
An Environment­Adaptive
Approach for Indoor Localization
Using the Tsetlin Machine

ROBIN OLSSON OMSLANDSETER

SUPERVISORS
Lei Jiao
Ole­Christoffer Granmo

Master’s Thesis
University of Agder, 2021
Faculty of Engineering and Science
Department of Information and
Communication Technology

UiA
University of Agder
Master’s thesis

Faculty of Engineering and Science
Department of Information and
Communication Technology
© 2021 Robin Olsson Omslandseter. All rights reserved

Abstract

Indoor positioning is a challenging task due to the small scale of area and
the complex electromagnetic environment. Among different distance mea-
surement schemes, Received Signal Strength Indication (RSSI) readings are
commonly used in proximity and localization applications such as in BLE
and Wi-Fi, because of the low power consumption and simplicity of retriev-
ing this information. There are several approaches for RSSI based indoor
localization, among which the deep-learning based models trained with fin-
gerprinting data can achieve far superior localization accuracy compared
with orthodox approaches, such as trilateration. However, fingerprinting
requires extensive manual labor during the offline data collecting phase for
training and cannot adapt well to changes in the environment.

In this thesis, we propose a novel environment-adaptive approach for in-
door localization, which utilizes beacon-to-beacon RSSI readings that can be
dynamically obtained directly from a WSN. The advantage of the beacon-
to-beacon solution is that the offline training data can be obtained with
minimal manual effort and can adapt to changes in the environment on
the fly. In addition, for the AI algorithm, we propose a novel Tsetlin Ma-
chine (TM)-based approach for indoor localization. TM is a recently pro-
posed powerful and energy efficient AI technique, which is particularly suit-
able for battery-driven devices. To study the feasibility and evaluate the
system’s performance, we set up a test bed in an office environment from
which an extensive retrieval of RSSI readings were made and processed.
The numerical results demonstrated that the proposed approach surpassed
orthodox localization algorithms. Although the accuracy of the proposed
approach is slightly lower than the WCL algorithm and the state-of-the-art
AI based fingerprinting method, the advantages of the hardware friendliness,
the unnecessity of involvement of end-users, and the adaptive property make
it highly promising to the field of indoor localization.

iii

Preface and
Acknowledgements

This thesis was written in cooperation with Meshtech AS. I want to make
a huge thanks to Meshtech AS, who provided me with the required tools,
equipment, and BLE devices used in this thesis. A special thanks to Torjus
Færsnes, who proposed the thesis definition. Thanks to Eirik Aanonsen
for explaining the theory and providing research material on RSSI based
localization. Thanks to Eivind Kristoffer Holst-Larsen for the help with
configuring the network and placing the beacons. Thanks to Kirill Ko-
valenko, who provided me with the source code based on prior research at
Meshtech AS.

Thanks to Lei Jiao and Ole-Christoffer Granmo for the excellent academic
supervision. Thanks to Rohan Kumar Yadav for helping with the initial
data collection. Thanks to Darshana Abeyrathna for the instructions on
how I could train the RTM correctly. Thanks to Rebekka Olsson Omsland-
seter for the academic support.

I would also like to thank everyone mentioned for their invaluable guidance
and discussions while working with this thesis. Without the help from all
of you, we would not have achieved as valuable and interesting results as
we have. Thank you all!

v

Table of Contents

Abstract iii

Glossary xiii

List of Figures xvi

List of Tables xvii

Table of Notations xix

I Research Overview 1

1 Introduction 3
1.1 Motivation . 5
1.2 Problem Statement of the Thesis 6
1.3 Objectives of the Thesis . 6
1.4 Contributions . 7
1.5 Outline of the Thesis . 8

2 Background 9
2.1 Indoor Localization . 9

2.1.1 Related Work . 10
2.1.2 Received Signal Strength Indication 11
2.1.3 Indoor Radio-Channel Path Loss Model 11
2.1.4 Trilateration . 13
2.1.5 Min-Max Localization Algorithm 15
2.1.6 Modified Weighted Centroid Localization Algorithm . 15
2.1.7 Least Squares Algorithm 16
2.1.8 Fingerprinting . 17

2.2 Bluetooth Communication . 18

vii

Table of Contents Table of Contents

2.2.1 Bluetooth Networking 19
2.3 Machine Learning . 20

2.3.1 Artificial Neural Networks 21
2.3.2 Embedded Machine Learning 22

2.4 The Tsetlin Machine . 23
2.4.1 Tsetlin Automaton . 23
2.4.2 Classical Tsetlin Machine 24
2.4.3 Multi-Class Tsetlin Machine 26
2.4.4 Regression Tsetlin Machine 26
2.4.5 Weighted Tsetlin Machine 28

II Contributions 31

3 BC-to-BC Approach 33
3.1 Challenges . 34
3.2 Proposed Methods . 35

3.2.1 Post-Survey Dataset Compilation 36
3.2.2 Capturing BC-to-BC Data 37
3.2.3 Parameter Optimization 38
3.2.4 Constructing the BC-to-BC Training Dataset 41
3.2.5 Making the Final Prediction 42

4 Localization with TM 45
4.1 Binarization of RSSI Data . 45
4.2 Regression Approach . 46
4.3 Classification Approach . 48

III Experiments and Results 51

5 Performance Evaluations 53
5.1 Test Environment . 53

5.1.1 Analysis on the Raw Data 54
5.1.2 Parameter Optimization 57

5.2 Data Preparation . 60
5.2.1 Beacon Fingerprints 60
5.2.2 Node Fingerprints . 60
5.2.3 Simulated Datapoints 61

5.3 Result for the TM . 62
5.3.1 Hyper Parameter Search 62

viii

Table of Contents Table of Contents

5.3.2 Model Training . 63
5.3.3 ANN Implementation 63
5.3.4 Resulting Performances 65

5.4 Resulting Localization Accuracy 66
5.4.1 Without Machine Learning 66
5.4.2 With Machine Learning 67

5.5 Resulting Classification Accuracy 69
5.6 Discussion . 69

6 Conclusion and Future Work 73
6.1 Conclusion . 73
6.2 Future Enhancements . 74

References 81

Appendix 83
A Hardware Components . 83

ix

Glossary

ADC Analog-to-Digital Converter.

AI Artificial Intelligence.

AIoT Artificial Intelligence of Things.

ANN Artificial Neural Network.

AoA Angle of Arrival.

AP Access Point.

BC Beacon.

BC-to-BC Beacon-to-Beacon.

BLE Bluetooth Low Energy.

BS Base Station.

CNN Convolutional Neural Networks.

DL Deep Learning.

FP Fingerprinting.

GAP Generic Access Profile.

GATT Generic Attribute Profile.

GPS Global Positioning System.

GW Gateway.

xi

Glossary Glossary

ILS Indoor Localization System.

IoT Internet of Things.

IP Internet Protocol.

LA Learning Automaton.

LS Least Squares.

LSTM Long Short-Term Memory.

MCTM Multi-Class Tsetlin Machine.

MCU Micro Controller Unit.

ML Machine Learning.

MS Mobile Station.

NFC Near-Field Communication.

OLM Organic Landmarks.

PSO Particle Swarm Optimization.

RF Radio Frequency.

RMSD Root-Mean-Square Deviation.

RNN Recurrent Neural Networks.

RP Reference Point.

RSSI Received Signal Strength Indication.

RTM Regression Tsetlin Machine.

SNR Signal-to-Noise Ratio.

SoC System-on-Chip.

SVM Support-Vector Machines.

TA Tsetlin Automaton.

xii

Glossary Glossary

TDoA Time Difference of Arrival.

TM Tsetlin Machine.

ToA Time of Arrival.

W-MCTM Weighted Multi-Class Tsetlin Machine.

W-RTM Weighted Regression Tsetlin Machine.

W-TM Weighted Tsetlin Machine.

WCL Weighted Centroid Localization.

WLAN Wireless Local Area Network.

WSN Wireless Sensor Network.

xiii

List of Figures

2.1 The trilateration problem. 14
2.2 The min-max localization algorithm. 15
2.3 The fingerprinting localization approach. 18
2.4 BLE radio frequency channels. 19
2.5 The Meshtech protocol network tree. 20
2.6 Layer structure of sequential ANNs. 22
2.7 A Tsetlin automaton for two-action environments. 24
2.8 The Tsetlin Machine. 25
2.9 The Multi-Class Tsetlin Machine. 26
2.10 The Regression Tsetlin Machine. 28

3.1 The BC-to-BC algorithm. 36
3.2 Beacon-to-beacon data capture schematic. 39

4.1 Proposed RTM-based RSSI-to-distance implementation. . . . 47
4.2 Proposed MCTM-based classification implementation. 49

5.1 Photos of our test environment. 54
5.2 Floor plan of our test environment. 55
5.3 Test bed data capture schematic. 55
5.4 The figures visualize each individual data points in our raw

data. 56
5.5 RSSI error histograms. 57
5.6 The path loss model fitted on our raw data. 58
5.7 The path loss model individually fitted per beacon. 59
5.8 TM hyper parameter search heat map. 63
5.9 TM training history. 63
5.10 ANN training history. 64
5.11 RSSI-to-distance conversion with and without machine learn-

ing. 65
5.12 Visualization of predictions made without machine learning. . 67

xv

List of Figures List of Figures

5.13 Visualization of predictions made with machine learning. . . . 68

xvi

List of Tables

2.1 Tsetlin Machine feedback probability table. 25

5.1 The dimensions of our raw data. 56
5.2 Globally optimized path loss model parameters. 58
5.3 Individually adjusted path loss model parameters. 59
5.4 The dimensions of our sampled data. 62
5.5 Selected TM hyper parameters. 62
5.6 Parameters used for our ANN implementations. 64
5.7 Layer structure of our ANNs. 64
5.8 Resulting RMSD for our trained regression models. 65
5.9 Resulting localization accuracy without machine learning. . . 66
5.10 Resulting localization accuracy with machine learning. 68
5.11 Resulting classification accuracy. 69

A.1 Meshtech products used in our test bed. 83

xvii

Table of Notations

Notation Description
d Distance
χ Coordinate (χ = (x, y))
φ Signal strength
c Calibrated RSSI
t Time
τ Sampling interval
b Binary literal (b ∈ {0, 1})
η Path loss exponent (η ∈ [1, 4])
M Number of access points
R Number of reference points
N Number of data points
B Number of bits per feature
A Gaussian distributed random variable
W Rolling window length
L Number of literals
E Number of epochs
µ Mean
σ Standard deviation
s TM precision
T TM target value
C Single clause value (C ∈ {0, 1})
m Number of clauses
X Input vector
Y Output vector
g WCL attraction factor

xix

Part I

Research Overview

1

Chapter 1

Introduction

Meshtech AS is a Norwegian technology company located in Arendal that
develops full end-to-end IoT systems with their proprietary hardware and
software solutions. Meshtech delivers their systems and services to various
clients all around Norway. IoT devices and IoT technology are becoming
increasingly popular, and the expanded use leads to the desire for improved
functionality in connection to the devices and systems that Meshtech deliv-
ers. Localization technology associated with their devices is an interesting
extension in this context. Therefore, Meshtech wants to investigate and
start the development of their own localization system that can be deployed
along with their existing hardware and in their proprietary BLE networks.
Consequently, Meshtech proposed a master’s thesis task to start this initia-
tive. The task concerned developing a localization technique that required
limited amounts of human intervention and could be used within Meshtech’s
systems. This thesis presents the methodology and results of the work re-
lated to solving this task.

Localization based on wireless signals is an interesting field of research. For
outdoor localization problems, Global Positioning System (GPS) signals can
provide high positional accuracy with approximately 5m deviation from the
true position in open sky settings [1]. However, GPS and cellular systems
fail to provide sufficient localization accuracy in indoor environments and in
scenarios where the satellite or cellular signal is broken [2]. Consequently,
GPS localization is considered to be an adequate method for localization
in outdoor settings. In contrast, indoor settings are an ongoing develop-
ment area because, e.g., GPS solutions’ accuracy in these settings remains
insufficient.

3

Introduction

Received Signal Strength Indication (RSSI) is a quantity that is commonly
used for proximity and localization estimation in Wireless Local Area Net-
work (WLAN) technologies, such as, e.g., in Bluetooth Low Energy (BLE)
and Wi-Fi networks. However, RSSI is not a standardized unit of mea-
surement. RSSI, which is an indication of signal strength, remains a popu-
lar measure because RSSI readings can be obtained at a low cost through
energy-efficient techniques that are easy to implement. RSSI strengths are
highly influenced by environmental factors, such as absorption, interference
from other objects, and diffraction. Therefore, solving localization problems
based on these quantities can be a rather complicated challenge.

Over the last decade, the use of Machine Learning (ML) algorithms to solve
various problems have become increasingly popular, and the rather compu-
tationally heavy Artificial Neural Network (ANN) and Deep Learning (DL)
ANN have become the go-to tools for solving regression, classification, and
audio- or image-processing problems. However, these methods often receive
criticism because it is difficult to know the exact reasons behind the various
outcomes the models arrive at, and they are often referred to as black boxes.
At the same time, there exists models that have better interpretability, such
as the Tsetlin Machine (TM). The TM has even achieved better results than
ANNs for some datasets [3].

In recent years, Internet of Things (IoT) applications have gained vast at-
tention from a wide range of industries [4]. And even more recently, it has
been anticipated that ML and Artificial Intelligence of Things (AIoT) will
transform the IoT industry. By using ML to perform data analysis directly
on the edge, rather than in external cloud resources, we can effectively re-
duce the amount of data flowing in the network. In this way, we can reduce
the bandwidth requirement, increase the range of the IoT devices and at
the same time reduce the overall devices’ power consumption. With AIoT
technologies, such as TinyML, we are likely to see better utilization of the
computational power available on modern Micro Controller Unit (MCU)s.

In this thesis, we will combine an innovative ML technique with RSSI mea-
surements from IoT devices to make estimates of objects’ location in indoor
environments. Unlike the black box ML methods, such as DL ANN, we
propose to use a novel TM approach. The TM is highly interpretable and
provides competitive performance to other state-of-the-art ML algorithms.
In addition, the TM can be implemented on small IoT units in a processing-
efficient way and extensive research is initiated in this area [5]. In this way,
our proposed method provides a good solution concerning the objectives of
the thesis.

4

1.1. Motivation Introduction

1.1 Motivation

Let us consider a BLE network deployed in a multi-floor hospital environ-
ment, where there is one beacon device placed in each room. A patient is
wearing a wristband device with an alarm button. The system administra-
tors want to know which floor and room the patient is located in when the
patient pressed the alarm button. If we had a system that could automati-
cally determine the patient’s location, the system would provide potentially
life-saving information for emergency staff at the hospital. With RSSI based
indoor localization, automatic localization would be possible. The beacon
devices would obtain RSSI readings from the wristbands, and we can im-
plement methods for localization in association with this information.

For RSSI-based indoor localization, the target node, which we want to lo-
cate, transmits a signal or some data which is picked up by nearby listening
Access Points (APs)1. The APs have fixed and known positions, while the
location of the target nodes are traditionally derived using mathematical
approaches, such as trilateration.

ML can be applied when processing the measured RSSI to improve the lo-
calization accuracy. Especially in WSNs with multiple anchor nodes, as ML
algorithms, such as the ANN, can see relations between the data features
which are not immediately apparent to us humans. The Tsetlin Machine
(TM) is a relatively new but highly promising ML algorithm [3]. The TM
has not been used for indoor localization yet. One potential with the TM,
which we’ll discuss further in this thesis, is that pre-trained TMs can be
constructed using logic gates. In this way, trained TM models can poten-
tially be constructed as individual electrical circuits and be placed directly
on the System-on-Chip (SoC), providing ML with close to immediate pre-
diction time on low-power embedded devices, which is a big advantage in
the IoT systems that our solution is proposed for.

Meshtech’s beacon devices features a pinging functionality. This functional-
ity allows the system administrator to initiate advertisement on the beacon
for a specified time duration. The advertisement packets are then picked
up by other nearby listening beacons- or GW devices. The idea was that

1The terms Access Point (AP), Base Station (BS) and anchor nodes are used inter-
changeably in the literature. In this thesis, APs refer to both gateway and beacon devices
with fixed positions. The terms blind node, target node and Mobile Station (MS) are
also used interchangeably. In this thesis, these terms refer to the nodes that we want to
locate.

5

1.2. Problem Statement of the Thesis Introduction

this beacon-to-beacon data could be utilized for the purpose of indoor lo-
calization. This concept had not been thoroughly investigated prior to this
thesis. This thesis will, thus, give Meshtech in-depth knowledge of how this
functionality can actually be used and how well it possibly works.

1.2 Problem Statement of the Thesis

Fingerprinting is one of today’s most favored approaches for indoor local-
ization. However, fingerprinting is known to require a significant amount of
pre-deployment efforts upfront [6]. Therefore, the method is associated with
a high cost, which might not be ideal for all industrial-level environments,
such as in, e.g., hospitals.

Although there has been prior research on how to reduce the pre-deployment
effort of indoor localization systems, we explore if we can do this by using
beacon-to-beacon information, which we can conveniently obtain directly
from the WSN. The problem statement of the thesis is formulated as follows:
Is it possible to capture and utilize in-network RSSI between beacons to
build indoor localization models, reducing the amount of pre-deployment
effort and still maintaining an acceptable localization accuracy? If beacon-
to-beacon RSSI can be used for this purpose, then we would effectively have
a more environment-adaptive approach for indoor localization.

In this thesis, we want to analyze the performance of the TM algorithm for
solving indoor localization tasks. Although, this algorithm has shown great
potential in other applications, with competitive accuracy compared with
other conventional ML algorithms, such as ANNs [3], it has not been tested
on localization problems before. Therefore, the use of TM in this thesis for
indoor localization is novel in itself.

1.3 Objectives of the Thesis

The main objectives of this thesis can be summarized as follows:

• Obtain a RSSI-based dataset for indoor localization based on a real-
world WSN test bed within an office environment using Meshtech
proprietary BLE devices.

6

1.4. Contributions Introduction

• Design an environment-adaptive approach for indoor localization by
utilizing the beacon-to-beacon pinging data available in the Meshtech’s
BLE-based WSNs.

• Validate the beacon-to-beacon approach and compare its resulting lo-
calization accuracy with the state-of-the-art fingerprinting approach.

• Validate the performance of the TM model with the captured local-
ization data and compare the results with other ML algorithms.

1.4 Contributions

The contributions of the thesis can be summarized as follows:

• We propose a unique method for transforming in-network beacon-
to-beacon RSSI values into fingerprinting data. This data can be
used for training indoor localization models and is, thus, a newly pro-
posed method for constructing environment-adaptive Indoor Localiza-
tion System (ILS)s.

• Our results demonstrated that our approach for transforming in-network
beacon-to-beacon RSSI values provides improved localization accuracy
compared to other traditional mathematical techniques, in cases where
labor-intensive manual on-site fingerprinting is undesirable.

• We propose using the Regression Tsetlin Machine (RTM) for adjusting
RSSI readings from beacons to enhance the localization accuracy of
mathematical localization algorithms, which is a novel approach to
the field of indoor localization.

• Additionally, we suggest using the Multi-Class Tsetlin Machine (MCTM)
for solving indoor localization as a classification problem.

• The TM was compared with other popular ML algorithms, and our
results demonstrated that the MCTM performed better than both the
ANN and the random forest classifier utilized for comparison in this
thesis.

There have been prior attempts to reduce the pre-deployment effort of in-
door localization. However, our beacon-to-beacon approach is a unique way

7

1.5. Outline of the Thesis Introduction

of tackling this problem. Our approach is also specifically designed for
industrial-level BLE networks and systems provided by Meshtech. It pro-
vides an alternative method of tackling localization in environments where
manual on-site data surveys are undesired, and ultra-high-level localization
precision is unnecessary. Our efforts to validate the performance of the
TM for indoor localization is also a contribution to the existing literature.
To our knowledge, this thesis presents the first reported TM approach for
solving indoor localization problems.

1.5 Outline of the Thesis

This thesis is structured as follows:

Chapter 2 covers the underlying background theory and state-of-the-art
in the field of RSSI-based indoor localization. Additionally, we present
different methods for indoor localization and describe the TM algorithm
utilized in this thesis.

Chapter 3 presents the proposed solution for the environment-adaptive
indoor localization approach which utilizes beacon-to-beacon RSSI readings.

Chapter 4 presents the proposed solutions on how the TM can be used to
improve localization in WSNs. We propose two solutions. The first solution
utilizes the RTM to process the raw RSSI values, where we can combine
the result with mathematical formulas to obtain a single point prediction of
the target node’s location. The second implementation utilizes the MCTM
to find an object’s position as a classification problem, where we link the
outputted class to a specific location in the environment.

Chapter 5 presents the results for the proposed environment-adaptive
beacon-to-beacon approach for indoor localization. Here, we compare the
beacon-to-beacon approach with the well-established fingerprinting approach.
Additionally, we analyze the performance of the proposed TM implemen-
tations and present a comparison between these results and the results ob-
tained with other ML algorithms.

We conclude the thesis in Chapter 6 and discuss how we can further en-
hance the proposed solutions in future work.

8

Chapter 2

Background and the State of
the Art

In this chapter, we outline some of the state-of-the-art approaches and
present related theory within the field of indoor localization. In addition,
we explain the machine learning algorithms used in this project, such as,
for example, the TM and the ANN.

We emphasize that both the terms positioning and localization are used
interchangeably in the literature. However, in this thesis, we refer to po-
sitioning as the physical placement of the nodes in the environment, while
localization refers to predicting the nodes’ actual coordinates.

2.1 Indoor Localization

Indoor localization has witnessed an increased interest in recent years [7].
Fingerprinting using Wi-Fi and a mobile phone is expected to be one of
the most popular methods for indoor localization, and it already achieves
around 2 − 3m localization accuracy [8]. It has been reported that a lo-
calization accuracy of approximately 2m can be obtained with Wi-Fi and
BLE based localization approaches [9]. In the WLAN segment, RSSI-based
localization approaches, such as the fingerprinting method, are prominent
because it requires no extra equipment [2]. In addition, other indoor lo-

9

2.1. Indoor Localization Background

calization methodologies, such as the Angle of Arrival (AoA), the ToA and
the TDoA have been reported [10]. According to Bluetooth SIG, Bluetooth
Direction Finding is expected to elevate the next generation of Bluetooth
localization services [11].

2.1.1 Related Work

As we mentioned in the introduction, localization is an extensive area of re-
search, and in what follows, we will summarize the most important research
contributions within its paradigm. The reader is referred to [12], which
presents a survey of different indoor localization systems, technologies, and
related accuracy for additional details.

The authors in [13], propose an indoor localization algorithm based on the
so-called Improved RSSI Distance Model. The proposed algorithm utilizes a
Kalman1 filtering technique to smooth out the fluctuations of the real-time
RSSI readings. Furthermore, the proposed algorithm extracts an RSSI cor-
rection offset in real-time from existing APs in the network. It utilizes this
offset to correct the RSSI readings from the target nodes, reducing the lo-
calization error. The proposed algorithm also uses a back propagation ANN
with Particle Swarm Optimization (PSO) in order to convert the RSSIs into
distances. Finally, the Least Squares (LS) algorithm is applied to predict
the final position of the target node.

Chintalapudi et al. [6] propose a strategy for eliminating the on-site survey
required in fingerprinting. The authors suggest that the target nodes them-
selves measure the RSSI of APs and report back these measurements when
the location of the smartphone can be known through other means, such
as via GPS signals. This approach reportedly yields a median of 2 − 7m
localization error.

Wu et al. [14] propose a Wi-Fi-based positioning system named WILL, which
does not require an on-site survey or prior knowledge of AP positions. Here
the floor map of the entire building is constructed virtually, while Wi-Fi
fingerprints and user movement are used together to predict the target node‘
location. This method reportedly achieves an average room-level accuracy
of 86% among 16 rooms with M = 26 installed APs in an office building.

1Kalman filters are widely used in real-time applications which tracks moving objects,
but will not be further explained in this thesis.

10

2.1. Indoor Localization Background

Wang et al. [15] propose an unconventional approach for indoor localization
called UnLoc. This method utilizes other environmental Organic Land-
marks (OLM) signatures, such as magnetic fluctuations in addition to typi-
cal RSSI readings together with data from gyroscopes and compasses. The
data is used in an unsupervised learning environment, and the approach
reportedly achieves 1− 2m localization accuracy.

2.1.2 Received Signal Strength Indication

RSSI represents a measurement of the power level of a RF signal at a re-
ceiver‘s antenna. A RSSI reading is done using an ADC at the time a data
packet arrives, and the power of the signal is thus measured. The strength
of the received signal depends on the receiver’s distance from the sender
and the sender’s broadcasting power and receiver’s antenna power. How-
ever, RSSI is known to fluctuate significantly as it is influenced by many
environmental factors, such as multipath propagation, reflection and signal
fading [16]. For instance, the human body is known to absorb as much as
9dB of 2.4GHz Radio Frequency (RF) signals in free space environments [8].
Experiments in [17] show that the RSSI may drop 30dBm if the target node
is moving toward the AP across 10cm.

There is no standardization that links RSSI to a physical parameter. Conse-
quently, different vendors and manufacturers use different scales and granu-
larity when referring to RSSI. However, we emphasize that Decibel-Milliwatt
(dBm) is a more typical unit of measurement in the literature. Meshtech’s
BLE devices are equipped with Nordic Semiconductor SoCs. Therefore,
Meshtech’s devices inherit the RSSI definition featured by Nordic Semicon-
ductor chips, where RSSI is represented as an eight-bit long signed integer
value that can be converted to dBm. The minimum RSSI provided by
Meshtech devices is −100dBm, e.g., φmin = −100dBm.

2.1.3 Indoor Radio-Channel Path Loss Model

Based on statistical analysis, it has been demonstrated that the channel
fading characteristic of RF signals follow a lognormal distribution [13]. The
path loss model for indoor RF signals is a widely used formula linking the
path loss of RF signals to distance [18]. According to this model, the signal

11

2.1. Indoor Localization Background

path loss, or RSSI φ, given in decibels-milliwatts, at a distance d can be
obtained with the following formula:

φ(d) [dBm] = ¯φ(d0)− 10η log10
(

d

d0

)
+Aσ, (2.1)

where ¯φ(d0) is the average signal path loss at a specific reference distance
(normally d0 = 1m), η is an environment-dependent path loss exponent and
Aσ is a Gaussian random variable with zero mean and σ standard deviation
in dBm [19].

The path loss exponent η determines the rate at which the signal decays [18].
The value of η is increase in environments with more obstacles [13], and η =
2 represents a free-space environment [20]. η is usually a value between one
and four, i.e., η ∈ [1, 4]. Because η = 2 represents a free-space environment,
η is usually higher than two.

¯φ(d0) is often referred to as the calibrated RSSI, or one-meter-RSSI (as d0 is
commonly and conveniently set to 1m). The one-meter-RSSI represents the
average RSSI granted at a one-meter distance. This value is determined by
the antenna characteristics of both the sender and the receiver [20]. Thus,
¯φ(d0) is generally a factory-calibrated constant provided by the product

manufacturer.

By conveniently setting d0 = 1m, renaming φ(d0) |d0=1m to c, and consider-
ing the average RSSI φ̄ (thus, removing the Gaussian noise Aσ), the formula
can be further simplified to:

φ̄ = c− 10η log10 d. (2.2)

By reversing Equation 2.2, the distance d can be obtained as:

d = 10
c−φ̄
10η . (2.3)

The reader should note that it can be challenging to obtain accurate dis-
tances, especially if the object is moving in real-time, even when a slid-
ing window is applied to the RSSI. According to Equation 2.1, the signal

12

2.1. Indoor Localization Background

strength is weakened when the distance d is increased. At the same time,
the Gaussian random variable is unaffected by distance. Based on this, we
inherently know from Equation 2.1 that the Signal-to-Noise Ratio (SNR)
decreases as the distance increases.

2.1.4 Trilateration

Trilateration is a well-known and classical geometrical approach for indoor
localization. It is a method to determine an target node’s coordinates by us-
ing simultaneous range measurements from three APs positioned at known
sites, as shown in Figure 2.1 [21]. The intersection between the three circular
ranges, corresponds with the target node‘s coordinates. When considering
two Cartesian dimensions, the trilateration problem can be expressed with
the three following equations:


(x1 − x)2 + (y1 − y)2 = d21,

(x2 − x)2 + (y2 − y)2 = d22,

(x3 − x)2 + (y3 − y)2 = d23,

(2.4)

where we denote the position of the target node as χ = (x, y) with x and y
representing its coordinates. Further, (xj , yj) are the coordinates of the jth

AP (j = {1, 2, 3}) and dj are the distances between the jth AP and the target
node. For RSSI-based localization in WSNs, the distances di are commonly
calculated by reversing the propagation model, as shown in Equation 2.3.
Solving the set of equations above in terms of χ obtains an estimate of the
target node‘ position. In [10], a novel solution for the trilateration problem
is presented. The target node‘ location can be obtained as:

χ =


x = a−y(y3−y2)

x3−x2
,

y = b(x3−x2)−a(x1−x2)
(y1−y2)(x3−x2)−(y3−y2)(x1−x2)

,

(2.5)

where the variables a and b can be obtained by:

a =
(d22 − d23)− (x22 − x23)− (y22 − y23)

2
, (2.6)

13

2.1. Indoor Localization Background

and:

b =
(d22 − d21)− (x22−2

1)− (y22 − y21)

2
, (2.7)

respectively. This approach will obtain the precise coordinates of the target
node, as long as the distances dj are accurate. However, the method above
is only applicable in scenarios with M = 3 APs. Thus, three APs are
needed in order to determine the target node’s coordinates on a 2D plane.
If we instead consider three spheres, we would get two ambiguous points in
the z-dimension. Trilateration may be considered an outdated localization
approach today [19], but it still maintains some significance within the field
of indoor localization, as it is a well-known algorithm. The distance between
two known coordinates, χ1 = (x1, y2) and χ2 = (x2, y2), can be computed
using the Pythagorean theorem as follows:

d =
»
(x1 − x2)2 + (y1 − y2)2. (2.8)

x

y

r2

(x2, y2)

r3

(x3, y3)

r1

(x1, y1)

(x, y)

Figure 2.1: The trilateration problem.

14

2.1. Indoor Localization Background

2.1.5 Min-Max Localization Algorithm

The min-max localization algorithm is a popular localization approach [22].
This approach uses rectangular shapes rather than circles, as shown in Fig-
ure 2.2. The inner-most intersection determines the current prediction of
the node’s location. In [22], they utilize an approach where the area marked
by the min-max algorithm evaporates and diffuses for each time step. The
marks evaporate slower than new marks occur, and all existing marks are
summed up. Thus, if the mobile node stays still in one place, its current
position will be reinforced over time.

x

y

r2

(x2, y2)

r3

(x3, y3)

r1

(x1, y1)
(x, y)

Figure 2.2: The min-max localization algorithm.

2.1.6 Modified Weighted Centroid Localization Algorithm

An estimate of the target node‘ coordinates can be found with the Tra-
ditional Centroid Algorithm, which returns the center coordinate between
visible APs. However, the Weighted Centroid Localization (WCL) algo-
rithm, which adds weights to the distances dj , is normally preferred for
indoor localization as it provides more accurate estimates [23]. In simple
terms, the WCL algorithm predicts the node’s coordinates by summing up
the coordinates of all visible APs and weighting them according to their
estimated distances. In [24], an exponent g is introduced on the weights,
in order to construct a so-called ”attraction-field” around the target node,
so that the nearest APs weighs more for determining the estimate. Conse-
quently, this estimation technique for finding the target node‘ coordinates

15

2.1. Indoor Localization Background

can be found with:

χ̂ =


x =

∑M
i=1(r̂

−g
i xi)∑M

i=1(r̂
−g
i)

y =
∑M

i=1(r̂
−g
i yi)∑M

i=1(r̂
−g
i)

,

(2.9)

where the predicted position χ̂ becomes the center coordinate in respect to
all M APs when g = 0, and an increasing value of g increases the relative
weight of the nearest APs by reducing the weight of APs further away.
When combining the WCL algorithm with fingerprinting, it has been stated
that the required number of reference points can be reduced by up to 40%
compared with the typical fingerprinting approach [25]. WCL is relatively
easy to apply, even in cases with more than three APs, but may only grant
a rough estimate of the target node‘ actual location, even when the exact
distances di are known. The WCL algorithm can, however, work well in
practical situations.

2.1.7 Least Squares Algorithm

The Least Squares (LS) algorithm is a standard approach for solving re-
gression problems in overdetermined systems [13]. This approach can be
used to estimate the location of a target node more accurately than the
triangular centroid algorithm. For systems with M ≥ 3 APs, the following
set of equations can be obtained:


(x1 − x)2 + (y1 − y)2 + (z1 − z)2 = d21,

(x2 − x)2 + (y2 − y)2 + (z2 − z)2 = d22,
...

(xM − x)2 + (yM − y)2 + (zM − z)2 = d2M

. (2.10)

Using LS, equation M is subtracted from all the first M − 1 equations [13].
Further, the following linear expression can be obtained:

αχ = β, (2.11)

16

2.1. Indoor Localization Background

where α is given by:

α =


2(x1 − xM) 2(y1 − yM) 2(z1 − zM)
2(x2 − xM) 2(y2 − yM) 2(z2 − zM)

...
...

...
2(xM−1 − xM) 2(yM−1 − yM) 2(zM−1 − zM)

 (2.12)

and β is given by:

β =


x21 − x2M + y21 − y2M + z21 − z2M + d21 − d2M
x22 − x2M + y22 − y2M + z22 − z2M + d22 − d2M

...
x2M−1 − x2M−1 + y2M−1 − y2M + z2M−1 − z2M + d2M−1 − d2M

 . (2.13)

Finally, the target node‘ coordinates χ can be obtained as:

χ = (αTα)−1αTβ, (2.14)

where αT is the transposed version of matrix α. Like trilateration, LS
provides the exact coordinates of the target node as long as the distances di
are correct. One major difference between this method and trilateration, is
that LS handles M ≥ 3 APs. LS can also easily be used together with three
Cartesian dimensions as long as the APs are not placed uniformly along any
of the axes.

2.1.8 Fingerprinting

Fingerprinting is one of today’s most favored approaches for indoor localiza-
tion, because it generally provides improved localization accuracy compared
to orthodox approaches, such as trilateration [26]. The fingerprinting ap-
proach involves two phases; (1) the offline phase and (2) the online phase.
In the offline phase, normally, RSSI readings from all visible APs is cap-
tured at R reference points. Each sample, Xφ, consist of M readings, i.e.,
Xφ = {φ1, φ2, ..., φM} and is linked to the reference points coordinates χr.

17

2.2. Bluetooth Communication Background

This concept is shown in Figure 2.3. The goal is to capture the fingerprint of
all the reference points and then use this information to train a localization
algorithm that adapts to the given environment. The fingerprinting data
can for instance be used to optimize the parameters of the radio-channel
propagation model presented in Section 2.1.3.

When the localization service is live, referred to as the online phase, vari-
ous approaches can be used to determine the location of the target node.
Fingerprinting can be solved as a classification problem, where a multi-class
prediction model, e.g., a Bayes classifier, can be used to predict at which
reference point the target node is currently positioned.

Offline Phase

Online Phase

(χ1, Xφ1)

...

χ̂

Training

...

APM

AP1

FP DB

(χR, XφN)

RP1

RPR
...

Xφi
φj

AlgorithmXφ

Figure 2.3: The fingerprinting localization approach.

2.2 Bluetooth Communication

Bluetooth operates on the 2.4GHz non-licensed ISM RF band, spanning
from 2, 400 MHz up to 2, 483.5 MHz [27]. WLAN technologies, such as
Wi-Fi, also operate within this ISM band. Bluetooth features adaptive
hopping. Consequently, Bluetooth devices are less likely to interfere with
other devices operating at the same frequencies, and are also less likely to be
disturbed in-operation themselves. BLE uses 40 individual radio channels,
where three of them (referred to as 37, 38 and 39) are used for advertisement
packets sent via Generic Access Profile (GAP). The remaining 37 channels
(0 − 36) are used for data packets transmitted via Generic Attribute Pro-
file (GATT). Figure 2.4 demonstrates the different frequency channels in
Bluetooth systems.

18

2.2. Bluetooth Communication Background

2402 MHz

37

2426 MHz

38

2480 MHz

39

0 11 36

Figure 2.4: BLE radio frequency channels.

When a device is advertising, it is considered to be a peripheral device. The
peripheral device can only send advertisement data on one channel at a
time. In the meantime, a listening device, referred to as the central device,
will only listen to one channel at a time. In addition, the listener might
only be listening for at specific time intervals, determined by a so-called
scan window. For that reason, the advertisement packet will only be picked
up by a listening device with a certain probability.

The central device can initiate a connection with the peripheral device.
This is achieved by an agreement of certain connection parameters, such
as a certain hopping sequence, using the GAP protocol, before switching
over to GATT once the connection has been established. The agreed-upon
hopping sequence among the 37 remaining frequency channels is utilized for
transmitting data packets when connected. Together, the two devices, from
now on referred to as the master and the slave, form a so-called piconet.
The master device can connect with multiple slaves, but each piconet can
only have one master. However, the master can operate as a slave in another
piconet, which is the case for Meshtech’s beacon devices.

2.2.1 Bluetooth Networking

Meshtech has constructed their own proprietary networking protocol ex-
tending the traditional BLE protocol. This protocol, referred to as the
Meshtech network protocol, features network trees and routed messages.
Here, terms such as gateway and beacons emerge. In the world of IoT
systems, the gateway act as an entry point between two different communi-
cation protocols. In the sense of Meshtech’s protocol, the gateway act as an
interface between IP based communication and the BLE network. Meshtech
devices can form a so-called Network Tree, which is shown in Figure 2.5.

19

2.3. Machine Learning Background

...
NDBC

GW

ND

BC

ND

...
BC

...
ND

ConnectedUnconnected

Figure 2.5: The Meshtech protocol network tree.

Each beacon can only have one parent node, but can have multiple child
nodes. In terms of BLE, the Meshtech beacons act as slave and master at
the same time, forming their own sub-piconets. The reader should note that
multiple beacon devices can be connected to the same parent. In practice
the network tree can become fairly large, with many parent and child node
relations, potentially covering a vast physical space. The Meshtech proto-
col features routing, which means that messages sent from the GW can be
routed to specific nodes or beacons further down in the network tree. At the
same time, messages sent from edge nodes can climb the network tree and
arrive at the GW. Edge nodes may operate in either connected or uncon-
nected mode, as is illustrated in the figure. Packets sent from unconnected
node may be picked up by any nearby listening AP.

2.3 Machine Learning

Artificial Intelligence (AI) is the paradigm of building computer algorithms
that mimic human or animal behavior. Today, ML plays a significant role
in the AI domain. ML involves building computer algorithms that can learn
to perform specific actions or process data, given a set of inputs.

20

2.3. Machine Learning Background

2.3.1 Artificial Neural Networks

Artificial Neural Network (ANN) is an approach within the field of ML,
where the computer algorithm tries to imitate the processes in an organic
brain in order to solve complex problems [28]. ANNs can be used to solve
classification, regression, text generation, and image- or audio processing
problems. ANNs are constructed using artificial neurons, connected through
weighted connections, similar to the synapses in the organic brain. The
ANN can consist of several layers of neurons [29], as visualized in Fig-
ure 2.6. An ANN has one input layer and one output layer. ANNs can have
an arbitrary number of hidden layers, where each additional neuron adds
complexity to the model. Deep Learning (DL) was introduced in a paper
by Geoffrey Hinton Et Al. in 2006 [30]. This paper revived the scientific
community’s interest in ANN, as DL could solve large-scale complex prob-
lems with state-of-the-art precision. The term DL is often used for highly
complex ANNs with many hidden layers. When each neuron in the previ-
ous layer is connected to all the neurons in the next layer, the structure of
the ANN is referred to as dense, and it is realized through a feed-forward
process. In the feed-forward process, the output of a single neuron can be
computed as:

yi = f

(
b+

n∑
i=1

xi, wi

)
, (2.15)

where b is a bias, n is the number of neurons in the previous layer, xi is the
ith previous layer neuron’s output, wi is the weight between the ith previous
layer neuron and the current neuron, and f(z) is an activation function.
Consequently, yi can be fed as an input for the next layer’s neurons. The
value of all the neurons in the output layer represents the model’s predic-
tion Ŷ . Various activation functions can be used, such as ReLU, Soft-max,
or linear activation. Linear activation is expressed as f(z) = az, where a is
an arbitrary constant. ReLU activation is expressed with f(z) = max(0, z).
Soft-max activation is commonly used in the final layer of classification mod-
els, as it transforms real values into probabilities [31]. Soft-max activation
for the jth neuron can be expressed with:

fj(z) =
ezj∑n
k=1 e

zk
, (2.16)

where e is Euler’s number, z is the input vector and j ∈ {1, 2, ..., n}.

21

2.3. Machine Learning Background

During training, ANNs achieves a stochastic gradient descent through a
process called backpropagation, which is a supervised learning strategy [29].
The weights and biases for each neuron are adjusted based on the error of
the model’s prediction, going backward, starting from the output layer. The
error is calculated by comparing the model’s prediction Ŷ with the target
output Y .

...
...

Input layer Hidden layers Output layer

...
...

x1

x2

xN

ŷ1

ŷ2

ŷM

Figure 2.6: Layer structure of sequential ANNs.

Figure 2.6 shows the general structure of classical densely connected ANN.
However, more complex model structures exist, such as Recurrent Neural
Networks (RNN), Long Short-Term Memory (LSTM) and Convolutional
Neural Networks (CNN). These schemes will not be explained in depth in
this thesis. The general principle behind RNNs is that the output from a
previous time step is used as input in the next time step. Thus, the RNN
can be used for time-series data, and in the case of indoor localization, the
information of earlier positions can be beneficial for tracking moving objects.

2.3.2 Embedded Machine Learning

ML processed physically on embedded devices is a relatively new field of re-
search, which has gained much attraction recently because of the growth
within both the ML- and IoT paradigms. TinyML is a paradigm that
aims to integrate deep learning on small and ultra-low-power embedded
devices [32]. This is especially relevant for the TM approach presented in
the following chapter, because it has a particularly promising potential in
regards to processing within IoT hardware [5].

22

2.4. The Tsetlin Machine Background

2.4 The Tsetlin Machine

The Tsetlin Machine (TM) is a relatively new and promising ML algo-
rithm, that utilizes propositional logic in order to solve large-scale and com-
plex pattern recognition problems [3]. The TM is computationally simple
and easy to interpret [33] because it utilizes the Tsetlin Automaton (TA)
as its fundamental building block. In benchmarks, the TM has provided
competitive accuracy compared to other state-of-the-art ML algorithms,
such as Support-Vector Machines (SVM)s, Decision Trees, Random Forest,
Naive Bayes classifiers, Logistic Regression and Artificial Neural Network
(ANN) [3]. It outperforms SVM, logistic regression and ANN in several
benchmark datasets, such as the Iris Dataset and the MNIST dataset [33].
By the authors of [34], it was demonstrated that the TM converges after
fewer epochs and is more memory- and power efficient than the popular
ANN. Abeyrathna et al. showed in [35] that by using parallel and asyn-
chronous clause evaluation during training, the TM could achieve up to 50
times faster learning than its predecessor.

2.4.1 Tsetlin Automaton

The TA is considered to be the very first Learning Automaton (LA) intro-
duced by M. L. Tsetlin in the early 1960s [3]. It is a versatile and straight-
forward learning mechanism with rapid and accurate convergence and low
computational complexity. The TA, referred to as the learner, can learn the
optimal action in unknown stochastic scenarios through interaction with an
Environment, referred to as the teacher. The teacher provides feedback to
the learner in terms of penalties and rewards upon actions made/selected
by the learner. Consequently, through the TA choosing actions, and getting
feedback on them from the Environment, the automaton will converge to
the action that gives it the least probability of penalty over time. This is
true, even for environments that change over time. The TA is based on
states, where its current state, ϕu, determines which action it selects. A TA
for a two-action Environment is shown in Figure 2.7. The TA in Figure 2.7
has 2N states and 2 actions. Figure 2.7 shows how the TA switches between
states based on the feedback from the environment. In groups of multiple
TAs, more complex functionality can be performed, which is the case of the
TM.

23

2.4. The Tsetlin Machine Background

1 2 N... N+1 N+2 2N...

Action 1 Action 2
Reward
Penalty

Figure 2.7: A Tsetlin automaton for two-action environments.

2.4.2 Classical Tsetlin Machine

The TM uses multiple two-state TAs, like the one shown in Figure 2.7 [33],
that cooperates in complex learning schemes. The TAs represent the literals,
which in groups form so-called conjunctive clauses. The inputs and outputs
of the TM can be represented using bits. The main internal logic of the TM,
such as recognition and training, can be done through manipulating those
bits. This way, the TM naturally requires small computational resources
and can work close to the hardware. In addition, the logic behind the TM’s
predictions becomes fully explainable. The output of the TM is based on
the summation of evidence or votes from the clauses, where the majority of
votes determines the output ŷ. This can be expressed as:

ŷ = u

m/2∑
j=1

C1
j (X)−

m/2∑
j=1

C0
j (X)

 (2.17)

and

u(v) =

®
1, if v ≥ 0

0, otherwise
, (2.18)

where C1
j denotes the positive polarity clauses, C0

j denotes the negative po-
larity clauses, X is the input vector and m is the total number of clauses [3].
Here, u(v) is a binary step function, referred to as the threshold function.
The structure of the TM is shown in Figure 2.8.

24

2.4. The Tsetlin Machine Background

0/1

Σ Σ

0/1

...

0/1

+ -

...
∧ ∧

Summation

Conjunctive
clauses

Input

0/1 0/1

+ -

...
∧ ∧

Xb

Threshold function

Output 0/1

Figure 2.8: The Tsetlin Machine.

The TM learning algorithm is a reinforcement based learning algorithm [33].
It has two types of feedback, namely, Type I and Type II. Type I feedback
eliminates false positives and reinforces true positives output, while type
II feedback eliminates false positives output. The complete feedback prob-
ability table from [33] is shown in Table 2.1. The table shows how the
probability for a reward, or penalty, is calculated for individual TAs. The
reward and penalty probabilities depend on the clause’s output, the TA’s
action, as well as its input literal. s is referred to as the precision.

Table 2.1: Tsetlin Machine feedback probability table.

Feedback Type I II
Clause Output 1 0 1 0
Literal Value 1 0 1 0 1 0 1 0

C
ur

re
nt

St
at

e

Include
Reward (s-1)/s NA 0 0 0 NA 0 0
Inaction 1/s NA (s-1)/s (s-1)/s 1 NA 1 1
Penalty 0 NA 1/s 1/s 0 NA 0 0

Exclude
Reward 0 1/s 1/s 1/s 0 0 0 0
Inaction 1/s (s-1)/s (s-1)/s (s-1)/s 1 0 1 1
Penalty (s-1)/s 0 0 0 0 1 0 0

25

2.4. The Tsetlin Machine Background

2.4.3 Multi-Class Tsetlin Machine

The Multi-Class Tsetlin Machine (MCTM) can be used for pattern recogni-
tion problems, where the task is to predict one class among n classes, given
an input pattern, X [3]. Here, the majority vote determines the outputted
class. This is done by replacing the threshold function featured in the clas-
sical TM with a arg max operator. The class selection done by the MCTM
can be expressed as:

ŷ = arg max
i=1,...,n


m/2∑
j=1

C1,i
j (X)−

m/2∑
j=1

C0,i
j (X)

 , (2.19)

where the arg max operator returns the index i, which is assigned to a
specific class. The MCTM uses the same feedback table as the classical TM
during training. The logical structure of the MCTM is shown in Figure 2.9.

Σ Σ

0/1

...

0/1

+ -

...
∧ ∧

Summation

Conjunctive
clauses

Input

0/1 0/1

+ -

...
∧ ∧

Xb

Arg max operator

Selected class 1...n

arg max

Figure 2.9: The Multi-Class Tsetlin Machine.

2.4.4 Regression Tsetlin Machine

The Regression Tsetlin Machine (RTM) was recently introduced to solve
regression problems using the TM algorithm. The Regression Tsetlin Ma-
chine (RTM) transforms input patterns into a single continuous output and

26

2.4. The Tsetlin Machine Background

can be used to solve regression problems where a single continuous value is
desired [33]. In the RTM the polarity of the individual clauses is removed.
Instead, the total vote count represents a single continuous value. The sum-
mation operator outputs a value between 0 and T , representing the number
of clauses that evaluate to ′1′. Hyper parameter T is referred to as the sum-
mation target [36]. The value outputted by the summation operator is then
normalized to match the min- and max boundaries of the desired regression
output. The output of the RTM can be obtained by:

ŷ =
ymax

T

m∑
j=1

Cj(X), (2.20)

where ymax is the maximum output value among all N training samples
Y = [y1, ..., yN], T represents the maximum number of votes, m is the
number of clauses, Cj(X) represents the output from the jth clause given
the input vector X. The RTM structural logic is shown in Figure 2.10. The
RTM uses Type I- and Type II feedback, similar to the classical TM, but
with different criteria as follows:

Feedback =

®
Type I, if ŷ < y

Type II, if ŷ > y
, (2.21)

where ŷ is the prediction, and y is the target value. Type I feedback increases
the number of clauses which evaluate to ′1′ if the ŷ < y while Type II
feedback decreases the number of clauses which evaluate to ′1′ This way,
the loss is minimized over N training samples. A probability activation
function stabilizes the learning. This function decreases the probability of
giving feedback if the outputted value is close to the desired value, effectively
reducing oscillation near the target value. The feedback probability p can
be obtained using:

p =
K(ŷ − y)

ymax
, (2.22)

where K is a constant.

27

2.4. The Tsetlin Machine Background

Σ

0/1 0/1
...

∧ ∧

Summation

Conjunctive
clauses

Input Xb

Normalization

Regression output ŷ

ymax
T×

Figure 2.10: The Regression Tsetlin Machine.

2.4.5 Weighted Tsetlin Machine

In the classical Tsetlin Machine, every additional clause can contribute to
improving the accuracy, but linearly adds computation time and memory
usage [36]. The Weighted Tsetlin Machine (W-TM) aims to reduce the
computation time and memory usage by applying weights to the individual
clauses. Reportedly, the W-TM outperforms the regular TM when using
the same number of clauses m [36]. Here a positive real-valued weight wj is
multiplied with the jth clause’s output:

ŷ′(X) =

m/2∑
j=1

w+
j C

+
j (X)−

m/2∑
j=1

w−
j C

−
j (X), (2.23)

where the output ŷ′ becomes real-valued. The step function from the clas-
sical TM in Equation 2.18, can be applied as follows:

ŷ = u(ŷ′(X)). (2.24)

The weights can also be applied to the MCTM. Here the predicted class ŷ
is given with:

ŷ = arg max
i=1,...,m

{
ŷ′i(X)

}
. (2.25)

28

2.4. The Tsetlin Machine Background

In general, the W-TM trains similarly to the classical TM, but the weights
are also updated. When training starts, each weight wj equals 1.0. For Type
I feedback, each positive or negative clause evaluating ’1’ has its weight
updated by multiplying with (1 + γ), where γ is the learning rate and γ ∈
[0,∞). For Type II feedback, each positive or negative clause evaluating ’1’
has its weight updated by dividing by (1 + γ). Clauses evaluating ’0’ keep
their weights unchanged. This concept is realized by the following rules:

wj =


wj(1 + γ), if Type I and Cj(X) = 1
wj

(1+γ) , if Type II and Cj(X) = 1

wj , otherwise.
(2.26)

29

Part II

Contributions

31

Chapter 3

Utilizing Beacon-to-Beacon
Data for Indoor Localization

In this chapter, we present our environment-adaptive approach for indoor lo-
calization. Our approach utilizes in-network beacon-to-beacon data to con-
struct indoor localization models for BLE-based WSNs. While the gateway
and beacon devices function as Access Point (AP)s with known positions in
the WSNs, the edge nodes, such as wearable devices, are typically the ones
we want to locate. The beacon-to-beacon data refers to RSSI measurements
done in-between the beacons themselves, without involvement of any wear-
able devices, or other edge nodes. The beacon-to-beacon RSSI is measured
whenever a beacon sends a advertisement messages which is picked up by
other nearby listening beacons, tuned in on the same radio channel. The
RSSI readings between each pair of beacons are then collected at the gate-
way. Our hypothesis is that the beacon-to-beacon data contains valuable
information about the surrounding environment, and can, in the end, be
used to increase the localization accuracy of the Indoor Localization System
(ILS). This is opposed to simply guessing the environmental characteristics,
or doing the tedious task of collecting fingerprinting data from nodes. In
total, we can get up to M ! extra data features with this approach, and
normally, this information remains unused in conventional ILSs. From this
point forth, we refer to this approach as the BC-to-BC approach 1.

1Throughout this thesis, the term BC-to-BC refers to our approach of constructing
localization models using beacon-to-beacon data. When we explicitly refer to the data,
or the direction of the signal, we use the term beacon-to-beacon.

33

3.1. Challenges BC-to-BC Approach

With the BC-to-BC approach, we propose a strategy to adapt beacon-to-
beacon data into a node-to-beacon scenario, because the goal is to locate
nodes, and not the beacons. The main idea is to train a fingerprinting-
based localization algorithm. Each pinging beacon is considered an individ-
ual reference point. We propose methods in order to fill potentially missing
data points and data features, specifically areas that are not covered by
the beacon fingerprints. The resulting beacon fingerprints, and generated
data points, are then combined in order to train a regression-based Machine
Learning (ML) algorithm, that can process the RSSI and enhance the lo-
calization accuracy accordingly. Finally, a mathematical approach, such as
trilateration or LS, can be applied to estimate the mobile nodes’ location.
With the BC-to-BC approach, re-calibration of the ILS can be done au-
tomatically by an application, and the approach can easily be adapted to
various environments.

This chapter is structured as follows: Section 3.1 will discuss the criti-
cal challenges with the BC-to-BC approach. Section 3.2 will explain the
different strategies for mitigating the challenges presented in the previous
section. In addition, we will explain how an BC-to-BC-based ILS can be
constructed.

3.1 Challenges

The goal of the BC-to-BC approach is to utilize beacon-to-beacon data in
order to construct ILSs that functions well in localization of wearable de-
vices, referred to as the target nodes. However, from the theory presented in
Chapter 2.1.2, the beacon-to-beacon data can potentially be quite different
from a node-to-beacon scenario, depending on the antenna characteristic of
the different devices. Translating the beacon-to-beacon to a node-to-beacon
scenario in a sensible manner, is one of the key challenges with the BC-to-
BC approach. Additionally, if we also consider each beacon node to be
placed at a reference point, only a handful, specifically M , reference points
are provided by the beacon-to-beacon data. These M reference points may
not be sufficient to train a ML algorithm, as we want the ML to recognize all
areas of the room and not be limited to these points. Through the beacon-
to-beacon data, the RSSI characteristic of other areas in the room remain
unknown. Some of the challenges related to only using beacon-to-beacon
data can be summarized as follows:

34

3.2. Proposed Methods BC-to-BC Approach

• From the beacon-to-beacon data, we get a maximum of M reference
points, which is likely to be insufficient to train an accurate finger-
printing based localization model.

• Let’s say dBC→BCmin is the minimum distance between two beacon
nodes in the environment. The mobile node can be positioned closer to
one of the beacons than dBC→BCmin . However, the beacon-to-beacon
data will not contain RSSI readings which covers distances shorter
than dBC→BCmin . These data points must therefore be approximated.

• M input features are expected in the typical fingerprinting approach.
However a pinging beacon node will not measure it’s own signal strength.
For each beacon node reference point, we will get a maximum of M−1
features, where the reading from the pinging beacon itself is missing.

• The beacon device and the mobile node may not share similar antenna
characteristics, i.e., cBC→ND ̸= cND→BC . Thus, the Path Loss Model
presented in Equation 2.1 can differ between the two scenarios.

3.2 Proposed Methods

In this section we present the proposed BC-to-BC method, and how to
overcome the challenges presented in Section 3.1. The general methodology
of the BC-to-BC approach is visualized in Figure 3.1. The figure illustrates
the data flow in the system, from processing the raw beacon-to-beacon data,
to training the ML model and running the resulting ILS. Here, XBC→BCRaw

denotes the raw beacon-to-beacon data, which contains a complete list of
all RSSI measurements done by the system during the data capture session.
Each data point in XBC→BCRaw

contains the measured RSSI, φ, the ID
of the transmitting device, the ID of the receiving device and potentially a
reference point ID linked to the current position transmitting node. The raw
data is converted to typical fingerprinting data Xφ = {φ1, φ2, ..., φM} using
our proposed post-survey dataset compiler algorithm. The reader should
note that the coordinates of all reference points, χr, and coordinates of the
beacons χj should be contained in a separate file. We propose to use a
ML algorithm, such as the RTM in order to convert the RSSI readings into
adjusted distances, Ŷd, before applying the LS algorithm to compute the
final estimation of the node’s coordinates, where each distance ŷj correlates

35

3.2. Proposed Methods BC-to-BC Approach

to RSSI reading φj . The individual components of the schematic will be
further explained in the following sub-sections.

Training data

Sampler

GeneratorAnalyser

(χRP , χBC , cND→BC)

(ηj , σ)

(Xφ1 , Yd1 ,)

...
(XφN , YdN)

χBC

Online Phase
χ̂MLXφ

Calibration Phase

LS
Ŷd

Training

Filter +-

cND→BC

+-

cND→BC

cBC→BC

+-XBC→BCRaw

Figure 3.1: The BC-to-BC algorithm.

3.2.1 Post-Survey Dataset Compilation

As explained in Section 2.1.8, typical fingerprinting training datasets contain
N samples with M RSSI measurements each. The fingerprinting dataset can
contain a maximum of N×M individual RSSI readings. However, there is no
guarantee that M readings are received for each exported sample, depending
on where the broadcasting device is positioned. For instance, some APs can
be out of reach (not visible). Some data packets can be lost due to congestion
in the network. For this reason, constructing fingerprinting datasets can
be a challenge in itself. Assuming that we cannot wait for M readings
indefinitely, a sampling interval τ is introduced, where potentially missing
data, has to be filled using interpolation techniques, such as padding. In
terms of constructing a fingerprinting dataset which discards as few readings
as possible, we suggest doing the sampling process after all raw data has
been collected. By doing this, further analysis of the raw data is possible.
Optimal fingerprinting parameters, such as the sampling interval τ and
rolling window length W , can be derived before the final fingerprinting
dataset is constructed. With this approach, it becomes easier to identify
how many APs are in fact visible near the broadcasting device. Thus, we
can wait for fewer readings before exporting a single sample. Consequently,

36

3.2. Proposed Methods BC-to-BC Approach

we can construct fingerprinting training data with maximum utilization of
the available raw data.

For typical fingerprinting, the node must be manually positioned at the
reference point, and the coordinates of the node must be noted down. How-
ever, for the BC-to-BC approach, the reference point identifiers can be rep-
resented by the beacon ID itself. Our post-sampling algorithm will, thus,
function both for the typical fingerprinting approach as well as in a BC-to-
BC approach, with the latter alternative requiring less manual effort.

In practical real-world situations, we might want to apply filtering tech-
niques, such as a rolling window, on the last W readings from each in-
dividual AP. Algorithm 1 shows how a rolling window, which mimics a
real-world situation, can be applied in a post-survey situation. In the pre-
sented algorithm, a single reference point is considered, meaning that the
algorithm must be run individually for each reference point contained in
the raw data. Here, we are not guaranteed to get a RSSI reading from all
M APs within the sampling interval τ . Interpolation techniques, such as
padding, can easily be added to fill missing readings for visible APs after
this sampling algorithm has been applied. For non-visible APs with no data
for the current reference point, we suggest filling missing data with φmin. In
our case φmin = −100dBm. φmin readings can work well with a ML algo-
rithm that identifies these as certain characteristics, but should not be used
directly with the distance approximation formula in Equation 2.3 or any of
the mathematical localization algorithms, because the resulting distance is
unlikely to match the real-world distance.

3.2.2 Capturing BC-to-BC Data

Meshtech’s proprietary BLE network protocol features a functionality called
beacon pinging. This functionality enables a beacon node to send adver-
tisement packets for a period of time. The pinging interval for Meshtech
beacon nodes is predefined. However, the scan-window of listening beacon
nodes can be adjusted. Other listening APs in the environment will pick
up these advertisement packets and compute the RSSI for each of them.
The RSSI readings from all visible beacons are then routed, following the
network tree hierarchy, and arrives at the GW, where a PC software can
process the data. This structure is shown in Figure 3.2, where BCp repre-
sents the pinging beacon. Advertisement packets sent by BCp are picked

37

3.2. Proposed Methods BC-to-BC Approach

Algorithm 1 Post-survey fingerprinting data sampler
Input:

• The number of readings N and (ti, si, ji) for all i ∈ {1, 2, ..., N}
• The maximum number of visible APs M where j ∈ 1, 2, ...,M
• Rolling window length W
• Sampling interval τ

Output:
• List of samples S

1: Initiate list S
2: t ← t1 ▷ Start time
3: Initiate dictionary δ with decimal values ▷ Current sample
4: Initiate dictionary λ with list values ▷ Sliding window
5: for i in {1, 2, ..., N} do
6: if (tn − t) > τ then ▷ Timeout
7: if δ contains data then
8: S ← S + [δ] ▷ Append current sample
9: Clear δ

10: end if
11: t ← ti
12: end if
13: j ← ji ▷ Beacon index
14: λj ← [si] + λj ▷ Append RSSI reading
15: λj ← λmk

for all k ∈ {1, 2, ...,W} ▷ Keep W previous readings
16: δj ← average(λj) ▷ Apply rolling window
17: end for
18: Return S

up by all other listening and visible beacon nodes BCj , where j ̸= p. The
purpose of the PC software is then to process and export the raw RSSI data.
In a live positioning system, the PC software trained using the BC-to-BC
data, can then predict the node’s location on the fly.

3.2.3 Parameter Optimization

In order to adapt a localization model which performs well on the given
environment, we can optimize the parameters of the radio-channel path loss
propagation model presented in Chapter 2.1.3. If we assume that this model

38

3.2. Proposed Methods BC-to-BC Approach

φ1 φM

GW

...

BCp

BCMBC1

GW PC
Device
references

XRaw

Figure 3.2: A schematic showing the flow of data during the process of
capturing raw beacon-to-beacon data.

is accurate, the curvature of the path loss determined by η should depend
on the environment, and thus be the same for both the BC-to-BC and the
node-to-beacon scenarios. This concept can be expressed as:

ηBC→BC = ηND→BC = η. (3.1)

However, the calibrated RSSI constant, c, differ depending on the antenna
characteristic, and can, thus, be different for the two scenarios:

cBC→BC ̸= cND→BC . (3.2)

The calibrated RSSI in the node-to-beacon scenario cND→BC should ideally
be known in advance, defined as a factory-calibrated constant, because it
can be difficult to derive a good estimate for this value otherwise. If both
cBC→BC and cND→BC are known parameters, the path loss model can easily
be adapted to both scenarios, by changing c while using the same path loss
exponent η. Consequently, translating beacon-to-beacon data to a node-to-
beacon scenario can thus be expressed as:

φND→BC ≈ φBC→BC − cBC→BC + cND→BC . (3.3)

As mentioned in Section 3.1, the BC-to-BC dataset will not include RSSI
readings for distances shorter than dmin, where dmin is the distance between

39

3.2. Proposed Methods BC-to-BC Approach

the two closest beacons in the environment. Fitting the path loss model to
the BC-to-BC data, by tuning both cBC→BC and η, might not result in
a curve that adapts well to the node-to-beacon data, because data points
for shorter distances are missing, causing the curve to loose it’s log-normal
characteristic. In order to solve this issue, we propose locking the cBC→BC

to a specific value and only optimizing the η parameter. A good estimate
of cBC→BC should ideally be known in advance. The η can be individually
tuned for each beacon, denoted as ηi, where i ∈ {1, 2, ...,M}. As cBC→BC

represents a factory-calibrated global average, it would be possible to extract
an individual RSSI offset for each beacon, which we could denote as µi.
However, this would again result in the curve potentially loosing it’s log-
normal characteristic. Consequently, we suggest only optimizing η in our
proposed BC-to-BC approach, where good estimates of the calibrated RSSI
constants, c, should be provided by the product manufacturer.

The number of RSSI readings N will not be equal for all pairs of sending-
and receiving devices. Some data points, such as beacons that are close to
each other can be over-represented in the raw data. Thus, simply fitting the
path loss model to the raw data might not result in a model that adapts well
across all distances. For this reason, we propose normalizing the number
of readings for each pair of devices before optimization. This normalization
can be done by instead using the mean RSSI value, φ̄, obtained from each
device pair.

In addition to η, an approximate of the standard deviation, σ, measured in
dBm, can be obtained by analyzing the beacon-to-beacon data. When the
number of measurements N goes towards infinity, e.g. N →∞, the standard
deviation σ measured in dBm converges. Thus, σ can be approximated by
analysing the raw data, where the pairs with the highest number of readings
gives a better approximation of σ. Here, we assume that the BC-to-BC
based σ can be used in the node-to-beacon scenario as well:

σBC→BC ≈ σND→BC . (3.4)

It is also possible to derive an optimal sampling interval τ by measuring the
average time interval between advertisement packets received by a single
beacon. From experiments, this value seems to be close to three times the
actual pinging interval of the pinging device.

40

3.2. Proposed Methods BC-to-BC Approach

The coordinates denoted in the fingerprinting dataset, can potentially be
slightly inaccurate. In typical fingerprinting applications, we suggest tun-
ing two extra parameters: aj and bj , which adds a linear adjustment to
the calculated distances, correcting potential flaws in the reference point
and beacon node coordinates. However, our experiment, indicate that per-
forming this optimization does not translate well from the beacon-to-beacon
scenario into the node-to-beacon scenario.

d′j = ajdj + bj . (3.5)

When using the BC-to-BC approach, it is possible to derive parameters that
adapts to the given environment, such as µj , σ and ηj , and possibly aj and
bj . These parameters can be extracted automatically via an application,
as long as the coordinates of the beacons χj are provided. The calibrated
RSSIs, cBC→BC and cND→BC , should also ideally be known in advance, as
these parameters can prove to be difficult to extract from only the beacon-
to-beacon data.

3.2.4 Constructing the BC-to-BC Training Dataset

The idea with the BC-to-BC approach, is to establish a indoor localization
model able to locate mobile nodes with high accuracy, only trained using
RSSI values measured between beacons. As stated in Section 3.1, using only
beacon-to-beacon data cause a few key challenges. One of the challenges
with this approach is to transform beacon-to-beacon data so that it adapts
well to the real-world node-to-beacon scenario.

We can use the proposed Algorithm 1 in order to construct a purely bea-
con based fingerprinting dataset, while using the logic in Equation 3.3 to
adapt this dataset to a node-to-beacon scenario. However, using these data
points alone to train a ML model is not sufficient, as the beacon fingerprints
does not cover all possible locations of the mobile node. Thus, the ML will
be good at recognizing a handful of patterns, which does not necessarily
apply well in a node-to-beacon scenario. In order to overcome this issue,
we propose generating extra data points which covers potential locations of
the mobile node which does not exist in this fingerprinting dataset. This is
where the parameters extracted from the raw BC-to-BC data, as explained

41

3.2. Proposed Methods BC-to-BC Approach

in Section 3.2.3, are finally utilized. The data points are generated by con-
structing a virtual environment containing both beacon and reference point
positions. Thereafter, RSSI samples are generated at each virtual reference
point. A simplified version of this algorithm is shown in Algorithm 2, where
N samples, Xφ = {φ1, φ2, ..., φM}, are generated at each reference point,
combining the parameters found in Section 3.2.3 with the propagation model
in Equation 2.1.

In order to generate a realistic dataset, it is possible to further enhance
the algorithm. One option would be to add the sampling algorithm shown
in Algorithm 1 in order to apply a sliding window on the generated sam-
ples. However, our experiments indicated that a more robust model can
be constructed by not applying any sliding window on the generated data.
The generator algorithm can consider beacons out of range by defining a
maximum distance dmax and filling the reading with φmin. Additionally,
the simulation can be even further extended, similar to what was done in
the WILL system presented in [14], where the entire floor plan is mapped
virtually. For instance, signals propagating between rooms could reduce
the RSSI a certain number of dBm depending on the material of the walls.
However this would significantly reduce the environment-adaptability of our
approach.

As a baseline, we propose weighing the beacon fingerprints equally to the
fingerprints in the generated data. This can be achieved, by joining the
two types of samples into one dataset, where a factor M/(M + R) of the
samples are beacon fingerprints. In order to construct a unbiased model,
we suggest having an equal number of samples for each reference point in
all the training data.

3.2.5 Making the Final Prediction

Although different approaches can be used to make the final prediction of
the mobile node’s coordinates, we propose using a regression based ML
algorithm, such as the RTM in order to convert the RSSI values Xφ =

{φ1, φ2, ..., φM} into distances Ŷd = {d̂1, d̂2, ..., d̂3}. The ML can hopefully
see relations in the input features Xφ and derive distances that approxi-
mates the real distance, as opposed to only using the propagation model in
Equation 2.1, which cannot identify said relations. Finally, a mathemat-
ical algorithm, such as least squares, can be applied to arrive at the final
prediction of the node’s coordinates χ = (x, y).

42

3.2. Proposed Methods BC-to-BC Approach

Algorithm 2 Simulation-based fingerprinting data generator
Input:

• The number of RPs R and coordinates χr for all r ∈ {1, 2, ..., R}
• The number of BCs M and (χm, ηm, µm) for all m ∈ {1, 2, ...,M}
• The desired number of samples per RP N
• Standard deviation σ
• Node-to-beacon calibrated RSSI c

Output:
• Generated samples S, distances D and target classes Y

1: Initialize two empty arrays S and D with shape (N ×R,M)
2: Initialize empty array Y with shape (N ×R, 1)
3: for r in {1, 2, ..., R} do
4: for n in {1, 2, ..., N} do
5: i ← N(r − 1) + n ▷ Index of current sample
6: Yi ← r ▷ Target class
7: for m in {1, 2, ...,M} do
8: Dim ← Eq. 2.8(χr, χm) ▷ Distance
9: Sim ← Eq. 2.1(c, ηm, Dim, µm, σ) ▷ RSSI

10: end for
11: end for
12: end for
13: Return S, D and Y

43

Chapter 4

Improved Localization with
the Tsetlin Machine

In this chapter, we present how the Tsetlin Machine (TM) can be used to
enhance localization accuracy of Indoor Localization System (ILS)s. The
TM can be combined with the BC-to-BC approach, presented in Chapter 3,
but can also work with other approaches, such as typical fingerprinting. The
concept of using ML to enhance localization in ILS is not a new concept.
However, the TM is a relatively new ML algorithm, with competitive ac-
curacy and lower computational cost compared with other ML algorithms,
such as, e.g., ANNs. To our knowledge, there are currently no previous
solutions in the literature that use the TM in relation to, or as a method
for, indoor localization.

4.1 Binarization of RSSI Data

As stated in Section 2.4.2, the TM accepts a set of bits Xb = {b1, b2, ..., bL}
as input literals. Consequently, in order to use the TM to process real
values, such as RSSI readings, we must first convert the data into a bi-
nary representation. The process of converting RSSI readings into a binary
representation can be expressed as:

Xφ = {φ1, φ2, ..., φM} ⇒ Xb = {b1, b2, ..., bL}. (4.1)
45

4.2. Regression Approach Localization with TM

In this way, each of the RSSI values from sample Xφ are considered as an
unique input feature, and can, thus, be converted to binary. We propose to
use a typical approach for representing the RSSI in a binary format. This
can be done in the following manner: Determine the minimum- and maxi-
mum possible RSSI value, then map this range linearly to B bits, where the
minimum value φmin is represented with only zeros (e.g., {0, 0, ..., 0}) and
the maximum value φmax is represented with only ones (e.g., {1, 1, ..., 1}).
Any value between φmin and φmax can be represented by activating a certain
number of bits between zero and B. The number of bits per feature, B, will
affect the resolution of the input features. Assuming that the number of bits
per feature B is used for all M input features, the binary representation of
the sample will consequently contain L = BM bits. The goal is to provide
an accurate binary representation of the features in order to ensure that the
model performs optimally. As stated in Chapter 2.1.2, Meshtech’s devices
report RSSI as an 8-bit signed integer value, where the lowest possible value
φmin = −100dBm. The RSSI will never exceed 0dBm. For this reason, the
raw RSSI in our case can be fully represented using B = 100. However,
when applying filtering techniques on the raw RSSI measurements, such as
a Kalman filter or a rolling window, decimal values naturally occur. In such
cases using B = −100 may result in some degree of quantization noise.

4.2 Regression Approach

As demonstrated by Li et al. in [13], regression-based ML models can be
used to improve localization accuracy in indoor localization systems. In [13],
a ANN was used to convert RSSI into distances in a similar manner to what
is expressed in Equation 4.3:

Xφ = {φ1, φ2, ..., φM} ⇒ Ŷd = {d̂1, d̂2, ..., d̂M}, (4.2)

where there are M inputs and outputs, and the RSSI, φj is linked to the
distance, d̂j . The idea is that the ML identifies complex relations between
the input features and adjusts the distances accordingly, such that the re-
sulting localization potentially becomes more accurate. After the RSSI has
been converted into distances, the distances d̂j can be used with mathe-
matical localization approaches, such as the least squares algorithm. The
least squares algorithm can consider M ≥ 3 APs, while providing precise

46

4.2. Regression Approach Localization with TM

localization, assuming that the predicted distances d̂j are accurate. For the
fingerprinting approach, the ML algorithm can recognize patterns specific
for a single Reference Point (RP) and enhances the distance accuracy such
that the mathematical algorithm outputs the coordinates of that reference
point. Hopefully, the outputted coordinates, resembles the mobile node’s
real-world position.

Regression
RTM1 RTMM...

Xb = {b1, b2, ..., bB}

Input

Algorithm

d̂Md̂1

Mathematical
algorithm

χ̂
Predicted node
coordinates

Xφ = {φ1, φ2, ..., φM}

Binary input

BinarizerBinarizer

Figure 4.1: Proposed RTM-based RSSI-to-distance implementation.

As stated in Section 2.4.4, the Regression Tsetlin Machine (RTM) can be
used to predict a single continuous output value ŷ given a set of input
literals Xb in a binary format. However, in order to apply a mathematical
algorithm, such as the least squares algorithm, a set of distances is required.
In order to obtain M distances, we propose to use M individual RTMs,
where each RTM receives all input literals Xb and outputs one distance
d̂j each. The output of each RTM is then combined to produce the final
output vector: Ŷd = {d̂1, d̂2, ..., d̂M}. Consequently, our complete model
of M×RTMs can still identify relations between the input features and at
the same time output a set of M distances. The complete structure of the
proposed implementation is shown in Figure 4.1.

In the proposed model, each RTM can be uniquely defined with individual
hyper parameters, such as s, T and number of clauses m. However, for sim-

47

4.3. Classification Approach Localization with TM

plifying construction of such a design, we suggest using the same parameters
for each RTM. Thus, the total number of clauses becomes Mm. We also
suggest using weighted clauses, which can significantly reduce the number
of clauses required, which effectively reduces the computational costs. We
can consider the set of RTMs as a single multi-output regression model. In
order to train the model, the target output Yd must be separated, such that
RTM j is trained with output j. This concept is described in Algorithm 3.

Algorithm 3 Multi-output RTM training
Input:

• Binary input Xb with shape (N,L)
• Target output Y with shape (N,M)
• The number of training epochs E
• The number of clauses m
• Target T
• Precision s

Output:
• Trained RTMs Ωj

1: Ωj ← Initiate RTM(m,T, s) for all j ∈ {1, 2, ...,M} ▷ Initiate RTMs
2: γj ← Column j in Y for all j ∈ {1, 2, ...,M} ▷ Split columns
3: for j in {1, 2, ...,M} do
4: Ωj .fit(Xb, γj , E)
5: end for
6: Return Ωj

4.3 Classification Approach

An alternative to the proposed regression-based implementations, is to solve
localization as a classification problem. ML based classification models can
be used to predict a class i among R classes, given input vector Xφ. In this
approach, each class can represent predefined locations in the environment,
such as a reference point. This approach can be expressed as:

Xφ = {φ1, φ2, ..., φM} ⇒ ŷr ⇒ χ̂r = (x̂r, ŷr). (4.3)

The general idea behind using ML based classifier for solving indoor localiza-
tion, is similar to the regression based approach; ML models can hopefully

48

4.3. Classification Approach Localization with TM

learn and identify complex relations between the input features and more
accurately predict where the target node is located.

In this alternative, we propose to use the Multi-Class Tsetlin Machine
(MCTM), as it has been demonstrated to have competitive accuracy with
other state-of-the-art ML algorithms. The outputted class ŷr can give a
rough estimate of the node’s position, depending on how many predefined
locations there are in the environment R, the complexity of the model, the
accuracy of the training data available and potentially how the RSSI has
been pre-processed. This proposed method, can be considered simpler than
the regression based implementation, as we only need one MCTM with this
approach. The approach can also be used with any number of APs, al-
though more APs are usually preferred. The proposed architecture of the
classification implementation is shown in Figure 4.2.

Classifier MTM

Xb = {b1, b2, ..., bB}

Input

1...R
Predicted
reference point

Xφ = {φ1, φ2, ..., φM}

Binary
input

BinarizerBinarizer

Figure 4.2: Proposed classification-based indoor localization implementa-
tion using the MCTM.

49

Part III

Experiments and Results

51

Chapter 5

Performance Evaluations

In this chapter, we present how we conducted our experiments. We will
present the results obtained for the BC-to-BC approach presented in Chap-
ter 3, and also the results obtained for our TM techniques for indoor local-
ization that was presented in Chapter 4.

5.1 Test Environment

In order to validate the proposed methods, we sat up a real-world test bed.
We constructed a Meshtech BLE network inside an office environment shown
in Figure 5.1. In this experiment, we placed M = 10 beacon nodes at fixed
locations in the environment. The beacon positions and floor map is shown
in Figure 5.2. We assigned IDs to the beacons, e.g., BC0, and measured
their coordinates in three Cartesian dimensions with centimeter precision.
In order to minimize congestion in the network, all of the beacons were
connected directly to the GW. In other words, all beacons were direct child
nodes of the GW. We temporarily set the beacon devices’ scan window to
the maximum, specifically 95%, to capture as many advertisement packets
as possible during the data capturing process. In comparison, the default
scan window for these devices is 30%.

In order to capture and export the raw RSSI measurements, we developed
a unique software that exports the raw RSSI measurements. This software

53

5.1. Test Environment Performance Evaluations

handles communication with the GW device through a serial port. In addi-
tion, we made a helpful script to streamline the workflow of assigning IDs
and reference points with this software. Figure 5.3 is a schematic repre-
sentation of our setup. For the beacon-to-beacon data, the script iterated
through each beacon node and enabled pinging from that beacon node for
a period of time. In addition to the 10 beacon nodes, 4 mobile nodes were
used to capture fingerprinting data among R = 87 reference points. We
placed the mobile nodes on stands approximately 1.34m above the floor for
all reference points. The reference point positions are also denoted in the
floor plan in Figure 5.2. We set the advertisement interval for the nodes to
200ms during the data capture. The process of capturing beacon-to-beacon
data was fully automated using the script, while the node-to-beacon data
required re-positioning of the mobile nodes during the process. The reader
can find the complete list of devices used in our test bed in Appendix A.

(a) Left (b) Right

Figure 5.1: Photos of our test environment.

5.1.1 Analysis on the Raw Data

At each reference point, we captured data for five minutes. The entire
capturing process took about nine hours. At the same time, we continuously
captured beacon-to-beacon data. Each beacon node was pinging for 30
seconds each, one at a time. The resulting dimensions of the captured raw
RSSI measurements can be found in Table 5.1.

54

5.1. Test Environment Performance Evaluations

Beacon (BC)

Reference Point (RP)

Gateway (GW)

x

y

31.5m

9.5m

0 1 2

3

456

7
8 9

Figure 5.2: Floor plan of our test environment.

GW

BC9BC0

PC SW

Device
references

...

Script

TCP

PC
COM

BLE network
ND χr

XRaw

Figure 5.3: A schematic showing the flow of data during the raw data
capturing process.

The raw RSSI measurements are plotted in Figure 5.4 for both the node-to-
beacon and beacon-to-beacon scenarios, respectively. In the two Figures, the
x-axis is the true distance d in meters, while the y-axis is the RSSI measured.
Noise was highly prominent in the raw data, as we can observe from the
figure. For the beacon-to-beacon data, the log-normal characteristic was
not very apparent.

55

5.1. Test Environment Performance Evaluations

Table 5.1: The dimensions of our raw data.

Direction Nr. of Measurements
Node-to-Beacon 432,017
Beacon-to-Beacon 26,160
Total 458,177

(a) Node-to-beacon

(b) Beacon-to-beacon

Figure 5.4: The figures visualize each individual data points in our raw
data.

Figure 5.5 displays the RSSI error distributions after tuning the parameters
of the propagation model presented in Section 2.1.3. The error is calculated

56

5.1. Test Environment Performance Evaluations

as (φMeasured − φExpected), where φExpected is the expected RSSI given the
real distance d, according to the propagation model. Both of the histograms
follow a normal distribution, which is expected, according to the theory of
radio channel propagation characteristics presented in Section 2.1.3, which
states that the noise Aσ is a Gaussian distributed random variable.

−20 −10 0 10
RSSI error [dBm]

0

5000

10000

15000

20000

25000

30000

Oc
cu

rre
nc

es

(a) Node-to-beacon

−20 −10 0 10
RSSI error [dBm]

0

250

500

750

1000

1250

1500

1750

Oc
cu

rre
nc

es

(b) Beacon-to-beacon

Figure 5.5: RSSI error distribution in the raw data. Here, the error is
calculated by comparing the measured RSSI with the expected RSSI. The
expected RSSI is calculated using the radio-channel path loss model (Equa-
tion 2.2) with globally optimized parameters (c and η), provided the dis-
tance, which we know.

5.1.2 Parameter Optimization

In this section, the parameters of the propagation model presented in Sec-
tion 2.1.3 are optimized based on the raw data. Please note that the opti-
mized parameters presented in this section could have been slightly different
if the analysis was performed on pre-sampled data, especially if the sam-
pled dataset had a significant amount of data interpolation. Figure 5.6
illustrates how the propagation model in Equation 2.1 can be adapted to fit
the data by tuning its parameters c and η. Table 5.3 shows the parameters
used to plot the model. We expected to find a similar η in both scenarios
because the environment is the same. However, this was not true, because
in this case, ηBC→BC < ηBC→BC . The ηBC→BC was even lower than what
was expected for a free-space environment. The beacon-to-beacon data did
not include readings for distances closer than dmin = 6.02m, which could
have impacted the curve fitting process. In order to mitigate the issue with

57

5.1. Test Environment Performance Evaluations

mismatching η, we determined that the best solution was to set cBC→BC

to a statically defined value. The reader should note that the calibrated
RSSI in neither of the directions was known in advance to our experiments.
We assumed that the parameters in the node-to-beacon scenario were ideal.
Because the data was readily available, we used the ηND→BC in order to
find an ideal cBC→BC . By doing this, we arrived at cBC→BC = −58.54dBm
which we believed to be much closer to the actual value.

0 5 10 15 20 25 30
Distance [m]

−100

−90

−80

−70

−60

−50

RS
SI

 [d
Bm

]

Measured
Model

(a) Node-to-beacon

5 10 15 20 25 30
Distance [m]

−95

−90

−85

−80

−75

−70

−65

RS
SI

 [d
Bm

]

Measured
Model

(b) Beacon-to-beacon

Figure 5.6: The signal path loss model fitted on our raw data. In these
figures, the log-normal characteristic of the raw data was highlighted by
plotting the average measured RSSI given the distance between the devices.

Table 5.2: Radio-channel path loss model parameters (c and η) optimized
for the node-to-beacon and beacon-to-beacon scenarios, respectively. The
parameters were optimized using two Cartesian dimensions. The values in
the bottom row were found by considering η = 2.15 found in the node-to-
beacon scenario as the ground truth and then exclusively optimizing c.

Direction c η

Node-to-beacon −63.33dBm 2.07
Beacon-to-beacon −60.74dBm 1.87
Beacon-to-beacon’ −58.54dBm 2.07

Table 5.3 shows the resulting ηj individually optimized per beacon, with
c globally set. The data in this table suggest that the path loss exponent
η is fairly similar in both the node-to-beacon and beacon-to-beacon sce-
nario across all individual beacons. In respect to the BC-to-BC approach,

58

5.1. Test Environment Performance Evaluations

these results are promising, because they suggest that the η retrieved from a
beacon-to-beacon scenario can be directly applied in a node-to-beacon sce-
nario. Figure 5.7 shows the propagation model plotted for two individual
beacons using the parameters presented in Table 5.3, which illustrates that
the curve show some resemblance between the two scenarios.

Table 5.3: Radio-channel path loss model parameters (η and σ) optimized
for each beacon, individually.

Beacon # Node-to-beacon Beacon-to-beacon
η σ η σ

All (0–9) 2.07 3.38 2.07 4.06
0 1.98 3.48 1.92 4.29
1 2.21 3.77 2.07 4.33
2 2.11 3.64 1.85 3.33
3 2.45 2.22 2.44 2.98
4 2.11 3.56 1.92 4.48
5 1.90 3.45 2.10 5.23
6 1.89 3.00 1.81 3.68
7 1.79 2.94 2.02 3.83
8 1.89 3.26 1.98 3.86
9 2.53 3.33 2.57 4.45

0 5 10 15 20 25 30
Distance [m]

−100

−95

−90

−85

−80

−75

−70

−65

RS
SI

 [d
Bm

]

BC9
BC6

(a) Node-to-beacon

0 5 10 15 20 25 30
Distance [m]

−95

−90

−85

−80

−75

−70

−65

−60

RS
SI

 [d
Bm

]

BC9
BC6

(b) Beacon-to-beacon

Figure 5.7: The radio-channel path loss model individually fitted per bea-
con. The figures depicts data from two beacons. The dots represent the
mean RSSI value measured between a advertising device, located at a spe-
cific coordinate, and the beacon. 59

5.2. Data Preparation Performance Evaluations

The standard deviation, σ, for the beacon-to-beacon scenario is on aver-
age 0.78dBm higher than for the node-to-beacon data. As stated in Sec-
tion 3.2.3, σ should converge to the correct value when the number of read-
ings goes toward infinity. From this, the σ can be approximated. However,
it was concluded that the average standard deviation from all beacon-to-
beacon measurements, namely 4.06dBm, was sufficient for our node finger-
printing data generator.

5.2 Data Preparation

5.2.1 Beacon Fingerprints

We constructed a pure beacon-to-beacon based fingerprinting dataset by
sampling the raw beacon-to-beacon signal with our proposed post-survey
sampling algorithm presented in Section 3.2.1. We measured the average
measurement interval to be 2.14s, thus we used τ = 2.14s as our sampling
interval in order to minimize data loss. After the sampling process, we
normalized the number of samples per beacon, so that each beacon beacon’s
reference point weighed the same in the training data. Each RSSI reading
was adapted to a node-to-beacon scenario using Equation 3.3. One of the
pairs, namely BC3 and BC6, never picked up any RSSI readings from each
other. The missing pair, approximately 1.1% of the dataset, was filled using
φmin = −100dbm. After this, the remaining empty values in the data was
filled with a padding interpolation technique. We refer to the resulting
beacon fingerprinting data as TrainBC .

5.2.2 Node Fingerprints

We used the node-to-beacon data in order to construct testing data for
our BC-to-BC approach. We refer to this validation data as TestA. We re-
served five randomly selected reference points for a separate testing dataset,
referred to as TestB. Consequently, TestA, contains samples from 82 ref-
erence points. This testing data gives a good indication of the model’s
real-world performance. The same 82 reference points were used to con-
struct training- and validation data for our regular fingerprinting models,
referred to as TrainFP and TestA′ , respectively. We ensured strict separa-

60

5.2. Data Preparation Performance Evaluations

tion between training and validation data. This was achieved by separating
the raw node-to-beacon data in the time domain before applying our sam-
pling algorithm. Thus, none of the samples in TrainFP and TestA′ are based
on the same raw data. TestB consist of reference points which are unfamil-
iar to the models, and can be used to detect potential model overfitting1.
We argue that by reserving some of the reference points for testing, we can
analyze the model’s performance on unseen coordinates, or coordinates that
are located somewhere between the reference points, which are not present
during training. For all the node-to-beacon data, we tried to construct
authentic samples that closely resemble data similar to what we would ob-
serve from a real-world application. Here, we applied a rolling window with
length W = 6. We also filled non-visible beacons with φmin = −100dBm.
In addition, we normalized the number of samples per pair so that they had
the same weight during testing.

5.2.3 Simulated Datapoints

We built the simulation based training dataset using the dataset generation
algorithm presented in Section 3.2.4. Consequently, we simulated RSSI
readings by using the parameters presented in Table 5.3, which we obtained
through the BC-to-BC approach. Any coordinate within the room bound-
aries could in fact be simulated. Here, we simulated the same 82 real-world
reference points and generated N = 300 samples for each of them. We did
not apply any rolling window or other filtering techniques on this gener-
ated data. This was done in order to reduce the models’ over-confidence
on the training data, as we could not be certain that the simulated data
accurately described every reference point in the real-world environment.
The resulting dimensions for our sampled datasets are stated in Table 5.4.

1If a model is overfitted, it means that it is specially adapted to the training data and
that it does not work in a generalizing way. Such a model will perform very poorly on
new cases. Appropriate testing of the model can help us detect overfitting, e.g., by testing
its performance on data from devices entirely omitted in training. We would expect very
good results in training and validation for an overfitted model but very poor results on
separate test data.

61

5.3. Result for the TM Performance Evaluations

Table 5.4: The dimensions of our sampled training- and validation data.

Approach Dataset name RPs Samples Data source

BC-to-BC
TrainBC 10 2,580 Beacon fingeprints
TrainPL 82 26,100 Simulation
TestA 82 33,620 Node fingerprints

Any TestB 5 2,000 Node fingerprints

FP TrainFP 82 29,848 Node fingerprints
TestA′ 82 2,952 Node fingerprints

5.3 Result for the TM

In this section, we present the experiments and results of the proposed
TM based localization techniques presented in Chapter 4. For our RTM
approach, a total of M = 10 Weighted RTMs (W-RTM) were used, where
each W-RTM corresponded to one of the beacons in our test bed.

Table 5.5: Selected hyper parameters for our TM implementations. The
abbreviation W refers to the use of weighted clauses.

Model m T s Bits per feature Epochs
W-RTM (×10) 360 1800 2.0 200 30
W-MCTM 200 500 1.5 500 10

5.3.1 Hyper Parameter Search

The performance and complexity of the TM depends on the hyper parame-
ters used, such as the target value T , the precision s, the number of clauses
m, and the granularity of the input features, here determined by the number
of bits per feature B. We conducted experiments in order to derive optimal
parameters for the RTM based solution. In our case, we set T to be five
times m, e.g., T = 5m. In order to derive an appropriate s, we conducted
a hyper parameter search, where different values for s and m were mapped
in a so-called heat map. The resulting hyper parameter search heat map is
shown in Figure 5.8. The hyper parameters we ended up using are shown
in Table 5.5.

62

5.3. Result for the TM Performance Evaluations

1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5
Precision (s)

20

40

80

160

320

640

1280

2560
Nu

m
be

r o
f c

la
us

es
 (m

)
2.6

2.8

3.0

3.2

3.4

3.6

RM
SD

Figure 5.8: Hyper parameter search heat map for our RTM based RSSI-to-
distance model. Here, the RMSD is evaluated using the TestA dataset. The
model was trained for 10 epochs using BC-to-BC training data, with 80%
samples from TrainPL (e.g., 80% simulated training data).

5.3.2 Model Training

Figure 5.9 demonstrates the training history for our 10×W-RTM based
RSSI-to-distance model over 30 training epochs. These figures are based on
a single run, and visualize how the training data differ from the test data.

0 3 6 9 12 15 18 21 24 27 30
Epoch

1.25

1.50

1.75

2.00

2.25

2.50

2.75

RM
SD

FP Train
Test A
Test B

(a) Fingerprinting

0 3 6 9 12 15 18 21 24 27 30
Epoch

2.0

2.2

2.4

2.6

2.8

3.0

RM
SD

Train
Test A
Test B

(b) BC-to-BC

Figure 5.9: Training history for our W-RTM RSSI-to-distance implementa-
tion.

5.3.3 ANN Implementation

We chose to compare the performance of our RTM implementation with an
ANN. In order to make our numerical results repeatable we describe our
ANN implementation in this section. Table 5.6 show the parameters used

63

5.3. Result for the TM Performance Evaluations

for our ANN implementation, while Table 5.7 describes the layer structure.
In total, the regression implementation had 495,520 trainable parameters.
The model had M = 10 inputs and M = 10 outputs. This way, the ANN
cpuld convert each sample Xφ = {φ1, φ2, ..., φM} into M distances Ŷd =

{d̂1, d̂2, . . . , d̂M}. Figure 5.10 shows the training history for our ANN based
RSSI-to-distance model. We used a similar layer structure for our ANN
based classification model. The only difference was that we used a soft-max
activation on the output layer and a categorical cross-entropy optimizer.
The classification model had R = 82 outputs, corresponding to the 82 real-
world reference points in TestA.

Table 5.6: Parameters used for our ANN implementations.

Type Optimizer Epochs Batch size
Regression Adam 30 30
Classification Categorical cross-entropy 30 30

Table 5.7: The layer structure of our ANN implementations. Layer 4a
represents the output layer of our ANN regression model, while 4b represent
the output layer of our ANN classification model.

Layer Activation Neurons Params
1. Dense ReLU 10 110
2. Dense ReLU 800 8,800
3. Dense ReLU 600 480,600
4a. Dense Linear 10 6,010
4b. Dense Soft-max 82 49,282

0 3 6 9 12 15 18 21 24 27 30
Epoch

0

1

2

3

4

M
SE

FP Train
Test A

(a) Fingerprinting

0 3 6 9 12 15 18 21 24 27 30
Epoch

2

3

4

5

6

7

8

9

M
SE

Train
Test A

(b) BC-to-BC

Figure 5.10: Training history for our ANN regression model.

64

5.3. Result for the TM Performance Evaluations

5.3.4 Resulting Performances

In Table 5.8 we present the resulting performance for our regression based
ML models. The resulting performances are measured using RMSD, where
lower values indicate lower overall error and better performance. The RMSD
relates to the resulting localization accuracy. However, this relation may not
be completely linear, depending on which mathematical algorithm is applied
to derive the final prediction of the target node’s location. Figure 5.11
plots the RSSI-to-distance conversion made by the standard path loss model
versus our W-RTM model’s predictions, on the same data. This figure
illustrates how ML can be used to enhance our distance estimates.

Table 5.8: Resulting RMSD for our trained regression models.

Model FP BC-to-BC
TestA′ TestB TestA TestB

W-RTM 1.58m 2.26m 2.52m 2.52m
ANN 1.64m 1.99m 2.30m 2.25m

(a) Path loss model (Equation 2.3) (b) W-RTM

Figure 5.11: RSSI-to-distance conversion on the TestA data. The black line
represents a perfect prediction. Each dot represent the result of a single
RSSI-to-distance conversion. (a) uses the standard path loss model without
AI. (b) uses our trained W-RTM machine learning model.

65

5.4. Resulting Localization Accuracy Performance Evaluations

5.4 Resulting Localization Accuracy

Because our system is non-deterministic and partly rely on random chance,
the numerical results presented in this section are based on the average
from multiple, in total ten, separate runs, using consistent parameters. For
each experiment, five different reference points were randomly selected to
be excluded from the training data, i.e., we re-compiled the datasets and
retrained the models in each run.

Table 5.9: Resulting localization accuracy for trilateration, least squares
and WCL without machine learning. The No optimization column serves
as a general reference, using calibrated RSSI c = −50dBm and path loss
exponent η = 3.

Alg. FP BC-to-BC No optimization
TestA′ TestB TestA TestB TestA TestB

Tri. 4.95m 4.60m 4.85m 4.67m 4.94m 5.19m
LS 4.91m 4.99m 5.36m 5.27m 6.09m 7.03m
WCL 2.52m 2.68m 2.64m 2.82m 2.85m 2.85m

5.4.1 Without Machine Learning

In Table 5.9, we present the resulting localization accuracy for three typical
mathematical localization algorithms, namely trilateration, LS and WCL.
The RSSI data was converted to distances using Equation 2.3. We tested
each of these algorithm using parameters found trough the fingerprinting
approach and our own BC-to-BC approach. The path loss exponent η was
individually adjusted for each beacon based on the optimized parameters
shown in Table 5.3. For the WCL algorithm, we used attraction field factor
g = 2. The reader should note that the implementations of the tradi-
tional mathematical algorithms are implemented in a manner which works
in favour of these algorithms. For instance, the prediction for these mod-
els are ensured to stay within the boundaries of the room. We ensured
that the filling RSSI of φmin = −100 [dBm] was never used with any of
the algorithms. Thus, we argue that the numeric results presented in the
table should be considered to be near the best achievable localization ac-
curacy for these algorithms. Figure 5.12 illustrate predictions made by the
trilateration and WCL algorithm on TestB without using ML.

66

5.4. Resulting Localization Accuracy Performance Evaluations

0 5 10 15 20 25 30
Room x-coordinate [m]

0

2

4

6

8Ro
om

 y
-c

oo
rd

in
at

e
[m

]

0

2

4

6

8

Av
er

ag
e

lo
ca

liz
at

io
n

er
ro

r [
m

]

(a) Trilateration

0 5 10 15 20 25 30
Room x-coordinate [m]

0

2

4

6

8Ro
om

 y
-c

oo
rd

in
at

e
[m

]

0

1

2

3

4

5

Av
er

ag
e

lo
ca

liz
at

io
n

er
ro

r [
m

]

(b) WCL

Figure 5.12: Visualization of predictions made on the TestB data using
trilateration and WCL, respectively. In these experiments, we used the path
loss parameters (c and η) individually tuned for each beacon obtained with
the BC-to-BC approach. The colored cells represent the average localization
error, in meters, for a single reference point. The white dots represents
50 predictions made by the model. The white lines indicate the distance
between those predictions and the target node’s true location.

5.4.2 With Machine Learning

In Table 5.10, we present the resulting localization accuracy for our ML-
based implementations. The three mathematical algorithms, trilateration,
least squares and WCL were used to determine the node’s coordinates.
Figure 5.13 visualizes 50 predictions done by our W-RTM based RSSI-to-
distance model on the TestB dataset.

67

5.4. Resulting Localization Accuracy Performance Evaluations

Table 5.10: Resulting localization accuracy for our machine learning-based
implementations. Here, the best result for each column is highlighted.

ML Alg. FP BC-to-BC
TestA′ TestB TestA TestB

W-RTM
Tri. 1.51m 2.68m 3.00m 3.36m
LS 1.53m 2.67m 3.00m 2.72m
WCL 1.84m 3.05m 3.24m 3.08m

ANN
Tri. 0.63m 2.94m 2.80m 2.91m
LS 0.69m 2.89m 2.79m 2.82m
WCL 1.84m 3.05m 3.24m 3.08m

0 5 10 15 20 25 30
Room x-coordinate [m]

0

2

4

6

8Ro
om

 y
-c

oo
rd

in
at

e
[m

]

0

1

2

3

Av
er

ag
e

lo
ca

liz
at

io
n

er
ro

r [
m

]
(a) Fingerprinting

0 5 10 15 20 25 30
Room x-coordinate [m]

0

2

4

6

8Ro
om

 y
-c

oo
rd

in
at

e
[m

]

0

1

2

3

4
Av

er
ag

e
lo

ca
liz

at
io

n
er

ro
r [

m
]

(b) Beacon-to-beacon

Figure 5.13: Visualization of predictions made on the TestB data using our
RTM-based implementation applying the trilateration algorithm.

68

5.5. Resulting Classification Accuracy Performance Evaluations

Table 5.11: Resulting classification accuracy for our classification based
localization models.

Model FP BC-to-BC
TestA′ TestA

W-MCTM 100.0% 14.8%
Naive Bayes 88.6% 16.8%
Random Forest 99.0% 15.0%
ANN 94.4% 13.4%

5.5 Resulting Classification Accuracy

The results on the classification models are shown in Table 5.11. Here the
MCTM is compared with the naive Bayes classifier, random forest classifier
and an ANN. For our BC-to-BC approach, we trained our models using
TrainPL data with generated data for the same 82 reference points as TestA.
TestB contains none of the same reference points and are therefore not
used for evaluation of these models. When measuring the performance of
classification models, the percentage of correct guesses among N samples, is
commonly used as a validation metric. Thus, classification models become
easy to compare provided the same dataset. With fingerprinting or similar
approaches, it is however possible to use the reference point’s true position
to calculate the model’s average localization error. However, as each correct
guess will result in 0m localization error, the average localization error will
potentially become unrealistically low. For this reason, we argue that the
average localization error of classification-based models cannot be directly
compared with the localization error of regression based- and mathematical
approaches. Consequently, only the resulting percentages are presented in
this table.

5.6 Discussion

The results presented in this chapter, allows us to compare the typical fin-
gerprinting approach with our proposed BC-to-BC approach. We argue
that the numerical results presented in this chapter are, to our best efforts,
unbiased. For instance, the models used for both the fingerprinting- and
the BC-to-BC approach are the same. The only difference is the training

69

5.6. Discussion Performance Evaluations

data, where the BC-to-BC models were trained using beacon fingerprints
and simulation data, and the fingerprinting models were trained using real-
world node fingerprints. For the evaluation data, each reference point had
an equal number of test samples. Consequently each reference point weigh
the same in the results. We ran the experiments multiple times, and the
values presented are based on the average result from ten experiments.

The results on the TestB data gave us an indication of the models’ perfor-
mance on locations in-between the reference points of the training data
(thus, unknown points). Here, our RTM-based RSSI-to-distance model
achieved an average localization accuracy of 2.67m using fingerprinting and
2.72m (0.05m worse) using BC-to-BC. At the same time, our ANN-based
fingerprinting model achieved 0.63m average localization error on the TestA′

dataset, which utilizes the same 82 reference points as in the training data.
This is far superior to that of the BC-to-BC approach, which achieves 2.79m
average localization error on the same data. Consequently, we argue that the
localization accuracy achievable by the fingerprinting approach lays some-
where between 0.6m and 2.7m, while for the BC-to-BC approach, we are
more confident that the accuracy is near 2.8m, at least on our data. The re-
sults on the TestB testing dataset indicates that the fingerprinting approach
does not achieve the expected localization accuracy for any coordinate that
was not included in the training data. Because of this, as well as the in-
tensive manual labor required to construct fingerprinting training data, we
believe the BC-to-BC approach is promising, although the achieved 2.8m
average localization error is not very satisfying. We believe that the local-
ization accuracy can be further enhanced through future work, and that
our experiments serve as evidence that re-calibrating ILSs using beacon-to-
beacon data is feasible.

The BC-to-BC approach is still arguably more adaptive, because it does not
require re-positioning of the nodes during the offline phase. We believe that
methods from the proposed BC-to-BC approach can be used in applications
where the typical fingerprinting is not applicable and where the localization
accuracy requirement is slightly lower. One apparent weakness with the BC-
to-BC approach, is that good estimates for the calibrated RSSIs, cBC→BC

and cND→BC , should be known in advance, and that these are difficult
to acquire trough the beacon-to-beacon data alone. As a consequence, the
product manufacturer would likely need to conduct lab experiments in order
to provide an accurate calibrated RSSI for their products. Hopefully, the
calibrated RSSIs found through our experiments, can be applied in future

70

5.6. Discussion Performance Evaluations

real-world Meshtech ILSs for their specific devices, or for devices with similar
antenna characteristics.

In Table 5.11, we present the results on the classification models. Here,
our MCTM seem to achieve slightly better accuracy compared with the
other algorithms using the fingerprinting approach. However, using our
simulated TrainPL dataset, which features the same 82 reference points as
TrainFP , all models appear to struggle with identifying the correct reference
point. This indicates that our generated data does not match it’s real-
world counterpart to a sufficient degree in order to achieve the same level of
accuracy as fingerprinting. Still, by lowering the number of classes, enlarging
each cell, the BC-to-BC approach can still function to some degree.

Using the regression ML models, such as the RTM, to process the RSSI
can drastically improve the localization accuracy of the mathematical algo-
rithms, such as trilateration and least squares, as is demonstrated through
our experiments. However, we feel that it is important to clarify that single-
RSSI-to-distance conversion can be achieved with simple mathematical ex-
pressions, such as the typical propagation model presented in Equation 2.2.
ML provides improved localization by recognizing relations between RSSI
received by all beacons and can then adjust it’s predictions accordingly.
The reader should note that the WCL algorithm achieved great results on
our test data, compared with the other implementations. In fact, WCL
using BC-to-BC parameters achieves 0.15m more accurate localization than
our BC-to-BC-based ANN implementation on the TestA dataset. For this
reason, we recognize WCL as a strong competitor to the ML based solu-
tions. The reader should note that the WCL algorithm function well where
beacons surrounds the environment, e.g., in every corner of a square room,
and where the point of origin is set to the center coordinate between all
APs (which is the case for our test environment). Our experiments indicate
that the WCL is a valid option in scenarios where the beacons are placed
in a similar manner to our test bed. Although not validated through our
experiments, we hypothesize that in environments where the beacons do not
captivate the room completely, ML can be used to add additional beacons,
virtually, similar to how we simulate reference points in our BC-to-BC ap-
proach. This would enable the mathematical algorithms, such as WCL, to
predict coordinates outside their typical boundaries.

In our experiments, we tried to implement both the RTM and the ANN
with a similar level of complexity. According to our results presented in Ta-
ble 5.10, our RTM based implementation achieves similar test performance

71

5.6. Discussion Performance Evaluations

as our ANN implementation2. However, in regards to the TestA′ data, the
ANN show better performance, as it achieves 0.6m average localization er-
ror, in contrast to 1.5 achieved by the RTM. However, we believe that with
more hyper tuning, we might have achieved even better results than what
we presented earlier. The reader should note that the TM is known to
be less resource intensive than the ANN, which has also been numerically
shown by Lei, Et al. in [34]. In addition, TMs can hypothetically be con-
structed using electric circuits consisting of basic logic gates. In fact, such
solutions have already been prototyped using FGPA by Wheeldon et. al, as
explained in [5]. Therefore, the TM algorithms can potentially be placed as
an on-chip component, doing ML with near instantaneous prediction and
low power consumption. For this reason, using TM to pre-process RSSI
directly on-chip, is plausible and an exiting concept.

2The number of bits required to represent our RTM model is M × 2Lm = 2BM2m =
14.40Mb, while the ANN regression implementation requires approximately 595520×32 ≈
15.86Mb, as each weight can be represented by a 32 bit floating point decimal value.

72

Chapter 6

Conclusion and Future Work

This chapter summarizes and concludes the work in this thesis. In Sec-
tion 6.2 we also discuss how the proposed methods can be further enhanced.

6.1 Conclusion

Although GPS provide superior localization accuracy outdoors, GPS sys-
tems have major difficulties providing sufficient localization accuracy in
indoor settings. Indoor localization using wireless signals has become an
interesting area of research and is still highly ongoing. In this thesis, we
presented a novel strategy for extracting beacon-to-beacon RSSI readings
and we proposed methods for utilizing this data as a foundation to build
and train fingerprinting based localization models. While, the fingerprinting
method requires extensive manual labor during the offline phase, the pro-
posed BC-to-BC method allows the the Indoor Localization System (ILS)
to be deployed directly from the application with much less involvement
from end users and system administrators. The only requirement is to have
a good estimate of the devices’ factory calibrated RSSIs and AP coordi-
nates. Based on the experiments done in this study, we conclude that by
using the proposed BC-to-BC approach combined with machine learning,
we can achieve better localization accuracy, approximately 2.8m, compared
with orthodox localization algorithms, such as trilateration or least squares,
which achieves roughly 4.9m in comparison. The proposed methods did

73

6.2. Future Enhancements Conclusion and Future Work

not outperform the well-established fingerprinting method, which achieves
somewhere between 0.6 − 2.7m 1 localization accuracy on the same data.
Still, the results are promising because the proposed method by nature is
arguably more adaptive than fingerprinting. With further hyper param-
eter tuning of the TM, the proposed methods might achieve even better
results than the ones presented in this thesis. The TM is less computation-
ally complex and less memory hungry than its main competitor, the ANN.
Therefore, the proposed TM based methods for indoor localization consti-
tute interesting competitors within this area of research. We also consider
WCL a solid competitor to the ML-bases approaches, because it achieves
2.7m average localization accuracy on our test data when optimized with
the BC-to-BC approach.

6.2 Future Work and Enhancements

The future enhancements for the BC-to-BC approach involve adapting our
methods so that they can be used in real-time localization systems. In this
thesis, we apply our BC-to-BC approach in an environment where the nodes
are statically positioned in the environment. For live localization systems,
however, more advanced filtering techniques, such as the Kalman filter, can
be applied to further enhance the localization accuracy of moving objects.
Applying recurrent ML models, such as RNNs or the anticipated Recur-
rent TM, is considered to be the next big step in enabling the BC-to-BC
approach to handle time series data. In addition, the newly introduced Blue-
tooth directional finding can also be combined with our approach to further
enhance the localization accuracy 2. In further testing of the BC-to-BC ap-
proach, we plan to evaluate its re-calibration capabilities and adaptability
in environments that change over time. For instance, we could physically
modify the environment, e.g., by moving physical objects, thereby block-
ing and altering some of the signals in the environment to further test the
adaptability of the system.

1While the fingerprinting approach achieves 0.6m localization accuracy on known ref-
erence points, it achieves approximately 2.7m localization accuracy at best on coordinates
not included in the training data. For this reason, we represents its real-world performance
as a range.

2The reader should note that Bluetooth directional antennas have just recently become
available on the market.

74

6.2. Future Enhancements Conclusion and Future Work

The WCL algorithm achieved impressive localization accuracy in our test
environment. However, the WCL algorithm might not achieve similar per-
formance in environments with different beacon configurations. We hypoth-
esize that ML algorithms, such as the RTM, could be used to add additional
virtual beacons, thus allowing the mathematical localization algorithms to
predict locations outside their typical boundaries. This concept could po-
tentially extend the capabilities of our BC-to-BC approach, and should be
further investigated.

Chintalapudi et al. [6] has suggested dynamically determining the location
of a mobile node through other measures, such as GPS or NFC signals at
known sites. In this way, FP data can be obtained without any pre-survey,
which is a strategy that would be interesting to explore in further work.
In this context, another exciting enhancement is implementing a similar
process to automatically retrieve more accurate FP training data directly
from the environment.

The BC-to-BC approach currently requires the beacon coordinates to be
known in advance. However, Wu et al. [14] suggests that we can approx-
imate the locations of all APs using their approach without any on-site
survey. This approach does, however, rely on the complete virtualization
of the building’s floor plan. We believe that the beacon coordinates can be
estimated through the means of beacon pinging for the BC-to-BC approach.
However, the complexity of this task, especially for multi-floor and multi-
room environments, makes the job very challenging and time-consuming.
Therefore, we did not consider this aspect in this thesis, but we should
investigate it in further work.

75

References

[1] M. G. Wing, A. Eklund, and L. D. Kellogg, “Consumer-Grade Global
Positioning System (GPS) Accuracy and Reliability,” Journal of
Forestry, vol. 103, pp. 169–173, June 2005.

[2] A. Yassin, Y. Nasser, M. Awad, A. Al-Dubai, R. Liu, C. Yuen,
R. Raulefs, and E. Aboutanios, “Recent Advances in Indoor Local-
ization: A Survey on Theoretical Approaches and Applications,” IEEE
Communications Surveys Tutorials, vol. 19, no. 2, pp. 1327–1346, 2017.
Conference Name: IEEE Communications Surveys Tutorials.

[3] O.-C. Granmo, “The Tsetlin Machine – A Game Theoretic Bandit
Driven Approach to Optimal Pattern Recognition with Propositional
Logic,” arXiv:1804.01508 [cs], Jan. 2021. arXiv: 1804.01508.

[4] I. Lee and K. Lee, “The Internet of Things (IoT): Applications, in-
vestments, and challenges for enterprises,” Business Horizons, vol. 58,
pp. 431–440, July 2015.

[5] A. Wheeldon, R. Shafik, T. Rahman, J. Lei, A. Yakovlev, and O.-
C. Granmo, “Learning automata based energy-efficient AI hardware
design for IoT applications,” Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, vol. 378,
p. 20190593, Oct. 2020. Publisher: Royal Society.

[6] K. Chintalapudi, A. Padmanabha Iyer, and V. N. Padmanabhan, “In-
door localization without the pain,” in Proceedings of the sixteenth
annual international conference on Mobile computing and networking,
MobiCom ’10, (New York, NY, USA), pp. 173–184, Association for
Computing Machinery, Sept. 2010.

77

References References

[7] N. A. K. Zghair, M. S. Croock, and A. A. R. Taresh, “Indoor Lo-
calization System Using Wi-Fi Technology,” Iraqi Jorunal of Com-
puters, Communications, Control & Systems Engineering (iJCCCE),
vol. 19(2), pp. 69–77, Feb. 2019.

[8] Z. Ma, S. Poslad, J. Bigham, X. Zhang, and L. Men, “A BLE RSSI
ranking based indoor positioning system for generic smartphones,”
pp. 1–8, Apr. 2017.

[9] S. He and S.-H. G. Chan, “Wi-Fi Fingerprint-Based Indoor Positioning:
Recent Advances and Comparisons,” IEEE Communications Surveys
Tutorials, vol. 18, no. 1, pp. 466–490, 2016. Conference Name: IEEE
Communications Surveys Tutorials.

[10] O. Oguejiofor, A. Aniedu, E. H.C, and O. A.U, “Tilateration Based
Localization Algorithm for Wireless Sensor Network,” IJISME, vol. 1,
Sept. 2013.

[11] M. Woolley, “Bluetooth Direction Finding - A Technical Overview,”
Feb. 2021.

[12] F. Zafari, A. Gkelias, and K. K. Leung, “A Survey of Indoor Localiza-
tion Systems and Technologies,” IEEE Communications Surveys Tu-
torials, vol. 21, no. 3, pp. 2568–2599, 2019. Conference Name: IEEE
Communications Surveys Tutorials.

[13] G. Li, E. Geng, Z. Ye, Y. Xu, J. Lin, and Y. Pang, “Indoor Position-
ing Algorithm Based on the Improved RSSI Distance Model,” Sensors
(Basel, Switzerland), vol. 18, Aug. 2018.

[14] C. Wu, Z. Yang, Y. Liu, and W. Xi, “WILL: Wireless Indoor Local-
ization without Site Survey,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 24, pp. 839–848, Apr. 2013. Conference Name:
IEEE Transactions on Parallel and Distributed Systems.

[15] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R. Choud-
hury, “No need to war-drive: unsupervised indoor localization,” in Pro-
ceedings of the 10th international conference on Mobile systems, appli-
cations, and services, MobiSys ’12, (New York, NY, USA), pp. 197–210,
Association for Computing Machinery, June 2012.

[16] T. Lovett, M. Briers, M. Charalambides, R. Jersakova, J. Lomax, and
C. Holmes, “Inferring proximity from Bluetooth Low Energy RSSI with

78

References References

Unscented Kalman Smoothers,” arXiv:2007.05057 [cs, eess, stat], July
2020. arXiv: 2007.05057.

[17] R. Faragher and R. Harle, “Location Fingerprinting With Bluetooth
Low Energy Beacons,” IEEE Journal on Selected Areas in Communi-
cations, vol. 33, pp. 2418–2428, Nov. 2015. Conference Name: IEEE
Journal on Selected Areas in Communications.

[18] P. Pivato, L. Palopoli, and D. Petri, “Accuracy of RSS-Based Centroid
Localization Algorithms in an Indoor Environment,” IEEE Transac-
tions on Instrumentation and Measurement, vol. 60, pp. 3451–3460,
Oct. 2011.

[19] R. K. Yadav, B. Bhattarai, H.-S. Gang, and J.-Y. Pyun, “Trusted
K Nearest Bayesian Estimation for Indoor Positioning System,” IEEE
Access, vol. 7, pp. 51484–51498, 2019. Conference Name: IEEE Access.

[20] J. Miranda, R. Abrishambaf, T. Gomes, J. Cabral, A. Tavares, and
J. Monteiro, “Path Loss Exponent Analysis in Wireless Sensor Net-
works: Experimental Evaluation,” July 2013.

[21] F. Thomas and L. Ros, “Revisiting trilateration for robot localization,”
IEEE Transactions on Robotics, vol. 21, pp. 93–101, Feb. 2005. Con-
ference Name: IEEE Transactions on Robotics.

[22] F. Palumbo, P. Barsocchi, S. Chessa, and J. Augusto Wrede, “A stig-
mergic approach to indoor localization using Bluetooth Low Energy
beacons,” Aug. 2015.

[23] M.-Y. Jiang and Y.-D. Wang, “Localization Algorithm Research Based
on the Least Square Method and Modifying the RSSI Weighted Cen-
troid Algorithm,” Journal of Computers, vol. 28, no. 6, pp. 269–276,
2017.

[24] J. Blumenthal, R. Grossmann, F. Golatowski, and D. Timmermann,
“Weighted Centroid Localization in Zigbee-based Sensor Networks,”
vol. 2007, pp. 1–6, Nov. 2007.

[25] S. Subedi and J.-Y. Pyun, “Practical Fingerprinting Localization for
Indoor Positioning System by Using Beacons,” Journal of Sensors,
vol. 2017, p. e9742170, Dec. 2017. Publisher: Hindawi.

79

References References

[26] S. Xia, Y. Liu, G. Yuan, M. Zhu, and Z. Wang, “Indoor Fingerprint Po-
sitioning Based on Wi-Fi: An Overview,” ISPRS International Journal
of Geo-Information, vol. 6, p. 135, Apr. 2017.

[27] M. Woolley, “Bluetooth Core Specification v5.1 - Feature Overview,”
Dec. 2020.

[28] A. Jain, J. Mao, and K. Mohiuddin, “Artificial neural networks: a
tutorial,” Computer, vol. 29, pp. 31–44, Mar. 1996. Conference Name:
Computer.

[29] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015. Number: 7553 Publisher: Nature Publishing
Group.

[30] A. Géron, Hands-on Machine Learning with Scikit-Learn, Keras & Ten-
sorflow - Concepts, Tools, and Techniques to Build Intelligent Systems.
O’Reilly Media, Inc., 2 ed., 2019.

[31] I. Kouretas and V. Paliouras, “Simplified Hardware Implementation
of the Softmax Activation Function,” in 2019 8th International Con-
ference on Modern Circuits and Systems Technologies (MOCAST),
pp. 1–4, May 2019.

[32] P. Warden and D. Situnayake, TinyML - Machine Learningg with
TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers.
O’Reilly Media, Inc., first edition ed., Dec. 2019.

[33] K. D. Abeyrathna, O.-C. Granmo, L. Jiao, and M. Goodwin, “The
Regression Tsetlin Machine: A Tsetlin Machine for Continuous Output
Problems,” arXiv:1905.04206 [cs, stat], June 2019. arXiv: 1905.04206.

[34] J. Lei, A. Wheeldon, R. Shafik, A. Yakovlev, and O.-C. Granmo, “From
Arithmetic to Logic based AI: A Comparative Analysis of Neural Net-
works and Tsetlin Machine,” in 2020 27th IEEE International Con-
ference on Electronics, Circuits and Systems (ICECS), pp. 1–4, Nov.
2020.

[35] K. D. Abeyrathna, B. Bhattarai, M. Goodwin, S. Gorji, O.-C. Granmo,
L. Jiao, R. Saha, and R. K. Yadav, “Massively Parallel and Asyn-
chronous Tsetlin Machine Architecture Supporting Almost Constant-
Time Scaling,” arXiv:2009.04861 [cs], Feb. 2021. arXiv: 2009.04861.

80

References References

[36] A. Phoulady, O.-C. Granmo, S. R. Gorji, and H. A. Phoulady,
“The Weighted Tsetlin Machine: Compressed Representations with
Weighted Clauses,” arXiv:1911.12607 [cs, stat], Jan. 2020. arXiv:
1911.12607.

81

Appendix

A Hardware Components

Table A.1: Meshtech products used in our test bed.

Product Role
MT AirMesh Mini Gateway
MT AirMesh 1011 Beacon
MT Wristband 211 Node

83

UiA University of Agder
Master’s thesis
Faculty of Engineering and Science
Department of Information and
Communication Technology

© 2021 Robin Olsson Omslandseter. All rights reserved

	Abstract
	Glossary
	List of Figures
	List of Tables
	Table of Notations
	I Research Overview
	Introduction
	Motivation
	Problem Statement of the Thesis
	Objectives of the Thesis
	Contributions
	Outline of the Thesis

	Background
	Indoor Localization
	Related Work
	Received Signal Strength Indication
	Indoor Radio-Channel Path Loss Model
	Trilateration
	Min-Max Localization Algorithm
	Modified Weighted Centroid Localization Algorithm
	Least Squares Algorithm
	Fingerprinting

	Bluetooth Communication
	Bluetooth Networking

	Machine Learning
	Artificial Neural Networks
	Embedded Machine Learning

	The Tsetlin Machine
	Tsetlin Automaton
	Classical Tsetlin Machine
	Multi-Class Tsetlin Machine
	Regression Tsetlin Machine
	Weighted Tsetlin Machine

	II Contributions
	BC-to-BC Approach
	Challenges
	Proposed Methods
	Post-Survey Dataset Compilation
	Capturing BC-to-BC Data
	Parameter Optimization
	Constructing the BC-to-BC Training Dataset
	Making the Final Prediction

	Localization with TM
	Binarization of RSSI Data
	Regression Approach
	Classification Approach

	III Experiments and Results
	Performance Evaluations
	Test Environment
	Analysis on the Raw Data
	Parameter Optimization

	Data Preparation
	Beacon Fingerprints
	Node Fingerprints
	Simulated Datapoints

	Result for the TM
	Hyper Parameter Search
	Model Training
	ANN Implementation
	Resulting Performances

	Resulting Localization Accuracy
	Without Machine Learning
	With Machine Learning

	Resulting Classification Accuracy
	Discussion

	Conclusion and Future Work
	Conclusion
	Future Enhancements

	References
	Appendix
	Hardware Components

