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Abstract 

Arguably, soccer is a more fluid sport than other popular sports such as baseball, American 

football, and cricket, which explicitly require more discrete ‘plays.’ Moreover, with twenty-

two players always committed, it has more moving elements than basketball or ice hockey. 

From a mathematical perspective, this signifies that soccer has more degrees of freedom than 

these other sports, making it difficult to evaluate the game using one or a small number of 

metrics. Over time, this challenge has been made exceedingly more difficult within the soccer 

community. The availability of data has increased much more rapidly than the scientific 

advancements required to valorize these data. In the aftermath, most recent research papers 

have elaborated on specific in-game data separately and how to approach them - not how soccer 

clubs can assemble and utilize them through big data analytics. In accordance, an exploratory 

case study conducted in collaboration with a major European soccer organization exhibited 

their state-of-the-art technology to mainly focus on player profiling supplementary to player 

recruitment - leaving the business in need of a more tactical advancement. To these ends, this 

dissertation approaches the socio-technical difficulties on how these player-centric metrics can 

be utilized to simplify tactical decision-making in soccer. 

 

Pursuing the research objective, the author follows a design science research (DSR) paradigm 

to develop a web application for tactical decision-making. To assemble and test the web 

application, the author completed an extensive study consisting of two phases. In the first phase, 

a conceptual framework, based on the literature, served as a set of design principles to define 

both analytical and technological requirements for constructing the web application. Then, in 

order to fuel the system with valid information, the author studied proven metrics through a 

systematic literature review and empirical data collected from the major European soccer 

organization. In the second phase, a data-driven system based on polar charts is introduced as 

a provider of adjustable pre-constructed templates, processing raw data from StatsBomb, to 

create personalized data visualizations identifying given prospects and tactical patterns 

according to preferences. Then, a selection of omnifarious soccer experts performed an expert 

review similar to a black-box test (use case) replicating Tottenham Hotspurs FC and Burnley 

FC’s last match (02/28/2021) to demonstrate the web application’s utility. 

 

Drawn from the consensus among experts, the author concludes the system to have shown great 

potential in generalizing the strategic process of identifying tactical patterns. Additionally, these 

results strengthen the practical significance of how efficient the artifact is to locate a proper 

strategy. For example, it took the respondents - unaware of their actual reality - approximately 

20-30 minutes to assess and assemble a game-plan almost congruent to ‘the special’ Jose 

Mourinho. Furthermore, as the author believes this domain an uncharted territory, the study 

paves the way towards a digital transformation of sustainable big data solutions for soccer 

tactics that potentially can generate business value in the future. 

 

Despite a promising outcome, as with any contribution of this type, the sole intention of the 

proposed web application is to serve as a blueprint for future work. As a result, researchers can 
practice their discretion to vary what is proposed or submit and achieve improvements. In 

accordance, an implication extending to the necessity of contextualizing performance indicators 

on the end user’s premises arises as some metrics tend to contradict personal opinions. 

Additionally, it would be interesting to look further into how the artifact could adapt to reality 

and which features to be proven in future research.  

 

Keywords: Soccer, Data-Driven Decision Making, Design Science Research (DSR), Big Data 

Analytics, Web Application, Expert Review, Digital Transformation, Business Value   
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1. Introduction  

Seldom can the genesis of a novel activity be pinpointed with any accuracy. However, at 15.50 

on 18 March 1950, a spectator at Swindon Town’s home game against Bristol Rovers took a 

pencil and notebook out of his pocket. Wing Commander Charles Reep was at that moment 

starting the first comprehensive notational analysis system for soccer (Pollard, 2002, p. 853).  

 

Although Charles was light-years ahead of his time tracking stats and gathering large data sets, 

the rapidly growing frontier of new scientific advancements exceeded his notational system. 

The analogy of prior methods has proceeded into the age of data-driven analytics systems 

powered by digital information or what scholars refer to as big data (Heggernes, 2017; Sykes, 

2016). Additionally, Provost and Fawcett (2013) highlight the data science domain as the tissue 

connecting big data processing technologies to a data-driven analytics system. Moreover, the 

authors define data science as a set of central principles supporting and guiding the extraction 

of information and knowledge from data (Provost & Fawcett, 2013). Hence, uncovering these 

large data sets - containing a variety of data types - hidden patterns is called big data analytics. 

In short, the combined use of these terms involves the utilization of facts, metrics, and data to 

guide strategic decisions that align with every goal, objective, and initiative within an 

organization. (Heggernes, 2017, p. 136; Provost & Fawcett, 2013, p. 3). Furthermore, as there 

exist significant variations used to denote big data analytics, recent studies have begun to 

empirically prove how our choices, behaviors, and even existence in the digital world produce 

data that offers tremendous opportunities to improve organizational outcomes, current business 

methods, and practices (Mikalef, Pappas, Krogstie, & Pavlou, 2020; Pappas, Mikalef, 

Giannakos, Krogstie, & Lekakos, 2018). In comparison, McAfee and Brynjolfsson (2012) 

presented the potential impact of big data among North American companies already back in 

2012 - depending on the data-driven decisions generated from extensive data methods and 

techniques, companies gained a competitive advantage and outperformed the traditional 

approaches by 5%. From here on, it became clear that the analytical aspect of big data practices 

could provide organizations with a competitive edge by creating an information-based arsenal. 

In sum, Mikalef et al. (2020) suggest that in order to derive value from big data, firms must 

identify areas within their business that can benefit from the data-driven insight, strategically 

plan, execute, and bundle the resource mix necessary to turn data into actionable insight. As a 

result of embracing this kind of high-level analytics to their big data ecosystems, businesses 

can uncover hidden information, helping their organizations to thrive on data-driven decisions 

(Pappas et al., 2018; Russom, 2011). 

 

More recently, these expanding opportunities to collect and leverage digital data have 

functioned as a catalyst for the increasing use of data-driven decision-making tools in soccer - 

a chamber of software and service tools for converting data into actionable intelligence and 

insight. In brief, all these processes, approaches, and technologies are often referred to by the 

umbrella term Business intelligence (BI) (Arnott, Lizama, & Song, 2017). Moreover, the 

entrance of such sophisticated tools has led managers over the last decades to alter their 

decision-making - relying less on intuition and more on data (McElheran & Brynjolfsson, 

2017).  

 

In soccer jargon, all the abovementioned data are termed metrics. Based on a vast pool of 

aggregated data, players are benchmarked against their competitors, where a 

final metric indicates their level in a given player-centric key performance attribute (KPI) 

(Memmert & Rein, 2018). This process of generating a graphical representation of player 

performance allows teams to identify an individual’s probability of recreating historical actions 
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across thousands of in-game events (Memmert & Rein, 2018). For example, one of the most 

common metrics assessing an offensive player’s match contribution is expected goals (xG) 

versus actual goals (expected goals difference). A contextual indicator that either reflects if a 

player underperforms in front of the goalie or if he/she is a great finisher continuously 

producing a positive correlation in expected goals difference (Kharrat, McHale, & Peña, 2020). 

 

1.1 Background - how one man’s bad math helped ruin decades of English soccer 

Continuing on Charles Reep’s story, Sykes (2016) conceptualizes Reep’s analytical approach 

to “how one man’s bad math helped ruin decades of English soccer.” By segmenting each event 

data without reflecting on the underlying factors leading up to each outcome, Charles had 

managed to create a cautionary tale of the damage done when stats go wrong, as England flamed 

out at the Euro in 1992, playing a misguided style (Sykes, 2016).  

 

After Charles’s died in the early 21st century, a far more successful but similar method forced 

its way into another sport. Led by Billy Beane, the Oakland Athletics went on a 20 winning 

streak in Major League Baseball (Lewis, 2004). A crucial part of their success rested on how 

the organization applied a selection system powered by algorithms and statistical data - known 

as sabermetrics or, in vernacular, Moneyball. The method identified and filtered suitable 

prospects based on the Oakland Athletics’ specific style of play. Moreover, Neyer (2017) 

defined sabermetrics as “the statistical analysis of baseball data ... aiming to quantify baseball 

players’ performances based on objective statistical measurements” (Neyer, 2017, p. 1). As a 

result, the successful implementation of the ‘sabermetrics approach’ is perceived as a turning 

point in the sport management industry, catalyzing business intelligence applications into the 

sector (Rangaiah, 2020). 

 

1.2 Problem definition - the challenging aftermath of Charles Reep 

In the aftermath of Charles’s telling and the realization of sabermetrics, a diversity of new 

technologies have been added to the rapidly advancing frontier of data-driven practices in 

soccer (Goes et al., 2020). Each approach strives to make it possible for non-expert users to 

exploit cutting-edge analysis to their data (Memmert & Rein, 2018). Correspondingly, 

researchers have been exploring data points separately in this vast pool of opportunities, 

applying all kinds of techniques to decipher their potential (Anderson & Sally, 2013). In 

retrospect, an ongoing and timely challenge as researchers of other domains “found systematic 

evidence that putting data into action through analysis … significantly higher productivity in a 

wide range of manufacturing settings” (Brynjolfsson & McElheran, 2019, p. 28).  

 

As we know it, the beautiful game ripe for an alteration from conventional, rather qualitative 

analysis methods to modern data-driven game analysis techniques (Memmert & Rein, 2018). 

We are starting to recognize how data-driven decisions are changing soccer dynamics, from 

pre-shaping tactics to pinpointing transfer targets (Anderson & Sally, 2013). As a result of 

dealing with this trend, Goes et al. (2020) claim modern match analysts require knowledge 

across the computer science and sports science domains. Whereas, to make innovative 

contributions in the future, it seems reasonable that tactical analyses will be increasingly 

performed by big data technologies across these domains (Memmert & Rein, 2018). For now, 

this thesis explorative pre-case study supported Goes et al. ’s (2020) view reviling most data-

driven approaches to be player-centric, as the management is reluctant to implement data 

completely into their team’s game strategy. Arguably, a finding that implicitly emphasizes the 

lack of proven tactical software in prior research. 
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Nevertheless, tactical identifiers (metrics) exist, such as press height, passes per defensive 

action, action zones, usage rates for individual players, or pitch areas (StatsBomb, 2020). 

However, as management is uncertain of these stats, most tactical work is traditionally done by 

the coaching staff, limiting both their team analysts and external researchers from exploring 

new tactical disruptions (Akkermans & van Helden, 2002). Further, Memmert and Rein (2018) 

justify big data analytics most significant advantage not solely to lie in the magnitude of the 

underlying data, but the potential depth of insight it provides when assembled across various 

sources. Hence, the most conventional challenge in data science for soccer appears to be how 

teams can assemble and utilize proven player-centric tools (or metrics) in collaboration to 

support the team’s tactical decision-making processes.   

 

1.3 Research objective 

Throughout the initial sections, the author has elaborated on professional soccer’s entry into the 

computerized world. As mentioned, a timely challenge, as data availability within the soccer 

community has increased much more rapidly than the tactical advancements required to 

valorize these data (Goes et al., 2020). A statement leading the author to believe this is 

uncharted territory, and a study is needed to obtain a deeper understanding of big data’s 

potential impact on soccer tactics. Thus, the overarching aim of this thesis is to contribute to 

the socio-technical challenges of how data analytics can aid the tactical decision-making 

processes in soccer by proposing the following research question: 

 

Research question: 

 

How can player-centric metrics be utilized to simplify tactical decision-making in soccer? 

 

Pursuing the research question, the author follows a design science research (DSR) paradigm 

to develop a web application for tactical decision-making. To assemble and test the web 

application, the author completed an extensive study consisting of two phases.  In the first 

phase, a proposed framework, developed by Rein and Memmert (2016), served as a conceptual 

framework (design theory) guiding the web application’s architectural stack (Figure 11). Next, 

the author studied theory (proven metrics and conventional systems) through a systematic 

literature review and empirical data collected from two semi-structured in-depth interviews 

with a major European soccer club that adopted big data. 

 

In the second phase, the study proposes an artifact for tactical analysis in soccer, in which an 

expert review demonstrates the web application’s proof-of-use. 

 

1.4 Outline of the thesis  

The outline of this thesis is as follows: section 2 discusses related works on tactical data-driven 

decision-making in soccer and emphasizes the overarching gap in current knowledge. Then, 

section 3 explains the research methodology. Moving forward, section 4 elaborates on the web 

application’s construct and utility, whereas section 5 presents essential findings from experts 

reviewing the application. Further, section 6 discusses the strengths and limitations of the work 

in relation to the theoretical background in section 2 and the results presented in section 5. At 

last, a conclusion is drawn, and further research is suggested in section 7.  
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2. Theoretical foundation 

This thesis’s theoretical foundation extends research conducted from a preliminary literature 

review and an empirical explorative pre-case study. These initial studies were conducted in 

parallel and investigated the use of big data analytics in a major European soccer organization. 

In accordance, both studies examined the following research questions: 

 

“How can soccer analytics be utilized in decision-making processes to enhance soccer 

tactics?” 

 

And  

 

“How has prior literature addressed this?” 

 

Pursuing these questions has been fundamental to comprehend which factors lead the frontier 

of big data analytics (BDA) initiatives in soccer. Hence, the theoretical foundation of this thesis 

represents a descriptive theory that informs the initial prototyping of the artifact portrayed in 

section 4. Therefore, the first sub-section presents an overview of the theoretical background in 

a concept-centric matrix, whereas the second sub-section elaborates on these leading initiatives 

according to tactical decision-making in soccer. 

 

2.1 Theoretical background 

The reviewed articles listed in the concept-centric matrix below (see Table 1) were compiled 

based on the knowledge that informs both the research questions in sections 1.3 and 2 - as the 

author perceives them as complementary. Hence, a systematic review of relevant literature was 

conducted according to the structured approach provided by Kitchenham et al. (2009); Webster 

and Watson (2002). Furthermore, the literature search is organized to meet the thesis selection 

criteria in order to extract the most relevant articles conformed to big data and data-driven 

decision-making in soccer tactics. As a result, this led to significant findings of proven metrics 

(Figure 10) drawn from the different concepts illustrated in Rein and Memmert’s (2016) 

conceptual framework (Figure 9). In addition, the inclusion criteria excluded studies not being 

peer-reviewed, written in English, and published before 2010 in a well-known IS conference, 

IS journal, book, or other favorable journals validated in the NSD register. To select 20 

appropriate publications, the author read through each edition’s scope, excluding those who 

lack relevance, before saving the most fitting candidates in a ‘summary of articles’ for further 

assessment. Additional studies to consider were then identified by forward and backward 

searching the reference lists of included papers. The literature search process is illustrated in 

figure 1: 

 
Figure 1: The systematic literature review’s search process. 
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Ultimately, Rein and Memmert’s (2016) conceptual framework served as an outline when 

organizing the matrix (Webster & Watson, 2002). In accordance, each concept (data sources) 

inside the matrix reflects the most recent developments in data recording technologies that can 

perform science-based analyses of tactical relevance. The most evident metrics drawn from 

within these data sources, how to harvest them, and how each layer of the proposed stack 

contributes to the final visualization are discussed throughout section 4.  

 
Table 1: Concept-centric matrix. 

     Concepts.         
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2.2 Related works  

The related works aim to map out the most applicable metrics for profiling a player according 

to tactical decisions. Although the overarching concepts in table 1 are divided into three sections 

(coaching & scouting data, event data & tracking data, and architectural layers), it is pivotal to 

note how they all intervene to some degree. For example, Spearman (2018) writes about 

tracking data called off-ball values. Such off-ball values include both offensive and defensive 

attributes, making them relevant as coaching- and scouting data considering how to utilize 

them, and tracking data as they give context according to how they are algorithmically 

processed. Furthermore, to address how they vary from each other, they follow the matrix 

structure. 

 

2.2.1 Event - and tracking data (types of data) 

According to Memmert and Rein (2018), there exist two primary data sources that enable an 

analyst to gather, capture and contextualize all the various events addressed throughout this 

chapter: 

 
Table 2: Types of data sources based on Memmert and Rein’s research (2018). 

Event stream data Optical tracking data 

Event stream data annotates the times and 

locations of specific events (e.g., passes, 

shots, and cards) that occur in a game. 

Optical tracking data records the player’s 

locations and the ball at a high frequency 

using optical tracking systems during games. 

 

 

To obtain digitalized statistics derived from these technical advancements, soccer organizations 

gather and re-engineer data through self-developed mechanisms or acquire software through 

well-established stats providers like Opta, Wyscout, Second Spectrum, STATS, SciSports, and 

StatsBomb. Unfortunately, due to the optical tracking system’s expenses, tracking data is only 

available in wealthy leagues or clubs (Memmert & Rein, 2018). 

 

In accordance, one of the most significant challenges pointed out by Rein and Memmert (2016) 

is the accessibility to the data types mentioned above. Moreover, a rising privacy issue as 

commercial institutions, private clubs, and public research institutions oversee the accumulated 

data logs. This gap is also mentioned as an extension of a professional soccer team’s reluctance 

to share data concerning a possible forfeit in competitive advantages. In addition to filling this 

gap, Pappalardo et al. (2019) unleashed one of the most extensive open collections of soccer 

logs ever released. The log contains spatio-temporal events (shots, passes, fouls, etc.) during 

each match for an entire season of seven dominant soccer leagues (Premier League, La Liga, 

etc.). To identify which event data are turning out to be the most pivotal from a similar soccer 

log to Pappalardo et al., Hassan, Akl, Hassan, and Sunderland (2020) applied a neural network 

analysis tool. The paper resulted in a disruptive approach predicting the most significant 

sensitivity attributes affecting a match by objectively quantify the match-attributes sensitivity. 

The analysis outcome identified what the authors deemed to be the 17 most critical performance 

attributes - out of 75 - to win a game. The most prominent attributes retrieved to win a game 

from their analysis are distance covered in the final third and pass attempts in the final third.  

 

Further, Kharrat et al. (2020) undertake the idea behind the performance measures of expected 

variables, as conventional approaches simplicity lack context and a deeper understanding of 

the situations in which actions are committed. Therefore, the article presents an enhanced 

methodology based on the conventional plus-minus differential method to calculate expected 
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events vs. actual events. The new method’s outcome correlates to a player’s performance due 

to what is expected of him in every context of his gameplay - to see if he underperforms, 

overperforms, or neither. The method is also intended to predict future performance, likewise, 

for team performance. Hence, they present the underlying variables illustrated in table 3:  

 
Table 3: Expected variables retrieved from Kharrat et al. ’s (2020) research. 

Expected goals (xG) Expected points (xP) Plus-minus rating 

The probability of every 

shot being a success or 

goal. 

Based on each match difference 

in xG. The highest xG equals 3 

points, lowest 0 points, and 

similar 1 point. 

A modified plus-minus rating, 

measuring manpower, home 

advantage, and recent 

performance. 

 

 

In accordance with the expected variables, Kharrat, McHale, and Peña (2020) argue that xG is 

more informative than actual goals when judging how well a team has played. However, since 

goals are rare, they do not always reflect a team’s performance on the pitch. Hence, the perhaps 

most intriguing outcome and prominent finding are when Kharrat, McHale, and Peña’s (2020) 

model (plus-minus rating) identifies one of world football’s hottest properties. Already the 

season before Ajax’s historic run in the UEFA Champions League, their method featured 

Matthijs de Ligt as a top-five defender in the 18/19 UCL season. Furthermore, due to their re-

engineering work with the expected variables, the researchers have begun to partner with a 

Premier League club, using the same ratings to identify talent across Europe and aid its player 

acquisition. 

 

Moving forward, Llana, Madrero, Fernández, and Barcelona (2020) express all the 

abovementioned statistics as so-called on-ball metrics, widely used and accepted by clubs to 

enhance decisions. However, on the horizon is a new metric taken under the magnifying glass. 

Llana et al. (2020) define it as off-ball advantages and describe the metric as situations when a 

player is in a favorable disposition to receive a potential pass. In the case of receiving it, the 

player would likely improve the possession’s value. However, due to the limited nature of event 

data, these metrics measure a small portion of what actually occurs during a soccer game. To 

make this concrete, one can consider that, during an ordinary match, Barcelona (now Atletico 

Madrid) striker Luis Suarez has the ball for a marginal 90 seconds of the 90 plus minutes of 

game-time. Therefore, what Suarez, or any other player, contributes to the play, like pressing, 

runs to open space, or tactical positioning, cannot entirely be measured by event data alone 

(Peralta Alguacil, Fernandez, Piñones Arce, & David, 2020). 

 

Therefore, Spearman (2018) aims to evaluate the quality of the prevalence off-ball metrics 

discussed above. For example, one considers a tall and unmarked center-forward positioned at 

the far post during a corner kick. Sometimes the cross comes in, and the center-forward heads 

it in effortlessly. Other times, the cross flies over his head. Another example is a winger played 

onside while making a run past the defensive line. Sometimes the through-ball arrives; other 

times, the winger must break off their run because a teammate has failed to deliver a timely 

pass. In both circumstances, the attacking player has created an opportunity even if they never 

received the ball. Hence, the paper constructs a probabilistic physics-based model that uses 

spatio-temporal player tracking data to quantify what they define as off-ball scoring 

opportunities (OBSO). 
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2.2.2 Coach- and scouting data (utilization of data) 

To apply such sensitivity attributes as extracted by Hassan et al. (2020), the promising expected 

values discussed by Kharrat et al. (2020), and the off-ball metrics conducted by Llana et al. 

(2020); Spearman (2018), McHale and Relton (2018) elaborate that these indicators need to be 

of use to the managers and coaches. Meaning, the attributes should be utilized to identify 

appropriate line-ups, key-players and exploit the opposition team’s weaknesses. Further, 

Behravan et al. (2019) elucidate that such complex data (soccer logs) generated by automated 

technologies should also provide valuable knowledge according to a player’s tactical 

whereabouts. Not to the rigidity of the formation in itself. Therefore, the authors present an 

automatic particle swarm optimization-clustering algorithm to cluster a data log of player 

performance centers in different games. As a result, they extracted different soccer roles, 

revealing behavior within their positional cluster, also known as a player’s natural position.  

 

Relative to Behravan et al. (2019) findings, does Pappalardo, Cintia, Ferragina, et al. (2019) 

introduce the ranking system PlayeRank. This data-driven framework offers an honest 

multidimensional, and role-aware evaluation of soccer players’ performance. Moreover, the 

authors explain that these data-driven player-performance evaluations are getting more 

fundamental in the soccer industry daily. However, there is no consolidated and widely 

acknowledge metric for measuring performance quality in all its facets. There are two reasons 

for this:  

 

1. On the one hand, a wealth of sports companies, and television broadcasters, websites 

such as Opta, WhoScored.com, Footballslices.com, and Understat.com, as well as the 

plethora of social media platforms for fantasy soccer and e-sports, extensively use 

soccer statistics (from various sources) to compare the performance of professional 

players to increase engagement by critical analyses, scoring patterns, and insights.  

 

2. On the other hand, team managers and coaches are interested in analytical tools to 

reinforce their tactical analysis and monitor player’s quality during individual matches 

or entire seasons. Not least, soccer scouts and performance analysts are continuously 

looking for data-driven tools to improve the retrieval of talented players with in-demand 

characteristics. A process based on evaluation criteria that contemplate the complexity 

and the multi-dimensional nature of soccer performance. In turn, measuring 

performance alludes to computing a data-driven performance rating that quantifies the 

quality of a player’s performance in each match. Proven a complicated assignment since 

there is no objective and shared definition of performance quality - the bottom-line 

being soccer organizations to rely entirely on their own data analyst when rating players.  

 

Thus, Dick and Brefeld (2019) approach these player ratings from a conceptual point of view. 

They proposed an in-depth RL approach to learn valuations of multiplayer positionings using 

positional data. They claim their work composes the first purely data-driven approach to read 

and interpret games and, thus, closes the gap toward computational tactics. For instance, 

correlations between a dangerousness metric and the traditional performance (event data) 

indicators like the ones elaborated in section 2.2.1 - playing speed, passing, or expansion of 

teams - could be used to group historic episodes against an opponent. These groups could then 

automatically devise strategic insights for this rival. For example, the historic groups could 

indicate counterattacks as more propitious than slow playmaking or that crosses led to more 

perilous situations. These insights could then be integrated into the individual game plan and 

support a manager in his decisions.  
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At last, another tactical perspective undertaken by Van Haaren (2020) is looking at player 

chemistry from an observational and a predictive perspective. In turn, this could potentially 

thrive in combination with Dick and Brefeld’s (2019) method, recognizing the best line-up for 

a particular opposition. The purpose of the observational setting is to observe the chemistry 

between players who have played together. This setting is relevant for a manager who needs to 

decide on the best possible line-up for an upcoming match. Further, the predictive setting 

predicts the chemistry between players who have never played together before, which is a 

particularly relevant context for scouts assessing the fit of a future signing. However, the 

authors aim to demonstrate how chemistry metrics can enhance team building, identify 

appropriate transfer targets, decide on the best possible line-up, etc. As a result of their research, 

the authors present a method capturing the mutual attacking and defensive chemistry for given 

duos of players. The approach claims to quantify a player’s collective impact on scoring goals 

and prevent their rivals from scoring goals. They also demonstrated how the chemistry metrics 

could identify an appropriate transfer target for a club. 

 

Furthermore, Van Haaren (2020) uses a Team Builder that assembles a maximum-chemistry 

team from a given set of players. For example, their model suggested Hakim Ziyech`s – being 

an Ajax player at the time – to achieve the highest offensive chemistry with the players from 

Bayern Munich and Chelsea FC. A year later, the player joined Chelsea and started with some 

very promising displays before getting two fundamental injuries sidelining him for most of the 

season. 
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3. Research method  

In essence, this section illustrates the selection of the methods adopted to solve the research 

problem. According to the Frascati Manual, “Research is the creative and systematic work 

undertaken in order to increase the stock of knowledge (OECD, 2015).” Moreover, Hellevik 

(2002) elaborates that any “means that serves this purpose belongs to the arsenal of 

methods.” In turn, the author presents a clear rationale for the selected research philosophy, 

research design, research approach, and research strategy. Furthermore, the author exhibits the 

data collection and analysis methods to extract constructive findings established throughout the 

dissertation’s two phases (Figure 2). The first phase contains methods used in the pre-studies 

leading to this thesis problem definition and research objective. On that account, a literature 

review was in parallel with an exploratory case study conducted. In addition, these preliminary 

studies served as a foundation for identifying proven metrics and an illustrative description of 

the application’s development process. Followingly, the author presents phase two. This phase 

comprises the data generation methods applied for collecting and analyzing data retrieved from 

experts testing the system. In deep detail and concentrating on the analyzing stage, the criterion 

for validity and reliability are also manifested here. In accordance, a brief explanation of 

occurring limitations is also proposed. Eventually, the author elaborates on his perspective and 

goals regarding research ethics before summarizing the thesis research methods in figure 8. 

 

3.1 Research philosophy 

Researchers may have different research perspectives based on different philosophical 

paradigms when considering how the research should be conducted and how knowledge should 

be acquired and developed. Hence, a paradigm is a set of shared assumptions that pertain to 

which philosophical worldview one has and how one perceives different aspects of reality 

(ontology). Accordingly, Walsham (1995) describes three distinct views on reality: external 

realism, internal realism, and subjective realism illustrated in table 4: 

 
Table 4: Alternative stances on reality (Walsham, 1995). 

Ontology 

Term: Definition: 

External realism Reality exists independently of our construction of it. 

Internal realism Reality-for-us is an inter-subjective construction of the shared human 

cognitive apparatus. 

Subjective realism Each human person constructs his or her own reality. 

 

Considering Walsham’s (1995) definitions, the author perceives reality as subjective and 

influenced by previous experiences and knowledge. Thus, the author realizes that the research 

conducted and the results found are not objective. This research’s stance on reality is therefore 

not necessarily like other human’s perception of reality. Ergo, a paradigm also represents a 

perception of how knowledge on reality can be acquired (epistemology). Accordingly, Oates 

(2006) describes positivism, interpretive, and pragmatism as the three most central 

philosophical paradigms. These elemental epistemologies emulate the work of Creswell (2014), 

Goldkuhl (2012), and Oates (2006) in table 5: 
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Table 5: Research philosophies based on Creswell (2014), Goldkuhl (2012), and Oates’s (2006). 

Epistemology 

Term: Definition: 

Positivism Research is positivistic when it is characterized by measurable variables, 

hypothesis testing, and generalization from a small to a 

larger population (Oates, 2005). 

Interpretivism Interpretive research in IS and computing is concerned with understanding 

an information system’s social context. Concerning the social processes by 

which it is developed and construed by people and through which it 

influences and is influenced by its social setting (Oates, 2005). 

Pragmatism Pragmatism is concerned with action and change and the interplay between 

knowledge and action (Göran Goldkuhl, 2012). According to pragmatism, 

society is in a continuous process of action. Pragmatic researchers want to 

create constructive knowledge based on action and are also helpful for 

future actions. Action is essential for the pragmatic paradigm, not only for 

the sake of the action itself but also because an action is a path to change. 

The pragmatic paradigm places the research problem at the center and uses 

all approaches to understand the problem (Creswell, 2014). 

 

Considering Creswell (2014), Goldkuhl (2012), and Oates’s (2006) philosophical views, this 

thesis’s overarching purpose is to address the socio-technical challenge of how soccer analytics 

can be utilized in tactical decision-making processes. Therefore, the main target is to assess/test 

the utility of the web application presented in figure 16 and compare the tool to conventional 

methods applied for soccer tactics. For these reasons, the author could structure the research 

paradigm under an interpretivism worldview. However, as pragmatic researchers are mentioned 

to create constructive knowledge based on action, and action is the path to change, the author 

deems this paradigm more appropriate to a study that intervenes in the world. Hence, from a 

subjective realism viewpoint, the author perceives the pragmatic paradigm well suited for the 

undertaken design science research as it interferes with organizational changes and artifact 

development.  

 

3.2 Research design 

In accordance with the author’s philosophical stance, the research design is a plan for how the 

research is carried out from start to finish. According to Yin (2017), a research design is a 

systematic order connecting empirical data to a study’s preliminary research questions and 

conclusions. Moreover, de Vaus (2001) states a research design to ensure that the data retrieved 

enables us to explain the initial question as explicitly as possible. Therefore, when constructing 

the study design, the researcher should reflect on one crucial question (de Vaus, 2001): 

 

“What evidence is imperative to convincingly address the research question?” 

 

Research question: 

 

How can player-centric metrics be utilized to simplify tactical decision-making in soccer? 
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Subsequently to de Vaus’s finding, Jacobsen (2015) elaborates that in order to identify crucial 

evidence that addresses the research question, the research design should be divided into two 

conditions depending on whether the study is broad (extensive) or in-depth (intensive), and 

whether the study is descriptive or explanatory (Jacobsen, 2015). Correspondingly, this study 

has chosen to go in-depth, using design science research as a research strategy and an expert 

evaluation as a data generation method.  

 

Furthermore, researchers can distinguish between describing or explaining (Jacobsen, 2005). 

A descriptive design involves describing a situation that leads to a rich and detailed analysis of 

a specific phenomenon and its context. The analysis tells a story that includes discussing what 

has happened and how different people perceived what happened. On the contrary, when using 

an explanatory design, the researcher goes further than a descriptive design. The aim is to 

explain why things happened the way they did and whether notable outcomes occurred. In 

addition, an attempt to identify several, often coherent factors that have affected an event’s 

outcome is made (Oates, 2006; Jacobsen, 2005).  

 

Based on the above arguments, this study has both an explanatory and a descriptive design. A 

preliminary literature review and an explanatory pre-case study were first carried out to argue 

for what has become the application’s research context, construct, and contribution. Hence, the 

research design has also been twofold. In phase 1, the author inherits the perception of a 

practitioner-oriented framework (Figure 9) for introducing computer-driven systems in soccer 

and, in parallel, aggregates a systematic literature review, which led to a concept-matrix of 

critical success factors (proven metrics). This part of the study is partly theory-building as the 

framework is built and aggregated based on several sources from research and practice. Then 

the author applied the criteria from the framework to conduct an exploratory case study. The 

purpose was to identify whether the proven metrics were taken into account in one of Europe’s 

largest football clubs - to reveal challenges in today’s systems. Based on findings from phase 

1, the author developed a web application for tactical analysis to propose concrete measures 

that can handle the identified challenges elaborated in section 1 and thus increase the 

prerequisites for a successful game plan. Phase 2 has an explanatory design. The author wants 

to explain how soccer clubs can handle the tool by proposing a concrete proof-of-concept 

through a scenario demonstrating the application’s usability and an expert review assessing its 

utility.  

 

At last, the action plan in figure 2 illustrates the research design that enables the author to collect 

and process data needed to pursue the research question:  
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Figure 2: The thesis research design based on an idea by Dube and Robey (1999). 

3.3 Research approach  

Ultimately, to present conclusions that can address the research problem, the study has 

comprised design science research as a strategy with a qualitative approach to evaluate data 

retrieved from the chosen research method of expert review. 

 

3.3.1 Design science research as a strategy 

To convincingly address the research question in line with traditional IS research, the author 

follows Hevner et al.’s (2004) framework (Figure 3) for design science research (DSR). The 

DSR strategy aims to solve practical challenges and gather knowledge so that the phenomenon 

can be further researched (Hevner, 2014). The solutions to these challenges and problem areas 

are acquired through the development and application of an artifact. Moreover, artifacts can be 

constructions, models, and prototypes that contribute to IS research so practitioners can more 

easily understand and solve identified challenges connected with IS implementations (Hevner, 

March, Park & Ram, 2004). Therefore, the design research process involves several steps, and 

it often ends in a series of changes in the product (see Figures 14, 15, and 16). In this thesis, the 

artifact is a web application for tactical analysis in soccer. 
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Figure 3: DSR Framework based on Hevner, March, Park, and Ram (2004, p. 80). 

In brief, the framework consists of two concepts. First, we have the relevance concept, which 

focuses on what is essential in organizational practice and what feeds this thesis’s particular 

business need (see Section 1). Second, to assess this particular need, one applies 

the rigor concept, which focuses on what is known about the problem and what relevant 

knowledge to apply (see Section 2). In turn, combining these concepts into the evaluation, 

development, and building cycle of the web application, Hevner et al. (2004) claim the approach 

to help solve the business need – which in this case, is the lack of holistic tactical soccer tools. 

Correspondingly, the undertaken research utilizes an expert review to assess, justify, evaluate, 

and refine the proposed web application’s utility throughout the cycle.  

 

In essence, Gregor and Hevner (2013) explains the DSR method to match that defined by 

Peffers, Tuunanen, Rothenberger, and Chatterjee (2007), and the following steps are 

incorporated into this thesis structure: (1) identifies problem; (2) define solution objectives; (3) 

design and development; (4) demonstration; (5) expert evaluation; and (6) communication. At 

the same time, constituting other approaches, Peffers et al. (2007) developed a synthesized 

research process model illustrating the steps above to involve five activities, which is adjusted 

in relevance to this thesis structural context in figure 4:  

 

 
 

Figure 4: Design science research process based on Peffers et al. (2007). 

Activity 1

• Actualizing a 
problem 
situation.

Activity 2

• Parsing the 
initial 
literature 
review, 
published 
literature, and 
the 
undertaken 
case study for 
ideas.

Activity 3

• Developing 
prototype 
pattern 
solutions, and 
testing these 
prototypes in 
practice, both 
personally 
and with 
others. 

Activity 4

• A proof-of-
concept 
demonstratio
n of the 
proposed 
patterns' 
applicability is 
given later, 
presenting a 
scenario 
assessing 
potential line-
ups to 
explore the 
designs' 
fidelity 
according to 
actual line-
ups.

Activity 5

• Testing and 
revising the 
solution 
pattern have 
occurred in 
expert 
reviews, with 
preliminary 
versions 
exposed to a 
relevant 
audience. As 
a result, a 
summative 
evaluation is 
drawn from 
expert 
feedback.
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3.3.2 Methodological approach: expert review  

In order to prove the utility of an artifact, Horváth (2007), Baskerville and Myers (2015) explain 

“The dual mandate of the DSR: (1) to utilize the gained knowledge to solve problems, create 

change or improve existing solutions; and (2) to generate new knowledge, insights, and 

theoretical explanations.” For that reason, researchers in DSR must apply proper 

methodological inquiry types within behavioral theories that provide specific direction for the 

chosen procedures (Creswell, 2014). Building upon this classification, Fischer, Winter, and 

Wortmann (2010) elaborate that there is a broad consensus that kernel theories are theories from 

natural or social sciences that serve as a foundation for artifact construction (Walls et al. 1992, 

p. 42). However, as the author has taken a pragmatic stance, Goldkuhl (2004) and Venable 

(2006b) consider kernel theories as only one way of grounding and point out the importance of 

artifact impact over artifact grounding. Hence, the author has chosen the methods of inquiry to 

reflect more upon the characteristics and research strategy stipulated in section 3.3.1. 

 

Moreover, this allows for adding to the following qualitative research process (see Section 

3.3.3) by utilizing an expert review as a methodological approach for validating and exploring 

the artifact’s usefulness. In accordance, the author can ask managers if they find the proposed 

artifact useful when evaluating the novel web application according to the given organizational 

context in sections 4 (interior mode) and 5 (exterior mode). To these ends, this thesis mirror 

Sonnenberg and Vom Brocke’s (2012) three principles for evaluating the web application 

illustrated in table 6:  

 
Table 6: DSR evaluation retived from Sonnenberg & Vom Brocke (2012). 
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Furthermore, as Sonnenberg & Vom Brocke (2012) argue that these principles are interrelated 

in that one principle supports the other principles, the author has applied Sonnenberg & Vom 

Brocke’s (2012) modes of DSR inquiry illustrated in figure 5. This method builds on prior work 

on DSR evaluations. It extends the notion of ex-ante - and ex-post evaluations by emphasizing 

that in order to achieve rigor in DSR, it is not sufficient just to let the IT artifact emerge in the 

build phase and evaluate its use, but to ensure proper design decisions in order to consistently 

and rigorously converge to a feasible and valuable artifact. In particular, it is argued that by 

following these principles and methods, the prescriptive knowledge produced in section 4 (ex-

ante evaluation) can be considered to have a truth-like value proving the artifact’s utility. 

 

 

 
 

Figure 5: Modes of DSR inquiry retrieved from Sonnenberg and Vom Brocke (2012). 

As a result of demonstrating an ex-ante evaluation (design theory) in section 4, the unique 

phenomena (see Section 1 and 2) that appear from the synergy of people, organizations, and 

technology would be qualitatively assessed through an expert review in section 5 (ex-post 

evaluation). According to Sonnenberg and Vom Brocke (2012), maintaining this ‘build-

evaluate’-like pattern embodied in existing DSR methodologies would have substantial 

epistemological implications on the validity of knowledge created while the artifact emerges. 

Hence, the author can generate knowledge adequate for further theory development or problem-

solving (Klein & Myers, 1999).  
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3.3.3 Qualitative process 

In line with the author’s pragmatic stance, strategy, and methodological choice, a qualitative 

study provides a researcher with opportunities to examine cultural and social phenomena in IS 

research (Myers & Avison, 2002). Moreover, Oates (2005) characterizes the qualitative 

approach as examining few events in-depth to gain broader knowledge and understanding about 

a phenomenon. Hence, as holistic-tactical-analysis in soccer is an area where there is little 

previous research, the author considered it appropriate and necessary to acquire this in-depth 

understanding of how professionals interact with the web application. As a result, the qualitative 

approach encourages the author to comprehend and rationalize the occurring interplay between 

knowledge and action drawn from experts testing the artifact. Additionally, data collection 

techniques such as an interview also aid in structuring and processing qualitative data, 

documents, and participatory observation (Myers & Avison, 2002). 

  

Furthermore, it is essential to note that the composed artifact is a component of a human-

machine problem-solving system. For such developments, knowledge of empirical work and 

behavioral theories is crucial to construct and assess them. The constructs, components, and 

methods are therefore exercised within relevant environments by appropriate subjects. Because 

the proposed artifact represents the ‘machine’ part of the human-machine system, the principal 

aim is to determine how well it works, not theorize around or confirm anything concerning why 

it works (Gregor & Hevner, 2013). Thus, the informants should have a relative background 

such as coach, data consultants, computer science, or sports science with a footballing 

background. Determining how well it works would have been more challenging if the study 

had used a quantitative method - as the method does not consider the context of the study (e.g., 

scenario) and is less flexible than the qualitative methods. Particularly when the specific social 

and institutional context forming this research will be lost in the quantified textual data. For 

example, as the artifact is in a continuous cycle (build-evaluate pattern) of improvements, it is 

impossible to improve and adjust a survey after being sent out (Neuman, 2014). 

 

To these ends, the data collection needed to be flexible to adjust the interview guide/expert 

review along the way, as minor defects or lack of contextual data could occur in the system. 

Subsequently, this proved appropriate as the author - before the study - had little knowledge of 

how various soccer clubs operate their data-driven systems for tactical use. The author was thus 

able to continuously adapt and sharpen the study’s focus based on new feedback and contextual 

understanding of how others perceived the application. Based on the characteristics of 

qualitative approaches and the study’s scope, the author believes that the choice of approach 

has provided a reasonable basis for answering the research question.  
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3.4 Data collection and analysis  

In this section, the author presents the data collection techniques used for this study in-depth. 

First, in phase 1, the author elaborates on the methods used in the pre-case study leading to this 

thesis problem definition, the literature review process identifying proven metrics, and the 

illustrative description of the applications development process in figure 11. Then, in phase 2, 

the qualitative expert interviews are given as the primary data source. Further, a description of 

how the author has carried out the data analysis is elaborated, followed by a section assuring 

the research’s quality (reliability and validity). At last, an elaboration of the study’s ethical 

dilemmas and the methodological limitations are presented. Thus, this section explains the key 

parts of the process that have shaped the author’s understanding and provided this study with a 

qualitative foundation. 

 

3.4.1 Phase 1: pre-study  

In the autumn of 2020, a literature review was in parallel with an exploratory case study 

conducted and used as a foundation for the web application construct - shown in figure 11. 

Moreover, the conducted systematic literature review focused on scrutinizing existing literary 

contributions encompassing analytical metrics used in soccer. Based on the most proven 

metrics, an ‘instruction of use’ was proposed to guide developers in designing an analytical 

visualization for strategic decision-making in soccer. Further, in collaboration with two 

employees of a significant European soccer club, this thesis pre-case study confirmed the 

‘instruction of use’ as feasible in their environment. These participants had different tasks and 

areas of responsibility. However, both were tightly linked to all strategic decisions based on 

data. 

 

Further, the pre-study results helped form the basis for this thesis’s focus and development of 

the interview guide in the main study. As a result, the author learned that participants were 

dissatisfied with the environment’s current lack of tactical analysis systems. Hence, the author 

chose to develop a tool based on these two studies to address this issue and test it during the 

main study. 

 

3.4.2 Phase 2: main study 

In this phase, both interviews and participatory observations were used to collect data and 

generate findings. Hence, findings are based on an iterative process (hermeneutic process) 

where developing prototype pattern solutions and testing these prototypes were done personally 

and with others. Finally, testing and revising the conclusive solution patterns have occurred 

through expert reviews, with preliminary versions exposed to people familiar with the subject. 

 

Generation method - expert evaluation 

Selection of informants 

When selecting informants, it is essential to note that the composed application is a component 

of a human-machine problem-solving system. For such developments, knowledge of empirical 

work and behavioral theories is crucial to construct and assess them. Therefore, the constructs, 

components, and methods of the use case (expert review) were exercised within relevant 

environments by appropriate subjects (Figure 6) relevant to soccer tactics. Additionally, as Goes 

et al. (2020) claim, modern match analysts require knowledge across the computer 

science and sports science domains; one selection criterion was to acquire an in-depth 

understanding of how professionals from various domains interact with the web application.  
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Figure 6: Overview of the respondent portfolio, date of the review, and duration.  

Conducting the interview/expert review 

The author did not use the same procedure for all the interviewees, as some minor defects were 

detected and fixed as the informants identified them. However, these minor flaws did not affect 

the reliability or validity of the review. The interviews were performed with a semi-structured 

interview guide. To better understand the web application’s utility, the interviewees were sent 

a preparation document (see Appendices A, B, and C) and read the proof-of-concept illustrated 

through a scenario (see Appendix C). They were also presented with the use case’s restrictions 

to save time on formalities during the test/evaluation. Hence, they had the opportunity to 

prepare and reflect on the questions in advance. Some of the questions were of the general sort, 

such as “How would you specify your current role regarding analytics?”. In contrast, others 

were adapted to test and evaluate the system, like “Costumed for your needs, would this artifact 

simplify your current approach to tactics?” 

 

In some cases, it was appropriate to let the interviewee steer the direction of the interviews. In 

that way, the author got into topics that the author would not get into if he had conducted a 

more structured interview. The author wanted to conduct the interviews as individual face-to-

face interviews because it provides solid communication. Most of the interviews were 

conducted over Zoom or Teams (video conferencing tools) to avoid travel and due to the 

corona-pandemic. The overview of the informants is shown in figure 6. 

 

In short, the interview guide is divided into four phases. Phase 1 serves as an introduction where 

the author presented himself and explained the assignment’s focus (if needed) and how the 

interview would take place. Further, phase 2 consisted of some simple background questions 

and the respondent's current approach to data analytics. Phase 3 represented the utilization of 

the artifact (expert review) with accompanying questions. Finally, phase 4 was the end of the 

interview. The author noted a summary of each expert’s assessment and opened up for the 

respondent to correct any misconceptions and provide the necessary additional information. 

 

Observation 

The main gathering of data is collected through observations both during the interviews and 

after. The informants let the author record their interaction with the artifact on video while 

utilizing and evaluating the application according to the use case. 
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3.4.3 Method for analyzing data 

For the expert reviews, recorded semi-structured interviews were transcribed and analyzed. The 

data analysis was then performed using thematic analysis by Creswell (2014). The underlying 

figure represents the hierarchical qualitative data analysis approach. Although the method 

seems rigid, Creswell (2014) concludes it as more interactive in practice. Furthermore, the 

approach fits both qualitative and quantitative data analysis when the plan explicitly uses 

interviews as the source of raw data. The main findings extracted from the data collections 

expert evaluations are categorized and analyzed according to Creswell (2014) thematic 

framework and illustrated in table 8, consisting of four expert interviews (Figure 6 and 

Appendix A): 

 

 
 

Figure 7: Data Analysis based on Creswell (2014, p. 247). 

Thus, when analyzing the information from the expert evaluation, it was essential to transform 

the raw data into the same format by transcribing the interviews. Moreover, there are two forms 

of transcription; naturalized and denaturalized (Davidson, 2009; Oliver, Serovich, & Mason, 

2005). In naturalized transcription, the interview must be written down words for words and 

with as many details as possible (e.g., dialect) (Hutchby & Wooffitt, 1998; Oliver et al., 2005). 

Using a denaturalized approach to transcription, one tries to differentiate the interview’s 

substance, which means the main content, rather than depicting dialect and accent (Davidson, 

2009; MacLean, Meyer, & Estable, 2004). The author has chosen to carry out denaturalized 

transcription in this research, which quickly finds the most pivotal content. Notations were also 

written down on personal notes based on observations and reflections made under the 

interviews. Additionally, the author identified the main themes in the data using these segments 

presented by Oates (2005):  
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1. Segments that are not relevant to the study.  

2. Segments that provide general descriptive information which helps understand the 

respondent’s context and history.  

3. Segments that are relevant to illuminate the focus of the study and/or answer the 

research question.  

 

The categories were then selected based on previous research (deductive) and collected data 

(inductive). Much of the literature the author studied deals with big data solutions and proven 

metrics according to various systems and tools. Therefore, it is natural that the categories were 

chosen partly based on this. Hence, by basing the categories on previous research, such as 

combining Rein and Memmert’s (2016) framework to related works, the author could test 

whether the results are reflected in research and illuminate areas the research does not cover. 

For example, the author learned that little research focuses on applying knowledge management 

in connection with user support. Finally, the categories were placed in table 8 (see Section 5.1). 

Using a table to structure categories, the author got an overview of connections, shortcomings, 

and patterns that helped highlight the study’s focus. Based on these reasons, the findings were 

linked to relevant research, and the author could finally draw theoretical and practical 

conclusions based on the research objective. 

 

3.4.4 Ensuring the research reliability and validation  

In order to ensure research reliability and validation, Guba and Lincoln (1989) have developed 

criteria for assessing the coded data from the data analysis. These criteria are illustrated in table 

7 as credibility, transferability, reliability, and validity (confirmation):  

 
Table 7: Validation criteria based on Guba and Lincoln (1989); Munkvold (1999). 

Criterion Aim Strategy 

Credibility Establish consistency between the 

respondent’s constructed reality and 

perception of reality as presented and 

attributed to the various stakeholders 

of the researcher. 

Fieldwork and observations over a 

longer time. Discussion of data and 

results with external colleagues 

and informants. 

Transferability Present sufficiently detailed findings 

to make it possible for the reader to 

consider if these findings can be 

transferred into other contexts. 

‘Thick’ elaboration. 

 

Reliability Ensure that the methodological 

changes and the interpretive process 

are documented so that the reader can 

follow both process and choices made 

through the path. 

Make the research design explicit. 

Validity Ensure that data, interpretations, and 

results are based on context and not 

just due to the researcher’s 

imagination. 

Make data available. Describe the 

logic used to transition from data 

to the results. 
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Credibility 

According to the credibility principle, the author tried to involve and engaged the informants, 

so the presented data corresponds with the informant’s reality. However, this study has been 

going on for such a brief period. It lacks, therefore, a more extended period of studying big data 

in a proper soccer organization.  

 

Transferability 

Most of the interviews conducted are rich in information and then in details, nuances, and 

variations. Hence, the author has tried to present a ‘thick’ description of the findings.  

 

Reliability 

One cannot expect another researcher to develop the same results if the same study is done 

again. Therefore, following the reliability criterion, interpretations and decisions have been 

documented to be followed, making the research design explicit for the reader.  

 

Validity 

Under the criterion of validity or confirmation, the author has made data available by publishing 

the transcribed interview in appendix A. The logic behind the encoded data is described in 

section 3.3. The reader can trace back to the source in the form of the interview guide. The 

results do not just come from personal interpretations; the transcribed interviews are also 

attached to this report. 

 

3.4.5 Limitations 

In this section, the limitations of the author’s research approach will be discussed. In general, a 

standard limitation of qualitative research is the small scale of conducted interviews. 

Nonetheless, as the characteristics of a qualitative approach are to examine few events in-depth 

to gain broader knowledge and understanding about a phenomenon, one can argue for a more 

prosperous and granular data collection. Moreover, as mentioned above (see Section 3.4.2), the 

author applied a selective sampling technique relying on bias judgment when choosing whom 

to participate. Hence, in addition to volunteer bias, the sample is also prone to errors of 

judgment by the researcher, and the findings would not necessarily end up being representative. 

Ultimately, this could be seen as a possible limitation as more representative respondents might 

not have been identified. 

 

There are also limitations to managing an interview individually, as a ‘research associate’ 

enables a bilateral critique of each other’s execution, which might lead to a more in-depth 

interview (Walsham, 1995). Furthermore, employees in modern organizations regularly are 

extremely busy and pressured. For example, in one of the interviews, the respondent expressed 

a shortage of time for the interview, signifying that the data gathering of this event could have 

been more granular. However, it is considered more beneficial to finish the interviews and 

suffer some interaction-time if the respondents are pressured, making the probability of re-

meeting the organization on another occasion bigger (Walsham, 2006).  
 

At last, in order to address some of these limitations, the author presents data directly from the 

transcribed interviews, allowing the readers to evaluate the data and determine the adequacy of 

the author’s reasoning. 
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3.4.6 Ethics 

Shared and mediated by benevolence for this study, the author obtained a great deal of 

information from four semi-structured expert reviews. Thus, as a researcher, the author must 

act in a ‘correct’ and ethical way to safeguard the participant’s values. Violation of ethical 

guidelines would not only harm the author’s reliability as a researcher but undermine the 

confidence of the whole research community at the University of Agder. Restoring such trust 

may be overly time-consuming and limit other researchers from doing their work (Israel & Hay, 

2007). That being said, it has been highly prioritized to behave morally trustworthy as a 

scientist. In addition, the author assured all engaged participants to make an informed consent 

to cooperate, so they could understand the meaning of the research and then willingly consent 

to join (Israel & Hay, 2007). 

 

Further, the author acquainted all participants with the research objective and reassured them 

that the data would be processed anonymously. Hence, when utilizing video conference tools 

to record the interviews, this was done according to the participant’s approval. They were also 

informed that they were entirely entitled to terminate the interview at any point if desired. 

Following the interviews, all the participators got the chance to correct statements or highlight 

expressions they did not want to be quoted.  

 

Additionally, if the interviewees were to give appropriate information, they could not reveal 

their workplace. Hence, the clubs are anonymous throughout the thesis. Moreover, this is also 

a reoccurring topic during the interviews. Since data-driven systems debuted, there have not 

been any actual day-to-day issues concerning ethics or GDPR when utilizing data. For now, it 

is said that stakeholders do not consider data to be proprietary or anything of the sort. However, 

in the future, this could very well be the case, as players wanting to own their data in the same 

way as image rights – currently being paid as parts of contracts in certain leagues.  

 

Finally, with admiration for other researchers and their achievements, the author has done his 

utmost to avoid plagiarism. In this context, the author has been cautious about crediting other 

researchers by following the APA 6th standard (Oates, 2005).   

 

3.4.7 Summary of research methods 

Figure 8 illustrates a summary of the research design for this study. The left side of the figure 

shows the overall research approach (design science research) utilized to pursue the overarching 

research question. The right-hand side shows how the inquiry types are interrelated within each 

phase of the study. Thus, the methods illustrated in figure 8 parallels that described by Peffers 

et al. (2008) and include the following color-coded steps: (1) identify the problem; (2) define 

solution objectives; (3) design and development; (4) demonstration; (5) evaluation; and (6) 

communication. In combination, empirical data and previous research have formed the basis 

for discussing findings and drawing conclusions about the study’s proposed web application 

according to the research question in section 1.3. 
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Figure 8: Summary of research method inspired by Dubé & Robey (1999).  
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4. Artifact description: ex-ante evaluation  

To theorize prescriptively for artifact construction, the author has until now established how 

the underlying potential of data has opened the gateway for soccer analytics. Examining this 

relatively untouched domain has ultimately formed the design search process (see Section 1-2), 

guiding this section’s prescriptive statements about how the artifact is designed, developed, and 

brought into being (Sonnenberg & Vom Brocke, 2012). Moreover, for prescriptive knowledge 

produced in DSR to have a truth-like value, this chapter derives from Sonnenberg and Vom 

Brocke’s (2012) three principles (Table 6) to address the interior evaluation mode of design 

decisions - reflecting the ex-ante evaluation (interior mode) illustrated in figure 5. To these 

ends, this chapter documents the design theory (ISDT), demonstrating the artifact’s purpose, its 

rationale, its inner structure, the conditions under which the artifact is expected to work, and 

the steps required to use the artifact in practice.  

 

Further, as Goran Goldkuhl (2004) and Venable (2006) emphasize the need for ISDTs, but do 

not insist on a kernel theory-based grounding, the chronological process of forming the artifact 

extends to Rein and Memmert’s (2016) conceptual framework (Figure 9). Moreover, the 

artifact’s visual appearance reflects the conceptual framework’s final output (visualization and 

reporting) in figure 9. As the previous literature review and the exploratory pre-case study were 

conducted through a rigorous and systematic process, the results from these studies were used 

to inform the web application’s main component – The Polar Chart (see Section 4.4 and 4.5). 

Going forward, the complete version of the artifact merges modified polar charts with a tactical 

drag-and-drop whiteboard interface (Figure 16). Whereas the polar chart aims to visualize how 

the inferred statistics or proven metrics described in section 4.2 can mesh into interpretable 

synergies. In brief, the purpose of the complete version - constructed by utilizing the 

technological stack presented in figure 11 - is to aggregate an end user’s desirable player 

attributes from the representation in figure 10 to reveal a team’s tactical capabilities or playing 

patterns. The slices within each participating player’s chart and the various data 

sources (illustrates a specific attribute) fueling them are described using StatsBomb 

terminology (The most common standards) in section 4.2.  

 

At last, the theoretical grounding dedicated to construct and showcase a clear contribution of 

the artifact’s utility in a real-world application environment - from which the research problem 

was drawn - includes the blueprint of the applications architectural stack, visualization method, 

and a demonstration of use.  

 

4.1 Conceptual framework (Design Theory) 

Considering all the soccer analytics initiatives discussed in the introduction and the theoretical 

foundation, it can be concluded that none specifically recommends how big data technologies 

can be used to perform holistic analyses that are science-based and of specific relevance for 

soccer tactics. However, Rein and Memmert (2016) proclaim to have undertaken the future 

challenges and opportunities for sports science based on prior research by utilizing big data as 

a foundation. As a result, they present a framework for researchers to grant complex processing 

algorithms that allow non-expert users to exploit cutting-edge analysis to their data. A 

framework that has guided the overarching process of constructing this thesis proposed artifact. 

Further, Memmert and Rein (2018) assume no other structured approach recommends how big 

data technologies can perform science-based analyses of practical relevance. In accordance, the 

authors define big data with regards to soccer as follows:  
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- Volume: describes the data’s magnitude and refers to the size of a given dataset in 

soccer (Rein & Memmert, 2016). 

- Variety: is distinguished into structured, semi-structured, and unstructured data and is 

referred to as data heterogeneity - different data formats and data sources consist of a 

pre-defined schema depicting the data. Structured data allows simple maneuvering and 

searching through the data where a relational database system is a canonical example. 

In contrast, unstructured data deficits a definite schema, with video data and text 

messages being standard examples. Semi-structured data falls amid these two extremes 

and consists of data that lacks a pre-defined structure but may have a variable schema 

that is often part of the data itself (Rein & Memmert, 2016). 

- Velocity: characterizes the data production rate that describes the speed with which 

novel data is generated. In soccer, the velocity varies widely between real-time streams 

from physiological and positional data to delayed data from notational analysis during 

training and competition (Rein & Memmert, 2016). 

 

With big data as the substructure of their framework, Memmert and Rein (2018) elaborate on 

how an analysis model for soccer should incorporate various data sources reflecting the most 

recent developments in data recording technologies. The model’s central purpose is to combine 

information from the various areas (data sources) to conclude game performance – both 

individual and team performance. 

 

Further, Rein and Memmert (2016) 

illustrate the framework as a big data 

technology stack or a system 

architecture for soccer tactic analysis 

organized along with several levels 

listed on the right side, followed by 

their guidelines in the following 

paragraphs: 

 

First, the necessary infrastructure to 

gather the data is required spanning 

physiological, psychological, crowd, 

coaching, scouting, and tracking data 

in addition to observational data and 

video. 

 

Second, a storage system is required 

to allow efficient data storage and 

access. 

 

Finally, a processing pipeline is 

established to extract relevant 

information from the data and 

subsequently merge it to build an 

explanatory and predictive model.  

 

  

 

   Figure 9: Rein and Memmert’s (2016) conceptual framework. 
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In a modified model of the figure above, Memmert and Rein (2018) explain the data sources to 

consist of equivalent proportions of raw data and already-processed data that could be stored, 

for example, in a centrally accessible unit in a configured data lake or a data warehouse (big 

data storage solutions) - to make queries as simple as possible. Correspondingly, to extend the 

conventional approach’s lack of contextual information, a processing layer must be constructed 

to extract relevant information from the data. Furthermore, by combining relevant data obtained 

from processing with the conventional approaches, one can visualize desirable reports by 

applying suitable algorithms. Finally, a possible solution to somewhat reduce the resulting 

analysis complexity could be achieved using machine learning methods to generate data-driven 

models. In short, the system provides contextuality to conventional stats. For instance, shots on 

target (a conventional stat) do not contribute much to game performance unless they tell the 

expected result (context) of these shots - like the xG (see Table 3). 

 

4.2 Data sources 

As mentioned above, the conceptual framework elaborates the data sources to consist of equal 

proportions of raw data and already-processed data. As discussed later in section 4.3.2, this 

information should be stored in a centrally accessible unit in the form of a data warehouse, 

making queries as simple as possible for the end-user (Memmert & Rein, 2018). For now, there 

exist two primary data sources that value soccer matches – illustrated in a representation of 

table 2 beneath: 

 

Event stream data Optical tracking data 

Event stream data annotates the times and 

locations of specific events (e.g., passes, 

shots, and cards) that occur in a game. 

Optical tracking data record the player 

locations and the ball at a high frequency 

using optical tracking systems during games. 

 

 

To decipher the potential of utilizing these sources, one must first acquire proven data from a 

legitimate source (McHale & Relton, 2018; Spearman, 2018). For now, there exist companies 

like Opta, Wyscout, InStat, Second Spectrum, STATS, SciSports, and StatsBomb generating one 

or both sorts of these data. Based on the pre-case study, these companies were also viewed as 

the most legitimate in the industry. Moreover, due to these companies and the resources needed 

to maintain the most granular data, two significant challenges are pointed out by Memmert and 

Rein (2016): 

  

• First, the accessibility to soccer data.  

• Second, due to the optical tracking systems’ expenses, tracking data is only available in 

wealthy leagues or clubs.  

 

Both challenges are rising privacy issues as commercial institutions, private clubs, and public 

research institutions oversee the accumulated data logs. This issue is also an extension of the 

professional soccer club’s reluctance to share data - concerning a possible forfeit in competitive 

advantages. For now, as internal data gathering does not possess the same granularity as leading 

vendors provide, most clubs attend to retrieve their data by licensing these prominent 

company’s products or APIs (StatsBomb, 2020). An API (application programming interface) 

is the software intermediary that allows two applications to talk to each other and share 

manageable information. In sum, the data sources are the applications, databases, and files that 

an analytics stack integrates to feed the data pipeline described in section 4.3.1. 
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4.2.1 Provider - StatsBomb (FBref) 

When choosing a data source or supplier, there is mentioned in the pre-case study a consensus 

within the analytics community that StatsBomb features richer data with better quality than 

competing vendors. Furthermore, it can be seen that StatsBomb data is a direct product of 

reverse engineering as the vision with StatsBomb data was to transition football data from the 

world of proxies into a more accurate reflection of what is actually happening on the pitch. For 

example, in contrast to other suppliers, StatsBomb adds Shot Impact Hight (the degree of 

difficulty according to the balls Z-coordinate when a shot is taken) to the Expected Goals (xG) 

algorithms. As a result, this provides a much more realistic picture of the measured event. In 

sum, StatsBomb data is more comfortable to merge with tracking data than any other event data 

on the market (StatsBomb, 2020). 

 

Moreover, to decipher the utility range from such informative data, the research compiled 

across the concept matrix (see Section 2.1) has examined and applied best practices to craft 

comprehensive metrics for soccer evaluations – so-called proven metrics or key performance 

indicators (KPI’s). Like many of these studies, the metrics used in this thesis are retrieved from 

FBref, an easy-to-use source for football stats delivering StatsBomb data for the top 5 European 

leagues (FBref.com, 2021). 

 

4.2.2 Proven metrics (KPI)  

Overall, metrics refer to a wide diversity of algorithmic data points indicating performance 

engendered from a multitude of methods. In general, these metrics are measures of quantitative 

assessments commonly used for reviewing, benchmarking, and tracking performance (Bose, 

2004). Typically, they are grouped and integrated into a holistic dashboard for management or 

analysts to maintain performance assessments, estimations, and business strategies. Also known 

as key performance indicators (KPI’s) or proven metrics (Peral, Maté, & Marco, 2017). 

Nevertheless, as every power user has access to these various data sources and metrics, this vast 

pool of options can make it challenging to choose the appropriate instruments necessary for 

assessments and evaluations.  

 

Hence, this thesis’s most proven metrics have been established by merging the initial systematic 

literature review’s contributions with soccer analysts (interviewed in the pre-case study) real-

life experiences. As a result, 24 data points were extracted as the most critical outputs measuring 

the game’s activities. Moreover, to assess and allocate the chosen data points delivered by 

StatsBomb’s most recent technological developments and their respective sources, each 

concept within the matrix (see Table 1) was used to reflect a phase from which these metrics 

could originate. In sum, as this resulted in four phases typically known to dictate the game, each 

metric (KPI) was assigned to its initial phase by color codes - possession, transition, attacking, 

and defending - in the glossary presented below in figure 10:    

  

https://www.investopedia.com/terms/w/wide-variety.asp
https://www.investopedia.com/articles/investing/041114/simple-overview-quantitative-analysis.asp
https://www.investopedia.com/articles/investing/041114/simple-overview-quantitative-analysis.asp
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4.3 Design and development - constructing the analytical stack  

This section reviews the typical structure of an analytical system and how it is applied to the 

web application. Hence, the process is described in accordance with conventional design 

theories used to solve similar research problems - as undertaken in this thesis - for other domains 

than soccer.  

 

Initially, as all analytical artifacts depend on access to data from their relevant sources, there is 

an urge for technological tools able to fetch and analytically number crunch those data (Gupta 

& George, 2016). According to Kwon, Lee, and Shin (2014), acquiring a fully functional BDA 

system fulfilling this pressing urge entails a stack of technologies to address the life cycle 

illustrated in figure 12. In brief, a stack characterizes a set of rigorous mechanisms and modular 

technologies, allowing operators to design enterprise-grade and powerful applications 

(Oussous, Benjelloun, Lahcen, & Belfkih, 2018). Similarly, a data analytics stack incorporates 

distinct technologies that allow users and firms to develop a robust analytics engine to assemble, 

merge, clean and transform data from, e.g., StatsBomb (Erraissi & Belangour, 2018). Moreover, 

the stack consists of several interdependent layers that form an effective and fully operational 

analytics system, with each layer providing a unique level of processing (Oussous et al., 2018). 

In addition, and utterly important when addressing a proper solution, is the comprehension of 

how each layer interacts - as each layer is symbiotic and depends on one another to function 

within the system. Typically, this co-construction involves a data warehouse (storage 

system) build upon sound data modeling. Which, in turn, are contingent on a robust data 

pipeline for ingesting and processing desirable data before it is visualized for strategic decisions 

(Oussous et al., 2018). The final analytical stack of the web application is illustrated in figure 

11. 

Figure 10: Proven metrics retrieved from FBref.com (StatsBomb) (FBref.com, 2021; StatsBomb, 2020).  

Possession Transition Attacking Defending

For passing & ball progression For dribbling & positioning For goal-scoring & chance-creation For defending

Pass Comp % Turnovers Per 90 Goal Creation-Action (GCA) Per 90 Rate Adjusted Tackles Won %

Progressive Passes Per 90 Succesful Dribbles % Shot Creation-Action (SCA) Per 90 Interceptions Per 90

Passes into 1/3 Per 90 Rate Adjusted  Dribbles Per 90 xG (Expected Goals) Per 90 Ball Recoveries Per 90

Passes into Box Per 90 Progressive Distance Per Carry xA (Expected Assists) Per 90 Pressure Regain %

Pressured Passes Per 90 Touches in 1/3 Non-Penalty xG + xA Per 90 Dribbled Past

Touches in Box Shots on Target %

Pass Target Aerials Won %

Glossary

Percentage of aerial attempts that is 
succesfully won

The number of successful dribbles a 
player makes per 90 minute, adjusted 
for their success rate.

The two offensive actions directly 
leading to a chance, such as passes, 
dribbles and drawing fouls

Includes every time a player 
dissposses or miscontrol where the 
player loses the ball

Passes made while under pressure 
from opponent

Completed passes that enter the 
penalty area of the pitch closest to 
the goal - not included set pieces

Completed passes that enter the 1/3 
of the pitch closest to the goal - not 
included set pieces

Completed passes that move the ball 
towards the opponents goal at least 
10 yards - excludes passes from the 

defending 40 % of the pitch

The percentage of attempted passes 
that successfully reach a teammate

The number of successful dribbles a 
player makes per 90 minutes, 
adjusted for their success rate

Expected goals per 90 minute 
included set pieces such as penalty 
kicks.

Every time a player regain 
possession of a loose ball per 90 
minutes

Number of times the team win the 
ball within 5 secunds after the player 
applyed pressure to opposing player 

who is receiving, carrying or 

Expected assist Per 90 included set 
pieces 

The number of yards a player carries 
the ball towards the opposition goal 
per carry the player complet in the 

average 90 minutes

Number of times a player is dribbled 
past by an opposing player

Non-Penalty expected goal + 
expexted assist per 90 minute

The amount of times a player touch 
the ball in the final third towards the 
oppenent goal

Number of time a player was the 
target of an attempted pass

Percentage a successful attempt at 
taking on a player and pass theme 
while retaining possesion

The two offensive actions directly 
leading to a chance to shot, such as 
passes, dribbles and drawing fouls

The amount of secsessfully
interseption per 90 minutes

The amount of times a player touch 
the ball in the opponents penalty area

Percentage of shot attempts that is 
on target
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Figure 11: The architectural stack of the web application. 

In sum, Ivanov and Singhal (2018) state that distributed big data processing and analytics 

applications require a complete end-to-end architecture stack comprising several big data 

technologies. In addition, there are many potential architectural patterns in order to fulfill the 

web application requirements. Hence, the following sub-sections will elaborate on each layer 

selected for this thesis BDA architecture, following a similar pattern as shown by Khan et al. 

(2014) in figure 12 and how it can be applied to soccer.  

 

 
Figure 12: Big Data Technologies Life Cycle retrieved from Khan et al. (2014). 
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4.3.1 Ingestion layer – extract data via pipeline into storage solution (ETL)  

After establishing which data to fuel the system (Figure 10), the significance of the ingestion 

layer comes into being. The purpose of the ingestion layer is to allocate and integrate chosen 

data from where it is originated into a layer where it can be stored and analyzed. In a sense, the 

ingestion layer prepares data for the specialized tools and technologies utilized in the later layers 

(Erraissi & Belangour, 2018).  

 

Further, to route data into a storage solution, it must be reproduced from an external source. 

The most common processes for pulling data from its source, alternatively transform it if 

needed, and push it into a data warehouse are ETL (extract, transform, load) or ELT (extract, 

load, transform). This process is generally performed as a data pipeline consumes information 

from external sources and store it in a specific destination (e.g., data warehouses or data lakes). 

The pipeline represents the software that secures data from a technical perspective and makes 

it available for strategic use - typically applied to internal analytics and product features. Most 

pipelines ingest raw data from multiple sources via a push mechanism - e.g., an API call – 

where a replication engine pulls data at regular intervals. Some of the most common 

technologies used for this process are Blendo, Stitch, and Kafka, launched by Apache 

(Palanivel, 2019). 

 

In order to configure a pipeline for data ingestion, there are two general paths: ‘do-it-yourself’ 

(DIY) or use a prebuilt tool. If an enterprise chooses the DIY route, data engineers typically use 

scripting and programming languages such as Python, Ruby, Go, Java, or Bash to construct 

their custom ETL jobs (Mitchell, 2018). Unfortunately, developing a data pipeline from scratch 

adds a considerable burden to maintenance and infrastructure development. Nevertheless, as 

this thesis web application depends on ingested data from StatsBomb, the author has utilized 

the DIY route to avoid costs associated with licensing an API. In theory, Mitchell (2018) defines 

web scraping as the procedure of mining data through any method other than a program 

interacting with an API. Hence, as illustrated in the model construct (Figur 11), the author 

extract, transform and load StatsBomb metrics into tabular data tables stored in a MySQL 

database via a self-made web scraper (ETL-method) using Python (Mitchell, 2018).  

 

4.3.2 Data modeling layer – organizing data on top of the big data storage solution 

After the web scraper has ingested raw data from StatsBomb, the most fundamental layer in the 

analytical stack is often referred to as the data layer - representing the backend of the entire 

system. Besides storing all the raw data (Figure 10) from different data sources fed by the 

pipeline, this layer operates the modeling process that structures and organizes data to support 

the analytics (Mitchell, 2018). In sum, this process grants users to alter data for selective 

querying (Palanivel, 2019). For example, a corporation often enables analytical modeling by 

constructing an analytical base table (ABT). Moreover, this tabular base table’s structure is 

similar to an Excel spreadsheet (similar to CSV files) conceived by aggregated and clean data 

extracted through the web scraper’s pipeline (Nelli, 2015). In accordance, the author utilizes 

the Pandas library’s DataFrame (see Figure 11) in Python to organize the web application’s raw 

data into self-made ABTs (2-dimensional spreadsheets) (Nelli, 2015). In general, this allows 

data scientists to create, clean, and analyze consistent data, providing better performance and 

truthfulness.  

 

  

https://www.stitchdata.com/resources/data-replication/
https://www.stitchdata.com/resources/data-transformation/
https://www.stitchdata.com/resources/data-transformation/
https://www.stitchdata.com/resources/etl/
https://www.stitchdata.com/resources/what-is-elt/
https://www.stitchdata.com/resources/what-is-elt/
https://www.stitchdata.com/resources/what-is-data-pipeline/
https://www.stitchdata.com/resources/data-pipeline-architecture/
https://www.stitchdata.com/blog/why-you-shouldnt-build-your-own-data-pipeline/


 

32 

 

In addition, after reviewing the exploratory pre-case study (see Section 3.4.1), two conventional 

approaches for modeling data sources in soccer was clarified: 

 

1. Resourceful clubs apply pre-structured data modeling from external sources to fuel their 

self-adjusted systems. In some cases, they partially gather data themselves. 

2. Minor clubs hire best practice services through data consultancy companies like 

StatsBomb, Wyscout, Analytics FC, etc.   

 

As abovementioned, the pre-case study informants claim StatsBomb as the most proven and 

trusted source to retrieve layered soccer data within the analytics community. StatsBomb 

supports this claim implicitly and advertising that their: 

  

Unique event data collection spec has over 3,400 events per match of on and off the ball 

data including pressures, ball carries, possession chains and more. Data generated from 

a blend of Computer Vision and human-driven collection with automated validation 

checks and a highly experienced quality assurance team, makes it the most accurate 

event data in the industry (StatsBomb, 2020).   

 

Big data storage solutions 

After managing the data modeling, two challenges arise for a storage solution: (1) providing 

the imperative infrastructure; and (2) developing appropriate algorithms and processing 

processes (Rein & Memmert, 2016). Thus, the vital data processing infrastructure must be 

developed, enabling manageable storage and subsequent access to the gathered data (data 

entry). Moreover, to store the massive amounts of raw data automatically retrieved from a 

vendor such as StatsBomb, it is common to use a data warehouse (DW).  In short, data gathered 

through vendor APIs tends to be already-processed data, which is beneficial as a DW is 

structured for this purpose only. However, there is no such thing as a go-to solution when 

choosing a big data storage system. One of the pre-case study informants (a data analyst) 

mentions that as long as clubs are granted access to the correct data and how to filter and 

interpret data correctly, they have come a long way. Hence, as this thesis web application is a 

smaller project, not dependent on massive storage, the author stored the ingested data into ABTs 

in a minor MySQL database ready for later processing. Other standard technologies used in this 

layer are Amazon S3, Hadoop HDFS, MongoDB, etc. (Oussous et al., 2018).  

 

At last, Decroos, Bransen, Van Haaren, and Davis (2019) elaborate on the importance of 

structuring a storage unit according to the context it is supposed to enhance, as most existing 

methods for valuing soccer events suffer from three crucial limitations that future research must 

face. First, these approaches mostly ignore actions other than shots and goals. In accordance, 

most work to date has concentrated on the concept of the expected value of a goal attempt. 

Second, existing approaches tend to assign a rigid value to each action, regardless of the 

conditions under which the event is performed. For example, many pass-based metrics treat 

passes among defenders in the defensive third of the pitch without any pressure. On the 

downside, they measure passes between attackers in the offensive third under heavy pressure 

from the rivals equally to unpressured passes. Third, most approaches only review immediate 

effects and fail to account for an action’s effects a bit further down the line. In order to address 

these limitations, the author has focused on structuring the storage unit’s various data entries 

according to the player’s positional context on the field (see Section 4.5). Thus, defensive player 

charts are given easy access to the ideal stats and vice versa for midfielders and attackers.   
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4.3.3 Processing layer – number-crunching the proven metrics 

After the data sources have been allocated by the pipeline and transformed into a desirable ABT 

stored in the MySQL database, the processing layer starts the actual number crunching (Nelli, 

2015). This process is arguably the most crucial in the end-to-end big data technology stack - 

as analysts process a large volume of data into relevant data marts before the final presentation 

layer (also known as the business intelligence layer) (Palanivel, 2019). First, a data warehouse 

or database is used as a centralized unit for holding data from various sources. An enterprise 

can then transform and model this data and then build visualizations based on analytics and 

business intelligence software. Similarly, when number-crunching StatsBomb metrics into 

suitable algorithms for the web applications position-based player charts, the author utilizes the 

NumPy library in Python for efficient processing (Nelli, 2015). 

 

However, enterprises are now moving to cloud data warehouses to take advantage of their 

scalability and reduced maintenance overhead compared to on-premises warehouses. 

Enterprises can choose from a variety of robust cloud data warehouses, including Amazon 

Redshift, Google BigQuery, Microsoft Azure Synapse, and Snowflake. Familiar tools and 

technologies used in the processing layer include PostgreSQL, Apache Spark, Redshift by 

Amazon, etc. (Oussous et al., 2018). 

 

4.3.4 Data Visualization layer – deciphering the potential of big data 

Finally, the visualization layer is the top-most layer in the BDA stack, where the actual analysis 

and insight generation materializes - the layer on which the end-users interact. Furthermore, the 

layer involves visualizations such as status reports, dashboards, and business intelligence (BI) 

systems. To these ends, data scientists and other technical users construct analytical models that 

empower businesses to understand their former operations and forecast what will happen and 

decide on how to improve the business going forward (Erraissi & Belangour, 2018). Hence, the 

visualization layer’s components must make data simple to understand and manage. Going 

forward, this is often solved using visualization software such as Tableau, Looker, and 

Microsoft Power BI, which generate visualizations that allow users to make data-driven 

business decisions. Correspondingly, the author has exploited the Matplotlib library using 

Jupyter Notebook/Visual Studio Code as an integrated development environment (IDE) - a data 

visualization and graphical plotting library for Python, and a numerical extension to NumPy - 

to transform the ingested metrics into polar charts (Nelli, 2015). Moreover, the complete system 

(see Figure 11) integrating the holistic aggregation of each participating player chart into simple 

to understand visualizations is developed using Angular as a front-end framework -  a platform 

for building single-page client applications (Angular, 2021).  

 

  

https://www.stitchdata.com/resources/data-warehouse/
https://www.stitchdata.com/resources/compare-on-premises-and-cloud-data-warehouse/
https://www.stitchdata.com/resources/choosing-data-warehouse/
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4.4 Visualization method (Polar Chart) 

Following the analytical stack’s outcome, one obstacle with complex datasets is communicating 

the analysis findings intelligently to various stakeholders, which ultimately is necessary to 

support individual and organizational decision-making. Addressing this challenge, a disruptive 

science - that of data visualization - has advanced to examines how people rapidly can assimilate 

large amounts of information and generate visual representations of these complex datasets 

(Caban & Gotz, 2015).  

 

Similarly, during the pre-case study, the 

author discovered the polar chart to be the 

most efficient way to benchmark and 

communicate a soccer player’s ability. A 

representation baptized ‘Rotelle’ by the 

informants. Initially, the method or 

technique originated from the historical 

nurse Florence Nightingale, which utilized 

its functionalities to uncover sickness 

during WWII (O'Connor et al., 2020). By 

inventing the color statistical graphic 

entitled “Diagram of the Causes of 

Mortality in the Army of the East,” she 

dramatizes the degree of pointless fatalities 

in British military hospitals during the 

Crimean War (1954–56). This scientific 

collaboration enabled Florence to map the 

totals of death by month, with the area of 

each wedge representing the quantity of 

deaths which was further subdivided by 

colors founded on the cause of mortality. 

Hence, the chart illustrated in figure 13 

uncovered that epidemic diseases were 

responsible for more British deaths in the 

course of the war than the presumed 

battlefield wounds – as the seminal diagram 

showed the majority of soldiers died from 

diseases shaded in grey than from wounds 

represented in red (O'Connor et al., 2020).  

 

Until recent time, this figure was generally referred to as a coxcomb or ‘rose’ diagram and 

enabled several comparisons of information to be seen in a single instantiation. However, for 

now, people refer to it as a polar chart. Additionally,  it provides those unfamiliar with statistical 

data and reports with a helpful display (Magnello, 2012; Nelli, 2015). Furthermore, exploring 

the story behind how the chart got its titles and its possible use cases, Kirk (2016), the author 

of ‘Visualizing Data,’ labels it as: 

 

A polar chart shows values for three or more different quantitative measures in the same 

display. It uses a radial (circular) layout comprising several equal-angled sectors like 

slices of a pizza, one for each measure. In contrast to the radar chart (which uses position 

along a scale), the polar chart uses variation in the size of the sector areas to represent 

the quantitative values. It is, in essence, a radially plotted bar chart (Kirk, 2016). 

Figure 13: Florence coxcomb diagram on causes of mortality in 

the British army O`Connor et al. (2020). 
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In brief, the chart is a hybrid of a bar chart (exploiting length as a pre-attentive tool) and a pie 

chart (radial in nature, narrower at the center where segments increase towards the top, i.e., 

polar coordinates). In fact, like the pie chart, the degree of each sector provides percentage data 

represented by the classification with respect to the total. As for the bar chart, the circular 

extension is the numerical value of that category - which helps us comprehend the form of the 

chart as a means for representing data (Nelli, 2015). 

 

Hence, the author considers the rendered polar chart or ‘rotelle’ is ideally suited for quick 

comparisons across proven metrics, as done in the artifact (figure 14). In addition, because the 

’rotelle’ uses length and width to represent the chosen data points, the eye tends to notice the 

lower and higher values more rapidly when compared across the different players (Kirk, 2016). 

 

Similar to Florence Nightingale, a data-driven system based on polar charts are introduced as a 

provider of adjustable pre-constructed templates, processing raw data from StatsBomb to create 

personalized data visualizations identifying given prospects according to preferences in section 

4.5. In addition, the polar chart also provides flexibility regarding tailoring visualizations 

concerning the player/team/issue being discussed for specific reports. For example, in the pre-

case study, the major European soccer club needed a new position-specific visualization - as 

the feature needed was not currently/adequately illustrated by the system they had on hand. 

Luckily, the polar chart’s flexibility made ease to access the new information, and new data 

integration went smoothly. 

 

At last, the flexibility of the polar chart utilized within the organization’s data-driven system 

was often emphasized as it made it easy to communicate valuable information efficiently 

between stakeholders. In short, the viz highlights a player’s actual statistical output in a quick 

and easy glance, that being potential signings, academy players, or first-team players.  

 

4.5 Demonstration of use - user scenario  

After establishing the design theory justifying the design decisions in the sections above, a user 

scenario is presented to instruct a proof-of-concept. Initially, to demonstrate the artifact’s 

utility, the template in figure 14 is altered with essential metrics for the up-and-coming Briton 

Patrick Bamford’s position and role. Following the user scenario, the artifact is used as a tool 

to explain how a manager could approach a tactical decision concerning the Briton by utilizing 

big data as a data-driven decision-making system. At last, the complete version of the 

application is illustrated in figure 16 and the initial prototype in figure 15.  

 

It is important to note that the chosen attributes are conceptualized and therefore collated by 

colors representing how each data point interrelates. For example, red represents both attacking 

on/off-ball events, while green illustrates on/off-ball defending. 

 

Interpreting the polar chart (Figure 14) 

As described in section 4.4, the polar chart comprises a number of wedges (slices) representing 

a proven metric. Each wedge’s length corresponds to the selected player’s percentile rank for 

that metric compared to the players in the same league and position. The percentile rank is the 

percentage of scores within a dataset equal to or lower than the score. This is reversed, such as 

‘turnovers.’ In sum, a more extensive bar is always better. 

 

Hence, when interpreting Patrick Bamford’s performance overview (Figure 14) so far in the 

20/21 season, one immediately notices the number of filled percentile wedges, indicating 

Bamford’s outstanding ability to create expected goals per 90 minutes (xG). Another striking 
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attribute describing Bamford’s skillset is the number of touches he generates per 90 minutes in 

the opposition’s box (touches in box). Intuitively, drawn from the knowledge above and 

Bamford being a tallish player (1.85 cm), one would most definitely conclude that he would be 

scoring the majority of his goal with a header from within the opposition box. In turn, as a 

manager, you would probably shape your tactics accordingly – blasting in high crosses aiming 

at his head. 

 

Nevertheless, as a contradiction to this highly intuitive opinion based on Bamford’s physics, 

his aerial percentile wedge just ranks him above the average striker in the air – winning merely 

68 % of the aerials he contends (so far this season). Hence, being a manager, you probably 

would vast your most dangerous weapon by playing a tactic exclusively based on high crosses, 

as your striker’s strength seems to lie as much along the ground as in the air. 

 

Interpreting the Artifact (Figure 16) 

Further, to enhance the beautiful game’s tactical approach, the artifact integrates all involved 

player’s costumed polar charts into a system. Such as shown in figure 16. Providing such a fast 

and holistic overview of all playing participant’s particular skill set enable managers to 

effectively alter their game strategies according to the players at their disposal - exploiting any 

weakness found relevant within enemy lines. 

A proof of the artifact’s utility is anchored in its ability to assess Patrick Bamford’s playstyle 

and identifying the logic behind his previous performances, as well as how to counter it. For 

example, looking further into the already stated goal-scorer, one initially acknowledges the high 

scores he has generated regarding touches in the opposition box, goal creation-actions, and 

being a frequent target of attempted passes. An indication that Leeds probably depends more 

on their striker than other teams. Taking these remarks into perspective and assessing them 

towards Bamford’s generally low passing attributes, few touches/involvements before entering 

the opposition box, and his low shot creation-action, it is evident that Leeds United strategy 

does not include the striker to contribute much to build-up plays – before entering the final 

third. On the contrary, he probably operates as a so-called ‘fox in the box’ (most goals come 

from tap-ins). If we process this information further and add Bamford’s somewhat impressive 

pressure stats, one should consider countering his abilities with defenders scoring high on stats 

reflecting good capabilities when pressured. Such as pressured passes, progressive passes (often 

a means to avoid press), turnovers, and a generally high combination of defensive stats to 

handles Bamford’s superior off-ball movement and pressure style. Hence, as illustrated in the 

prototype (Figure 15), a reasonable nemesis for Bamford would be his current teammate Luke 

Ayling (current center-back for Leeds) – being among the top defensive players at all these stats 

except for turnovers.    

Another example of the application’s utility is identifying the high possibility for Leeds to 

attack through their left flank - as these players tend to have a higher attacking contribution 

than their right side (reflected in their red bars in figure 15). Further, to increase readability and 

usability, a hover effect makes each chart bigger when hovered over. Radio buttons make it 

possible to change formations, and a drag-and-drop feature makes the chart moveable. In sum, 

the artifact aims at putting the user in a better position than ever to outmaneuver the opposition 

tactically. 
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Figure 14: Interpreting the Polar Chart. 
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Figure 15: The prototype: left side and top-left side represents players at your disposal (names will be hidden due to experts may be biased when choosing between players they know, see Appendix A).  
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 Figure 16: The proposed web application. 
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5. Findings: ex-post evaluation   

In order to make honest statements and theorize about the artifact in use, the related prescriptive 

knowledge in section 4 is documented and collected in a way that accepts stepwise evaluations 

of the artifact as it emerges into this section’s ex-post evaluation (see Section 3.3.2). Moreover, 

Sonnenberg and Vom Brocke (2012) claim that the exterior mode (Figure 5) mainly intends to 

analyze, describe, and predict what happens as artifacts exist and are used in their external 

environment. Additionally, the descriptive knowledge derived from the expert reviews is 

similar to a black-box test. Thus, the author can review significant design features to utilitarian 

ends and later compare the respondent’s conventional approaches to the artifact in the 

discussion.  Hence, to build consensus on the artifact’s relevance, novelty, and importance in 

the chosen problem domain, this section manifests the results and findings (themes) extracted 

from the data analysis described in chapter 3.4.3.  

 

Further, all respondents have been given anonymity to preserve the informant’s privacy to the 

extent possible. In some cases, their role or/and title are mentioned without acknowledging their 

specific context. In addition, to ensure a certain language homogeneity throughout this thesis, 

the author has translated the respondent’s direct quotes from Norwegian to English. Moreover, 

it is essential to note that the composed artifact is a component of a human-machine problem-

solving system. For such developments, knowledge of empirical work and behavioral theories 

is crucial to construct and assess them. The constructs, components, and methods are therefore 

exercised within relevant environments by appropriate subjects. Because the proposed artifact 

represents the ‘machine’ part of the human-machine system constructing an information 

system, these sub-sections principal aim is to determine how well it works, not to theorize 

around or confirm anything concerning why it works (Gregor & Hevner, 2013). 

 

5.1 Overview of central themes and consequential errors 

Despite all the literary initiatives developed to standardize analytical practices in soccer, 

transcribed findings synthesized from the expert reviews suggest computer- and sport science 

current approaches causing more inefficiency across a soccer organization’s manifold body 

than necessary. As researchers and scientists seek a revelation in new advancements, these 

actions are also the core extending the abovementioned issue, which not surprisingly originates 

from the quantity of accessible tools. Without the manifold of unproven tools, the respondents 

emphasized that the overall data-driven experiences in soccer would be less time-consuming. 

Furthermore, the amount of analytical content these tools generate longs for a comprehensive 

understanding between coaches and analysts. In Europe, these separate roles also tend to 

communicate in very different jargon, causing the analytical memo to halt across the 

organizational groups. Thus, even though a club inhabits a data-driven culture, all respondents 

emphasized that the most pivotal skill set to comprehend data value was mainly dependent on 

two-way communication.  

 

Tied around these issues is the utilization of analytical advancements. In comparison, 

respondents have experienced various technological limitations interfering with their strategic 

decisions. For instance, one major restraint acknowledged during the reviews was the 

importance of valid data for the advancements to be suitable for tactical decision-making.  

 

In contrast to the conventional tools, no respondent had any issue applying their overarching 

tactical approach to utilize the artifact. Simultaneously, their reasoning for picking players 

over others tends to be equivalent - both among themself and what happened for the club they 

managed in reality.  
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Moreover, when comparing and validating the artifact, the respondents emphasized their 

current approach to be less effective due to all tools available and the difficulty of choosing the 

right tool for the proper context.  

 

Table 8 summarizes the main themes, sub-categories, and consequential errors identified during 

the data analysis. These findings are discussed in more detail throughout the rest of section 5. 

 
Table 8: Overview of the data analysis main findings. 

Main themes Sub-categories & consequential errors 

Data-driven culture Two-way communication 

The respondent’s  current 

approach to soccer tactics 

Quantity of accessible tools 

Utilization of analytical advancements  

Suitability for tactical decision-making (valid data) 

Utilization of the artifact Applying a conventional strategy to the artifact  

The reasoning behind the player picks   

Practical significance  Current approach vs. artifact 

Validation 

 

5.2 Data-driven culture 

The author finds this theme central as it captures the essence of lived experiences on the topic 

- and therefore - which capabilities the experts deem necessary for maintaining a sustainable 

data-driven culture. Correspondingly, the degree of analytical knowledge utilized within each 

respondent’s environment also proves valuable in learning the artifact – as similar metrics tend 

to re-occur for those operating in a more data-driven environment. Furthermore, this has proven 

to provide a solid foundation for discussing their socio-technical behavior in granular details 

when grounding their artefactual decision-making. Hence, table 9 represents each respondent’s 

historical background to get an in-depth understanding of how various roles with relevance to 

soccer tactics interact with soccer analytics – when discussing the matter in section 6. 

 
Table 9: Respondent’s background. 

Respondent 1 Respondent 2 

Relevant background & domain 

Data consultant: Performance analyst: 

“I have been a consultant for multiple large 

European soccer clubs, especially regarding 

the transfer part. However, considering the 

topic of this thesis being tactics, I also need 

to assess the players according to my client’s 

tactical approach to identify a potential 

trade. Moreover, I have been around since 

the breakthrough of soccer metrics and 

applied all kinds of metrics in search of 

potential transfer targets. Unfortunately, in 

contrast to many others within the 

community, I do not have an educational 

background, as I came up the hard way.” 

“First of, I am a practitioner on the subject 

as I started back in 2006 (with Interplay) and 

kept myself updated on new things from then. 

I have also taken numerous courses on the 

topic, including StatsBomb’s. I would also 

add that the foundation of my experience 

includes all available UEFA-coach-licenses 

and an eternal passion for soccer.”  
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Respondent 3 Respondent 4 

Relevant background & domain 

Sport science: Academy coach: 

“During my master’s degree in sport science, 

I have utilized various analytical tools to 

measure multiple strength variables and 

analyze how training has affected relevant 

subjects. In combination and more relative to 

your task, I am passionate about soccer and 

athletics in general. I have also been 

informally involved in projects that 

contribute to the sports science part of 

soccer. Moreover, as the Norwegian soccer 

club, Start FK, has been engaged a lot in my 

study program, I am familiar with how 

various metrics are applied in soccer 

nowadays.” 

“During my time at the university, I took the 

UEFA C-license, representing the first 

coaching license you get through UEFA. So, 

throughout these last couple of years, I have 

been practicing the license by coaching two 

men’s academy teams and one women’s 

academy team. One of these teams was 

Notodden (G13-G14) academy, which first-

team played in the Norwegian second 

division, ‘OBOS-ligaen,’ at that moment. So, 

my current experience is similar to what the 

‘common man’ views as conventional 

analytics – using whiteboards and some 

simple training applications.”    

 

5.2.1 Two-way communication 

The various ways of how people use metadata are commonly known as an issue within the 

analytics community. Which often leads to misinterpretation for an end-users desired 

contextual knowledge. There is always a subjective judgment in soccer whether the analytical 

information provided aligns with the coaching staff’s strategy or what the data analytics deem 

essential. Moreover, there is one particular factor affecting the consensus stated above, as all 

respondents emphasized the importance of using a universal jargon, as expressed by the 

freelance data consultant: 

 

“From my perspective, there are two kinds of people. First, we have the people working 

specifically with soccer relative stuff - such as the coaching staff and the club recruiters 

who typically apply conventional approaches to their work. E.g., they travel to scout 

players instead of identifying potential players with data first. Second, we have the 

‘nerds’ or data analytics which apply newer, more innovative methods. Hence, in my 

line of work, I will define one of the most considerable skills making the communication 

between these two sides more efficient. Unfortunately, as of now, they are not talking 

the same language. That typically means contextualizing a player’s ability shown in the 

output or contextualizing why some data do not always speak the truth you seek.  

 

Another exciting aspect is the disconnect in communication between head coaches and 

scientists as most elite trainers are very conventional and hereafter do not trust data – 

e.g., how many coaches do you see under 50-60 years? There are obviously some 

managers over 50 that also overuse analytics - I once heard a rumor that Bielsa had a 

20-page notebook on a GK.” (Respondent1) 

 

Another respondent extends to the argument stated above and implicitly refers to 

communication as a two-way skill. In addition, the author also learned that little research 

focuses on applying knowledge management in connection with user support. Moreover, one 

needs to understand other people’s perception of strategy to present evidence making a 

desirable or positive outcome for all stakeholders: 
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“As an analyst, my job is to interpret, parse and communicate the contextual side of the 

data we gather so that anyone can grasp it. However, to make this process sustainable 

in a soccer context, the most valuable skill set is always to comprehend the head coach’s 

perspective on game strategy and game model. Moreover, to do so, you need to treat 

these perceptions with a bureaucratic and pedagogic approach.” (Respondent 2) 

 

5.3 The respondent’s current approach to soccer tactics 

This theme establishes the respondent’s current approach to soccer tactics and the difficulties 

of applying proper technological advancements to support tactical decision-making in their 

current practice. 

 

5.3.1 Quantity of accessible tools 

Despite all the literary initiatives developed to standardize analytical practices in soccer, the 

expert reviews expressed computer- and sport science current approaches causing more 

inefficiency across a soccer organization’s manifold body than necessary. As the organizations 

seek a cutting edge through new advancements, these actions are also the core extending the 

abovementioned issue, which not surprisingly originates from the quantity of accessible tools. 

The table below summarizes some of the leading providers and technologies that re-occurred 

during the interviews.  

 
Table 10: Summary of technological tools. 

Tool Description 

Wyscout Wyscout is an Italian company that supports soccer scouting, match analysis, and 

transfer dynamics (Wyscout, 2020). 

InStat InStat is a sports performance analysis company providing professional tools for 

individual and team performance evaluation and scouting (Instatsport, 2020). 

StatsBomb StatsBomb is a company providing a brand new proprietary dataset with granular 

data for powerful analytics for various sports (StatsBomb, 2020) 

Playermaker Playermaker is an intelligent motion sensor attached directly to a player’s boot, 

producing over 30 performance metrics (Playermaker, 2020).  

Veo Veo soccer camera is a complete solution for soccer recording, coaching, and 

analysis, as the AI-powered camera can record without a cameraman (Veo, 2020). 

GPS and 

LPS 

GPS and LPS tracking let soccer cubs gather biological data for injury 

prevention, training load, and overall improvement (Hennessy & Jeffreys, 2018) 

 

Addressing all these available tool’s effects on tactical decision-making, most respondents 

agreed that the present quantity of tools caused inefficiency - primarily because they provide 

very similar functions: 

 

“There is too much work scanning through all these similar tools we have at hand. 

Especially concerning the time. I feel we are in a position where we need to aggregate 

the ones that will be proven over time.” (Respondent 2) 

 

5.3.2 Utilization of analytical advancements 

With the present quantity of tools in mind, the data consultant mentioned data analytics to be 

almost synonym with player recruitment and identifying new talents. A statement that is drawn 

from the fact that machines probably possesses the capability of outworking a traditional scout’s 

former tasks: 
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“Nowadays, data analytics is almost synonym with player recruitment and identifying 

new talents. However, there are absolutely some valuable metrics for the club’s match-

to-match use, as most match-to-match tactical analysis also depends on identifying the 

oppositions playing patterns. Another critical factor here is the limitation of the human 

eye – you cannot watch tape 24/7 minus sleeping hours. In contrast, you can parse and 

locate these key factors in only seconds with machines. Thus, you can, e.g., verify that 

the patterns you intuitively have recognized about your rival as accurate. Based on this, 

I would most definitely say there is a massive advantage in locating these patterns 

through data as it speeds up the process.” (Respondent 1) 

  

As indicated in the direct quotation above, there are acknowledge metrics for match-to-match 

use - as most tactical analysis depends on identifying the oppositions playing patterns based on 

the same metrics as utilized in their player recruitment. Another critical factor mentioned above 

is the limitation of the human eye – as you cannot watch tape 24/7 minus sleeping hours. In 

contrast, machines are used to parse and locate such vital factors in a matter of seconds, as 

expressed by the respondent. In addition, the same respondent reflects on how he currently uses 

the analytical advancements for this purpose: 

 

“Considering my approach to tactical analysis, I often look at team-based stats such as 

PPDA (passes per defensive action) and vice versa. Further, I assess the average player 

position during a game, where chances are created, and what context they root from. 

For now, video is the primary tool. However, we also use player-centric stats. For 

example, suppose the opposition tends to use a formation with two strikers. In that case, 

I will look at their metrics to identify patterns and exploit this knowledge to predict their 

collaborative tasks and counter it.” (Respondent 1) 

 

Moreover, similar patterns, as stated above, are often integrated into match reports and 

presented to the player groups. To these ends, they can practice towards what the staff predicts 

will happen in an 11 vs. 11 before game-day, as expressed by respondent 3: 

 

“If we were to look at the tactical aspect, we utilize metrics quantifying team 

performances, injuries, player performance, etc. A typical example would be to locate 

the opposition’s most vulnerable position and attack him with our most skilled player. 

For example, if you have a player like Neymar, you will probably try to isolate him 

against a slow opponent. In this example, the opponent would obviously be ready for 

such a thing. Still, we need to figure out a strategy preventing the opposition from 

defending what they anticipate us to do.” (Respondent 3)  

 

Further, as the respondents elaborated on the objectiveness of data, three of the respondents 

agreed on what happens when data contradicts their perceived intuition, as stated in this quote: 

 

“From my perspective, I think that when data contradicts my personal opinions, I’m 

more interested in finding out why the data says otherwise than finding flaws in my 

intuition. And, as I stated before, data is objective, and there are limits to how many 

games I can watch. Based on that, a player can either have been outstanding in the one 

match I saw and wrongly affected my intuition as he could've been bad in the rest of his 

games. So, I would almost always trust the data - but then it all comes down to how the 

data we use is contextualized. Take Lewandowski at Bayern as an example. Even though 

he misses the most chances, this does not necessarily make him bad, as the data also 
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shows him to be the one who creates the most chances. The same goes for what I deem 

as a contextual flaw in Arron wan-Bissaka’s dribbled past stat, reflecting him to be bad 

in one-on-one situations as players often go past him before he wins the ball back. In 

accordance, you can ask yourself the question; have you really been dribbled past if you 

win the ball back during the same sequence? In sum, you need to assess stats towards 

each other to get an understanding of what actually happens.” (Respondent 1) 

 

Nevertheless, as three of the respondents perceived the topic as stated above, one respondent 

mentioned he never been in a situation where the data has affected his decisions in a negative 

manner, other than apparent bugs in the system - as they always quality check the data 

themselves: 

 

“That is a tricky question. I do not believe I ever have approached a problem like this - 

but say, if we have data telling our opponent to play 4-4-2, but during the game, we 

observe that they are playing a 4-3-3, then my intuition would overtake the data. For 

me, when exploring these types of challenges, we fall under the terms scouting and 

opponent analysis. A good example is our own fullback, who scores high on winning 

duels in the statistics. Still, when he loses some duels, these are often vast mistakes 

leading to chances, which is not shown in the statistics yet. Hence, when we work with 

all these different tools, there is always essential to quality check what we generate, 

clean the data appropriate for our KPIs and player modules, and organize weekly plans 

for when and on whom the different data should be applied.” (Respondent 2)   

 

5.3.3 Suitability for tactical decision-making  

Even though all respondents agree that it is money thrown out the window not to have the 

analytics perspective, a common issue is how to acquire the proper tool among all tools 

available. For clubs that do not yet participate, the resistance is often in the top management. 

The typical structure consists of an old guard, often resistant to tech, and a pretty young data 

team trying to break through. Hence, the cost is not an issue; it is more about what works for 

each group. Furthermore, there is a consensus among the respondents that clubs usually acquire 

tools deemed the most sophisticated tools on their level, not which one is most suitable for 

tactical decision-making. One of the respondents explained the process of acquiring tools for 

physical attributes as follows: 

 

“Tools we buy and acquire are often proprietary software proven to be reliable in other 

domains. So, a criterion is that they are established and measure what we actually try 

to test. For example, we use MuscleLab as our leading software to measure and gather 

biological data, a very dominant software in the community. For analyzing such results, 

we can use a common tool called SPS.” (Respondent 3)  

 

In contrast, the academy coach explained in short detail how this often varies for youth 

academies with fewer resources, while the performance analyst stated how the need for 

customization trumped in the choice of more in-depth software:  

 

“We use these tools as they are offered to the club on a discount, and the club preferred 

to use its resources in other places.” (Respondent 4) 

 

“When talking about our own KPI, this was the reason for using Interplay over all these 

years. However, when Wyscout (huddle) approached the scene, we thought their KPIs 

to be easier to customize to our needs.” (Respondent 2) 
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5.4 Utilization of the artifact 

After elaborating on their current methods, the respondents assessed/tested the utility of the 

web application illustrated in Appendix B, according to the use case presented in section 3.4.2 

and Appendix A. Hence, they were asked to apply their regular game philosophy when choosing 

a desirable line-up, pretending to be the active manager of Tottenham Hotspurs. In order to 

exclude expert bias, the respondents approached the assessment without any knowledge of 

which team to managed or which to face. As a result, they objectively selected which players 

to include in their strategy against a very destructive Burnley-side. 

 

5.4.1 Applying a conventional strategy to the artifact (strategy) 

As the respondents followed the abovementioned use case, they had no problem integrating an 

individualized strategy when choosing a line-up. However, as expressed below, the respondents 

tend to utilize two distinct tactical approaches. First, the perhaps most tactical qualified 

respondent - the performance analyst - located weaknesses within his opposition before 

choosing which player to exploit his findings, as quoted below: 

 

“So, the most important thing to start with is which channels to attack in their defensive 

line. By this, I mean how dynamic are their four defensive players compared to each 

other, per strengths, weaknesses, threats, and opportunities. The exact process goes for 

both the MF and DF. After a fast glance, I think it is imperative to include players with 

a majority of high attacking attributes for this particular game - as the visualized 

statistics indicate that I not only face one low block but two.” (Respondent 2) 

 

Second, in contrast to the performance analyst, the rest of the respondents identified which 

player they found most suitable for each position according to their philosophy. Hereafter, they 

scanned the opposition for weaknesses and strengths and rotated some positions to increase 

pressure on the opponent’s weakest links: 

 

“I would first locate the players with the best aggregation of which stats I deem 

necessary in each position. Then I would assess these stats against the direct player they 

face - meaning, my best dribbler should execute his work versus their weakest defender 

and vice versa.” (Respondent 4) 

 

Further, as the respondents read the demonstration of use (see Appendix C) before the test, one 

of the respondents elaborated on how he utilized the polar chart to identify what he deems 

necessary according to his ideas and how much trust he could lay in the feet of each player: 

 

“For these positions, I value defenders with an overall high ball-control, which is 

reflected in the blue bars of the chart, and obviously the defending stats illustrated in 

the green bars. Further, I think playing time is of the essence, as it probably displays 

how trusted these center-backs of choice are.” (Respondent 3) 

 

Another respondent also enlightens how he compared polar charts in order to judge players co-

existence or chemistry on the pitch by adding minutes played with positional information and 

how two players statistically could complement each other: 

 

“As I assess these center-backs, I always go for the players with good chemistry in these 

positions. Many minutes for the two players of choice indicate that they have played 

together a lot. Their defensive bars also indicate that the players have clear roles - as 
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one being more aggressive, has higher interceptions, and is stronger in the air than the 

other, which tends to block more and tackle as I anticipate him to secure his teammate, 

playing like a second defender.” (Respondent 4) 

 

5.4.2 Reasoning behind the strategic decisions    

Correspondent to their philosophy, the respondents fancied their strategic decisions on a 

typically possession-oriented style of play as the opposition defended with a low line. In 

accordance, the experts consistently chose the players with the highest attacking and transition 

score in almost every position, as shown in table 12.  

 
Table 11: The respondent’s tactical groundings. 

Position Finding Grounding  

Center 

backs 

For the center-back positions, the 

respondents focused on overall high 

defensive attributes and the ability to 

handle the ball under pressure. As the 

experts were assigned with a formation 
consisting of two center-backs, there 

was an intriguing awareness of 

locating defenders with 

complementary capabilities. As a 

result, a potential logic for identifying 

chemistry was proposed. 

“As I assess these center-backs, I always go for 

the players with good chemistry in these 

positions. Many minutes for the two players of 

choice indicate that they have played together 

a lot. Their defensive bars also indicate that 
the players have clear roles - as one being 

more aggressive, has higher interceptions, and 

is stronger in the air than the other, which 

tends to block more and tackle as I anticipate 

him to secure his teammate, playing like a 

second defender.” (Respondent 4) 

 

Full backs For the full-backs, the respondents 

desired these players to have the most 

dynamic aggregation of high stats. 

Moreover, as all experts anticipated a 

modest pressure from the opposition, 

they required these ‘attacking’ 

defenders to recycle the ball and create 

chances. To this end, the two most 

versatile players with the highest 

attacking output were favored by all 

the experts, as shown in table 12.  

“So, I would look for the defensive players with 

the overall best attacking- and ball retention 

attributes for the full-backs positions. These 

are natural stats to select for any player in a 

fullback position. These choices are also 

complementary as the opposition team seems 

to play with a shallow block. In this case, I 

would need creative players in these two 

positions to break through and use the 

possession I expect to have for this game.” 

(Respondent 1)  

 

Defensive 

Midfielder 

All respondents valued a defensive 

player to be the tissue connecting the 

team. Accordingly, 4 of 4 respondents 

chose whom they deemed the best 

defensive midfielder towards the left, 

as he should also be the caretaker of the 

opposition’s most creative midfielder. 

As a result, 3 of 4 respondents chose 

the same player. 

 

“This midfielder (P. Højbjerg) seems to be one 

of the best ‘Backbone’ players in the league. 

He also contributes with a very dynamic skill 

set, such as high accuracy on various passing 

types, and he rarely loses the ball. In my 

opinion, the best choice for keeping the team 

in balance. As I see this position’s opposing 

player being their best central midfielder, I 

would play my best defending player here, and 

vice versa for my RCM.” (Respondent 3) 

Central 

Midfielder 

Like the defensive midfielder, the 

central midfielder`s polar chart should 

entail a versatile player. However, to 

“I look for a more dynamic and offensively 

good player for this position. This player (T. 

Ndombele) could really take advantage and 
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exploit what the respondents found to 

be the opposition’s biggest weakness – 

their left side and primarily their 

central left midfielder – they all desired 

a player with a more creative spirit in 

this position. As a result, 3 of 4 

respondents chose the same player.    

make things happen where the opposition 

seems weakest - this being on my right side. 

Putting the most overall player on this side 

would make him face a lousy player who 

almost always would be the recipe to create an 

opening against a low block.” (Respondent 4)  

 

Wingers The key aspect discussed for choosing 

a winger was the opposing full-back’s 

tendency of getting tricked - in terms 

of their dribbled past attribute being 

low. As an outcome, the respondents 

scrutinized their troop for the attacking 

midfielders with the best mixture of 

transition stats to take on the 

opposition’s weak spots. Equally 

important, the experts acknowledge 

their competitor’s left-oriented players 

to struggle more as their most creative 

player (Dwight McNeil) leaves behind 

more space around his starting position 

in order for him to ‘spill his magic.’ 

“On the flanks, I always look for the most 

capable transitioning players. Especially as 

the two-opponent fullbacks tend to be weak in 

one-on-ones, as well as mediocre tacklers, 

overall, these players at my disposal are quite 

spectacular when it comes to offensive 

contributions and creativity. He (Son Heung-

min) may not be the best dribbler, but he is well 

over average, and the best dribblers also tend 

to be the ones to fail the most as they also are 

the players who dribble the most. As I view this 

guy as my best winger, I would place him on 

the right side, as my opposition seems very 

weak defensively on this side.” (Respondent 

3)  

Central 

Attacking 

Midfielder 

There was an overall consensus stating 

the central attacking midfielder to 

possess high creation and progression 

stats, as the wingers should be the ones 

to dribble. However, there seemed to 

be a variation in which attributes the 

respondents deemed most pivotal 

within these two aspects. For example, 

one respondent used the same 

arguments for his choice but ended up 

with a pretty different player (Dele 

Alli) than the others (Harry Kane and 

Gareth Bale). 

“So, this player`s (Harry Kane) stats are really 

something. It`s quite unique to be the most 

creative and dangerous player at the same 

time, which immediately tells me he needs to be 

the center of attention.” (Respondent 1) 

 

“This must be the new Frank Lampard. High 

attacking contribution and some 

important progression stats. Considering his 

mixture of attributes, he may not partake 

enough in build-ups. However, he probably 

possesses excellent movements into the box – 

which could be very valuable in opening the 

opposition`s fortress.” (Respondent 3) 

Striker At last, all respondents explicitly 

focused on an overall high 

combination of red bars, and especially 

xG was the center of attention. The 

chance of recycling the ball through 

pressure was also of the essence for 

one of the respondents. 

“On top, I may choose a player with good 

defensive capabilities, as both CB’s seems to 

play almost every pass under pressure, but at 

the same time, they have a pretty low accuracy 

to their passes as they seem to often clear the 

ball. So I expect to recycle the ball quite often 

and need both an excellent pressing striker and 

a creative striker to break down the block. I 

would also go for the highest xG on this player 

as he should be my main treat.” (Respondent 

1) 
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5.5 Practical significance 

This section confirms how the respondents compare their conventional approach to tactics 

against their experience with the artifact. It also validates the final line-up for each respondent 

against what Mourinho chose for his Tottenham against Burnley. 

 

5.5.1 Current approach vs. artifact 

None of the respondents had seen a similar construction to the web application in their current 

work. They agreed on the artifact to be unique and more practical than what they have used so 

far, as expressed below: 

 

“From my point of view, this method would absolutely improve the current approach to 

tactics. For example, if you are in a position where you can impact the line-up of your 

team, you would probably have a reasonable understanding of your own team’s 

dynamics. Still, with this artifact, you can scan your opposition efficiently through the 

colors representing their attributes in different parts of the game and then assess how 

to take advantage of them. Based on all the various data tools we possess today, I 

assume this would be a much more efficient way of approaching tactics in the future.  

  

E.g., during the use case, I could pretty fast locate my players to penetrate their left side 

- as their left central midfielder seemed very weak, and their left fullback is pretty bad 

in one-on-one situations. We can also see that their best-attacking midfielder plays on 

the left side, which would probably leave these two weak players vulnerable in 

transition.” (Respondent 1) 

 

One of the respondents also mentioned that if he could alter all features according to his 

philosophy and add some stats, this could very well be something he pays for: 

 

“Yes, short and good. I would think the construction work could be problematic if we 

had to do it ourselves. Still, if I could have it as you have shown me, I think it would be 

advantageous. Something that surprised me is that I wonder if the hiding of names 

actually should be a feature in itself. As names sometimes function as noise, cause some 

trainers often lay their love on players, even when they do not perform. It could be 

interesting to have a dropdown menu where you could select stats for various situations, 

such as players xG on corners or free kicks, etc.” (Respondent 2) 

 

Further, the less tactical respondent (sport science) emphasized the importance of customizing 

the charts on the user’s premises. In addition, he also mentioned the easiness of learning the 

artifact as the visuals were quite appealing and well documented:  

 

“Absolutely. As we talked about, a coach would obviously know his team. Still, with this 

tool, a specific stat the coach was not aware of could occur and change the line-up for 

a given rival. I do not possess the experience to address all the metrics properly for 

now, but I think I would have learned it with a day or two, as the logic behind the system 

and the visuals are quite easy to understand. Correspondingly, I assume this tool would 

be very beneficial for a coach who knows his stuff and likes to dive into the material. 

When it comes down to stats, every individual view different stats as essential and not, 

so it would be crucial to make the charts on the user’s premises.” (Respondent 3) 
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At last, the academy coach mentioned the educational benefits of utilizing such a tool. The 

potential outcome of absorbing critical information concerning how players operate within a 

system could also help a player’s - less measurable - tactical ability for games to come. As an 

extension to players gaining more holistic perspectives, this could also enhance their relations 

with coaches:  

    

“Yes, I think so. It would have brought me closer to the small details that all managers 

seek to improve their game. I would really have gone into the depth of this approach if 

I could - cause as a manager, you have this ultimate desire to win at almost all costs, 

and if I feel this is something that could help me achieve that, I use it. Just consider how 

the potential result of players absorbing critical information concerning how other 

players operate within a system could improve their tactical ability. As an extension to 

players gaining more perspective on the game, this could also help coaches and players 

to understand each other on a whole new level.” (Respondent 4)   

 

5.5.2 Comparison and validation of line-ups 

In order to validate the artifact further, all the respondent’s final line-ups were compared to the 

actual line-up of Jose Mourinho. Of course, as all people have different philosophies and 

preferences, this is not a significant validation. However, it was fascinating to observe how all 

the respondents, being very possession-oriented and creative in their philosophy, in contrast to 

Mourinho – commonly known as a defensive strategist - ended up with almost the same line-

up in approximately 20-30 minutes. 

 
Table 12: Final line-ups compared to reality. 

Pos. Data 

consultant 

Performance 

analyst 

Sport  

science 

Academy 

coach 

 

J. Mourinho 
 

LB S. Reguilón S. Reguilón S. Reguilón S. Reguilón Sergio Reguilón 
LCB Eric Dier T. Alderweirled Eric Dier Eric Dier T. Alderweirled 
RCB D. Sanches D. Sanchez T. Alderweirled Ben Davies D. Sanches 
RB Serge Aurier Serge Aurier Serge Aurier Serge Aurier Serge Aurier 
LCM P. Højbjerg P. Højbjerg P. Højbjerg Moussa Sissoko P. Højbjerg 
RCM T. Ndombele T. Ndombele T. Ndombele P. Højbjerg T. Ndombele 
CAM Harry Kane Gareth Bale Harry Kane Dele Alli Lucas Moura 
RW Erik Lamela Lucas Moura Son Heung-min Gareth Bale Gareth Bale 
LW Son Heung-min Harry Kane Erik Lamela Harry Kane Son Heung-min 
ST Dele Alli Son Heung-min Gareth Bale Son Heung-min Harry Kane 
SUM 8/11 11/11 9/11 7/11  
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6. Discussion 

Throughout this thesis, it is evident that the statistical revolution of data-driven decision-making 

has established itself as the nexus navigating modern soccer towards the future. To this end, the 

author has ascertained how related works have approached the relatively untouched domain 

head-on - providing a comprehensive array of game-changing metrics. However, as the director 

of data science at STATS states in a documentary called the numbers game, it is not about 

gathering the data, as it already exists - it is about creating a universal language of that data 

(Lucey, 2017). Therefore, when interpreting the initiated research question drawn from the 

thesis problem definition (see Section 1.2 and 1.3): 

 

“How can player-centric metrics be utilized to simplify tactical decision-making in soccer?” 

 

This thesis aims to assist managers, analysts, and omnifarious soccer personalities in 

recognizing a more streamlined process of consuming tactical knowledge. Moreover, to address 

the issues associated with bridging the abovementioned research gap, the author has constructed 

a knowledge contribution in the form of a novel web application. To this end, the main target 

of the discussion is to compare the theoretical foundation forming the system against the current 

methodological culture of soccer experts to analyze the web application’s utility and ultimately 

highlight the artifact’s practical significance.  

 

6.1 Theoretical implications  

Equivalent to how Lucey (2017) argues for transitioning all existing soccer data into a universal 

language, the web application intends to partake in a comparable conversion by extending to 

soccer’s traditional whiteboard. Moreover, to illustrate each playing participants contribution 

both individually and in collaboration, player-centric performance data like the sensitivity 

attributes extracted by Hassan et al. (2020), the omnipresent expected values discussed by 

Kharrat et al. (2020), and the off-ball metrics conducted by Llana et al. (2020) were aggregated 

into polar charts reflecting each player’s capabilities. In addition, it became evident during the 

expert reviews that similar KPIs were a rather pivotal part of the respondent’s current methods. 

However, as expressed by most respondents concerning the current tool’s suitability for tactical 

decision-making, there is too much work scanning through all available means. Therefore, it is 

reasonable to argue that these massive amounts of various data tools have caused a damper for 

Lucey’s (2017) universal language.  

 

Nevertheless, a consensus stating the artifact to generalize the strategical assessment of power 

ratios between two opponents was in terms of its time efficiency established among the 

respondents. Moreover, this finding emphasizes how related works currently impact 

conventional methods, which ultimately strengthen the artifact’s utility according to 

Spearman’s (2018), McHale, and Relton’s (2018) statement on the necessity of these 

performance indicators to be of use to the end-user. 

 

Another issue extending to the necessity of contextualizing performance indicators on the end 

user’s premises is the metrics contradicting the respondent’s personal opinions. A re-occurring 

example during the interviews was the discussion on the metric dribbled past, a defending 

metric classified by StatsBomb in the glossary as “number of times a player is dribbled past by 

an opposing player.” Although, in this case, the metric is meant to reflect a player’s defensive 

one-on-one capabilities, it tends to award highly regarded defensive players with a low score 

against other defenders. Thus, as an example, the former Palace full-back Aaron Wan-Bissaka, 

reckoned as a master in the dying art of tackles, scored negatively on the dribbled past metric - 
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meaning one of Premier League’s most feared tacklers, often to be dribbled past by an opposing 

player. In this scenario, one respondent highlighted that we need to realize when to look beyond 

superficial numbers. Hence, when reviewing Wan-Bissaka’s style of play by utilizing the polar 

chart illustrated in figure 17, he argued the metric to count each time an opposition player 

moved the ball past him as a dribble, even though he won the ball with a late tackle in the same 

sequence. As Wan-Bissaka output also showed him to have among the highest rate adjusted 

tackles won for defenders. In accordance, another respondent stated this to be a contextual flaw 

in the data, asking the question, “have you really been dribbled past if you win the ball back 

during the same sequence?”  

 

 
Figure 17: Aaron Wan-Bissaka - performance overview 

Thus, in retrospect, it can be argued that the web application provides a holistic overview 

enabling managers to evaluate the inferred statistics as interpretable synergies, preventing a 

variety of stats from the crucial limitation Decroos et al. (2019) refer to as ‘rigid values’ - or 

lack of context (see Section 4.3.2). 
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Furthermore, as the respondents utilized the web application in corroboration to their strategy, 

most respondents located similar patterns to identify both player chemistry and individuals play 

of style. In accordance, the perhaps most intriguing outcome and prominent finding were how 

one of the respondents reasoned for his choice of center-backs, as he assessed player chemistry 

according to what he deemed as clear roles. As a result, by allocating the dynamic interplay of 

various player’s polar charts into categories consisting of cohorts with complementary 

capabilities, the respondent implicitly proposed a potential logic for identifying chemistry 

among players. In turn, the artifact could potentially thrive in combination with Dick and 

Brefeld’s (2019) and Van Haaren’s (2020) research, as the researchers examined players’ 

positional context and chemistry to reveal cutting-edge synergies within a group of players. 

 

In summary, these elaborations amplify Kharrat et al.’s (2020) considerations on traditional 

performance indicators simplicity to some extent - as these metrics underlying algorithms lack 

context and a deeper understanding of the situations in which actions are committed. While this 

is the case, when symbiotic information is provided separately from the different analytical 

advancements presented in section 5.3.1, the respondents found the systematic visualization of 

the artifact to present a deeper understanding of how the color-coded aggregation of position-

based stats revealed critical patterns. For example, as the performance analyst applied his 

traditional approach to strategically assess the opposition using the artifact, he emphasized the 

advantage of how efficiently he found himself to identify which channels to attack in their 

defensive line – compared to prior experiences. In contrast to the traditional performance 

indicators, the artifact amplified the holistic understanding of how coaches efficiently could 

exploit this knowledge to their advantage. At the same time, the combination of aggregating 

positional player-centric stats (data points suitable for a player’s default position) in a system 

with familiar features, the artifact reduced the time-consuming process of scanning through 

various software. 

 

Finally, one particular factor affecting the consensus stated above, as all respondents 

emphasized the importance of using universal jargon, is how the artifact tends to be capable of 

telling the same story to both a coach and an analyst. A statement that is strengthened as one 

respondent, working in the sports science domain, expressed:  

 

I do not possess the experience to address all the metrics properly for now, but I think I 

would have learned it with a day or two, as the logic behind the system and the visuals 

are pretty easy to understand (Respondent 3).  

 

Ultimately, this strengthens the web applications proof-of-use as Decroos, Bransen, Van 

Haaren, and Davis (2019) elaborate on the importance of structuring a system according to the 

context it is supposed to enhance. 
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6.2 Practical implications  

As with any contribution of this type, the sole intention of the proposed web application is to 

serve as a blueprint for future work. As a result, researchers can practice their discretion to vary 

what is proposed or submit and achieve improvements (Gregor & Hevner, 2013). In accordance, 

the application is mentioned by the respondents to show a promising potential if configured on 

the stakeholder’s premises. In order to discuss the significance of the application in light of 

practical contributions, the author finds it valuable to compare the findings towards the 

existential reality of the Tottenham versus Burnley match. This allows contrasts to be drawn 

amid instantiations of artifacts and abstract knowledge and grants subjective impressions and 

experiences from designers and respondents.    

 

To these ends, an intriguing re-occurrence of practical significance is the resulting consensus 

among the experts to either attack Burnley along their left flank or their left midfielder.  

In accordance, the heatmaps retrieved from  whoscored.com (2021) reflect how the majority of 

Tottenham’s 815 touches were centralized at those exact locations - resulting in a 4-0 win for 

Spurs. Hence, despite being unaware of how reality had unfolded, the respondent’s strategies 

proved to be an exact replication of Jose Mourinho’s reality during that match.  

 

If we look deeper into the matter, most attacks and shots illustrated in figures 19 and 20 are 

located from the same channels as the respondents built their strategy around - Tottenham’s 

right flank or Burnley’s left. In sum, a result strengthening the practical significance of how 

efficiently one can locate crucial playing patterns with the artifact, as it took the respondents 

approximately 20-30 minutes to assess and assemble a game-plan similar to what Jose 

Mourinho did.  

Figure 18: Heatmaps retrieved from whoscored.com (2021). 

Figure 19: Attack sides. Figure 20: Shot directions. Figure 21: Average positions. 
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Whereas the players positioned towards the right and the center of the field in figure 21 

generated all four assists (A) and goals (G) - (7. Son: AA, 10. Kane: G, 27. Moura: G and 9. 

Bale: GGA). Thus, at last, understat.com (2021) visualized the majority of Tottenham’s chances 

(circles) and goals (stars) to come from the center and slightly towards Burnley’s proposed 

weak side.  

Another interesting feature is how the respondents have managed to line up (see Table 12) the 

same players as Mourinho in almost the same positions, as illustrated in figure 21. This 

emphasizes how the respondents were able to predict realistic patterns. For example, they 

prioritized defenders with high ball retention and possession skills, as they expected to recycle 

the ball to gain an advantage out of the opposition’s low press. In accordance, if we compare 

the player’s average positions in figure 21 to the heatmap in figure 18, we can see how this 

observation played out in reality as most touches are centralized at the same position as their 

defender’s average position. Based on this, the author argues there is most definitely a potential 

advantage in locating these patterns through the application, especially regarding how it speeds 

up the process, as expressed by respondent 1: 

Based on all the various data tools we possess today, I assume this would be a much 

more efficient way of approaching tactics in the future (respondent 1).  

 

In summary, as all respondent explicitly expressed their willingness to apply the web 

application in their work, the author believes the study to partake in the digital transformation 

of sustainable big data solutions for soccer tactics that potentially can generate business value 

in the future. 
  

Figure 22: Match report retrieved from understat.com (2021). 
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7. Conclusion and Future Work 

The overarching aim of this thesis is to contribute to the socio-technical challenges of how data 

analytics can simplify the tactical decision-making processes in soccer. As a result, the author 

has constructed a web application for tactical decision-making by following a design science 

research (DSR) paradigm. Thus, in this thesis, a data-driven system based on polar charts is 

introduced as a provider of adjustable pre-constructed templates, processing raw data from 

StatsBomb to create holistic data visualizations identifying given prospects and tactical patterns 

according to preferences. 

 

Drawn from the consensus among experts testing the web application, the author concludes the 

system to have shown great potential in generalizing the strategic process of identifying tactical 

patterns. Additionally, this results in strengthening the practical significance of how efficient 

the artifact is to locate a proper strategy, as it took the respondents - unaware of their actual 

reality - approximately 20-30 minutes to assess and assemble a game-plan almost congruent to 

the ‘the special’ Jose Mourinho. Subsequently, as the author believes this domain an uncharted 

territory, the study contributes to a deeper comprehension of big data’s potential impact on 

soccer tactics. 

 

Despite a promising outcome, as with any contribution of this type, the sole intention of the 

proposed web application is to serve as a blueprint for future work. As a result, researchers can 

practice their discretion to vary what is proposed or submit and achieve improvements. In 

accordance, an implication extending to the proven necessity of contextualizing performance 

indicators on the end-user premises arises as some metrics tend to contradict personal opinions. 

To these ends, it would be interesting to look further into how the artifact could adapt to other 

relevant features in future research. For example, heat maps, pass maps, physical attributes, or 

chemistry team builders. Potentially, this can generate different hypotheses for later testing, 

such as testing the assumption that the majority of a team’s chance creation aligns with the 

position of the player with the highest score of successful dribbles. If true, test if the player with 

the highest successful tackles is the best receipt against such a player, or alternatively, if other 

attributes are more effective against the opposition’s most dangerous weapon.  

 

Finally, it would be interesting to see how the artifact could adapt into reality by observing a 

soccer club while utilizing the system for further proof-of-use and proof-of-value analyses. 

Otherwise, as similar big data systems and applications expand, they will inevitably alter 

longstanding conceptions about decision making, competitive strategy formulation, 

management practices, and value creation in soccer. Hence, the value that emerges through this 

thesis proposed ecosystem may pave us to the forefront of an entirely new strand within the 

analytics industry. One that potentially will attract further attention in the upcoming years.  
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Appendices 

 

A – Expert Review 

 

Background questions (5 min) 

1. How would you specify your current role with regards to analytics? 

 

2. In accordance with that role, what is your specific skillset? 

 

3. Would you say there exists a data-driven culture in your environment? 

 

Current approach to data analytics (10 min) 

 

4. Which analytical tools have you integrated into your work process? And how do you 

approach them with regards to tactical decisions? 

(e.g., software, stats, whiteboard, etc.) 

 

5. On what grounds have your organization chosen those tools over other tools? 

(e.g., cost, knowledge, etc.) 

 

6. To what extent does the current state of these tools suit your needs? 

 

7. How do you progress when data contradicts your personal opinions? 
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Utilization of the artifact (Expert review – 20 min) 
Note: a description (Located in appendix) of the proven metrics should be visual at all time during the review 

Restrictions (necessary for validation criteria): 

 
- The final line-up will be compared to the actual line-up, hence..,  

- You need to play 4-2-3-1 

- You have the same 18 players at your disposal as the actual manager had at that time 

- Opposition line-up is real 

- Defenders should play as defenders (as they are benchmarked against each other – see the last 

requirement) 

- Midfielders & attackers can be placed from midfield and up. 

- Your opposition tend to play a defensive style of play 

- Player names are hidden to prevent informants from subjective picks 

- All stats reflect a given player’s performance up to that date (28/02/2021) 

- Some charts make less meaning; this is due to the difference in minutes played 

- All players are benchmark towards players in the same position (as they should be evaluated towards 

the environment they compete in) 

 

 

Use case  

Based on the restriction above… 

 

8. How would you line-up your defense? (Elaborate on your reasonings for each position)  

 

9. How would you line-up your midfield? (Elaborate on your reasonings for each position)  

 

10. How would you line-up your attack? (Elaborate on your reasonings for each position)  

 

The final output will be embedded here when transcribed 

 

 

Expert feedback (5 min) 
 

11. Costumed for your needs, would this artifact simplify your current approach to 

tactics? (Please elaborate on why or why not) 

 

12. Have you seen a similar approach to tactics before? 
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B – Expert Review Software 
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C – Artifact Description 

 

This thesis’s overarching purpose is to examine the socio-technical challenges of how data analytics is utilized in decision-making processes to 

decipher the potential of big data in soccer tactics. The main target is to assess/test the utility of the web application illustrated in figure 2 and 

compare the tool to current work methods. The application is constructed based on the knowledge extracted from an initiating case study (examined 

a European soccer organization’s approach to data) and a literature review (identifying soccer's most proven metrics). In brief, the tactical tool 

intends to improve the traditional whiteboard by providing an all-in-one interface where player-centric performance data aggregated in a pizza 

slice chart helps the manager to assess all available players strategically against each other. Ultimately, the complete version of the application 

merges each player’s position-modified pizza slice chart (Figure 1) within a tactical drag-and-drop whiteboard (Figure 2).  

 

Interpreting the pizza slice chart (figure 1) 

In brief, a polar chart is made up of a number of wedges (slices), each representing a proven metric. Each wedge's length corresponds to the selected 

player’s percentile rank for that metric compared to the players in the same league and position. The percentile rank is the percentage of scores 

within a dataset equal to or lower than the score. This is reversed for metrics where a lower value is better, such as ‘turnovers.’ In sum, a more 

extensive bar is always better. Hence, when interpreting Oliver Giroud’s performance overview (Figure 1) so far in the 20/21 season, one 

immediately notices the amount of filled attacking percentile wedges, indicating Giroud’s outstanding ability to create expected goals per 90 

minutes (xG). Another striking attribute describing Giroud’s playstyle is the few touches he generates per 90 minutes in the opposition’s box. 

Intuitively, drawn from the knowledge above and the looks of Giroud, one would most definitely conclude that this player, looking more like a 

mountain than an average soccer player, would be scoring the majority of his goal with a header (= few touch) from within the opposition box. In 

turn, as a manager, you would probably shape your tactics accordingly – blasting in high crosses aiming at his head. Nevertheless, as a contradiction 

to this highly intuitive opinion based on Giroud’s physics, his aerial percentile wedge only ranks him above the average striker in the air – winning 

merely 64 % of the aerials, he contends. Being a manager this also tells that you probably would vast your most dangerous weapon by playing a 

tactic solely based on high crosses, as your striker’s strength probably lies in his position-ability as much as along the ground or in the air. 
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Each proven metric is defined and color-ordered according to which game phase literature places them. 
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Interpreting the tactical web application (Figure 2) 

A proof of the artifact’s utility is anchored in its ability to assess Giroud’s playstyle and identifying the logic behind his previous performances, 

as well as how to counter it. For example, by looking into the already stated goal-scorer, one initially tends to acknowledge the low scores he has 

generated regarding touches in the opposition box, goal creation-actions, and being a target of attempted passes. Taking these remarks into 

perspective and assess them towards Giroud’s generally low passing attributes, few touches/involvements before entering the opposition box, and 

his low shot creation-action, it is evident that Chelsea does not very much include the striker in build-up plays - even though he is known as a 

link-up player. One can assume that he preferably operates as a so-called ‘fox in the box’ (most goals come from tap-ins). If we process this 

information further and add Giroud’s average pressure stats, one should consider countering his abilities with defenders scoring high on stats 

reflecting good capabilities if pressured. Such as pressured passes, pass completion, turnovers, and a generally high combination of defensive 

stats to handles Giroud’s superior off-ball movement. As illustrated below, a reasonable nemesis for Giroud would be Luke Ayling (current 

center-back for Leeds).   

Another example of the application’s utility is identifying the high possibility for Leeds to attack through their left flank. As a result, these 

players tend to have a higher attacking contribution (reflected in their red bars).  

In sum, the artifact aims at putting the user in a better position than ever to outmaneuver the opposition tactically. 
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