
 

 

Using AI and Robotics for EV battery ca-
ble detection.

Development and implementation of end-to-end model-free 3D in-
stance segmentation for industrial purposes.

HENRIK BRÅDLAND1 & IVER SØRENSEN2

SUPERVISORS
Linga Reddy Cenkeramaddi1 and Martin Marie Hubert Choux2

University of Agder, 2021
Faculty of Engineering and Science
1Department of Information and Communication Technology
2Department of Engineering Sciences



Acknowledgements

We would like to thank supervisors Martin Marie Hubert Choux and Linga Reddy Cenkera-
maddi for their good guidance and support throughout the thesis. In addition, we would
like to give thanks to the IT department at UiA for helping with setting up the hardware.

We would also like to thank the rest of the team working on the LIBRES project for being
cooperative, and for providing good reflections and for participating in discussions on
how the subsystems should be stitched together. This allowed for a more comprehensive
design.

The LIBRES team at UiA.

i



Abstract

This thesis describes a novel method for capturing point clouds and segmenting instances
of cabling found on electric vehicle battery packs. The use of cutting-edge perception al-
gorithm architectures, such as graph-based and voxel-based convolution, in industrial
autonomous lithium-ion battery pack disassembly is being investigated. The thesis fo-
cuses on the challenge of getting a desirable representation of any battery pack using
an ABB robot in conjunction with a high-end structured light camera, with "end-to-end"
and "model-free" as design constraints. The thesis employs self-captured datasets com-
prised of several battery packs that have been captured and labeled. Following that, the
datasets are used to create a perception system..

This thesis recommends using HDR functionality in an industrial application to capture
the full dynamic range of the battery packs. To adequately depict 3D features, a three-
point-of-view capture sequence is deemed necessary. A general capture process for an
entire battery pack is also presented, but a next-best-scan algorithm is likely required
to ensure a "close to complete" representation. Graph-based deep-learning algorithms
have been shown to be capable of being scaled up to 50, 000 inputs while still exhibiting
strong performance in terms of accuracy and processing time. The results show that an
instance segmenting system can be implemented in less than two seconds. Using off-
the-shelf hardware, demonstrate that a 3D perception system is industrially viable and
competitive with a 2D perception system.
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Chapter 1

Introduction

1.1 Background

A shift from combustion vehicles to electric vehicles seems to be imminent, many would
even argue that it has already happened. In 2020 battery-driven vehicles had a share
of 54.3% of the new vehicles sold in Norway, with chargeable hybrids and hybrids getting
second place in market percentage with 29% [1]. By the end of 2020, EV’s made up a
total of 12% of Norway’s car fleet, with an increase of 30% from 2019 to 2020 [2].

This increase in EV’s market share is likely due to EV’s becoming cheaper and performing
better. But for many, the idea of an environmentally friendly, emission-free electric car
is a deciding factor. However, an EV will likely never really be emission-free. Both the
production and sourcing of the materials used in an EV can be both environmentally
challenging and a humanitarian problem. With some resources requiring large min-
ing operations, in sometimes unstable nations with problematic working conditions [3].
Therefore, when an EV reaches its end of the life cycle, as much as possible of the vehicle
should be recycled.

The LIBRES project

LIBRES is a research project where the main goal is to develop a design basis for a lithium-
ion battery (LIB) recycling pilot plant by 2022, with the pilot plant able to handle a com-
mercial volume by 2024. The project group consists of several industry partners, with
Hydro ASA being the project owner[4]. The University of Agder is one of the universities
contributing to the project. Together with BatteriRetur AS, the university is focusing on
the battery dismantling stage of the recycling process. This thesis is in association with
the LIBRES project.

Why automation

By the time of writing this thesis, dismantling of lithium-ion batteries in Norway is done
by hand. The process requires two people, which must be authorised electricians with
high voltage experience, due to the batteries containing a large amount of residual power
when delivered to dismantling. On average the process of dismantling a battery pack
takes about 45 minutes [5]. With the high amount of personnel needed, and the degree
of education required to work, the personnel cost of such an operation can become quite
expensive. When looking at the trends of the vehicle transport market, it is clear that a
higher demand for battery recycling is imminent. By reducing the need for specialised
skilled labour, an autonomous LIB dismantling plant can therefore be the solution to
decrease the cost and meet the demands of the future vehicle transport market.
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Challenges of an autonomous system

Disassembling a LIB pack is an extensive task, with many steps. One of the reasons why
this process is done manually is due to the many small parts to be removed, like wires
and electronics. One way to automate the disassembly process is to hard-code the right
sequence of operations to achieve the goal of dismantling the battery pack. However, this
solution leaves the dismantling system sensitive to changes in the battery pack. Say for
instance, the battery pack to be disassembled have been damaged to the extent that the
hard-coded sequence will fail. In that case, a new sequence to handle that scenario would
need to be coded. To get a disassembly system that consistently handles deviations, the
number of potential scenarios that would need to be hard-coded will quickly increase to
an impractical amount.

With the current number of different EV models approximately being around 100 mod-
els, the amount of work needed to hard code all the sequences would be impractical,
and with the expected increase to 350 models by the year 2025 the plant would require
constant follow up as new models came out. The existing EV models may also vary their
battery setup over time, increasing the required amount of hard-coding [6].

Critical pilot plant features

For the disassembly plant to be economically viable it needs to cope with the large vari-
ations in battery packs. Therefore, for the pilot plant envisioned in this thesis, need to
have the following features:

• Model-free approach: The system can not be dependent on having access to 3D
models of the battery pack. If the plant is to function with minimal upkeep, the
plant can not need extensive updates when a new EV model comes to market. If the
plant were dependent on 3D models of the LIB packs, it would likely have problems
handling damaged packs.

• Perception system functionality: For a model-free approach to be viable, the plant
need to build a model of the battery on its own. With a point cloud-based capturing
system, a model of the battery can be generated. This model will contain damage
features, which would be invisible if the system was to operate on pre-made models.

• Part segmentation system: When point clouds are generated. The plant need
an intelligent algorithm capable of identifying objects of interest in a wide array of
states. A potential fit for this task would be a neural network-based approach.

• Robotic manipulator: With the number of complex manipulation tasks needed to
dismantle a battery, a robot can provide the needed versatility without drastically
increasing the need for machinery. The robot arm will likely need to have a set of
interchangeable tools to complete the various tasks required.

1.2 State-of-the-art

Robotics

The current research field of robotics is focused on designing adaptable approaches to
robotics. With the adaptive robots often working with incomplete information. Examples
of handling incomplete information are as follows: Development of systems capable of
recognising that the robot has been in a certain region before [7], and motion planning
with incomplete information of the surroundings [8]. Incorporating machine learning into
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robotics is also being looked at, with using reinforcement learning to complete complex
manipulation task [9].
Another field of robotics that is seeing much attention is the development of systems mak-
ing robotics more accessible. The development of state-of-the-art open-source projects
like ROS and MoveIt helps the field by establishing a standard in the industry, streamlin-
ing the process of getting robot systems working. ROS serves as a robot communication
system while MoveIt can provide a framework for the robot project to be built on [10][11].
Libraries focused on path planning and inverse kinematics, like OMPL and IKfast, allows
for integration with the ROS and MoveIt system[12]. The result of this development is
apparent in how robotics research can be done with a high level of complexity, due to
a baseline robotic system being rapidly developed, giving the researchers more time to
focus on their intended research topics.

Autonomous disassembling

Due to advances in robotics and automation, the research combining robotics and disas-
sembly have been steadily growing. The number of research papers involving "robotics"
and "disassembly" have increased by 40% from 2013 to 2018. The most popular research
topic within this field being sequence planning[13].

Generally, the trend in the field of sequence planning is focus on designing algorithms
to handle disassembly feasibility, path obstacles and cost optimization. A common ap-
proach for sequence planning is to try different algorithms, such as Petri nets, fuzzy logic,
artificial bee and ant colony [13].

Robotic implementation is another research trend, where 6-DoF robots and collaborative
setups are looked at. It includes implementation of sensory systems to identify and learn
dismantling processes. The focus seems to be on learning concrete dismantling system,
not necessarily a general approach to dismantling [13].

Generally, the research field in automated dismantling is focusing on sequence planning
with the planning algorithms becoming more adaptable with the implementation of sen-
sory input. But implementation of automated dismantling process seems to largely be
focused on dismantling of a specific known object. There appears to be a knowledge gap
in implementing model-free approaches to dismantling, something which would be es-
sential if a system needs to handle a large variety of objects in different states.

Semantic segmentation of point cloud

Point Cloud Semantic Segmentation (PCSS), i.e. the task of assigning a semantic prop-
erty to every point in a point cloud, is most often done by traditional supervised machine
learning approaches or by the usage of modern deep learning [14]. Traditional machine
learning refers to shallow neural networks (without any hidden layers) or non-neural net-
work based methods like support vector machine (SVM) [15], random forest [16], boosting
algorithms (like AdaBoost [17]) and maximum likelihood classifiers [18].

For most recent studies (From 2018 until today) the preferred method for PCSS, regard-
less of the application, is some variety of deep learning [14]. 3-dimensional convolu-
tional neural networks (3D-CNN) in combination with octrees and voxel-grids, show good
preference on various benchmarks (OctNet [19], O-CNN [20], and VV-NET [21]), but are
computationally heavy due to the size of the layers and the number of empty voxels.
Multi view-based approaches, where the point cloud is projected down to several 2D-
representations from different views, to then be processed with 2D-CNN, have shown
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good performance on simpler tasks. Nevertheless, it comes short when the shapes are
complicated due to the loss in geometric structure as the 2D-projections are approxima-
tions of the 3D geometry. Directly processing the point clouds is based in majority on
the PointNet [22] where MLP (Multi-Layer Perceptron) is used to approximate per-point
local features for each point, that are later classified by another MLP. The most promising
methods are GNNs (Graph Neural Networks) like SPG [23], DGCNN [24] and RGCNN [25],
which show excellent performance [14].

Most of the previous work done on PCSS is directed towards LiDAR-based and image-
derived point clouds of outdoor environments, or indoors RGB-D based data. The outdoor-
directed work is mainly based towards segmentation and classification of terrain from
ALS (Airborn LiDAR Scanning) and image-derived data, and work on segmentation and
classification of surroundings related to self-driven cars. The work related to indoors
RGB-D based data is mostly related to navigation and collision avoidance for small au-
tonomous robots [14]. Most publicly accessible data-sets and benchmarks are therefore
ether urban outdoor landscapes with labelled houses, trees and other urban elements
(Semantic3d.net [26], Paris-Lille-3D [27], KITTI [28]) or indoor environments labelled
mostly with furniture (S3DIS [29], ScanNet [30]). At the time of writing, there are no
known data-sets for disassembling that are applicable in this context. Therefor, for the
task of disassembling a EV battery pack, a data-set needs to be generated. On the other
side, the most relevant of the established benchmarks is ModelNet40 [31] that contains
everyday objects with labelled segments.

Most work on semantic segmentation of objects is done on small point clouds, commonly
in the range of 2000 − 4000 points per point cloud [14], [24], [31], [32]. With modern
sensors, the resolution of real-world data gets vastly larger, and can easily go over one
million points [33]. There are few papers that tackle this problem by for instance random
sampling in order to fit the model [34]. Nevertheless, most work related to single object
segmentation is done on soft data, thus creating a gap between theory and industrial
implementation. There are some exceptions like Mask-MCNet [32], but there is still work
to be done in order to connect the models developed on soft data to be implemented in a
real-world environment.

1.3 Research questions

The field of end-to-end solutions for 3D-scanning and instance segmentation of real world
objects are not well understood yet. This thesis wants to discover and look into fundamen-
tal aspects of end-to-end instance segmentation of industrial battery pack dismantling
solutions, and in the work answer the following research questions:

• The construction of a good digital representation of the real world object is essential
to getting a well functioning end-to-end system. This thesis therefor intends to look
into how this can be accomplished in an industrial setting. With a main focus on
how to choose and set up hardware so that a digital representation reflects the object
of interest in a good and consistent way. While taking into consideration the variety
of environmental conditions systems can encounter.

• There are several promising algorithms to be used in instance segmentation of point
clouds, but not on entangled point clouds. This thesis will therefor look into what
kind of algorithms are most stubble for this kind of application.

• Time is an important aspect of any industrial application. The thesis therefor will
look into how the end-to-end process can be performed in a time efficient way while
maintaining good performance.
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Chapter 2

Background theory

This chapter is intended to give the required background information needed to compre-
hend the choices done in the thesis. It also intends to set definitions and lay out the
mathematical notation used later in the thesis. Since the thesis is multidisciplinary it is
assumed that the reader might not be up to date on all background information outside
his or her primary field. The theory chapter therefor includes information that otherwise
would be seen as common knowledge.

2.1 Robot control

To move a robot to complete a task involves many different levels of complexity. One of
the more fundamental levels that need to be designed is the actual robot arm structure,
calculating how much the robot can lift compared to the weight. And if a moving robot
is needed, the development of the actuation system can also be a field one can dedicate
a lot of time to. The field of robotics is filled with these rabbit holes, leading to their
field of research. For a researcher then to design a robotic system from nothing would be
counter productive.

Over the years of robotics research, as the state-of-the-art has gotten more and more
complex, tools for streamlining robotics development have steadily been expanded. Giving
the field the ability to relatively quickly get up to the level for state-of-the-art research.
However, it is still important to understand the tools that are used to reach the required
level.

2.1.1 Spatial transformation

Spatial transformations are the basis of how 3D movement is handled. The movement
can be split into translation and rotation, equating to six degrees of freedom. Where half
of them represents the three-dimensional axis (XYZ) and the rest represents the rotation
around the three-axis often called pitch, roll and yaw.

Translation Often represented as T translation is the simplest to represent in 3D-space
as vector addition product, for later purposes showed in 4×4 matrix form. Where the base
translation is represented by the vector (tx ty tz) and the pint to be translated (vx vy vz),
as seen in equation 2.1 [35]. 

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1




vx

vy

vz

1

 =


vx + tx

vy + ty

vz + tz

1

 (2.1)
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Rotation A rotation matrix is a matrix which only rotates a point around the origin,
meaning the length of the vector defined by the point is not extended or shortened. Rota-
tions can be represented as a sequence of Euler angles. Euler angles is in short rotations
around the XYZ axis often denoted as Rx(α), Ry(β), Rz(γ) or yaw, pitch and roll, where α,
β and γ is their respective angle of rotation. The set of rotations can be represented with
the following 4 × 4 matrices[35]:

R = Rz(γ) · Ry(β) · Rx(α)

=


cosγ −sinγ 0 0
sinγ cosγ 0 0

0 0 1 0
0 0 0 1




cosβ 0 sinβ 0
0 1 0 0

−sinβ 0 cosβ 0
0 0 0 1




1 0 0 0
0 cosα −sinα 0
0 sinα cosα 0
0 0 0 1

 (2.2)

Transformation Transformation is the combination of a rotation and a translation. The
transformation matrix is often represented as a 4×4 matrix where the 3×3 section in the
left upper corner describes the applied rotation, and the upper rightmost 1×3 represents
the translation. The full transformation matrix is shown in the following equation, where
H represents the full transformation matrix, R represents the rotation matrix and T
represents the translation matrix[35].

H =
[
R T
0 1

]
(2.3)

Forward kinematics

Figure 2.1: Forward kinematic chain[36].

If all angles of a robots joints are known,
the position of the end effector can be cal-
culated via forward kinematics. As can
be done with the rotation matrix, one can
also chain together transformation matri-
ces, giving whats called a kinematic chain.
The kinematic chain is set up such that
all links, except for the base link, is a
transformation in reference to the earlier
link in the chain. The translation part of
the transformation represents the length
of the link and the rotation represents the
angle of the joint. A single transformation
matrix can be made by combining each
transformation in order as follows[36].

H4
1 = H4

3 H3
2 H2

1 (2.4)
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2.1.2 Inverse kinematics

Figure 2.2: Possible solution for inverse
kinematics[36].

When designing a robotic system, how to
get the end-effector to the desired position
is often the focus. The problem then be-
comes how to organize the robot joints into
positions that will give the desired posi-
tion. This problem is called inverse kine-
matics and is when you start from the end-
effector and work your way to the base
joint [37].

The challenge with inverse kinematics
comes due to there being, in many cases,
more than one solution of how to reach a
certain pose, as seen in figure 2.2. The
many cases there can in theory be an infi-
nite amount of solutions. To solve inverse
kinematic problems, complex algorithms
are used to find and optimise a solution.

2.1.3 Robot Operating System

Robot Operating System (ROS) is an open-
source software that can be run on Unix-
based platforms. ROS is built as a frame-
work for robot communication and serves as a backbone for the robot application. It is
a collection of different tools and libraries organized in a system made to streamline the
development of complex robotic processes.ROS provides services like hardware abstrac-
tions, low-level device control, and a framework for machine to machine communication
(M2M).

ROS organizes itself into nodes that do certain processes for the robot system to work.
ROS is designed in a modular way, where different nodes run different systems. One
node can run the robot arm actuators and another can manage the sensor system. The
nodes communicate by a publish/subscribe system, where one node publishes its data
to a certain topic and the other node subscribes to that topic. By setting up the system
like this, the receiving node does not need to know about each other, only the topic they
are working with.
The basic building blocks of ROS is as follows:

• Nodes: Processes that do computations, like drive robot motors or run the sensor
system. Nodes can publish information or subscribe to information via a topic.

• Topics: The message transport system of ROS. The topic is a name used to identify
the content of a message. A node can publish or subscribe to a topic to tap into
the information. the subscriber and publisher generally do not need to be aware of
each other.

• Message: A simple data structure that ROS communicate with. The data type can
be specified from a set of basic types, like integer, floating-point or boolean. The
messages are what is being broadcasted on a topic.

• Master: Coordinates the communication between nodes. The Master provides the
name registration and lookup for the rest of the system.
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• Services: A Request/reply system distinct from the publish/subscribe system. A
service is provided under a name and the system sends a request to that name and
waits for a reply. A service is presented in ROS client as a remote procedure call.

2.1.4 MoveIt

MoveIt is a tool that is built on top of ROS. Whilst ROS provides the necessary back-
bone for communication of the robot application, MoveIt provides a framework to build
the functionality of the application by setting a basic code base for implementing key
features of the robot application, such as path planning, object manipulation, inverse
kinematics, higher-level robot control, collision checking and 3D perception. All this is
organized into a plugin-based architecture which makes MoveIt highly customizable, giv-
ing the user the option to design their systems[11].

Figure 2.3: MoveIt high level architecture.

Figure 2.3 is a diagram showing the high level architecture of MoveIt. As seen in the
diagram, MoveIt is organized around the move_group functionality. move_group are nodes
that combine individual components to provide a set of ROS actions and services. One
move_group can therefore be controlling the robot movement system, by fetching all fea-
tures necessary to generate and execute a move order, and sending the required joint
controls to the robot controller. Move groups can be called via a set of user interface
systems. All variables related to the robot, like the turning limit on a joint, is stored in
the ROS Param Server, in formats like URDF and SRDF. A GUI plugin called Rviz can
be used to visualize the robot application, configure the sensor system and send robot
commands. MoveIt also comes with C++ and Python functionality able to call the move
groups[38].

2.2 Motion planning

Motion planning is the process of planning out the sequence of joint movement to move
the robot from one place. Much of the same challenges of inverse kinematics reappear
when motion planning. This is because when a path is generated a series of inverse
kinematic problems are solved until a path from the start position to the goal position
is achieved. But there is more to generating a good path than finding valid kinematic
poses. Problems like collision avoidance can become a problem when the robot needs to
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navigate complex geometry. There are therefore several different approaches to the path
planning problem. Some methods may be guaranteed to find a solution of one that exists
but requires more computation to find a solution and some may be quick but with no
guarantee of finding a solution.

Some popular categories of motion planners are as follows:

• Combinations motion planners are planners that do not do approximations. This
makes them what is called complete path planners, which means the algorithm will
be able to tell you if a solution exists. Combination planners are however resource-
intensive and can become impractical when more degrees of freedom is introduced
[39].

• Feedback motion planners uses feedback control to compute the path to the goal
position. Feedback systems work well in situations where the dynamics of the sys-
tem affects the robots ability to follow a path. Feedback motion planners can how-
ever require complex system modelling to get a result that matches the capability of
the robot [39].

• Sampling-based motion planners Solves the motion planning problem by sampling
the configuration space of the robot until it has found a path to the goal position.
Sampling-based planners excel at handling a higher degree of freedom systems, due
to their ability to approximate. The robot system this thesis works with is a 7-DoF
system and is therefore suited for a sampling-based planner [39]. It also the case
that the planning library Open Motion Planning Library (OMPL) is a sampling-based
planner library that has been implemented into MoveIt.

2.2.1 Configuration space

The configuration space of the robot is an interpretation of the combined joints of the
robot. A configuration space for a 2DoF robot can be represented as a 2D field where a
location represents a certain configuration of the robot joints and the two joints angles are
represented in the two axes. With a higher DoF robot, the dimensions of the configuration
space increase to match. The configuration space of the robot can contain configurations
that are unreachable to the robot. An area of the configuration space can be unreachable
for different reasons, like an obstacle, self-collision or joint restrictions, but in practice,
all inaccessible areas are defined as obstacles. The physical space the robot can operate
in is named the works space of the robot.

2.2.2 Sampling-based motion planners

Generally, sampling-based approaches start by generating some set of partially random-
ized states in the robot configurations space, then it connects these configurations with
collision-free paths. Sampling-based approaches often provide what is called probability
completeness. This means that if a solution exists, the probability of finding a solution
approach 100% when the sampling rate approaches infinity. The strength of sampling-
based systems is the ability to handle higher dimensional configuration spaces[40].

Probabilistic Road Map (PRM)

The probabilistic road map method (PRM) is an approach to sampling-based motion plan-
ning. Where a set of randomly distributed valid configurations of the robot is generated.
This set of configurations is then linked in a way to create a basis for a road map through-
out the configuration space of the robot. This road map is then used to find a path from
the start position to the goal position [40]. An illustration of a typical path generated by
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a PRM method is showed in figure 2.4, where the grey regions are inaccessible configu-
rations, the connected nodes represent the random samples, and the orange path is the
path chosen by the PRM algorithm.

Figure 2.4: PRM-generated path[40].

The advantages of the probabilistic road map method become apparent when there is
little to no change in the environment of the robot system. The robot can then reuse
the road map, drastically reducing the computation requirements of finding a valid path.
However, in situations where the environment is changing in between every path plan-
ning task, the road map would need to be re-generated. Since PRM samples the whole
configuration space of the robot it can be outperformed by other sampling-based plan-
ners which implements a more directed sampling method.

Tree-based motion planning

The sampling done in tree-based motion planners works procedural. The "tree" in tree-
based planners come from the way new samplings in the configuration space are gener-
ated dependent on a previous sample, creating a tree-like structure of connected samples,
all leading back to a small set of seeded samples. With no prior knowledge of the config-
uration space, the Tree-based algorithms can generate a branching graph network until
a path from the starting position to the goal position is reached, eliminating inaccessible
configurations as the network is generated.

Figure 2.5 depicts the path generation of a Rapidly Random exploring Trees algorithm.
Where the red dot is the starting position, the green rectangle is the goal position and the
red rectangles are the inaccessible regions of the configuration space. The black network
is the generated tree and the blue dots represents the path the algorithm found.

With a randomly generated tree, a large percent of the new nodes that gets generated
will not lead to a successfully generated path to the goal state. A random tree will there-
fore use a considerable amount of computation, computing trees that will never lead to
a solution. To account for this loss a bias towards the goal state is often applied to steer
the random tree in the right direction. This bias however may cause the algorithm to be
stuck in a local minimum where an obstacle would need to path-ed around. There are
however solutions to this problem, like generating more trees from other states, like the
goal position, working backwards to the starting position.
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Figure 2.5: Rapidly Random exploring Trees generating a path[41].

PRM vs Tree-based

Though not always able to find an existing solution, the tree-based motion planners are
often more suited for changing environments were previously generated configuration
space cant be trusted. This is because the tree-based solutions use less computation
power for a whole path planning task, whilst the PRM method is dependent on reusing its
generated road map to be more efficient. Tree-based methods are also better at handling
constraints on the dynamics of the robot. If a robot needs to transport a glass of water,
making the robot constrained to keep the glass in an upright position during the whole
path execution. This is a relatively straightforward task for the Tree-based system, by
modifying the rules for how the tree can be generated. A road map approach however
would need to find an approximate route from the generated road map.

2.3 Sensors

Setting up the hardware so that it consistently producers good and stable representa-
tions of the batteries are therefore a major aspect of any industrial end-to-end perception
system. The perception system can be incredibly competent, but if the data fed to the
system is sub par, a accurate result can not be expected.

2.3.1 3D-camera

3D data is used to provide a digital representing of shapes and surfaces of real-world
objects. Two of the more common methods of 3D cameras uses either structured light or
time-of-flight systems. The most common applications for time-of-flight are autonomous
navigation and scanning of buildings [14], since time-of-flight systems often use light
outside of the visible spectrum, it is less affected by light pollution. Structured light is
more suited for short-range applications in indoor environments where the light condi-
tions can be controlled. This is because a structured light system projects a pattern of
visible light to find the range, light reflecting from the environment can therefore distort
this pattern.
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The data from these cameras is commonly represented as a point cloud with the file
format .PLY (Polygon File Format) or .PCD (Point Cloud Data).

Structured light sensors

The method used to generate point clouds in this thesis is the structured light method.
A structured light system uses a camera and a projector to judge the distance to the sur-
face from the point of view of the camera. A pattern is projected onto the surface, often
a vertical striped pattern and the camera records the deformation of the pattern.

Figure 2.6: Structured Light setup [42]

Figure 2.6 represents a structured light setup, where P represents the point of projec-
tion, C represents entrance point to the camera sensor and the plane represented by R
is the plane defined as the zero height plane. A line is projected from P to Q. The point
where the projected line intersects the object O is represented by Q′. The displacement
is visible inn the camera as δ = |Q′′Q|. To find the height h of pixel Q′ Equation (2.5) can
be used, α and β is the projector and camera angle, found knowing they relative position,
and the pixel position in the two frames [42].

h = δ

tan α + tan β
(2.5)

Point by point, a point cloud can be generated with this method. To make the process
less recourse intensive, projecting a line is preferred. By projecting a line, the curve along
that projection line can be calculated with fewer steps. A representation of the object can
be built up by projecting the light on one half of the projectors projection field, calculate
the points on the intersection line. Split the halves into fourths with one dark and one
bright, and repeat the calculations for the new intersections. Repeat the halving until
a fine enough resolution has been achieved. By looking at the change in brightness of
the pixel at every pattern, the position of the pixel can be found. A visualisation of the
Pattern splitting process is shown in figure 2.7.

2.3.2 Camera configurations

A great camera is usually not enough to take a great picture. Tho a great camera can
give some leeway in how to configure it correctly, the camera mostly provides the tools
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Figure 2.7: Sequence of projected patterns[43].

necessary for taking a great picture. The quality of the photo is often more dependent on
how the user configures the camera, taking into consideration the environment and the
object of interest, to find the optimal configuration. The same can also be applied to point
cloud capturing, especially when using a structured light camera since it uses the same
sensor input as a normal camera. A good structured light camera can also produce low
quality point clouds if the camera setting is not suited for the environment or the object
of interest.

Optical properties of Materials

How light interacts with objects is important for how well a structured light sensor. The
structure light senor is dependent on how the light from the projector gets reflected in
the camera. How light interacts with an object can be described by the three properties,
specularity, absorptivity and transmissivity. The properties of an object can vary based
on the frequency of the light[44]. Figure 2.8 features an illustration of the different prop-
erties explained in this chapter.

Figure 2.8: Different optical material properties [43].

Specularity Specularity can be thought of as how well an object reflects light. Objects
with high specularity are often described as reflective. On the other side of the spectrum,
objects with low specularity can be described as mat or diffuse. Specularity is mostly due
to the surface smoothness of the object. An object with a smooth surface tends to reflect
light more uniformly, giving the effect of being able to see a reflection in the surface[44].

Absorptivity Absorptivity is described as how much of the light that hits the objects
get transformed into other forms of energy, like heat or electricity, in effect making the
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object appear darker. Objects, where the light gets reflected or passes through, have a
low absorptivity score[44].

Transmissivity Transmissivity describes how much light can pass through the object.
A typical high transmissive object is glass[44].

Capture settings

The Zivid camera used in this thesis has two ways of configuring the camera to get good
results, the camera settings and filter settings. Camera settings giving the basis for a
good picture, whilst the filters mostly deal with problems more related to the structured
light technology.

Stops Stops are not a camera setting in its self, rather a representation of how bright
an image is. To "move up one-stop" is to double the brightness of an image, and to "move
down one stop" is to halve the brightness. All the actual settings of the camera, such
as exposure time or aperture can be thought of as either increasing or decreasing the
amount of stops[45].

The Zivid camera has a total of 23 stops available. The 23 doubling is what gives the
Zivid camera its dynamic range, meaning how bright the brightest parts can be, and how
the dark darkest parts can be. Moving up and down stops shifts moves the entirety of
the dynamic range up or down[45].

Exposure time Exposure time is a measurement of how long the camera shutter stays
to let the light sensor collect. The recommended exposure time is dependent on the
light frequency of the ambient light in the area. This is because the light level of the
image may vary if the exposure time does not match the frequency. In most European
countries, including Norway, the standard ambient light frequency is 50Hz. To follow the
recommended setting, the following equation can be used[46].

texp = n

2fs
, n = |Z| (2.6)

The n is a positive integer, and fs is the light frequency. This results in the recommended
exposure time for the system in this thesis to be a multiple of 10 000 µs. To double the
exposure time results in going up one stop[46].

Aperture Aperture is how wide the opening of the camera lens is. The aperture is often
described as the f-number. The f-number is given by equation (2.7)[47]:

N = f

D
(2.7)

Where N is what is referenced as the f-number, the f is the focal length (not to be con-
fused with what is called the f-number), and D is the diameter of the entrance pupil[47].

Most modern lenses uses a standard f-number scale, where each step corresponds to a
power of the square root of two. This is so that every integer increase corresponds to one
stop up or down. The following rule for f-number gives the correct ratio, where n is an
integer[47]:

N = f√
2n (2.8)
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The Zivid camera combines both focal length and diameter of the entrance pupil into one
setting they call iris. This iris setting follows the standard ratio explained in this chapter,
uses the values from 0 to 72, where 0 is completely closed and 72 is all the way open. The
following table shows the corresponding f-number and Stops in regards to Iris value[47]:

Iris 72 46 35 27 21 17 14 12 10 8
f-number f/1.4 f/2 f/2.8 f/4 f/5.6 f/8 f/11 f/16 f/22 f/32

Stops +4 +3 +2 +1 0 −1 −2 −3 −4 −5

Table 2.1: Corresponding f-number and stops to Iris camera setting.

Brightness Brightness refers to the brightness of the projected light. Increasing the
projector brightness is an efficient way of increasing the signal-to-noise (SNR). By in-
creasing the strength of the projector, the range of signal captured by the camera will
also increase, decreasing the effect of noise. The increase will however saturate the cam-
era a one point [48].

Gain The Gain controls how much pre-amplification the read-out sensors of the camera
gets. Increasing the gain will therefore increase the sensitivity of the camera to light.
Increasing the gain does however increase all the input signal, including noise and peaks.
Increasing the gain is, therefore, best suited for situations where the time available for
capturing is limited [49].

Zivid built inn filters

The built-in filters the Zivid camera provides is largely directed at the challenges a struc-
tured light sensor experiences. These are therefore often used to correct problems en-
countered when a pattern gets projected and reflected in the camera.

Noise filter When the pattern gets reflected in the camera, there is an expected level of
noise in the signal. This noise can come from a variety of different sources, but the effect
is that when the projected pattern is faint enough, the noise can overshadow the actual
signal[50]. The data extracted from signals with a low signal-to-noise can therefore be
unreliable. The spectrum signal-to-noise ratios are shown in figure 2.9.

Figure 2.9: Signal-to-noise spectrum [51].

The built-in noise filter of the Zivid camera removes all points which are deemed below a
healthy signal-to-noise ratio, inn effect removing unreliable point, but can make darker
components less likely to show up in the point cloud[50].
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Reflection filter When the projected light hits reflective surfaces, the data given by
these points can become unreliable. The point affected by reflections is typically seen
as small regions of mid-air floating points which should not be there. These regions are
often referred to as "ghost planes" and typically stretches away or towards the camera.

Outlier filter The outlier filter is designed to remove points that appear relatively far
from other points, implying it is a result of noise. The outlier filter can be tweaked to
the needs of the project, by increasing or decreasing the threshold value for removal. Say
if no other point is found in a 5-millimetre radius from the point, the point is removed[52].

The removal of such outliers is essential for project completion since the generated point
cloud often is used as input for the obstacle avoidance system of the robot. An outlier in
the point cloud can then cause the path planning algorithm to fail to find a path[52].

Gaussian smoothing As is depicted in figure 2.9, there is still noise in the signal even
with a healthy signal-to-noise ratio. The Gaussian smoothing filter is mainly there to im-
prove the absolute noise. The filter does this by smoothing the points in a small region.
This region can be expanded by increasing the sigma.

The Gaussian filter is great for making surfaces smooth, but if overdone, it can affect the
representation of small features, such as cables. The smoothing can however potentially
increase the performance of a vision system. It is therefore recommended to find a middle
ground between small details and smooth surfaces.

Contrast distortion filter Contrast distortion is an artefact that can be created where
there is an abrupt change in intensity in the 2D image. The abrupt change can create
a jump in position along the border. The artifact can be seen in figure 2.10 where a
checkerboard pattern and a highlight along a metal surface produces the effect. The
effect is a result of blurring in the camera lens[53].

Figure 2.10: Examples of contrast distortion[53].

The Contrast distortion filter is designed to handle this, by either removing the points or
correct them, where any points over a certain threshold are removed. The strength of the
filter can be overcompensated and remove excessive amounts of points[54].
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Saturation filter The saturation filter works on the other side of the spectrum showed
in figure 2.9. Where the noise filter handles everything that is below a healthy signal-
to-noise ratio, the saturation filter removes every point where intensity is saturated. The
confidence of the points which is over the saturation limit is low and can therefore intro-
duce noise or other artefacts in the point cloud.

High Dynamic Range (HDR)

High dynamic range capturing is a technique to extend the range of exposure in an im-
age without saturation. While a human eye can adjust to the environment, decreasing
the amount of light through the pupil. A camera often uses 8-bits per channel, giving a
span of 256. The range not enough to capture the whole range of lighting in the scene
saturating the brightest parts, and underexposing the darker parts[55]

To solve this a HDR capturing algorithm captures a set of pictures with different exposure
levels and merging the images into one. The images on their own often look either over-
exposed or underexposed, in practise the span of 256 levels is moved up or down in the
spectrum. If the levels are moved up the normally bright regions will be overexposed, but
the dark regions previously not visible will become defined. The same situation happens
when moving the range down making the brighter regions of the image defined [55].

2.3.3 Eye-in-hand system

An eye in hand configuration is a robot configuration where the range sensor, commonly
a camera, is fixed by a moving robot. This sensor can then be moved around in the
workspace of the robot. The mobility an eye-in-hand system provides can expand the
sensors use case. It can extend the range of the sensor, by moving the sensor to several
points of views, it can cover the regions of several stationary sensors. With an eye-in-
hand system, one sensor can serve as both a long-range sensor, tracking a large area
with low resolution and a short-range sensor, able to pick up small details.

Figure 2.11: Eye-in-hand
sensor configuration[56].

An eye-in-hand configuration can also be advantageous
in model-free end-to-end systems. In the case of LIB
pack disassembling, the variation in battery pack lay-
outs can mean that regions of the pack may avoid get-
ting scanned. An eye-in-hand system, with the right point
of view generating algorithm, can be made to adapt to a
new geometry, moving the camera to cover un-scanned re-
gions.

When generating data from the sensor, the data do not in-
clude what frame of reference the data is generated from.
To make use of the sensor data the data needs to be trans-
formed to a stationary which is shared through the system.
This frame is often the robot base frame, world frame or ori-
gin of the coordinate system. By keeping track of the position
and orientation of all the frames leading up to the sensor
frame, the position and orientation can be found by forward
kinematics. This will give you a transformation matrix with
which the sensor data can be multiplied to represent it from
the perspective of the stationary frame. If the two transfor-
mation matrices HROB

EE + HCAM
EE showed in figure 2.11, are

multiplied together the resulting matrix would be HCAM
ROB witch wold represent the neces-

sary transformation to get the sensor data in the base frame.
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2.4 Computational complexity

Any algorithm has a related time complexity that describes how the number of operation
needed, N , changes related to the input size n. The time complexity is only approximated
for large input spaces. Thus it is not relevant for small point clouds of 100 or 1000 points,
but when the point clouds get large, it has a vast impact on the overall computation time.

When setting up a more complex program, combining sequentially run processes that
each has its associated time complexity, the total time complexity of the program will be
equal to that of the greatest of the processes.

Big-O notation

The time complexity of a function or process is most offend denoted with the Big O-
notation, where the smallest complexity is O(1), and the greatest commonly used is O(n!).
The time complexity does not tell how much time a process takes, but rather how the time
scale as the input scales. The time complexity of any function is the same as its highest-
order component after being reduced. In the example shown below, the term c1x2 has the
highest order.

f(x) = c1x2 + c2x + c3

f(x) = O(n2)

Figure 2.12: The number of oper-
ations N plotted versus the input
size n for different time complexi-
ties.

Picking the first element of a list has a time
complexity of O(1) as it will always require the
same amount of operations. Lopping over a
list has the time complexity of O(n) as the
length of the loop is equal to the size of the
list. Finding the shortest distance between
two point clouds with a brute force method
(as describes earlier) has a time complexity of
O(n2).

The difference between having a program with a
time-complexity of O(n) versus O(n2) might seem
small, but for large input (like a point cloud) this
has vast differences. For instance, a computer
that manages 1, 000, 000n/s that operates on a point
cloud with n = 10, 000 points will use 10[ms] for a
O(n) type process, but will use 100[s] on a O(n2) process. Some common time complexi-
ties and how they grow with input size is shown in figure 2.12.

2.5 Data representation

The quality and representation of the data is a vital part of the performance of any clas-
sification algorithm. Too diverse and too correlated data makes it hard to find relations
[57], while too sparse data can make separate observations indistinguishable. Therefore,
it is important to select a proper data representation.

2.5.1 Point cloud

A point cloud is a data structure that represents 3D data. The data itself consists
of points p that, often Cartesian coordinates in 3D-space and optional attributes p =
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{x, y, z, a4, a5 . . . ad}. The attributes can be any value related to the application. Common
attributes can be local curvature, normal vector or RGB-value (colour). Most generally,
a point cloud is an unordered set of points X = {p1, p2 . . . pn} ⊆ Rd, where d denotes the
number of attributes. There are cases of ordered point clouds, hence the points are listed
after any of the attributes (commonly one of the positions). Although there exist several
ways of representing 3D data like mesh, voxel assemblies or CAD, the point cloud is the
simplest data type that still conserves surface contours.

2.5D image

In a 3D scene viewed from a single perspective, the points can be ordered into pixels in
a 2D image with an extra channel representing the distance from the observer or the
depth coordinate of the corresponding point. This is illustrated in figure 2.13. For multi-
view scenes there might accrue an overlap of points, thus assigning a depth to pixel is
ambiguous. 2.5D images benefit from being closely related to 2D images, as concepts
and methods are transferable.

Figure 2.13: An illustration of a 2.5D image. Left: A regular two-dimensional RGB im-
age illustrating the color attributes of the data. Right: The corresponding depth-map
illustrating the z-coordinate of the data.

Voxel grids

A voxel is the 3D equivalent of a 2D pixel, similar to a cube being the 3D equivalent of a
2D square. By dividing a space occupied by a point cloud into a discreet number of fixed
size voxels one can create what is known as a voxel grid. For a simple point cloud without
any additional attributes, the voxels not containing any points are set as inactive, while
those with any number of points are set as active with the centre coordinates of the voxel
as its attribute. The attributes of a voxel can be determined by either the max value or
the average value of the enclosed points, thus having similarities to pooling operations
performed in 2D CNNs.

A voxel grid is ordered such that all the voxels are evenly spaced and can be indexed
in a 3D grid, thus allowing for 3D convolution. The voxel grid allows for an alternative
representation that reduces the number of points and that can efficiently be accessed
by octrees. Octrees are explained later in paragraph 2.5.1. Nevertheless, the voxel grids
struggle with preserving details in the data and can in some cases be memory inefficient
as a sufficient amount of the voxels are empty. The size of the voxels is a trade-off between
representing the underlying data as small voxels can pick up mode details, and memory
and time complexity as a large voxel size leads to fewer empty voxels as shown in figure
2.14.
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Figure 2.14: An illustration of a voxel grid representation of a point cloud. Left: The
original point cloud. Right: The voxel grid representation. Note that the amount of
enclosed points does not is not taken into account, thus voxels with only a single enclosed
point have the same impact as one with five points.

Data filtering

Any point cloud captured by a sensor will have some amount of unwanted data or noise.
Outliers are the most common type of noise and are often dealt with by either a simple
pass-thru filter or a statistical filter. A pass-thru filter filters out all data points that do
not satisfy a given requirement. For instance, requiring a minimum value for a given
coordinate. A statistical filter will look at the distribution of features or some calculated
feature. Data points related to extreme cases in the distribution is then removed.

Some data sets are too large to process, contain redundant or over-represented data, thus
it needs to down-sampled. A random remove filter will randomly remove points until a
target size is reached. The random remove filter can also be weighted, thus being bias
towards data points with a given feature. The weighed version is useful for removing
over-represented data.

Pooling is similar to voxeling in that it converts a collection of points into a single point
representation. While Voxeling is done by evenly dividing space, pooling is done by form-
ing small clusters named "pools". The workings of pooling are illustrated in figure 2.15.

Figure 2.15: An illustration of pooling. Left: The original point cloud. Middle: Pools are
formed. Right: New points are formed with attributes based on the original points in the
respective pool.

Pooling and voxeling groups several data points together, and represent them as a single
point derived from the average or max value of grouped data points. Pooling and voxeling
remove redundant data points and over-represented data but removes local details from
the data. By dynamically adjusting the pool and voxel sizes, local details can still be
preserved.
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Octrees

A point cloud is an unordered list, thus the indexing does not provide distance or rela-
tional information. If the point cloud only had one attribute, the points could be ordered
chronologically. As the points have three spatial attributes, it is ambiguous to order them
chronologically by distance.

By splitting the occupied space into nested octets, each point can be indexed by a binary
number that also encodes the relation to neighbouring octets. Finding closely distanced
points can then be done by a binary search tree. Since the space is split into eight octets
at a time, the binary tree search is named octree. They work the same since an octet
is equal to three nested binary decisions (8 = 23). Setting up an octree has its related
time complexity, but when done, it improves the time complexity of common processes
by converting them from brute force to tree searches. Given a known point, finding the
closes point in a brute force approach demands a search thru the entire point cloud,
thus a time complexity of O(N), as explained in chapter 2.4. As depicted in figure 2.16,
by using an octree, the time complexity is reduced to O(logN). As shown in figure 2.12,
the time complexity becomes important for the overall performance when working with
large data sets.

Figure 2.16: An illustration of the workings of octrees.

2.5.2 Graph representation

A graph G = (V, E) represents data as a set of N nodes vi ∈ V with edges (vi, vj) ∈ E
connecting related nodes. Each node ei has its own related feature vector xi containing
the initial data of the node. For relation based data, like time-linked or space-linked data,
the graph provides a flexible way of representing the data while preserving the relations.
The graph is a general concept, where the specific cases go under other names and are
easier to relate to. For instance, a time series can be interpreted as a one-dimensional
graph where nodes are instances in time and the vertices are time steps.

Common parties used to describe graphs, and classify them are:

• Heterogeneous/homogeneous. Whether the nodes are of the same type, thus
whether they hold the same types of attributes or not. Homogeneous graphs are
what describes point clouds as all the nodes represent points, whereas heteroge-
neous graphs are more used to describe databases and knowledge graphs.

• Directed, underacted and weighted edges. The edges themselves can take a value,
thus embedding how strongly related two nodes are. An unweighted edge can be
considered as an edge with a weight equal to one, thus in principle, all edges are
weighted. Edges are also either directed or underacted, thus describing whether
the relation between two nodes only applies when moving from node A to B, and
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not from B to A. Underacted edges can be viewed as a special case of directed edges
where two directed edges with the same weight connect the same two nodes but are
oppositely directed.

• Node degree and dense/sparse graphs. The degree of a node denotes the number
of related edges. For a directed graph, the nodes have a separate degree for incoming
edges and outgoing edges. In a dense graph, most nodes are connected with an edge,
thus each node is related to the global properties of the graph. On the other hand, in
a spares graph nodes only have few connections and can be clustered, thus being
more related to local features of the graph. Dens graphs are often small as their
number of edges is close to the square of the number of nodes, while a sparse graph
is more scalable. Molecules or small social network are examples of dense graphs,
while a point cloud or a database is examples of sparse graphs.
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Figure 2.17: An example of an arbitrary dens homogeneous directed graph with weighted
edges.

Classification problems

Classification of data in graph representation is divided into three types [58]:

• Node classification intends to predict the class of the nodes in a graph based on
relations with neighbouring nodes. Commonly done by a recurrent or convolutional
graph neural network to produce high-level representations, and a multi-layer per-
ception to perform classification. Common usage is the prediction of optimal ad-
vertising based on users relations, completion of incomplete data sets and error
correction in code [59].

• Edge classification aims to determine how nodes are related. By assuming a fully
connected graph, the relation between any nodes can be determined by either as-
signing the corresponding edge with a binary value. In other settings, the con-
nectivity is known, but not the type of relation. The relations are then decided by
assigning the edges with weights taken from a given interval. Common applications
are estimation relation between profiles in a social network, and traffic load of a
road network [60].

• Graph classification focuses on classifying en entire graph. It is most commonly
used on smaller graphs (100 nodes, or less), as the complexity becomes too sig-
nificant for large graphs. An example of graph classification is the prediction of
molecules properties [61].

2.5.3 Dimension reduction

In some cases, a high-dimensional data set is too large to process, or it is inefficient
due to low variance in some of the dimensions. A statistical dimension reduction of the
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data sett conserves most of the information but embeds the data into a lower number of
dimensions. The new dimensions do not have any physical meaning but have a higher
variance than the original dimensions, hence more useful. There exist several different
methods for performing nationality reduction, all with their application [62]. Two meth-
ods that are useful for this thesis is the principal component analysis (PCA) and the
t-distributed stochastic neighbour embedding (t-SNE). The time complexity of PCA and
t-SNE is shown in table 2.2.

Time Complexity
PCA O(d2n + n3)

t-SNE O(n2)

Table 2.2: The time complexity of the selected dimension reduction algorithms. "d" de-
notes the original number of dimensions.

Principal component analysis

PCA is an unsupervised linear transformation algorithm commonly used due to its sim-
plicity. It produces new features, named principal components by determining the maxi-
mum variance of the data. The original high-dimensional data is then projected down to
a lower-dimensional space with orthogonal axes formed from the principal components.
The new embedding has the highest variance along with the first principal component,
and the following principal components are ordered in descending order after their vari-
ance. The last principal components will have low variance, and can therefore be excluded
with little to no impact on the data. The workings of PCA is illustrated in figure 2.18.

Figure 2.18: An example of a PCA, the two principal components (PC 1 and PC 2) are
shown in orange. PC 1 have a grater variance than the original axis, while PC 2 have a
lower than the original axis.

t-Distributed Stochastic Neighbor Embedding

t-SNE is an unsupervised non-linear transformation algorithm that preserves the struc-
ture of the high-dimensional data when performing dimensional reduction [63]. Since the
structure is somewhat preserved, points that are close in the original high-dimensional
data will remain close. Therefore, t-SNE is useful for exploring and visualising relations
between high-dimensional data [62]. t-SNE is done by first applying Stochastic Neigh-
bor Embedding on the original data set, thus converting the Euclidean distances in the
high-dimensional data into a set of conditional probabilities that represents similarities
between data pairs. Afterwards, a student t-distribution with one degree of freedom is
used to obtain a second set of probabilities in the target dimension (commonly 2 or 3)
[62].
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2.6 Machine learning

Machine learning is a field within data science that focuses on developing tools and al-
gorithms that can learn complex relations in features from a set of data to then be able
to perform classification or regression tasks on similar data. Machine learning is often
confused with artificial intelligence and deep learning as the terms are often used in-
terchangeably. Artificial intelligence (AI) categorises all programs and algorithms that
perform anything that can be seen as intelligent, thus including primitive and simple
algorithms like the k-nearest neighbours’ algorithm (K-NN). As illustrated in figure 2.19,
machine learning is a subset of artificial intelligence rather than a synonym. The therm
deep learning refers to a particular field within machine learning that focuses on deep
neural networks, and that has had a big focus last couple of years due to strong results
in a variety of tasks and applications.

Figure 2.19: An illustration of the
relation between artificial intelli-
gence, machine learning and deep
learning.

Machine learning is often divided into three cate-
gories based on how they learn from data. In all
the cases the algorithm f is provided with data in
the form of a feature vector x ∈ Rm that is used
to make predictions f(x) = ŷ ∈ Rv. m and v de-
notes the number of attributes for the data, and
the number of classes for the prediction. This can
be seen as a mapping from input-space to a com-
plex embedding f : X → Ŷ. The end goal is then
to train the model so that the predictions become
as closes as possible to the ground truth y, thus
f(x) = ŷ ≈ y. The difference between the three cat-
egories is how they use data to train. The first, and
most used, is supervised learning. In this case, the
true value is known for the entire data-set, thus the
performance is measured by a simple loss function
L(y, ŷ) that directly compare the estimation and the
ground truth. The second category is called un-
supervised learning where it is assumed that there
exists a ground truth, but it is not known. This
kind of machine learning is most used for clustering big sets of data. The loss func-
tion often revolves around perceiving relationships between similar disappoints. In other
word, similar inputs should give similar outputs xi ∼ xj → ŷi ∼ ŷj. The last category is
named reinforcement learning, where the data does not come in the form of a set, but
rather is an interactive environment. This kind of machine learning is used for mastering
chess and other games with predefined rules.

2.6.1 Neural networks

Within machine learning, neural networks are the most common architecture for per-
forming the mapping. The concept of neural networks are based on how the neurons
inside the human brain from a micro perspective act under simple rules, but on a macro
level perform complex tasks. Any neural network consists of several layers h, each filled
up with artificial neurons that holds a single scalar value. The first layer h1, named the
input layer, is where the feature vector x ∈ Rm is feed into the network. Therefore, the
input layer needs to have m number of artificial neurons, each representing one attribute
of the feature vector. The last layer hn, named the output layer, provides the embedding
ŷ ∈ Rv, and therefore have to consist of v artificial neurons. The intermediate layers
h2 . . . hn−1 are named the hidden layers as these are only for passing information and are
not interfered with.
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Figure 2.20: An illustration of f : X → Ŷ where, based on there attributes in the input
space X , the data points gets mapped into the embedding space Ŷ. Similar points that
were hard to distinguish in the input space but have the same ground truth (the color)
have been mapped close together in the embedding.

The layers are then connected by edges representing a one-way connection between two
artificial neurons in different layers. The edges are associated with a scalar weight α,
which represents the impact level of the connection. The outline of edges is inherent to
the architecture of the neural networks itself and provides design options that result in
different characteristics of the network. Most commonly used is feed-forward fully con-
nected layers where all neurons in two adjacent layers are connected and the information
only passes in one direction (no recurrence).

The idea is that each neuron in the hidden layers will learn some sort of complex feature
about the input data that the output layer can use to form a decision. The size and
number of hidden layers is application dependent, thus becoming a notable part of the
design process. A wide network (many neurons per layer) will be able to pick up more
features, while a deep network (many layers) will be able to form more complex features.

Figure 2.21: An illustration of a feed-forward fully connected neural network with an
input layer (orange), two hidden layers (red) and an output layer consisting of a single
neuron (blue).
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Artificial neurons

The artificial neurons themselves are used to aggregate information. The value of any
neuron is calculated with (2.9), where αk is the weights of the incoming edge to neuron k,
x is the values of the connected nodes from the previous layer and βk is the correspond-
ing bias. ϕ(·) denotes the activation function that intends to prevent single nodes from
blowing up, thus having a too great of an impact. The choice of the activation function
is a part of the design choices for a neural network. The edge weights α and the biases β
are learnable parameters that get optimised thru the training process.

xh,k = ϕ(βh,k +
∑

αh,k,i · xh−1,i) (2.9)

The entire layer can be calculated at once in feedforward networks since all the nodes are
independent of each other. Thus feeding the information thru any layer can be written as
a matrix multiplication (2.10), or with the combined parameter-matrix W = [A|B] (2.11)
which concatenates the weights and biases into one matrix.

Xh = ϕ(Bh + Ah × Xh−1) (2.10)
Xh = ϕ(Wh × Xh−1) (2.11)

Activation functions

It is desirable that the neural network learns complex features and take a collective deci-
sion. Therefore, activation functions are included to avoid the network assigning a single
node to light up at each different instance of training data. The activation functions limit
the size of the output by mapping to a known, often limited, interval. There exists multi-
ple activation functions [64], and the choice of activation function is an important design
choice [64], [65]. But all activation functions have to be differentiable to work [57].
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Figure 2.22: Some selected activation functions plotted for x ∈ [−3, 3].

The most common activation functions are quite simple, as complex activation functions
often do not generalise and are therefore only used in narrow tasks [65]. The most com-
mon activation functions are the following, or versions of them:

• The sigmoid function (2.12), sometimes referred to as the logistic function or squash-
ing function, is a non-linear activation function mostly used in feedforward neural
networks. It is most commonly found at the output layer of shallow deep neural
networks, as it suffers drawbacks on deeper neural networks due to struggles with
calculating the gradient (sharp damp gradients, gradient saturation and non-zero
centred output) [64].

σ(x) = 1
1 + e−x

(2.12)
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• tanh (2.13) is similar to sigmoid in that both have this squishing property. Tanh is
superior to sigmoid as it removes some of sigmoids drawbacks by centring the out-
puts around zero [57] as shown in figure 2.22b. Both sigmoid and tanh still suffer
from gradient saturation due to the asymptotic nature of the functions as shown
in figure 2.22b and 2.22a. As the slope of sigmoid and tanh always is less than
one, they both struggle with the vanishing gradient problem. The tanh activation
function is most commonly used in recurrent neural networks for natural language
processing like LSTMs [64].

tanh(x) = ex − e−x

ex + e−x
(2.13)

• ReLU (2.14) as it is known, which stands short for Rectified Linear Unit, is the most
widely-used activation function for deep neural networks. By allowing the gradi-
ents to flown with positive inputs, neural networks with the ReLU function become
easier to optimise compared to sigmoid and tanh [65]. The ReLU function rectifies
the value for negative inputs, thereby forcing them to be zero and eliminating the
vanishing gradient problem. The ReLU activation function is most often used in the
hidden layers of deep neural networks for tasks like object classification and speech
recognition, especially in convolutions neural networks [64]. Although a significant
improvement, ReLU still has limitations as it is fragile during training which may
leave gradients to die, thus not updating neurons, and not learn. Several large
classification networks like AlexNet, VGGNet, GoogleNet and ResNet all use ReLU
[64].

ReLU(x) = max(0, x) (2.14)

• Leaky-ReLU (2.15) is very similar to ReLU but it has a slight slope (γ) for negative
numbers that manages to deal with the zero-gradient problems. By not forcing
the negative inputs to zero, but close to zero, the gradients will always be non-zero
except for when the input itself is zero. When dealing with floating-point numbers
on a computer, the value passed to a neuron will never be zero due to the nature
of floating points, therefore, in practice, the gradient will always be non-zero. The
parameter slope is commonly γ ∼ 0.01. It is shown that leaky-ReLU performs well
in big classification networks compared to other similar activation functions [65].

LReLU(x) = max(γ · x, x) (2.15)

• The Softmax activation function (2.16) is a bit separate from the others in that it
does not work on a single input value, but rather an entire tensor. The function
scales every element of a tensor so that the total sum of all elements equals one
(2.17), thus the softmax of any value reflects the relative size compared to the rest
of the tensor. Because of this functionality, the softmax is mainly used at the output
layer of classification networks to make the estimates into probabilities. Together
with ReLU, the softmax is used on large neural networks like AlexNet, VGGNet,
GoogleNet and ResNet [64].

softmax(xi) = exi∑
j exj

(2.16)∑
j

softmax(xi) = 1 (2.17)

Loss functions

To train the network, one needs a metric to evaluate the predictions of the output layer ŷ.
The objective of a loss function L(·) is therefore to compare the output layer predictions
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ŷ with the ground truth y. For classification tasks, commonly the ground truth has a
binary representation and the prediction is run thru a softmax layer. All loss function
return a scoring in form of a scalar value, although the inputs are usually tensors.

In the end, it is the loss function that is being optimised, therefore, the choice of loss
function must reflect the problem that one tries to optimise. This makes the choice of
loss function one of the most critical design choices when working with neural networks
[66].

In its simplest form, the loss function is the mean difference, or the sum, of element-wise
differences (2.18). This is commonly known as the mean absolute error (MAE) or L1-loss
and together with mean square error (MSE or L2-loss) (2.19) works well for simple re-
gression tasks.

LL1(y, ŷ) = 1
m

m∑
i=1

|yi − ŷi| (2.18)

LL2(y, ŷ) = 1
m

m∑
i=1

(yi − ŷi)2 (2.19)

In regression tasks, it is accepted that there will be an error as there will be a natural
variance in any data set. On the contrary, in binary classification tasks, a perfect model
should label the data with close to 100% certainty, hence any error should be punished
harder. Therefore, it is common to use binary cross-entropy loss (2.20) for binary classi-
fication tasks as it results in extremely steep gradients when the error epochs max. This
happens due to the nature of logarithmic functions that reaches a singularity for val-
ues close to zero. The binary cross-entropy loss function is created to approaches these
singularities when the error approaches one (2.21).

LBCE(y, ŷ) = − 1
m

m∑
i=1

yi · ln ŷi + (1 − yi) · ln (1 − ŷi) (2.20)

lim
e→1

LBCE(y, ŷ) = ∞ (2.21)

As described by [67], loss functions for image segmentation can be categorised into four
groups based on their objectives:

• Distribution-based loss tries to minimise the dissimilarity between the prediction
vector and the ground truth vector by treating them as distributions. The loss
functions in this group mainly base themselves on cross-entropy and are versions
of the cross-entropy loss function. The distribution-based loss functions are known
for performing well on classification-based tasks [68]. Some of the most relevant
distribution-based loss functions are:

– Weighted cross-entropy loss which is focuses on positive examples by adding
a weight on the ground-truth label, thus making instances where the ground
truth is one (true) more impact-full on the total loss [69]. This method is com-
monly used in medical analysis where recall and precision are more important
metrics.

– Distance map penalized cross-entropy loss weights the cross-entropy by a
distance which is derived from the ground truth. This pushes the network to
train on boundaries between regions of different labelling as thees are weighted
stronger [70].
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– Focal loss modifies the cross-entropy loss function to deal with data that is
extremely imbalanced between the classes [71]. Focal loss is typically used for
doing pixel-vice classification to find small objects in large images, thus the
imbalance is several orders of magnitude.

• Region-based loss, in comparison with distribution-based loss that evaluates the
prediction of each point/pixel, compares a region. The region is either a 2D-area,
or a 3D volume, ether guided by a basic geometric shape like a rectangle or a cube
thus creating one label for an entire cluster, or guided by the border points/pixels of
the cluster. This way of comparing prediction and ground truth gives room for new
network architectures that are more applicable for real-time usage and tracking as
the prediction regions are easier to follow throughout time-series data. Two common
region-based loss function are:

– Dice loss is based on the Sørensen-Dice coefficient, also known as the F1-
score, that finds the number of common elements between the prediction region
and the ground truth region and compare it to the combined size of the two
regions. The dice loss, and its off-springs, as they are region-based are more
robust for imbalanced data [72].

– IoU loss is similar to dice loss and have many of the same advantages, but
compare the intersection to the union of the regions, instead of the size of the
regions [73].

• Boundary-based loss is similar to region-based loss in that it works on comparing
shapes or clusters rather than individual points/pixels. But instead of looking at the
overlap between the predicted region and the gerund truth, it looks at the distance
between the contours. This is not a widely used type of loss as the loss function is
hard to define in a differentiable way. Commonly it is done by integrating the along
the contours to mitigate the average distance.

• Compound loss is any hybrid solution of the previously mentioned methods. The
most promising compound loss functions are combo loss and exponential loga-
rithmic loss that both combines binary cross-entropy loss and dice loss. The ad-
vantages of these more complex loss functions are that they can be tailored to have
the accuracy and detail focus from the distribution-based loss while being robust
to imbalanced data.
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Figure 2.23: An illustration of different types of loss functions. The points and the
faded region represent the ground truth, while the rectangles represent the predictions.
Left: Distribution-based loss where every point/pixel is individually evaluated. Middle:
Region-based loss where the amount of intersection is evaluated. Right: Boundary-based
loss where the distance between the contours is evaluated.

Backpropagation and optimisation

To learn from the training data, the network needs a way of relating the loss with the
weight. In other words, how to change the weights given a loss value. Backpropagation
provides a method for calculating the gradient of the loss surface by finding the partial
derivative of all weight with respect to the loss function. Hence, the gradient guides the
weights to minimise the loss. The gradient for the entire network can systematically be
obtained, by calculating the gradient of the output layer, and then repeatedly using the
obtained gradient from a layer to calculate the gradient of the previews layer (2.22). This
update rule is the reason why the activation function has to be differentiable.

∂L
∂Wh

= ∂ϕ

∂W
(Wh, Xh−1) ∂L

∂Wh
(2.22)

Machine learning intends to generalise a model by exposing it to a big number of data
and having the weight converge towards an optimal solution. This is commonly done
by gradient-descent based methods where the weights are iteratively updated based on
the current weights and a weighted gradient (2.23). The weighing of the gradient η, is
referred to as the learning rate and provides the step size of any iteration.

W (t) = W (t − 1) − η
∂L
∂W

(2.23)

To compensate for noisy gradients as a result of the variance of the training data, it is
common to use batch training rather than updating weights based on a single data point.
In batch training, the entire data set is looped over to calculate an "average" gradient for
the entire dataset. Although the batch training is more stable it is often too general as
it has a hard time picking up extremer cases, and it is time-consuming to loop over the
entire data for each update. The concept of mini-batch training (also known as stochastic
learning) where the dataset is separated into smaller batches (commonly in the range of
10 to 1000), and the weights are updated for each mini-batch. In a dataset there likely
exists some degree of redundancy within the data, this is why a subset of the data can
give a good representation of the entire dataset [57]. This technique of working with an
estimated gradient is whats commonly known as stochastic gradient descent (SGD) [74].
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Determining the learning rate η, or step size, is a big part of the learning process. Ideally,
it should be large at the start of the training so that the model can take big steps away
from the random staring weights and toward the minimum, and then become small to-
wards the end to let the model converge. A too small initial learning rate would give a
slow training as it would need a large number of steps to reach the minimum, besides, if
the loss surface is not quadratic nor convex, the model will most likely get stuck in local
minimums, thus leading to poor results.

To avoid local minimums, the learning rate is often scheduled with annealing. Thus
starting with a high learning rate and gradual reducing it, but at some point resetting it
to exit local minimums. This is commonly done by a decreasing function of some sort
(trigonometric, polynomial, exponential) combined with a reset function.

In addition to learning rate scheduling, it is commonly added an extra term to the updat-
ing equation (2.23) that represents previous updates of the weight to include the general
direction the weights are updated (2.24). This is known as momentum and is imple-
mented as a scalar momentum term γ < 1 and the previous weight update vt. The mo-
mentum allows the network to avoid shallow local minimums as consecutive gradients in
the same direction will compensate for a small gradient generated at a local minimum.
The momentum term is similar to the physical concept of inertia as it requires more to
change the motion of a heavy object in contrast to a light object.

Wt = Wt−1 − η
∂L

∂Wt
+ γvt (2.24)

vt = η
∂L

∂Wt−1
+ vt+1 (2.25)

Figure 2.24: An illustration of the effect of different learning rates along the loss surface.
The black lines represent the loss surface with a small local minimum to the left and the
global minimum to the right. The vertical axis represents the loss L, and the horizontal
axis represents the weights W . First: the learning rate is too small and the network gets
stuck at the local minimum. Second: the learning rate is too large and the network does
not manage to converge in a reasonable time. Third: the networks initially get stuck at
the local minimum, but due to annealing, the learning rate gets reset and the network
managers to escape the local minimum. Fourth: The network has a smaller learning
rate, but due to the momentum, the network manages to overcome the local minimum
and converge. The network does oscillate before converging due to the momentum.

Although momentum solves some of the issues with determining a proper learning rate,
it introduces a new variable γ that also has to be determined. Too high values of γ results
in oscillating behaviours as although the gradient is steep it will be overrun by previous
updates. On the other hand, a too low value of γ results in too little impact and the
network will get stuck in local minimums. Adaptive moment estimation [75], known as
"Adam", is shown to converge faster than traditional SGD [57], [76] and is the common
choice of optimiser. Nevertheless, SGD is known for generalising better than Adams and
other varieties of Adam [76], [77].
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The vanishing gradient problem

For a deep neural network, calculating a good gradient becomes harder as one poor gra-
dient in a previous layer can have a large impact on the current gradient. For small
gradients and losses, the lower-layer gradients tend to vanish simply because they be-
come a product of a series of small numbers. This problem is referred to as the vanishing
gradient problem and limits the training of deep neural networks as the lower parts of
a neural network do not get updated [68]. To counteract the vanishing gradient prob-
lem: activation functions not symmetric around zero should be avoided for small initial
weights [68], and adding intermediate normalization layers in the model [78].

Overfitting

Overfitting is the situation when the model hard-learning the training data rather than
generalizing. Overfitting naturally acquires as a consequence of all machine learning
algorithms strives to reduce the loss function. As the network is exposed to the same
training data over and over again and do not manages to generalise anymore, it will try
to hard-learn the data to minimize the loss function, thus accounting for the noise and
outlines in the training data. To prevent overfitting, parts of the data is set aside into
a validation set (commonly 20-25 %). The loss is then calculated in parallel with the
training data, but no backpropagation. It is expected that the loss from the training data
is a bit lower than the validation data due to the natural variance between the datasets.
Although, as long as the network is generalising, both losses should decrease. A rising
validation loss indicates that the training is gone too far, and the network is starting to
overfit. The concept of tracking the validation and training loss is illustrated in figure
2.25.

Figure 2.25: The training curve of a general neural network. The validation and training
loss declines in the early epochs, but when the network starts to overfit the validation
loss increases. The green-shaded area indicates the optimal weights.

Best practice for training

When performing machine learning, the following principles are commonly used and are
known to enhance performance [57]:

• Using mini-batches when training rather than the entire training data in one batch.

• Shuffle the data so that the order is changed every epoch, thus the constellation
and ordering of the mini-batches does not impact the training.
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• Normalize the input as this will help give more balanced gradients.

• Scale the input so that the covariance becomes about the same, thus every input
has no bias when starting to train.

• The initial weights should be taken from a normal distribution with a mean of zero
to avoid biases.

• The usage of drop-outs makes the network more redundant as it makes decision-
based on a larger set of nodes rather than one central supernode.

2.6.2 Convolutional neural network

Convolutional Neural Network (CNN), inspired by the mathematical operation of convolu-
tion, is a layer-type that considers the ordering of the input. This allows for the network
to evaluate and find local features among the input rather than an entire layer. This idea
has shown to give good results in image classifications as shown by the rating on the
large image classification benchmark ImageNet [79], [80].

By gliding a small kernel of weights (commonly 3x3 or 5x5) over the original image and
forwarding the average value of the Kernel and the overlapping nodes into a new layer, a
new image is created that embeds the neighbourhood relations. This new image is often
referred to as a feature map as it describes wherein the input a certain feature is located.
By learning kernels the networks can aggregate local low-level features like lines and cor-
ners up to more complex features like body parts, tools and other objects.

By having this kernel that glides over the input, as shown in figure 2.26, the CNNs ac-
quire a shift-invariance that traditional neural networks do not have. This invariance is
what makes CNNs so strong on relation based data (like an image) as a small shift in
the input does not impact the output. This relieves the network from having to learn all
possible placements of all variations of the object they try to categorise.

Figure 2.26: An illustration of the workings of a CNN.

Commonly convolution layers have several kernels that each pick up separate fetchers
from the previous layer, thus producing several feature maps in parallel that each looks
for its learned feature. The common practice for classification tasks is to put several
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convolutions layer in series, thus working of each other’s output, this is referred to as
deep convolution neural network (DCNN). The output of the convolution layers is some
complex embedding of the original image. The classification is then commonly done by
a separate algorithm, commonly a small neural network.

There are some common design options within CNNs. The following three is the widest
spread and impactful elements in any CNN architecture:

• Pooling allows for efficient down-sampling of the layers thus reducing redundant
information. In an image two adjacent pixels will likely carry more or less the same
information, thus making it redundant. Pooling is often performed by taking for-
warding ether the max (max-pooling) or average (average-pooling) of a small grid
(commonly 2x2 or 3x3) thus reducing the layer size by a factor of m−n where m is
the side length of the grid and n is the number of dimensions.

• Zero padding is introduced to compensate for the lower impact border pixels gets as
they are naturally involved in less of the kernel positions. Zero padding add dummy
pixels on the outside with a value of zero so that the kernel has to glide over the
original border pixels multiple times. Zero padding can also be added to compensate
for the size reduction that naturally accrues when performing convolution.

• Stride is a measurement of how fare to move the kernel each time step. By using a
stride greater than one, the output size will be reduced similar to that of pooling.

2.6.3 Geometric classification

When working on geometric data, the goal of an algorithm is dependent on the appli-
cation. There are several terms used to describe the goals, but these are often mixed
up.

• Classification. The goal is to describe the content of the data, but no additional
information about the content (position, size, orientation...) is extracted. This is
useful for labelling and separating data within a set like whole pictures or point
clouds.

• Localization. The algorithm intends to identify the object in the data and assign
a label and a boundary box/cuboid, thus defining regions of data points. This is
commonly used for self-driving vehicles and collision avoidance as the geometric
shape of the objects is not of interest, just what space they occupy. The well known
YOLO algorithms work in this manner [81], [82].

• Segmentation based tasks aim to cluster similar data point together in an unsu-
pervised manner. This is what is referred to previously as PCS for point clouds. It
is mostly used in combination with humans to speeding up the process of labelling
data.

• Semantic segmentation intends to associate all data points individually with a la-
bel. It does not provide any geometric information about any objects in the data,
it only intends to classify every point/pixel/voxel. This is the task of PCSS based
algorithms. Semitic segmentation algorithms are sometimes just extensions of seg-
mentation based algorithms.

• Instance segmentation based tasks identify the objects in the data, extract their
geometric data and segments instances of the same category apart. A well-known
algorithm for instance segmentation on images is the Mask R-CNN [83]. Instance
segmentation can also be obtained by combining semantic segmentation with stand-
alone segmentation.
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Figure 2.27: Left: Object localisation. Middle: Semantic segmentation. Right: Instance
segmentation.

2.6.4 Alternative forwarding

For high-end performance, especially two ideas are shown to enhance the performance
of convolution network by partially going away from feedforwards information propaga-
tion [84]: Residual connections [85] and Inception architectures [86]. Both are shown
to be important in learning on deep neural networks [84], and both have pushed the
performance in the ImageNet benchmark [79].

Residual connections

The concept of residual connections, also known as highway networks, is "shortcuts"
that skips some layers to forward low-level information (illustrated in figure 2.28a). The
low-level information is then fused with high-level processed information, as shown in
equation 2.26, the upcoming layer can then extract complex information consisting of
features from the high-level and low-level information. The shortcut connections do not
add extra parameters nor computational complexity [85], thus the network can still be
optimised with SGD-based methods. For convolution-based layers, it is important to
maintain the shape of the data to fuse the output and the shortcut data.

Y = ϕ(X) + X (2.26)

ResNet was created by implementing the residual connections in a convolutional network.
This allowed for deeper architectures with over 100 layers that perform strongly in various
image recognition tasks [85].

Inception architecture

A traditional convolution network is forced to optimise its performance based on the
architects choice of kernel size and pooling layers, although it is not known what the
optimal size is and when to perform pooling. The optimal architecture might not be
directly related to the type of task, but rather with the type of data. In other words,
one type of architecture might be optimal for classification on some data, but not all
classification tasks. The inception architecture [86], in its simplest form, is blocks that
perform parallel forwarding where different kernel sizes and poling layers operate on the
input data, and their output is concatenated and filtered. This allows the network to in
some sense learn the optimal architecture. The blocks themselves take many different
forms as the inception architecture is advanced [84]. This architecture, and iterations
of it, show good performance in both image classification and detection on established
benchmarks [84].
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(a) A residual module. (b) An inception-inspired architecture.

Figure 2.28: Illustrations of different architecture elements for neural network-based
pipelines.

2.7 Deep learning on point clouds

The field of deep learning on point clouds started with PointNet [22], and its successor
PointNet++ [87] that have formed the fundament that most modern high-end algorithms
are based on. They present the idea of acting directly in the point clouds rather than
transforming it into voxels or a stack of images, thus avoiding unnecessary memory
usage or information loss [88].

Selected algorithms

The most common algorithms for semantic segmentation on point clouds (PCSS) is often
based on one of the following concepts: Multi-view CNN, voxel-based 3D CNN, or Graph
convolution neural networks [14], and Set-based [89]. All methods are based on CNNs,
but the point clouds have to be transformed due to their unstructured nature in contrast
to traditional 2D images that operate in a grid structure. The transformation of data
leads to a loss of information that influences each of the methods.

Set-based

Set-based propagation are the basis for PointNet [22] and PointNet++ [87] and the origin
method for point cloud processing. This is the only method that operates directly on the
point clouds, thus no transformation. Each point is processed by an MLP to obtain a
feature vector. The point features are then aggregated with pooling until a global feature
vector is obtained. The set-based algorithm benefits form direct processing of the point
cloud but are an approach that is not popular as it is outperformed on benchmarks [90]
where the strongest set-based contender is Deep sets [91].

Multi-view

First proposed by [92] that used the technique for classification of point clouds, multi-
view based algorithms project the point cloud onto artificial plains, thus creating 2D
representations. The 2D projections are then individually processed to perform feature
extraction. The features form all the projections are then collected (concatenated) and
a separate algorithm is used to perform the desired takes. By introducing more views,
more of the point clouds information is forwarded, but the 2D representation will not
capture all aspects of the 3D model as it is just an approximation, thus geometric data
will be lost. For more entangled point clouds with overlaps, the multi-view fall short as it
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does not capture the "hidden" points. For large and more complex point clouds it is hard
to select viewpoints that best captures the data [14], thus introducing a new optimisation
problem and complexity. Never the less, the multi-view based algorithms benefits from
being closely related to 2D CNN as several of the devoted concepts within image convo-
lutions are easily transferable. SnapNet [93], performs PCSS by transferring well known
2D techniques and concepts, like SegNet [94], U-net [95] and residual connections, into
multi-view based networks.

Figure 2.29: From the original paper [92]. An illustration of a general multi-view based
system for classification.

Voxel-based 3D CNN

First proposed by [96], the voxel-based methods transform the point clouds into voxel
grids, thus ordering the points. A 3D kernel is then swiped over the grid, in the same
fashion as in traditional 2D CNNs, to extract features. This method of voxalization solves
the problem of point clouds being unstructured, but it comes with three major draw-
backs: First, when voxalizing geometric data is lost, especially surface details are eas-
ily lost. Second, the voxel grid stores empty space, thus becoming memory expensive
when applying high-resolution voxelization. Third, gliding a kernel over three dimensions
rather than two increases the computational complexity of each convolution from O(N2)
to O(N3). Thereby it inevitably becomes a trade-off between having a high-resolution
voxel grid to preserve details or having low-resolution voxel gird to reduce the memory
usage and computational complexity.

Figure 2.30: An illustration of a voxel-based 3D CNN.

The original VoxNet [96] only performed object classification, while newer models like
SegCloud [94] uses 3D convolution to perform PCSS on the voxel grid and trilinear in-
terpolation to assign predictions to the original point cloud, thus performing semantic
segmentation. Never the less, SegCloud still suffer from high computational and mem-
ory problems [14]. Voxel-based CNN benefits, in the same way as multi-view, from being
closely related to traditional 2D CNNs. VV-Net [21] uses a variable autoencoder to embed
more local information when voxelising the point clouds, while OcTree-based solutions
like OctNet [19] helps improve on memory usage and computational complexity.
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Graph convolutions neural networks

By converting the point cloud into a homogeneous graph the neighbourhood properties
are conserved in the graph’s edges. Closely located points in the point cloud are now con-
nected, thus there spacial relations are preserved. The edges can be both directional or
unidirectional, thus allowing for more accurate preservation of relation-data. The most
common edge value is the distance between the two original points in the point cloud.
Each node in the graph contains the attributes associated with the original point, typi-
cally position, colour, curvature, or some sort of engineered feature.

A graph acts as a generalisation of relation-based data, not a specialisation. For instance,
an image is just an underacted graph where every node has eight neighbours, and time-
series data can be seen as a directed graph where every node has only one incoming and
outgoing edge. By converting the point cloud into a graph, the data gets structured, thus
allowing for convolution-like operations.

There are two major ways of performing convolution-like operations on graphs: spectral-
based convolution and spatial-based convolution [58], [97]. They both work on an update
rule for updating the node values thru some learnable parameters. The spectral-based
convolution works on a graph level and originates from traditional graph theory. It fo-
cuses on optimising a parameterised filter gθ that is multiplied with the input signal x in
the Fourier domain (2.27). F denotes the Fourier transformation. Implementations of
the spectral-based convolution are often computational heavy as they rely on calculating
eigenvectors of large matrices [58]. By having a fixed size filter, the spectral-based con-
volution methods are bounded to a fixed-sized graph, thus strictly limiting their usage.

x(l+1) = x(l) ⋆ gθ = F −1(F (x(l)) · F (gθ)) (2.27)

Spatial-based convolution works on a node level and is based on messages passing along
edges. At each instance l each node vi ∈ V passes its last value xl−1

i to all connected
nodes. The node values are updated as a weighted function of the neighbouring nodes.
In its simplest form, the update rule becomes the weighted sum of all neighbors passed
true an activation function ϕ(·) (2.28).

x
(l)
i = ϕ

(
x

(l−1)
i +

∑
j∈N(i)

x
(l−1)
j · θ

(l−1)
i,j

)
(2.28)

A small neural network is then added at the end to predict the class for each node vi ∈ V

based on the final feature vector x
(L)
i . By acting only on a local scale, the spatial-based

methods preserve local features within the graphs and allow for various sized graphs.
The different implementations of spatial-based methods differ in their implementation of
the messaging and update function [58].

Regardless of spectral-based or spatial-based convolution, the update function should
inherit the two flowing properties to be used for semantic segmentation:

• Permutation-invariance. When converting the point cloud into a graph, the nodes
are assigned a position to form the adjacency matrix A. The ordering of the nodes
should not influence the output of the algorithm.

• Translation-invariance. Moving a feature in the point cloud (edge, curve, object,
etc.) or the entire point cloud the result should not make any changes.

For point cloud applications the proposed Dynamic Graph CNN [98] is a spatial-based
graph algorithm for semantic segmentation. It sticks out by recomputing the graph after
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Figure 2.31: An illustration of different instances of graphs with a focused node in red
with related edges in pink. Left: A general homogeneous graph. Middle: An image in a
graph representation. Right: Time series data represented as a directed graph.

each convolution layer based on the newly achieved feature space (hence making it dy-
namic). By redrawing the graph similar featured points are connected at each layer of the
network. Inspired by residual and inception networks, the output is determined by an
MLP working on a concatenation of the achieved features. Another leading algorithm is
the Regularized Graph CNN [25]. It is a spectral-based algorithm that intends to update
the graph Laplacian matrix.

2.8 Non-deep learning algorithms

Traditional non-deep learning algorithms are in some situations more applicable than
machine learning-based ones as they do not require expensive hardware and large amounts
of training data. In addition, they are more interpretable, thus making them easier to
debug and avoid unexpected behaviour. Depending on the algorithm and problem to be
solved, the non-deep learning algorithms can often be faster as well.

2.8.1 Classification algorithms

Classification algorithms intend to assign a label or class to any data point based on
its initial attributes. Classification problems are commonly separated into binary and
multilabel classification problems that intend to assign a single label to each data point,
and multi-label classification problems which allows data points to belong to multiple
classes. The most commonly used and highest performing classifiers are Random Forrest
and Support-Vector Machines [99].

K-NN

K-nearest neighbours (K-NN) works by finding the k data points in a reference data set
and then determining the class by a majority voting. The metric for determining the
k-nearest neighbours is commonly euclidean distance. The value for k is the only hyper-
parameter in a K-NN. The performance is dependent on how general the reference set is
and what kind of features are engineered.
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Figure 2.32: An illustration of a K-NN algorithm with k = 5.

Random forest

A desertion tree is generated by repeatedly splitting a taring set in two until the new
subset only consists of a single class, or it is impossible to split further. The splits are
done by choosing one of the features and setting a border value. Choice of attribute and
border value is done in such a way that the two subsets become as pure as possible,
thus points with the same label goes to the same subset. The formation of the tree is
dependent on the training data, and a single tree will struggle to pick up more special
cases. Therefore, the training data is randomly split up, and separate trees are made
from each part. This collection of trees is whats referred to as a random forest. When
performing classification, the data point is run thru all of the trees in the forest, and the
predicted class is determined by a majority voting among all the trees.

SVM

A support-vector machine (SVM) uses kernels and hyperplanes to separate data sets.
With similarities to linear regression, hyper-planes are created in such a way that they
best possible separate the data into two sets by optimising for creating pure sets and
maximising the distance to the nearest data point. Kernels are also used to move the
data points into higher dimensions, thus allowing for hyper-planes to more easily split
the data. A single SVM performs binary classification but can be chained together to
perform multilabel classification.

The choice of kernel type must correspond with the shape of the underlying data. The
simplest form of a kernel is the linear kernel, but this requires that the data is linearly
separable [100]. For more complex data, the kernel type must be able to separate the
data. A common kernel, in addition to the linear kernel, is the polynomial based and
radial basis function (RBF).

Figure 2.33: Three different kernels. Left: a linear kernel working on linearly seperate-
bule data. Middle: Radial basis kernel working on clustered data. Right: polynomial
kernel of third degree working on non-linearly seperatebule data.
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Boosting algorithms

A weak learner refers to a classifier (of any algorithm) that performs slightly better than a
random guess, while a strong learner classifies correctly in most instances. For instance,
an algorithm that could correctly predict the outcome of a coin flip in 55% of the instances
is considered a weak classifier, while a face recognition system on a mobile phone that
gets the correct result in almost every situation is considered a strong classifier. Similar
to the random forest, boosting algorithms rely on a collective decision from many weak
learners to for a strong learner [101]. This work as long as the weak learners fail on
non-overlapping parts of the data space as illustrated in figure 2.34.

Figure 2.34: An illustration of the voting possess inn a boosting algorithm. The part of
the data space where three weak learners h1, h2 and h3 are incorrect is shown with circles.
The parts where two or three of the learners vote correctly, thus the boosting algorithm
guess correctly is shown in cyan and green. Red areas indicate that two or three of the
weak learners were incorrect, thus the boosting algorithm was incorrect. Left: an ideal
situation where non of the weak learners overlap, thus the boosting algorithm performs
well. Right: the three weak learners overlap thus forming parts of the data space where
the boosting algorithm gives the incorrect answer.

The problem of overlapping miss-classification is dealt with by boosting algorithms by
recursively constructing the weak learners so that they learn of each other’s weaknesses
[102]. The first weak learner h1 learns directly from the training set and is then evaluated
whit the same data. When training the second weak learner h2, the data points are
assigned weights scaled according to how well they were classified by h1. This ensures
that h2 focuses on learning the parts of the data set that were difficult for h1 (illustrated
with circles in figure 2.34) thus preventing them from overlapping. The process is then
continued, adding more and more weak learners, until a target is reached.

2.8.2 Clustering algorithms

The task of any clustering algorithm is to group similar data points into clusters, either
in a supervised, unsupervised manner or semi-supervised manner. The choice of algo-
rithms are large, and they are based in a variety of different concepts [103], [104]. Some
of the most relevant clustering algorithms are:

• Partition-based. This kind of algorithms assumes that the centre of data points is
the centre of the corresponding cluster. The algorithms are computationally efficient
with relatively low time-complexity, nevertheless, they suffer sensitivity to outliers
and the need for the number of clusters to be known [103]. Iteratively, algorithms
like K-means [105] moves the cluster centre and range until some convergence cri-
teria are met.

41



• Hierarchy-based. By first considering all data points as individual clusters, and
then repeatedly merging them until the final clusters are reached. The hierarchy-
based algorithms are highly scalable, but suffer from poor time-complexity and need
to know the number of clusters [103]. The most known hierarchy-based algorithms
are BIRCH [106].

• Density-based. The idea is that data in a region of high density within the data-
space most likely belong to the same cluster. The algorithms are flexible to the shape
of the data but have high memory-complexity [103]. The most common density-
based clustering algorithms are DBSCAN [107] and its preciser OPTICS [108].

• Fractal theory-based. Based on the mathematics of fractals, the stand for geometry
can be divided into several parts which share a common character with the whole
[103]. The only commonly used algorithm is fractal clustering [109] (FC).

As described in section 2.4, the time complexity of algorithms becomes relevant when the
input data is of large orders of magnitude, as is the case with point clouds. The chosen
algorithms are therefore chosen with time-complexity of O(N log N) or smaller.

The previously talked about algorithms are compared in table 2.3.

K-means BIRCH DBSCAN OPTICS FC
Time complexity O(N) O(N) O(N log N) O(N log N) O(N)

Fixed number of clusters Yes Yes No No No
Scalability Middle High Middle Middle High

Sensitive to noise/outliers Highly Little Little Little Little
Sensitive to the sequence

of the inputting data Highly Moderately Moderately Little Highly
Shape of the data Convex Convex Arbitrary Arbitrary Arbitrary

Table 2.3: An overview of important aspects of selected clustering algorithms [103].

Clustering metric

Pairs of data points must be evaluated by a metric to determine their similarity or dis-
similarity, this forms the basis for how the clustering process intends to separate the
data [103]. The choice of metric depends on the application and is, therefore, a design
choice. The computational complexity is high for some of the more complex metrics, like
the Mahalanobis distance, therefore, only a few selected metrics are included. Since the
goal of the thesis is to cluster quantitative data, only distance is used as a metric (dis-
similarity), hence similarity-based metrics are not included.

The most common dissimilarity metric is the euclidean distance (2.29), more formally
known as the Minkowski distance with a coefficient of 2. The euclidean distance is rel-
atively easy to compute and is intuitive to use as it is the metric used in day-to-day
applications. The simpler instance of Minkowski distance (coefficient of 1), the city-block
distance (2.30), also known as the taxi distance and the Manhattan distance, operates in
a grid-based manner as it compares the two points by summing the element-vice differ-
ence. The city-block distance is the simplest form of dissimilarity and therefore also easy
to compute. The cosine distance (2.31), also known as the angular distance is widely
used in loss functions for unsupervised learning [97]. It is computed by treating the data
as vectors, rather than points, and finding the angle between two vectors. The cosine
distance only cares for the angel, thus neglecting the magnitude of the vectors. This
gives advantages in high-dimensional or unsealed data. The three mentioned metrics
are illustrated in figure 2.35.
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deuclidean(a, b) =

√√√√ j∑
i=1

|ai − bi|2 (2.29)

dcity−block(a, b) =
j∑

i=1
|ai − bi| (2.30)

dcosine(a, b) = aT · b

||a|| · ||b||
= 1 − cos α (2.31)

j = the number of attributes in the data a,b∈Rj

Figure 2.35: An illustration of different distance metrics between point "a" and point "b".
Red: the city-block distance. Blue: the euclidean distance. Orange: the cosine distance.

2.8.3 Interpolation

Similar to K-NN, interpolation intends to assign a semantic value to data points based
on the distance to data points in a reference set. K-NN is discreet and aims for a majority
voting, while interpolation gives a weighted average of the neighbouring points.

Figure 2.36: An illustration of
trilinear interpolation. First fore
linear interpolations are done
along the first dimension to form
C00, C01, C10 and C11. The process is
then repeated for the second axis
to form C0 and C1, and third to
acquire the value of C.

Classical linear interpolation assumes that two
neighbouring points are linearly related, thus the
value of a midpoint can be determined by a linear
function (2.32). Where px is the value of a point at
position x, pa and pb is the neighboring points, and
∆(·) denotes the distance to x.

px = pa + ∆a · pb − pa

∆a + ∆b
(2.32)

The relation between the data can follow any math-
ematical function like polynomial or logarithmic re-
lations. The concept of linear interpolation can
be transferred into three dimensions by using the
standard Euclidean distance in 3D-pace to inter-
polate between two neighbouring points. Alterna-
tively, for data in a grid-form, trilinear interpolation
can be used. In trilinear interpolation, the value is
a point is determined by eight neighbouring points,
one from each octet, that is pairwise linearly inter-
polated along each of the respective dimensions.
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Chapter 3

Proposed solution

This chapter describes the working of the cable detection system, including hardware
and software setup, and design criteria and design choices.

3.1 Problem definition

Assumptions

The following assumptions are made when developing the system.

• The global position and the outer dimensions of the battery is known. Thus no need
to locate the battery.

• The ambient conditions are fixed to that of an indoor industrial warehouse or similar.

Choice of medium

Since this project is a part of a longer chain of possesses for the autonomous dismantling
of EV batteries and not a stand-alone process, the input and output of the project must
harmonise with the rest of the project. Although several parts of the greater project are
not started yet, the ones that are should focus on making the transition from one stage
of the disassembly process to another as seamlessly as possible. Hence, the input of this
project must be the result of the previous one, and the output of this project should be
the basis for the next part of the process.

Figure 3.1: An exploded
view of battery A.

As shown in figure 3.1, the logical order of disassem-
bling a battery is to start with the top cover. Before
removing the top cover, there can not be any avoidable
and relevant information about cables as they are all cov-
ered. Hence, there is no other relevant data to pass
down from the previous step than the outer dimensions
of the battery and its position in the global reference
frame.

The logical process to follow after detecting the cables is to
disconnect/grab the cables. Therefore, the output of this
project should be suitable for model-free grasping. From
previews work on the LIBRES project it is stated that a point
cloud is the ideal representation for implementing model-
free grasping [110]. Therefore, the output should be a point
cloud representation of the cables, segmented from the bat-
tery.
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3.2 Hardware setup

The system developed in this project was implemented in a physical system located in a
robot laboratory at the University of Agder. The robot lab was set up with a ROS net-
work connected to two active robots. Only one of the robots was used in this thesis, but
the way the network was set up with two robots influenced the project design. The net-
work used a PC running ROScore and a separate PC, connected by DNS-server, running
the system used for this thesis. The experimental setup is composed of IRB4400 robot
(ABB, Zürich, Switzerland), IRBT4004 track (ABB, Zürich, Switzerland), and Zivid One
3D camera (Zivid, Oslo, Norway) A schematic representation of the setup is showed in
figure 3.2.

Figure 3.2: Schematic diagram of the lab setup.

3.2.1 Robot manipulator

The robot arm used in this project is an ABB IRB 4400/60 manipulator. The manipulator
is a 6DoF robot designed for medium to heavy handling, with a maximum load capacity
of 60kg. The IRB 4400 is designed to be versatile, with a focus on precision and smooth-
ness[111]. The robot is a good fit for the project, due to its precision and workspace. It is
indeed able to realise precise tasks like unscrewing fasteners while having the necessary
working range to access the whole battery.

The robot comes with a pre-made control system (IRC-5 controller). The controller gives
ROS the ability to give commands in the form of joint positions. An illustration of the
robot and its range of movement is shown in figure 3.3.
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(a) ABB IRB 4400. (b) Dimensions and move range.

Figure 3.3: ABB IRB 4400 dimensions and working range in millimeters.

The IRB 4400 manipulator is placed on an IRBT 4004 track (ABB, Zürich, Switzerland),
greatly extending the robot’s work area. This workspace extension is essential for the
robot to be able to service the largest batteries like Battery B depicted in figure 3.5[112].

3.2.2 Zivid camera

The camera used in this project was a Zivid One+ M (Zivid, Oslo, Norway). The Zivid One+
is capable of capturing at 2.3 megapixels, generating 2.3 million points for every capture.
The point cloud has a total of seven values per point, i.e. 3D position(XYZ), colour (RGB)
and contrast (C)[33]. The Zivid camera was mounted on the end effector of the ABB robot
and worked as an eye in hand system.

Figure 3.4: A Zivid One
camera.

The zivid camera uses a ROS service node to communicate
with the ROS system. When the capture service is called, the
Zivid camera captures a point cloud and publishes the point
cloud on the zivid/points topic with the Pointcloud2 mes-
sage type. The point cloud is then transformed and modified
to be ready for the segmentation process.

3.2.3 Test batteries

For this thesis, two battery packs were provided as test bat-
tery packs. One smaller Volkswagen battery pack for an Audi
A3 e-Tron Sportback (Battery A) depicted in figure 3.6 and one larger Volkswagen battery
pack for an E-golf (Battery B) depicted in figure 3.5. The two batteries were used as train-
ing material for the object segmentation software and in the physical demo. The reason
for having two battery packs was to test how well the model-free callable segmentation
worked.
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Figure 3.5: The small test battery (Battery A).

Figure 3.6: The large test battery (Battery B).

Battery dismantling process

The process for recycling a lithium-ion Battery (LIB) starts with removing the battery pack
from the vehicle, while the remaining vehicle is sent to its recycling process. The battery
pack then needs to be dismantled into its components and modules. The component
layout is different for each battery model, making the detailed sequence of dismantling
different. The dismantling process described in this thesis refers to the battery packs
described in chapter: 3.2.3, but it is generally applicable to other battery packs. The bat-
tery packs featured in this thesis can generally be dismantled by the following procedure.

The protective casings are the first components to be removed, exposing the battery mod-
ules and electronics. The battery packs can also have plating securing the battery mod-
ules, like with the smaller Volkswagen battery pack used in this thesis, which needs to
be removed to access the battery modules. After the casing is removed, a process of re-
moving cables and their associated electronics and fasteners can begin. This process can
be complicated with many small components that can be hard to manipulate. The com-
ponents removed from the battery by this step, are likely to be sent to plastic recycling
and metal recycling. The next step in the dismantling would be to remove the battery
modules. The modules would need to be discharged, to safely dismantle further. The

47



battery modules contain a large majority of the LIB packs valuable resources, such as
cobalt, nickel and lithium.

3.3 Evaluation of path-planning algorithm

When choosing the path planning algorithm for this project, three different solvers were
evaluated. The solvers were part of the Open Motion Library (OMPL), which is a path
planning library providing sample-based planners, OMPL also comes as the default li-
brary in MoveIt. The three evaluated planners were Rapidly-exploring Random Trees
(RRT), Rapidly-exploring Random Trees Connect (RRTConnect) and Probabilistic Road
Map (PRM).

The way the planners were evaluated was by running the same planning goal ten times
for the three planners. The goal pose was a random valid position since there were found
no noticeable difference in planning time for different goal poeses. Therefore the tests
can be generally applied to the specific goal poses used in this thesis. How long time
the algorithms use is dependent on how much time they have available. The tree-based
solvers would use a certain percentage of the time, but PRM would use the time available
to generate a better road map. Due to this, the planning time was adjusted down to a
time where PRM would use more than what was ordered, giving a planning time of 0.05
seconds as the testing time. To then look at the solving times for all the solvers were
assumed to be a fair way of comparison The mean solver time from of the evaluation can
be found in Table 3.1.

Solver Mean time @ 0.05 s
PRM 0.0707 s
RRT 0.0734 s

RRTC 0.1388 s

Table 3.1: Mean solver times from testing.

3.4 Data acquisition

The system is designed to be able to generate a high-quality 3D representation of the
batteries by utilising the eye-in-hand concept. The resulting point clouds must capture
details in both position and colour that later will be used for the perception system. Con-
sistency and good quality of data are key elements for good performance of any machine
learning system as the computed gradients then point more towards the optimal solution
[57], thus a more convex loss-surface.

The data acquisition system is divided into sub-systems that perform their dedicated
task. The sub-systems are developed with the intent of being fast and general to not be
limited to only be used by robots. In an industrial setting, the data acquisition system
can likely serve several dismantling stations and not be limited to a stationary working
space. The workflow of the data acquisition system is shown in figure 3.7.
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Figure 3.7: The work flow of the data acquisition system.

3.4.1 Point cloud representation

The process of good quality point cloud representations of the battery packs can be split
into three problems. The first problem is how to correctly configure a structured light
camera to capture an as complete point cloud as possible. The second problem is how
to position the camera to get a good representation of a 3D feature. The last problem is
how to guaranty that the point cloud that have been generated is a "close to complete"
representation of the battery pack, with no regions missing.

Capture settings

The battery packs consist of parts that are affected by the structured light technology
in different ways. When taking a 2D picture, the settings that are used can affect the
quality of the picture. A picture can be too dark, making it hard to see the black plastic
parts or it can be too bright, saturating the brighter parts of the battery. Since a struc-
tured light sensor uses visible light as input, the same problems seen in 2D capturing is
applied to 3D capturing as well. Due to the camera not having an infinite dynamic range,
information is lost when a region becomes too dark or too bright, the structured light
system is not able to extract accurate information of the placement of the pixel, giving
instead a "Not a Number" value (NaN). These NaN pixels can be a considerable problem
for a model-free battery dismantling plant, due to the robot colliding with parts invisible
to the system.

The battery packs have components that span a wide range of brightness. As can be
seen in figure 3.2.3 the battery has components such as the orange and black cables,
the white stickers and markings, the metallic platings and the black plastic. To give a
complete representation all of these components would need to be given special attention.
The dynamic range of the Zivid camera has a good dynamic range equal to 23 stops[45],
however, the range is not extensive enough to cover the whole dynamic range present
in capture of the battery packs, to focus on components in a certain range is therefore
necessary.

Upper range features The brightest parts visible on the battery packs are the infor-
mative stickers and the white strips along with some components, as can be seen in
figure 3.8. To represent such parts the dynamic range would have to be adjusted down
in overall brightness, giving a dark image, where non of the white parts is saturated. The
black plastic and wires would however be poorly represented by such settings, largely not
appearing in a point cloud. The orange cables would likely still be visible since they are
mostly higher in the dynamic range.
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(a) White tape placed along battery modules. (b) Stickers with component information.

Figure 3.8: Example of features which demands a low to not be saturated.

Mid range features As seen from figure 3.9, many cables come in various shades of
orange, as well as some coverings. The cables encompass most of the mid-range of the
dynamic spectre, therefore to get good representations, one should also capture with
settings where these parts are well exposed. An image captured with this range would
likely be the most "normal" looking image.

Figure 3.9: Example of the dynamic range of various orange components.

Lower range features The components which are in the lower dynamic range, as de-
picted in figure 3.10 need a high brightness capture to be visible. However, when the
brightness is increased, it is to be expected that most other features higher on the dy-
namic scale, will be saturated or overexposed.
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(a) Black plastic box. (b) Bundle of black cables.

Figure 3.10: Example of features which demands a high brightness to be represented.

HDR

High Dynamic Range (HDR) capturing is a technique used to extend the dynamic range of
an image. By combining the three captures into one capture. The results give a capture
that covers the whole range of exposure in the test region. With HDR one can therefore
combine the three dynamic ranges discussed in the previous chapter into one capture,
with non of the drawbacks of focusing on a set of features.

3.4.2 Camera pivot script

For easy camera positioning a script was created to pivot the camera around the battery,
positioning it such that it is always pointing towards the battery when specifying a certain
angular position. The script needs to have the position of the battery, aka the pivot point
of the camera, then it requires the desired distance from the pivot point. Lastly inputting
the angle from the vertical axis, and the rotation around the vertical axis outputs the
corresponding tool position and orientation. Figure 3.11 is an illustration of what the
Camera pivot script is intended to do.

Figure 3.11: Battery pivot illustration.

3.4.3 Point cloud stitching

To get an accurate representation of the battery, a point cloud from only one point of view
is not enough. With one point of view, there will always be surfaces of the battery which
are not being included. The batteries also have divots, gaps and tightly packed cables,
which can be hard to detect if the vision system only has access to one point of view. The
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Zivid camera data sheets also give an optimal distance between 600 to 1600 millimetre,
which can make it hard to have the whole battery in the frame, especially when working
with larger battery packs. Since the setup in this thesis is an eye-in-hand system, the
possibility of generating point clouds from several different points-of-views is an option.
By using the camera pivoting system from Chapter 3.4.2, one can systematically repre-
sent a feature from several different angles and then stitch the point clouds together into
one.

To stitch the point clouds together the point clouds are transformed to fit in a common
world frame. ROS implements this transformation thru the library TF which keep track
of positions and orientation of the position of all the frames in the system, including
the camera frame. The system acquires the transformations by setting up a transform
listener and requesting the lookup of the transformation between the "world" frame to
the "zivid_optical_frame". The point cloud is then multiplied, pointwise by the trans-
formation matrix. The transformed points are then added to the list of points from the
previously transformed point cloud, fusing them to one point cloud. All point cloud used
in the training data and the point clouds showed in the perception and clustering results
of Chapter 4.3 and 4.2.

3.4.4 Capture sequencing

When designing an end-to-end model-free dismantling plant the problem of incomplete
information is one of the main challenges of the system. If the capturing service were
not able to cover the whole battery pack, the system may not be able to complete the dis-
mantling, due to the system’s lack of knowledge about certain components, or vital parts
of the dismantling process for the component. A consistent way of acquiring an as close
to complete representation of the battery pack is essential for a consistently functioning
LIB dismantling plant.

Cable representation

When judging what good cable representation is, there are two main considerations. The
first consideration is how suited it is for the cable detection and segmentation software.
The second considerations are to the grasping software since it is desirable to use the
same point cloud for the grasping as was used for the detection and segmentation.

For the detection and segmentation software to work well, it’s important for the point
cloud to have continuous representations of the cables. This is so the segmentation soft-
ware can define the whole cable as one. The cloud also needs to be fine and precise
enough to detect small details and variations in the cloud, features such as slight colour
changes and small fasteners can be important. The grasping software will be more sen-
sitive to how complete the representation of the feature of interest is. To work optimally
it can be critical for the grasping software to have a model of the whole surface of the
cable as part of the point cloud. The whole surface would give the grasping software the
widest range of grasping options, and faulty grasping plans would not occur as often. To
capture a fully complete representation of the cables is for the most part impractical, the
system would therefore need to work with some form of "as near to complete as possible"
representation of the cables.

Point-of-view

In this thesis, it is assumed that capturing from a single point-of-view (POV) is not enough
to get a desirable representation of the cables. The main reason being that a potential
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grasping software would have problems, at best only working with a half-cylinder repre-
sentation of the cable. The detection software would also be likely to suffer a performance
decrease, due to the reduced amount of cable surface it would use as the basis for de-
tection. It is natural to think that with more POV’s the representation would be better,
but due to the time needed to capture, the optimal number of POV’s is an optimization
problem between point cloud quality versus capture time used.

Full battery coverage

By extending the POV line of thinking to the whole battery pack means that every surface
should likewise be covered by three POV’s. Since the shape of the battery is not known
beforehand, one can make a rough estimate of how many captures are needed, by assum-
ing the battery to be ap plane with a certain area. One can then systematically capture
the surface to a certain degree of completeness, by pivoting around one point, capturing
several times, then move over and repeat the same process for a new pivot point. To not
miss any regions of the battery pack, the system would need to know what distance it can
move without skipping over any region. However, the system should not take too small
steps either, wasting time capturing regions already captured.

The Zivid One+ M camera, which is used in this thesis, gives a field of view of 691×432[mm]
at a 1000 mm distance. Which gives a surface coverage of approximately 0.29 m2 per cap-
ture. It would however be a large variation in how much surface one capture acquires,
due to the angle and height of the camera, as well as the elevation of the battery pack
feature. Therefore one can likely not trust the whole field of view to give consistent cov-
erage. To estimate how many captures are needed, the following equation was devised.

Ncap =
⌈

lbat · wbat

(lcap · wcap) · ηcap

⌉
· NP OV (3.1)

Where the lbat and wbat is the length and width of the the battery pack, lcap and wcap is
the length and width of the capture surface coverage. ηcap represents how much of the
coverage can be expected to be consistent. Ncap is the required captures and NP OV is
the desired POV’s. The ratio between battery pack and capture surface is rounded up to
nearest full number, representing the number of pivot points is needed.

Next-best-scan

A general approach is not guaranteed to be able to handle all the battery pack geometries
necessary. Features like cracks and partially obstructed features can be overlooked. It
would therefore likely be necessary to focus on problematic regions as they show up. An
approach that might be more successful at covering the whole battery pack surface is
to use a next-best-scan algorithm. Next-best-scan is an algorithm that calculates what
POV would be best for uncovering the largest amount of unknown space. Such a system
could be used more efficiently cover, by covering more battery pack surface per capture
and be able to focus in on problematic features.

3.4.5 Position accuracy

When generating the point clouds, there is a certain limit of how detailed the point cloud
can be, before the inaccuracy of the hardware interferes. In the setup created for this
thesis, there are three sources of inaccuracy. The robot, the camera and the sensor noise.
In this thesis, a hypothetical worst case, based on the specs from the datasheets, was
used to find this limit.
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• The angular sensors of the ABB robot and track always have some amount of noise.
However, this noise is accounted for in how the TF library handles all transforma-
tions. When TF looks up the transformation between the camera frame and the
world frame, it records the average signal over a time defined in the script, effec-
tively removing the majority of signal noise.

• The positional accuracy of the ABB robots is reported in the datasheet provided by
ABB. The worst-case absolute accuracy is reported to be 0.70 mm[113]. The posi-
tional inaccuracy of the robot is a product of the compiling angular inaccuracy of
each joint. The orientation inaccuracy of the robot amplifies the positional inaccu-
racy of the points in the point cloud, due to the distance between the camera and
the battery.

A simple approximation of the robots angular inaccuracy is done in this thesis by
using the maximum reach of the robot as the adjacent side of a triangle and the
positional inaccuracy as the opposing side. By some simple trigonometry, showed
in equation 3.2, an angle can be found. θE is the angular error, P R

E is the worst-case
position accuracy of the robot and LR

max is the maximum reach of the robot, given
as 1.9550 mm in the datasheet [111].

θE = tan−1
(

P R
E

LR
max

)
= 3.58e − 04[rad] (3.2)

With the assumption that all of the joints have the same angular accuracy, the accu-
racy of the robot is calculated as if all the inaccuracy is in the last joint. The added
inaccuracy of the camera to battery distance can be calculated with the following
trigonometric function. Where P̂ R

E is the approximated accuracy of the robot and
camera setup. LBat is the length from the camera to the battery, in this calculation,
it was set to 1600 mm.

P̂ R
E = LBat · tan(θE) = 0.57[mm] (3.3)

• The camera also gives the system some inaccuracy. From the data sheet of the Zivid
One+, the accuracy at a distance of 1600 mm is given as 1030 µm [33]. This is added
to the accuracy approximation to give the following accuracy, where P C

E represents
the inaccuracy of the camera.

P̂ tot
E = P̂ R

E + P C
E = 1.57[mm] (3.4)

Due to how the inaccuracy of the robot manipulator has been calculated, the result can
not be expected to be an accurate assessment. The given inaccuracy of 0.7mm is a worst-
case, something which is only assumed to be accruing at the edges of the robots working
range. The accuracy could therefore be lowered, but in the worst case, a voxel grid with
approximately 1.6 mm sized elements is small enough to give minimal information loss.
To reduce the size further would therefore likely have little benefit and reduce the margin
of error in the voxel grid.

3.4.6 Filtering

Filters are applied to remove unwanted data and transforming the reaming data into one
common format. The filtering process is divided into two parts: local filtering, shown in
figure 3.12a, and global filtering, shown in figure 3.12b. Due to the nature of structured
light cameras, every point is put into a grid format, some of the points will therefore come
out without a value because the camera did not receive any reflection. Hence, the point
cloud contains a substantial amount of empty points stored with the value ’Nan’. These
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points do not have any attributes, thus are not to any use, but takes up space in the
memory. From testing, around 30% to 50% of the points in the point clouds captured are
empty. These points are excluded when reading from the zivid_camera/points topic in
the ROS network and are the first step in the local filtering.

(a) The local filters.

(b) The global filters.

Figure 3.12: Flowchart for filters.

Only points within the recommended working
range of the camera should be used in or-
der to minimise the inaccuracy in position,
thus the assumptions made in section 3.4.5
remains valid. For the zivid one camera
used in this setting, the operating range is
sett to [0.6, 1.6] [33]. The filtering is pre-
formed by a pass thru filter from the PCL li-
brary.

The local filters are done by a single loop over
the data as both filters only check a single
condition related to the intrinsic attributes of
each point, thus they have a time complexity of
O(n).

After combining the individual point clouds there
are a vast number of redundant points as several objects are appear in multiple of the
raw point clouds. Since the same point from different frames will not have the exact same
coordinate due to the inaccuracy of floating-point representations. In addition, there is
inaccuracy in the calculation of the transformation matrix as described in section 3.4.5.
A voxel grid with small voxels is therefore applied as closely related point are represented
as a single point. Performing a voxelization of a point cloud involves looping over the
entire point cloud and checking one condition related to the intrinsic attributes of each
point, thus being linear with a time-complexity of O(n).

The background is removed since the outer dimensions of the battery is assumed to be
known. This is done in the same way as the distance filter, namely by using the PCL
library’s pass-thru filter. The point cloud is then cropped in all three spatial dimensions
to fit inside a cuboid with side lengths equal to the outer dimensions of the battery. Es-
pecially pictures taken from the side tend to pick up a lot of the background. By the
same arguments as previously used, this filter also has a time complexity of O(n).

A statistical outlier filter could also have been used, but thees require extrinsic attributes
like density to be calculated, thus having higher computational complexity and are there-
fore not used. Most outliers will be removed thru the background filtering, in addition,
both the classification algorithm and the clustering algorithm will reduce the influence
of outliers. It is therefore deemed as too costly to implement an outlier removal filter as
the increase in computational time is substantial in comparison with the potential per-
formance gain.

3.4.7 Labeling

Most labelling tools for 3D point clouds are intended for automotive usage where object
detection is the goal of the algorithms. Therefore, software from well-known sources, like
MATLAB’s "Ground Truth Labeler", which are RoI-based (region of interest), is not feasible
as they do not allow for individual point labelling. The solution is to use open-source
software. In the end, a JavaScript-based software named the "Semantic segmentation
editor" [114] was chosen as it fulfils the following requirements:
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• Visualisation of large point clouds with colours.

• Support for .PCL file format.

• Allows single point labelling.

The labelled point clouds are exported as .PCD files with the optional field "label" in ad-
dition to "x", "y", "z" and "RGB". Each point in the exported point cloud is then assigned
a binary label where 0 is associated with background and 1 is associated with a cable.

(a) Points with label "0". (b) Original point cloud. (c) Points with label "1".

Figure 3.13: An example of a labeled point cloud.

As shown in figure 3.13, the point cloud labeling is not perfect. This is a result of manually
labelling, and complicated geometry to be labelled. The complicated geometry is a result
of cables not being simple geometric shapes. Cables have the same colour as parts of the
background, they go around corners and they are positioned adjacent to the background
rather than floating in the air. As shown in image 3.13a and 3.13c the mislabeling is
bidirectional. Since the mislabeling happens by human error and not by any external
source, it is assumed that the rate of mislabelling is similar for both classes, thus not
providing any bias towards any of the classes. Nevertheless, the mislabelling results
in noisy training data that will increase the amount of training needed for any neural
network-based model to converge, in addition, to reduce the true accuracy of any model.

3.4.8 Training data

When capturing point cloud data for the training, a total of 22 point cloud were captured,
and 16 were generated by various transforms of the existing point cloud. Table B.1 lists
the data talked about in this section. 38 point clouds may sound like a small amount
coming from the perspective of 2D images detection, the total points in the data set were
over 26 million points. The point clouds were captured with a varying amount of POV’s,
varying between two, to eight POV’s. The capturing was also done with two sizes of the
voxel grid. The first eight were captured with a 2.5 mm voxel grid, whilst the rest were
captured with 1.5 mm.

The reason for using the 2.5 voxel grid, was to see if the system were able to detect cables
with less data. However, after a few captures, the rest were done with a 1.5-millimetre
grid, since that is closer to what the camera can output. The transformed point clouds
were generated to embed rotational invariance.

The quality of the point clouds was however not optimal during the first 16. This was
due to them being captured with the HDR settings before the problem described in Chap-
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ter 4.1 were discovered and worked around. The point clouds were however usable as
training material, giving a large amount of variance in the point cloud quality.

3.5 Perception system

The purpose of the perception systems is to process the acquired point cloud to extract
the information needed to perform disconnection of the cables. The system is composed
of several blocks that perform designated operations on the initial data to reach the end
goal.

3.5.1 Constrains and design criteria

Most applications for segmenting 3D-point clouds are towards navigation of either an in-
door robot or a car driving in the street. Thereby the point clouds are taken from a single
point of view, meaning that they only represent the environment from the sensors point
of view, hence being incomplete and containing blind spots as illustrated in figure 3.14.
Methods like complex YOLO [81] and other real-time orientation methods, are meant to
work on this first person-view data as they are intended to sense the world through a
sensor (GRB-D or LiDAR) mounted on the moving construction. These algorithms are
developed to constantly update the surroundings and are therefore developed with a fo-
cus on processing speed (Commonly 0.1−0.03[s]) rather than high classification accuracy
(< 83% [28]). The low accuracy is compensated for with a high update rate [81].

Figure 3.14: An illustration of first person-view. Red: an observer with a fixed field of
view. Left: the ground truth shape of the observed objects. Right: the objects observed
form a first person-view with blind-spots shaded in gray.

In this application, the robot will use some time to disassemble the battery due to the
number of parts and the complexity of the disassembly process. There will not appear
any new object within the workspace by removing one detected part (all new parts will
be under the removed part), thus a single representation is valid until all detected parts
are removed. By constructing a single representation of the battery, the robot, with its
encoders and known position, can blindly manoeuvre around the battery. Therefore com-
puting a single representation of the battery is valid for a longer time, thus the processing
time does not need to be considered real-time as a processing time of a few seconds does
not drastically impact the overall duration time for disassembling a single battery. There-
fore this approach will use the time to generate a third person-view-based point cloud,
thus operating on a more complete representation with smaller and fewer blind spots.
This more complete representation is also usefully later for grasping or interacting with
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any of the objects.

When choosing the architecture for the perception system the following are set as design
requirements to be applicable:

• The end product should be labelled point clouds of the cables as this is optimal for
running grasping algorithms, hence the perception system should perform instance
segmentation of the original point cloud.

• The systems should be permutation-invariant and translation-invariant to the input
point cloud to be model-free and hardware-independent.

• Accuracy in classification is valued over computational speed as the system is in-
tended to acquire only one 3D model before disconnecting cables. Acquiring a good
model of the cables is valued over reaching real-time computational speed.

• Computational speed should be reasonable as it is intended for industrial usage.
Hence less than 10 seconds.

Instance segmentation

The process of instance segmentation of point cloud is often reshaped into multi-stage
problem [32], [115]. Ether the process is deconstructed into a clustering problem followed
up by a classification of the clusters (cluster-class), a semantic segmentation problem fol-
lowed up by a clustering problem (PCSS-cluster), or simplified to a localization problem
and setting all points within the cuboid as the same instance.

Simplifying the problem to a localization problem works well when the instances are sep-
arated in space. Therefore, the Mask-MCNet [32] that is designed for identifying teeth
can utilise this method. For point clouds containing more nested objects, or the objects
are close in space, this method is not feasible as several cuboids might overlap.

The two other methods are mere opposites of each other, differing in whether to cluster
or classify first. By using cluster-label the algorithm gets drastically less training data as
the number of clusters is significantly less than the number of points. The classification
process also becomes harder as it must account for more complex features related to the
entire point cloud rather than single points. A PCSS-cluster system does not need to have
the same level of accuracy because mislabeling edge cases does not stop the forming of
clusters. Thus the resulting instances will be more robust with a PCSS-cluster-based
pipeline.

Due to the limited amount of training data, thus challenging the training, the PCSS-
cluster pipeline is chosen. This is similar to what is done in other papers [115].

3.5.2 System work-flow

The overall workflow of the perception system is illustrated in figure 3.15 and is com-
posed of four blocks that start with a raw point cloud and have the end goal of instance
segmentation.

Filtering and downsampling

As shown in figure 3.15a, the raw data is noisy and bias, and will therefore make it more
difficult for any algorithm to perform classification [57]. Therefore, the point cloud is first
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(a) The raw point cloud. (b) The point cloud is filtered and downsampled.

(c) The points are assigned a semantic value. (d) Clusters are formed.

Figure 3.15: The workings of the perception system.

filtered to remove invalid points, background and redundant points by the processes de-
scribed in section 3.4.6.

The Zivid camera provides over two million points, which is more than a standard LiDAR
and magnitudes more than what most algorithms are designed to work on (Commonly
< 10, 000) [14], [28], [30], [31]. Although algorithms are scaleable, they have at best a
time-complexity of O(n2), thus the input size must be reduced to meet time requirements
described in section 3.5.1.

Downsampling results in information loss, thus the choice of method for downsampling
affects the performance. Downsampling is either done by random sampling, voxel-grids
or set-pooling as done by [89]. Random sampling is the most computationally efficient,
but will not give a uniform distribution of the output, thus some regions will be over-
represented while others get underrepresented. Small objects and surface details may
be lost if the downsampling is of substantial magnitudes. Random downsampling also
introduces uncertainty into the algorithm as downsampling the same set several times
will result in a different outcome. This increases the amount of training data but makes
it harder to train as the algorithms might not be exposed to important details.

The system uses a hybrid solution where first a voxel-grid is applied to remove redundant
points. The point cloud is also downsampled as a result of the voxel grid, but the voxel
grid alone can not give the desired size. To reach the desired size, a random reduction
filter is applied after the point cloud is voxelised. The data now take a grid-like shape
with some empty squares as shown in figure 3.15b. The usage of a random reduction
filter is justified by having the voxel-grid performing the majority of the downsampling,
thus the disadvantages of a random reduction filter are minimized.

Semantic segmentation

As the first step in instance segmentation, semantic segmentation aims to label the points
in the downsampled point cloud as shown in figure 3.15c. The semantic segmentation
is likely to be the most time-consuming part of the pipeline as most popular techniques
have a high time complexity. Voxel grid-based methods grow cubical with respect to the
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resolution [22], and graph-based, in the best case, grows quadratic, [58]. More novel and
traditional approaches like Random Forrest, SVM and PointNet have drastically lower
time complexities [22]. Nevertheless, the novel approaches are outperformed by more
complex ones in the large benchmarks [28], [31], [90]. Boosting algorithms have been
used for semantic segmentation of point clouds from outdoor areal data with promis-
ing results [116], [117]. Therefore, gradient boosting is included as one of the proposed
methods.

Benchmarks are directed towards accuracy, and not time usage, therefore there does not
exists any known comparison of time complexity or forward time versus accuracy across
several approaches. Algorithms based on the principles of the following promising archi-
tectures are implemented and tested to determine a stubble algorithm:

• Dynamic Graph CNN (DGCNN)[24]

• VoxelNet [118]

• PointNet [22]

• Random Forrest

• SVM

• Gradient boosting [119]

In some of the chosen algorithms, only a subset of the points is labelled. Therefore, it
is needed to assign a label to the remaining points based on a subset of labelled points.
The traditional way of doing this is a K-NN approach as described in section 2.8.1.

Inspired by SEGCloud [120], Mask-MCNet [32] and Point-GNN [89], trilinear interpola-
tion, as described in section 2.8.3, is proposed to be used to transfer the learned label
back to the original filtered point cloud. Trilinear interpolation allows the data to be a
weighted average of the neighbouring points, thus providing a more continuous interpo-
lation than the alternative, K-NN.

The well-known successor of PointNet, Pointnett++, is excluded as it is shown to have a
vastly poorer time usage than DGCNN [98]. The two well-performing algorithms SEG-
Cloud [120] and RandLA-Net [121] are not included. The choice of algorithms and there
implementation are described further in detail in section 3.5.5 and section 3.6.

Clustering

After the points are assigned a semantic label, they must be grouped, also known as
clustering, so that a collection of points can represent an object. In addition, a semantic
segmentation algorithm will never truly reach 100% accuracy, hence there are mislabeled
points that now become outliers and thus should not be included in any cluster. In other
words, the clustering block, as shown in figure 3.15d, should form collections of points
that represent cables and leave out mislabeled points. The choice of clustering algorithm
is described further in section 3.5.6.

3.5.3 Graph forming

A k-NN graph based on coordinates is the most intuitive way of representing a point cloud
as a graph. The graph will then be formed based on the euclidean distance between the
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points in 3D, thus embed the local geometry in the forming of edges. The graph is then
homogeneous and undetected as two nodes are not necessarily mutually within each
other top k nearest nodes. The graph is commonly also self looping, thus each node has
an edge looping back at each self. Self looping is included to simplify the message passing
process for convolutional graph neural networks. Optionally, the graph can be formed
by a radial search where nodes that have corresponding points in the point cloud which
are less apart than a given reference r form an edge. For both cases, forming the graph
involves finding the distance between all points in the point cloud, thus being computa-
tionally equal. In some cases, it is desirable to have a fixed number of edges related to
each node, therefore a k-NN graph is used in this thesis.

Forming graphs is computationally heavy as finding the top k nearest neighbours of any
points involves looping over all the entire point cloud. Repeating this process for the entire
point cloud then ends in a time-complexity of O(n2), which is a large time complexity, thus
making it challenging to form graphs from large point clouds. By using an octree, a small
neighbourhood around each point can be generated so that each point does not have to
be compared with every other point, but only the local neighbourhood. Searching an
octree have a time complexity of O(log n), thus reducing the overall time complexity of
forming a k-NN graph from a point cloud down to O(n log n).

3.5.4 Feature engineering

To obtain translation invariance, most of the algorithms can not work directly on the
intrinsic features of the points. In addition, for the pure classification algorithms, more
features result in more dimensions to distinguish the instances. Using the local surface
curvature for points is suggested as an alternative to the absolute coordinates as it is
a translation-invariant feature, is easy to implement and have relatively low time com-
plexity (O(N log N ). Since cables tend to have round shapes, they have by nature a lot of
curvature, therefor it assumed that using the local surface curvature will improve results
while maintaining translation invariance.

As suggested and argued by [57] the features used to train neural network should not be
intercorrelated as this makes it harder to determine the impact of any feature. Thus cal-
culating good gradients and training becomes harder. Therefore, for the neural network-
based algorithms, only the intrinsic features are used, or the coordinates are replaced
with the local surface curvature.

3.5.5 Semantic segmentation algorithm

As described in section 3.5.2 six different algorithms will be tested up against each other.
Two of which are non-deep learning-based. The data is reduced to two dimensions to vi-
sualise any potential relation between features of the points. t-SNE is chosen over PCA
since it preserves the shape of the data points thru out the dimensional reduction [62],
[63]. The resulting 2-dimensional embedding are shown in figure 3.16. Clusters of same-
labelled points in the embedding indicate that there is some combination of the original
point features that can directly be used by a classifier to separate the cables from the
point cloud. In other words, the local point features alone contains sufficient information
to determine the semantic properties of any point. On the other hand, most geometric
data have global features that are greater than the sum of the local features.

From the small battery (Battery A) it appears to be a cluster of labelled points as shown
in the upper left corner of figure 3.16a. There are still some yellow points appearing in
the rest of the embedding, but these are sparse and does most likely come from noise and
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(a) Battery A (b) Battery B

Figure 3.16: The t-SNE representation of two point clouds, one from each of the batteries.
Each embedding is done with the six intrinsic attributes and the three attributes related
to the local surface curvature (R9 → R2). Yellow dots indicates points labeled as ’cable’,
while purple indicates ’not cable’.

miss-labelling. For battery B there is a week cluster, but no clear destination as there
a lot of yellow dots in all of the embedding. This might be a result of poor labelling as
battery B is more challenging to label than battery A.

Traditional classifiers

Although not distinguishable, there are tendencies in the embedding of both batteries A
and battery B that there exists some combination of the nine-point attributes that al-
lows for segmentation by using a traditional classifier. The Random Forrest algorithm
together with the Support-Vector Machines algorithms are suggested due to their well-
known performance [99]. Since the data is not linear distinguishable, several different
kernel types of SVM is tested, including the polynomial kernel and the radial basis kernel.

To obtain translation invariance and rotation invariance, the classifiers can not work on
the position attributes. A rotated version of any point cloud would have different coordi-
nates for all points, while still representing the same objects. Therefore, the traditional
classifiers are trained on the three colour features and the three curvature features.

Gradient boosting

Similar to the random forest algoritm, gradient boosting utilises decision trees to form a
collective desertion [122]. It differs in that the decision process is not a majority voting,
but rather a sum of votes that is compared to a threshold δ as shown in equation 3.6.
For binary classification, the threshold is commonly set to δ = 0.5 to not favour any of
the classes. Similar to other boosting algorithms, the gradient boost works by having
week classifiers recursively generated based on the miss-classification of the previous
classifiers. Similar to other boosting algorithms like AdaBoost [17], the week classifiers
are weighted based on their impact as shown in equation 3.5. Gradient descent is then
used to determine the weights, similar to how it is done in deep learning, thereby giving
the origin to the "gradient" part of gradient boosting.
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F (x) = h0 + w1 · h1(x) + w2 · h2(x) + · · · + wn · hn(x) (3.5)

ŷ =
{

0, F (x) < δ,

1, F (x) ≥ δ.
(3.6)

The initial estimate h0 is the probability of getting class one in the training set. The
number of leaves in each decision tree and the number of threes are the most important
hyper-parameters for gradient boosting. A faster version of gradient boosting, named
LightGBM [119], exclude a significant amount of the training data to remove small gra-
dients. As shown in table B.1, there are over 20 million data points in the training data.
Many of these data points will be redundant, and therefore provide little contribution
while impacting the computational speed. Therefore are the LightGBM version of gradi-
ent boost used.

LightGBM is not trained on the coordinate features for the same reason as the traditional
classifiers. It is therefore only trained on the colour features and the curvature features.
The hyper-parameters are not optimised, but rather set to standard values of 1000 deci-
sion trees and a maximum 32 leafs per tree.

Deep learning-based classifiers

Deep learning has been shown by several other projects to have a good performance on
semantic segmentation of point clouds from real wold data [32], [121], [123]–[126]. The
results seem to vary in both fields of application and representation of the environment.
As proposed by [14], [88], there are three main categories of semantic segmentation of
point clouds using deep learning: Multi-view, 3D-CNN and Graph-based.

At the time of writing, no known implementations are using deep learning-based se-
mantic segmentation on point clouds to grasp or dismantle an object. In addition, deep
learning-based algorithms for semantic segmentation or instance segmentation of point
clouds are commonly only compared by accuracy and not by processing time. This is
probably a result of the field of deep learning on point cloud being quite fresh [14], [124].
Several promising algorithms, rooted in different concepts, are tested and compared with
a focus on classification performance and forward processing time.

PointNet [22] and its successor, PointNet++ [87], are the fundament for most deep learning-
based algorithms for working on point clouds [14], [124]. By using a computed global
representation and a point-vice representation to classify each point, as shown in figure
3.17, the algorithms can learn both local and global features. Except form utilising local
and global features are the workings PointNet novel in that it only uses the well-known
feed-forward neural network architecture for aggregation. Since PointNet is the backbone
for most deep learning-based algorithms, it becomes natural to include it in any compar-
ison.

Graph-based neural networks (GNN) is a field within neural networks that only recently
gained popularity. Nevertheless, the graph-based neural networks are viewed as a promis-
ing way of processing point clouds [14]. The fractal-based GNNs that revolves around the
Laplacian matrix and eigenvectors are computational complex by nature [58]. Therefore,
promising approaches like RGCNN [127] and other spectral-based GNNs are considered
not applicable. GNNs have their strengths as they can for an understanding of the local
geometry by utilising message passing, thus expanding the idea of PointNet that only
looks at single points for local features.
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Figure 3.17: The workings of PointNet. Taken form the original paper [22].

The spatial-based GNN, Dynamic Graph CNN (DGCNN) [98], performers well on the Mod-
elNet40 benchmark [31] with an accuracy of 92.9%. DGCNN have two core architec-
tures that make it suitable for point cloud semantic segmentation: The message passing
method "EdgeConv", and the dynamic re-drawing of the graph. EdgeConv allows for
convolution-like operations similar to those in traditional 2D-CNN, while still maintain-
ing permutation invariance, thus overcoming some of the shortcomings of PointNet. By
dynamically re-drawing the graph based on the k-nearest neighbours in the feature space
of hidden layers several times along the pipeline, the points with similar characteristic get
closer. This allows for harder training as the information is exchanged between similar
nodes, thus allowing the algorithm to focus on the nodes that are hard to distinguish.
Nevertheless, as talked about in subsection 3.5.3, the formation of k-NN graphs are com-
putationally heavy.

The architecture of DGCNN, as shown in figure 3.18, utilises PointNets idea of using a
computed global representation together with local features to classify points. Although
DGCNN does not use the same global representation for graph classification and node
classification, they are computed similarly. DGCNN also utilises the principles of resid-
ual networks by concatenating features of the lower layers with those of the higher layers.
This allows for features related to the local neighbourhood to be forwarded while the later
layers pick up features for separating similar-looking points. DGCNN, like many other
GNNs, are shallow compared to their 2D equivalents that can go to tens and hundreds of
layers [128]. By being shallow, they do not get the performance boost that traditional deep
2D CNNs get, but on the other hand, they avoid the vanishing gradient problem that the
deeper networks struggle with. Shallower network structures also allow for faster train-
ing as the gradients are smaller, thus can be computed faster.

Figure 3.18: The workings of DGCNN. The upper branch is for graph classification, while
the lower one is for node classification and is the one used in this thesis. Taken from the
original paper [98].
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3D convolutional neural networks (3D-CNN), also referred to as volumetric convolutional
neural networks, have the advantage of being directly transferable from the 2D equivalent
as they operate on a similar grid-based structure. By first converting the point cloud to a
voxel grid occupancy map, 3D-CNN and trilinear interpolation as shown by SEGNet [120].
The model of SEGNet is not described in the paper, nor published, thus its results can
not be reconstructed in this thesis. Never the less VoxelNet [118] present a model where
first voxel features are learned based on the containing points in their "feature learning
network", as shown in figure 3.19. This allows each voxel to learn its local features of the
point clouds. Afterwards, in the "convolutional middle layer," the voxels are aggregated
using 3D-CNN to learn global features.

Figure 3.19: The working of the feature learning network of VoxelNet. "VFE" refers to the
Voxel Feature Embedding module of VoxelNet. Taken from the original paper [118].

Layer Input Output Activation
features features function

fc1 64+3 32 ReLU
fc2 32 32 ReLU
fc3 32 2 Softmax

Figure 3.20: MLP for VoxelNet. fc = fully
conected linear layer.

In the original paper, a third stage proposes
regions based on the aggregated voxel fea-
tures. This third layer is excluded and re-
placed with a trilinear interpolation layer to
determine the point features as suggested by
[32], [120]. The semantic value of each point
is then determined by a simple MLP where
the 64 point features are concatenated with
the three-point coordinates that serve as the
input. The structure of the MLP is shown in
table 3.20. Using 3D-CNN is more computationally heavy, but is dependent on the num-
ber of voxels rather than the number of points. In other words, a good embedding from
points to voxels that allows for large voxels can compensate for high time complexity.

Excluded algorithms

RandLA-Net [121] is based on the auto-encoder architecture, as shown in figure 3.21. The
point cloud is first compressed down to a small high-dimensional latency space by the
encoder part and then expanded back to the original shape by the decoder. RandLA-Net
also uses attention-based mechanisms in combination with neighbour sampling to for-
ward local features. In the Semantic3D benchmark [26], RandLA-Net has, at the moment
of writing, the best score out of all algorithms with a mIoU (mean intersection over union)
of 76.0%. But the algorithms are developed towards navigation of indoor environments,
and not semantic segmentation of objects and is therefore not used. Nevertheless, its
promising results in combination with the success of attention-based and autoencoder-
based architectures
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Figure 3.21: The workings of RandLA-Net. Taken from the original paper [121].

SEGCloud [120] is based in 3D-CNN on a voxelized version of the input point cloud.
The processed features of the voxels are then transferred back to the point cloud by
using trilinear interpolation. Although looking promising, there is no description of the
architecture of the 3D-CNN, and it is therefore not feasible to reproduce the network. On
the other hand, the pipeline of SEGCloud, as shown in figure 3.22, is used with VoxelNet
[118] as the backbone as mentioned earlier.

Figure 3.22: The workings of SEGCloud. Taken from the original paper [120].

Performance metric

It is seen as equally important to correctly label cables (true positive) as background (neg-
ative). False positives can lead to the formation of false clusters, while false negatives can
lead to discontinuous clusters or too low density to form clusters. Accuracy (3.7) is used
as a performance metric for the semantic segmentation system because it represents the
classification of both positive and negative observations.

Accuracy def= TP + TN

TP + FP + TN + FN
(3.7)

TP = true positive, FP = false positive, TN = true negative, FN = false negative

The disadvantage of the accuracy metric is its sensitivity to unbalanced data sets. The
data sets used in this thesis, listed in table B.1, are highly imbalanced and therefore
needs to be converted before training. The F-score (3.8) is an alternate to accuracy but is
not used as the amount of imbalance varies in the data set and it is difficult to balance
the importance of precision and recall.

Fβ = (1 + β2) precision · recall
β2 · precision + recall

(3.8)
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Training

The imbalance in the data sets which are bias towards the background label (negative)
is counteracted by creating a subset of each point cloud. The subsets consist of equally
many positive and negative samples thus it is not biased towards any of the classes. All
the positive samples are directly transferred to the new subset, while the negative sam-
ples are randomly sampled to conserve the natural variance in the background point
features. This variance is important to conserve because background points represent
several types of objects, and the system must be able to distinguish all of them. The
variance in background features can also be seen in the t-SNE embeddings of the point
clouds feature space as shown in figure 3.16. The inputs are all normalised in most of
the training to prevent the algorithms from being bias towards a single attribute. The
only exception is the graph-based algorithm (DGCNN) where the original coordinates are
preserved to not interfering with the forming of the graphs. By normalising, the axis
would be scaled with different factors, thus influencing the calculation of distances used
to form the graphs.

The non-deep learning-based algorithms are not directly trained as they do not have any
form of backpropagation, they are instead fitted to the training data. First, the training
data is concatenated into one large point cloud, and then the algorithms are fitted to the
new point cloud.

For the deep-learning-based algorithms, the CUDA framework is used to speed up train-
ing time. This limits the memory available to that of the GPU, hence 8 GB C.1. To
overcome this limitation, the point clouds are divided into 8 smaller chunks that are
individually processed. This has the additional benefit of reducing forward time with a
factor of up to 64 as some of the algorithms have time complexities of O(n2). The large in-
put data do not allow for training in mini-batches which would otherwise help to compute
better gradients [57]. The learning rate is scheduled with cosine annealing and momen-
tum, as done by [98], to avoid local minimums. The hyperparameters used during the
standard training are shown in table 3.2.

DGCNN PointNet VoxelNet
Training/Validation split 80%/20% 80%/20% 80%/20%
Epochs 200 200 160
Learning rate 0.1 0.01 0.01
Scheduler type Cosine annealing Cosine annealing Step (γ = 0.1)
Scheduler period 50 50 150
Momentum 0.9 N/a -
Batch size One chunk One chunk One chunk
Dropout probability 50% 50% 50%
Optimiser SGD Adam SGD

Table 3.2: Base value for hyper-parameters used during training.

Commonly the performance of point cloud semantic segmentation models are trained
and compared with region-based metrics, where the mean IoU (3.9) (intersection over
union) is the most common metric [124]. In the popular benchmarks [26], [28], [31] the
objects are mostly separated in space. In other words, they are not entangled and rarely
have overlapping boundary boxes. EV battery cables on the other hand are long and
slim while being entangled. Boundary boxes and region-based loss would therefore not
be feasible for this application. The boundary boxes would contain ether be too large thus
including points that are not a part of the cables, or each cable would have to be divided
into several smaller boundary boxes. The same arguments make boundary-based loss
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also impractical. In addition, when training on chunks of the point cloud, a boundary
box may overlap into several chunks thus making it more difficult to determine the loss.

IoU = |A ∩ B|
|A ∪ B|

(3.9)

The loss function is therefore distribution-based, hence every point is individually eval-
uated and compared to the ground truth. The standard cross-entropy loss, described in
section 2.6.1, is chosen as the primary loss function, as this is the standard for binary
classification tasks. The weighted cross-entropy loss is not used due to the varying fre-
quency of cable labels between the point clouds. As seen in table B.1, some point clouds
have around 15% of the points labelled cable, while others have as low as 1.9%. With a
weighted cross-entropy loss, the ratio between labelled and unlabeled points would be
used as weights to not be biassed towards any class. This would lead to the positive
samples from some point clouds would be weighted significantly stronger, thus creating
a bias. The focal loss, shown in equation (3.10), is also a viable option as it is known
for dealing good with heavily imbalanced data [66], [67], [71]. On the other hand, focal
loss introduces the hyperparameter γ, thus complicating the learning process. Focal loss
is therefore seen as an alternative loss function to potentially be used later to increase
performance or to be used when standard binary cross-entropy loss is not sufficient.

LF L(y, ŷ) = |y − ŷ|γ · LBCE(y, ŷ) (3.10)

3.5.6 Clustering

As the number of cables is unknown the clustering algorithm can not be reliant on hav-
ing a fixed number of clusters. Also, the clustering algorithm must be flexible towards
the number of clusters, thus being able to work with different magnitudes of numbers of
clusters. As pointed out several times in this thesis: cables are entangled and twisted.
They do not take up a separate convex chunk of space, and therefore the clustering algo-
rithm can not operate in a regression-based manner as partition-based clustering does.
Hierarchy-based is not applicable as it also depends on a fixed number of clusters and
convex data.

As stated previously in section 3.5.2, the clustering algorithm also serves as noise re-
moval from the imperfect semantic segmentation algorithm. Therefore, the clustering al-
gorithm should not be sensitive to noise or outliers. The algorithm should ignore outliers,
thus not considering them as a part of any cluster. This again makes the partition-based
clustering algorithms unsuitable. On the other hand hierarchy-based, density-based and
fractal theory-based algorithms are more robust to noise because they work in a recur-
sive manner where points are added or removed according to some given constrain.

Although the point clouds from the Zivid camera are considered ordered, this should not
be a constrain for the workings of the perception system as this would violate the per-
mutation invariance criteria set in section 3.5.1. Therefore, all point clouds are treated
as unordered point clouds. Sensitivity to the ordering of the sequence of the points,
therefore, becomes important. Fractal clustering (fractal theory-based) fall short as it
relies upon looping over the input data only once. Optionally, the point cloud could be
ordered before any clustering, but this process of ordering would add at best add a time
complexity of O(N log N) [129], thus it is not viewed as a viable option due to the time
constraints set in section 3.5.1.

The importance of having a clustering algorithm that manages to work on non-convex
data is illustrated in figure 3.23 as algorithms like K-means (partition-based), and BIRCH
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Figure 3.23: A comparison of clustering algorithms on dummy data to illustrate how
different algorithms work on different shaped data [130].

and Agglomerative clustering (hierarchy-based) wrongly classifies the non-convex data
shown in the first two rows. On the other hand, the density-based clustering algorithms
DBSCAN and OPTICS manages the noon-convex data better.

Although the density-based mean-shift algorithm is used in similar projects [115], it is
not used in this thesis due to its high time complexity [103]. The viable clustering al-
gorithms are therefore DBSCAN and its predecessor OPTICS, both highlighted in figure
3.23. They both work by forming cluster centres from the dens part of the data and then
recursively evaluating neighbouring points to determine if they should be included or not
in the current cluster as illustrated in figure 3.24. In the original paper of OPTICS [108],
the author claims an increase in time usage by a factor of 1.6. This factor must be deter-
mined empirically for this application as it depends on the search radius of OPTICS, ϵmax.

Figure 3.24: The iterative workflow of DBSCAN and OPTICS.

The hyper-parameters for the two methods, in addition to the choice of metric, are the
neighbourhood distance ϵ and the minimum neighbour samples k. ϵ indicates how far
two points can be apart, while still being considered neighbours. In the leftmost frame
of figure 3.24, the size of ϵ is indicated with a blue circle around the centre point. ϵ takes
the shape of a circle since the euclidean metric is used. The second hyper-parameter,
k, indicates how large a neighbourhood is needed for a point to be considered a centre
point, thus adding its neighbourhood to the current cluster. In OPTICS, only a max value
for the parameter ϵ is required, as the optimal value is dynamically estimated. Neverthe-
less, ϵmax can be set to infinite, thus including the entire point cloud, but this leads to
quadratic time complexity (O(n2)). OPTICS uses an additional hyperparameter, ξ, in its
clustering process. How OPTICS calculates the average distance every point have to its
neighbourhood and looks at how this distance changes to determine the clustering bor-
ders. ξ determines the threshold value for an increase in the average distance between
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two neighbours.

The size of ϵ must be larger than the voxel side length lvoxel used in the global filtering
process, described in section 3.4.6, to have any neighbours at all. Hence, the lower bound
of ϵ is as described in equation 3.11.

ϵmin = lvoxel (3.11)

The point cloud is a surface representation of the batteries, hence they do not have any
volume. Therefore, when viewed locally, the points will lie on the surface. As a result
of the voxel filter described in section 3.4.6, the points will be spaces apart with no less
than the voxel size given by the inaccuracy (lvoxel). The upper bound of k can therefore
be given by the proportion between the surface created by ϵ (the neighbourhood) and the
point density as shown in equation 3.12.

kmax = πϵ2

l2voxel

(3.12)

For the OPTICS algorithm, the hyperparameter ϵmax is set to be 10 · lvoxel as a conservative
value to reduce the processing time.
The hyper-parameters for the two methods are empirically determined in chapter 4. Their
performance is also compared to determine which one is the most ideal.

Clustering metric

The dissimilarity metric should preserve the rotational invariance and translational in-
variance of the perception system. Therefore, the city-block metric distance is influenced
by the orientation of the reference frame, hence violating the rotational invariance. In
the worst case, a 45o rotation can change the distance between two points with a factor of√

2. For the same reason, the cosine metric does not hold as it violators the translation
invariance by changing the angle as shown in figure 3.25.

Figure 3.25: An illustration of how the cosine metric and the city-block metric violates
the rotation and translation invariances. The cosine distance (orange) and the city-block
distance (red) is shown for the original reference frame with axis X and Y , and the shifted
and rotated reference frame with axis X ′ and Y ′. cb = city-block, α = the angle related to
the cosine distance.

The Euclidean distance is not dependent on the reference frame, thus being invariant
of any translation or rotation. It is in addition relatively fast to compute [103] and is
intuitive as it is the day-to-day metric for separating objects in 3D-space.

70



3.6 Software implementation

The implementation is done by using the Python and ROS frameworks because this
project is a continuation of previews work, and therefore continuity is important. The
project could also have been done in C++, but Python is favoured as it has good support
for machine learning.

The code discussed in this section can be obtained thru the following link: https://
github.com/HenrikBradland-Nor/IKT590-MAS500.

Figure 3.26: An overview of the software files and there relations. Yellow: the main
executable file. Green: hardware setup file. Blue: the capturing system. Red: the
perception system.

The project code is mainly divided into the following files:

• main.py is the executed python file and only contains the main program flow.

• config contains the class config that again hold every hyper-parameter and global
variable in the entire code. The config class is instantiated in the main function
and passed down to the classes and functions that rely on it, thus there exists only
one instance of the config object.

• robot.py is called from main.py. It contains the interface with ROS, therefore does
the operation of the robot and 3D camera. The main purpose of the file is to perform
the capturing of the battery and filter the capered point clouds.

• models.py contains the implementation of all the semantic segmentation algorithms
described in section 3.5.5 and clustering algorithms described in section 3.5.6.

• training.py loads the training data set and the chosen model to perform training.
The model parameters are then stored in a separate file.

• objectDetection.py loads the chosen model from model.py with corresponding pa-
rameters stored in a separate file. Any passed input is filtered, downsampled, la-
belled and clustered in accordance with the system workflow described in section
3.5.2.
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3.6.1 External libraries

The following external libraries are used to implement the software.

• numpy (v. 1.19.1) is used for efficiently managing matrices and vectors on the CPU.
Mostly used for data transformation and data augmentation, and as an interface
with other libraries.

• pytorch (v. 1.7.1)is used for neural networks processing as it makes interacting
with the CUDA toolkit convenient, thus speeds up forward processing time and
training time. In addition, PyTorch has good support for machine learning-based
functionalities and is together with TensorFlow one of the most commonly used
frameworks for machine learning. The PyTorch framework is chosen over TensorFlow
because of the compatibility with DGL.

• DGL (v. 0.5.3) is short for Deep Graph Library which builds on the PyTorch frame-
work to provide support for graph-based machine learning.

• pclpy (v. 0.11.0) is a binding of the c++ library PCL (Point Cloud Library) which
provide an efficient framework for point cloud processing.

• rospy (v. 1.12.14) is the ROS interface for python and is used to communicate with
the Zivid camera and the robot controller as shown in figure 3.2.

• scikit-learn (v. 0.23.2) provides implementations for non-deep learning-based al-
gorithms like t-SNE, random forest and various clustering algorithms.

• joblib (v. 0.17.0) help save and load more complex data structures from files. It is
used to save and load the parameters of the non-deep learning-based models.

• LightGBM (v. 3.2.1) is a framework for implementing and training boosting algo-
rithms.

Camera positioning

The MoveIt move order system uses a set of position values (XYZ) and a set of quater-
nions to specify the pose of the end effector. A script designed to make the input values
more intuitive was made. The script called Batpiv was therefore designed to generate
the required goal position for the camera to be pointing towards the battery pack from a
certain angle and distance, the Batpiv script is explained further in Chapter 3.4.2.

The required system inputs are the following:

• Battery position: The point at which the camera will pivot around, given as a set
of XYZ values. Placed where the feature of interest is located.

• Pivot arm length: The radius from the battery position to the tool position. Gives
the option to pivot around the battery at a further distance. Keep in mind the tool
position in this thesis is placed 1.1 meters from the camera, where the centre of
focus of the camera is located. Giving an actual radius of 1.1 meters when the pivot
arm length is set to zero.

• z-axis angle: The angle between the Z-axis and the axis of the camera view. If the
ZY-plane angle is zero, the camera will pivot in the negative X direction. and positive
direction when negative.

• ZY-plane angle: The angle between the ZY-plane and the axis of the camera view.
If a positive angle is given, the robot will twist the camera in a clockwise direction
around the Z-axis, and counterclockwise if negative.
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A set of pose goals can be defined in the config.py script by calling the Batpiv function
and ordering the poses in an array. To use the set the set would need to be specified
in Robot.py as well. This is done so Config.py can work as storage of several capturing
sequences poses, and the desired sequence can then be specified in Robot.py.

Robot.py handles the process of sending move orders to the robot. The actual movement
sequence is done by the move_group system in MoveIt. The Robot.py configures the set-
tings for the move order and requests a move order to the given goal pose. The move_group
then handles the path planning, collision avoidance, and robot control orders. When the
robot has reached the desired location, the point cloud capture service is called.
Figure 3.27 is an illustration of how the system goes from input to calling the move robot
action.

Figure 3.27: Input variables to robot pose execution.

Point cloud processing

When the Zivid capture service is called, the Zivid camera starts the process of cap-
turing and generating a point cloud. This process also involves the filtering from the
built-in filters described in Chapter 3.4.1. To process the generated point clouds two
ROS topic channels are used. The captured point cloud is published to the ROS topic
/zivid_camera/points and a listener to /tf is started to keep track of the point of view
used when the point cloud was captured. The process of post-capture to exported point
cloud is depicted in figure 3.28.

The process of transforming and exporting the point clouds consists of the following steps:
The data from /zivid_camera/points is converted from the message type Pointcloud2 into
a list. The list is then processed through the pre-transformation filters, removing NaN-
points and removing points which is outside of the desired range of the camera, in the
case of this thesis, this filter removed all points which were beyond 1.6 meter from the
camera, and nearer than 0.6 meters, eliminating points which was outside of the desired
range of the camera.

The /tf topic is where all 3D-transform data of the ROS system is published. To get
the associated transform of the camera frame (zivid_optical_frame) to the origin frame
(world) the transform between the two frames is looked up. The results from the lookup
are then converted to 4 × 4 matrix. The XYZ values in the list are then transformed point
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Figure 3.28: Diagram of how point cloud data is processed and exported.

by point to transform the point cloud to the world frame.

Post-transformation filters are then applied. The post-transform filters remove all points
outside of a valid range, from the point of view of the world frame, like removing every-
thing which is located below around the battery pack of interest.

Since the system is designed to capture from different angles, the point cloud data is
then added to a larger list consisting of all point clouds that have been captured since
the last time main.py was run. The whole point cloud process will then repeat until all
requested capturing are completed. When all capture requests have been processed the
combined point cloud is exported to a .pcd file.

3.6.2 Semantic segmentation

The algorithms of choice, as described in section 3.5.2, are implemented in Python 3.6 as
this is the only distribution of Python that supports all libraries. The PyTorch framework
is used for the deep learning-based algorithms because it allows for easy integration with
the Nvidia CUDA Toolkit, thus allowing for GPU-based processing that heavily reduces
processing time for deep neural networks.

All the code related to semantic segmentation are located in two files: models.py and
NN_suport.py. In addition, there is two prepossessing files and dataPreProsessor.py.

Random forest

The model implementation itself is done by using the scikit-learn libraries
ensemble.RandomForestClassifier() function. The data is first prepossessed with by
dataPreProsessor.py. To make the implementation translation invariant, the training
is done on the absolute position, but rather the local curvature represented by a normal
vector. The normal vectors are constructed using the function pclpy.compute_normals().
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SVM

The model implementation itself is done by using the scikit-learn libraries sklearn.svm.SVC()
function. The data is first prepossessed with by dataPreProsessor.py. To make the imple-
mentation translation invariant, the training is done on the absolute position, but rather
the local curvature represented by a normal vector. The normal vectors are constructed
using the function pclpy.compute_normals(). Including the z-coordinate as an attribute
and normalising could improve predictions, but this would make the model sensitive to
outliers as any outlier would affect the normalisation process.

The reference data set is reduced to speed up process time. The reduction is implemented
by collecting random samples from all reference point clouds. The samples are taken
uniformly from the two classes to avoid any bias.

LightGBM

The implementation of LightGBM is done by using the framework with the same name.
The model is trained using the lgb.train() method, and predictions are made using the
lgb.predict() method. The LightGBM framework has most of the functionality already
set up, thus the implementation of the LigthGBM algorithm is straightforward.

Dynamic graph CNN

The segmentation versions (the lower branch shown in figure 3.18) of DGCNN is imple-
mented using the DGL framework. DGLs class dgl.nn.pytorch.conv.EdgeConv() is used
as it is a direct implementation of the EdgeConv block for message passing described in
the original paper [98]. The dgl.nn.pytorch.factory.KNNGraph() class is used for forming
the graphs before each EdgeConv block as shown in figure 3.18.

VoxelNet

The "Feature Learning Network" and "Convolutional Middle Layers" are implemented us-
ing the PyTorch framework as described in the original paper [118]. A trilinear interpola-
tion layer is implemented to assign point attributes based on the convoluted voxels. The
interpolation is constructed using the PyTorch framework to be done on a CPU and to
allow for efficient backpropagation. The 64 point features in addition to the three-point
coordinates are then aggregated using a small MLP (described in table 3.20) which is
implemented using the torch.nn module.

PointNet

The implementation is done using the PyTorch framework as the backbone with the
torch.nn module providing the required functionality. The implementation is done fol-
lowing the original paper [131], with the only adjustment being changing the model input
from n to n × 6 to include the colour attribute of the points.
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3.6.3 Clustering

The two clustering algorithms DBSCAN and OPTICS are implemented using the scikit-
learn libraries sklearn.cluster.DBSCAN and sklearn.cluster.OPTICS modules. The output
of the clustering algorithm, which is a vector of n × 1 that indicates the clustered index
(0, 1, · · · c) of each point, is concatenated with the point coordinates (n × 3) to form a point
cloud with four attributes: "x", "y", "z" and "cluster index". The points with cluster index
−1 is discarded as they are seen as outliers and does not belong to any cluster. The
remaining points are then grouped into separate point clouds P0, P1 · · · Pc based on their
cluster index. The workings of the clustering pipeline are shown in figure 3.29.

Figure 3.29: The clustering pipeline. ⊕ indicates concatenation.
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Chapter 4

Results

In this chapter, the results from the capturing process is presented. Following with the
performance of classification algorithms, with the clustering algorithms being presented
last.

4.1 Capture quality

The results in reference to the quality of point cloud capturing are done on a basis of
visual inspection. Therefore, the results may subject to a bias in the form of personal
preference. The main feature used to define a point cloud as being of good quality in this
thesis is how well the cables were represented. This is due to the cables being the main
focus of this thesis.

Dynamic range testing

To test the capturing quality, a region of the smaller battery pack (Battery A) was chosen
for comparison. The region depicted in figures 4.1 to 4.4 was chosen since the region
contains a distribution of key components which need spatial consideration to capture
correctly. Namely the orange and black cables, the white stickers and markings, the
metallic plating’s, and the black plastic. The subfigures on the left (Sub figure a) depicts
the point cloud generated with the setting in the corresponding table. The right subfigure
(subfigure b) is the depth map from the point cloud, included to make it easier to identify
the regions where the system failed to generate a point.

The test captures also used the built in filters of the Zivid camera. Table 4.1 lists the
filters and the filter settings.

Outlier Gaussian Reflection Saturation Contrast
Threshold = 5.00 Sigma = 1.5 True True True

Table 4.1: Built inn Zivid filters used in capture testing.

Upper range capture settings The settings listed in Table 4.2 are found by reducing
the stops to a point where no clipping is occurring at the most exposed regions. As seen
in figure 4.1a the resulting point cloud is quite dark, but none of the whiter regions, like
the sticker on the black plastic box, is removed by the saturation filter. The black plastic
and wires are detected poorly by the system, showing up as black regions in the depth
map of figure 4.1b. The orange cables are however quite well defined with these setting.
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Exposure time Iris Brightness Gain
10 000 27 1.00 1.00

Table 4.2: Capture settings for the upper-exposures.

(a) Point cloud from upper-exposure (b) Depth from upper-exposure

Figure 4.1: The point cloud and depth map captured with the settings of Table 4.2.

Mid range capture settings The settings listed in Table 4.3 are found by increasing the
stops from the upper range capture settings until the mid-tones is well exposed. As seen
from figure 4.2a, the settings give a point cloud where only the brightest parts, like the
sticker on the black box, is saturated. The black box and cables are more successful point
generations. Tho the black cables are improved, the black box is large chunks missing.
The settings seemed to work well for both the orange cables and for the metallic plating.

Exposure time Iris Brightness Gain
10 000 46 1.00 1.00

Table 4.3: Capture settings for the mid-exposures.

(a) Point cloud from mid-exposure.
(b) Depth from mid-exposure.

Figure 4.2: The point cloud and depth map captured with the settings of Table 4.3.

Lower range capture settings The settings listed in Table 4.4 were found by increasing
the stops until the least exposed regions were detectable. As seen in figure 4.3, the
modules behind the metal plating are all saturated. The orange cable is almost gone,
only the edges remain. However, the black cables and box are in large part visible.

78



Exposure time Iris Brightness Gain
20 000 46 1.00 3.00

Table 4.4: Capture settings for the lower-exposure.

(a) Point cloud from lower-exposure. (b) Depth from lower-exposure.

Figure 4.3: The point cloud and depth map captured with the settings of Table 4.4.

HDR Figure 4.4 represents the combining of the three capture settings into an HDR
capture mode, in essence combining the three captures into one capture. The results
give a capture that covers the whole range of exposure in the test region. As can be seen
in the depth map of figure 4.4b, there are next to no regions missing.

(a) Point cloud from HDR-exposure. (b) Depth from HDR-exposure.

Figure 4.4: The point cloud quality from HDR capture.

Deviation from Zivid Studio

The three tested capture settings showed in this section are captured using the Zivid stu-
dio app. The app gives the option to customise capture settings and HDR functionality.
The settings used is the same as what is used in the point cloud capturing script made
for this thesis. But due to some unresolved problem in the capture code, the result does
not match what is seen in Zivid studio. The captured script seems to set the saturation
limit for the point cloud considerably lower, causing features visible in the studio to be
saturated and removed in the point cloud export. The same effect would also be showing
up whenever the HDR functionality is used.

A work around to this problem is tested by reducing the stops an additional level from
the upper range capture setting, by reducing the iris one stop down, giving the following
settings.
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Exposure time Iris Brightness Gain
10 000 21 1.00 1.00

Table 4.5: Capture settings with the required corrections.

Chosen settings

Table 4.6 shows the settings that are ultimately settled on as both desired settings and
work around settings. The upper range, mid-range, and lower range is the desired setting,
with the intention of combining into an HDR capture. Whilst the workaround settings
are the ones that are ultimately decided upon as the workaround settings.

Exposure time Iris Brightness Gain
Upper range 10 000 27 1.00 1.00
Mid range 10 000 46 1.00 1.00

Lower range 20 000 46 1.00 3.00
Work around 10 000 21 1.00 1.00

Table 4.6: Potential and actual capture settings.

Point-of-views

To estimate the number of POV’s necessary to represent the cables in a representative
way is done by testing three sets of point cloud captures sequences. Consisting of sets of
two, three and four POV sequences, with all captures done on a 30 deg tilt off the Z-axis.
The test focus on a section of cables on the small battery pack (Battery A), as depicted in
figure 4.5. The cable representation is judged on the basis of a visual inspection, looking
at how much of the cable surface is captured.

Figure 4.5: Reference image for point-of-view testing.

The test is judged based on how well the whole cable bundle is depicted. However, the
quality of the full point cloud is difficult to illustrate in a productive way in a thesis
format. Therefore a region that is deemed representative of the overall quality is singled
out for illustration. The cable located in the forefront of figure 4.5 is chosen, due to it
having a full 180 deg turn, with minimal obstructions covering its surface. The resulting
point clouds are depicted in figure 4.6.
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(a) Two POV results. (b) Three POV results. (c) Four POV results.

Figure 4.6: Point cloud results for POV testing.

Two POV results The two POV capturing sequence captured two point clouds each at
an angle of ±30 deg off the Z-axis, moving the camera along the X-axis. As can be seen
in figure 4.6a, the resulting point cloud has good results in the regions closer to the
ends, however, as the cable bend around 180 deg the cable gradually becomes more half-
cylinder shaped, which can be problematic for a grasping software. The reason being
that the camera is never in a position to see the underside of the cable.

Three POV results The three POV capturing sequence captures point clouds each at an
angle of ±30 deg off the Z-axis. However in this case the POV’s are spread out by 66.6 deg,
with one POV along the negative X-axis. As seen in figure 4.6b, the surface coverage
around the bend is considerably better than in figure 4.6a.

Four POV results The four POV capturing sequence captures point clouds each at an
angle of ±30 deg off the Z-axis. The four POV’s are placed along the X and Y-axis, in the
same fashion as the two POV configuration. As seen in figure 4.6c, the results are much
the same as with three POV’s. This indicates that using 3 POV’s will not result in a better
result, but more likely it means that adding an extra POV after three, will not give as
much of an improvement, as going from two to three.

Full battery coverage

A set of estimates calculated using equation 3.1 can be seen in table 4.7. A range of
camera distances and their associated field of view are tested against both battery pack
areas. The ratio of how much of the field of view that can be used while still be consistent
are varied between 1 and 0.6. However, from real-world testing experience, 4 pivots are
needed to cover Battery A. To get the same results from the equation would require a
coverage ratio (ηcap) of 0.6

Battery dimensions Surface coverage Coverage ratio POV’s Captures
in [mm] [mm] @ camera distance [m] ηcap NP OV Ncap

930 × 600 433 × 271 @ 0.6 m 1 3 15
930 × 600 433 × 271 @ 0.6 m 0.6 3 24
930 × 600 691 × 432 @ 1 m 1 3 6
930 × 600 691 × 432 @ 1 m 0.8 3 9
930 × 600 691 × 432 @ 1 m 0.6 3 12
930 × 600 1015 × 652 @ 1.6 m 1 3 3
930 × 600 1015 × 652 @ 1.6 m 0.6 3 6

2320 × 1400 691 × 432 @ 1 m 1 3 33
2320 × 1400 691 × 432 @ 1 m 0.6 3 57
2320 × 1400 1015 × 652 @ 1.6 m 0.6 3 27

Table 4.7: Capture requirements to cover battery pack by scenario.
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The camera distance of 1 meter is of most interest for the estimation, since 1 meter is
at the centre of the optimal working range of the camera. With a coverage ratio of 0.6,
required captures reach 12 to reliably cover the small battery pack. Since the larger
battery pack is a considerably larger area it would take a total of 57 captures to cover it
in the same way. Which would likely be an impractical amount for an industrial setting.
To get within a somewhat practical amount of captures, extending the camera distance
to 1.6 meters could be an option. This would reduce the required captures to 27.

Time usage estimate

The system used to capture point clouds is not optimized for time usage. Therefore the
actual time used to capture is not realistic if the test were to be developed to a complete
capturing system. Mainly, the inefficiencies are due to how the point clouds are processed
after capture, the capturing process is forced to wait for the processing to complete before
it can continue. However, in an industrial version, the processing can be done in parallel
with the capturing. When estimating the time for completing the capturing process, the
processing is therefore not included.

The time to position the robot for one set of three POV’s is timed at 27 seconds. This
involves path generation, path execution and a pause to dampen vibrations. The robot is
started at approximately the same distance from the first goal pose as the distance to the
second goal pose, representing the time of transit between every POV sett. The capture
time for the Zivid camera is assumed to be 1 second, though the exposure time in the
test system is only 0.1 seconds the estimate leaves room for more extensive captures,
with HRD functionality. The resulting time to capture the set is, therefore, estimated to
be approximately 30 seconds.

The time required to complete the various capture sequences is listed in Table 4.8. The
coverage ratio ηcap is assumed to be 0.6.

POV’s Completion time
Ncap tP OV

Battery A @ 1 m 12 120 s
Battery A @ 0.6 m 24 120 s
Battery B @ 1 m 57 570 s

Battery B @ 1.6 m 27 270 s

Table 4.8: Estimate of time to complete a surface covering capture.

4.2 Performance of classification algorithms

As described in section 3.5.1, the perception system needs to be both fast and accurate.
The selected algorithms are compared on a custom benchmark consisting of only EV
batteries. This results in a fair and realistic comparison as neither of the algorithms
are tailored to perform on the custom benchmark, and any results on the benchmark are
directly relatable to real-world performance. The detail of the data used in the benchmark
is listed as "validation" in table B.1.

Set up

All the algorithms are trained/fitted in the way as described in section 3.5.5 on the train-
ing data-set consisting of 30 labelled point clouds. Their accuracy and forward time is
then measured when performing on the validation data-set. The accuracy is computed
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with equation 3.7 as described in section 3.5.5. The forward time does not include any
prepossessing of the data, only the semantic segmentation.

For the two algorithms Random Forest (RF) and SVM, several versions are implemented
and tested because there is no reference on what hyper-parameters to use for semantic
segmentation.

Result

The accuracy of each if the algorithm is shown in table 4.9, while the forward time is
shown in table 4.10.

Algorithm point cloud Mean3 4 13 14 40 42c 44c 45c
RF 40 53.6 52.6 51.2 54.2 51.9 49.4 50.5 49.9 51.7

RF 100 54.4 52.7 52.4 52.9 52.7 48.7 50.1 50.1 51.8
RF 400 53.8 52.7 52.0 53.2 53.0 49.4 49.9 50.3 51.8

RF 1000 52.6 53.0 52.1 54.2 52.8 49.4 49.8 50.3 51.8
SVM Linear 57.7 54.3 52.7 52.3 50.8 49.4 50.0 50.4 52.2

SVM Polynomial 57.6 54.9 53.2 53.2 50.8 49.8 50.7 49.8 52.5
SVM Radial basis 61.9 60.7 55.3 61.3 51.1 49.4 49.5 50.4 55.0

LightGBM 81.4 85.6 77.4 87.4 92.6 50.0 50.0 73.2 74.7
DGCNN 88.4 91.7 89.4 92.0 94.2 92.7 93.4 89.4 91.4
PointNet - - - - - - - - -
VoxelNet - - - - - - - - -

Table 4.9: Accuracy of selected algorithms performed on the test set. All values in %.
The accuracy of PointNet and VoxelNet is not included as the algorithms did not manage
to converge, thus the results do not reflect the performance of the algorithms.

Algorithm point cloud Mean3 4 13 14 40 42c 44c 45c
RF 401 .117 .105 .112 .120 .109 .113 .112 .117 .113

RF 1001 .119 .119 .105 .107 .116 .117 .108 .118 .114
RF 4001 .119 .219 .227 .108 .219 .341 .329 .332 .237

RF 10001 .334 .334 .455 .218 .337 .674 .775 .675 .475
SVM Linear1 10.0 9.09 31.0 4.79 21.1 56.2 64.1 56.4 31.6

SVM Polynomial1 9.73 9.47 31.4 4.98 22.0 56.1 65.8 57.7 32.1
SVM Radial basis1 33.8 30.7 108 15.6 72.5 188 220 193 107

LightGBM2 .013 0.01 .011 .010 .009 .009 .010 .011 .010
DGCNN2 .791 .844 .750 .716 .737 .758 .786 .773 .769
PointNet2 .075 .090 .093 .073 .073 .074 .072 .075 .078
VoxelNet2 22.6 24.5 24.8 22.6 21.6 21.7 22.2 22.5 22.8

Table 4.10: Forward time of selected algorithms performed on the test set. All algorithms
are run on the "Private PC" with the hardware as specified by table C.1. All values are in
seconds. 1 running on CPU. 2 running on GPU.

In order to compare the algorithms, their accuracy and forward time are plotted against
each other in figure 4.8. The F1-score (fig. 4.7) and the confusion matrix (tab. 4.11) for
the algorithms are also included to make the results for this thesis easier to compare
with other future results.
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[
40131 13104
38409 14826

] [
26888 26337
26234 26991

] [
8011 1349
9270 22627

] [
37951 3982
3043 38890

] [
12036 10404
10149 12291

] [
5 42094
5 42094

]

SVM rbf RF 100 LightGBM DGCNN PointNet VoxelNet

Table 4.11: The confusion matrix of the selected algorithms when performing on the
entire validation set. For random forest, the version with 100 threes and for SVM, the
radial basis-based algorithm is selected to be displayed based on there performance as
shown in table 4.9. Positive is defines as cable, while negative is background.
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DGCNN
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Figure 4.7: The F1-score and the accuracy of the algorithms over when evaluating the
entire validation set. PointNet and VoxelNet is not included as the algorithms did not
manage to converge, thus the results do not reflect the performance of the algorithms.
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Figure 4.8: A plot of the mean accuracy (table 4.9) vs the log of the mean forwards time
(table 4.10). PointNet and VoxelNet is not included as the algorithms did not manage to
converge, thus the results do not reflect the performance of the algorithms.

The result of the semantic segmentation is compared to the ground truth in figure 4.9
for both batteries.
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(a) Input point cloud (b) Ground truth (c) DGCNN (d) LightGBM

(e) Input point cloud (f) Ground truth (g) DGCNN (h) LightGBM

Figure 4.9: The result of the semantic segmentation of battery A (point cloud nr. 3) and
battery B (point cloud nr. 45c).

4.3 Hyper-parameter selection for clustering algorithms

The correct hyper-parameters are crucial for the clustering algorithms to work properly.
Wrong hyper-parameters can lead to too many or too few clusters.

Set up

A linear swipe is used in order to determine the optimal hyper-parameters for the two se-
lected clustering algorithms. As discussed in section 3.5.6, the hyper-parameter ϵ must
be larger than the voxel size of lvoxel = 1.6[mm] as discussed in chapter 3.4.5. For the final
product, the voxel size is rounded down to lvoxel = 1.5[mm], this Therefore becomes the
lower bound on ϵ. The sweep is performed with an upper bound of ϵmax = 3 · ϵmin, and an
increment of 0.1 · ϵmin.

The hyper-parameter k is linearly swiped form a minimum of kmin = 10, with an increment
of 2, up to the upper bound detriment by equation 3.12 as described in section 3.5.6. For
OPTICS, the hyper-parameter ξ is also linearly swiped between ξmin = 0.1 and ξmax = 0.5
with an increment of 0.1.

The data set is set up for semantic segmentation, thus there is no parameter to deter-
mine the instance (cluster) any point belongs to. Therefore, there is no mathematical
way of evaluating the performance of the clustering algorithm. The only exception is the
number of clusters, but this is far from a proper metric, and rather a filter to remove
horrific attempts. The swipe is set to filter and only save the result of algorithms that
produces between 5 and 30 clusters. The performance of the algorithms is then evalu-
ated by manual inspection. The evaluation of the clustering is done on battery B as it
has more cables and is therefore considered more challenging.

Result

The best result from the linear swipes is displayed in table 4.12.
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DBSCAN OPTICS

Hyper-parameters
ϵ / ϵmax 0.01935 0.01725

k 31 40
ξ n/a 0.3

Forward time Battery A 0.068 1.41
Battery B 0.337 10.5

Table 4.12: Hyper-parameters and forward time for DBSCAN and OPTICS. The forward
times are in seconds, and ϵ is in meters.

The clustered point clouds produced from the two algorithms with the hyper-parameters
described in table 4.12, are illustrated in figure 4.10.

(a) Original point cloud (b) Input (c) DBSCAN (d) OPTICS

(e) Original point cloud (f) Input (g) DBSCAN (h) OPTICS

Figure 4.10: The result of the two clustering algorithms operating on battery A (point
cloud nr. 0) and battery B (point cloud nr. 45). The two algorithms are run with the
derived hyper-parameters listed in table 4.12.
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Chapter 5

Discussions

5.1 Data quality

The quality of the data is a key aspect in developing a dismantling system viable for
industrial usage. This section describes the aspects of the capturing system and how to
repeatedly acquire good data. An example of a point cloud captured and filtered with the
capturing system is shown in figure 5.1.

Figure 5.1: A stitched and filtered point clouds displayed from three different views (before
downsampling).

5.1.1 Capture settings

Finding the proper settings for the camera were done with the intention of using an HDR
solution. However, due to the unresolved problem with the capturing code, the HDR
function is not available. The problem also caused the saturation limit to be consider-
ably lower than expected. Therefore two versions of the capturing settings are found.
One set of the desired setting that is optimal if not for the problem. The second being the
settings found to optimal whilst working around the problem.

Due to this error, some of the data used for training data is oversaturated and having
problems capturing certain features. The workaround is configured to give a good result
for the orange cables since the orange cables is the intended segmentation problem. The
workaround is however affecting the systems ability to register the darker components of
the battery, a problem which may lead to collisions in a dismantling scenario.

A capture system using HDR functionality with the three capture settings is deemed to be
a "close to optimal" solution for the point cloud capture process. One could split the mid-
range capture into upper and lower mid-range captures, but from the visual inspections,
the effect is minimal, while increasing the processing time. The workaround solution is
however a good compromise, giving a clear representation of the cables which are the
main focus of this thesis. For the detection software, the workaround solution is likely
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sufficient. A problem may arise when a grasping software is to be implemented, due
to the poor representation of the darker components. However, in a potential industrial
setting, it would be natural to assume the saturation problem to be solved. For such a
situation, an HDR solution using the three capture setting would give the best result.

5.1.2 Point-of-views

A battery pack geometry is complex on two different scales, the large scale configuration
of different models and components, and the small scale with cable layouts and fasten-
ers. To get a desirable representation of the whole battery pack, a system to handle both
scales of complexity is needed. The testing from chapter 4.1, is done to address the small
scale complexity. Showing that three POV’s are required to give a desirable level of com-
pleteness. When increasing the number of POV’s beyond three, the improvement in the
point cloud is less notable.

This thesis does not guaranty the three POV approach to be applicable to all geomet-
ric features the system can encounter. The three POV system is only evaluated on how
complete the cable models are, and features such as divots and gaps will likely still be a
problem. However, adding more POV’s are not guaranteed to solve the problem. Solving
the problem by generally increasing the required POV’s would be an inefficient way of
increasing consistency. Increasing the POV’s used on simple features while not guaran-
tying that the camera is correctly positioned for the difficult feature.

5.1.3 Full battery coverage

As with the small scale geometric complexity, guaranteeing a "close to complete" approach
is problematic. By applying the three POV approach from the small scale testing, a gener-
alized full battery pack coverage sequence is devised. Due to this, the problem of difficult
geometries would be found in the large scale approach as well. To calculate the required
captures necessary to cover a whole battery pack, the geometries are simplified to a 2D
plane, thus making the estimate highly generalized. The system is therefore not intended
to be a "close to complete" representation, rather covering the majority of the battery sur-
face. The rest then needs to be handled by a second capture service that can take care
of the problematic areas.

The results from the number of captures estimation are also used in estimating a time
to capture. As was seen from the capture estimates, how far the camera is located af-
fects the number of capture to a large degree. By extending the distance from 1 meter to
1.6 meters, the estimate for captures goes from 57 to 27 on Battery B. However, likely,
extending the distance will negatively affect the accuracy of the point cloud since 1.6
meters is the limit of the optimal working range of the Zivid One+ M. A similar effect is
seen when the camera is moved closer. Since the camera generates one point per pixel,
moving closer gives a more detailed and denser point cloud. However, this also increases
the required number of captures.

The way the battery pack should be captured ends up being a compromise between detail
and time. However, to what extent time should be prioritized over detail, is application
dependent. Therefore, it is realistic to assume that a functioning dismantling plant will
have separate robots for data capturing and dismantling. In such a scenario, one capture
robot could service several dismantling robots. Reducing the capture time by increasing
the distance to 1.6 gives the capture robot the ability to service additional dismantling
robots. On the other hand, it is not known what level of detail is required for such a
system to function consistently. To find the answer to how detailed a captured point
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cloud needs to be for the system to function consistently, a more complete dismantling
system is needed.

5.1.4 Quality of the data-set

The constructed data-set, as displayed in table B.1, consisting of 38 labelled point clouds
is quite narrow as there were only two batteries available for capturing. This lead to
very similar data in most point clouds, although they are captured from different view-
points, and for battery B, are different segments of the battery. Never the less by using
a distribution-based loss function, a gradient can be computed for every single point,
thus making the number of computable gradients sufficient as there are over 26 million
points in the data set. Some of the data is augmented with rotation to embed rotational
invariance. The usage of augmented data is recommended as it increases performance
on geometric data in 2D [132] and is, therefore, likely to do the same in 3D where sev-
eral newer papers on the topic have promising indications [133]–[135]. Alternatively, a
more trendy solution of using a generative adversarial network for generating augmented
training data, something that has shown success for 2D images [136].

The size of the current point clouds might be too high, thus overwhelming models de-
veloped to work on smaller point clouds with 2000 − 4000 points which is used in the
benchmarks [31]. On the other side, reducing the point clouds leads to information loss.
In a future version of the system that will distinguish smaller objects like clips and bolts,
in addition to cables, this information loss might be devastating. Therefore, the current
system should be developed to work on large point clouds. Hence, the models should be
adapted to fit the problem, and not the other way around. In the extreme case of there
not being any suitable model for large point clouds, there should be developed new algo-
rithms. Optimally, a hybrid algorithm that can work on a heavy downsampled version of
the point cloud for detecting large elements while also working on small sections of the
original point cloud to find small local features.

Ideally, and for full-scale implementation, there should be a more diverse data-set with
no more than two or three instances of each battery. A new data set should also account
for more classes, thus setting up for a transition into a multi-label classification system.
Ideally, the points should also be grouped and labelled with an object id to provide a
metric for evaluating the hyper-parameters of the clustering algorithms.

Nevertheless, the usage of per-point labelling tools [114] showed to be an efficient way of
labelling data as the entire data set was captured and labelled in under one week. The
current data set also serves its purpose as this thesis only intend to compare and evalu-
ate the performance between algorithms, and thus do not need to reach industry levels.
The low variance of the data set is likely to affect the performance of all algorithms to
more or less the same degree, thus allowing for a fear comparison between the algorithms.

5.2 Perception system

The two parts of the perception system have individual aspects that influence their per-
formance as well as each others performance. Design choices and test results of the
semantic segmentation algorithms and the clustering algorithms, and how they relate to
each other is discussed in this section.
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5.2.1 Semantic segmentation algorithms

From the results shown in table 4.9 it is clear that the traditional algorithms (random
forest and SVM) do not manage to provide any relabel results. Throughout runs with
several different hyper-parameters, none of the random forest algorithms managed to
reach over 55% accuracy on any of the data in the validation set. Keep in mind that a
random guess would result in an accuracy of 50%, thus making the random forest a week
classifier in this context. The random forest algorithms do not appear to be affected by
the number of trees as the average accuracy of all versions are stable around 51.7−51.8%.
Nevertheless, the random forest algorithms score well on forward time, as shown in table
4.10.

The SVM algorithms performed marginally better than the random forest and are also
seen as week classifiers. From the three implementations of SVM, radial based, linear
and polynomial (2. order), the radial basis-based one performs notably better on test
point cloud 3, 4 and 14. This is likely to be a consequence of the simpler geometry of
battery A and there is a combination of curvature and colour in a smaller region that
indicates cable. This supports the assumptions that were made in section 3.5.5 about
the possibility of segmenting the cables with classical approaches based on the t-SNE
transformations shown in figure 3.16a and 3.16b. On the other side, all three implemen-
tations of SVM show extremely poor time usage with time upwards of several minutes.

As expected, the traditional classifiers show an overall poor performance. Neither manag-
ing to generalise as none of them performs sufficiently better than a pure guess (50%) on
the augmented point clouds 42c, 44c and 45c as shown in table 4.9. Therefore, neither
random forest nor SVM can in their simplest form be used for semantic segmentation of
point clouds of this kind of setting. On the other side, they constantly manage to per-
form slightly better than a random guess, thus fulfilling the requirements for being weak
classifiers in a boosting algorithm [101].

The boosting algorithm, LightGBM, show surprisingly good performance both within ac-
curacy and forward time. With accuracy up towards 90% and an average forward time of
10 [ms], the algorithm clearly outperforms the traditional classifiers, thus showing the
potential of boosting-based algorithms. Nevertheless, the algorithm fails to generalise as
the augmented versions of the data 42c and 44c only have a 50% accuracy. The good
results on the rest of the data is a result of too little variance between the training data
and the validation data, thus the expels are hard learned. Gradient boosting is therefore
nether a good algorithm for semantic segmentation.

The fact that neither the boosting algorithm nor the traditional classifiers manage to
generalise supports the idea of PointNet [22] saying that the semantic value of any single
point depends on more than the point features alone. Thus to classify any point, one
needs knowledge about the global features in combination with the local features. In
other words, a point cloud is more than the sum of its parts.

Finding the correct hyperparameters for training turned difficult as no other known
projects are working on point clouds of the same size. The parameters used in the origi-
nal papers of DGCNN [98], PointNet [22] and VoxelNet [118] were meant for smaller point
clouds. This lead to several runs not converging and ending up with a nonsense pre-
diction as shown in figure 5.3c. For the DGCNN algorithm, the original value for k, the
number of neighbours in a k-NN graph, was set to 20 and 40. As shown in figure 5.3,
this did not lead to any usefully results in this application as the loss settled around
0.24 (converting go down to 0.05) with an accuracy of around 50%. The inability to con-
verge is a result of each node not reaching far enough at each stage of message passing.
Thereby they do not manage to capture broad enough features, and the algorithm does
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not manage to distinguish points. In other words, the algorithm is supposed to grasp
local features at each stage of the message passing, but the features become too local.
Instead of capturing more complex features like curves, the algorithm only manages to
capture more primitive shapes like plane surfaces. In general, a deeper neural network
picks up more complex features than a shallow one, so adding additional layers of mes-
sage passing could solve the problem. Graph convolution is shown to dramatically drop
in performance when the number of layers increases [58], [137]. This is a result of the
nodes features averaging out, thus all nodes become equal, and not an effect of the van-
ishing gradient problem [58], [137]. Increasing k, as suggested by the original paper [98],
to then include a larger amount of features showed to help. The value of k = 100 turned
out to work well and is what is been used for the thesis. Due to the size of the input point
clouds, adding an additional layer could be justified, but is not done in this thesis.

(a) The loss curves for DGCNN. (b) The ground truth. (c) Output for k = 20.

Figure 5.3: The result of the DGCNN algorithm running with original hyper-parameters.
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Figure 5.2: A plot of error vs loss
for the binary cross-entropy loss
function (BCE Loss) and the mean
square error loss function (MSE
Loss).

Initially, the binary cross-entropy loss function was
used, as described in section 3.5.5. The model did
not manage to learn due to the extreme value of
the loss function. This is explained by the way the
binary cross-entropy loss function punishes wrong
guesses, namely in an exponential fashion. As
shown by equation 2.21, the value of the binary
cross-entropy function tends towards infinity when
the error reaches one. This is normally a good fea-
ture as it punishes wrong estimations harder. How-
ever, when the loss is calculated over hundreds of
points at a time, and the network is in the early
phases of learning, at least one prediction will likely
by chance be far off, thus resulting in an extreme
loss. Although the loss is averaged over the entire
point cloud, at least one point will be too strong of
an influence due to the exponential nature of the bi-
nary cross-entropy loss function. Alternatively, the
training could be conducted by mini-batch train-
ing. This was tested for batches of size 32 and 64 points, but this failed to produce proper
gradients. The previously proposed focal-loss (chapter 3.5.5) builds on the binary cross-
entropy loss function, thus it also fails for the same reasons. The mean square error
loss function (2.19) act in a quadratic way, thus do not suffer from the venerability of a
single point having a large error while still punishing wrong guesses progressively harder
in a non-linear way. Although the mean square error loss function is most commonly
used in regression problems, it showed a good effect when applied in this thesis. The
characteristic of the binary cross-entropy loss function and the mean square error loss
function are potted in figure 5.2
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(a) The ground truth. (b) PointNet prediction.

Figure 5.4: The results of PointNet.

Niter the PointNet model nor the VoxelNet model managed to converge to a useful result.
A comprehensive amount of hyper-parameters are tested, as shown in table 5.1, but nei-
ther manages to make any of the two algorithms produce any useful results. The output
prediction of PointNet is shown as an example in figure 5.4. The reason why neither
of the two algorithms manages to converge is not known, but this is an indication that
the algorithms are intended for smaller point clouds. The PointNet algorithm intends
to produce a global feature vector that is later used for determining the point semantic
value. When training on chunks rather than the entire point cloud, this global feature
vector might not be able to provide a good representation. The VoxelNet algorithm is an
attempt to reconstruct SEGCloud, but its training is based on the hyper-parameters of
the original VoxelNet algorithm. This might be a source of error as the original VoxelNet
algorithm is trained with a region-based loss function rather than a distribution-based
one.

On the other side, a solution to PointNet is to produce a global feature vector before the
point cloud is divided into chunks. Thereby allowing the algorithm to have a proper
representation of the entire point cloud when performing semantic segmentation. The
SEGCloud algorithm could be reconstructed with another backbone than VoxelNet. It is
not certain that another backbone like VoxNet [96], would enhance the performance, but
it is a possible source of error. Neither to say, a larger training set might have helped on
improving the results.

Parameter Values
Learning rate 0.1, 0.01, 0.001

Batch size 16, 32, 512, 1024, One chunk
Number of epochs 200, 300, 500

Loss function BCE, MSE, Focal-Loss, NLLL
Output layer Soft-Max, Log Soft-Max, Sigmoid, Tanhactivation function

Scheduler type Cosine annealing, step (γ = 0.9)
Scheduler period 30, 50, 200

Solver SGD, Adam

Table 5.1: The following configurations were tested when attempting to make PointNet
and VoxelNet converge to satisfying performance.

5.2.2 Clustering algorithms

Neither of the two proposed clustering algorithms, DBSCAN and OPTICS, is successful
as neither manages to separate all cables. As seen in figure 4.10, both algorithms strug-
gle with working on both batteries and following the cable paths all the way. Finding the
optimal parameters for density-based clustering turned hard as the cables are located
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too close in space so that cluster "jump" from one to another as shown in figure 5.5b.
On the other side, the clusters do not always manage to follow the cables all the way
due to a small less dense section. This leads to the same cable being included in several
clusters as shown in figure 5.5a. These two problems of "jumping" clusters and discon-
tinues clusters make adjusting the parameter ϵ ambiguous. Since there is no other good
alternative stand-alone clustering algorithm, as discussed in section 3.5.6, there is also
no good working clustering algorithm for this application with the current circumstances.

(a) The clustering is discontinuous. (b) Gaps are too small.

Figure 5.5: Cutout form the figure 4.10d.

Chancing ether the downsampling strategy or scale would most likely allow for DBSCAN
and OPTICS to work better. Currently, random sampling is used due to the time efficiency,
but a triad off could be made to get a more uniform distribution in the point cloud. This
would reduce the size of gaps, thus allowing for a smaller value of ϵ as the formation
of clusters would not be stopped by sparse regions caused by random processes. It is
unclear what the trade-off in time would be to get a more uniform point cloud, but is a
potential solution to the clustering problem.

Operating on larger point clouds would lead to more dense regions without chaining the
gaps between cables, thus allowing for a lower value of ϵ. The cluster forming process
would then take small steps, but the higher density point cloud would allow for the cluster
forming to work. The immediate disadvantage is the increase in forward time and mem-
ory usage. This solution, therefore, becomes application dependent as the exact cost of
increased time and memory usage depends on industrial application. Nevertheless, the
filtering process and the density of the point cloud are important factors for making the
density-based clustering algorithms work.

Alternatively, setting more constraining hyper-parameters to form many small clusters,
thus avoid "jumping" in the clustering forming process. As long as the clusters have
some sort of length, a separate algorithm can estimate a centre line within the cluster.
Clusters can then be merged if their centre lines are within some constraints. Similar
approaches are done for 2D-images [138], and it is, therefore, a promising solution for
3D point clouds. This is a hypothetical solution, and the time and memory usage is not
looked into.

Nevertheless, voxelising the input point cloud gives a common ground for the clustering
algorithms to work, regardless of the amount of down-sampling. By evenly spacing points
with a known distance, the clustering algorithms get similar conditions, regardless of the
captured object and the capturing hardware.

The semantic segmentation algorithm should be developed towards having high preci-
sion, as the two clustering algorithms show to be vulnerable to variance in density. There-
fore, the semantic segmentation algorithm should provide a sable density regardless of
the input. By expanding the data-set to include objects as described in section 5.1.4,
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the semantic segmentation algorithms can be trained to have an even density within the
objects. In other words, a loss function based that does not look at the overall accuracy
of the algorithm, but at how well balanced the accuracy between the objects are. If all
objects have the same accuracy, and a voxel grid is applied, the density should be more
or less the same and the density-based clustering algorithms would work better.

Although the two clustering algorithms have the same time complexity, when comparing
them based on the data from table 4.12 and figure 4.10, DBSCAN shows to be supe-
rior and the only algorithm that meets the design criteria described in section 3.5.1.
Nevertheless, DBSCAN suffers more from "jumping" as OPTICS is better at discovering
changes in density. This is shown in figure 4.10 where OPTICS manages to follow the
path of the cables better than DBSCAN. On the other side, with the discussed solution of
operating on larger point clouds, DBSCAN could operate with a significantly lower value
of ϵ. OPTICS would then be too slow for any practical application, if not a GPU-based
implementation can be used.

5.3 Industrial viability

For an autonomous dismantling plant to be practical and cost-effective, it is critical for
the system to work with such consistency that it can be trusted to complete the task
without supervision. For an end-to-end model-free autonomous LIB battery dismantling
plant to reach this level, three key challenges would need to be solved, of which two have
been a focus for this thesis.

The first challenge is how to guarantee that the generated point cloud from the capture
process is an "as close to complete" representation of the battery pack. If the system
can not do this with the desired consistency, it is expected that the system would fail
when a component is left un-scanned. To solve this problem, a more complex capturing
sequencing algorithm is likely needed, one which could adapt the battery pack model
during capturing.

When the capturing problem is solved, the process of perceiving the components is the
next challenge. If the perception system is not consistent, the system will fail in much the
same way as with the capturing system, not "knowing" about the component the system
is supposed to remove. The classification will need to handle a larger array of labels,
not only "cable" and "not cable". It is also of critical importance that the software does
not miss label components, since a miss labelled part can cause the dismantling tools to
break when wrongly applied.

The last challenge, for an autonomous dismantling plant, is how to handle the wide ar-
ray of dismantling sequences it will need to complete. Thou not a topic discussed in
this thesis, some system of handling complex manipulations will likely be necessary if a
model-free dismantling plant is desirable. Due to the large variation in both layout and
component design in battery packs, making a custom dismantling sequence for every
component would be impractical. Therefore some system that can adapt a dismantling
sequence to its current problem is necessary.

5.3.1 Industrial capturing solution

A possible solution to reduce time requirement is to partially go away from an eye-in-hand
approach for capturing, but instead installing three stationary cameras and moving the
battery pack. Since the three cameras can capture essentially at the same time, only
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using 10 ms. each, it can be thought of as one capture, reducing the required captures
to a third. Since most of the time used in the capture sequence is likely to be the robot
path execution, going away from an eye-in-hand system will likely save a considerable
amount of time.

However general static camera solution is likely to be insufficient to guarantee an "as
close to a complete" representation. Since the battery packs can have tight spaces, or
partially obstructed, where a camera needs to specially aligned to get a good capture. A
possible solution is to brute force the problem by increasing the number of pivot points
(the point that all the cameras point towards), to a level where the chance of a camera
not aligning correctly for a feature, is below the desired failure rate. But this approach
leads to a too inefficient system, using most of the time on redundant captures.

Likely, a more efficient approach is to combine a static camera system with an eye-in-hand
robot. Where the static system covers a large majority of the battery pack surface and
the eye-in-hand robot handles the remaining problematic areas. The eye-in-hand robot
needs to have some system of judging where the problematic areas are located, what
position is best to capture that area and what level degree of detail is deemed sufficient.
However, developing such an algorithm will probably require a considerable amount of
work.

5.3.2 Industrial perception system

Figure 5.6: Cutouts from figure 4.9c
showing examples of DGCNN miss-
labeling.

As stated in the design criteria (section 3.5.1)
the perception system must be accurate but
also fast. Only the two algorithms that provide
good results, LightGBM and DGCNN, are com-
pared as the others are outclassed as shown in
figure 4.8. The true accuracy of any of the al-
gorithm is truly higher than what is presented
because of miss-labelling in the process of cre-
ating the data sets. Therefore, the quality of
the semantic segmentation must also be eval-
uated by visual inspection. As shown in figure
4.9, the LightGBM algorithm does not manage
to distinguish the orange panels from the or-
ange cables in all cases. Also when looking at
table 4.9 LightGBM looks to memorise the test
set rather than learn as it performs poorly on
the augmented data. Nevertheless, the Light-
GBM shows an impressive forward and outper-
forming all the other algorithms. With a larger
and more diverse data set, the LightGBM al-
gorithm might work in an industrial setting. It
depends mainly on how diverge the geometry of
the EV battery packs are. If most follow a stan-
dard look and design, the LightGBM could with
a sufficient amount of training data in combi-
nation with more engineered features be viable in an industrial setting.

Nevertheless, the DGCNN algorithm shows a significantly better quality of the seman-
tic segmentation, both in terms of accuracy but by visual inspection. There are still
in-perfections in DGCNN, as shown in figure 5.6 where the algorithm fails to find parts
of the cable. The discontinuous segmentation causes problems for the clustering algo-
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rithms as previously discussed. The algorithm used is prom to some overfitting that
makes it perform slightly worse on the validation set. Also, due to the low dissimilarity
within the training data, the algorithm was never challenged with hard examples that
would help push the performance. In an industrial setting, the algorithm, therefore,
needs to be trained on a more realistic data-set that contains a larger diversity of battery
packs.

From a time perspective, a perception system consisting of a combination of a PCSS
and a clustering system is well within the time requirements and is therefore viable for
industrial applications. If using DBSCAN and DGCNN, the total time usage is 1.1 seconds
for the large battery. With additional prepossessing and filtering added, the total time
will not exceed two seconds. Depending on the application, this might allow for the usage
of larger point clouds as would be beneficial for the clustering algorithm.
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Chapter 6

Conclusions

To address the issue of obtaining a good digital representation of battery packs, this the-
sis divided the problem into three sub-problems: how to optimize point cloud quality for
individual captures, how many points-of-view are required for the system to adequately
represent cable features, and how to consistently capture the entire battery pack.

When using a structured light camera, it has been recommended to use HDR capturing
to achieve a desirable point cloud quality. This thesis presented a three-capture HDR se-
quence that captures the full dynamic range of the test battery packs with minimal loss
and artifacts. When HDR capturing is not available, a single capture system focused on
saturation elimination is presented as an alternative. The alternate settings presented
capture the cables and bright elements with a desirable level of detail but struggle with
dark features.

Three points of view are thought to be required for a desirable representation of geometric
features such as cables. The half-cylinder representation of the cables is not provided
by the three POV solutions. Adding more point-of-views is deemed inefficient, as there is
little improvement in the point cloud while adding time to the capturing process. Though
there is a case to be made that having more points of view makes the system more reliable.

This thesis presented a general approach to covering the majority of the surface details
of the battery pack. The battery packs are simplified to be 2D horizontal planes in order
to estimate the required number of captures and time usage. The estimate determines
how many captures are required to cover the area from three different perspectives. With
the recommended setup, the time to capture is estimated to be 120 second for the smaller
battery pack (Battery A), using 12 captures, and 570 seconds for the larger battery pack
(Battery B), using a total of 57 captures. This thesis does not imply that the general
approach would be consistent in covering any battery pack surface, but rather that an
approach to cover the majority would be provided. To identify and cover potentially over-
looked regions, an improved algorithm would be required.

Furthermore, the clustering algorithm has been shown to consume more time than
the semantic segmentation algorithms. As a result, for instance segmentation of point
clouds, the PCSS-cluster approach is preferred over the cluster-class approach.

This thesis demonstrated that it is possible to extend the DGCNN algorithm to large point
clouds while still producing promising results by successfully implementing it on a point
cloud of 50, 000 points. However, larger point clouds may be required to build a functional
clustering system, so the algorithm must be extended further to operate on larger point
clouds. Furthermore, the poor performance of traditional classifiers and the success of
DGCNN point to PointNet-based architectures that embed local and global features as a
promising method of performing PCSS.
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The thesis also demonstrated how the preparation of the point cloud and the PCSS al-
gorithms affects the performance of the clustering algorithms. The distance between
the points in the point cloud should be much less than the smallest gap between any
two cables in any battery pack. As a result, instance segmentation necessitates a mini-
mum density in the point cloud. Other approaches that do not necessitate a significant
increase in density are also discussed, but they need to be investigated further.
Overall, the thesis demonstrated that 3D-instance segmentation is a viable and promising
alternative to traditional 2D segmentation. However, more work is needed to bring the
field to a desirable level of robustness.

Further work

While working on this thesis, the scope of the project has been changing back and forth.
But one thing has been clear, a lot more development is needed for a fully automated
battery dismantling plant. If work on this thesis were to continue, the following topics
would be a recommended ways forward.

Capture sequencing

If the project is continued, incorporating a system for finding the optimal sequence of
points-of-view for the camera is advised. If an eye-in-hand approach is to be continued
incorporating an algorithm like next-best-scan is a potential way forward. A next-best-
scan system could ensure the reliability of the point cloud generation, and reduce the
time needed to generate point clouds.

A potential way forward could be to focus on a hybrid static/eye-in-hand solution, where
a static camera system do the rough surface coverage, whilst an eye-in-hand system cov-
ers problematic areas, with some kind of next-best-scan algorithm.

Stronger performance of the perception system

There are several algorithms and approaches to PCSS that are not tested in this the-
sis that have a good performance on the large benchmarks. Auto-encoder-based and
attention-based architectures are interesting due to their success in the 2D-equivalent.
The RandLA-Net [121] is a promising candidate that should be tested. In addition, the
field of PCSS is growing and new algorithms and approaches are published regularly. As
an example, five out of the top-10 algorithms on the ModelNet40 benchmark [31] were
published during the writing of this thesis (as of 26.05.2021).

The field of semi-supervised learning where supervised and unsupervised learning is
combined is also promising. This can be accomplished by first pre-training a PSCC algo-
rithm in an unsupervised fashion on the large benchmarks to train a feature aggregation
network, and then train a classification network in a supervised fashion on the battery-
pack data set B.1. Similar projects are conducted by Kipf et al. [97].

A larger and more diverse data set would help to make the algorithms more robust. The
data-set should also be divided into objects in addition to labels. This would allow for a
mathematical evaluation of the clustering algorithms, thus making it easier to find good
hyper-parameters.
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A more purpose-engineered loss function that would help the PCSS algorithm and the
clustering algorithm to work better together can help make the results more viable.
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Appendix A

Loss curves

The focus of the thesis is not to reach high performance, but to show that training on
large point clouds is possible. Therefore are the loss-curves not included in the main
rapport, but included in the appendix for future comparisons.

The loss curve of DGCNN, as seen in figure A.1, show a tend to overfit, thus the training
could have ended earlier and provided stronger results and a more robust algorithm.

Figure A.1: The loss curve for DGCNN with k=100. This is the model used in the thesis.
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Appendix B

The data-set

Name Size Amount cable Voxel size Battery Rotation Usage
0 388, 875 4.28% 2.5[mm] A None Training
1 243, 224 4.39% 2.5[mm] A None Training
2 101, 702 2.23% 2.5[mm] A None Training
3 169, 400 3.67% 2.5[mm] A None Validation
4 273, 907 3.45% 2.5[mm] A None Validation
5 268, 043 13.8% 2.5[mm] B None Training
6 419, 222 13.2% 2.5[mm] B None Training
7 181, 224 14.4% 2.5[mm] B None Training
8 225, 706 15.4% 2.5[mm] B None Training
9 563, 830 13.4% 1.5[mm] B None Training

10 107, 387 6.19% 1.5[mm] B None Training
11 695, 599 14.3% 1.5[mm] B None Training
12 625, 414 13.1% 1.5[mm] B None Training
13 556, 884 12.9% 1.5[mm] B None Validation
14 422, 214 1.93% 1.5[mm] A None Validation
15 556, 730 3.02% 1.5[mm] A None Training
16 616, 171 10.8% 1.5[mm] B None Training
40 1, 144, 795 8.75% 1.5[mm] A None Validation

40a 1, 144, 795 8.75% 1.5[mm] A 20/0/0 Training
40b 1, 144, 795 8.75% 1.5[mm] A 40/0/0 Training
40c 1, 144, 795 8.75% 1.5[mm] A 40/40/0 Training
40d 1, 144, 795 8.75% 1.5[mm] A 0/40/0 Training
42 967, 833 22.9% 1.5[mm] B None Training

42a 967, 833 22.9% 1.5[mm] B 20/30/90 Training
42b 967, 833 22.9% 1.5[mm] B 20/30/0 Training
42c 967, 833 22.9% 1.5[mm] B 90/10/0 Validation
42d 967, 833 22.9% 1.5[mm] B 90/20/20 Training
43 301, 137 26.1% 1.5[mm] B None Training

43a 301, 137 26.1% 1.5[mm] B 90/10/0 Training
44 890, 997 25.9% 1.5[mm] B None Training

44a 890, 997 25.9% 1.5[mm] B 60/20/40 Training
44b 890, 997 25.9% 1.5[mm] B 70/10/10 Training
44c 890, 997 25.9% 1.5[mm] B 90/0/0 Validation
44d 890, 997 25.9% 1.5[mm] B 90/0/40 Training
45 1, 196, 458 22.9% 1.5[mm] B None Training

45a 1, 196, 458 22.9% 1.5[mm] B 30/90/60 Training
45b 1, 196, 458 22.9% 1.5[mm] B 50/100/20 Training
45c 1, 196, 458 22.9% 1.5[mm] B 70/50/40 Validation

Total 26, 821, 763 17.3% N/a N/a 8 Val, 30 Train

Table B.1: An overview of the data captured and used in this thesis.
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Appendix C

Hardware specifications

Computer Lab PC Private PC
Operation system Ubuntu 16 Windows 10

GPU NVIDIA GeForce RTX 2080 NVIDIA GeForce RTX 2070
Video Memory 8GB GDDR6 8GB GDDR6

CPU Intel core i7-9700 AMD Ryzen 5 3600 6-Core
Memory 16GB DRAM 16GB DDR4

Table C.1: Hardware specification.
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