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Abstract

An analysis of stick-slip behavior and convergence of trajectories in the
feedback-controlled motion systems with discontinuous Coulomb friction is
provided. A closed-form parameter-dependent stiction region, around an invari-
ant equilibrium set, is proved to be always reachable and globally attractive. It
is shown that only asymptotic convergence can be achieved, with at least one
but mostly an infinite number of consecutive stick-slip cycles, independent of
the initial conditions. Theoretical developments are supported by a number of
numerical results with dedicated convergence examples.
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1 INTRODUCTION

Feedback-controlled motion systems are mostly subject to
nonlinear friction, and the direction-dependent Coulomb
friction force plays a crucial role owing to a (theoret-
ical) discontinuity at velocity zero-crossings. Although
the more complex dynamic friction laws (see, e.g., [1-3]
and references therein) allow the frictional discontinuity
to be bypassed during analysis, the basic Coulomb fric-
tion phenomenon continues to represent the same chal-
lenges in terms of a controller convergence, especially
in the presence of an integral control action. An associ-
ated stick-slip behavior and so-called frictional limit cycles
were formerly addressed in [4]. An algebraic prediction
of stick-slip, with a large set of parametric equalities, was
compared to the describing function method, while the
Coulomb plus static friction law was assumed for avoid-
ing discontinuity at the velocity zero-crossing. An explicit
solution for friction-generated limit cycles has also been
proposed in [5], necessitating static friction approxima-
tion (to avoid discontinuity) and also requiring the stiction
friction which is larger than the Coulomb friction level.

Despite including explicit analysis of state trajectories
for both sticking and slipping phases, no straightforward
conclusions about the appearance and convergence of
stick-slip behavior have been reported. Also several stud-
ies on adaptive friction control, correspondingly estima-
tion, attempted formerly to address the nonlinear effects
of friction and, correspondingly, compensate for them,
see, for example, [6]. The appearance of friction-induced
(so-called hunting) limit cycles has been briefly addressed
in [7], for the assumed LuGre [8] and so-called switch
[9] friction models. Note that before, an earlier analy-
sis of stick-slip behavior and associated friction-induced
limit cycles can be found in [10]. An explanation of how
a proportional-feedback-controlled motion with Coulomb
friction comes to sticking was subsequently shown in [11]
by using the invariance principle. Stick-slip behavior, as
an observable phenomenon known in the control practice,
was highlighted already in [2], and several following con-
trol studies have since there attempted to analyze and com-
pensate such behaviors. For instance, a related analysis of
under-compensation and over-compensation of the static
friction was reported in [12]. Issues associated with a slow
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(creeping-like) convergence of the feedback-controlled
motion in presence of the Coulomb friction have been
addressed and experimentally demonstrated in [13]. More
recently, the convergence problems of a PID feedback con-
trol have been well demonstrated with an accurate experi-
ment in [14], while attempting to reduce the settling errors
by a reset integral control [15]. The related analysis has
been also reported before in [16]. Despite a number of
experimental observations and elaborated studies reported
in the literature, it appears that no yet general consen-
sus has been established in relation to the friction-induced
stick-slip cycles in the feedback-controlled systems with
Coulomb friction. In particular, questions arise over when
and under which conditions the stick-slip cycles occur,
and how a PID-controlled motion will converge to zero
equilibrium in the presence of Coulomb friction, espe-
cially with discontinuity. Note that the problem of a slow
convergence in vicinity to a set reference position is of
particular relevance for the advanced motion control sys-
tems, see, for example, [17]. Yet, in the PID design and
tuning, see, for example, [18], the associated issues are
not widely accepted and have still to be formalized, this
despite a huge demand coming from a precision control
engineering. This gap, however, should not come as a fully
surprising, given the fact of a nontrivial friction micrody-
namics (visible from several experimental studies [19-21]),
and the uncertain and time-varying friction behavior, see
for example, [22].

Despite the appearance of the several papers mentioned
above, a clearly comprehensible analysis and explanation
of the stick-slip behavior due to the integral feedback
effect in the presence of Coulomb friction remains under-
exposed in the system and control literature. The main
objective of this paper is in filling this gap. The work is
dedicated to the contribution to the convergence analy-
sis of the feedback-controlled systems in the presence of
the Coulomb friction and, thus, to the understanding of
stick-slip cycles that occur in servomechanisms. The main
contributions can be highlighted as following: (i) we derive
and describe the closed-form parameter-dependent stic-
tion region encompassing equilibrium region, (ii) we prove
that only asymptotic convergence to this region can be
achieved and that with stick-slip oscillations. In order to
keep the analysis general as possible and to clarify the prin-
cipal phenomenon of frictional-driven stick-slip response,
a classical Coulomb friction law with discontinuity is
assumed. This (unavoidably) led to a variable-structure
system dynamics, distinguishing between the modes of
a motion sticking and slipping. At the same time, we
show that all state trajectories always remain continuous
and almost always differentiable (except finite switching
between both modes). We provide theorems and identify
the conditions to demonstrate the sticking region around

zero equilibrium to be reachable and globally attractive.
The developed analysis is further reinforced by several
illustrative numerical examples.

1.1 Problem statement
Throughout the paper, we will deal with the feedback-
controlled systems described by

�̈�(t) + Kd
.
𝜙(t) + Kp𝜙(t) + Ki ∫ 𝜙(t)dt + F(t) = 0, (1)

where the derivative, proportional and integral feedback
gains are Kd, Kp and Ki, respectively. Note that we are
purposefully focusing on a PID-type feedback control (1),
where the integral control action is particularly critical for
the friction-driven stick-slip effects, as since long known
in the control practice. Other types of the feedback con-
trols, still including an integral control action, are also
thinkable for analysis but would go far beyond the pro-
vided analysis and results. The nonlinear friction (that
with discontinuity) is denoted by F, and the set-point con-
trol problem is reduced to the convergence problem for a
non-zero initial condition, that is, 𝜙(0)≠ 0. Furthermore,
we use the following simplifications of the system plant
without loss of generality: The relative motion of an iner-
tial body with unity mass is considered in the generalized
(𝜙,

.
𝜙) coordinates. The inherent system damping (includ-

ing linear viscous friction) and stiffness (of restoring spring
elements) are incorporated (if applicable) into Kd > 0 and
Kp > 0, respectively. There are no actuator constraints, so
that the feedback of integral output error is directly appli-
cable via the gain factor Ki > 0.

The control problem (1) has long been associated with
issues of a slow and/or cyclic convergence of 𝜙(t) in the
vicinity of steady-state for the set-point reference. This
(sometimes called hunting behavior or even hunting limit
cycles) has been addressed in analysis and also observed
in several controlled positioning experiments, for example,
[2,4,5,7,13,14]. The phenomena seem to be associated with
an integral control action and nonlinear (Coulomb-type)
friction within a vanishing region around the equilib-
ria, where the potential field of proportional feedback
weakens and cannot provide 𝜙(t)→ 0 within the certain
application-required time t< const. The hunting behavior
is directly cognate with stick-slip, where a smooth (contin-
uous) motion alternates with a sticking phase of zero or
slowly creeping displacement. Stick-slip appearance, para-
metric conditions, and convergence in semi-stable limit
cycles are the focus of our study, while we assume the
Coulomb friction force with discontinuity.
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2 STICTION DUE TO
DISCONTINUOUS COULOMB
FRICTION

In this Section, we analyze the stick-slip behavior of the (1)
system, for which the classical Coulomb friction with dis-
continuity is represented by F(

.
𝜙) = Fc sign(

.
𝜙). Here, the

Coulomb friction coefficient is Fc > 0, and the sign operator
is defined by

sign(z) =

{ 1, z > 0,
[1, 1] , z = 0,
−1, z < 0.

(2)

Note that (2) constitutes an ideal relay with instan-
taneous switching upon change of the input sign. We
also note that for a zero-displacement rate, the friction
equation becomes an inclusion F(0)∈ [−Fc, Fc] in the Fil-
ippov sense [23], when one is seeking for the correspond-
ing analytic solution.

We will consider the feedback-controlled system in a
minimal state-space representation as follows:

.x = Ax + Bu, (3)

𝑦 = Cx, (4)

u = −sign(𝑦). (5)

Note that in this way, we also approach the system nota-
tion provided in [24] for analysis of the relay feedback sys-
tems (RFSs). Introducing the state vector x = (x1, x2, x3)T ∈
R3 of the integral, output, and derivative errors, (1) can be
rewritten as (3)–(5), with the system matrix

A =

( 0 1 0
0 0 1

−Ki −Kp −Kd

)
, (6)

and input and output distribution vectors

B =

( 0
0
Fc

)
, CT =

( 0
0
1

)
(7)

correspondingly.

2.1 Without integral feedback
Firstly, we consider the system (3)–(7) without an inte-
gral feedback action, meaning Ki = 0. In this case, the
phase-plane (x2, x3) ∈ R2 is divided into two regions

P+ = {x ∈ R
2 ∶ x3 > 0}, P− = {x ∈ R

2 ∶ x3 < 0} (8)

by the discontinuity manifold S = {x ∈ R2 ∶ x3 = 0}. It
can be seen that in the discontinuity manifold S, the vector

FIGURE 1 Phase portrait of (x2, x3)-trajectories of the (3)–(7)
system without integral feedback, attracted to S0 from various initial
values [Color figure can be viewed at wileyonlinelibrary.com]

fields of the state value xs
1 are given by

𝑓+(xs) =
x∈P+

lim
x→xs

(Ax + Bu) =
(

0
−Kpx2 − Fc

)
, (9)

𝑓−(xs) =
x∈P−

lim
x→xs

(Ax + Bu) =
(

0
−Kpx2 + Fc

)
, (10)

and are pointing in the opposite directions within |x2| ≤
FcK−1

p . On the contrary, outside of this region (denoted by
S0 in Figure 1), both vector fields are pointing in the same
direction, towards P+ for x2 < −FcK−1

p and towards P− for
x2 > FcK−1

p .
Since both vector fields are normal to the manifold S,

neither smooth motion nor sliding mode can occur for
the (x2, x3)∈ S0 trajectories. It means that any trajectory
reaching S0 will remain there ∀ t→∞. Therefore, S0 con-
stitutes the largest invariant set of equilibrium points,
for (3)–(7) without integral control action. Note that this
has already been shown in [11] and is well known when a
relative motion with Coulomb friction is controlled by the
proportional-derivative (PD) feedback only. In this case,
the set value error can be reduced by increasing Kp but can-
not be driven to zero as long as Fc ≠ 0. The phase portraits
of the trajectories converging to S0 are exemplary shown in
Figure 1 and marked with arrows.

2.2 With integral feedback
When allowing for Ki ≠ 0, it is intuitively apparent that
having reached a point x(ts)∈ S0 at t = ts, the trajec-
tory cannot remain there for all times ts < t<∞. While the

1Note that in the following we will often use: (i) the subscript or super-
script character s for denoting the sticking phase and correspondingly the
sliding mode, and (ii) the subscript or superscript character c for denot-
ing the slipping phase and correspondingly continuous mode. Both will
be used for the time argument t and the state variables x, correspondingly
x1, x2, x3.

http://wileyonlinelibrary.com
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motion states x3(ts) = 0 and x2(ts) = const ≠ 0, the inte-
gral control effort Kix2(ts) ∫ t

ts
dt grows continuously and, at

some finite time (tc > ts), will lead to the breakaway [25]
and a new onset of a continuous motion. This alternating
phase, upon the system sticking, is often referred to as slip-
ping, compare, for example, [5], so that a stick-slip motion
[1,2] appears also in form of the limit cycles. In order
to analyze the friction-induced limit cycles, sometimes
denoted as hunting-limit cycles, compare [7], we firstly
need to look into the system dynamics during the system
stiction, that is, for ts < t< tc. Here, we recall that during
a stiction phase, the system (3)–(7) produces a continuous
switching (with infinite frequency) once x3 = 0, this owing
to the discontinuous relay nonlinearity (2) which is acting
in the feedback loop. One can also notice, in upfront, that
for x3 = 0 the solution of (3)–(7) is needed to be speci-
fied in the Filippov sense [23]. Further, we also note that
the below given developments are motivated by analysis
of existence of the fast switches provided in [24] for RFS,
while the obtained original results rely on the sliding-mode
principles, see, for example, [26,27].

Consider the switching variable (or more generally sur-
face) S = Cx(t) = 0, for which the sliding mode should
occur on the manifold S. This requires that the existence
and reachability condition, compare [26],

.
SS ≤ −𝜂|S| (11)

is fulfilled, where 𝜂 is a small positive constant.

Theorem 1. Given is the control system (3)–(7) with the
Coulomb friction. The system is sticking at x3 = 0 iff

|Kix1| + |Kpx2| ≤ Fc. (12)

Proof. The system remains sticking as long as it is
in the sliding mode for which (11) is fulfilled. The
sliding-mode condition (11) can be rewritten as

.
S sign (S) ≤ −𝜂, (13)

while the time derivative of the sliding surface is
.
S = (CAx±CB) =

(
CAx − sign(S)CB

)
, (14)

depending on the sign of Cx. Substituting (14) into (13)
results in

CAx ≤ CB − 𝜂 for sign(S) > 0, (15)

−CAx ≤ CB − 𝜂 for sign(S) < 0. (16)
Since CB, 𝜂 > 0, the inequalities (15) and (16) can be

summarized in

|CAx| ≤ CB − 𝜂. (17)

Evaluating (17) with x3 = 0 and 0≠ 𝜂→ 0+ results
in (12) and completes the proof.
Remark 1. The condition obtained by the Theorem 1 is
equivalent to the set of attraction {x∈ S: |CAx|< |CB|}
for CB> 0 that was demonstrated in [24, Section 4].

Now, we are interested in the state dynamics during the
system stiction, which means within the sliding mode.
Since staying in the sliding mode (correspondingly on the
switching surface S≡ 0) requires

.
S = C .x = CAx + CBu = 0 for ts < t < tc, (18)

one obtains the so-called equivalent control as

ue = −(CB)−1CAx. (19)

Recall that an equivalent control, [27], is the linear one
(i.e., without a relay action) which is required to maintain
the system in an ideal sliding mode without fast-switching.
Consequently, substituting (19) into (3) results in the
equivalent system dynamics

.xe =
[
I − B(CB)−1C

]
Axe = OAxe, (20)

which governs the state trajectories as long as the system
remains in the sliding mode, and where xe = (x1, x2, 0)T .
Here O is the so-called projection operator of the origi-
nal system dynamics, satisfying the properties CO = 0
and OB = 0. Evaluating (20) with (6) and (7) yields the
equivalent system dynamics during the stiction as( .x1.x2.x3

)
=

( 0 1 0
0 0 1
0 0 0

)( x1(ts)
x2(ts)

0

)
. (21)

It can be seen that neither relative displacement nor its
rate will change when the system is sticking, although the
integral error grows according to

x1(t) = x1(ts) + x2(ts)

tc

∫
ts

dt. (22)

Further it can be noted that if Ki = 0 then the con-
dition (12), correspondingly the inequality |CAx|≤ |CB|,
reduces to |x2| ≤ FcK−1

p , while the sliding mode (21)
reduces to the zero dynamics of the system in stiction (cf.
with results in Section 2.1).

2.3 Region of attraction
Theorem 1 provides the necessary and sufficient condition
for the system (3)–(7) remains sticking. Yet it is also neces-
sary to demonstrate the global attraction of state trajecto-
ries to the stiction region. Recall that the latter corresponds
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to the subset

S0 = {x ∈ R
3 ∶ x3 = 0, |Kix1| + |Kpx2| ≤ Fc} (23)

where the sliding mode occurs (cf. (12) and (21)).
Firstly, we will explore the persistence of the sliding

mode, meaning we will prove whether the system can
stay incessantly inside of Ss

0 = {S0 ∶ x2 ≠ 0}, that is,
for all times ts < t→∞. By making (x1, x2)-projection of
x ∈ R3, one can show that (12) results in a rhombus, as
schematically illustrated in Figure 2.

The indicated vector field is unambiguous due to
the integral control action (cf. the sliding-mode dynam-
ics (21)). It means that after reaching Ss

0 at ts, any trajectory
will leave it at tc once it hits the boundary of S0. Denot-
ing the point of reaching Ss

0 by x(ts) ≡ (xs
1, x

s
2, 0), one can

calculate the new point of leaving Ss
0 as

x1(tc) =∶ xc
1 = xs

2
(

Fc|xs
2|−1 − Kp

)
K−1

i . (24)

Correspondingly, from (22) and (24), one obtains the
time of leaving Ss

0 as

tc =
[
xs

2
(

Fc|xs
2|−1 − Kp

)
K−1

i − xs
1 + xs

2ts
]
(xs

2)
−1. (25)

From the above, it can be recognized that if Ki → 0, the
stiction region S0 blows to the entire (x1, x2)-subspace and,
consequently, tc →∞. It means that a system trajectory will
never leave S0 having reached it—the result which is fully
in line with what was demonstrated in Section 2.1. On
other hand, if allowing for Ki →∞ the time instant tc → t+s ,
according to (25) with xs

1 → 0, due to S0 is collapsing to
projx2

S0.
Let us now demonstrate that S0 is globally attractive for

all initial values outside of S0, meaning ∀ x(t0) ∈ R3∖S0.

FIGURE 2 Rhombus-shape, in (x1, x2)-projection, of the
S0-region of attraction, with vector-field during the stiction mode
and example of an entering and leaving trajectory at ts and tc,
respectively [Color figure can be viewed at wileyonlinelibrary.com]

Using the eigen-dynamics of (3) with (6), which are lin-
ear, one can ensure the global exponential stability by
analyzing the characteristic polynomial

s3 + Kds2 + Kps + Ki = 0 (26)

and applying the standard Routh-Hurwitz stability crite-
rion. Then, the control parameters condition

KdKp > Ki (27)

should be satisfied, for guaranteeing that all eigenvalues 𝜆i
of the system matrix (6) have Re{𝜆i}< 0 with i = 1, … , 3.
Then, the resulting (switched) subsystems .x = Ax ∓ B
behave as asymptotically stable in both subspaces {x ∈
R3∖S0 ∶ x3 ≷ 0} correspondingly. It should be noted
that the condition of the above parameters is conservative,
since the Coulomb friction itself is always dissipative, inde-
pendently of whether x3 > 0 or x3 < 0. This can be shown
by considering the dissipated energy

V̄(t) = −F(t)∫
.
𝜙(t)dt = −F(t)�̄�, (28)

which is equivalent to a mechanical work provided by the
constant friction force F along an unidirectional displace-
ment �̄�. Taking the time derivative of (28) and substituting
the Coulomb friction law results in

d
dt

V̄(t) = − d
dt

F(t)�̄� − F(t) d
dt
�̄�

= 0 − Fcsign
( .
𝜙(t)

) .
𝜙(t) = −Fc

||| .
𝜙(t)||| . (29)

Therefore,
.

V̄(t) < 0 for all x3(t)≠ 0. This quite
intuitive, yet relevant to be analytically expressed, con-
dition reveals the relay feedback (5) as an additional
(rate-independent) damping, which contributes to stabi-
lization of the closed-loop dynamics (3)–(7). This result
will be further used for the proof of Corollary 1. Notwith-
standing this additional stabilizing by-effect, we will keep
the conservative stability condition (27) as the sufficient
(but not necessary) one. This appears reasonable due to
an usually uncertain Coulomb friction coefficient and,

FIGURE 3 Velocity trajectories (from x3(0) = 10) of the Example
1 system with Fc = 0 (solid red line) and Fc = 1 (blue dash-dot line)
[Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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hence, in order for increasing the overall robustness of the
feedback control system. The following example should,
however, exemplify the additionally stabilizing behavior of
the Coulomb friction, even when (27) is violated.

Example 1. Consider the system (3)–(7) with Kd = 0,
Kp = 100 and Ki = 1. The eigenvalues of the system
matrix A are 𝜆1 = −0.01, 𝜆2,3 = 0.0005±10𝑗, which
implies the linear subsystem is asymptotically unsta-
ble. It should also be noted that (27) is not fulfilled. To
evaluate the trajectories of the system (3)–(7), one can
use the particular solution

x(t) = eAtx(𝜏) + A−1 (eAt − I
)

Bu, (30)

for the constant control u = ∓1, which corresponds
to the relay (5), switched in the x3 > 0 and x3 < 0 sub-
spaces. The initial values x(𝜏) = [x1(t), x2(t), 0]T at t = 𝜏

should be reassigned each time the trajectory crosses
the (x1, x2)-plane, meaning the relay switches at x3 = 0
outside of S0. The x3-state trajectory, with an initial
value x3(0) = 10, is shown in Figure 3, once for Fc = 0
(solid red line) and once for Fc = 1 (blue dash-dot
line). It is easy to recognize that even a low-valued
Coulomb friction coefficient (Fc = 1 compared to the
proportional feedback gain Kp = 100) leads to a stabi-
lization of the, otherwise, unstable closed-loop control
response.

Corollary 1. Consider the system (3)–(7) with the con-
trol parameters satisfying (27). The stiction region (23),
given by the Theorem 1, is globally attractive for all initial
values outside of this region, that is, for all x(t0) ∈ R3∖S0.

Proof. By virtue of the passivity theorem, for example,
[28,29], the feedback interconnection of the energy
dissipating systems is also energy dissipating.
Since (3), (4) is dissipative when (27) is fulfilled,
and (5) is also dissipative for x3 ≠ 0, their feedback
interconnection yields dissipative almost everywhere
(except x3 = 0) outside of S0. This implies that any
x(t)-trajectory, starting from outside of S0, converges
continuously, and some ball  ≡ ||x|| around the
origin shrinks over time:

||x(t2)|| < ||x(t1)|| ∀ t2 > t1, x ∈ R
3∖S0. (31)

For some t3 > t2, the shrinking circle becomes
proj(x1,x2) ⊆ S0, and for t4 ≥ t3 a zero velocity x3(t4) = 0
will be consequently reached. This implies x(t4)∈ S0,
which completes the proof.

Remark 2. The sliding-mode condition (13), which
results in |CAx|≤CB and proves the Theorem 1, corre-

spondingly, constitutes the existence and reachability
condition for S0, and is necessary but not sufficient.
This is because (12) does not contain any requirements
imposed on the Kd-parameter value. Theorem 1 and
Corollary 1 constitute the necessary and sufficient con-
ditions for S0 to be both – the globally reachable and
attractive from outside of S0.

3 ANALYSIS OF STICK-SLIP
CONVERGENCE

In this Section, we will analyze the convergence behavior
of stick-slip trajectories of the system (3)–(7). Recall that
having reached Ss

0 at ts, the x(t) trajectory will leave it at
tc, given by (25), which is due to the growing |x1(t)| value,
that will (unavoidably) violate the stiction condition (12).
To show (qualitatively) how the state trajectories evolve
during a stick-slip cycle, consider the triple-integrator
chain (see Figure 4A), which arises out of the closed-loop
dynamics (1).

Eliminating the time argument, which is a standard
procedure for a phase-plane construction, one can write

xndxn = .xndxn−1, n = {3, 2}, (32)

in general terms, that for the first and second (from the
left to the right) integrator. For an unidirectional motion

FIGURE 4 Phase portrait at stick-slip; (A) triple-integrator chain,
(B) (x1, x2)-projection during sticking, (C) (x2, x3)-projection during
slipping, (D) typical trajectory during one stick-slip cycle [Color
figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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(here sign(x3) = 1, for instance, is assumed) and piecewise
constant approximation .xn = const, one obtains

x1 = x2
2(2x3)−1 − xmin

1 , (33)

x2 = x2
3(2

.x3)−1 − xc
2 (34)

after integrating the left- and right-hand sides of (32). Obvi-
ously, for t≥ tc, the x1(t)-trajectory evolves parabolically,
depending from x2(t), see Figure 4B. The x3(t)-trajectory is
square-root-dependent of x2(t), see Figure 4C correspond-
ingly. Note that the increasing and decreasing segments of
the corresponding trajectories are both asymmetric, effec-
tively due to non-constant .xn-value as the motion evolves.
At the same time, one can stress that the extremum xmin

1
(here, minimal due to the assumed positive sign of veloc-
ity) always lies on the x1-axis (cf. Figure 4B) owing to
x1 = ∫ x2dt, and sign(x3) = const. Differently, the
(x2, x3)-projection of the x(t)-trajectory can be shifted along
the x2-axis, while it always ends in x3(ts) = 0 for x(t)∈ S0
(cf. Figure 4C). The resulting alternation of the stick-slip
phases is schematically shown in Figure 4D.

Proposition 1. Having reached S0, the sys-
tem (3)–(7) does not leave Ω ∈ R3 with
proj(x1,x2)Ω ⊆ S0 and converges asymptotically to
x(t) =

t→∞

{
(x1, 0, 0) ∶ |x1| ≤ FcK−1

i

}
within multiple (or

at least one) stick-slip cycles. The stick-slip cycles can
occur with either zero-crossing of x2 or with keeping the
same sign(x2(ts, 1)), where ts, 1 is the time instant when
x(t) reaches S0 for the first time.

When first disregarding the frictional side-effect, that is,
Fc = 0, it is well understood that a non-overshoot of the
set reference value cannot be reached, independently of
the assigned control parameters, provided (i) Ki ≠ 0 and
(ii) the initial conditions are such that either x1(0) = 0 or
sign(x1(0)) = sign(x2(0)). This becomes evident since the
integral error state x1(t) accumulates the output error over
time. That is, in order for the |x1(t)| starts to decrease, at
least one change of the x2(t)-sign is required. An exception
is when sign(x1(0))≠ sign(x2(0)), which allows both x1(t)
and x2(t) to converge to zero from the opposite directions.
Thus, at least one overshoot should appear, even if all con-
trol gains are assigned to have the real poles only; see later
the Example 4.

When the Coulomb friction becomes effective, that is,
Fc ≠ 0, the system can change to the stiction again, and
that also without overshoot of x2 = 0, after starting to
slip at x(tc). It means that a motion trajectory lands again
onto S0 at time ts, 2 > tc > ts, 1 and that with sign(x2(ts,2)) =
sign(x2(ts,1)). Since the system with Kd, Fc > 0 is dissipative,
the energy level is V(ts, 2)<V(tc), meaning the motion tra-
jectory x(t) always lands onto S0 closer to the origin than it

was when leaving S0 in x(tc). Note that the system energy
within S0 can be expressed by the potential field of the
proportional and integral control errors, yielding

V(t) = 1
2

Kix2
1 +

1
2

Kpx2
2 for t ∈ [ts, … , tc]. (35)

One can recognize that the energy level (35), of the
system in stiction, is an ellipse

x2
2

a2 +
x2

1

b2 = 1 with a2 = 2VK−1
p , b2 = 2VK−1

i . (36)

Since the energy V(tc) is bounded by S0, compare
Figure 2, one can show that the semi-major axis is a ≤
FcK−1

p and the semi-minor axis is b ≤ FcK−1
i . From the

system dissipativity and global attractiveness of S0, com-
pare Corollary 1, it follows that the trajectory becomes
sticking again, meaning x(t)∈ S0 for t≥ ts, 2 > tc. Since
V(ts, 2)<V(tc), the ellipse (36) shrinks as a and b become
smaller; note that both are proportional to V(t). It is impor-
tant to notice that during the system is sticking, the energy
level increases, on the contrary, since V(tc)>V(ts, 1). This is
consequently logical since the integral control action feed
an additional energy into the control loop when the sys-
tem is at a standstill. That leads to a breakaway and allows
for the motion to restart again once the sticking trajectory
reaches the S0-boundary.

Remark 3. When the state trajectory reattains the
stiction region x(ts, 2)∈ S0 without overshoot, mean-
ing sign(x2(ts,2)) = sign(x2(tc)), the system is
over-damped by the Coulomb friction. Otherwise,
sign(x2(ts, 2))≠ sign(x2(tc)) means the system is said to
be under-damped by the Coulomb friction. A special,
but as will be shown not feasible, case of x2(ts,2) = 0,
meaning the system reaches equilibrium S0∖Ss

0 and
remains there ∀ t≥ ts, 2, is analyzed below by proving
the Theorem 2.

Theorem 2. The system (3)–(7), with control param-
eters satisfying (27) and Fc > 0, converges asymptoti-
cally to the invariant set Λ = {(x1, 0, 0) ∶ |x1| ≤
FcK−1

i } during a number of stick-slip cycles N ∈ N,
with 1≤N<∞. And there are no system parameter
values and stick-slip initial conditions (x1(ts, n), x2(ts, n))
with n<N which allow the trajectory to reach Λ at the
end of the next following stick-slip cycle within the time
ts, n+ 1 > tc, n > ts, n.

Proof. The convergence to Λ follows from the sys-
tem dissipativity during the slipping and, corre-
spondingly, shrinking ellipse (36), which implies an
always decreasing energy level by the end of one
stick-slip cycle, that is, V(ts, n+ 1)<V(ts, n). This implies
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|x2(ts, n+ 1) |< |x2(ts, n)| for n∈N and ensures such
x(t)-trajectories which start slipping at tc, n and land
closer to the origin at ts, n+ 1 than before at ts, n.

The proof of the second part of the Theorem 2, which
says it is impossible to reach the invariant equilib-
rium set Λ after one particular stick-slip cycle, fol-
lows through the contradiction. For this purpose, we
should first assume that there is a particular setting(

Kp,Ki,Kd,Fc, x1(ts,n), x2(ts,n)
)

for which the state tra-
jectory x(ts, n+ 1)∈Λ, that is, in the next stiction phase
at the finite time ts, n+ 1 > tc, n > ts, n. The initial condi-
tions of a slipping phase are always given, compare
with Section 2.3, by

x2(tc,n) = x2(ts,n), (37)

x1(tc,n) =
Fc

Ki
−

Kp

Ki
x2(tc,n) in 1st quadrant, (38)

x1(tc,n) = −Fc

Ki
−

Kp

Ki
x2(tc,n) in 3rd quadrant (39)

This becomes apparent when inspecting the stiction
phase dynamics (21), (22) and S0-boundary, compare
Figure 2. For reaching Λ at a final time instant 𝜓 =
ts,n+1, while starting at 𝜏 = tc,n, an explicit particular
solution of

0 = C

⎡⎢⎢⎢⎢⎢⎢⎣
eA𝜓

⎛⎜⎜⎜⎜⎜⎜⎝

x1(𝜏)

x2(𝜏)

0

⎞⎟⎟⎟⎟⎟⎟⎠
+ A−1(eA𝜓 − I)Bu −

⎛⎜⎜⎜⎜⎜⎜⎝

x1(𝜓)

0

0

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎦
(40)

with u = ±1, should exist, compare with (30). Due
to the symmetry of solutions, we will consider the 1st
quadrant of S0 only, that is, with the above initial con-
dition (38) and u = +1 correspondingly, this without
loss of generality when solving (40). Recall that the
matrix exponential

eA𝜓 =
∞∑

k=0

(A𝜓)k

k!
(41)

has to be evaluated to find an explicit solution
of (40). Substituting the initial conditions, that is, (37)
and (38), into (40) we solve (40) with respect to x2(𝜏),
and that for an gradually increasing k = [1, … , 40].
Note that an increasing k provides solely an increased
accuracy in evaluating the matrix exponential (41). For
all the solutions evaluated with the help of the Sym-
bolic Math ToolboxTM, it is found that (40) has no
initial-value solution other than zero, meaning x2(𝜏) =
x2(ts,n) = 0. That means there are no other initial
conditions than zero for which a stick-slip cycle could

lead to x(t)∈Λ at t = ts,n+1. This contradicts our ini-
tial assumption that such initial conditions exist and,
hence, completes the proof.

Remark 4. Since no relative motion occurs during a
stiction phase, compare Section 2.2, the trajectory solu-
tion (40) represents the single descriptor of the system
dynamics, which is determining convergence during
the slipping phases. One can recognize that the dis-
continuous Coulomb friction contributes as a constant
piecewise-continuous input u to the solution of tra-
jectories x(t) at tc, n < t< ts, n+ 1. Thus, it comes as not
surprising that the stick-slip convergence appears only
asymptotically, meaning either within one or a (theo-
retically) infinite number of the stick-slip cycles. We
also note that this is independent of whether x(t) reat-
tains S0 with or without overshooting of x2 = 0.

4 NUMERICAL EXAMPLES

The following numerical examples serve to illustrate
and evaluate the above analysis. A dedicated numeri-
cal simulation of the stick-slip dynamics is developed by
implementing (21), (22), and (30), while the conditions
of Theorem 1 provide switching between the piecewise
smooth trajectories of the alternating slipping and sticking
phases of the relative motion of system (3)–(7).

Example 2. Consider the system (3)–(7) with Kd =
20, Kp = 100, Ki = 1000 and varying Fc = {50,75, 100}.
The initial values are assigned as x(0) = {0,−1.1, 0},
corresponding to a classical positioning task for the
feedback-controlled system (1). Note that |x2(0)| >

FcK−1
p so that the trajectories start outside of S0 and are,

therefore, inherently in the slipping phase. The tran-
sient and convergence responses for all three Coulomb
friction values are shown opposite to each other in
Figure 5, compare qualitatively with an experimental
convergence pattern reported in [14, Figure 4].

Example 3. Consider the system (3)–(7) with Kd =
10, Kp = 1040, Ki = 8000 and Fc = 100. The initial val-
ues x(0) = (0,−0.15, 0) are assigned to be close to, but
still outside of, the S0-region. The linear damping Kd is
selected with respect to Fc, so that the system exhibits
only one initial overshoot; and the stick and slip phases
alternate without changing the sign of x2. The out-
put displacement response is shown in Figure 6A. The
stick-slip convergence without zero-crossing is partic-
ularly visible on the logarithmic scale in Figure 6B.
Note that after the series of stick-slip cycles, a further
evaluation of the alternating dynamics (about 10−13

in order of magnitude) is no longer feasible, due to a
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FIGURE 5 Output response of Example 2: transient phase
t = [0, … , 12] sec (A), convergence phase t = [12, … , 120] sec (B)
[Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Output (A) and its logarithmic (B) response of
Example 3 [Color figure can be viewed at wileyonlinelibrary.com]

finite time step and corresponding numerical accuracy,
compare 1st quadrant of the S0-rhombus in Figure 2.

Example 4. Consider the system (3)–(7) with Kd =
56, Kp = 1040, Ki = 6400 and Fc = 100. Note
that the control gains are assigned in such a way
that the linear dynamics (3) and (6) reveal a dou-
ble real pole at 𝜆1,2 = −20 and the third one in
its vicinity at 𝜆3 = −16. This ensures that all states
converge fairly simultaneously towards zero, once the
sign(x3) remains unchanged. For the initial conditions,
x1(0), x3(0) = 0 and the varying initial displacements
x2(0) = {−0.2,−0.25,−0.3,−0.35} are assumed. Note
that all x(0) are outside of S0, while the transient over-
shoot lands (in all cases) within S0, thus directly lead-
ing to the first stiction after an overshoot; see Figure 7.

FIGURE 7 Output response of Example 4 for different initial
values [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Output response of Example 5, the logarithmic
absolute value over the logarithmic time argument [Color figure
can be viewed at wileyonlinelibrary.com]

One can recognize that the integral state requires,
then, the quite different times before the system passes
again into the slipping. During the slipping phase, all
states converge asymptotically towards zero, provided
Fc remains constant. Here, it is important to notice
that in the real physical systems, a varying Fc-value
and the so-called frictional adhesion, see, for example,
[30], at extremely low velocities, will both lead to the
system passing into a sticking phase again, therefore,
provoking rather the multiple stick-slip cycles. Even
though it is not a case here with our ideal Coulomb
friction assumption, the Theorem 2 still holds, since
there is only an asymptotic convergence after at least
one stick-slip cycle occurred.

Example 5. Consider the system (3)–(7) with Kd =
20, Kp = 100, Ki = 1000 and Fc = 50. The initial condi-
tion x(0) = (0,−0.5, 0) is assigned to be on the bound-
ary of S0, thus leading to a short initial slipping and,
then, providing a large number of the stick-slip cycles
by a long-term simulation with t = [0, … , 100000]
sec. The output is shown as logarithmic absolute value
(due to the alternating sign) over the logarithmic time
argument in Figure 8. One can recognize that each
consequent sticking phase proceeds closer to the ori-
gin, while the stick-slip period grows exponentially,
compare the logarithmic timescale. This further con-
firms an asymptotic convergence within the stick-slip
cycles, compare Theorem 2.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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5 CONCLUSIONS

An analysis of the stick-slip behavior during settling of
the feedback-controlled motion with Coulomb friction has
been developed. The most general case of a frictional dis-
continuity at velocity zero-crossing has been assumed,
and the parametric conditions for appearance of a stic-
tion region, encompassing the equilibrium set, have been
derived, that independent of the initial conditions.

To notice is that a symmetric Coulomb friction about the
origin (i.e., zero velocity) is considered. For an asymmetric
friction, that is, with different Coulomb friction coeffi-
cients Fc, {p, n} for positive (p) and negative (n) direction,
the provided analysis is equally valid and requires solely
a separate trajectories evaluation for x3 > 0 and x3 < 0,
compare Section 3. The aspects of Stribeck friction (see,
e.g., [2] for details) are not accounted as less relevant for
principal stick-slip behavior, even though they certainly
affect the period and shape of the corresponding stick-slip
cycles. Here we recall that the Stribeck effect provides
a short-term transient negative damping and, therefore,
rather contributes to the fact that the trajectories each time
leave earlier a stiction region, before (unavoidably) coming
back into stiction at x2 ≠ 0.

Theorem 1 and Corollary 1 proved the stiction region
to be globally reachable and attractive. Theorem 2 stated
that the convergence is only asymptotically possible and
occurs with at least one but mostly an infinite number
of the stick-slip cycles in a sequence. In particular, an
“ideal” convergence of the control configuration with all
real poles in a neighborhood to each other appears with
one initial stick-slip cycle, followed by an asymptotic con-
vergence without new stick-slip transitions. The number
of illustrative numerical examples, with different initial
conditions and parameter settings, argue in favor of the
developed analysis and provide additional insight into the
stick-slip mechanisms of a feedback controlled motion
with Coulomb friction.
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