcpp/rclcpp.hpp"
6 #include "action_msgs/msg/goal_status.hpp"
7 #include "unique_identifier_msgs/msg/uuid.hpp"
8 #include "halodi_msgs/msg/whole_body_trajectory.hpp"
9 #include "halodi_msgs/msg/whole_body_trajectory_point.hpp"

10 #include "halodi_msgs/msg/joint_space_command.hpp"
11 #include "halodi_msgs/msg/joint_name.hpp"
12 #include "halodi_msgs/msg/hand_command.hpp"
13

14 using namespace halodi_msgs::msg; //Declaring the 'msg' command from the 'halodi_msgs'
15 using std::placeholders::_1; //Declaring the placeholder '_1' which directs the position of a ...

value in a function to the first parameter
16 double storage[20]; //Declaring the array for 21 joint values, stored as radians
17 double closure_ratio = 0.75; //Setting the default values. 0.75 was found to be the optimal ...

ratio for a handle with 40[mm] diameter.
18 double closure_velocity = 0.5;
19 double closure_force = 0.5;
20 bool right_hand = true; //right is ambiguous, but right_hand is ok
21 bool left_hand = false;
22 bool both_hands = false;
23 bool relax = false; //Declaring the boolean statements for selections
24 bool downward = false;
25 bool firm = false;
26

27 class Grasp_publisher : public rclcpp::Node //Creating the node class 'Grasp_publisher' by ...
inheriting from 'rclcpp::Node'

55

28 {
29 public:
30 Grasp_publisher()
31 : Node("grasp_publisher") //The public constructor names the node 'grasp_publisher'
32 {
33 publisher_ = this->create_publisher<HandCommand>("/eve/right_hand_closure", 10); //The ...

first publisher is initialized with the 'HandCommand' message type, the topic name '/...
eve/right_hand_closure', and the required queue size to limit messages in the event of ...
a backup.

34 publisher2_ = this->create_publisher<HandCommand>("/eve/left_hand_closure", 10);//The ...
second publisher is initialized with the topic name '/eve/left_hand_closure'

35 publish_hand_command(); //Running the 'publish_hand_command' function
36 }
37

38 private:
39 void publish_hand_command() //The function sets the desired parameters and publishes the ...

message(s). void has not return type.
40 {
41 HandCommand grasp_msg;
42 grasp_msg.closure = closure_ratio;
43 grasp_msg.speed = closure_velocity;
44 grasp_msg.force = closure_force;
45 if(right_hand==true)
46 {
47 publisher_->publish(grasp_msg); //The message is published to the right hand
48 }
49 if(left_hand==true)
50 {
51 publisher2_->publish(grasp_msg); //The message is published to the left hand
52 }
53 if(both_hands == true)
54 {
55 publisher_->publish(grasp_msg); //The message is published to both hands
56 publisher2_->publish(grasp_msg);
57 }
58 }
59

60 rclcpp::Publisher<HandCommand>::SharedPtr publisher_; //Declaration of the 'publisher_' ...
publisher

61 rclcpp::Publisher<HandCommand>::SharedPtr publisher2_; //Declaration of the 'publisher2_' ...
publisher

62 };
63

64

65 class JointManipulator : public rclcpp::Node //Creating the node class 'JointManipulator' by ...
inheriting from 'rclcpp::Node'

66 {
67 public:
68 JointManipulator()
69 : Node("joint_manipulator") //The public constructor names the node 'joint_manipulator'
70 {
71 // set up publisher to trajectory topic
72 publisher_ = this->create_publisher<WholeBodyTrajectory>("/eve/whole_body_trajectory", 10);...

//The publisher is initialized with the 'WholeBodyTrajectory' message type, the topic ...
name '/eve/whole_body_trajectory', and the required queue size to limit messages in the...
event of a backup.

73 //The subscriber is initialized with the 'action_msgs::msg::GoalStatus' message type. 'std...
::bind' is used to register the '&Joint_menu_publisher::status_callback' reference as a...
callback. It provides feedback of commands send to /eve/whole_body_trajectory

74 subscription_ = this->create_subscription<action_msgs::msg::GoalStatus>("/eve/...
whole_body_trajectory_status", 10, std::bind(&JointManipulator::status_callback, this, ...
_1));

75 uuid_msg_ = create_random_uuid(); //A UUID (universally unique identifier) is created ...
though the create_random_uuid function

76 publish_trajectory(uuid_msg_); //The publish_trajectory function is run with the UUID as ...
the trajectory_id

77 }

56

78

79 private:
80

81 void status_callback(action_msgs::msg::GoalStatus::SharedPtr msg)
82 {
83 switch(msg->status){ //The arrow operator (->) is used to access the member of the 'status'...

data structure pointed to by a pointer. A pointer is used because the data cannot be ...
directly copied and a pointer is what is really transferred. The 'status' data ...
structure has 7 different states.

84 case 0:
85 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_UNKNOWN"); //The 'this' pointer is ...

here used to retrieve the 'get_logger()' information
86 break;
87 case 1:
88 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_ACCEPTED");
89 break;
90 case 2:
91 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_EXECUTING");
92 break;
93 case 3:
94 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_CANCELING");
95 break;
96 case 4:
97 //If the uuid of the received GoalStatus STATUS_SUCCEEDED Msg is the same as the uuid of...

the command that was sent
98 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_SUCCEEDED");
99 RCLCPP_INFO(this->get_logger(), "Shutting down...");

100 rclcpp::shutdown();
101 break;
102 case 5:
103 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_CANCELED");
104 break;
105 case 6:
106 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_ABORTED");
107 break;
108 default:
109 break;
110 }
111 }
112

113 unique_identifier_msgs::msg::UUID create_random_uuid() //The function creates a random UUID ...
to track msg

114 {
115 boost::uuids::random_generator gen; boost::uuids::uuid u = gen();
116 unique_identifier_msgs::msg::UUID uuid_msg;
117 std::array<uint8_t, 16> uuid; std::copy(std::begin(u.data), std::end(u.data), uuid.begin())...

;
118 uuid_msg.uuid = uuid;
119 return uuid_msg;
120 }
121

122 void publish_trajectory(unique_identifier_msgs::msg::UUID uuid_msg) //The function sets all ...
required parameters for the WholeBodyTrajectory structure and send them to 'publisher_'

123 {
124 // begin construction of the publsihed msg
125 WholeBodyTrajectory trajectory_msg;
126 trajectory_msg.append_trajectory = false; //If set to false, the existing trajectory is ...

cancelled and this trajectory is immediatly executed.
127 //MINIMUM_JERK_CONSTRAINED mode is recommended to constrain joint velocities and ...

accelerations between each waypoint (make the movement smoother)
128 //It specifies how the trajectory is interpolated from the previous objective
129 trajectory_msg.interpolation_mode.value = TrajectoryInterpolation::MINIMUM_JERK_CONSTRAINED...

;
130 trajectory_msg.trajectory_id = uuid_msg;
131 // Ading waypoint targets. The desired times (in seconds) are provided in terms of
132 // offset from time at which this published message is received
133 trajectory_msg.trajectory_points.push_back(targetall_(5));

57

134

135 RCLCPP_INFO(this->get_logger(), "Sending trajectory, listening for ...
whole_body_trajectory_status...");

136 publisher_->publish(trajectory_msg); //The trajectory message is published
137 }
138

139 //This generates the individual single joint command. It takes in the required parameters and...
returns the message used for the taskspace trajectory point in the 'targetall_' function

140 JointSpaceCommand generate_joint_space_command(int32_t joint_id, double q_des, double qd_des ...
= 0.0, double qdd_des = 0.0)

141 {
142 JointSpaceCommand ret_msg;
143 JointName name;
144 name.joint_id = joint_id;
145 ret_msg.joint = name;
146 ret_msg.q_desired = q_des;
147 ret_msg.qd_desired = qd_des;
148 ret_msg.qdd_desired = qdd_des;
149 ret_msg.use_default_gains = true;
150 return ret_msg;
151 }
152

153 //Each target, in the form of a single WholeBodyTrajectoryPoint msg, consists of a ...
concatenation of desired joint configurations with no more than one desired value per ...
joint. The desired time at which we want to reach these joint targets is also specified.

154 //This function then takes in the execution time and assembles the name of the desired joint ...
along with the desired position, velocity, acceleration etc. through the '...
generate_joint_space_command' function

155 WholeBodyTrajectoryPoint targetall_(int32_t t)
156 {
157 WholeBodyTrajectoryPoint ret_msg;
158

159 builtin_interfaces::msg::Duration duration;
160 duration.sec = t; //Sets the execution time for the trajectory, relative to the start time.
161 ret_msg.time_from_start = duration;
162

163 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::HIP_YAW, ...
storage[0])); //The 'push_back' pushes elements from the back of the ...
generate_joint_space_command contents

164 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::HIP_ROLL, ...
storage[1]));

165 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::HIP_PITCH, ...
storage[2]));

166 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::KNEE_PITCH, ...
storage[3]));

167 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::ANKLE_ROLL, ...
storage[4]));

168 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::ANKLE_PITCH,...
storage[5]));

169 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
LEFT_SHOULDER_PITCH, storage[6]));

170 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
LEFT_SHOULDER_ROLL, storage[7]));

171 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
LEFT_SHOULDER_YAW, storage[8]));

172 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
LEFT_ELBOW_PITCH, storage[9]));

173 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
LEFT_ELBOW_YAW, storage[10]));

174 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
LEFT_WRIST_PITCH, storage[11]));

175 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
LEFT_WRIST_ROLL, storage[12]));

176 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
RIGHT_SHOULDER_PITCH, storage[13]));

177 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
RIGHT_SHOULDER_ROLL, storage[14]));

58

178 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
RIGHT_SHOULDER_YAW, storage[15]));

179 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
RIGHT_ELBOW_PITCH, storage[16]));

180 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
RIGHT_ELBOW_YAW, storage[17]));

181 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
RIGHT_WRIST_PITCH, storage[18]));

182 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
RIGHT_WRIST_ROLL, storage[19]));

183 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::NECK_PITCH, ...
storage[20]));

184

185 return ret_msg;
186 }
187

188 rclcpp::Publisher<WholeBodyTrajectory>::SharedPtr publisher_; //Declaration of the '...
publisher_' publisher

189 rclcpp::Subscription<action_msgs::msg::GoalStatus>::SharedPtr subscription_; //Declaration of...
the 'subscription_' subscriber

190 unique_identifier_msgs::msg::UUID uuid_msg_; //Declaration of the UUID generator
191 };
192

193 class Relaxing_publisher : public rclcpp::Node //Creating the node class 'Relaxing_publisher' ...
by inheriting from 'rclcpp::Node'

194 {
195 public:
196 Relaxing_publisher()
197 : Node("relaxing_publisher") //The public constructor names the node 'relaxing_publisher'
198 {
199 publisher_ = this->create_publisher<WholeBodyTrajectory>("/eve/whole_body_trajectory", 10);...

//The publisher is initialized with the 'WholeBodyTrajectory' message type, the topic ...
name '/eve/whole_body_trajectory', and the required queue size to limit messages in the...
event of a backup.

200 subscriber_ = this->create_subscription<action_msgs::msg::GoalStatus>("/eve/...
whole_body_trajectory_status", 10, std::bind(&Relaxing_publisher::status_callback, this...
, _1)); //The subscriber is initialized with the 'action_msgs::msg::GoalStatus' message...
type. 'std::bind' is used to register the '&Joint_menu_publisher::status_callback' ...

reference as a callback. It provides feedback of commands send to /eve/...
whole_body_trajectory

201 uuid_msg_ = create_random_uuid(); //A UUID (universally unique identifier) is created ...
though the create_random_uuid function

202 publish_message(uuid_msg_); //The publish_trajectory function is run with the UUID as the ...
trajectory_id

203 }
204

205 private:
206

207 void status_callback(action_msgs::msg::GoalStatus::SharedPtr msg)
208 {
209 switch(msg->status){ //The arrow operator (->) is used to access the member of the 'status'...

data structure pointed to by a pointer. A pointer is used because the data cannot be ...
directly copied and a pointer is what is really transferred. The 'status' data ...
structure has 7 different states.

210 case 0:
211 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_UNKNOWN"); //The 'this' pointer is ...

here used to retrieve the 'get_logger()' information
212 break;
213 case 1:
214 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_ACCEPTED");
215 break;
216 case 2:
217 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_EXECUTING");
218 break;
219 case 3:
220 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_CANCELING");
221 break;

59

222 case 4:
223 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_SUCCEEDED");
224 RCLCPP_INFO(this->get_logger(), "Shutting down...");
225 rclcpp::shutdown();
226 break;
227 case 5:
228 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_CANCELED");
229 break;
230 case 6:
231 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_ABORTED");
232 break;
233 default:
234 break;
235 }
236 }
237

238 unique_identifier_msgs::msg::UUID create_random_uuid() //The function creates UUID's
239 {
240 boost::uuids::random_generator gen; boost::uuids::uuid u = gen();
241 unique_identifier_msgs::msg::UUID uuid_msg;
242 std::array<uint8_t, 16> uuid; std::copy(std::begin(u.data), std::end(u.data), uuid.begin())...

;
243 uuid_msg.uuid = uuid;
244 return uuid_msg;
245 }
246

247 void publish_message(unique_identifier_msgs::msg::UUID uuid_msg) //The function sets all ...
required parameters for the WholeBodyTrajectory structure and send them to 'publisher_'

248 {
249 WholeBodyTrajectory trajectory_msg;
250 trajectory_msg.append_trajectory = false; //If set to false, the existing trajectory is ...

cancelled and this trajectory is immediatly executed.
251 trajectory_msg.interpolation_mode.value = TrajectoryInterpolation::MINIMUM_JERK_CONSTRAINED...

; //Specifies how the trajectory is interpolated from the previous objective
252 trajectory_msg.trajectory_id = uuid_msg;
253

254 if (downward==true)
255 {
256 trajectory_msg.trajectory_points.push_back(targetall_(5));
257 }
258

259 if (relax==true)
260 {
261 trajectory_msg.trajectory_points.push_back(relax_right_arm_(5));
262 }
263

264 if (firm==true)
265 {
266 trajectory_msg.trajectory_points.push_back(stiff_right_arm_(5));
267 }
268

269 RCLCPP_INFO(this->get_logger(), "Sending trajectory, listening for ...
whole_body_trajectory_status...");

270 publisher_->publish(trajectory_msg); //The trajectory message is published
271 }
272

273

274 JointSpaceCommand generate_joint_space_command(int32_t joint_id, double q_des, double qd_des ...
= 0.0, double qdd_des = 0.0) //The function takes in the required parameters and returns ...
the message used for the taskspace trajectory point in the 'targetall_' function

275 {
276 JointSpaceCommand ret_msg;
277 JointName name;
278 name.joint_id = joint_id;
279 ret_msg.joint = name;
280 ret_msg.q_desired = q_des;
281 ret_msg.qd_desired = qd_des;

60

282 ret_msg.qdd_desired = qdd_des;
283 ret_msg.use_default_gains = true;
284 return ret_msg;
285 }
286

287 JointSpaceCommand add_stiffness(int32_t joint_id) //The function takes in the name of the ...
desired joint and sets the use_default_gains to true

288 {
289 JointSpaceCommand ret_msg;
290 JointName name;
291 name.joint_id = joint_id;
292 ret_msg.joint = name;
293 ret_msg.use_default_gains = true;
294 return ret_msg;
295 }
296

297 JointSpaceCommand remove_stiffness(int32_t joint_id) //The function takes in the name of the ...
desired joint and sets the use_default_gains to false, enabling the stiffness and damping...
adjustment

298 {
299 JointSpaceCommand ret_msg;
300 JointName name;
301 name.joint_id = joint_id;
302 ret_msg.joint = name;
303 ret_msg.use_default_gains = false; //The default gains must be set to false in order to set...

the stiffness and damping of the joints
304 ret_msg.stiffness = 0.0; //((rad/s^2)/rad) Stiffness = 0 puts the joints in zero gravity ...

and available to be pushed by external force
305 ret_msg.damping = 1.0; // ((rad/s^2)/rad) Desired damping of the PD controller for the ...

joint
306 ret_msg.motorDampingScale = 1.0; //A value between 0.0 and 1.0 which gives the damping to ...

the motor for the joint.
307 return ret_msg;
308 }
309

310 WholeBodyTrajectoryPoint targetall_(int32_t t) //The function takes in the execution time and...
assembles the name of the desired joint along with the zero position

311 {
312 WholeBodyTrajectoryPoint ret_msg;
313

314 builtin_interfaces::msg::Duration duration;
315 duration.sec = t;
316 ret_msg.time_from_start = duration;
317

318 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::HIP_YAW, 0))...
;

319 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::HIP_ROLL, 0)...
);

320 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::HIP_PITCH, ...
0));

321 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::KNEE_PITCH, ...
0));

322 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::ANKLE_ROLL, ...
0));

323 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::ANKLE_PITCH,...
0));

324 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
LEFT_SHOULDER_PITCH, 0));

325 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
LEFT_SHOULDER_ROLL, 0));

326 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
LEFT_SHOULDER_YAW, 0));

327 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
LEFT_ELBOW_PITCH, 0));

328 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
LEFT_ELBOW_YAW, 0));

329 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...

61

LEFT_WRIST_PITCH, 0));
330 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...

LEFT_WRIST_ROLL, 0));
331 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...

RIGHT_SHOULDER_PITCH, 0));
332 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...

RIGHT_SHOULDER_ROLL, 0));
333 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...

RIGHT_SHOULDER_YAW, 0));
334 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...

RIGHT_ELBOW_PITCH, 0));
335 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...

RIGHT_ELBOW_YAW, 0));
336 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...

RIGHT_WRIST_PITCH, 0));
337 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...

RIGHT_WRIST_ROLL, 0));
338 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::NECK_PITCH, ...

0));
339

340 return ret_msg;
341 }
342

343 WholeBodyTrajectoryPoint stiff_right_arm_(int32_t t) //The function takes in the execution ...
time and sends the name of the desired joint that will have its stiffness and damping ...
adjusted by means of the 'generate_joint_space_command' function

344 {
345 WholeBodyTrajectoryPoint ret_msg;
346

347 builtin_interfaces::msg::Duration duration;
348 duration.sec = t;
349 ret_msg.time_from_start = duration;
350

351 ret_msg.joint_space_commands.push_back(add_stiffness(JointName::RIGHT_SHOULDER_PITCH));
352 ret_msg.joint_space_commands.push_back(add_stiffness(JointName::RIGHT_SHOULDER_ROLL));
353 ret_msg.joint_space_commands.push_back(add_stiffness(JointName::RIGHT_SHOULDER_YAW));
354 ret_msg.joint_space_commands.push_back(add_stiffness(JointName::RIGHT_ELBOW_PITCH));
355 ret_msg.joint_space_commands.push_back(add_stiffness(JointName::RIGHT_ELBOW_YAW));
356 ret_msg.joint_space_commands.push_back(add_stiffness(JointName::RIGHT_WRIST_PITCH));
357 ret_msg.joint_space_commands.push_back(add_stiffness(JointName::RIGHT_WRIST_ROLL));
358

359 return ret_msg;
360 }
361

362 WholeBodyTrajectoryPoint relax_right_arm_(int32_t t) //The function takes in the execution ...
time and sends the name of the desired joint that will be set back to normal ...
use_default_gains by means of the 'generate_joint_space_command' function

363 {
364 WholeBodyTrajectoryPoint ret_msg;
365

366 builtin_interfaces::msg::Duration duration;
367 duration.sec = t;
368 ret_msg.time_from_start = duration;
369

370 ret_msg.joint_space_commands.push_back(remove_stiffness(JointName::RIGHT_SHOULDER_PITCH));
371 ret_msg.joint_space_commands.push_back(remove_stiffness(JointName::RIGHT_SHOULDER_ROLL));
372 ret_msg.joint_space_commands.push_back(remove_stiffness(JointName::RIGHT_SHOULDER_YAW));
373 ret_msg.joint_space_commands.push_back(remove_stiffness(JointName::RIGHT_ELBOW_PITCH));
374 ret_msg.joint_space_commands.push_back(remove_stiffness(JointName::RIGHT_ELBOW_YAW));
375 ret_msg.joint_space_commands.push_back(remove_stiffness(JointName::RIGHT_WRIST_PITCH));
376 ret_msg.joint_space_commands.push_back(remove_stiffness(JointName::RIGHT_WRIST_ROLL));
377

378 return ret_msg;
379 }
380

381 rclcpp::Publisher<WholeBodyTrajectory>::SharedPtr publisher_; //Declaration of the '...
publisher_' publisher

62

382 rclcpp::Subscription<action_msgs::msg::GoalStatus>::SharedPtr subscriber_; //Declaration of ...
the 'subscription_' subscriber

383 unique_identifier_msgs::msg::UUID uuid_msg_; //Declaration of the UUID generator
384 };
385

386

387 void wait_for_enter() //Function for pausing the program
388 {
389 std::string wait;
390 std::cout << "[Enter] to continue..." << std::endl;
391 getline(std::cin, wait);
392 }
393

394 void menu_space() //This is used to make the menu better looking, assuming that 1000 lines will...
be enough to clear the screen

395 {
396 std::cout << std::string(1000, '\n');
397 }
398

399 void check_single(int number) //Print single values for joint manipulation
400 {
401 double checkvalue;
402

403 switch(number)
404 {
405 case 1 :
406 checkvalue = storage[0]*(180/3.141592654);
407 std::cout << "HIP_YAW is set to be moved " << checkvalue << " degrees"<< std::endl;
408 break;
409 case 2 :
410 checkvalue = storage[1]*(180/3.141592654);
411 std::cout << "HIP_ROLL is set to be moved " << checkvalue << " degrees"<< std::endl;
412 break;
413 case 3 :
414 checkvalue = storage[2]*(180/3.141592654);
415 std::cout << "HIP_PITCH is set to be moved " << checkvalue << " degrees"<< std::endl;
416 break;
417 case 4 :
418 checkvalue = storage[3]*(180/3.141592654);
419 std::cout << "KNEE_PITCH is set to be moved " << checkvalue << " degrees"<< std::endl;
420 break;
421 case 5 :
422 checkvalue = storage[4]*(180/3.141592654);
423 std::cout << "ANKLE_ROLL is set to be moved " << checkvalue << " degrees"<< std::endl;
424 break;
425 case 6 :
426 checkvalue = storage[5]*(180/3.141592654);
427 std::cout << "ANKLE_PITCH is set to be moved " << checkvalue << " degrees"<< std::endl;
428 break;
429 case 7 :
430 checkvalue = storage[6]*(180/3.141592654);
431 std::cout << "LEFT_SHOULDER_PITCH is set to be moved " << checkvalue << " degrees"<< ...

std::endl;
432 break;
433 case 8 :
434 checkvalue = storage[7]*(180/3.141592654);
435 std::cout << "LEFT_SHOULDER_ROLL is set to be moved " << checkvalue << " degrees"<< std...

::endl;
436 break;
437 case 9 :
438 checkvalue = storage[8]*(180/3.141592654);
439 std::cout << "LEFT_SHOULDER_YAW is set to be moved " << checkvalue << " degrees"<< std...

::endl;
440 break;
441 case 10 :
442 checkvalue = storage[9]*(180/3.141592654);
443 std::cout << "LEFT_ELBOW_PITCH is set to be moved " << checkvalue << " degrees"<< std::...

63

endl;
444 break;
445 case 11 :
446 checkvalue = storage[10]*(180/3.141592654);
447 std::cout << "LEFT_ELBOW_YAW is set to be moved " << checkvalue << " degrees"<< std::...

endl;
448 break;
449 case 12 :
450 checkvalue = storage[11]*(180/3.141592654);
451 std::cout << "LEFT_WRIST_PITCH is set to be moved " << checkvalue << " degrees"<< std::...

endl;
452 break;
453 case 13 :
454 checkvalue = storage[12]*(180/3.141592654);
455 std::cout << "LEFT_WRIST_ROLL is set to be moved " << checkvalue << " degrees"<< std::...

endl;
456 break;
457 case 14 :
458 checkvalue = storage[13]*(180/3.141592654);
459 std::cout << "RIGHT_SHOULDER_PITCH is set to be moved " << checkvalue << " degrees"<< ...

std::endl;
460 break;
461 case 15 :
462 checkvalue = storage[14]*(180/3.141592654);
463 std::cout << "RIGHT_SHOULDER_ROLL is set to be moved " << checkvalue << " degrees"<< ...

std::endl;
464 break;
465 case 16 :
466 checkvalue = storage[15]*(180/3.141592654);
467 std::cout << "RIGHT_SHOULDER_YAW is set to be moved " << checkvalue << " degrees"<< std...

::endl;
468 break;
469 case 17 :
470 checkvalue = storage[16]*(180/3.141592654);
471 std::cout << "RIGHT_ELBOW_PITCH is set to be moved " << checkvalue << " degrees"<< std...

::endl;
472 break;
473 case 18 :
474 checkvalue = storage[17]*(180/3.141592654);
475 std::cout << "RIGHT_ELBOW_YAW is set to be moved " << checkvalue << " degrees"<< std::...

endl;
476 break;
477 case 19 :
478 checkvalue = storage[18]*(180/3.141592654);
479 std::cout << "RIGHT_WRIST_PITCH is set to be moved " << checkvalue << " degrees"<< std...

::endl;
480 break;
481 case 20 :
482 checkvalue = storage[19]*(180/3.141592654);
483 std::cout << "RIGHT_WRIST_ROLL is set to be moved " << checkvalue << " degrees"<< std::...

endl;
484 break;
485 case 21 :
486 checkvalue = storage[20]*(180/3.141592654);
487 std::cout << "NECK_PITCH is set to be moved " << checkvalue << " degrees"<< std::endl;
488 break;
489 default :
490 std::cout << "Invalid input" << std::endl;
491 }
492 }
493

494 void check_all() //Print all stored values for joint manipulation
495 {
496 double checkvalue;
497

498 checkvalue = storage[0]*(180/3.141592654);
499 std::cout << "HIP_YAW is set to be moved " << checkvalue << " degrees"<< std::endl;

64

500 checkvalue = storage[1]*(180/3.141592654);
501 std::cout << "HIP_ROLL is set to be moved " << checkvalue << " degrees"<< std::endl;
502 checkvalue = storage[2]*(180/3.141592654);
503 std::cout << "HIP_PITCH is set to be moved " << checkvalue << " degrees"<< std::endl;
504 checkvalue = storage[3]*(180/3.141592654);
505 std::cout << "KNEE_PITCH is set to be moved " << checkvalue << " degrees"<< std::endl;
506 checkvalue = storage[4]*(180/3.141592654);
507 std::cout << "ANKLE_ROLL is set to be moved " << checkvalue << " degrees"<< std::endl;
508 checkvalue = storage[5]*(180/3.141592654);
509 std::cout << "ANKLE_PITCH is set to be moved " << checkvalue << " degrees"<< std::endl;
510 checkvalue = storage[6]*(180/3.141592654);
511 std::cout << "LEFT_SHOULDER_PITCH is set to be moved " << checkvalue << " degrees"<< std::...

endl;
512 checkvalue = storage[7]*(180/3.141592654);
513 std::cout << "LEFT_SHOULDER_ROLL is set to be moved " << checkvalue << " degrees"<< std::...

endl;
514 checkvalue = storage[8]*(180/3.141592654);
515 std::cout << "LEFT_SHOULDER_YAW is set to be moved " << checkvalue << " degrees"<< std::...

endl;
516 checkvalue = storage[9]*(180/3.141592654);
517 std::cout << "LEFT_ELBOW_PITCH is set to be moved " << checkvalue << " degrees"<< std::endl...

;
518 checkvalue = storage[10]*(180/3.141592654);
519 std::cout << "LEFT_ELBOW_YAW is set to be moved " << checkvalue << " degrees"<< std::endl;
520 checkvalue = storage[11]*(180/3.141592654);
521 std::cout << "LEFT_WRIST_PITCH is set to be moved " << checkvalue << " degrees"<< std::endl...

;
522 checkvalue = storage[12]*(180/3.141592654);
523 std::cout << "LEFT_WRIST_ROLL is set to be moved " << checkvalue << " degrees"<< std::endl;
524 checkvalue = storage[13]*(180/3.141592654);
525 std::cout << "RIGHT_SHOULDER_PITCH is set to be moved " << checkvalue << " degrees"<< std::...

endl;
526 checkvalue = storage[14]*(180/3.141592654);
527 std::cout << "RIGHT_SHOULDER_ROLL is set to be moved " << checkvalue << " degrees"<< std::...

endl;
528 checkvalue = storage[15]*(180/3.141592654);
529 std::cout << "RIGHT_SHOULDER_YAWis set to be moved " << checkvalue << " degrees"<< std::...

endl;
530 checkvalue = storage[16]*(180/3.141592654);
531 std::cout << "RIGHT_ELBOW_PITCH is set to be moved " << checkvalue << " degrees"<< std::...

endl;
532 checkvalue = storage[17]*(180/3.141592654);
533 std::cout << "RIGHT_ELBOW_YAW is set to be moved " << checkvalue << " degrees"<< std::endl;
534 checkvalue = storage[18]*(180/3.141592654);
535 std::cout << "RIGHT_WRIST_PITCH is set to be moved " << checkvalue << " degrees"<< std::...

endl;
536 checkvalue = storage[19]*(180/3.141592654);
537 std::cout << "RIGHT_WRIST_ROLL is set to be moved " << checkvalue << " degrees"<< std::endl...

;
538 checkvalue = storage[20]*(180/3.141592654);
539 std::cout << "NECK_PITCH is set to be moved " << checkvalue << " degrees"<< std::endl;
540 }
541

542 void check(int sel) //This function gathers all printing of joint manipulation values into one ...
menu

543 {
544 int joint_number;
545 bool done = false;
546

547 do {
548 switch(sel)
549 {
550 case 1 :
551 menu_space();
552 check_all();
553 std::cin.get(); //This makes the program wait for input from user
554 wait_for_enter();

65

555 done = true;
556 break;
557 case 2 :
558 menu_space();
559 std::cout << "Desired joint number (1-21) [+Enter]: " << std::endl;
560 std::cout << "1: HIP_YAW" << std::endl;
561 std::cout << "2: HIP_ROLL" << std::endl;
562 std::cout << "3: HIP_PITCH" << std::endl;
563 std::cout << "4: KNEE_PITCH" << std::endl;
564 std::cout << "5: ANKLE_ROLL" << std::endl;
565 std::cout << "6: ANKLE_PITCH" << std::endl;
566 std::cout << "7: LEFT_SHOULDER_PITCH" << std::endl;
567 std::cout << "8: LEFT_SHOULDER_ROLL" << std::endl;
568 std::cout << "9: LEFT_SHOULDER_YAW" << std::endl;
569 std::cout << "10: LEFT_ELBOW_PITCH" << std::endl;
570 std::cout << "11: LEFT_ELBOW_YAW" << std::endl;
571 std::cout << "12: LEFT_WRIST_PITCH" << std::endl;
572 std::cout << "13: LEFT_WRIST_ROLL" << std::endl;
573 std::cout << "14: RIGHT_SHOULDER_PITCH" << std::endl;
574 std::cout << "15: RIGHT_SHOULDER_ROLL" << std::endl;
575 std::cout << "16: RIGHT_SHOULDER_YAW" << std::endl;
576 std::cout << "17: RIGHT_ELBOW_PITCH" << std::endl;
577 std::cout << "18: RIGHT_ELBOW_YAW" << std::endl;
578 std::cout << "19: RIGHT_WRIST_PITCH" << std::endl;
579 std::cout << "20: RIGHT_WRIST_ROLL" << std::endl;
580 std::cout << "21: NECK_PITCH" << std::endl;
581 std::cin >> joint_number;
582 if (joint_number > 0 && joint_number < 22)
583 {check_single(joint_number);
584 std::cin.get(); //This makes the program wait for input from user
585 wait_for_enter();
586 done = true;}
587 else
588 {std::cout << "Invalid input" << std::endl;}
589 break;
590 case 3 :
591 done = true;
592 break;
593 default :
594 std::cout << "Invalid input" << std::endl;
595 }
596 } while(!done);
597 }
598

599

600 void store_single(int number, double angle) //This function stores single inputs for joint ...
manipulation

601 {
602 switch(number)
603 {
604 case 1 :
605 std::cout << "Storing value for HIP_YAW: " << angle << " degrees" << std::endl;
606 storage[0] = angle*(3.141592654/180);
607 break;
608 case 2 :
609 std::cout << "Storing value for HIP_ROLL: " << angle << " degrees" << std::endl;
610 storage[1] = angle*(3.141592654/180);
611 break;
612 case 3 :
613 std::cout << "Storing value for HIP_PITCH: " << angle << " degrees" << std::endl;
614 storage[2] = angle*(3.141592654/180);
615 break;
616 case 4 :
617 std::cout << "Storing value for KNEE_PITCH: " << angle << " degrees" << std::endl;
618 storage[3] = angle*(3.141592654/180);
619 break;
620 case 5 :

66

621 std::cout << "Storing value for ANKLE_ROLL: " << angle << " degrees" << std::endl;
622 storage[4] = angle*(3.141592654/180);
623 break;
624 case 6 :
625 std::cout << "Storing value for ANKLE_PITCH: " << angle << " degrees" << std::endl;
626 storage[5] = angle*(3.141592654/180);
627 break;
628 case 7 :
629 std::cout << "Storing value for LEFT_SHOULDER_PITCH: " << angle << " degrees" << std::...

endl;
630 storage[6] = angle*(3.141592654/180);
631 break;
632 case 8 :
633 std::cout << "Storing value for LEFT_SHOULDER_ROLL: " << angle << " degrees" << std::...

endl;
634 storage[7] = angle*(3.141592654/180);
635 break;
636 case 9 :
637 std::cout << "Storing value for LEFT_SHOULDER_YAW: " << angle << " degrees" << std::...

endl;
638 storage[8] = angle*(3.141592654/180);
639 break;
640 case 10 :
641 std::cout << "Storing value for LEFT_ELBOW_PITCH: " << angle << " degrees" << std::endl...

;
642 storage[9] = angle*(3.141592654/180);
643 break;
644 case 11 :
645 std::cout << "Storing value for LEFT_ELBOW_YAW: " << angle << " degrees" << std::endl;
646 storage[10] = angle*(3.141592654/180);
647 break;
648 case 12 :
649 std::cout << "Storing value for LEFT_WRIST_PITCH: " << angle << " degrees" << std::endl...

;
650 storage[11] = angle*(3.141592654/180);
651 break;
652 case 13 :
653 std::cout << "Storing value for LEFT_WRIST_ROLL: " << angle << " degrees" << std::endl;
654 storage[12] = angle*(3.141592654/180);
655 break;
656 case 14 :
657 std::cout << "Storing value for RIGHT_SHOULDER_PITCH: " << angle << " degrees" << std::...

endl;
658 storage[13] = angle*(3.141592654/180);
659 break;
660 case 15 :
661 std::cout << "Storing value for RIGHT_SHOULDER_ROLL: " << angle << " degrees" << std::...

endl;
662 storage[14] = angle*(3.141592654/180);
663 break;
664 case 16 :
665 std::cout << "Storing value for RIGHT_SHOULDER_YAW: " << angle << " degrees" << std::...

endl;
666 storage[15] = angle*(3.141592654/180);
667 break;
668 case 17 :
669 std::cout << "Storing value for RIGHT_ELBOW_PITCH: " << angle << " degrees" << std::...

endl;
670 storage[16] = angle*(3.141592654/180);
671 break;
672 case 18 :
673 std::cout << "Storing value for RIGHT_ELBOW_YAW: " << angle << " degrees" << std::endl;
674 storage[17] = angle*(3.141592654/180);
675 break;
676 case 19 :
677 std::cout << "Storing value for RIGHT_WRIST_PITCH: " << angle << " degrees" << std::...

endl;

67

678 storage[18] = angle*(3.141592654/180);
679 break;
680 case 20 :
681 std::cout << "Storing value for RIGHT_WRIST_ROLL: " << angle << " degrees" << std::endl...

;
682 storage[19] = angle*(3.141592654/180);
683 break;
684 case 21 :
685 std::cout << "Storing value for NECK_PITCH: " << angle << " degrees" << std::endl;
686 storage[20] = angle*(3.141592654/180);
687 break;
688 default :
689 std::cout << "Invalid input" << std::endl;
690 }
691 }
692

693 void store_all() //This function stores every joint value intended to be executed
694 {
695 double angle;
696

697 std::cout << "Desired angle in degrees for HIP_YAW (-60 to 60) [+Enter]: " << std::endl;
698 std::cin >> angle;
699 if (angle >= -60 && angle <= 60)
700 {std::cout << "Storing value for HIP_YAW: " << angle << " degrees" << std::endl;
701 storage[0] = angle*(3.141592654/180);}
702 else
703 {std::cout << "Invalid input for HIP_YAW" << std::endl;}
704 std::cout << "Desired angle in degrees for HIP_ROLL (-30 to 30) [+Enter]: " << std::endl;
705 std::cin >> angle;
706 if (angle >= -30 && angle <= 30)
707 {std::cout << "Storing value for HIP_ROLL: " << angle << " degrees" << std::endl;
708 storage[1] = angle*(3.141592654/180);}
709 else
710 {std::cout << "Invalid input for HIP_ROLL" << std::endl;}
711 std::cout << "Desired angle in degrees for HIP_PITCH (-89 to 10) [+Enter]: " << std::endl;
712 std::cin >> angle;
713 if (angle >= -89 && angle <= 10)
714 {std::cout << "Storing value for HIP_PITCH: " << angle << " degrees" << std::endl;
715 storage[2] = angle*(3.141592654/180);}
716 else
717 {std::cout << "Invalid input for HIP_PITCH" << std::endl;}
718 std::cout << "Desired angle in degrees for KNEE_PITCH (0 to 147) [+Enter]: " << std::endl;
719 std::cin >> angle;
720 if (angle >= 0 && angle <= 147)
721 {std::cout << "Storing value for KNEE_PITCH: " << angle << " degrees" << std::endl;
722 storage[3] = angle*(3.141592654/180);}
723 else
724 {std::cout << "Invalid input for KNEE_PITCH" << std::endl;}
725 std::cout << "Desired angle in degrees for ANKLE_ROLL (-30 to 30) [+Enter]: " << std::endl;
726 std::cin >> angle;
727 if (angle >= -30 && angle <= 30)
728 {std::cout << "Storing value for ANKLE_ROLL " << angle << " degrees" << std::endl;
729 storage[4] = angle*(3.141592654/180);}
730 else
731 {std::cout << "Invalid input for ANKLE_ROLL" << std::endl;}
732 std::cout << "Desired angle in degrees for ANKLE_PITCH (-89 to 10) [+Enter]: " << std::endl...

;
733 std::cin >> angle;
734 if (angle >= -89 && angle <= 10)
735 {std::cout << "Storing value for ANKLE_PITCH: " << angle << " degrees" << std::endl;
736 storage[5] = angle*(3.141592654/180);}
737 else
738 {std::cout << "Invalid input for ANKLE_PITCH" << std::endl;}
739 std::cout << "Desired angle in degrees for LEFT_SHOULDER_PITCH (-138 to 56) [+Enter]: " << ...

std::endl;
740 std::cin >> angle;
741 if (angle >= -138 && angle <= 56)

68

742 {std::cout << "Storing value for LEFT_SHOULDER_PITCH: " << angle << " degrees" << std::...
endl;

743 storage[6] = angle*(3.141592654/180);}
744 else
745 {std::cout << "Invalid input for LEFT_SHOULDER_PITCH" << std::endl;}
746 std::cout << "Desired angle in degrees for LEFT_SHOULDER_ROLL (-5 to 119) [+Enter]: " << ...

std::endl;
747 std::cin >> angle;
748 if (angle >= -5 && angle <= 119)
749 {std::cout << "Storing value for LEFT_SHOULDER_ROLL: " << angle << " degrees" << std::...

endl;
750 storage[7] = angle*(3.141592654/180);}
751 else
752 {std::cout << "Invalid input for LEFT_SHOULDER_ROLL" << std::endl;}
753 std::cout << "Desired angle in degrees for LEFT_SHOULDER_YAW (-83 to 31) [+Enter]: " << std...

::endl;
754 std::cin >> angle;
755 if (angle >= -83 && angle <= 31)
756 {std::cout << "Storing value for LEFT_SHOULDER_YAW: " << angle << " degrees" << std::...

endl;
757 storage[8] = angle*(3.141592654/180);}
758 else
759 {std::cout << "Invalid input for LEFT_SHOULDER_YAW" << std::endl;}
760 std::cout << "Desired angle in degrees for LEFT_ELBOW_PITCH (-124 to 0) [+Enter]: " << std...

::endl;
761 std::cin >> angle;
762 if (angle >= -124 && angle <= 0)
763 {std::cout << "Storing value for LEFT_ELBOW_PITCH: " << angle << " degrees" << std::endl...

;
764 storage[9] = angle*(3.141592654/180);}
765 else
766 {std::cout << "Invalid input for LEFT_ELBOW_PITCH" << std::endl;}
767 std::cout << "Desired angle in degrees for LEFT_ELBOW_YAW (-90 to 45) [+Enter]: " << std::...

endl;
768 std::cin >> angle;
769 if (angle >= -90 && angle <= 45)
770 {std::cout << "Storing value for LEFT_ELBOW_YAW: " << angle << " degrees" << std::endl;
771 storage[10] = angle*(3.141592654/180);}
772 else
773 {std::cout << "Invalid input for LEFT_ELBOW_YAW" << std::endl;}
774 std::cout << "Desired angle in degrees for LEFT_WRIST_PITCH (-44 to 44) [+Enter]: " << std...

::endl;
775 std::cin >> angle;
776 if (angle >= -44 && angle <= 44)
777 {std::cout << "Storing value for LEFT_WRIST_PITCH: " << angle << " degrees" << std::endl...

;
778 storage[11] = angle*(3.141592654/180);}
779 else
780 {std::cout << "Invalid input for LEFT_WRIST_PITCH" << std::endl;}
781 std::cout << "Desired angle in degrees for LEFT_WRIST_ROLL (-90 to 30) [+Enter]: " << std::...

endl;
782 std::cin >> angle;
783 if (angle >= -90 && angle <= 30)
784 {std::cout << "Storing value for LEFT_WRIST_ROLL: " << angle << " degrees" << std::endl;
785 storage[12] = angle*(3.141592654/180);}
786 else
787 {std::cout << "Invalid input for LEFT_WRIST_ROLL" << std::endl;}
788 std::cout << "Desired angle in degrees for RIGHT_SHOULDER_PITCH (-138 to 56) [+Enter]: " <<...

std::endl;
789 std::cin >> angle;
790 if (angle >= -138 && angle <= 56)
791 {std::cout << "Storing value for RIGHT_SHOULDER_PITCH: " << angle << " degrees" << std::...

endl;
792 storage[13] = angle*(3.141592654/180);}
793 else
794 {std::cout << "Invalid input for RIGHT_SHOULDER_PITCH" << std::endl;}
795 std::cout << "Desired angle in degrees for RIGHT_SHOULDER_ROLL (-119 to 5) [+Enter]: " << ...

69

std::endl;
796 std::cin >> angle;
797 if (angle >= -119 && angle <= 5)
798 {std::cout << "Storing value for RIGHT_SHOULDER_ROLL: " << angle << " degrees" << std::...

endl;
799 storage[14] = angle*(3.141592654/180);}
800 else
801 {std::cout << "Invalid input for RIGHT_SHOULDER_ROLL" << std::endl;}
802 std::cout << "Desired angle in degrees for RIGHT_SHOULDER_YAW (-31 to 83) [+Enter]: " << ...

std::endl;
803 std::cin >> angle;
804 if (angle >= -31 && angle <= 83)
805 {std::cout << "Storing value for RIGHT_SHOULDER_YAW: " << angle << " degrees" << std::...

endl;
806 storage[15] = angle*(3.141592654/180);}
807 else
808 {std::cout << "Invalid input for RIGHT_SHOULDER_YAW" << std::endl;}
809 std::cout << "Desired angle in degrees for RIGHT_ELBOW_PITCH (-124 to 0) [+Enter]: " << std...

::endl;
810 std::cin >> angle;
811 if (angle >= -124 && angle <= 0)
812 {std::cout << "Storing value for RIGHT_ELBOW_PITCH: " << angle << " degrees" << std::...

endl;
813 storage[16] = angle*(3.141592654/180);}
814 else
815 {std::cout << "Invalid input for RIGHT_ELBOW_PITCH" << std::endl;}
816 std::cout << "Desired angle in degrees for RIGHT_ELBOW_YAW (-44 to 90) [+Enter]: " << std::...

endl;
817 std::cin >> angle;
818 if (angle >= -44 && angle <= 90)
819 {std::cout << "Storing value for RIGHT_ELBOW_YAW: " << angle << " degrees" << std::endl;
820 storage[17] = angle*(3.141592654/180);}
821 else
822 {std::cout << "Invalid input for RIGHT_ELBOW_YAW" << std::endl;}
823 std::cout << "Desired angle in degrees for RIGHT_WRIST_PITCH (-44 to 44) [+Enter]: " << std...

::endl;
824 std::cin >> angle;
825 if (angle >= -44 && angle <= 44)
826 {std::cout << "Storing value for RIGHT_WRIST_PITCH: " << angle << " degrees" << std::...

endl;
827 storage[18] = angle*(3.141592654/180);}
828 else
829 {std::cout << "Invalid input for RIGHT_WRIST_PITCH" << std::endl;}
830 std::cout << "Desired angle in degrees for RIGHT_WRIST_ROLL (-30 to 90) [+Enter]: " << std...

::endl;
831 std::cin >> angle;
832 if (angle >= -30 && angle <= 90)
833 {std::cout << "Storing value for RIGHT_WRIST_ROLL: " << angle << " degrees" << std::endl...

;
834 storage[19] = angle*(3.141592654/180);}
835 else
836 {std::cout << "Invalid input for RIGHT_WRIST_ROLL" << std::endl;}
837 std::cout << "Desired angle in degrees for NECK_PITCH (-19 to 28) [+Enter]: " << std::endl;
838 std::cin >> angle;
839 if (angle >= -19 && angle <= 28)
840 {std::cout << "Storing value for NECK_PITCH: " << angle << " degrees" << std::endl;
841 storage[20] = angle*(3.141592654/180);}
842 else
843 {std::cout << "Invalid input for NECK_PITCH" << std::endl;}
844 }
845

846 void store(int sel) //This function gathers all storing of joint manipulation values into one ...
menu

847 {
848 double joint_angle;
849 int joint_number;
850 bool done = false;

70

851

852 do {
853 switch(sel)
854 {
855 case 1 :
856 menu_space();
857 store_all();
858 std::cin.get(); //This makes the program wait for input from user
859 wait_for_enter();
860 done = true;
861 break;
862 case 2 :
863 menu_space();
864 std::cout << "Desired joint number (1-21) [+Enter]: " << std::endl;
865 std::cout << "1: HIP_YAW (Range: (-60 to 60))" << std::endl;
866 std::cout << "2: HIP_ROLL (Range: (-30 to 30))" << std::endl;
867 std::cout << "3: HIP_PITCH (Range: (-89 to 10))" << std::endl;
868 std::cout << "4: KNEE_PITCH (Range: (0 to 147))" << std::endl;
869 std::cout << "5: ANKLE_ROLL (Range: (-30 to 30))" << std::endl;
870 std::cout << "6: ANKLE_PITCH (Range: (-89 to 10))" << std::endl;
871 std::cout << "7: LEFT_SHOULDER_PITCH (Range: (-138 to 56))" << std::endl;
872 std::cout << "8: LEFT_SHOULDER_ROLL (Range: (-5 to 119))" << std::endl;
873 std::cout << "9: LEFT_SHOULDER_YAW (Range: (-83 to 31))" << std::endl;
874 std::cout << "10: LEFT_ELBOW_PITCH (Range: (-124 to 0))" << std::endl;
875 std::cout << "11: LEFT_ELBOW_YAW (Range: (-90 to 45))" << std::endl;
876 std::cout << "12: LEFT_WRIST_PITCH (Range: (-44 to 44))" << std::endl;
877 std::cout << "13: LEFT_WRIST_ROLL (Range: (-90 to 30))" << std::endl;
878 std::cout << "14: RIGHT_SHOULDER_PITCH (Range: (-138 to 56))" << std::endl;
879 std::cout << "15: RIGHT_SHOULDER_ROLL (Range: (-119 to 5))" << std::endl;
880 std::cout << "16: RIGHT_SHOULDER_YAW (Range: (-31 to 83))" << std::endl;
881 std::cout << "17: RIGHT_ELBOW_PITCH (Range: (-124 to 0))" << std::endl;
882 std::cout << "18: RIGHT_ELBOW_YAW (Range: (-44 to 90))" << std::endl;
883 std::cout << "19: RIGHT_WRIST_PITCH (Range: (-44 to 44))" << std::endl;
884 std::cout << "20: RIGHT_WRIST_ROLL (Range: (-30 to 90))" << std::endl;
885 std::cout << "21: NECK_PITCH (Range: (-19 to 28))" << std::endl;
886 std::cin >> joint_number;
887 if (joint_number > 0 && joint_number < 22)
888 {std::cout << "Desired angle in degrees [+Enter] : " << std::endl;
889 std::cin >> joint_angle;
890 store_single(joint_number, joint_angle);
891 std::cin.get(); //This makes the program wait for input from user
892 wait_for_enter();
893 done = true;}
894 else
895 {std::cout << "Invalid input" << std::endl;}
896

897 break;
898 case 3 ://Setting the joint positions to a default value (elbows in, hands out)
899 std::cout << "Setting joint angles to default pose" << std::endl;
900 storage[0] = 0.0;
901 storage[1] = 0.0;
902 storage[2] = -0.1;
903 storage[3] = 0.15;
904 storage[4] = 0.0;
905 storage[5] = -0.05;
906 storage[6] = 0.3;
907 storage[7] = 0.0;
908 storage[8] = 0.0;
909 storage[9] = -1.3;
910 storage[10] = 0.0;
911 storage[11] = 0.2;
912 storage[12] = 0.0;
913 storage[13] = 0.3;
914 storage[14] = 0.0;
915 storage[15] = 0.0;
916 storage[16] = -1.3;
917 storage[17] = 0.0;

71

918 storage[18] = 0.2;
919 storage[19] = 0.0;
920 storage[20] = 0.0;
921 done = true;
922 break;
923 case 4 : //Setting the arm ready for grasp and everything else to zero
924 std::cout << "Setting joint angles to position for grasp" << std::endl;
925 storage[0] = 0.0;
926 storage[1] = 0.0;
927 storage[2] = 0.0;
928 storage[3] = 0.0;
929 storage[4] = 0.0;
930 storage[5] = 0.0;
931 storage[6] = 0.0;
932 storage[7] = 0.0;
933 storage[8] = 0.0;
934 storage[9] = 0.0;
935 storage[10] = 0.0;
936 storage[11] = 0.0;
937 storage[12] = 0.0;
938 storage[13] = 0.3;
939 storage[14] = 0.0;
940 storage[15] = 0.0;
941 storage[16] = -1.3;
942 storage[17] = 1.57;
943 storage[18] = 0.0;
944 storage[19] = 0.0;
945 storage[20] = 0.0;
946 break;
947 case 5 :
948 done = true;
949 break;
950 default :
951 std::cout << "Invalid input" << std::endl;
952 }
953 } while(!done);
954 }
955

956

957

958 void store_grasp() //The function receives grasp manipulation input from user and stores them
959 {
960 bool done = false;
961 int choice;
962 int choice_2;
963 do
964 {
965 menu_space();
966 std::cout <<"\n 1 [+Enter] to select hand(s) (default: right)\n 2 [+Enter] Set closure ...

ratio (default: 0.75)\n 3 [+Enter] to set the closure speed (optional)\n 4 [+Enter] to ...
set the closure force (optional)\n 5 [+Enter] to go back\n" << std::endl;

967 std::cin >> choice;
968 switch(choice)
969 { case 1:
970 std::cout << "1. Right hand\n" << "2. Left hand\n" << "3. Both hands\n" << std::endl;
971 std::cin >> choice_2;
972 if (choice_2 == 1)
973 {
974 right_hand = true;
975 left_hand = false;
976 both_hands = false;
977 std::cout << "Right hand was selected" << std::endl;
978 }
979 if (choice_2 == 2)
980 {
981 right_hand = false;
982 left_hand = true;

72

983 both_hands = false;
984 std::cout << "Left hand was selected" << std::endl;
985 }
986 if (choice_2 == 3)
987 {
988 right_hand = false;
989 left_hand = false;
990 both_hands = true;
991 std::cout << "Both hands were selected" << std::endl;
992 }
993 break;
994 case 2:
995 std::cout << "Set the closure ratio (Open: 0.0, Fully closed: 1.0) \n" << std::endl;
996 std::cin >> closure_ratio;
997 break;
998

999 case 3:
1000 std::cout << "Set the closure velocity (Zero: 0.0, Max: 1.0) \n" << std::endl;
1001 std::cin >> closure_velocity;
1002 break;
1003

1004 case 4:
1005 std::cout << "Set the closure force (Zero: 0.0, Max: 1.0) \n" << std::endl;
1006 std::cin >> closure_force;
1007 break;
1008

1009 case 5:
1010 done = true;
1011 break;
1012

1013 default:
1014 break;
1015 }
1016 }
1017 while(!done);
1018 }
1019

1020

1021 void main_menu_header()
1022 {
1023 std::cout << "***" << std::endl;
1024 std::cout << "* Menu for interacting with the EVEr3 Robot *" << std::endl;
1025 std::cout << "***" << std::endl;
1026 }
1027

1028

1029 void print_grasp() //The function prints the grasp parameters
1030 {
1031 double checkvalue;
1032 menu_space();
1033 if(right_hand == true)
1034 {
1035 std::cout << "The right hand is selected\n" << std::endl;
1036 }
1037 if(left_hand == true)
1038 {
1039 std::cout << "The left hand is selected\n" << std::endl;
1040 }
1041 if(both_hands== true)
1042 {
1043 std::cout << "Both hands are selected\n" << std::endl;
1044 }
1045 checkvalue = closure_ratio;
1046 std::cout << "The closure ratio is set to " << checkvalue << "\n" << std::endl;
1047 checkvalue = closure_velocity;
1048 std::cout << "The closure velocity is set to " << checkvalue << "\n" << std::endl;
1049 checkvalue = closure_force;

73

1050 std::cout << "The closure force is set to " << checkvalue << "\n" << std::endl;
1051 std::cin.get(); //This makes the program wait for input from user
1052 wait_for_enter();
1053 }
1054

1055

1056 int main (int argc, char * argv[])
1057 {
1058 int sel,sel1,sel2,sel3,sel4; //Declaring all variables used in main()
1059 bool exit = false;
1060 bool done = false;
1061 bool done1 = false;
1062 bool done2 = false;
1063 bool done3 = false;
1064

1065 do {
1066 menu_space();
1067 main_menu_header();
1068 std::cout << "\n 1 [+Enter] for joint manipulation\n 2 [+Enter] for grasp manipulation\n 3 ...

[+Enter] to remove stiffness in the joints of the right arm\n 4 [+Enter] to exit the ...
program\n" << std::endl;

1069 std::cin >> sel;
1070 switch(sel)
1071 {
1072 case 1 :
1073 do {
1074 menu_space();
1075 std::cout << "This is a program for joint manipulation of the EVE Robot\nDo you want to ...

store, check or execute values?" << std::endl;
1076 std::cout << "\n 1 [+Enter] to store joint angles\n 2 [+Enter] to check stored joint ...

angles\n 3 [+Enter] to execute stored joint angles\n 4 [+Enter] to go back to the ...
main menu\n ";

1077 std::cin >> sel1;
1078 switch(sel1)
1079 {
1080 case 1 :
1081 menu_space();
1082 std::cout << "Do you want to store values for all 21 joints or select one in ...

specific?" << std::endl;
1083 std::cout << "\n 1 [+Enter] to store values for all joints\n 2 [+Enter] to store a ...

value for one joint\n 3 [+Enter] to set all joint angles to the default pose\n 4...
[+Enter] to position the arm for grasp k\n 5 [+Enter] to go back\n ";

1084 std::cin >> sel1;
1085 store(sel1);
1086 break;
1087 case 2 :
1088 menu_space();
1089 std::cout << "Do you want to print stored values for all 21 joints or select one in ...

specific?" << std::endl;
1090 std::cout << "\n 1 [+Enter] to print values for all joints\n 2 [+Enter] to print the...

value for one joint\n 3 [+Enter] to go back\n ";
1091 std::cin >> sel1;
1092 check(sel1);
1093 break;
1094 case 3 :
1095 menu_space();
1096 check_all();
1097 std::cout << "\n 1 [+Enter] to execute these values\n 2 [+Enter] to go back\n";
1098 std::cin >> sel2;
1099 do {
1100 switch(sel2)
1101 {
1102 case 1 :
1103 //The 'Joint_menu_publisher' node is executed in these steps. 'rclcpp::init' ...

initializes ROS 2, and 'rclcpp::spin' starts processing data from the ...
node

1104 rclcpp::init(argc, argv);

74

1105 rclcpp::spin(std::make_shared<JointManipulator>());
1106 rclcpp::shutdown();
1107 std::cin.get(); //This makes the program wait for input from user
1108 wait_for_enter();
1109 done1 = true;
1110 break;
1111 case 2 :
1112 done1 = true;
1113 break;
1114 default :
1115 std::cout << "Invalid input" << std::endl;
1116 }
1117 } while(!done1);
1118 break;
1119 case 4 :
1120 done = true;
1121 break;
1122 default :
1123 std::cout << "Invalid input" << std::endl;
1124 }
1125

1126 } while(!done);
1127 break;
1128 case 2:
1129 do
1130 {
1131 menu_space();
1132 std::cout << "This is a menu for grasp manipulation of the EVE Robot\nDo you want to...

store, check or execute values?" << std::endl;
1133 std::cout << "\n 1 [+Enter] to execute values\n 2 [+Enter] to print stored values\n ...

3 [+Enter] store values\n 4 [+Enter] to go back to the main menu\n ";
1134 std::cin >> sel3;
1135

1136 switch (sel3)
1137 {
1138 case 1:
1139 rclcpp::init(argc, argv); //The 'Grasp_publisher' node is executed in these steps. '...

rclcpp::init' initializes ROS 2, and 'rclcpp::spin' starts processing data from ...
the node

1140 rclcpp::spin(std::make_shared<Grasp_publisher>());
1141 rclcpp::shutdown();
1142 break;
1143

1144 case 2:
1145 print_grasp();
1146 break;
1147

1148 case 3:
1149 store_grasp();
1150 break;
1151

1152 case 4:
1153 done2 = true;
1154 break;
1155

1156 default:
1157 std::cout << "Invalid input" << std::endl;
1158

1159 }
1160 }while(!done2);
1161 break;
1162

1163 case 3:
1164 do
1165 {
1166 menu_space();
1167 std::cout << "This is a menu for altering the stiffness in the right arm pitch of ...

75

EVE\nDo you want to remove or add stiffness, or set the arm downward?" << std::...
endl;

1168 std::cout << "\n 1 [+Enter] to remove the stiffness on the pitch of right arm\n 2 [+...
Enter] to add stiffness on the pitch of right arm\n 3 [+Enter] to execute zero ...
angle on all joints to set the arm downward\n 4 [+Enter] to go back to the main ...
menu\n ";

1169 std::cin >> sel4;
1170

1171 switch (sel4)
1172 {
1173 case 1:
1174 relax = true;
1175 firm = false;
1176 downward = false;
1177 rclcpp::init(argc, argv); //'rclcpp::init' initializes ROS 2, and 'rclcpp::spin' ...

starts processing data from the Relaxing_publisher node
1178 rclcpp::spin(std::make_shared<Relaxing_publisher>());
1179 rclcpp::shutdown();
1180 break;
1181

1182 case 2:
1183 relax = false;
1184 firm = true;
1185 downward = false;
1186 rclcpp::init(argc, argv);
1187 rclcpp::spin(std::make_shared<Relaxing_publisher>());
1188 rclcpp::shutdown();
1189 break;
1190

1191 case 3:
1192 relax = false;
1193 firm = false;
1194 downward = true;
1195 rclcpp::init(argc, argv);
1196 rclcpp::spin(std::make_shared<Relaxing_publisher>());
1197 rclcpp::shutdown();
1198 break;
1199

1200 case 4:
1201 done3 = true;
1202 break;
1203

1204 default:
1205 std::cout << "Invalid input" << std::endl;
1206

1207 }
1208 }while(!done3);
1209 break;
1210

1211 case 4 :
1212 exit = true;
1213 break;
1214

1215 default :
1216 std::cout << "Invalid input" << std::endl;
1217 }
1218

1219 } while(!exit);
1220 return 0;
1221 }

appendices/eve_menu/eve.tex

76

A.4 Joint Read Menu Package

A.4.1 README.md

1 ##Test menu for storing joint values for Rehabilitation Project at UiA
2

3 * Author: Lars Bleie Andersen <larsa09@uia.no>
4

5 ## Instructions
6 - Open the joint_read.cpp file and edit the file paths to where the external storage file ...

should be created
7

8 - Copy the joint_read_menu folder into eve_ws/src
9 - Navigate back to eve_ws

10 - Run colcon build --packages-select joint_read_menu
11 - Run the program with:
12 ros2 run joint_read_menu joint_read

appendices/joint_read_menu/README.tex

A.4.2 package.xml

1 <?xml version="1.0"?>
2 <?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www....

w3.org/2001/XMLSchema"?>
3 <package format="3">
4 <name>joint_read_menu</name>
5 <version>0.0.0</version>
6 <description>Test menu for reading joint values of EVE</description>
7 <maintainer email="larsa09@uia.no"> Lars Bleie Andersen </maintainer>
8 <license>UiA</license>
9

10 <buildtool_depend>ament_cmake</buildtool_depend>
11

12 <depend>rclcpp</depend>
13 <depend>std_msgs</depend>
14 <depend>action_msgs</depend>
15 <depend>halodi_msgs</depend>
16

17 <test_depend>ament_lint_auto</test_depend>
18 <test_depend>ament_lint_common</test_depend>
19

20 <export>
21 <build_type>ament_cmake</build_type>
22 </export>
23 </package>

appendices/joint_read_menu/package.tex

A.4.3 CMakeLists.txt

1 cmake_minimum_required(VERSION 3.5)
2 project(joint_read_menu)
3

4 # Default to C99
5 if(NOT CMAKE_C_STANDARD)
6 set(CMAKE_C_STANDARD 99)
7 endif()
8

9 # Default to C++14
10 if(NOT CMAKE_CXX_STANDARD)
11 set(CMAKE_CXX_STANDARD 14)
12 endif()
13

14 if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")

77

15 add_compile_options(-Wall -Wextra -Wpedantic)
16 endif()
17

18 # find dependencies
19 find_package(ament_cmake REQUIRED)
20 find_package(rclcpp REQUIRED)
21 find_package(std_msgs REQUIRED)
22 find_package(action_msgs REQUIRED)
23 find_package(halodi_msgs REQUIRED)
24 find_package(tf2 REQUIRED)
25 find_package(tf2_geometry_msgs REQUIRED)
26

27 #add executable command
28 add_executable(joint_read src/joint_read.cpp)
29 target_include_directories(joint_read PUBLIC
30 $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
31 $<INSTALL_INTERFACE:include>)
32 ament_target_dependencies(joint_read rclcpp halodi_msgs action_msgs)
33

34 install(TARGETS joint_read
35 DESTINATION lib/${PROJECT_NAME})
36

37

38

39 if(BUILD_TESTING)
40 find_package(ament_lint_auto REQUIRED)
41 ament_lint_auto_find_test_dependencies()
42 endif()
43

44 ament_package()

appendices/joint_read_menu/CMakeLists.tex

A.4.4 joint_read.cpp

1 #include <iostream>
2 #include <memory>
3 #include <vector>
4 #include <fstream>
5 #include <iterator>
6 #include <string>
7 #include <math.h>
8 #include <algorithm>
9 #include <boost/uuid/uuid.hpp>

10 #include <boost/uuid/uuid_generators.hpp>
11 #include "rclcpp/rclcpp.hpp"
12 #include "rclcpp/qos.hpp"
13 #include "action_msgs/msg/goal_status.hpp"
14 #include "unique_identifier_msgs/msg/uuid.hpp"
15 #include "halodi_msgs/msg/whole_body_trajectory.hpp"
16 #include "halodi_msgs/msg/whole_body_trajectory_point.hpp"
17 #include "halodi_msgs/msg/joint_space_command.hpp"
18 #include "halodi_msgs/msg/joint_name.hpp"
19 #include "halodi_msgs/msg/hand_command.hpp"
20 #include "halodi_msgs/msg/whole_body_state.hpp"
21

22 using namespace halodi_msgs::msg; //Declaring the 'msg' command from the 'halodi_msgs'
23 using std::placeholders::_1; //Declaring the placeholder '_1' which directs the position of a ...

value in a function to the first parameter
24

25 double storage[20]; //Declaring the array for 21 joint values, stored as radians
26

27 std::vector<double> Joint13_pos; //declaring vectors for position and velocity data
28 std::vector<double> Joint13_vel;
29 std::vector<double> Joint16_pos;
30 std::vector<double> Joint16_vel;
31 std::vector<double> Joint18_pos;

78

32 std::vector<double> Joint18_vel;
33

34 /**EDIT THESE PATHS TO STORE FILES**/
35 const char *path13p = "/home/lba/eve_ws/src/joint_read_menu/storage/...

RIGHT_SHOULDER_PITCH_position.txt"; //Declaring file paths to store position and velocity ...
data

36 const char *path13v = "/home/lba/eve_ws/src/joint_read_menu/storage/...
RIGHT_SHOULDER_PITCH_velocity.txt";

37 const char *path16p = "/home/lba/eve_ws/src/joint_read_menu/storage/RIGHT_ELBOW_PITCH_position....
txt";

38 const char *path16v = "/home/lba/eve_ws/src/joint_read_menu/storage/RIGHT_ELBOW_PITCH_velocity....
txt";

39 const char *path18p = "/home/lba/eve_ws/src/joint_read_menu/storage/RIGHT_WRIST_PITCH_position....
txt";

40 const char *path18v = "/home/lba/eve_ws/src/joint_read_menu/storage/RIGHT_WRIST_PITCH_velocity....
txt";

41

42 void remove(std::vector<double> &v)//Function to remove duplicate numbers
43 {
44 auto end = v.end();
45 for (auto it = v.begin(); it != end; ++it)
46 {
47 end = std::remove(it + 1, end, *it);
48 }
49 v.erase(end, v.end());
50 }
51

52

53 class JointSubscriber : public rclcpp::Node //Creating the node class 'JointSubscriber' by ...
inheriting from 'rclcpp::Node'

54 {
55 public:
56

57 JointSubscriber()
58 : Node("joint_subscriber") //The public constructor names the node 'joint_subscriber'
59 {
60 rclcpp::QoS qos(1);
61 qos.best_effort();//Setting the quality of service to best effort in order to receive the ...

WholeBodyState messages (see Halodi API in the repository for QoS settings for the ...
topics)

62

63 publisher_ = this->create_publisher<WholeBodyTrajectory>("/eve/whole_body_trajectory", 10);...
//The publisher is initialized with the 'WholeBodyTrajectory' message type, the topic ...

name '/eve/whole_body_trajectory', and the required queue size to limit messages in the...
event of a backup.

64 //The subscriber is initialized with the 'action_msgs::msg::GoalStatus' message type. 'std...
::bind' is used to register the '&Joint_menu_publisher::status_callback' reference as a...
callback. It provides feedback of commands send to /eve/whole_body_trajectory

65 subscription_ = this->create_subscription<action_msgs::msg::GoalStatus>("/eve/...
whole_body_trajectory_status", 10, std::bind(&JointSubscriber::status_callback, this, ...
_1));

66 subscription2_ = this->create_subscription<halodi_msgs::msg::WholeBodyState>("/eve/...
whole_body_state", qos, std::bind(&JointSubscriber::joint_callback, this, _1));

67 uuid_msg_ = create_random_uuid(); //A UUID (universally unique identifier) is created ...
though the create_random_uuid function

68 publish_trajectory(uuid_msg_); //The publish_trajectory function is run with the UUID as ...
the trajectory_id

69 }
70

71 void joint_callback(halodi_msgs::msg::WholeBodyState::SharedPtr msg) //The function that ...
stores the joint values via callback

72 {
73 Joint13_pos.shrink_to_fit();//Remove possible excess numbers in vector
74 Joint13_vel.shrink_to_fit();
75 Joint16_pos.shrink_to_fit();
76 Joint16_vel.shrink_to_fit();
77 Joint18_pos.shrink_to_fit();

79

78 Joint18_vel.shrink_to_fit();
79 //The arrow operator (->) is used to access the member of the data structure pointed to by ...

a pointer.
80 double J13p = roundf(msg->joint_states[13].position * 1000) / 1000; //round to 3 decimals
81 double J13v = roundf(msg->joint_states[13].velocity * 1000) / 1000; //round to 3 decimals
82 double J16p = roundf(msg->joint_states[16].position * 1000) / 1000; //round to 3 decimals
83 double J16v = roundf(msg->joint_states[16].velocity * 1000) / 1000; //round to 3 decimals
84 double J18p = roundf(msg->joint_states[18].position * 1000) / 1000; //round to 3 decimals
85 double J18v = roundf(msg->joint_states[18].velocity * 1000) / 1000; //round to 3 decimals
86 //Storing the values into vectors. push_back means that it adds new elements at the end of ...

the vector
87 Joint13_pos.push_back(J13p);
88 Joint13_vel.push_back(J13v);
89 Joint16_pos.push_back(J16p);
90 Joint16_vel.push_back(J16v);
91 Joint18_pos.push_back(J18p);
92 Joint18_vel.push_back(J18v);
93 //Removing duplicate values
94 remove(Joint13_pos);
95 remove(Joint13_vel);
96 remove(Joint16_pos);
97 remove(Joint16_vel);
98 remove(Joint18_pos);
99 remove(Joint18_vel);

100

101 }
102

103 void status_callback(action_msgs::msg::GoalStatus::SharedPtr msg)
104 {
105 switch(msg->status){ //The arrow operator (->) is used to access the member of the 'status'...

data structure pointed to by a pointer
106 case 0:
107 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_UNKNOWN"); //The 'this' pointer is ...

here used to retrieve the 'get_logger()' information
108 break;
109 case 1:
110 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_ACCEPTED");
111 break;
112 case 2:
113 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_EXECUTING");
114 break;
115 case 3:
116 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_CANCELING");
117 break;
118 case 4:
119 //If the uuid of the received GoalStatus STATUS_SUCCEEDED Msg is the same as the uuid of...

the command that was sent
120 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_SUCCEEDED");
121 RCLCPP_INFO(this->get_logger(), "Shutting down...");
122 rclcpp::shutdown();
123 break;
124 case 5:
125 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_CANCELED");
126 break;
127 case 6:
128 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_ABORTED");
129 break;
130 default:
131 break;}
132 }
133 private:
134 unique_identifier_msgs::msg::UUID create_random_uuid() //The function creates a random UUID ...

to track msg
135 {
136 boost::uuids::random_generator gen; boost::uuids::uuid u = gen();
137 unique_identifier_msgs::msg::UUID uuid_msg;
138 std::array<uint8_t, 16> uuid; std::copy(std::begin(u.data), std::end(u.data), uuid.begin())...

80

;
139 uuid_msg.uuid = uuid;
140 return uuid_msg;
141 }
142

143 void publish_trajectory(unique_identifier_msgs::msg::UUID uuid_msg) //The function sets all ...
required parameters for the WholeBodyTrajectory structure and send them to 'publisher_'

144 {
145 // begin construction of the publsihed msg
146 WholeBodyTrajectory trajectory_msg;
147 trajectory_msg.append_trajectory = false; //If set to false, the existing trajectory is ...

cancelled and this trajectory is immediatly executed.
148 //MINIMUM_JERK_CONSTRAINED mode is recommended to constrain joint velocities and ...

accelerations between each waypoint (make the movement smoother)
149 //It specifies how the trajectory is interpolated from the previous objective
150 trajectory_msg.interpolation_mode.value = TrajectoryInterpolation::MINIMUM_JERK_CONSTRAINED...

;
151 trajectory_msg.trajectory_id = uuid_msg;
152 // Ading waypoint targets. The desired times (in seconds) are provided in terms of
153 // offset from time at which this published message is received
154 trajectory_msg.trajectory_points.push_back(targetall_(5));
155

156 RCLCPP_INFO(this->get_logger(), "Sending trajectory, listening for ...
whole_body_trajectory_status...");

157 publisher_->publish(trajectory_msg); //The trajectory message is published
158 }
159

160 //This generates the individual single joint command. It takes in the required parameters and...
returns the message used for the taskspace trajectory point in the 'targetall_' function

161 JointSpaceCommand generate_joint_space_command(int32_t joint_id, double q_des, double qd_des ...
= 0.0, double qdd_des = 0.0)

162 {
163 JointSpaceCommand ret_msg;
164 JointName name;
165 name.joint_id = joint_id;
166 ret_msg.joint = name;
167 ret_msg.q_desired = q_des;
168 ret_msg.qd_desired = qd_des;
169 ret_msg.qdd_desired = qdd_des;
170 ret_msg.use_default_gains = true;
171 return ret_msg;
172 }
173

174 //Each target, in the form of a single WholeBodyTrajectoryPoint msg, consists of a ...
concatenation of desired joint configurations with no more than one desired value per ...
joint. The desired time at which we want to reach these joint targets is also specified.

175 //This function then takes in the execution time and assembles the name of the desired joint ...
along with the desired position, velocity, acceleration etc. through the '...
generate_joint_space_command' function

176 WholeBodyTrajectoryPoint targetall_(int32_t t)
177 {
178 WholeBodyTrajectoryPoint ret_msg;
179

180 builtin_interfaces::msg::Duration duration;
181 duration.sec = t; //Sets the execution time for the trajectory, relative to the start time.
182 ret_msg.time_from_start = duration;
183

184 //The 'push_back' pushes elements from the back of the generate_joint_space_command ...
contents

185 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
RIGHT_SHOULDER_PITCH, storage[13]));

186 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
RIGHT_ELBOW_PITCH, storage[16]));

187 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
RIGHT_WRIST_PITCH, storage[18]));

188

189 return ret_msg;

81

190 }
191

192 rclcpp::Publisher<WholeBodyTrajectory>::SharedPtr publisher_; //Declaration of the '...
publisher_' publisher

193 rclcpp::Subscription<action_msgs::msg::GoalStatus>::SharedPtr subscription_; //Declaration of...
the 'subscription_' subscriber

194 rclcpp::Subscription<halodi_msgs::msg::WholeBodyState>::SharedPtr subscription2_; //...
Declaration of the 'subscription_' subscriber

195 unique_identifier_msgs::msg::UUID uuid_msg_; //Declaration of the UUID generator
196 };
197

198 class JointIssuer : public rclcpp::Node //Creating the node class 'JointSubscriber' by ...
inheriting from 'rclcpp::Node'

199 {
200 public:
201

202 JointIssuer()
203 : Node("joint_issuer") //The public constructor names the node 'joint_subscriber'
204 {
205 publisher_ = this->create_publisher<WholeBodyTrajectory>("/eve/whole_body_trajectory", 10);...

//The publisher is initialized with the 'WholeBodyTrajectory' message type, the topic ...
name '/eve/whole_body_trajectory', and the required queue size to limit messages in the...
event of a backup.

206 //The subscriber is initialized with the 'action_msgs::msg::GoalStatus' message type. 'std...
::bind' is used to register the '&Joint_menu_publisher::status_callback' reference as a...
callback. It provides feedback of commands send to /eve/whole_body_trajectory

207 subscription_ = this->create_subscription<action_msgs::msg::GoalStatus>("/eve/...
whole_body_trajectory_status", 10, std::bind(&JointIssuer::status_callback, this, _1));

208 uuid_msg_ = create_random_uuid(); //A UUID (universally unique identifier) is created ...
though the create_random_uuid function

209 publish_trajectory(uuid_msg_); //The publish_trajectory function is run with the UUID as ...
the trajectory_id

210 }
211

212 private:
213 void status_callback(action_msgs::msg::GoalStatus::SharedPtr msg)
214 {
215 switch(msg->status){ //The arrow operator (->) is used to access the member of the 'status'...

data structure pointed to by a pointer
216 case 0:
217 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_UNKNOWN"); //The 'this' pointer is ...

here used to retrieve the 'get_logger()' information
218 break;
219 case 1:
220 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_ACCEPTED");
221 break;
222 case 2:
223 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_EXECUTING");
224 break;
225 case 3:
226 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_CANCELING");
227 break;
228 case 4:
229 //If the uuid of the received GoalStatus STATUS_SUCCEEDED Msg is the same as the uuid of...

the command that was sent
230 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_SUCCEEDED");
231 RCLCPP_INFO(this->get_logger(), "Shutting down...");
232 rclcpp::shutdown();
233 break;
234 case 5:
235 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_CANCELED");
236 break;
237 case 6:
238 RCLCPP_INFO(this->get_logger(), "GoalStatus: STATUS_ABORTED");
239 break;
240 default:
241 break;}

82

242 }
243

244 unique_identifier_msgs::msg::UUID create_random_uuid() //The function creates a random UUID ...
to track msg

245 {
246 boost::uuids::random_generator gen; boost::uuids::uuid u = gen();
247 unique_identifier_msgs::msg::UUID uuid_msg;
248 std::array<uint8_t, 16> uuid; std::copy(std::begin(u.data), std::end(u.data), uuid.begin())...

;
249 uuid_msg.uuid = uuid;
250 return uuid_msg;
251 }
252

253 void publish_trajectory(unique_identifier_msgs::msg::UUID uuid_msg) //The function sets all ...
required parameters for the WholeBodyTrajectory structure and send them to 'publisher_'

254 {
255 // begin construction of the publsihed msg
256 WholeBodyTrajectory trajectory_msg;
257 trajectory_msg.append_trajectory = false; //If set to false, the existing trajectory is ...

cancelled and this trajectory is immediatly executed.
258 //MINIMUM_JERK_CONSTRAINED mode is recommended to constrain joint velocities and ...

accelerations between each waypoint (make the movement smoother)
259 //It specifies how the trajectory is interpolated from the previous objective
260 trajectory_msg.interpolation_mode.value = TrajectoryInterpolation::MINIMUM_JERK_CONSTRAINED...

;
261 trajectory_msg.trajectory_id = uuid_msg;
262 // Ading waypoint targets. The desired times (in seconds) are provided in terms of
263 // offset from time at which this published message is received
264 trajectory_msg.trajectory_points.push_back(targetall_(5));
265

266 RCLCPP_INFO(this->get_logger(), "Sending trajectory, listening for ...
whole_body_trajectory_status...");

267 publisher_->publish(trajectory_msg); //The trajectory message is published
268 }
269

270 //This generates the individual single joint command. It takes in the required parameters and...
returns the message used for the taskspace trajectory point in the 'targetall_' function

271 JointSpaceCommand generate_joint_space_command(int32_t joint_id, double q_des, double qd_des ...
= 0.0, double qdd_des = 0.0)

272 {
273 JointSpaceCommand ret_msg;
274 JointName name;
275 name.joint_id = joint_id;
276 ret_msg.joint = name;
277 ret_msg.q_desired = q_des;
278 ret_msg.qd_desired = qd_des;
279 ret_msg.qdd_desired = qdd_des;
280 ret_msg.use_default_gains = true;
281 return ret_msg;
282 }
283

284 //Each target, in the form of a single WholeBodyTrajectoryPoint msg, consists of a ...
concatenation of desired joint configurations with no more than one desired value per ...
joint. The desired time at which we want to reach these joint targets is also specified.

285 //This function then takes in the execution time and assembles the name of the desired joint ...
along with the desired position, velocity, acceleration etc. through the '...
generate_joint_space_command' function

286 WholeBodyTrajectoryPoint targetall_(int32_t t)
287 {
288 WholeBodyTrajectoryPoint ret_msg;
289

290 builtin_interfaces::msg::Duration duration;
291 duration.sec = t; //Sets the execution time for the trajectory, relative to the start time.
292 ret_msg.time_from_start = duration;
293

294 /** insert code for issuing values**/
295

83

296 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
RIGHT_SHOULDER_PITCH, Joint13_pos[0]));

297 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
RIGHT_ELBOW_PITCH, Joint16_pos[0]));

298 ret_msg.joint_space_commands.push_back(generate_joint_space_command(JointName::...
RIGHT_WRIST_PITCH, Joint18_pos[0]));

299

300 return ret_msg;
301 }
302

303 rclcpp::Publisher<WholeBodyTrajectory>::SharedPtr publisher_; //Declaration of the '...
publisher_' publisher

304 rclcpp::Subscription<action_msgs::msg::GoalStatus>::SharedPtr subscription_; //Declaration of...
the 'subscription_' subscriber

305 unique_identifier_msgs::msg::UUID uuid_msg_; //Declaration of the UUID generator
306 };
307

308

309 void store()
310 { std::remove(path13p); // delete file
311 std::ofstream storeFile13pos(path13p); // Create an output filestream object
312 // Check if file is open
313 if (storeFile13pos.is_open())
314 { Joint13_pos.erase(Joint13_pos.begin()); //delete unwanted value from RCLCPP_INFO transfer
315 // Send data to the stream
316 for(std::size_t i = 0, max = Joint13_pos.size(); i != max; ++i)
317 {
318 storeFile13pos << Joint13_pos[i] << "\n";
319 }
320 // Close the file
321 storeFile13pos.close();
322 }
323 else
324 {
325 std::cout << "Error! Unable to create file for RIGHT_SHOULDER_PITCH position";
326 }
327

328 std::remove(path13v); // delete file
329 std::ofstream storeFile13vel(path13v); // Create an output filestream object
330 // Check if file is open
331 if (storeFile13vel.is_open())
332 { Joint13_vel.erase(Joint13_vel.begin()); //delete unwanted value from RCLCPP_INFO transfer
333 // Send data to the stream
334 for(std::size_t i = 0, max = Joint13_vel.size(); i != max; ++i)
335 {
336 storeFile13vel << Joint13_vel[i] << "\n";
337 }
338 // Close the file
339 storeFile13vel.close();
340 }
341 else
342 {
343 std::cout << "Error! Unable to create file for RIGHT_SHOULDER_PITCH velocity";
344 }
345

346 std::remove(path16p); // delete file
347 std::ofstream storeFile16pos(path16p); // Create an output filestream object
348 // Check if file is open
349 if (storeFile16pos.is_open())
350 { Joint16_pos.erase(Joint16_pos.begin()); //delete unwanted value from RCLCPP_INFO transfer
351 // Send data to the stream
352 for(std::size_t i = 0, max = Joint16_pos.size(); i != max; ++i)
353 {
354 storeFile16pos << Joint16_pos[i] << "\n";
355 }
356 // Close the file
357 storeFile16pos.close();

84

358 }
359 else
360 {
361 std::cout << "Error! Unable to create file for RIGHT_ELBOW_PITCH position";
362 }
363

364 std::remove(path16v); // delete file
365 std::ofstream storeFile16vel(path16v); // Create an output filestream object
366 // Check if file is open
367 if (storeFile16vel.is_open())
368 { Joint16_vel.erase(Joint16_vel.begin()); //delete unwanted value from RCLCPP_INFO transfer
369 // Send data to the stream
370 for(std::size_t i = 0, max = Joint16_vel.size(); i != max; ++i)
371 {
372 storeFile16vel << Joint16_vel[i] << "\n";
373 }
374 // Close the file
375 storeFile16vel.close();
376 }
377 else
378 {
379 std::cout << "Error! Unable to create file for RIGHT_ELBOW_PITCH velocity";
380 }
381

382 std::remove(path18p); // delete file
383 std::ofstream storeFile18pos(path18p); // Create an output filestream object
384 // Check if file is open
385 if (storeFile18pos.is_open())
386 { Joint18_pos.erase(Joint18_pos.begin()); //delete unwanted value from RCLCPP_INFO transfer
387 // Send data to the stream
388 for(std::size_t i = 0, max = Joint18_pos.size(); i != max; ++i)
389 {
390 storeFile18pos << Joint18_pos[i] << "\n";
391 }
392 // Close the file
393 storeFile18pos.close();
394 }
395 else
396 {
397 std::cout << "Error! Unable to create file for RIGHT_WRIST_PITCH position";
398 }
399

400 std::remove(path18v); // delete file
401 std::ofstream storeFile18vel(path18v); // Create an output filestream object
402 // Check if file is open
403 if (storeFile18vel.is_open())
404 { Joint18_vel.erase(Joint18_vel.begin()); //delete unwanted value from RCLCPP_INFO transfer
405 // Send data to the stream
406 for(std::size_t i = 0, max = Joint18_vel.size(); i != max; ++i)
407 {
408 storeFile18vel << Joint18_vel[i] << "\n";
409 }
410 // Close the file
411 storeFile18vel.close();
412 }
413 else
414 {
415 std::cout << "Error! Unable to create file for RIGHT_WRIST_PITCH velocity";
416 }
417

418 }
419

420 void retrieve()
421 {
422 std::ifstream inputFile13pos(path13p); // Create an input file stream object
423 Joint13_pos.clear(); //Clear all values from vector
424 // Check if exists and then open the file.

85

425 if (inputFile13pos.good())
426 {
427 // Push items into the vector
428 double current_number = 0;
429 while (inputFile13pos >> current_number)
430 {
431 Joint13_pos.push_back(current_number);
432 }
433 // Close the file.
434 inputFile13pos.close();
435 }
436 else
437 {
438 std::cout << "Error! Unable to open file for RIGHT_SHOULDER_PITCH position";
439 }
440

441

442 std::ifstream inputFile13vel(path13v); // Create an input file stream object
443 Joint13_vel.clear(); //Clear all values from vector
444 // Check if exists and then open the file.
445 if (inputFile13vel.good())
446 {
447 // Push items into the vector
448 double current_number = 0;
449 while (inputFile13vel >> current_number)
450 {
451 Joint13_vel.push_back(current_number);
452 }
453 // Close the file.
454 inputFile13vel.close();
455 }
456 else
457 {
458 std::cout << "Error! Unable to open file for RIGHT_SHOULDER_PITCH velocity";
459 }
460

461

462 std::ifstream inputFile16pos(path16p); // Create an input file stream object
463 Joint16_pos.clear(); //Clear all values from vector
464 // Check if exists and then open the file.
465 if (inputFile16pos.good())
466 {
467 // Push items into the vector
468 double current_number = 0;
469 while (inputFile16pos >> current_number)
470 {
471 Joint16_pos.push_back(current_number);
472 }
473 // Close the file.
474 inputFile16pos.close();
475 }
476 else
477 {
478 std::cout << "Error! Unable to open file for RIGHT_ELBOW_PITCH position";
479 }
480

481

482 std::ifstream inputFile16vel(path16v); // Create an input file stream object
483 Joint16_vel.clear(); //Clear all values from vector
484 // Check if exists and then open the file.
485 if (inputFile16vel.good())
486 {
487 // Push items into the vector
488 double current_number = 0;
489 while (inputFile16vel >> current_number)
490 {
491 Joint16_vel.push_back(current_number);

86

492 }
493 // Close the file.
494 inputFile16vel.close();
495 }
496 else
497 {
498 std::cout << "Error! Unable to open file for RIGHT_ELBOW_PITCH velocity";
499 }
500

501

502 std::ifstream inputFile18pos(path18p); // Create an input file stream object
503 Joint18_pos.clear(); //Clear all values from vector
504 // Check if exists and then open the file.
505 if (inputFile18pos.good())
506 {
507 // Push items into the vector
508 double current_number = 0;
509 while (inputFile18pos >> current_number)
510 {
511 Joint18_pos.push_back(current_number);
512 }
513 // Close the file.
514 inputFile18pos.close();
515 }
516 else
517 {
518 std::cout << "Error! Unable to open file for RIGHT_WRIST_PITCH position";
519 }
520

521

522 std::ifstream inputFile18vel(path18v); // Create an input file stream object
523 Joint18_vel.clear(); //Clear all values from vector
524 // Check if exists and then open the file.
525 if (inputFile18vel.good())
526 {
527 // Push items into the vector
528 double current_number = 0;
529 while (inputFile18vel >> current_number)
530 {
531 Joint18_vel.push_back(current_number);
532 }
533 // Close the file.
534 inputFile18vel.close();
535 }
536 else
537 {
538 std::cout << "Error! Unable to open file for RIGHT_WRIST_PITCH velocity";
539 }
540

541 for (std::size_t i = 0, max = Joint13_pos.size(); i != max; ++i)
542 {
543 std::cout << "Angular position " << i << " for RIGHT_SHOULDER_PITCH is: " << Joint13_pos...

[i] << std::endl;
544 }
545 for (std::size_t i = 0, max = Joint13_vel.size(); i != max; ++i)
546 {
547 std::cout << "Angular velocity " << i << " for RIGHT_SHOULDER_PITCH is: " << Joint13_vel...

[i] << std::endl;
548 }
549 for (std::size_t i = 0, max = Joint16_pos.size(); i != max; ++i)
550 {
551 std::cout << "Angular position " << i << " for RIGHT_ELBOW_PITCH is: " << Joint13_pos[i]...

<< std::endl;
552 }
553 for (std::size_t i = 0, max = Joint16_vel.size(); i != max; ++i)
554 {
555 std::cout << "Angular velocity " << i << " for RIGHT_ELBOW_PITCH is: " << Joint13_vel[i]...

87

<< std::endl;
556 }
557 for (std::size_t i = 0, max = Joint18_pos.size(); i != max; ++i)
558 {
559 std::cout << "Angular position " << i << " for RIGHT_WRIST_PITCH is: " << Joint13_pos[i]...

<< std::endl;
560 }
561 for (std::size_t i = 0, max = Joint18_vel.size(); i != max; ++i)
562 {
563 std::cout << "Angular velocity " << i << " for RIGHT_WRIST_PITCH is: " << Joint13_vel[i]...

<< std::endl;
564 }
565 }
566

567

568 void intro() //Intro message
569 {
570 std::cout << "**" << std::...

endl;
571 std::cout << "* Menu for testing the recording of joint values of EVEr3 *" << std::endl;
572 std::cout << "**" << std::...

endl;
573 }
574

575 void menu_space() //This is used to make the menu better looking, assuming that 1000 lines will...
be enough to clear the screen

576 {
577 std::cout << std::string(1000, '\n');
578 }
579

580 void wait_for_enter()
581 {
582

583 std::string wait;
584 std::cout << "[Enter] to continue..." << std::endl;
585 getline(std::cin, wait);
586 }
587

588 void print() //Print transferred values to vector
589 {
590 for (std::size_t i = 0, max = Joint13_pos.size(); i != max; ++i)
591 {
592 std::cout << "Angular position " << i << " for RIGHT_SHOULDER_PITCH is: " << Joint13_pos...

[i] << std::endl;
593 }
594 for (std::size_t i = 0, max = Joint13_vel.size(); i != max; ++i)
595 {
596 std::cout << "Angular velocity " << i << " for RIGHT_SHOULDER_PITCH is: " << Joint13_vel...

[i] << std::endl;
597 }
598 for (std::size_t i = 0, max = Joint16_pos.size(); i != max; ++i)
599 {
600 std::cout << "Angular position " << i << " for RIGHT_ELBOW_PITCH is: " << Joint13_pos[i]...

<< std::endl;
601 }
602 for (std::size_t i = 0, max = Joint16_vel.size(); i != max; ++i)
603 {
604 std::cout << "Angular velocity " << i << " for RIGHT_ELBOW_PITCH is: " << Joint13_vel[i]...

<< std::endl;
605 }
606 for (std::size_t i = 0, max = Joint18_pos.size(); i != max; ++i)
607 {
608 std::cout << "Angular position " << i << " for RIGHT_WRIST_PITCH is: " << Joint13_pos[i]...

<< std::endl;
609 }
610 for (std::size_t i = 0, max = Joint18_vel.size(); i != max; ++i)
611 {

88

612 std::cout << "Angular velocity " << i << " for RIGHT_WRIST_PITCH is: " << Joint13_vel[i]...
<< std::endl;

613 }
614 }
615

616 void raise_right_arm() //Raising the arm to check the transfer of values
617 {
618 storage[13] = 0.3;
619 storage[16] = -1.3;
620 storage[18] = 0.2;
621 }
622

623 void set_to_zero() //Setting all joint values to zero to check the transfer of values
624 {
625 storage[13] = 0.0;
626 storage[16] = 0.0;
627 storage[18] = 0.0;
628 }
629

630

631 int main(int argc, char * argv[])
632 {
633 int sel5;
634 bool done4 = false;
635

636 do
637 {
638 menu_space();
639 intro();
640 std::cout <<" 1[+Enter] to lower right arm and execute" << std::endl;
641 std::cout <<" 2[+Enter] to raise right arm and execute" << std::endl;
642 std::cout <<" 3[+Enter] to print recorded values" << std::endl;
643 std::cout <<" 4[+Enter] to store recorded values" << std::endl;
644 std::cout <<" 5[+Enter] to retrieve previously recorded values and print them" << std::endl...

;
645 std::cout <<" 6[+Enter] to issue retrieved values" << std::endl;
646 std::cout <<" 7[+Enter] to exit the program" << std::endl;
647 std::cin >> sel5;
648

649 switch (sel5)
650 {
651 case 1:
652 set_to_zero();
653 rclcpp::init(argc, argv); //'rclcpp::init' initializes ROS 2, and 'rclcpp::spin' starts ...

processing data from the JointSubscriber node
654 rclcpp::spin(std::make_shared<JointSubscriber>());
655 rclcpp::shutdown();
656 break;
657

658 case 2:
659 raise_right_arm();
660 rclcpp::init(argc, argv); //'rclcpp::init' initializes ROS 2, and 'rclcpp::spin' starts ...

processing data from the JointSubscriber node
661 rclcpp::spin(std::make_shared<JointSubscriber>());
662 rclcpp::shutdown();
663 break;
664

665

666 case 3:
667 menu_space();
668 print();
669 std::cin.get(); //This makes the program wait for input from user
670 wait_for_enter();
671 break;
672

673 case 4:
674 store();

89

675 std::cin.get();
676 wait_for_enter();
677 break;
678

679 case 5:
680 menu_space();
681 retrieve();
682 std::cin.get();
683 wait_for_enter();
684 break;
685

686 case 6:
687 rclcpp::init(argc, argv); //'rclcpp::init' initializes ROS 2, and 'rclcpp::spin' starts ...

processing data from the JointIssuer node
688 rclcpp::spin(std::make_shared<JointIssuer>());
689 rclcpp::shutdown();
690 break;
691

692 case 7:
693 done4 = true;
694 break;
695

696 default:
697 std::cout << "Invalid input" << std::endl;
698

699 }
700 }while(!done4);
701

702 return 0;
703 }

appendices/joint_read_menu/joint_read.tex

90

A.5 The Leg Model

A.5.1 README.md

1 ##Leg model for Rehabilitation Project at UiA
2

3 * Author: Lars Bleie Andersen <larsa09@uia.no>
4

5 ## Resources
6

7 [URDF EXAMPLE with RVIZ LAUNCH FILE (ROS2)](https://github.com/olmerg/lesson_urdf)
8 [URDF to GAZEBO TUTORIAL (ROS1)](http://gazebosim.org/tutorials/?tut=ros_urdf)
9 [ROS CONTROL](http://wiki.ros.org/ros_control)

10 [ROS2 CONTROL DEMOS](https://github.com/ros-simulation/gazebo_ros2_control/tree/master/...
gazebo_ros2_control_demos)

11 [ROS INTERFACES](https://wiki.ros.org/ros_control#Hardware_Interfaces)
12 [SDF CONVERSION](gz sdf -p /my_urdf.urdf > /my_sdf.sdf)
13

14 ## Launch commands
15

16 Leg Model in Rviz:
17 ros2 launch leg_model_description rviz_launch.py
18

19 ##If the model does not show in Rviz, try to type in the shell terminal: export LC_NUMERIC="...
en_US.UTF-8"

appendices/README.tex

A.6 Leg Model Description Package

A.6.1 package.xml

1 <?xml version="1.0"?>
2 <?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www....

w3.org/2001/XMLSchema"?>
3 <package format="3">
4 <name>leg_model_description</name>
5 <version>0.0.5</version>
6 <description>Description package for leg_model</description>
7 <maintainer email="larsa09@uia.no"> Lars Bleie Andersen </maintainer>
8 <license>UiA</license>
9

10 <buildtool_depend>ament_cmake</buildtool_depend>
11 <depend>urdf</depend>
12 <build_depend>launch_ros</build_depend>
13 <exec_depend>launch_ros</exec_depend>
14 <exec_depend>robot_state_publisher</exec_depend>
15 <exec_depend>joint_state_publisher_gui</exec_depend>
16 <export>
17 <build_type>ament_cmake</build_type>
18 </export>
19 </package>

appendices/leg_model_description/package.tex

A.6.2 CMakeLists.txt

1 cmake_minimum_required(VERSION 3.5)
2 project(leg_model_description)
3

4 # Default to C99
5 if(NOT CMAKE_C_STANDARD)
6 set(CMAKE_C_STANDARD 99)
7 endif()
8

91

9 # Default to C++14
10 if(NOT CMAKE_CXX_STANDARD)
11 set(CMAKE_CXX_STANDARD 14)
12 endif()
13

14 if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
15 add_compile_options(-Wall -Wextra -Wpedantic)
16 endif()
17

18

19 # Find ament packages and libraries for ament and urdf
20 find_package(ament_cmake REQUIRED)
21 find_package(urdf REQUIRED)
22

23

24 # Path to directories
25 install(DIRECTORY
26 urdf
27 rviz
28 launch
29 meshes
30 DESTINATION share/${PROJECT_NAME})
31

32

33 if(BUILD_TESTING)
34 find_package(ament_lint_auto REQUIRED)
35 ament_lint_auto_find_test_dependencies()
36 endif()
37 ament_package()

appendices/leg_model_description/CMakeLists.tex

A.6.3 rviz_launch.py

1 import os
2

3 from ament_index_python.packages import get_package_share_directory
4

5 from launch import LaunchDescription
6 from launch.actions import DeclareLaunchArgument, ExecuteProcess, IncludeLaunchDescription
7 from launch.conditions import IfCondition
8 from launch.launch_description_sources import PythonLaunchDescriptionSource
9 from launch.substitutions import LaunchConfiguration, PythonExpression

10 from launch_ros.actions import Node
11

12

13 def generate_launch_description():
14 # Defining the launch directory
15 bringup_dir = get_package_share_directory('leg_model_description')
16 launch_dir = os.path.join(bringup_dir, 'launch')
17

18 # Declaring launch configuration variables specific to simulation
19 rviz_config_file = LaunchConfiguration('rviz_config_file')
20 use_robot_state_pub = LaunchConfiguration('use_robot_state_pub')
21 use_joint_state_pub = LaunchConfiguration('use_joint_state_pub')
22 use_rviz = LaunchConfiguration('use_rviz')
23 urdf_file= LaunchConfiguration('urdf_file')
24

25 declare_rviz_config_file_cmd = DeclareLaunchArgument(
26 'rviz_config_file',
27 default_value=os.path.join(bringup_dir, 'rviz', 'view.rviz'),
28 description='Full path to the RVIZ config file to use')
29 declare_use_robot_state_pub_cmd = DeclareLaunchArgument(
30 'use_robot_state_pub',
31 default_value='True',
32 description='Whether to start the robot state publisher')
33 declare_use_joint_state_pub_cmd = DeclareLaunchArgument(

92

34 'use_joint_state_pub',
35 default_value='True',
36 description='Whether to start the joint state publisher')
37 declare_use_rviz_cmd = DeclareLaunchArgument(
38 'use_rviz',
39 default_value='True',
40 description='Whether to start RVIZ')
41

42 declare_urdf_cmd = DeclareLaunchArgument(
43 'urdf_file',
44 default_value=os.path.join(bringup_dir, 'urdf', 'leg_model.xacro'),
45 description='Whether to start RVIZ')
46

47

48 start_robot_state_publisher_cmd = Node(
49 condition=IfCondition(use_robot_state_pub),
50 package='robot_state_publisher',
51 executable='robot_state_publisher',
52 name='robot_state_publisher',
53 output='screen',
54 #parameters=[{'use_sim_time': use_sim_time}],
55 arguments=[urdf_file])
56

57 start_joint_state_publisher_cmd = Node(
58 condition=IfCondition(use_joint_state_pub),
59 package='joint_state_publisher_gui',
60 executable='joint_state_publisher_gui',
61 name='joint_state_publisher_gui',
62 output='screen',
63 arguments=[urdf_file])
64

65 rviz_cmd = Node(
66 condition=IfCondition(use_rviz),
67 package='rviz2',
68 executable='rviz2',
69 name='rviz2',
70 arguments=['-d', rviz_config_file],
71 output='screen')
72

73

74 # Creating the launch description
75 ld = LaunchDescription()
76

77 # Declaring the launch options
78 ld.add_action(declare_rviz_config_file_cmd)
79 ld.add_action(declare_urdf_cmd)
80 ld.add_action(declare_use_robot_state_pub_cmd)
81 ld.add_action(declare_use_joint_state_pub_cmd)
82 ld.add_action(declare_use_rviz_cmd)
83

84

85 # Adding conditioned actions
86 ld.add_action(start_joint_state_publisher_cmd)
87 ld.add_action(start_robot_state_publisher_cmd)
88 ld.add_action(rviz_cmd)
89

90 return ld

appendices/leg_model_description/rviz_launch_py.tex

93

A.6.4 leg_model.xacro

1 <?xml version="1.0" encoding="utf-8"?>
2 <!-- This URDF was automatically created by SolidWorks to URDF Exporter! Originally created by ...

Stephen Brawner (brawner@gmail.com)
3 Commit Version: 1.6.0-1-g15f4949 Build Version: 1.6.7594.29634
4 For more information, please see http://wiki.ros.org/sw_urdf_exporter -->
5 <robot name="leg_model" xmlns:xacro="http://ros.org/wiki/xacro">
6

7 <!-- World (the child element Bed is rigidly attached to the world/base_link)-->
8 <link name="world"/>
9

10 <!-- Bed -->
11 <link
12 name="bed">
13 <inertial>
14 <origin
15 xyz="0.49576 0.76172 1.1371"
16 rpy="0 0 0" />
17 <mass
18 value="100" />
19 <inertia
20 ixx="0"
21 ixy="0"
22 ixz="0"
23 iyy="34.8958"
24 iyz="0"
25 izz="0" />
26 </inertial>
27 <visual>
28 <origin
29 xyz="0 0 0"
30 rpy="0 0 0" />
31 <geometry>
32 <mesh
33 filename="package://leg_model_description/meshes/bed.STL" scale= "0.001 0.001 0.001"/>
34 </geometry>
35 </visual>
36 <collision>
37 <origin
38 xyz="0 0 0"
39 rpy="0 0 0" />
40 <geometry>
41 <mesh
42 filename="package://leg_model_description/meshes/bed.STL" scale= "0.001 0.001 0.001"/>
43 </geometry>
44 </collision>
45 </link>
46

47 <!-- Inertial frame connection -->
48 <joint
49 name="inertial_frame"
50 type="fixed">
51 <origin
52 xyz="0 0 0.585"
53 rpy="0 0 0" />
54 <parent
55 link="world" />
56 <child
57 link="bed" />
58 <axis
59 xyz="0 0 0" />
60 </joint>
61

62 <!-- Hip joint -->
63 <joint

94

64 name="hip"
65 type="revolute">
66 <origin
67 xyz="0 0 0"
68 rpy="0 0 0" />
69 <parent
70 link="bed" />
71 <child
72 link="thigh" />
73 <axis
74 xyz="0 -1 0" />
75 <limit lower="0" upper="2.2689" effort="0" velocity="0.5" />
76 <dynamics damping="0.1" friction="0.0"/>
77 </joint>
78

79 <!-- Thigh -->
80 <link
81 name="thigh">
82 <inertial>
83 <origin
84 xyz="0.305 -0.01 2.7456E-13"
85 rpy="0 0 0" />
86 <mass
87 value="10" />
88 <inertia
89 ixx="0"
90 ixy="0"
91 ixz="0"
92 iyy="0.8396"
93 iyz="0"
94 izz="0" />
95 </inertial>
96 <visual>
97 <origin
98 xyz="0 0 0"
99 rpy="0 0 0" />

100 <geometry>
101 <mesh
102 filename="package://leg_model_description/meshes/thigh.STL" scale= "0.001 0.001 0.001"...

/>
103 </geometry>
104 </visual>
105 <collision>
106 <origin
107 xyz="0 0 0"
108 rpy="0 0 0" />
109 <geometry>
110 <mesh
111 filename="package://leg_model_description/meshes/thigh.STL" scale= "0.001 0.001 0.001"...

/>
112 </geometry>
113 </collision>
114 </link>
115

116 <!-- Knee joint -->
117 <joint
118 name="knee"
119 type="revolute">
120 <origin
121 xyz="0.61 0 0"
122 rpy="0 0 0" />
123 <parent
124 link="thigh" />
125 <child
126 link="braced_crus_w_handle" />
127 <axis
128 xyz="0 -1 0" />

95

129 <limit lower="-2.0944" upper="0" effort="0" velocity="0.5" />
130 <dynamics damping="0.1" friction="0.0"/>
131 </joint>
132

133 <!-- Braced Crus w/Handle -->
134 <link
135 name="braced_crus_w_handle">
136 <inertial>
137 <origin
138 xyz="0.26325 0.016019 2.2204E-16"
139 rpy="0 0 0" />
140 <mass
141 value="3.5" />
142 <inertia
143 ixx="0"
144 ixy="0"
145 ixz="0"
146 iyy="0.1411"
147 iyz="0"
148 izz="0" />
149 </inertial>
150 <visual>
151 <origin
152 xyz="0 0 0"
153 rpy="0 0 0" />
154 <geometry>
155 <mesh
156 filename="package://leg_model_description/meshes/braced_crus.STL" scale= "0.001 0.001 ...

0.001"/>
157 </geometry>
158 </visual>
159 <collision>
160 <origin
161 xyz="0 0 0"
162 rpy="0 0 0" />
163 <geometry>
164 <mesh
165 filename="package://leg_model_description/meshes/braced_crus.STL" scale= "0.001 0.001 ...

0.001"/>
166 </geometry>
167 </collision>
168 </link>
169

170 <!-- End effector connection -->
171 <joint
172 name="handle_end"
173 type="fixed">
174 <origin
175 xyz="0.305 0 0.195"
176 rpy="0 0 0" />
177 <parent
178 link="braced_crus_w_handle" />
179 <child
180 link="end_effector" />
181 <axis
182 xyz="0 0 0" />
183 </joint>
184

185 <!-- End effector -->
186 <link name="end_effector">
187 <inertial>
188 <origin
189 xyz="0 0 0"
190 rpy="0 0 0" />
191 <mass
192 value="0" />
193 <inertia

96

194 ixx="0"
195 ixy="0"
196 ixz="0"
197 iyy="0"
198 iyz="0"
199 izz="0" />
200 </inertial>
201 <visual>
202 <origin
203 xyz="0 0 0"
204 rpy="0 0 0" />
205 </visual>
206 <collision>
207 <origin
208 xyz="0 0 0"
209 rpy="0 0 0" />
210 </collision>
211 </link>
212

213 <!-- Gazebo Plugin -->
214 <gazebo>
215 <plugin filename="libgazebo_ros_control.so" name="ros_control">
216 </plugin>
217 </gazebo>
218

219 <!-- Gazebo Transmissions -->
220 <transmission name="hip_trans">
221 <type>transmission_interface/SimpleTransmission</type>
222 <joint name="hip">
223 <hardwareInterface>EffortJointInterface</hardwareInterface>
224 </joint>
225 <actuator name="hip_motor">
226 <mechanicalReduction>1</mechanicalReduction>
227 </actuator>
228 </transmission>
229 <transmission name="knee_trans">
230 <type>transmission_interface/SimpleTransmission</type>
231 <joint name="knee">
232 <hardwareInterface>EffortJointInterface</hardwareInterface>
233 </joint>
234 <actuator name="knee_motor">
235 <mechanicalReduction>1</mechanicalReduction>
236 </actuator>
237 </transmission>
238

239 <!--Gazebo Reference for every link-->
240 <gazebo reference="bed">
241 <material>Gazebo/White</material>
242 <selfCollide>true</selfCollide>
243 </gazebo>
244 <gazebo reference="thigh">
245 <material>Gazebo/Wood</material>
246 <selfCollide>true</selfCollide>
247 </gazebo>
248 <gazebo reference="braced_crus_w_handle">
249 <material>Gazebo/Wood</material>
250 <selfCollide>true</selfCollide>
251 <mu>0.2</mu>
252 </gazebo>
253 <gazebo reference="end_effector">
254 <material>Gazebo/Wood</material>
255 <selfCollide>true</selfCollide>
256 </gazebo>
257 </robot>

appendices/leg_model_description/leg_model.tex

97

Bibliography

[1] Jawad F. Abulhasan and Michael J. Grey. “Anatomy and Physiology of Knee Stability.” en.
In: Journal of Functional Morphology and Kinesiology 2.4 (Dec. 2017). Number: 4 Publisher:
Multidisciplinary Digital Publishing Institute, p. 34. doi: 10.3390/jfmk2040034.

[2] Erhan Akdoğan, Ertuğrul Taçgın, and M. Arif Adli. “Knee rehabilitation using an intelligent
robotic system.” en. In: Journal of Intelligent Manufacturing 20.2 (Jan. 2009), p. 195. issn:
1572-8145. doi: 10.1007/s10845-008-0225-y.

[3] P. Beyl et al. “Safe and Compliant Guidance by a Powered Knee Exoskeleton for Robot-
Assisted Rehabilitation of Gait.” In: Advanced Robotics 25.5 (Jan. 2011), pp. 513–535. issn:
0169-1864. doi: 10.1163/016918611X558225.

[4] Turner A Blackburn and Emily Craig. “Knee Anatomy: A Brief Review.” In: Physical Therapy
60.12 (Dec. 1980), pp. 1556–1560. issn: 0031-9023. doi: 10.1093/ptj/60.12.1556.

[5] Nicholas Bolus, Venu Ganti, and Omer Inan. “A 3D-Printed, Adjustable-Stiffness Knee Brace
with Embedded Magnetic Angle Sensor.” In: vol. 2018. July 2018, pp. 1624–1627. doi: 10.
1109/EMBC.2018.8512600.

[6] Scott R. Brannan and David A. Jerrard. “Synovial fluid analysis.” en. In: The Journal of
Emergency Medicine 30.3 (Apr. 2006), pp. 331–339. issn: 0736-4679. doi: 10 . 1016 / j .
jemermed.2005.05.029.

[7] Harold Brem and Marjana Tomic-Canic. “Cellular and molecular basis of wound healing in
diabetes.” en. In: The Journal of Clinical Investigation 117.5 (May 2007). Publisher: American
Society for Clinical Investigation, pp. 1219–1222. issn: 0021-9738. doi: 10.1172/JCI32169.

[8] Gong Chen et al. “Mechanical design and evaluation of a compact portable knee–ankle–foot
robot for gait rehabilitation.” en. In: Mechanism and Machine Theory 103 (Sept. 2016),
pp. 51–64. issn: 0094-114X. doi: 10.1016/j.mechmachtheory.2016.04.012.

[9] Kim Seng Chia. “Ziegler-Nichols Based Proportional-Integral-Derivative Controller for a Line
Tracking Robot.” In: Indonesian Journal of Electrical Engineering and Computer Science 9
(Jan. 2018), pp. 221–226. doi: 10.11591/ijeecs.v9.i1.pp221-226.

[10] John Clancy, Andrew Mcvicar, and Janice Mooney. “Homeostasis 6: Nurses as external con-
trol agents in rheumatoid arthritis.” In: British journal of nursing (Mark Allen Publishing)
20 (Apr. 2011), pp. 497–8, 500. doi: 10.12968/bjon.2011.20.8.497.

[11] Iñaki Díaz, Jorge Juan Gil, and Emilio Sánchez. Lower-Limb Robotic Rehabilitation: Litera-
ture Review and Challenges. en. Review Article. ISSN: 1687-9600 Pages: e759764 Publisher:
Hindawi Volume: 2011. Nov. 2011. doi: https://doi.org/10.1155/2011/759764.

[12] Christophe Duret, Anne-Gaëlle Grosmaire, and Hermano Igo Krebs. “Robot-Assisted Ther-
apy in Upper Extremity Hemiparesis: Overview of an Evidence-Based Approach.” eng. In:
Frontiers in Neurology 10 (2019), p. 412. issn: 1664-2295. doi: 10.3389/fneur.2019.00412.

[13] EVEr3 Humanoid Robot. https://www.halodi.com/ever3.
[14] Lisa A. Garner. “Contact dermatitis to metals.” eng. In: Dermatologic Therapy 17.4 (2004),

pp. 321–327. issn: 1396-0296. doi: 10.1111/j.1396-0296.2004.04034.x.
[15] Roger Gassert and Volker Dietz. “Rehabilitation robots for the treatment of sensorimotor

deficits: a neurophysiological perspective.” In: Journal of NeuroEngineering and Rehabilitation
15.1 (June 2018), p. 46. issn: 1743-0003. doi: 10.1186/s12984-018-0383-x.

98

https://doi.org/10.3390/jfmk2040034
https://doi.org/10.1007/s10845-008-0225-y
https://doi.org/10.1163/016918611X558225
https://doi.org/10.1093/ptj/60.12.1556
https://doi.org/10.1109/EMBC.2018.8512600
https://doi.org/10.1109/EMBC.2018.8512600
https://doi.org/10.1016/j.jemermed.2005.05.029
https://doi.org/10.1016/j.jemermed.2005.05.029
https://doi.org/10.1172/JCI32169
https://doi.org/10.1016/j.mechmachtheory.2016.04.012
https://doi.org/10.11591/ijeecs.v9.i1.pp221-226
https://doi.org/10.12968/bjon.2011.20.8.497
https://doi.org/https://doi.org/10.1155/2011/759764
https://doi.org/10.3389/fneur.2019.00412
https://www.halodi.com/ever3
https://doi.org/10.1111/j.1396-0296.2004.04034.x
https://doi.org/10.1186/s12984-018-0383-x

[16] A. Goldenberg, B. Benhabib, and R. Fenton. “A complete generalized solution to the inverse
kinematics of robots.” In: IEEE Journal on Robotics and Automation 1.1 (Mar. 1985). Con-
ference Name: IEEE Journal on Robotics and Automation, pp. 14–20. issn: 2374-8710. doi:
10.1109/JRA.1985.1086995.

[17] Halodi Robotics AS. API. https://github.com/Halodi/halodi-messages/blob/main/
API.md.

[18] N. Hogan. “Impedance Control: An Approach to Manipulation.” In: 1984 American Control
Conference. June 1984, pp. 304–313. doi: 10.23919/ACC.1984.4788393.

[19] N. Hogan et al. “MIT-MANUS: a workstation for manual therapy and training. I.” In:
[1992] Proceedings IEEE International Workshop on Robot and Human Communication. 1992,
pp. 161–165. doi: 10.1109/ROMAN.1992.253895.

[20] Neville Hogan and Hermano I. Krebs. “Interactive robots for neuro-rehabilitation.” en. In:
Restorative Neurology and Neuroscience 22.3-5 (Jan. 2004). Publisher: IOS Press, pp. 349–
358. issn: 0922-6028.

[21] Prathap Kumar J., Arun Kumar M., and Venkatesh D. “Healthy Gait: Review of Anatomy
and Physiology of Knee Joint.” In: International Journal of Current Research and Review
12.06 (2020), pp. 01–08. doi: 10.31782/ijcrr.2020.12061.

[22] Leonard E. Kahn et al. “Robot-assisted movement training for the stroke-impaired arm: Does
it matter what the robot does?” en. In: Journal of rehabilitation research and development
43.5 (Nov. 2014), pp. 619–630. issn: 1938-1352.

[23] Pınar Karakaş and M. Gülhal Bozkir. “Determination of Normal Calf and Ankle Values
Among Medical Students.” en. In: Aesthetic Plastic Surgery 31.2 (Apr. 2007), pp. 179–182.
issn: 1432-5241. doi: 10.1007/s00266-006-0132-6.

[24] Ian Kimber et al. “Allergic contact dermatitis.” en. In: International Immunopharmacology.
Occupational Immunology 2.2 (Feb. 2002), pp. 201–211. issn: 1567-5769. doi: 10.1016/
S1567-5769(01)00173-4.

[25] A. Koller-Hodac et al. “Knee orthopaedic device how robotic technology can improve outcome
in knee rehabilitation.” In: 2011 IEEE International Conference on Rehabilitation Robotics.
ISSN: 1945-7901. June 2011, pp. 1–6. doi: 10.1109/ICORR.2011.5975347.

[26] Serdar Kucuk and Zafer Bingul. Robot Kinematics: Forward and Inverse Kinematics, Indus-
trial Robotics: Theory, Modelling and Control. Sam Cubero (Ed.), 2006. isbn: 3-86611-285-8.

[27] Ioan D. Landau and Gianluca Zito. Digital Control Systems. Springer-Verlag London Limited,
2006.

[28] Seth Hutchinson Mark W. Spong and M. Vidyasagar. Robot Modeling and Control. JOHN
WILEY & SONS, INC., 1989.

[29] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. “Exploring the performance of ROS2.”
In: Proceedings of the 13th International Conference on Embedded Software. EMSOFT ’16.
New York, NY, USA: Association for Computing Machinery, Oct. 2016, pp. 1–10. isbn: 978-
1-4503-4485-2. doi: 10.1145/2968478.2968502.

[30] “Medical gallery of Blausen Medical 2014.” In: (Aug. 2014). issn: 2002-4436. doi: 10.15347/
WJM/2014.010.

[31] Abolfazl Mohebbi. “Human-Robot Interaction in Rehabilitation and Assistance: a Review.”
en. In: Current Robotics Reports 1.3 (Sept. 2020), pp. 131–144. issn: 2662-4087. doi: 10.
1007/s43154- 020- 00015- 4. url: https://doi.org/10.1007/s43154- 020- 00015- 4
(visited on 05/27/2021).

[32] Tobias Nef, Matjaz Mihelj, and Robert Riener. “ARMin: a robot for patient-cooperative arm
therapy.” en. In: Medical & Biological Engineering & Computing 45.9 (Sept. 2007), pp. 887–
900. issn: 0140-0118, 1741-0444. doi: 10.1007/s11517-007-0226-6. url: http://link.
springer.com/10.1007/s11517-007-0226-6 (visited on 05/27/2021).

99

https://doi.org/10.1109/JRA.1985.1086995
https://github.com/Halodi/halodi-messages/blob/main/API.md
https://github.com/Halodi/halodi-messages/blob/main/API.md
https://doi.org/10.23919/ACC.1984.4788393
https://doi.org/10.1109/ROMAN.1992.253895
https://doi.org/10.31782/ijcrr.2020.12061
https://doi.org/10.1007/s00266-006-0132-6
https://doi.org/10.1016/S1567-5769(01)00173-4
https://doi.org/10.1016/S1567-5769(01)00173-4
https://doi.org/10.1109/ICORR.2011.5975347
https://doi.org/10.1145/2968478.2968502
https://doi.org/10.15347/WJM/2014.010
https://doi.org/10.15347/WJM/2014.010
https://doi.org/10.1007/s43154-020-00015-4
https://doi.org/10.1007/s43154-020-00015-4
https://doi.org/10.1007/s43154-020-00015-4
https://doi.org/10.1007/s11517-007-0226-6
http://link.springer.com/10.1007/s11517-007-0226-6
http://link.springer.com/10.1007/s11517-007-0226-6

[33] Olesya Ogorodnikova. “Methodology of safety for a human robot interaction designing stage.”
In: 2008 Conference on Human System Interactions. ISSN: 2158-2254. May 2008, pp. 452–
457. doi: 10.1109/HSI.2008.4581481.

[34] Open Robotics. About Quality of Service settings. https : / / docs . ros . org / en / foxy /
Concepts/About-Quality-of-Service-Settings.html.

[35] Lizheng Pan et al. “Patient-Centered Robot-Aided Passive Neurorehabilitation Exercise Based
on Safety-Motion Decision-Making Mechanism.” en. In: BioMed Research International 2017
(Jan. 2017). Publisher: Hindawi, e4185939. issn: 2314-6133. doi: 10.1155/2017/4185939.
url: https://www.hindawi.com/journals/bmri/2017/4185939/ (visited on 05/27/2021).

[36] Stanley Plagenhoef, F. Gaynor Evans, and Thomas Abdelnour. “Anatomical Data for Ana-
lyzing Human Motion.” In: Research Quarterly for Exercise and Sport 54.2 (June 1983). Pub-
lisher: Routledge, pp. 169–178. issn: 0270-1367. doi: 10.1080/02701367.1983.10605290.

[37] Prof. Wyatt Newman, Ph.D., P.E. Robotics competitions showcase the collaborative power
of ROS—the Robot Operating System. https://insights.roboglobal.com/robotics-
competitions-showcase-power-of-ros.

[38] Kathryn Roach and Toni Miles. “Normal hip and knee active range of motion: The relationship
to age.” In: Physical therapy 71 (Oct. 1991), pp. 656–65. doi: 10.1093/ptj/71.9.656.

[39] Kengo Sato et al. “Anatomical study of the proximal origin of hamstring muscles.” In: Journal
of orthopaedic science : official journal of the Japanese Orthopaedic Association 17 (June
2012), pp. 614–8. doi: 10.1007/s00776-012-0243-7.

[40] Chathuri Senanayake and S. M. Namal Senanayake. “Emerging robotics devices for thera-
peutic rehabilitation of the lower extremity.” In: Aug. 2009, pp. 1142–1147. doi: 10.1109/
AIM.2009.5229740.

[41] Vinay Setty and Vishal Kumar. “Study of Range of Motion of Knee Joint in South Indian
Male Subjects.” In: Journal of Karnataka Chapter of Anatomists 6 (Jan. 2012), pp. 81–85.

[42] Hayder F. N. Al-Shuka et al. “Active Impedance Control of Bioinspired Motion Robotic
Manipulators: An Overview.” en. In: Applied Bionics and Biomechanics 2018 (Oct. 2018).
Publisher: Hindawi, e8203054. issn: 1176-2322. doi: 10.1155/2018/8203054. url: https:
//www.hindawi.com/journals/abb/2018/8203054/ (visited on 04/14/2021).

[43] Joel Stein et al. “Comparison of Two Techniques of Robot-Aided Upper Limb Exercise Train-
ing After Stroke.” en-US. In: American Journal of Physical Medicine & Rehabilitation 83.9
(Sept. 2004), pp. 720–728. issn: 0894-9115. doi: 10.1097/01.PHM.0000137313.14480.CE.

[44] Wen Tan et al. “Comparison of some well-known PID tuning formulas.” en. In: Computers
& Chemical Engineering 30.9 (July 2006), pp. 1416–1423. issn: 0098-1354. doi: 10.1016/j.
compchemeng.2006.04.001.

[45] GM Van der Zalm. “Tuning of PID-type controllers: Literature overview.” In: Eindhoven
(2004).

[46] Milos Vasic and Aude Billard. “Safety issues in human-robot interactions.” In: 2013 IEEE
International Conference on Robotics and Automation. ISSN: 1050-4729. May 2013, pp. 197–
204. doi: 10.1109/ICRA.2013.6630576.

[47] B. Weinberg et al. “Design, Control and Human Testing of an Active Knee Rehabilitation
Orthotic Device.” In: Proceedings 2007 IEEE International Conference on Robotics and Au-
tomation. ISSN: 1050-4729. Apr. 2007, pp. 4126–4133. doi: 10.1109/ROBOT.2007.364113.

100

https://doi.org/10.1109/HSI.2008.4581481
https://docs.ros.org/en/foxy/Concepts/About-Quality-of-Service-Settings.html
https://docs.ros.org/en/foxy/Concepts/About-Quality-of-Service-Settings.html
https://doi.org/10.1155/2017/4185939
https://www.hindawi.com/journals/bmri/2017/4185939/
https://doi.org/10.1080/02701367.1983.10605290
https://insights.roboglobal.com/robotics-competitions-showcase-power-of-ros
https://insights.roboglobal.com/robotics-competitions-showcase-power-of-ros
https://doi.org/10.1093/ptj/71.9.656
https://doi.org/10.1007/s00776-012-0243-7
https://doi.org/10.1109/AIM.2009.5229740
https://doi.org/10.1109/AIM.2009.5229740
https://doi.org/10.1155/2018/8203054
https://www.hindawi.com/journals/abb/2018/8203054/
https://www.hindawi.com/journals/abb/2018/8203054/
https://doi.org/10.1097/01.PHM.0000137313.14480.CE
https://doi.org/10.1016/j.compchemeng.2006.04.001
https://doi.org/10.1016/j.compchemeng.2006.04.001
https://doi.org/10.1109/ICRA.2013.6630576
https://doi.org/10.1109/ROBOT.2007.364113

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Nomenclature
	Introduction
	Motivation
	Rehabilitation Robots
	State of the Art in Therapy Robots
	Safety in Human-Robot Interactions
	Project Objectives
	UML Activity Diagram

	Theory
	The EVEr3 Robot
	Software
	ROS2
	Gazebo
	RViz
	The Digital Twin

	Kinematics
	Forward Kinematics
	Inverse Kinematics

	PID Control
	Medical Considerations
	Allergic Contact Dermatitis
	Knee Anatomy
	Range of Motion

	Methods
	Leg Model
	Kinematics
	Creating the Leg Model File

	Simulating and Implementing Parts of the Procedure
	Joint and Grasp Manipulation
	Recording the External Input
	Constraint of the Right Hand of the Digital Twin

	The Cuff
	An Alternative Cuff

	Results and Discussion
	Objective 1
	Objective 2
	Objective 3 and 4
	Objective 5
	Objective 6
	Remarks and Suggestions for Future Works
	Objective 2
	Objective 3 and 4
	Objective 5 and 6
	Safety Assessment
	Motion Control

	Conclusions
	Appendices
	MATLAB Scripts
	Transformation Matrix
	Matrix Multiplication

	SolidWorks Drawings
	The Hook Models
	The Leg Model
	The Cuff
	The Alternative Cuff

	Eve Menu Package
	README.md
	package.xml
	CMakeLists.txt
	eve.cpp

	Joint Read Menu Package
	README.md
	package.xml
	CMakeLists.txt
	joint_read.cpp

	The Leg Model
	README.md

	Leg Model Description Package
	package.xml
	CMakeLists.txt
	rviz_launch.py
	leg_model.xacro

	Bibliography

